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Abstract. In this paper, we developed a theoretical study for nonconservative sytems in one
dimension in order to construct numerical schemes for solving the Riemann problem. The noncon-
servative form of our model system required the use of a well-adapted theory in order to give us a
sense of our problem. We chose a framework of generalized functions for solving a scalar hyperbolic
equation with a discontinuous coefficient σt+uσx ≈ 0, where u is the velocity solution of a Burgers’s
equation. After an explicit solution of the Riemann problem, we derived Godunov split schemes
for computing an approximate solution of the Cauchy problem. We applied our study to a system
modeling elasticity and a system modeling gas dynamics. Some stability properties of a scheme
and its convergence to a generalized solution are proved for the first model. Numerical experiments
confirmed this convergence result. For the second model, calculations of flows containing weak-to-
moderate shocks showed that conservation errors are reduced when the mesh is refined but were not
entirely eliminated.
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1. Introduction. For presenting our study, we first consider the simplified sys-
tem modeling elasticity in Eulerian coordinates [5, 2]:{

∂tu(x, t) + u(x, t)∂xu(x, t)− ∂xσ(x, t) ≈ 0,
∂tσ(x, t) + u(x, t)∂xσ(x, t)− k2∂xu(x, t) ≈ 0,

(1.1)

which is a dynamic equation coupled with Hooke’s law when the density of the solid is
almost equal to one, with u representing the velocity, σ the stress, and k a positive
fixed real number.

It is well known that such systems present numerical and physical solutions u
and σ which are simultaneously discontinuous functions. Therefore, the term u . ∂xσ
appears in the form of the meaningless product Y.δ of the Heaviside and the Dirac
functions. To remove this ambiguity, J. F. Colombeau developed a mathematical
theory by introducing the differential algebra G(R × R

+) of generalized functions
where discontinuous functions are represented by means of classes of C∞ functions
[4, 2, 5].

Although the Riemann problem (1.1)–(1.2) admits an infinite number of jump
conditions for shocks [7], we are interested in seeking its shock solution when the ve-
locity and the stress are written with the same Heaviside function. The decomposition
of the Riemann problem (1.1) with the initial data of the form

(u0(x), σ0(x)) =

{
(ul, σl) if x < 0,
(ur, σr) if x > 0,

(1.2)
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achieved by means of a splitting technique [1, 8], permits us to obtain two other
Riemann problems which are easier to solve. One of them (propagation terms) is
associated with the following linear hyperbolic system:{

∂tu(x, t)− ∂xσ(x, t) ≈ 0,
∂tσ(x, t)− k2∂xu(x, t) ≈ 0.

(1.3)

The other one is linked to a nonlinear, nonstrictly hyperbolic system (convection
terms): {

∂tu(x, t) + u(x, t)∂xu(x, t) ≈ 0,
∂tσ(x, t) + u(x, t)∂xσ(x, t) ≈ 0.

(1.4)

Due to the nonstrictly hyperbolicity of the system (1.4), many authors have already
attempted to solve the associated Riemann problem. M. Oberguggenberger in [11]
made a theoretical study of the same system by simultaneously solving the two equa-
tions. In [6] Colombeau and Le Roux proposed a Godunov scheme for this system by
assuming that the variables u and σ moved in phase on the shock. But the case of
decreasing initial data when the velocity u has a variable sign was not considered.

Recently, in [13], Remaki studied hyperbolic equations with a discontinuous co-
efficient depending on the space variable x, which permits us to study the second
equation in (1.4), u being known from the first equation. Moreover, a technique of
perturbation for solving a degenerated system in conservative formulation has also
been introduced by Le Roux and collaborators in [1].

In this paper, we develop two methods for studying the Riemann problem asso-
ciated with the system of convection terms (1.4). The first one is the approach by
perturbation mentioned above. It consists of viewing the system (1.4) as the limit
when ε→ 0, ε > 0 of the following well-posed system:{

∂tu(x, t) + u(x, t)∂xu(x, t)− ε ∂xσ(x, t) = 0,
∂tσ(x, t) + u(x, t)∂xσ(x, t)− ε k2∂xu(x, t) = 0.

(1.5)

Proceeding in this way, one shows that its associated Riemann problem presents a
shock wave solution when ul ≥ ur; otherwise, a rarefaction wave solution is obtained.
Moreover, the Riemann invariants for the systems of convection and propagation
terms are the same as those obtained for the original system (1.1).

The second approach consists of substituting this velocity u, which is a solution
of the inviscid Burgers’s equation, in the second equation of (1.4). Then we study the
second equation of the system as a scalar hyperbolic equation with a discontinuous
coefficient depending on the variables x and t. Therefore, when we seek the discon-
tinuous solutions of the latter equation, we obtain for ul ≥ ur a single shock solution
and a two shock solution for ul < ur. (This last equation had not been considered by
Colombeau and Le Roux [6].)

Following this analysis, we propose new Godunov schemes to compute an approx-
imate solution of problem (1.4)–(1.2). Then by a splitting method, we construct new
Godunov splitted schemes for the system (1.1). Adapting the technique mentioned
in [3] for the scheme obtained by the first approach, we prove the stability of the
L∞-norm for the total variation in space and in time (in a Tonnelli–Cesari’s sense)
and that this scheme is convergent to a generalized solution.

Finally, we consider the gas dynamics system in the nonconservative form [6, 5]:


∂tv(x, t) + u(x, t)∂xv(x, t)− v(x, t)∂xu(x, t) ≈ 0,
∂tu(x, t) + u(x, t)∂xu(x, t) + v(x, t)∂xp(x, t) ≈ 0,
∂tp(x, t) + u(x, t)∂xp(x, t) + γp(x, t)∂xu(x, t) ≈ 0,

(1.6)
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where u, p, and v denote, respectively, the velocity, the pressure, and specific volume.
By the same approach as mentioned above for solving the system of convection

terms, we propose split Godunov schemes using the Riemann solver developed by
Colombeau–Le Roux [6] for the propagation terms.

It has been proved in [5] that the approximate solution of system (1.6) can cause
wrong variations of specific volume, velocity, and pressure. Therefore, we use the
modified Godunov scheme for the system of propagation terms which consists of
projecting the density, the momentum, and the total energy instead of the specific
volume, the velocity, and the pressure.

Consequently, for decreasing initial data where ul > 0 > ur, our new schemes
permit us to compute an acceptable approximate solution either for the elasticity
problem or for the gas dynamics Riemann problem, while the Colombeau–Le Roux
scheme fails.

Section 2 is devoted to presenting the theoretical and numerical studies of the
Riemann problem for the degenerated hyperbolic system (1.4) with the perturbation
and the substitution methods. Split schemes for the system modeling elasticity (1.1)
are proposed, and the stability properties of the splitted scheme of elasticity obtained
with the first approach are proved in section 3. A generalized solution is constructed
from the approximate solution in section 4. In section 5 we apply the different ap-
proaches to the system of gas dynamics. Numerical results are given in section 6, and
concluding remarks are made.

2. Convection problem for the elasticity.

2.1. Resolution by perturbation. The system (1.5) is strictly hyperbolic since
the term ε k2 does not vanish. Its matrix has two real eigenvalues λ1(u, ε, k) = u− εk
and λ2(u, ε, k) = u+ εk associated with two eigenvectors r1(k) = (1, k)t and r2(k) =
(1,−k)t, respectively.

As each characteristic field is genuinely nonlinear, we must deal with shock so-
lutions or rarefaction wave solutions to solve the system (1.5). From now on, we set
W = (u, σ)t.
• Shock wave solution. If we look for a solution of the form

Wε(x, t) =Wl + (Wr −Wl)Hε(x− ct),

one gets c = cε = ul+ur

2 ∓ ε k.
When ε tends to 0, cε tends to ul+ur

2 , and

W (x, t) =Wl + (Wr −Wl)H(x− ct).(2.1)

Therefore, the limit of the function uε is a solution of Burgers’s equation according
to the Rankine–Hugoniot condition.
• Rarefaction wave solution. Setting ζ = x

t , the self-similar solution of prob-
lem (1.5)–(1.2) must satisfy [8, 15] for i = 1, 2, the following ordinary differential
system:

W ′(ζ) = ri(k),(2.2)

with

W (λi(Wl), λi(Wr)) = (Wl, Wr).
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From (2.2) we find the relations

σ′(ζ) + k u′(ζ) = 0 or σ′(ζ)− k u′(ζ) = 0,

which give by integration the following Riemann invariants:{
σ − k u = σl − k ul if u > ul,
σ + k u = σr + k ur if u < ur.

(2.3)

The characteristic rays passing through the origin and a general point (x, t) situated
inside the fan have the following slopes: x

t = u − ε k or x
t = u + ε k . Then, using

the Riemann invariants (2.3), one gets as ε tends to zero the value inside the fan:

(u, σ) =

(
ul + ur

2
+
σr − σl
2 k

,
σl + σr

2
+ k

ur − ul
2

)
.

2.2. Resolution by substitution. We know that Burgers’s equation presents
discontinuous solutions. Therefore, let us consider in GS(R× R

+) the solution of the
first equation of system (1.4) under the following form:

u(x, t) = ul + (ur − ul)H(x− ct),

with the Rankine–Hugoniot condition c = (ul+ur)
2 .

Then, system (1.4) can be written as

{
∂tσ(x, t) + u(x, t)∂xσ(x, t) ≈ 0,

u(x, t) = ul + (ur − ul)H(x− ct), with c =
(ul + ur)

2
.

(2.4)

When we add to (2.4) the initial condition

σ0(x) = σl + (σr − σl)H(x),(2.5)

we obtain a Riemann problem for a scalar equation with the discontinuous coefficient
u. From Oberguggenberger [12], the hyperbolic equation (2.4) has a solution in GS(R×
R

+).
Because u is a piecewise function, one recovers the case of scalar hyperbolic

equation with constant coefficient (see [8]) outside the discontinuity. Thus, the char-
acteristic curves are straight lines with slope 1

ul
if x < ct and straight lines with slope

1
ur

for x > ct. To determine the discontinuous solutions of (2.4) we must deal with
the sign of ul − ur.
• If ul − ur ≥ 0, we have a shock wave solution

σ(x, t) = σl + (σr − σl)H(x− ct).(2.6)

Moreover, placing (2.6) into (2.4) as c = (ul+ur)
2 , we recover the following classical

relation linking a generalized Heaviside function with its derivative:

H(x− ct)H ′(x− ct) ≈ 1

2
H ′(x− ct).

• If ul − ur < 0, the function σ(x, t) is equal to σl if t > x
ul

and equal to σr for

t < x
ur

(see Figure 1). But in the sector x
ur
< t < x

ul
(which is nonempty because
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Fig. 1. Characteristic straight lines when ul − ur < 0 .

ul−ur < 0 ) there is a lack of information. Proceeding as Remaki in [13], we consider
a two shock wave solution with an intermediate step value σ∗:

σ(x, t) = σl + (σ∗ − σl)H(x− ult) + (σr − σ∗)H(x− urt).(2.7)

But, it appears that this function σ verifies (2.4) for all value σ∗.
In fact, a reasonable value of σ∗ can derive from the initial condition. Indeed,

placing (2.7) into (2.4) and making t tend to 0, one obtains

(σr − σ∗)H ′(x) +H(x) {(σr − σl)H ′(x)} ≈ 0.(2.8)

Since H(x)H ′(x) ≈ 1
2H

′(x), the relation (2.8) gives σr−σ∗
σr−σl

= 1
2 ; therefore, σ∗ =

σr+σl

2 .

2.3. The Godunov-type numerical schemes. We develop for both approach-
es a Godunov-type numerical scheme for solving system (1.4). We assume that u0

and σ0 are two initial conditions in the space of all bounded variation functions on
R. Let h > 0 be the space mesh size and ∆t = rh the time step, with r > 0.
The discretization of the x-axis is performed by setting for all i ∈ Z, xi = ih and
Ii = [xi−1/2, xi+1/2[. For a given h, the value of the approximate pair (uh, σh) at
the point xi = ih and at the time tn = nrh is denoted by (uni , σ

n
i ) , with i ∈ Z and

n ∈ N.
The quantities u0

i and σ0
i are obtained as the mean value of the initial data u0 and

σ0, respectively, on each Ii. From the knowledge of (uni , σ
n
i ) we set c

n
i−1/2 =

un
i +un

i−1

2 ,

i ∈ Z. Then, according to the sign of uni , i ∈ Z, we compute the value of (un+1
i , σn+1

i )
given either by one cell of Table 2.1 for both approaches, or by the formulas (2.17)–
(2.18) for the first approach, or by the formula (2.19) for the second approach.

If uni−1 < 0 < uni , then we define for the first approach

(σni−1/2, u
n
i−1/2) =

(
σni + σni−1

2
+ k

uni − uni−1

2
,
uni + uni−1

2
+
σni − σni−1

2 k

)
,

and we obtain

σn+1
i = σni − r

(
uni + uni−1/2

2

)
(σni − σni−1/2),(2.17)

un+1
i = uni − r

(
uni + uni−1/2

2

)
(uni − uni−1/2).(2.18)

We set for the second approach

σni−1/2 =
σni + σni−1

2
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Table 2.1
Approximation of (u, σ) according to the sign of cn

i−1/2
and cn

i+1/2
i ∈ Z.

cn
i−1/2

≥ 0 cn
i−1/2

≤ 0

cn
i+1/2

≥
0

σn+1
i = σn

i − rcni−1/2(σ
n
i − σn

i−1)(2.9)

un+1
i = σn

i − rcni−1/2(u
n
i − uni−1)(2.10)

σn+1
i = σn

i(2.11)

un+1
i = uni(2.12)

cn
i−1/2

<

0 σn+1
i = σn

i − rcn
i−1/2

(σn
i − σn

i−1)

−rcn
i+1/2

(σn
i+1 − σn

i )(2.13)

un+1
i = uni − rcn

i−1/2
(uni − uni−1)

−rcn
i+1/2

(uni+1 − uni )(2.14)

σn+1
i = −rcn

i+1/2
(σn

i+1 − σn
i ) + σn

i

(2.15)

un+1
i = −rcn

i+1/2
(uni+1 − uni ) + uni

(2.16)

and we get the following:

σn+1
i = σni − runi (σni − σni−1/2).(2.19)

The Courant–Friedrichs–Lewy (CFL) condition, which ensures that two shock
waves do not meet inside the mesh, is as follows:

max
i∈Z

n∈N

(|uni |, |uni+1/2|) <
1

2r
for the first approach,

max
i∈Z

n∈N

|uni | <
1

2r
for the second approach.

Note that the Godunov scheme developed for the second approach is based on the
sign of uni while the one developed for the first approach is based on the left and right

waves of, respectively, speed Cnl,i+1/2 =
un
i +un

i+1/2

2 and Cnr,i+1/2 =
un
i+1+u

n
i+1/2

2 . The
intermediate step of the velocity is defined above or equals uni or uni+1.

3. Godunov scheme by a splitting method for the elasticity. Let u0, σ0

be two initial conditions in BV (R). Discretizing the x-axis and the time space as in
subsection 2.3, the procedure consists of two steps.

First, with the assumption that (uni , σ
n
i ) is the approximate solution of the system

(1.1) at time tn = nrh, we compute an approximate solution (un,1i , σn,1i ) of the system
(1.4) of the convection problem at time tn+1 = (n+ 1)rh.

In the second step, solving the linear strictly hyperbolic system (1.3) with the
initial data (un,1i , σn,1i ), the shock waves solutions present two contact discontinuities
of, respectively, propagation speed −k and k.

Thanks to the Rankine–Hugoniot jump conditions, for each i ∈ Z, the interme-
diate step value of u and σ is given by the same formulas as those obtained from the



SOLVING HYPERBOLIC SYSTEMS IN A NONCONSERVATIVE FORM 7

Riemann invariants (2.3):

un,1i+1/2 =
un,1i + un,1i+1

2
+
σn,1i+1 − σn,1i

2k
,

σn,1i+1/2 = k
un,1i+1 − un,1i

2
+
σn,1i+1 + σ

n,1
i

2
.

Then, by projection we construct the approximate solution (un+1
i , σn+1

i ) of the system
(1.1) at time tn+1 = (n+ 1)rh:

un+1
i = un,1i + kr(un,1i+1/2 − un,1i )− kr(un,1i − un,1i−1/2),(3.1)

σn+1
i = σn,1i + kr(σn,1i+1/2 − σn,1i )− kr(σn,1i − σn,1i−1/2),(3.2)

where the notation un,1i and σn,1i represents the result of the convection step (obtained
in subsection 2.3). Moreover, the constant r > 0 has to fit so that one of the following
inequalities holds:

max
i∈Z

n∈N

(|uni |, |uni+1/2|, k) <
1

2r
for the first approach,

max
i∈Z

n∈N

(|uni |, k) <
1

2r
for the second approach.

Let us denote by BV (R) the space of all bounded variation functions on R and
by T V (u) the total variation of the function u.

Theorem 1. For u0, σ0 ∈ BV (R) ∩ L∞(R) and under the assumption that

1

k
sup
x∈R

(|ku0(x) + σ0(x)|, |ku0(x)− σ0(x)|) =M,(3.3)

max
i∈Z

n∈N

r(|uni |, |uni+1/2|, k) <
1

2
,(3.4)

the scheme previously introduced in section 3 is stable for L∞(R)-norm for the total
variation in space and for the total variation in time in the Tonnelli–Cesari’s sense.

Therefore, for any T > 0 it follows from the Banach–Alaoglu–Bourbaki theo-
rem that there exist sequences uhm , σhm (with sequences (hm)m∈N tending to 0 )
which converge for the topology of L1

loc(R×]0, T [) toward the functions u, σ ∈
L1
loc(R×]0, T [) ∩ BV (R×]0, T [). The initial condition at t = 0 is justified as in [3].

Proof of Theorem 1. Let us introduce, for each i, n,

Rni = kuni + σni ,(3.5)

Qni = kuni − σni ,(3.6)

Rn,1i = kun,1i + σn,1i ,(3.7)

Qn,1i = kun,1i − σn,1i .(3.8)

From (3.1) and (3.2) one has

{
Rn+1
i = Rn,1i (1− kr) + krRn,1i+1, i ∈ Z,

Qn+1
i = Qn,1i (1− kr) + krQn,1i−1, i ∈ Z.

(3.9)
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We are going to prove that there exists a constant A such that

|Rni | ≤ kM ∀ i ∈ Z, n ∈ N,(3.10) ∑
i∈Z

|Rni+1 −Rni | ≤ A ∀n ∈ N(3.11)

and

|Qni | ≤ kM ∀ i ∈ Z, n ∈ N,(3.12) ∑
i∈Z

|Qni+1 −Qni | ≤ A ∀n ∈ N.(3.13)

We proceed by induction on n. For n = 0 we have (3.10) from (3.3), (3.11) from (3.5),
and the bounded variation assumption on (u0, σ0).

We assume that (3.10) and (3.11) hold for some n. Then, from (3.4) and (3.9)
one gets

|Rn+1
i | ≤ (1− kr)|Rn,1i |+ kr|Rn,1i+1|, i ∈ Z,∑

i∈Z

|Rn+1
i+1 −Rn+1

i | ≤ (1− kr)
∑
i∈Z

|Rn,1i+1 −Rn,1i |+ kr
∑
i∈Z

|Rn,1i+2 −Rn,1i+1|

≤
∑
i∈Z

|Rn,1i+1 −Rn,1i |.

Now we are going to prove that

|Rn,1i | ≤ kM,(3.14) ∑
i∈Z

|Rn,1i+1 −Rn,1i | ≤
∑
i∈Z

|Rni+1 −Rni |.(3.15)

The Riemann invariant Rn,1i is defined with the approximate solution of the convection
problem (see subsection 2.3), constructed according to the sign of the velocity u. We
start with the case where u has a constant sign; then we treat the case where the
velocity has a variable sign.

When uni < 0 for all i ∈ Z, obviously cni+1/2 < 0 , and one obtains by projection

(see Figure 2)

σn,1i = σni − rcni+ 1
2

(σni+1 − σni ),
un,1i = uni − rcni+ 1

2

(uni+1 − σni ).

Using (3.4) and then shifting the index, it happens that∑
i≤s−1

|Rn,1i+1 −Rn,1i | ≤
∑
i≤s−1

|Rni+1 −Rni | − rcns+ 1
2
|Rns+1 −Rns |,(3.16)

∑
i≥s
|Rn,1i+1 −Rn,1i | ≤

∑
i≥s
|Rni+1 −Rni |+ rcns+ 1

2
|Rns+1 −Rns |,(3.17)

and |Rn,1i | ≤ (1 + rcni+1/2)|Rni | − rcni+1/2|Rni+1| ≤ kM for all i ∈ Z.

Moreover, (3.16) and (3.17) give∑
i∈Z

|Rn,1i+1 −Rn,1i | =
∑
i≤s−1

|Rn,1i+1 −Rn,1i |+
∑
i≥s
|Rn,1i+1 −Rn,1i | ≤

∑
i∈Z

|Rni+1 −Rni |.
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In the case uni ≥ 0 for all i ∈ Z, corresponding to type 2, we similarly obtain the
same inequalities (3.14) and (3.15).

Since we have chosen a monotonous solution of Burgers’s equation, its sign can
change only once. Consequently, when u has a variable sign, three cases (types 3, 4,
and 5) corresponding to the three pictures Figures 3, 4, and 5 can occur.

Type 3 is the case where there exists p ∈ Z such that uni ≤ 0 for all i ≤ p and
uni ≥ 0 for all i ≥ p + 1. We denote by Cnl,i+1/2 = (uni + uni+1/2)/2 and Cnr,i+1/2 =

(uni+1 + uni+1/2)/2, respectively, the left and the right sound speed between the cells
Ip and Ip+1.

Thus, by projection (according to Figure 3) and using the CFL condition (3.4)
we obtain

|Rn,1p | ≤ kM and |Rn,1p+1| ≤ kM.(3.18)

Since the relation (3.14) is valid for uni ≤ 0 and uni ≥ 0 for all i ∈ Z (types 1 and 2),
we have for i ≤ p and i ≥ p+2, |Rn,1i | ≤ kM. Then with (3.18) one gets |Rn,1i | ≤ kM,
i ∈ Z.

Moreover,

|Rn,1p −Rn,1p−1| ≤ (1 + rcn
p− 1

2

)|Rnp −Rnp−1| − rCnl,p+ 1
2

|Rnp+1 −Rnp |,
|Rn,1p+1 −Rn,1p | ≤ (1 + rCn

l,p+ 1
2

)|Rnp+1 −Rnp |,
|Rn,1p+2 −Rn,1p+1| ≤ (1− rcn

p+ 3
2

)|Rnp+2 −Rnp+1|,
(3.19)

and in the case uni ≥ 0 for all i ∈ Z,∑
i≥p+2

|Rn,1i+1 −Rn,1i | ≤
∑
i≥p+2

|Rni+1 −Rni |+ rcnp+ 3
2
|Rnp+2 −Rnp+1|.(3.20)

Adding these last estimates (3.20) to (3.19) and to (3.16) with s = p−1 , one obtains∑
i∈Z

|Rn,1i+1 −Rn,1i | ≤
∑
i∈Z

|Rni+1 −Rni |.

Type 4 is the case where there exists p such that uni ≤ 0 for all i ≤ p and uni ≥ 0
for all i ≥ p+ 2. Still by projection (according to Figure 4), one obtains

|Rn,1p+1| = |Rnp+1| ≤ kM ;(3.21)

consequently, in the same way as previously (for type 3), the relation (3.14) is valid
for all i ∈ Z. Moreover,

|Rmp+1 −Rmp | = (1 + rcn
p+ 1

2

)|Rnp+1 −Rnp |,
|Rmp+2 −Rmp+1| = (1− rcn

p+ 3
2

)|Rnp+2 −Rnp+1|;
(3.22)
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✛ ✲✛✲
❅

❅
❅❅
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�

��

✁
✁

✁
✁

❅
❅

❅
❅

✛ ✲

nrh

(n+1)rh

(p+1)h

−rhCnl,p+1/2 rhCnr,p+1/2 rhcnp+3/2

Fig. 3. Type 3. unp+1 ≥ 0, and unp ≤ 0.

.
✛ ✲ ✛ ✲

❅
❅

❅
❅

❅
❅

❅
❅

�
�

�
�

�
�

�
� nrh

(n+1)rh

(p+1)h (p+2)hph

rhcnp+3/2−rhcnp+1/2

Fig. 4. Type 4. rcn
p+1/2

≤ 0, and rcn
p+3/2

≥ 0.

then adding the above estimates (3.22) to (3.16) for s = p and to (3.20) one gets∑
i∈Z

|Rn,1i+1 −Rn,1i | ≤
∑
i∈Z

|Rni+1 −Rni |.

Type 5 is the case where there exists p such that uni ≥ 0 for all i ≤ p and
uni ≤ 0 for all i ≥ p + 2. By projection (according to Figure 5), we obtain using the
CFL condition (3.4)

|Rn,1p+1| ≤ |Rnp+1|(1− rcnp+ 1
2
+ rcnp+ 3

2
) + rcnp+ 1

2
|Rnp | − rcnp+ 3

2
|Rnp+2| ≤ kM.(3.23)

As the relation (3.14) is valid for un1 ≥ 0 and uni ≤ 0 for all i ∈ Z (types 1 and 2), we
have for i ≤ p and i ≥ p+ 2, | Rn,1i |≤ kM . Then, with (3.23) one gets |Rn,1i | ≤ kM,
i ∈ Z.

Besides, when uni ≥ 0 for all i ∈ Z,∑
i≤p
|Rn,1i+1 −Rn,1i | ≤

∑
i≤p
|Rni+1 −Rni | − rcnp+ 1

2
|Rnp+1 −Rnp |,(3.24)

and the following inequalities hold:

|Rmp+1 −Rmp | ≤ (1− rcn
p+ 1

2

)|Rnp+1 −Rnp |
+ rcn

p− 1
2

|Rnp −Rnp−1| − rcnp+ 3
2

|Rnp+2 −Rnp+1|,
|Rmp+2 −Rmp+1| ≤ (1 + rcn

p+ 3
2

)|Rnp+2 −Rnp+1|
+ rcn

p+ 1
2

|Rnp+1 −Rnp | − rcnp+ 5
2

|Rnp+3 −Rnp+2|.

(3.25)

Adding the above estimates (3.25) to (3.24) and to (3.17) for s = p+ 1, one obtains
(3.15).

One similarly obtains the estimates

|Qn,1i | ≤ kM and
∑
i∈Z

|Qn,1i+1 −Qn,1i | ≤
∑
i∈Z

|Qni+1 −Qni |,(3.26)
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✛✲
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✁
✁

✁✁

✁
✁

✁✁

❆
❆
❆❆

❆
❆
❆❆ nrh

nrh

ph (p+1) (p+2)h

−rhcnp+3/2

rhcnp+1/2

Fig. 5. Type 5. cn
p+1/2

≥ 0, and cn
p+3/2

≤ 0.

from which we deduce the inequalities (3.12) and (3.13).
With the estimations of each Riemann invariant (3.10) and (3.12), one has the

stability for the L∞-norm:

|uni | ≤
1

2k
(|Rni |+ |Qni |) ≤M and |σni | ≤

1

2
(|Rni |+ |Qni |) ≤ kM.

Further, from (3.11) and (3.13) one gets the stability for the total variation in space:

|uni+1 − uni | ≤
1

2k

(|Rni+1 −Rni |+ |Qni+1 −Qni |
) ≤ 1

k
A,

|σni+1 − σni | ≤
1

2

(|Rni+1 −Rni |+ |Qni+1 −Qni |
) ≤ A.

To complete the proof of Theorem 1, an easy way to show the stability for total
variation in the time property is to observe that the Riemann invariants (3.7) and
(3.8), defined with the approximate solutions of the system (1.4), verify the following
lemma.

Lemma 1. For all i ∈ Z ∃αi, βi ∈ {0, 1
4 ,

1
2}, such that

|Rn,1i −Rni | ≤ αi|Rni+1 −Rni |+ βi|Rni −Rni−1|,
|Qn,1i −Qni | ≤ αi|Qni+1 −Qni |+ βi|Qni −Qni−1|.

Proof of Lemma 1. The CFL inequality (3.4) allows us to conclude.
We have from (3.9), (3.26), (3.15), and Lemma 1 that∑
i∈Z

|un+1
i − uni | ≤

1

2k

∑
i∈Z

(|Rn+1
i −Rni |+ |Qn+1

i −Qni |
)

≤ 1

2k

∑
i∈Z

(
|Rn+1
i −Rn,1i |+ |Rn,1i −Rni |

)

+
1

2k

∑
i∈Z

(
|Qn+1

i −Qn,1i |+ |Qn,1i −Qni |
)

≤ 1

2k

∑
i∈Z

kr
(
|Rn,1i+1 −Rn,1i |+ |Qn,1i −Qn,1i−1|

)

+
1

2k

∑
i∈Z

(αi + βi+1)
(|Rni+1 −Rni |+ |Qni+1 −Qni |

)
≤ 1

2k

∑
i∈Z

(kr + αi + βi+1)
(|Rni+1 −Rni |+ |Qni+1 −Qni |

)
.

As αi + βi+1 ≤ 1 for all i in Z and k r < 1/2, it follows that∑
i∈Z

|un+1
i+1 − uni | ≤

3

4k

∑
i∈Z

(|Rni+1 −Rni |+ |Qni+1 −Qni |
) ≤ 3

2k
A.
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An analogous estimate holds for
∑
i∈Z
|σn+1
i+1 − σni |.

4. A generalized solution of the elasticity problem. Let ρ be a C∞ func-
tion on R with compact support and nonnegative values such that

∫
ρ(x) dx = 1.

We define two mappings Ru and Rσ from ]0, 1]× R
2 into R by

Ru(ε, x, t) =

∫ ∫
uε(x− ε3ζ, t− ε3rτ)ρ(ζ)ρ(τ) dζdτ,

Rσ(ε, x, t) =

∫ ∫
σε(x− ε3ζ, t− ε3rτ)ρ(ζ)ρ(τ) dζdτ

(4.1)

if ε = hm for some m and by

Ru(ε, x, t) = Ru(hm, x, t) and Rσ(ε, x, t) = Rσ(hm, x, t)

if hm+1 ≤ ε < hm.
Since the scheme is stable for the L∞-norm, there exists A ∈ R

∗
+ such that for

all t > 0,

sup
ε
||uε(., t)||L∞ ≤ A, sup

ε
||σε(., t)||L∞ ≤ A,

and Ru, Rσ ∈ EM,S(R× R
+). Let U and Σ be the respective classes of Ru and Rσ

in GS(R× R
+).

Theorem 2. The generalized functions U, Σ ∈ GS(R×R
+) are solutions of the

system (1.1) renamed as follows:

∂tU(x, t) + U(x, t)∂xU(x, t)− ∂xΣ(x, t) ≈ 0,(4.2)

∂tΣ(x, t) + U(x, t)∂xΣ(x, t)− k2∂xU(x, t) ≈ 0.(4.3)

The connection between the U|t=0
, Σ|t=0

and U, Σ, with the classical functions
u0, σ0 and u, σ (the weak star limit of the subsequences uhm

, σhm
), is given by the

following proposition.
Proposition 1.

(
U|t=0

,Σ|t=0

)
and (U,Σ) have, respectively, (u0, σ0) and (u, σ)

as macroscopic aspects.
The proof of Proposition 1 can be found in [3, 2].
Proof of Theorem 2. In order to prove (4.3), by the definition of association we

must prove that for all ψ ∈ D(R×]0, ∞[), the quantity

Pε =

∫ ∫ (
∂

∂t
Rσ(ε, x, t)−Ru(ε, x, t) ∂

∂x
Rσ(ε, x, t)

)
ψ(x, t) dx dt

−
∫ ∫

k2 ∂

∂x
Ru(ε, x, t)ψ(x, t) dx dt

(4.4)

tends to 0 as ε→ 0.
We adapt the process developed by Cauret in [3] to the case where the velocity

sign can change.
If there exists p ∈ Z such that up < 0 < up+1,

Enp+1 = (σn+1
p+1−σnp+1)+ rC

n
l,p+ 1

2
(σnp+ 1

2
−σnp )+ rCnr,p+ 1

2
(σnp+1−σnp+ 1

2
)− rk2(unp+1−unp );

otherwise,

Enp+1 = (σn+1
p+1−σnp+1) + rc

n
p+ 1

2
(σnp+1 − σnp )−rk2(unp+1−unp ).
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Let us denote for i �= p+ 1

Eni = (σn+1
i − σni ) + rcni− 1

2
(σni − σni−1)− rk2(uni − uni−1).

Setting ψni = ψ((i− 1
2 )ε, r(n− 1

2 )ε), we obtain∣∣∣∣∣Pε −
∑
i∈Z

n∈N

(ε− 2ε3)ψni E
n
i

∣∣∣∣∣ ≤ Cε.
Therefore, Pε tends to 0 when ε→ 0, if limε→0

∑
i∈Z

n∈N

(ε− 2ε3)ψni E
n
i = 0.

To complete the proof of (4.3), we must prove that the approximate solution is
such that the following inequality holds:∣∣∣∣∣(ε− 2ε3)

∑
i∈Z

n∈N

ψni E
n
i

∣∣∣∣∣ ≤ Cε2
∑
i∈Z

n∈N

|σni+1 − σni |
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε2
∑
i∈Z

n∈N

|uni − uni−1|
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε3
∑
i∈Z

n∈N

|σn,1i + kuni |
∥∥∥∥ ∂2

∂x2
ψ

∥∥∥∥
L∞(R×R+)

.

(4.5)

Indeed, as the scheme is stable for the total variation in space and ψ ∈ D(R×]0, ∞[),
one gets ∣∣∣∣∣∣∣(ε− 2ε3)

∑
i∈Z

n∈N

ψni E
n
i

∣∣∣∣∣∣∣ ≤ Cε.
Therefore,

(ε− 2ε3)
∑
i∈Z

n∈N

ψni E
n
i → 0 when ε→ 0.

Using the classification in different types introduced in the section 3, we are going to
prove the estimation (4.5). For type 1 (see Figure 2), we have

ψni E
n
i = ψni − rcni+ 1

2

(σni+1 − σni )ψni + rcn
i− 1

2

(σni − σni−1)ψ
n
i

+
rk2

2

[
−rcni+ 3

2
(uni+2 − uni+1)ψ

n
i + rcni− 1

2
(uni − uni−1)ψ

n
i

]
+

kr

2

[
(σn,1i+1 + ku

n
i+1)ψ

n
i − 2(σn,1i + kuni )ψ

n
i + (σn,1i−1 + ku

n
i−1)ψ

n
i

]
.

Then using the mean value theorem with the CFL condition (3.4) we achieve∣∣∣∣∣(ε− 2ε3)
∑
i∈Z

n∈N

ψni E
n
i

∣∣∣∣∣ ≤ Cε2
∑
i∈Z

n∈N

|σni+1 − σni |
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε2
∑
i∈Z

n∈N

|uni − uni−1|
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε3
∑
i∈Z

n∈N

|σn,1i + kuni |
∥∥∥∥ ∂2

∂x2
ψ

∥∥∥∥
L∞(R×R+)

.
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Similarly we have for type 2 (uni ≥ 0 for all i ∈ Z)

∣∣∣∣∣(ε− 2ε3)
∑
i∈Z

n∈N

ψni E
n
i

∣∣∣∣∣ ≤ Cε2
∑
i∈Z

n∈N

|uni − uni−1|
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε3
∑
i∈Z

n∈N

|σn,1i + kuni |
∥∥∥∥ ∂2

∂x2
ψ

∥∥∥∥
L∞(R×R+)

.

For type 3 (see Figure 3) we have

∑
i≤p
n∈N

ψni E
n
i =

∑
i≤p−1
n∈N

rcni+1/2(σ
n
i+1 − σni )(ψni+1 − ψni )− rCnl,p+1/2(σ

n
p+1/2 − σnp )ψnp

+
rk2

2

[
−rCnl,p+1/2(u

n
p+1/2 − unp )ψnp−1 − rCnr,p+1/2(u

n
p+1 − unp+1/2)ψ

n
p

]
+

kr

2

[
(σn,1p+1 + ku

n
p+1)ψ

n
p − 2(σn,1p + kunp )ψ

n
p + (σn,1p + kunp )ψ

n
p−1

]
+

kr

2

∑
i≤p−1
n∈N

(σn,1i + kuni )(ψ
n
i+1 − 2ψni + ψni−1)

+
rk2

2

∑
i≤p−1
n∈N

rcni+1/2(u
n
i+1 − uni )(ψni+1 − ψni−1),

(4.6)

ψnp+1E
n
p+1 = rCnl,p+1/2(σ

n
p+1/2 − σnp+1)ψ

n
p+1

+
rk2

2

[
rCnl,p+1/2(u

n
p+1/2 − unp )ψnp+1 − rcnp+3/2(u

n
p+2 − unp+1)ψ

n
p+1

]
+

kr

2

[
(σn,1p+2+ku

n
p+2)ψ

n
p+1−2(σn,1p+1+ku

n
p+1)ψ

n
p+1 + (σn,1p +kunp )ψ

n
p+1

]
,

(4.7)
and

∑
i≥p+2
n∈N

ψni E
n
i =

rk2

2

[
rCnr,p+1/2(u

n
p+1 − unp+1/2)ψ

n
p+2 + rc

n
p+3/2(u

n
p+2 − unp+1)ψ

n
p+3

]

+
kr

2


 ∑

i≥p+3
n∈N

(σn,1i + kuni )(ψ
n
i+1 − 2ψni + ψni−1) + (σn,1p+1+ku

n
p+1)ψ

n
p+2




+
kr

2

[
−2(σn,1p+2 + ku

n
p+2)ψ

n
p+2 + (σn,1p+2 + ku

n
p+2)ψ

n
p+3

]

+
rk2

2


 ∑

i≥p+2
n∈N

rcni+1/2(u
n
i+1 − uni )(ψni+2 − ψni )


 .

(4.8)
Therefore, summing (4.6), (4.7), (4.8) and using the mean value theorem with the
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CFL condition (3.4) we get

∣∣∣∣∣(ε− 2ε3)
∑
i∈Z

n∈N

ψni E
n
i

∣∣∣∣∣ ≤ Cε2
∑
i≤p
n∈N

|σni+1 − σni |
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε2
∑
i∈Z

n∈N

|uni − uni−1|
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε3
∑
i∈Z

n∈N

|σn,1i + kuni |
∥∥∥∥ ∂2

∂x2
ψ

∥∥∥∥
L∞(R×R+)

.

The computations for getting the estimation (4.5) for types 4 and 5 are similar to
those presented for type 3. For type 4, one obtains

∣∣∣∣∣(ε− 2ε3)
∑
i∈Z

n∈N

ψni E
n
i

∣∣∣∣∣ ≤ Cε2
∑
i≤p
n∈N

|σni+1 − σni |
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε2
∑
i∈Z

n∈N

|uni − uni−1|
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε3
∑
i∈Z

n∈N

|σn,1i + kuni |
∥∥∥∥ ∂2

∂x2
ψ

∥∥∥∥
L∞(R×R+)

,

and for type 5 one gets

∣∣∣∣∣(ε− 2ε3)
∑
i∈Z

n∈N

ψni E1
n
i

∣∣∣∣∣ ≤ Cε2
∑

i≥p+1
n∈N

|σni+1 − σni |
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε2
∑
i∈Z

n∈N

|uni − uni−1|
∥∥∥∥ ∂∂xψ

∥∥∥∥
L∞(R×R+)

+ Cε3
∑
i∈Z

n∈N

|σn,1i + kuni |
∥∥∥∥ ∂2

∂x2
ψ

∥∥∥∥
L∞(R×R+)

.

Consequently,

Pε → 0 when ε→ 0.

The association (4.2) can be proved in the same way as (4.3). This ends the proof of
Theorem 2.

Following the study of the model of elasticity in section 2, we use the same
approaches for the system of hydrodynamics in the nonconservative form (1.6).

5. A Godunov scheme by a splitting method for a model of hydrody-
namics. Let v0, u0, σ0 be the initial conditions in BV (R). Discretizing the x-axis
and the time space and using the same notation as in subsection 2.3, we denote by
v0i , u

0
i , and p

0
i the mean value of the initial data v0, u0, and p0, respectively, on each

Ii. From our knowledge of (vni , u
n
i , p

n
i ), the solution of (1.6), we compute the value

(vn+1
i , un+1

i , pn+1
i ) in two steps.
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First, with (vni , u
n
i , p

n
i ) as initial data, we compute an approximate solution

(vn,1i , un,1i , pn,1i ) of the Riemann problem associated with the convection terms (5.1):



∂tv(x, t) + u(x, t)∂xv(x, t) = 0,

∂tu(x, t) + u(x, t)∂xu(x, t) = 0,

∂tp(x, t) + u(x, t)∂xp(x, t) = 0.

(5.1)

The formulas of the approximate solution for both approaches have the same form as
those given in subsection 2.3 for the system (1.4). Only the intermediate step values
change, when ul < 0 < ur.

Using the approach by perturbation, we obtain from the Riemann invariants the
following value inside the rarefaction fan:

un
i− 1

2

= uni−1 +

uni − uni−1 +
2Bni
γ − 1

((
pni−1

pni

) γ−1
2γ

− 1

)
(
Bni
Bni−1

)(
pni−1

pni

) γ−1
2γ

+ 1

,

pn
i− 1

2

= pni−1

(
1 +

γ − 1

2Bni−1

(uni−1 − uni− 1
2
)

) 2γ
γ−1

,

vn
i− 1

2

= vni−1

(
(1 +

γ − 1

2Bni−1

(uni−1 − uni− 1
2
)

) 2
1−γ

,

where the sound speed Bni =
√
γ vni p

n
i .

Using the approach by substitution, we study the first and the third equation of
system (5.1) as the scalar hyperbolic equation (2.4). Then we obtain the following
intermediate step values:

pni−1/2 =
pni−1 + p

n
i

2
,

vni−1/2 =
vni−1 + v

n
i

2
.

Therefore, we approximate the velocity u with the same formulas as in subsection 2.3.
Then, as p and v play the role of σ, we substitute them and recover the expressions
of the approximate specific volume and approximate pressure.

Second, with the value (vn,1i , un,1i , pn,1i ) as initial data and considering only the
Hugoniot curves, we construct an approximate solution for the system of propagation
waves:




∂tv(x, t)− v(x, t)∂xu(x, t) = 0,

∂tu(x, t) + v(x, t)∂xp(x, t) = 0,

∂tp(x, t) + γp(x, t)∂xu(x, t) = 0.

(5.2)

With the Riemann solver developed by Colombeau and Le Roux in [6, p. 30], one
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computes the flux across the interface between the cells Ii and Ii+1 to obtain

un,1i+1/2 =
1

Zn,1l,i+1/2 + Z
n,1
r,i+1/2

(Zn,1l,i+1/2u
n,1
i + Zn,1r,i+1/2u

n,1
i+1 + p

n,1
i − pn,1i+1),

vn,12,i+1/2 =
1

Zn,1r,i+1/2

(un,1i+1 − un,1i+1/2) + v
n
i+1,

vn,11,i+1/2 =
1

Zn,1l,i+1/2

(un,1i+1/2 − un,1i ) + vni ,

pn,1i+1/2 = pni − Zn,1l,i+1/2(u
n,1
i+1/2 − un,1i ),

where the impedances are as follows:

Zn,1l,i+1/2 =

√√√√γ pn,1i+1/2 + p
n,1
i

vn,11,i+1/2 + v
n,1
i

, Zn,1r,i+1/2 =

√√√√γ pn,1i+1/2 + p
n,1
i+1

vn,12,i+1/2 + v
n,1
i+1

.

Then with the sound speeds

Cn,1l,i+1/2 = −
vn,1i + vn,11,i+1/2

2
Znl,i+1/2, Cn,1r,i+1/2 =

vn,1i+1 + v
n,1
2,i+1/2

2
Znr,i+1/2,

we compute by projection

un+1
i = un,1i − rCn,1l,i+1/2(u

n,1
i+1/2 − un,1i )− rCn,1r,i−1/2(u

n,1
i − un,1i−1/2),

vn+1
i = vn,1i − rCn,1l,i+1/2(v

n,1
1,i+1/2 − vn,1i )− rCn,1r,i−1/2(v

n,1
i − vn,12,i−1/2),

pn+1
i = pn,1i − rCn,1l,i+1/2(p

n,1
i+1/2 − pn,1i )− rCn,1r,i−1/2(p

n,1
i − pn,1i−1/2).

(5.3)

This latter step is stable if for all i ∈ Z, n ∈ N

1− rCn,1r,i−1/2 + rC
n,1
l,i+1/2 > 0.

The CFL condition for the split scheme is ensured as soon as the constant r > 0 is
adapted so that one of the following inequalities holds:

max
i∈Z

n∈N

(|Cn,1l,i+1/2|, |Cn,1r,i−1/2|, |uni |, |uni+1/2|) < 1/2r for the first approach,

max
i∈Z

n∈N

(|Cn,1l,i+1/2|, |Cn,1r,i−1/2|, |uni |) < 1/2r for the second approach.

The formula (5.3) can be at the origin of defects in conservation of mass, momentum,
and energy. To lessen this drawback, we use the conservative projection developed
by Colombeau in [5, p. 83], which consists of projecting the density instead of the
specific volume in the second step.

6. Numerical results. Following the study of the Riemann problem associated
with the system (1.1) and (1.6), we are going to present numerical results obtained
by the different schemes. We denote by the SHS scheme and the NSHS scheme,
respectively, the new schemes obtained with the convection problems by perturbation
and by substitution.

From different initial data, we compare the solution obtained by the Colombeau–
Le Roux scheme (C-L scheme) with those of the new schemes (SHS scheme and
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Fig. 6. Solution of the Rie-
mann problem associated with the sys-
tem (1.1), when (ul, ur) = (1, 2).
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Fig. 7. Solution of the Rie-
mann problem associated with the sys-
tem (1.1), when (ul, ur) = (−1, 2).

NSHS scheme). Then, we conduct convergence analysis and study the behavior of
conservation errors.

For the numerical tests of both systems, whenever it is not written, the space
mesh size h is fixed to a convenient value h0 = 0.01. From now on, the parameter
r = 0.2 is a fixed real number such that time step ∆t = rh. In order to compare
the different schemes, we are interested in the approximate solution after 100 time
steps (i.e., the simulation time T = 0.2). However, for the convergence tests, we fixed
T = 0.1.

6.1. Numerical results for the system modeling elasticity. Let (σl, σr) =
(−2, −1) be the initial data for the stress. Since the exact solution for this problem
is known [5], we use it to compare the different schemes between them.

When the velocity has a constant sign (Figure 6) or has a variable sign with an
increasing initial data (Figure 7), the C-L scheme and the new schemes give similar
numerical solutions.

When ul > 0 > ur, one can remark that the solution obtained with the C-
L scheme is not valid, because none of the intermediate step values is reached (see
Figure 8), whereas with the SHS and the NSHS schemes the intermediate step values
for u and σ are obtained precisely (see Figure 9).

Because the SHS scheme gives the same solution as the NSHS scheme does, the
convergence analysis of the new schemes is done only for the NSHS scheme. For this
purpose, only the solution presenting two shocks is considered (ul > 0 > ur).

In this system modeling elasticity, only the momentum is conserved. Then, as
the mass is constant (equals one), one can see that the L1-norm of the velocity error
(equal to the conservation error of the momentum) is reduced by at least one order of
magnitude as the mesh decreased (see Figures 10 and 11). One can also observe that
the error of the intermediate step value of the stress and that of the velocity converge
towards zero (see Figures 11 and 12).

6.2. Numerical results for the system modeling hydrodynamics. Let
us denote by AS the exact solution computed with the software CLAWPACK [10],
solving the Euler equation in the conservative formulation. The computations are
done for different initial data, given by Table 6.1 with γ = 1.4.
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Fig. 11. Relative error in the in-
termediate value versus mesh size. uh
is the computed momentum and ue the
exact momentum, T = 0.1.

Test 1 is the so-called Sod test problem [14]. The other tests, test 2 and test 3,
are more general but have been proposed with an aim of finding the better scheme.
It is known that the Riemann solution problem of test 1 presents, successively, a
left rarefaction wave, a contact discontinuity, and a right shock wave. While the
solution of test 2 presents a left and a right rarefaction wave separated by a contact
discontinuity. Test 3 has a solution consisting of two shock waves separated by a
contact discontinuity.

The Figures 13, 15, and 17 present the solutions of test 1, computed by the
Godunov-type schemes (NSHS, SHS, and C-L). Figures 14, 16, and 18 present the
solution of test 1 computed by the modified Godunov schemes, obtained by a conser-
vative projection. (We call them the NSHS2, SHS2, and C-L2 schemes.)

One can remark that the solutions of test 1 are similar, though the intermediate
step value for the density and the velocity is calculated with more accuracy with the
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spatial step, (ul, σl) = (2,−2) and (ur, σr) = (−1,−1), T = 0.1.

Table 6.1
Initial data for the system (1.6).

Initial data (ul, ur) (pl, pr) (ρl, ρr)
Test 1 (0.0, 0.0) (1.0, 0.1) (1.0, 0.125)
Test 2 (−1.0, 1.0) (30.0, 10.0) (10.0, 10.0)
Test 3 (2.0,−1.0) (30.0, 10.0) (5.0, 5.0)

schemes using the conservative projection than the others.

We keep the same presentation for the other test problems. Figures 19, 21, and
23 (resp., Figures 25, 27, and 29) are proposed in order to compare the different
Godunov-type schemes while the Figures 20, 22, and 24 (resp., Figures 26, 28, and
30) present the different conservative projection schemes.

For test 2, one observes the same behavior in each of the two splitted scheme
families. For test 3, one remarks that the schemes using a conservative projection
permit us to reach more precisely the intermediate step values. Moreover, this test
shows how difficult it is to approximate the density (see Figure 29) by a Godunov-type
scheme in the nonconservative formulation. Nevertheless, the new approach by the
NSHS2 or SHS2 schemes gives us good enough results while the C-L2 scheme (Figure
30) is significantly less accurate than the new schemes. This phenomenon has already
been observed in elasticity when the velocity has the same initial data. As the C-L
scheme did not satisfy the CFL condition, we have computed the solution after 100
time steps with a smaller parameter r = 0.12 than that used for the other tests.

Unfortunately, one remarks that for each of the tests, the numerical solution
computed either with the NSHS2 scheme or with the NSHS scheme presents a surplus
of diffusion. And although the NSHS2 scheme is more accurate than the NSHS scheme,
the two shocks of test 3 are less well captured when using the NSHS2 scheme (see
Figures 25, 27, 29, and 26, 28, 30).

Using the “antidiffusion” process proposed by Colombeau and Le Roux, one re-
duces the amount of diffusion but the intermediate step values are not reached (cf. [6]).

Following the example of Karni in [9], we conducted a sequence of shock tube tests
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Fig. 18. Pressure computed by the
conservative projection scheme for test 1.

for shock waves of varying strengths involving a single shock. We kept the initial right
value (ρr , ur , Pr) = (0.125, 0.0, 0.1) and we chose different left values of the initial
data for defining a range of shock Mach numbers approximately between 1.1 and 3.1.
From Table 6.2, one observes that the conservation error is smaller for the split scheme
using the conservative projection than those induced by the split Godunov scheme.
Furthermore, the relative error is between 0.6 and 4% for the tests with the NSHS2
scheme, whereas with the NSHS scheme the error varies between 1.6 and 6%.

From Figures 31 and 32, we note that as the mesh decreases, conservation er-
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Fig. 21. Density computed by the
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Fig. 22. Density computed by the
conservative projection scheme for test 2.
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Fig. 23. Pressure computed by the
Godunov scheme for test 2.
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Fig. 24. Pressure computed by the
conservative projection scheme for test 2.

rors decrease almost linearly but are not eliminated. Moreover, we remark that the
limit value (with the mesh refinement) of the conservation errors depends on the
shock strength. Indeed, the stronger the shock is, the bigger the limit value of the
conservation errors becomes.

7. Concluding remarks. We have shown that in the case ul.ur > 0 our
schemes give the same solution as the C-L or C-L2 schemes. In fact, the formula
defining the approximate solution of each scheme is the same. But when the sign of
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Fig. 29. Density computed by the
Godunov scheme for test 3.
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Fig. 30. Density computed by the
conservative projection scheme for test 3.

the velocity changes, one observes two phenomena.

In the context of increasing initial data, the approximate solutions of the three
schemes coincide, even though the scheme expressions are different.

We also have in the context of decreasing initial data that the approximate solu-
tion computed by our scheme is valid, whereas the C-L scheme does not permit us to
calculate an acceptable solution.
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Table 6.2
Conservation errors versus shock strengths for shock tube tests. Ms is the Mach number; Pe is

the exact pressure behind the shock. PNSHS and PNSHS2 are the intermediate pressure values com-
puted by the NSHS and NSHS2 schemes; E(.) are relative errors. h = h0, T = 0.2, (ρr , ur , Pr) =
(0.125, 0.0, 0.1).

Ms Pe PNSHS2 PNSHS E(PNSHS2) E(PNSHS)
1.1905 0.1487 0.1497 0.1512 0.0068 0.0168
1.5932 0.2795 0.2826 0.2870 0.0111 0.0268
1.8955 0.4025 0.4090 0.4193 0.0161 0.0417
2.1709 0.5332 0.5450 0.5584 0.0221 0.0473
2.6604 0.8090 0.8354 0.8571 0.0325 0.0593
3.0523 1.0702 1.1127 1.1385 0.0396 0.0637

We prove that split Godunov schemes are more efficient when they use the con-
servative projection step. This is confirmed by conducting convergence tests with
regard to the conservation errors. One can develop well-adapted splitted schemes by
proceeding in the same way for other systems in nonconservative form—for example,
nonconservative systems modeling elastoplasticity or multifluids.
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Abstract. In this paper, we consider the nonlinear Schrödinger equation ut + i∆u− F (u) = 0
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1. Introduction. Let us consider the cubic nonlinear Schrödinger equation


∂u

∂t
+ i∆u+ iε|u|2u = 0, x ∈ R

2 , t > 0,

u(x, 0) = u0(x), x ∈ R
2,

(1.1)

with ε = ±1. A large number of articles are devoted to the numerical study of this
equation using many different time discretizations, with or without splitting. The later
case is represented by Crank–Nicolson type [4], Runge–Kutta type [1], [12], symplectic
(see, for example, [14], [15]), and relaxation [2] methods. Splitting methods are based
on a decomposition of the flow of (1.1). More precisely, let us define the flow Xt of
the linear Schrödinger equation


∂v

∂t
+ i∆v = 0, x ∈ R

2 , t > 0,

v(x, 0) = v0(x), x ∈ R
2,

and the flow Y t for the differential equation


∂w

∂t
+ iε|w|2w = 0, x ∈ R

2 , t > 0,

w(x, 0) = w0(x), x ∈ R
2.

The idea of splitting methods is to approximate the flow of (1.1) by combining the
two flows Xt and Y t. Two classical methods are the following: the Lie formula
given by ZtL = XtY t (or Y tXt) and the Strang formula [18] ZtS = Xt/2Y tXt/2

(or Y t/2XtY t/2); we introduce these four definitions since it is sometimes better to
exchange the role of Xt and Y t when one of the two equations is nonsmooth [17].
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This leads to good numerical methods for the periodic problem since the linear part
may be computed efficiently by the use of fast Fourier transforms and the nonlinear
part is solved exactly [19], [20]. We are interested in showing that the Lie formula is
a first order approximation of the flow of (1.1) and the Strang formula is a second
order approximation of the flow of (1.1). This result could be obtained formally with
the formal Lie algebra theory (explained in the book [14] and in [13]), but here we
give a simple proof allowing us to have an idea of the size of the constants.

The linear case has already been studied in [11] and [7] and we extend these
results to the nonlinear case.

Following an idea of Donnat [8], we restrict ourselves to the case where the non-
linearity is a Lipschitz function; this may be done by a truncation method on a time
interval before a possible blow-up. Thus we consider u the solution to the continuous
problem 


∂u

∂t
+ i∆u− F (u) = 0, x ∈ R

2 , t > 0,

u(x, 0) = u0(x), x ∈ R
2,

(1.2)

where we assume that F is a Lipschitz function with constant K such that F (0) = 0
and the first four derivatives of F are bounded. We introduce the flow St, associated
with (1.2) (that is, u(t, ·) = Stu0), and the two flows Xt and Y t, solutions to


∂v

∂t
+ i∆v = 0, x ∈ R

2 , t > 0,

v(x, 0) = v0(x), x ∈ R
2,

(1.3)

and 


∂w

∂t
− F (w) = 0, x ∈ R

2 , t > 0,

w(x, 0) = w0(x), x ∈ R
2.

(1.4)

In what follows, we call Zt any of the four splitting schemes when there is no ambiguity.
Let us also recall that the semigroup Xt is a unitary operator on all classical Sobolev
spaces Hs = Hs(R2), s ∈ R. Let us quote the main result of this article.

Theorem 4.1. For all u0 in H2 and for all T > 0, there exists C and h0 such
that for all h ∈ (0, h0], for all n such that nh ≤ T∥∥∥(ZhL)n u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H2)h‖u0‖H2 .

Moreover, if u0 belongs to H4, then∥∥∥(ZhS)n u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H4)h2‖u0‖H4 .

To prove the convergence order for each splitting scheme, for a small h > 0 and
all integer n such that nh ≤ T , we have to estimate the quantity ‖(Zh)nu0−Snhu0‖,
where ‖ · ‖ denotes the L2 norm. As noticed in [5], the triangle inequality yields

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

‖(Zh)n−j−1ZhSjhu0 − (Zh)n−j−1S(j+1)hu0‖.
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In section 3 we prove that for all the studied schemes there exists a constant C0 such
that for w0 and w′

0 ∈ L2 and all t ∈ [0, 1]

‖Ztw0 − Ztw′
0‖ ≤ (1 + C0t)‖w0 − w′

0‖.(1.5)

Therefore

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

(1 + C0h)
n−j−1

∥∥(Zh − Sh)Sjhu0

∥∥ .(1.6)

Thus we may restrict our study to the case for which at each time step the initial
data are the same for the continuous model and the splitting scheme and is equal to
v0 = Sjhu0. Classical results on solutions to the nonlinear Schrödinger equation allow
us to state that Sjhu0 is uniformly bounded in H4 for jh ≤ T . Now we may write a
Duhamel formula for the continuous problem (1.2) that reads as

u(t) = Xtv0 +

∫ t

0

Xt−sF (u(s)) ds

and express the difference of the exact solution and the splitting solution v(t) = Ztv0
as

u(t)− v(t) =
∫ t

0

Xt−s [F (u(s))− F (v(s))] ds+R(t),

where the fact that F is Lipschitz and Xt is unitary in L2 leads to

‖u(t)− v(t)‖ ≤ K

∫ t

0

‖u(s)− v(s)‖ ds+ ‖R(t)‖.

There remains to show that the remainder R(t) may be estimated as ‖R(t)‖ = O(tp+1)
for t small and to use a Gronwall lemma to conclude that the scheme is of order p.

This paper is organized as follows: In section 2, we prove a Gronwall lemma and
some estimates on Xt and Y t. In section 3, we show that each scheme is Lipschitz
continuous and we study the local error between Zt and St. Section 4 is devoted to
the proof of Theorem 4.1.

2. Some useful estimates.

2.1. A Gronwall lemma.
Lemma 2.1 (Gronwall). Let P be a polynomial with positive coefficients and no

constant term. We assume that the function φ is such that there exists a constant
C ≥ 0 such that for all t ≥ 0

0 ≤ φ(t) ≤ φ(0) + P (t) + C

∫ t

0

φ(s)ds.

Then for all α > 1 there exists t0 > 0 such that for all 0 ≤ t ≤ t0

φ(t) ≤ φ(0)eCt + αP (t).

Proof. Let us set

ψ(t) =

(
φ(0) + P (t) + C

∫ t

0

φ(s)ds

)
e−Ct.
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Then

ψ′(t) =
(
P ′(t) + Cφ(t)− C

(
φ(0) + P (t) + C

∫ t

0

φ(s)ds

))
e−Ct ≤ P ′(t)e−Ct;

therefore,

ψ(t)− ψ(0) ≤
∫ t

0

P ′(s)e−Csds,

and since P (0) = 0, ψ(0) = φ(0). Hence, because P ′ is positive,

φ(t) ≤ ψ(t)eCt ≤ φ(0)eCt +

∫ t

0

P ′(s)eC(t−s) ds ≤ φ(0)eCt + eCt0
∫ t

0

P ′(s) ds.

We choose t0 such that eCt0 ≤ α and, for all 0 ≤ t ≤ t0,

φ(t) ≤ φ(0)eCt + αP (t).

2.2. Estimates on the Schrödinger flow Xt. From the definition of the
Schrödinger flow we first state that

Ẋt = i∆Xt = iXt∆.(2.1)

This leads to the following estimates.
Lemma 2.2. 1. For all w ∈ H2 and all t ≥ 0,

‖Xtw − w‖ ≤ t‖w‖H2 .(2.2a)

2. For all w ∈ H4 and all t ≥ 0,

‖Xtw − w‖H2 ≤ t‖w‖H4 .(2.2b)

3. Let T > 0; there exists a constant C such that, for all w ∈ C1([0, T ];H2) ∩
L∞([0, T ], H4) and 0 ≤ t ≤ T ,∥∥∥∥

∫ t

0

(
Xt−sw(s)−Xt/2w(s)

)
ds

∥∥∥∥ ≤ Ct3(‖w‖C1([0,T ];H2) + ‖w‖L∞([0,T ],H4)).(2.2c)

4. There exists a constant C such that for all w ∈ H4,∥∥∥∥Xt/2w − 1

2
Xtw − 1

2
w

∥∥∥∥ ≤ Ct2‖w‖H4 .(2.2d)

Proof. 1. Let w ∈ H2; we have

‖Xtw − w‖ =
∥∥∥∥
∫ t

0

Ẋsw ds

∥∥∥∥ =
∥∥∥∥
∫ t

0

Xs∆w ds

∥∥∥∥ ≤
∫ t

0

‖∆w‖ds ≤ t‖w‖H2 .

2. If we assume that w ∈ H4, the estimate may be proved as the previous one
replacing the L2 norm by the H2 norm.

3. A Taylor expansion gives

Xt−s −Xt/2 = (t/2− s)Ẋt/2 +

∫ t−s

t/2

(t− s− σ)Ẍσ dσ
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and

(Xt−s −Xt/2)w(s) = i(t/2− s)Xt/2∆w(s)−
∫ t−s

t/2

(t− s− σ)Xσ∆2w(s) dσ.

A simple change of variables implies that∫ t

0

(t/2− s)∆w(s) ds =
∫ t/2

0

(t/2− s)[∆w(s)−∆w(t− s)] ds.

The Lipschitz constant of the map s �→ ∆w(s) is estimated using ‖w‖C1([0,T ],H2) and,
therefore,∥∥∥∥
∫ t

0

(
Xt−sw(s)−Xt/2w(s)

)
ds

∥∥∥∥
≤
∥∥∥∥∥
∫ t/2

0

(t/2− s)[∆w(s)−∆w(t− s)] ds
∥∥∥∥∥+

∥∥∥∥∥
∫ t

0

∫ t−s

t/2

(t− s− σ)Xσ∆2w(s)dσds

∥∥∥∥∥
≤ 2‖w‖C1([0,T ],H2)

∫ t/2

0

(t/2− s)2ds+ ‖w‖L∞([0,T ],H4)

∫ t

0

∫ t−s

t/2

(t− s− σ) dσ ds

≤ Ct3(‖w‖C1([0,T ],H2) + ‖w‖L∞([0,T ],H4)).

4. Once more, Taylor expansions yield

Xt/2 − 1

2
Xt − 1

2
X0 = −1

2

∫ t/2

0

σ(Ẍσ + Ẍt−σ) dσ,

and the same arguments as for the last estimates show the result.

2.3. Estimates on the nonlinear flow Y t. The definition of the nonlinear
flow Y t may also read as

Y tw = w +

∫ t

0

F (Y sw) ds.(2.3)

Lemma 2.3. Let w ∈ H2; then there exists a constant C that depends only on
M = ‖w‖∞ such that for all 0 ≤ t ≤ 1

‖Y tw‖ ≤ eKt‖w‖ and ‖Y tw‖H2 ≤ C‖w‖H2 .(2.4a)

Moreover, if w ∈ H4, then there exists a constant C that depends only on M = ‖w‖∞
such that for all 0 ≤ t ≤ 1

‖Y tw‖H4 ≤ C‖w‖H4 .(2.4b)

Finally, for w1, w2 ∈ L2, there exists a constant C that depends only on F such that
for all 0 ≤ t ≤ 1

‖Y tw1 − Y tw2‖ ≤ (1 + Ct)‖w1 − w2‖.(2.4c)

Proof. Equation (2.3) first yields a L∞ estimate, namely,

‖Y tw‖∞ ≤ ‖w‖∞ +K

∫ t

0

‖Y sw‖∞ ds.
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Then the classical Gronwall lemma leads to

‖Y tw‖∞ ≤ eKt‖w‖∞.
A L2 estimate also follows from (2.3):

‖Y tw‖ ≤ ‖w‖+K

∫ t

0

‖Y sw‖ ds.(2.5)

For all first order differential operators D

DY tw = Dw +

∫ t

0

F ′(Y sw)D(Y sw) ds,

and, denoting by M ′ the maximum for F ′, we obtain

‖DY tw‖ ≤ ‖Dw‖+M ′
∫ t

0

‖DY sw‖ ds.

Differentiating once more,

∆Y tw = ∆w +

∫ t

0

(
F ′′(Y sw)D(Y sw)2 + F ′(Y sw)∆Y sw

)
ds,

and, denoting by M ′′ the maximum for F ′′,

‖∆Y tw‖ ≤ ‖∆w‖+
∫ t

0

(
M ′′‖DY sw‖2 +M ′‖∆Y sw‖) ds.

Using the Gagliardo–Nirenberg inequality,

‖DY sw‖2 ≤ ‖Y sw‖H2‖Y sw‖∞
and

‖∆Y tw‖ ≤ ‖∆w‖+
∫ t

0

(M ′′‖Y sw‖∞ +M ′) ‖Y sw‖H2 ds.

Therefore, using the L∞ estimate, there exists a constant c such that

‖Y tw‖H2 ≤ ‖w‖H2 + c

∫ t

0

(
1 + eKs

) ‖Y sw‖H2 ds.

Last, using the Gronwall lemma,

‖Y tw‖H2 ≤ ‖w‖H2 exp

(
c

∫ t

0

(
1 + eKs

)
ds

)
.

Equation (2.5) also leads to

‖Y tw‖ ≤ eKt‖w‖.
For t ≤ 1, there exists a constant C such that

exp

(
c

∫ t

0

(
1 + eKs

)
ds

)
≤ C

and estimate (2.4a) follows. The proof for (2.4b) is similar and left to the reader.
Finally, estimate (2.4c) is a simple consequence of the Gronwall lemma.
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3. Lipschitz properties of Zt and local errors. In this section we more
specifically give precise estimates for Lie and Strang formulae. We first show Lipschitz
properties on Zt, i.e., that estimate (1.5) is valid. Next we estimate the remainder
R(t) defined in the introduction.

3.1. Lipschitz properties.
• Lie approximation—case Zt = XtY t.
The solution to the Lie approximation with initial data v0 ∈ L2 reads as

v(t) = Ztv0 = Xtv0 +

∫ t

0

XtF (Y sv0) ds.

Therefore the difference between two solutions for initial data w0 and w′
0 in

L2 is

Ztw0 − Ztw′
0 = Xt(w0 − w′

0) +

∫ t

0

Xt(F (Y sw0)− F (Y sw′
0)) ds,

and using the fact that Xt is unitary in L2, that F is Lipschitz, and estimate
(2.4c), we obtain that there exists a constant C depending only on F such
that for 0 ≤ t ≤ 1

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.

• Lie approximation—case Zt = Y tXt.
Since

v(t) = Ztv0 = Xtv0 +

∫ t

0

F (Y sXtv0) ds,

the difference is

Ztw0 − Ztw′
0 = Xt(w0 − w′

0) +

∫ t

0

(F (Y sXtw0)− F (Y sXtw′
0)) ds;

thus, using the same tools as above, we obtain that there exists a constant C
depending only on F such that for 0 ≤ t ≤ 1

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.

• Strang approximation—case Zt = Xt/2Y tXt/2.
Since

v(t) = Ztv0 = Xtv0 +

∫ t

0

Xt/2F (Y sXt/2v0) ds,

we have

Ztw0 − Ztw′
0 = Xt(w0 − w′

0)

+

∫ t

0

Xt/2(F (Y sXt/2w0)− F (Y sXt/2w′
0)) ds,

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.
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• Strang approximation—case Zt = Y t/2XtY t/2.
Since

v(t) = Ztv0 = XtY t/2v0 +

∫ t/2

0

F (Y sXtY t/2v0) ds,

we have

Ztw0 − Ztw′
0 = XtY t/2w0 −XtY t/2w′

0

+

∫ t/2

0

(F (Y sXtXt/2w0)− F (Y sXtY t/2w′
0)) ds,

‖Ztw0 − Ztw′
0‖ ≤ (1 + Ct)‖w0 − w′

0‖.
3.2. Local errors.
• Lie approximation—case Zt = XtY t.
For v0 ∈ H2 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (XsY sv0) ds−
∫ t

0

XtF (Y sv0) ds.

Let us define R1(s) = F (XsY sv0)−XsF (Y sv0); then, using the fact that F
is Lipschitz and estimates (2.2a) and (2.4a),

R1(s) = F (XsY sv0)− F (Y sv0) + F (Y sv0)−XsF (Y sv0),

‖R1(s)‖ ≤ K‖XsY sv0 − Y sv0‖+ ‖F (Y sv0)−XsF (Y sv0)‖
≤ s (K‖Y sv0‖H2 + ‖F (Y sv0)‖H2)

≤ Cs‖v0‖H2 .

Therefore, since R(t) =
∫ t
0
Xt−sR1(s)ds,

‖R(t)‖ ≤ C‖v0‖H2

∫ t

0

s ds =
Ct2

2
‖v0‖H2 .

• Lie approximation—case Zt = Y tXt.
For v0 ∈ H2 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (Y sXsv0) ds−
∫ t

0

F (Y sXtv0) ds.

In this case R(t) =
∫ t
0
R1(s)ds, where R1 = Xt−sF (Y sXsv0) − F (Y sXtv0),

and using the fact that F is Lipschitz and estimates (2.2a), (2.4a), (2.4c), we
obtain

R1(s) = Xt−sF (Y sXsv0)− F (Y sXsv0) + F (Y sXsv0)− F (Y sXtv0),

‖R1(s)‖ ≤ (t− s)‖F (Y sXsv0)‖H2 +K‖Xsv0 −Xtv0‖
≤ C(t− s)‖v0‖H2 ;

hence

‖R(t)‖ ≤ C‖v0‖H2

∫ t

0

(t− s) ds = Ct2

2
‖v0‖H2 .
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• Strang approximation—case Zt = Xt/2Y tXt/2.
For v0 ∈ H4 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (Xs/2Y sXs/2v0) ds−
∫ t

0

Xt/2F (Y sXt/2v0) ds.

We may write R(t) as R(t) =
∫ t
0
R1(s) ds+Xt/2

∫ t
0
R2(s) ds, where

R1(s) = Xt−sw(s)−Xt/2w(s), w(s) = F (Y sXt/2v0),

and

R2(s) = F (Xs/2Y sXs/2v0)− F (Y sXt/2v0).

Using estimate (2.2c), we obtain that∥∥∥∥
∫ t

0

R1(s) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 .

A Taylor expansion yields that

R2(s) = F ′(v0) · (Xs/2Y sXs/2v0 − Y sXt/2v0)

+

∫ 1

0

(1− θ)
[
F ′′(v0 + θ(Xs/2Y sXs/2v0 − v0))

· (Xs/2Y sXs/2v0 − v0)2

−F ′′(v0 + θ(Y sXt/2v0 − v0)) · (Y sXt/2v0 − v0)2
]
dθ.

Using triangle inequalities, estimates (2.2a), (2.4a), formulation (2.3), and
the fact that F is Lipschitz, we obtain that

‖Xs/2Y sXs/2v0 − v0‖ ≤ Cs‖v0‖H2

and

‖Y sXt/2v0 − v0‖ ≤ Ct‖v0‖H2 .

Besides, we recall that F ′′ is uniformly bounded by M ′′, and therefore, using
that H2 is an algebra,∥∥∥∥

∫ 1

0

(1− θ)
[
F ′′(v0 + θ(Xs/2Y sXs/2v0 − v0)) · (Xs/2Y sXs/2v0 − v0)2

− F ′′(v0 + θ(Y sXt/2v0 − v0)) · (Y sXt/2v0 − v0)2
]
dθ

∥∥∥∥ ≤ Ct2‖v0‖2H4 .

Moreover, let us define R3(s) = Xs/2Y sXs/2v0−Y sXt/2v0; formulation (2.3)
yields that

R3(s) = Xsv0 −Xt/2v0 +

∫ s

0

(Xs/2F (Y σXs/2v0)− F (Y σXs/2v0)) dσ

+

∫ s

0

(F (Y σXs/2v0)− F (Y σXt/2v0)) dσ.
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A simple change of variable in lemma (2.2c) proves that∥∥∥∥
∫ t

0

(Xsv0 −Xt/2v0) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 ,

and using once more estimates (2.2a) and (2.4b) and the fact that F is Lips-
chitz, we have∥∥∥∥

∫ t

0

∫ s

0

(Xs/2F (Y σXs/2v0)− F (Y σXs/2v0)) dσds

∥∥∥∥ ≤ Ct3‖v0‖H2

and, also using (2.2c),∥∥∥∥
∫ t

0

∫ s

0

(F (Y σXs/2v0)− F (Y σXt/2v0)) dσds

∥∥∥∥ ≤ Ct3‖v0‖H2 .

Finally, since Xt/2 is unitary,∥∥∥∥Xt/2

∫ t

0

R2(s) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 ,

and the conclusion is that

‖R(t)‖ ≤ C(1 + ‖v0‖H4)t3‖v0‖H4 .

• Strang approximation—case Zt = Y t/2XtY t/2.
For v0 ∈ H4 and 0 ≤ t ≤ 1, the remainder can be written as

R(t) =

∫ t

0

Xt−sF (Y s/2XsY s/2v0) ds

−1
2

∫ t

0

XtF (Y s/2v0) ds− 1

2

∫ t

0

F (Y s/2XtY t/2v0) ds.

Taylor expansions yield

F (Y s/2XsY s/2v0) = F (v0) + F ′(v0) · (Y s/2XsY s/2v0 − v0)

+

∫ 1

0

(1− θ)F ′′(v0 + θ(Y s/2XsY s/2v0 − v0))

· (Y s/2XsY s/2v0 − v0)2dθ,
F (Y s/2v0) = F (v0) + F ′(v0) · (Y s/2v0 − v0)

+

∫ 1

0

(1− θ)F ′′(v0 + θ(Y s/2v0 − v0))

· (Y s/2v0 − v0)2dθ,
F (Y s/2XtY t/2v0) = F (v0) + F ′(v0) · (Y s/2XtY t/2v0 − v0)

+

∫ 1

0

(1− θ)F ′′(v0 + θ(Y s/2XtY t/2v0 − v0))

· (Y s/2XtY t/2v0 − v0)2dθ,
and the same sort of estimates as above give

‖Y s/2XsY s/2v0 − v0‖ ≤ Cs‖v0‖H4 ,

‖Y s/2v0 − v0‖ ≤ Cs‖v0‖H4 ,

‖Y s/2XtY t/2v0 − v0‖ ≤ Ct‖v0‖H4 .
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Therefore, the time integral over the interval [0, t] of the integral remain-
ders may be estimated by Ct3‖v0‖2H2 . Besides, there remains to estimate∫ t
0
R1(s) ds with

R1(s) =

(
Xt−s − 1

2
Xt − 1

2
Id

)
F (v0)

+ (Xt−s − Id)F ′(v0) · (Y s/2XsY s/2v0 − v0)
− 1

2
(Xt − Id)F ′(v0) · (Y s/2v0 − v0)

+ F ′(v0) · (Y s/2XsY s/2v0 − v0)
− 1

2
F ′(v0) · (Y s/2v0 − v0)− 1

2
F ′(v0) · (Y s/2XtY t/2v0 − v0).

The first term is estimated by Ct3‖v0‖H4 , combining estimates (2.2c) and
(2.2d). The two next terms are, respectively, estimated by CM ′(t−s)s‖v0‖H4

and CM ′ts‖v0‖H2 .

Last, since F ′(v0) is a linear operator, we have to study
∫ t
0
F ′(v0)R2(s) ds

with

R2(s) = Y s/2XsY s/2v0 − 1

2
Y s/2v0 − 1

2
Y s/2XtY t/2v0

= Xsv0 +
1

2

∫ s

0

XsF (Y σ/2v0) dσ +
1

2

∫ s

0

F (Y σ/2XsY s/2v0) dσ

− 1

2
v0 − 1

4

∫ s

0

F (Y σ/2v0) dσ

− 1

2
Xtv0 − 1

4

∫ t

0

XtF (Y σ/2v0) dσ − 1

4

∫ t

0

F (Y σ/2XtY t/2v0) dσ,

where we have used intensively formulation (2.3). Everywhere where F occurs
we subtract and add F (v0). This leads to terms involving differences which
may be estimated by Ct2‖v0‖H2 , and therefore their time integral is bounded
by Ct3‖v0‖H2 . The only terms that remain are R3(s) = Xsv0− 1

2v0− 1
2X

tv0

and R4(s) =
1
2

∫ s
0
XsF (v0)dσ − 1

4

∫ t
0
XtF (v0)dσ. We have

R3(s) = (Xsv0 −Xt/2v0) +

(
Xt/2v0 − 1

2
v0 − 1

2
Xtv0

)
,∥∥∥∥

∫ t

0

R3(s) ds

∥∥∥∥ ≤ Ct3‖v0‖H4 ;

R4(s) =
1

2

(
s(Xs −Xt)F (v0) +

(
s− t

2

)
XtF (v0)

)
,∥∥∥∥

∫ t

0

R4(s) ds

∥∥∥∥ =
∥∥∥∥
∫ t

0

s(Xs −Xt)F (v0) ds

∥∥∥∥ ≤ Ct3‖v0‖H2 .

Finally, we obtain that

‖R(t)‖ ≤ C(1 + ‖v0‖H4)t3‖v0‖H4 .

This last estimate concludes the study of the remainders for the four schemes. Now
a consequence of the Gronwall lemma 2.1 is the following lemma.
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Lemma 3.1. Let v0 ∈ H2; there exists t0 > 0 such that for all 0 ≤ t ≤ t0

‖ZtLv0 − Stv0‖ ≤ Ct2,

where C depends on ‖v0‖H2 . Moreover, if v0 ∈ H4, there exists t1 > 0 such that for
all 0 ≤ t ≤ t1

‖ZtSv0 − Stv0‖ ≤ Ct3,

where C depends on ‖v0‖H4 .
Remark 3.2. In [11], Jahnke and Lubich have shown the first and second order

approximation for a linear Schrödinger equation under the weaker regularity condi-
tions v0 ∈ H1 and v0 ∈ H2. Unfortunately, it is not possible to keep exactly the same
hypothesis for the nonlinear case for the following reason: Let us focus on the first
order approximation; we can formally extend the results of Jahnke and Lubich in the
nonlinear case using Lie commutators. However, the Lie commutator between the
Laplace operator and the nonlinear term involves a term containing (∂v0/∂x)

2 and
(∂v0/∂y)

2 (see [13] for more details). To control these two terms, we have two possi-
bilities, either we assume that v0 ∈ H2 and we use a Gagliardo–Nirenberg inequality,
or we assume that v0 ∈ H1 ∩W 1,+∞. Thus, in our lemma, H2 is not optimal if we
also assume that v0 ∈W 1,+∞.

4. Order estimate.
Theorem 4.1. For all u0 in H2 and for all T > 0, there exists C and h0 such

that for all h ∈ (0, h0], for all n such that nh ≤ T∥∥∥(ZhL)n u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H2)h‖u0‖H2 .

Moreover, if u0 belongs to H4, then∥∥∥(ZhS)n u0 − Snhu0

∥∥∥ ≤ C(‖u0‖H4)h2‖u0‖H4 .

Proof. As noticed in the introduction, the triangle inequality yields

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

‖(Zh)n−j−1ZhSjhu0 − (Zh)n−j−1S(j+1)hu0‖.

In section 3 we have proved that for all the studied schemes there exists a constant
C0 such that for w0 and w′

0 ∈ L2 and all t ∈ [0, 1]

‖Ztw0 − Ztw′
0‖ ≤ (1 + C0t)‖w0 − w′

0‖,
and therefore

‖(Zh)nu0 − Snhu0‖ ≤
n−1∑
j=0

(1 + C0h)
n−j−1‖(Zh − Sh)Sjhu0‖.

For the Lie formula when u0 belongs to H2, for all j such that jh ≤ T , Sjhu0 belongs
to H2 and is uniformly bounded in this space; thus we have

‖(ZhL − Sh)Sjhu0‖ ≤ C(‖u0‖H2)h2‖u0‖H2 ,
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and we deduce that

‖(ZhL)nu0 − Snhu0‖ ≤ C(‖u0‖H2)‖u0‖H2

n−1∑
j=0

exp(C0h)
n−j−1h2

≤ C(‖u0‖H2)‖u0‖H2 exp(C0T )nh
2

≤ C(‖u0‖H2)‖u0‖H2h.

For the scheme ZhS , when u0 belongs to H4, for all j such that jh ≤ T , Sjhu0 belongs
to H4 and is uniformly bounded in this space, and we have

‖(ZhS )nu0 − Snhu0‖ ≤ C(‖u0‖H4)‖u0‖H4

n−1∑
j=0

exp(C0h)
n−j−1h3

≤ C(‖u0‖H4)‖u0‖H4 exp(C0T )nh
3

≤ C(‖u0‖H4)‖u0‖H4h2.

This concludes the proof of Theorem 4.1.
Remark 4.2. Theorem 4.1 shows that the Lie and Strang formulae are approxi-

mations of order one and two of the exact solution. We can notice that the proof can
be extended to high order splitting formulae. In [9], it is shown that we can construct
Nth order approximation (N ≥ 3) by considering splitting schemes of the form

ZtHO = Xc0tY d1tXc1tY d2t · · ·Y dm−1tXcm−1tY dmtXcmt,(4.1)

but we have to assume that at least one of the coefficient c0, . . . , cm must be negative
and at least one of the coefficient d1, . . . , dm must be negative. (This result generalized
the fundamental result of [16].) The same result holds if we consider convex combi-
nations of (4.1). For these kinds of formulae, the Lipschitz property is an immediate
consequence of their forms, and we notice that we can still use some Taylor formulae
for Xt and Y t to show that the remainder may be estimated as ‖R(t)‖ = O(tN+1) for
t small; however, as we have seen for the last scheme studied in the previous proof, it
would be very technical.

5. Numerical experiments. We proved in the previous sections that the order
p of Lie and Strang formulations are, respectively, 1 and 2 for initial data in H2

and H4.
If the numerical order pnum given in Table 5.1 does confirm the theoretical orders,

it is nevertheless difficult to force the desired regularity for a discretized initial datum.
Typically, the regularity of the L2 initial datum in Figure 5.1 is certainly slightly
better.

Let us define tn = nh and let Ω = [−10, 10] × [−10, 10] be the computational
domain. The numerical order pnum is computed by

pnum = max
tn∈[0,T ]

1

ln 2
ln

(‖u2 − u1‖L2(Ω)

‖u3 − u2‖L2(Ω)

)
,

where u1 is computed for the time step h, and u2 and u3 are, respectively, computed
for time steps h/2 and h/4.

We use initial data displayed in Figure 5.1, and in order to avoid numerical
reflections due to boundaries we choose periodic boundary conditions and a FFT
method to invert the Laplacian.
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Table 5.1
Computation of pnum for different initial data.

Lie Strang
H2 1.000685 2.000072
H1 1.001721 2.006374
L2 1.014480 2.010045
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Fig. 5.1. Initial data used for numerical experiments.

Table 5.2
Computation of pnum for different time and space steps.

N = 64 N = 128 N = 256
h = 10−3 2.000016 2.000072 2.000289
h = 10−2 2.001637 2.007160 2.030023

The results displayed in Table 5.1 are computed for h = 10−3 and N = 128 points
in both space dimensions.

This results are not much dependent on the choice for the time and space steps.
Indeed, for the H2 initial datum and the Strang formulation, we obtain the results of
Table 5.2.

6. Conclusion. We have shown in this paper that, for the nonlinear Schrödinger
equation, the Lie and Strang formulae are, respectively, approximations of order 1 and
2. This result could be extended to cover the case of the Schrödinger–Debye equations
[3], where one can find a proof for the first order. The case of the nonlinear heat equa-
tion could also be treated with the same arguments because we have never used the
group property but only the semigroup property of the flow of the linear Schrödinger
equation; besides, we may write an equivalent of Lemma 2.2. In particular, this ex-
tends also the results of [6]. Our proof may also be extended to the Ginzburg–Landau
equation, for which some splitting methods are also used (see, e.g., [10]) since it will
use the fact that we are able to perform the proof for both the Schrödinger and the
heat equation.

Our analysis does not give any hint on how to choose one splitting scheme among
the others. The order of convergence is not the only criterion as stressed in the
introduction: in case of stiff terms, the order of the different steps is of consequence.
Namely, the last step should be the stiff one which is the nonlinear step Y t in our
context. This fact is hidden in our constants that depend on norms that grow with
the size of the exact solution.
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Abstract. In this paper a novel symmetric finite element method-boundary element method-
coupling for the E-based eddy current model is derived in a rigorous fashion. To that end, the
properties of potentials and boundary integral operators arising from a Stratton–Chu-type repre-
sentation formula for the electric field in the nonconducting region are thoroughly analyzed in a
Hilbert-space setting. It yields a variational problem with symmetric bilinear form that is coercive in
the natural function spaces. Unknowns are the electric field inside the conductor and the equivalent
surface current related to the magnetic field. Existence and uniqueness of solutions and the conver-
gence of a conforming finite element/boundary element Galerkin discretization immediately follows.
In particular, schemes based on curl-conforming edge elements and divergence-conforming surface
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1. Introduction. The fundamental task in eddy current computation is the
following: Given a time-dependent solenoidal exciting current and a conductor of
prescribed shape, determine the induced eddy currents in the conductor. To put ev-
erything into a mathematical framework, let ΩC ⊂ R

3 designate the space occupied
by the conductor. It is to be a bounded domain with piecewise smooth Lipschitz-
boundary Γ := ∂ΩC . In other words, ΩC should be the union of a few (curved)
Lipschitz-polyhedra [44, 1.5.2]. Inside ΩC the conductivity σ ∈ L∞(ΩC) is uniformly
positive, i.e., σ ≥ σ0 > 0 almost everywhere in ΩC , whereas σ vanishes outside ΩC in
the “air region” ΩE := R

3 \ Ω̄C . The second important material parameter, the mag-
netic permeability µ ∈ L∞(R3), is uniformly positive everywhere and constant in ΩE .
By a simple scaling we can always get nondimensional equations and achieve µ ≡ 1 in
ΩE . Excitation is provided either by a divergence-free source current j0 ∈ L2(R3) or
by prescribing the total current circulating through a loop of the conductor. To begin
with, the (generic) case of a given source current j0 will be the only one considered.
Besides, for the sake of simplicity, we assume that supp(j0) ⊂ Ω̄C , that there is no flux
of j0 through Γ, and that ΩE is connected. I stress that it takes only slight alterations
to adapt the considerations of this paper to a more general setting.

The eddy current model emerges from Maxwell’s equations by formally dropping
the displacement currents (magnetoquasistatic approximation). This amounts to ne-
glecting capacitive effects (space charges) and provides a reasonable approximation in
the low frequency range and in the presence of high conductivity [3, 40]. In the time
harmonic case (frequency domain) the equations of the eddy current model read as

curlE = −iωµH, curlH = σE+ j0 in R
3 ,(1.1)

E(x) = O(|x|−1), H(x) = O(|x|−1) for |x| → ∞ ,(1.2)
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where ω > 0 is a fixed angular frequency. Various reformulations of the eddy current
problem have been suggested [1, 12], which differ in their choice of the primary un-
known. This gives rise to a distinction between approaches zeroing in on the magnetic
field (“H-based”), the electric field (“E-based”), or certain (vector) potentials. I am
going to focus on the E-based formulation in the frequency domain, which, in the
sense of distributions, reads as (cf. [3], ε0 ≡ const. > 0 in ΩE)

curlµ−1 curlE+ iωσE = −iωj0 in R
3 ,

div(ε0E) = 0 in ΩE ,

∫
Γi

E · n dS = 0 , i = 1, . . . , NC ,

E(x) = O(|x|−1), curlE(x) = O(|x|−1) for |x| → ∞ .

(1.3)

Here, {Γi}NC
i=1 stands for the finitely many connected components of Γ := ∂ΩC , and

n denotes the unit normal vectorfield on Γ, defined almost everywhere and pointing
from ΩC into ΩE .

In many practical applications the material parameters inside the conductor dis-
play substantial spatial variations. Moreover, the permeability µ may even depend on
H, which leads to a nonlinear problem. Thus, a viable numerical scheme for eddy cur-
rent computation has to rely on a complete spatial discretization of the problem inside
ΩC . Starting from the variational formulation (1.3), a finite element scheme (FEM)
based on edge elements offers the most attractive option [18, 63]. In fact, their use
is mandatory in order to capture the singularities of the fields at material interfaces
[37, 11, 19].

However, we also have to deal with the unbounded exterior domain. In many
cases, due to the decay properties of the fields, one simply introduces homogeneous
boundary conditions for the electric field some distance away from the conductor.
Then by extending the finite element mesh to parts of the air region, a satisfactory
approximation can be obtained. However, there are many conceivable shapes of ΩC ,
where the number of required additional elements much exceeds the number needed
to mesh ΩC .

In this case, BEMs may be used to tackle the unbounded exterior domain, since
in ΩE we face a homogeneous problem with constant coefficients. Then the topic of
this paper comes into focus, because the discrete boundary integral equations and the
systems of equations arising from the finite element scheme have to be linked properly.

Formally, for second order elliptic problems, the coupling of a finite element
discretization with some unbounded exterior domain is achieved by discretizing the
Dirichlet-to-Neumann map of the exterior problem. For a self-adjoint differential op-
erator, this map must be self-adjoint, too. However, in the traditional approach em-
ploying boundary elements, a nonsymmetric matrix emerges as discrete Dirichlet-to-
Neumann map [52]. A breakthrough was accomplished by M. Costabel, who discovered
that, by using the full Calderón-projector, symmetry can be restored [34]. In addition,
coercive variational problems naturally emerge. The principle can be applied to a wide
range of elliptic problems [25] and has recently been adapted to the full Maxwell’s
equations [4].

The idea of coupled FEM-BEM methods for eddy current computation is by no
means new. An early reference is [58], where an H-φ-approach is discussed. It employs
a scalar magnetic potential outside ΩC , and the coupling makes use of the continuity of
tangential components of H and that of the normal components of µH. A similar idea
was used in the context of an A-φ-model in [57] and, along with impedance boundary
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conditions, in [75]. Yet this coupling is valid only for simply connected conductors
[68, 56].

Field based methods avoid the fundamental difficulties encountered by potential
based approaches in the case of complex topologies. Most prominently, the TRIFOU
project adopted a coupling strategy based on H or E [70, 71, 16]. In the former
case, scalar potentials still played a role, entailing cutting surfaces to deal with non-
simply connected conductors. In the latter case, the concept of a vectorial Dirichlet-
to-Neumann map bulked large [17, 15], which, though self-adjoint by nature, was
tackled by an inherently unsymmetric indirect boundary integral formulation. A sym-
metrization of the resulting matrices is performed later on the level of the discrete
linear systems, justified by heuristics drawing on the symmetry of the Dirichlet-to-
Neumann map [18, sect. 7.4.5] and [72]. Yet, a rigorous mathematical analysis of the
impact of this procedure is not available.

This paper is aimed at extending the “TRIFOU-E-approach” towards a genuinely
symmetric formulation, which is to arise from a thorough mathematical examination
of the coupled eddy current problem. We are rewarded by an asymptotically optimal a
priori error estimate for the energy norm of the discretization error and linear systems
of equations amenable to efficient preconditioning. No restrictions on the topology of
ΩC are imposed. Owing to the lack of strong ellipticity in the case of the eddy current
problem, the formal approach to symmetric coupling in the case of second order elliptic
boundary value problems cannot be simply copied.

The paper is organized as follows: The following section presents a weak formula-
tion of the eddy current problem. After that, the crucial function spaces of tangential
traces are introduced in section 3. Then I examine the relevant Dirichlet and Neumann
data for the eddy current problem in ΩC and ΩE . The correct coupling conditions are
established. In section 5 a representation formula is computed, comprised of several
boundary potentials. Their properties and those of related boundary integral opera-
tors will be studied in sections 6 and 7. In section 8 I state the symmetric coupled
problem in weak form and prove existence and uniqueness of a solution. Section 9
is dedicated to a Galerkin finite element discretization of the coupled problem and
the use of discrete stream functions. In the final section the assembly of the discrete
operators and iterative solution techniques are examined.

2. Variational formulation and gauging. As the eddy current problem is
posed on an unbounded domain, its variational formulation has to rely on the weighted
Sobolev space

W (curl,R3) :=

{
u ∈ D(R3)′,

u(x)√
1 + |x|2 ∈ L

2(R3), curl u ∈ L2(R3)

}
,

which corresponds to the classical Beppo–Levi spaces. A fairly complete treatment of
these spaces is given in [41] and [65, sect. 2.5.4]. The constrained space

X(R3) :=

{
u ∈W (curl,R3), divu = 0 in ΩE ,

∫
Γi

u|ΩE
· n dS = 0, i = 1, . . . , NC

}

offers a suitable setting for the weak eddy current problem: Seek E ∈ X(R3) such
that for all v ∈ X(R3)

a(E,v) :=
(
µ−1 curlE, curl v

)
0;R3 + iω (σE,v)0;ΩC

= −iω (j0,v)0;ΩC
.(2.1)
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Theorem 2.1. A solution of the variational problem (2.1) exists and is unique.
Proof. First, I show that the bilinear form a(·, ·) of (2.1) is coercive (in the sense

of [60, Thm. 2.34]) on

X̃(R3) := {u ∈W (curl,R3), divu = 0 in ΩE} .(2.2)

To this end, pick v ∈ X̃(R3), write vC := v|ΩC
∈H(curl; ΩC) and ṽ ∈H(curl;R3)

for a divergence-free extension of vC to R
3. (Extension theorems for H(curl; Ω) are

presented in the next section.) Then define w := v − ṽ ∈ X̃(R3) and observe that w
has vanishing tangential components on Γ. Next, set

u := curlw ∈H0(div 0; ΩE) := {q ∈H(div; ΩE), divq = 0, q · n = 0 on Γ} ,

and retain the notation u for its extension by zero into the interior of ΩC . This will
yield u ∈H(div;R3) with divu = 0. According to [41, Thm. 2.5] we can find a unique
vector potential Ψ in the vectorial Beppo–Levi space (cf. [65, sect. 2.5.4])

W 1,−1(R3) :=

{
Φ ∈ D(R3)′,

Φ(x)√
1 + |x|2 ∈ L

2(R3), DΦ ∈ (L2(R3))3×3

}

such that curlΨ = u, divΨ = 0, and, with some universal constant C > 0,

‖Ψ‖W 1,−1(R3) ≤ C ‖u‖L2(R3) .

By definition, curlΨ = 0 in ΩC , which yields the representation

Ψ = gradφ+ η, φ ∈ H1(ΩC)/R, η ∈ H(ΩC) ,

where H(ΩC) ⊂ L2(ΩC) is the finite dimensional space of harmonic Neumann vector-
fields on ΩC , L

2(ΩC)-orthogonal to gradH1(ΩC) [5, sect. 3.c]. Then solve the exterior
Dirichlet problem

∆µ = 0 in ΩE , µ = φ on Γ

in the Beppo–Levi space W 1,−1(ΩE) and observe that, with generic constants C > 0,

‖µ‖W 1,−1(ΩE) ≤ C
∥∥φ|Γ
∥∥
H

1
2 (Γ)

≤ C ‖φ‖H1(ΩC) ≤ C ‖Ψ‖H1(ΩC) ≤ C ‖curlw‖L2(R3) .

This means for ζ := Ψ− gradµ−w that

curl ζ = 0 in ΩE , div ζ = 0 in ΩE .(2.3)

On top of that, the tangential components of ζ on Γ agree with those of vectorfields
in H(ΩC). Along with (2.3) this implies that ζ belongs to a finite dimensional space
of harmonic vectorfields on ΩE . Summing up, we get in ΩE

v = q− ζ, q := ṽ +Ψ− gradµ

and the estimate∥∥∥∥∥ q(x)√
1 + |x|2

∥∥∥∥∥
L2(ΩE)

≤ ‖Ψ‖W 1,−1(ΩE) + ‖ṽ‖L2(ΩE) + ‖µ‖W 1,−1(ΩE)

≤ C
(
‖v‖H(curl;ΩC) + ‖curl v‖L2(ΩE)

)
.
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We conclude that, with a constant c > 0 depending on the material parameters µ, σ,
and on ΩC ,

|a(v,v)| ≥ c



∥∥∥∥∥ (v + ζ)(x)√

1 + |x|2

∥∥∥∥∥
2

L2(ΩE)

+ ‖v‖2L2(ΩC) + ‖curl v‖2L2(R3)


 .

Recalling that the norm on X̃(R3) agrees with the norm of W (curl,R3) and that ζ
belongs to a finite dimensional space, a(·, ·) is immediately seen to be X̃(R3)-coercive,
i.e., X̃(R3)-elliptic modulo a compact perturbation.

According to [60, Thm. 2.34], existence of solutions of the weak eddy current
problem thus follows from uniqueness. The latter is clear (cf. [3, Thm. 3.2]); as for

u ∈ X̃(R3), the requirement a(u,u) = 0 forces u to be an exterior Dirichlet vector-
field. However, those are ruled out by the additional constraint in the definition of
X(R3).

It is evident that the constraints in the definition ofX(R3) merely serve to enforce
the uniqueness of E outside ΩC . Dispensing with them will affect neither the magnetic
field H := − 1

iωµ curlE in R
3 nor the eddy currents j = σE in the conductor. In other

words, the constraints on E are not essential for the validity of the eddy current model.
A meaningful model can also be stated in terms of equivalence classes of electric fields.
It will still supply unique solutions for many interesting quantities. Indeed, frequently
the constraints on E are dropped in numerical schemes [31]. In the spirit of [53], the
constraints imposed in (1.3) represent gauge conditions, unless one wants to know the
true E in ΩE .

As my focus is on ΩC , I am going to relax the constraints on E in what follows,
considering the variational problem only on X̃(R3): Seek u ∈ X̃(R3) such that

a(u,v) = −iω (j0,v)0;ΩC
∀v ∈ X̃(R3) .(2.4)

Keep in mind that then u|ΩE
is merely unique up to contributions from HD(ΩE), with

HD(Ω) := {v ∈ L2(Ω), curl v = 0, divv = 0, v × n = 0 on ∂Ω}
standing for the finite dimensional space of harmonic Dirichlet vectorfields (cf. [5,
sect. 3]). To remind the reader that I am no longer dealing with a physical electric

field, this “ungauged” solution will not be denoted byE. Retreating to X̃(R3) has to be
accompanied by an important caveat: The numerical scheme proposed in the present
paper has to be supplemented by some postprocessing in order to yield meaningful
values for E in ΩE .

Please recall that by means of expansions into spherical harmonics (cf. the proof
of Proposition 3.1 in [3]) the following decay properties can be established for any
solution u of (2.4):

u(x) = O(|x|−1), curl u(x) = O(|x|−2) uniformly for |x| → ∞ .(2.5)

3. Traces. The boundary integral equations have to be considered in spaces
that are closely related to traces of vectorfields in H(curl; Ω) onto Γ. (Here and in
the following, Ω stands for either ΩC or ΩE .) On smooth boundaries their theory is
well established. I refer to the papers by Paquet [66] and Alonso and Valli [2] and, in
particular, to the monographs by Cessenat [26, sect. 2.1] and Nédélec [65, sect. 5.4.1]
for a comprehensive exposition. Only recently, these results have been successfully
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extended to piecewise smooth boundaries by Buffa [21] and Buffa and Ciarlet [22, 23]
and even to Lipschitz-domains in [24]. These articles provide the chief references for
the results cited below. Loosely speaking, by judicious generalizations of norms and
surface differential operators, the main results for regular surfaces carry over to a
nonsmooth setting.

To begin with, we define two different tangential surface trace operators: The
tangential surface trace γt is defined for u ∈ C(Ω̄)3 by γtu(x) := n(x)×(u(x)×n(x))
for almost all x ∈ Γ. Accordingly, the twisted tangential surface trace γ×

t can be
computed through γ×

t u(x) := u(x)× n(x).
Apart from the usual Hilbert spaces of scalar functions and functionals, H1/2(Γ)

and H−1/2(Γ), we will make heavy use of the following Hilbert spaces of tangential

vectorfields on Γ: L2
t(Γ), H

1/2
|| (Γ), and H

1/2
⊥ (Γ), where the latter are defined in [22,

sect. 1] (and generalized to spaces Vπ and Vγ in [24, sect. 2]). The associated dual

spaces will be denoted by H
−1/2
|| (Γ) and H

−1/2
⊥ (Γ), respectively. Sloppily speaking,

H
1/2
|| (Γ) contains the tangential surface vectorfields that are in H1/2(Fi) for each

smooth component Fi of Γ and feature a suitable “weak tangential continuity” across
the edges of the Fi. A corresponding “weak normal continuity” is satisfied by sur-

face vectorfields in H
1/2
⊥ (Γ). These spaces occur as images of tangential traces of

vectorfields.
Theorem 3.1. The tangential trace mapping γt :H

1
loc(Ω) �→H

1/2
|| (Γ) is contin-

uous and surjective and possesses a continuous right inverse.

The twisted tangential trace mapping γ×
t :H1

loc(Ω) �→H
1/2
⊥ (Γ) is continuous and

surjective and possesses a continuous right inverse.
Proof. See Proposition 1.7 in [22].
Please recall the definitions of the surface differential operators gradΓ, curlΓ,

curlΓ, and divΓ acting on tangential vectorfields (see [24, sect. 3], [22, sect. 2], [23,
sect. 1, Defs. 1.1, 1.3], and [65, sect. 2.5.6] for smooth surfaces). I mention that divΓ =
− grad∗Γ and curlΓ = curl∗Γ, where ∗ denotes the adjoint with respect to the pivot
space L2

t(Γ). The surface differential operators play a role in the definition of the

spaces H
−1/2
⊥ (curlΓ,Γ) and H

−1/2
|| (divΓ,Γ) introduced in [22] by

H
− 1

2

⊥ (curlΓ,Γ) ={v ∈H− 1
2

⊥ (Γ), curlΓ v ∈ H− 1
2 (Γ)} ,

H
− 1

2

|| (divΓ,Γ) ={ζ ∈H− 1
2

|| (Γ), divΓζ ∈ H− 1
2 (Γ)} .

These spaces are endowed with the natural graph norms ‖·‖
H

− 1
2

⊥ (curlΓ,Γ)
and

‖·‖
H

− 1
2

|| (divΓ,Γ)
. They are significant as suitable trace spaces for vectorfields in

H(curl; Ω).

Theorem 3.2. The trace mapping γt :H(curl; Ω) �→H
−1/2
⊥ (curlΓ,Γ) is contin-

uous and surjective with a continuous right inverse.

The trace mapping γ×
t :H(curl; Ω) �→H

−1/2
|| (divΓ,Γ) is continuous and surjec-

tive with a continuous right inverse.
Proof. For simply connected Γ this result combines Theorems 2.7 and 2.8 from

[22] and Theorem 4.5 in [23]. For general topology see [21]. The statement for smooth
domains is made in [65, Thm. 5.4.2].

These traces occur in the definition of Dirichlet-type boundary conditions for
H(curl; Ω)-elliptic variational problems. Hence, we adopt the alternative notation
γD for γt (“Dirichlet trace”).
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Another result in [23, sect. 4] is thatH
−1/2
⊥ (curlΓ,Γ) andH

−1/2
|| (divΓ,Γ) are dual

to each other, when L2
t(Γ) is used as pivot space. More precisely, the usual L2

t(Γ)-

inner product can be extended to a duality pairing 〈·, ·〉τ betweenH
−1/2
|| (divΓ,Γ) and

H
−1/2
⊥ (curlΓ,Γ).
A couple of weakly defined traces will also be needed in order to deal with

Neumann-type boundary conditions: For

u ∈W (curl2,Ω) := {v ∈W (curl,Ω), curl curl v ∈ L2(Ω)},

we define γNu ∈H−1/2
|| (divΓ,Γ) (“Neumann trace”) by

〈γNu, γtv〉τ = ±
∫

Ω

curl u · curl v − curl curl u · v dx ∀v ∈H(curl; Ω) ,

where the positive sign applies to Ω = ΩC , the negative to Ω = ΩE . An overbar
designates complex conjugation. The trace γN furnishes a continuous and surjective

mapping γN :W (curl2,Ω) �→ H
−1/2
|| (divΓ,Γ), where W (curl2,Ω) is equipped with

the graph norm. Obviously γNu = γ×
t (curl u), as this holds for smooth fields.

Lemma 3.3. If u ∈W (curl2,Ω) satisfies curl curl u = 0 in Ω, there holds

‖γNu‖
H

− 1
2

|| (divΓ,Γ)
≤ C ‖curl u‖L2(Ω)

with some constant C > 0 independent of u.

Proof. Set P⊥ : H
−1/2
⊥ (curlΓ,Γ) �→ H(curl; Ω) for the continuous right inverse

of γt from Theorem 3.2. Then the definition of γN , straightforward manipulations,
and the continuity of the tangential trace show

‖γNu‖
H

− 1
2

|| (divΓ,Γ)
= sup

v∈H
− 1

2
⊥ (curlΓ,Γ)

〈γNu, γDP⊥v〉τ
‖v‖

H
− 1

2
⊥ (curlΓ,Γ)

= sup

v∈H
− 1

2
⊥ (curlΓ,Γ)

(curl u, curlP⊥v)0;Ω
‖v‖

H
− 1

2
⊥ (curlΓ,Γ)

≤ sup

v∈H
− 1

2
⊥ (curlΓ,Γ)

‖curlP⊥v‖L2(Ω) ‖curl u‖L2(Ω)

‖v‖
H

− 1
2

⊥ (curlΓ,Γ)

.

This amounts to the assertion of the lemma.
The weak normal trace γn is defined for vectorfields u ∈H(div; Ω) by

〈γnu, φ〉1/2,Γ =
∫

Ω

φdivu+ u · gradφdx ∀φ ∈ H1(Ω)

with 〈·, ·〉1/2,Γ as duality pairing between H−1/2(Γ) and H1/2(Γ). γn : H(div; Ω) �→
H−1/2(Γ) is continuous and surjective [42, Thm. 2.5], [65, Thm. 5.4.1].

4. Transmission conditions and Cauchy data. The interface transmission
conditions for electromagnetic fields are

[γDu]Γ = 0,
[
µ−1γNu

]
Γ
= 0 .(4.1)

I have adopted the notation [γ·]Γ = γ+ · −γ−· for the jump of some trace γ across Γ.
Here, γ+ refers to the trace from ΩE and γ− to the trace from inside. Please be aware
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that, in physical terms, (4.1) represents the continuity of the tangential components
of the electric and magnetic fields. This ensures the normal continuity of the energy
flux given by the Poynting-vector E×H.

Remark. As only magnetic quantities matter, it is tempting to replace (4.1) by
purely magnetic transmission conditions

[γDH]Γ = 0, [γnB]Γ = 0 .

However, for nontrivial topology of ΩC the resulting coupled problem fails to have a
unique solution even for H [68, 56]: Loop currents in ΩC can no longer be determined,
because Faraday’s law is not completely taken into account. Thus, in general, FEM-
BEM-coupling for the eddy current problem cannot be based on A-V -formulations
[10], V a scalar magnetic potential, unless one is willing to grapple with integrals over
cuts in the air region.

Next, we scrutinize the interior eddy current problem in ΩC . Its strong forms are

straightforward: The Dirichlet problem for Dirichlet-data g ∈H−1/2
⊥ (curlΓ,Γ) reads

curl
1

µ
curl u+ iωσu = −iωj0 in ΩC , γDu = g on Γ ,

whereas the Neumann problem for λ ∈H−1/2
|| (divΓ,Γ) can be stated as

curlµ−1 curl u+ iωσu = −iωj0 in ΩC , µ−1γNu = λ on Γ .

Reassuringly, the Cauchy data (γDu, γNu) exactly match the transmission conditions
(4.1).

Now, we examine the part of the variational problem (1.3) that is associated with
ΩE . As pointed out in section 2, only relaxed constraints on E in ΩE will be consid-
ered. Then the weak saddle point formulation of the exterior1 Dirichlet problem corre-

sponding to (2.4) reads as follows: Given g ∈H−1/2
⊥ (curlΓ,Γ), seek u ∈W (curl,ΩE),

γtu = g, p ∈W 1,0
0 (ΩE), where (cf. [65, sect. 2.5.4])

W 1,0
0 (Ω) := {φ ∈ L2(Ω),

√
1 + |x|2 gradφ(x) ∈ L2(Ω), φ|∂Ω = 0} ,

such that

(curl u, curl v)0;ΩE
+ (grad p,v)0;ΩE

= 0 ∀v ∈W 0(curl,ΩE) ,

(u, grad q)0;ΩE
= 0 ∀q ∈W 1,0

0 (ΩE) .

This gives rise to the boundary value problem

curl curl u = 0, divu = 0 in ΩE , γtu = g on Γ ,(4.2)

plus decay conditions as in (1.3).
Dropping boundary conditions in the function spaces leads to the Neumann prob-

lem: For λ ∈H−1/2
|| (divΓ,Γ), find u ∈W (curl,ΩE), p ∈W 1,0(ΩE) with

(curl u, curl v)0;ΩE
+ (grad p,v)0;ΩE

= 〈λ, γtv〉τ ∀v ∈W (curl,ΩE) ,

(u, grad q)0;ΩE
= 0 ∀q ∈W 1,0(ΩE) .

1I keep calling the problem “exterior” even if it may be posed on a bounded domain.
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The related boundary value problem can be stated (without decay conditions) as

curl curl u+ grad p = 0 in ΩE , divu = 0 in ΩE ,(4.3)

γnu = 0 on Γ, γNu = λ on Γ .(4.4)

Definition 4.1. A distribution u ∈ D(Ω)′ is called a solution of the “exterior”
eddy current problem in Ω if curl curl u = 0 and divu = 0. If the domain is not
specified, Ω = ΩC ∪ ΩE is implied.

Remembering div∗Γ = gradΓ and gradΓ(γtΨ) = γt(gradΨ), we see from (4.3)
that grad p = 0 if and only if divΓλ = 0. This entails a constraint for the Neumann
boundary values that produce solutions of the exterior eddy current problem in ΩE .

In sum, we have found H
−1/2
⊥ (curlΓ,Γ) as the right space for the Dirichlet-data γtu.

Conversely the Neumann-data (γN , γn) should belong toH
−1/2
|| (divΓ0,Γ)×H−1/2(Γ),

where

H
− 1

2

|| (divΓ0,Γ) := {λ ∈H− 1
2

|| (divΓ,Γ), divΓλ = 0} .

These are the domain and range, respectively, of the Dirichlet-to-Neumann map for
the exterior eddy current problem. However, this map is not well defined in the case
of relaxed constraints, as the normal trace γn is nonzero for harmonic Dirichlet fields.
However, the trace γN is not affected and turns out unique for given Dirichlet-data.

The gist of these considerations is that a part of the Neumann data for the exterior
eddy current problem is not captured by the transmission conditions. Fittingly, it is
exactly that component that is not unique without gauging. This reflects that gauging
is redundant as far as the solution in ΩC is concerned. As we will see in the next
section, we have to retain the divergence constraint, nevertheless.

5. Potentials. As usual, the correct boundary integral equations for the exterior
eddy current problem emerge from a representation formula. It involves the singular
function for the Laplacian in three dimensions:

E(x,y) :=
1

4π

1

|x− y| , x,y ∈ R
3, x �= y .

As in [33, sect. 6.2], for any Lipschitz-domain Ω ⊂ R
3 with exterior unit normal n,

we arrive at the following representation formula for vectorfields u ∈ C2(Ω̄)3 with
divu and curl curl u compactly supported and decaying like u(x) = O(|x|−1) and
curl u(x) = o(|x|−1) uniformly for |x| → ∞:

u(x) = − curlx
∫

Γ

(n× u)(y)E(x,y) dS(y) +
∫

Γ

(n× curl u)(y)E(x,y) dS(y)

+ gradx

∫
Γ

(n · u)(y)E(x,y) dS(y) +
∫

Ω

curl curl u(y)E(x,y) dy(5.1)

−
∫

Ω

divu(y) gradx E(x,y) dy, x ∈ Ω .

It is an analogue to the Stratton–Chu formulas for the full Maxwell’s equations (see
[33, Thm. 6.1], [59, sect. 2], and [65, sect. 5.5]).

Evidently, information on the divergence is crucial in the derivation of the rep-
resentation formula. This is the fundamental reason why we have to keep the zero
divergence constraint for the exterior eddy current problem.
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We recall the definition of the scalar single layer potential [27, Chap. 6]:

ΨV (φ)(x) :=

∫
Γ

φ(y)E(x,y) dS(y) , x �∈ Γ .(5.2)

It is well known that it can be extended to a continuous mapping ΨV : H−1/2(Γ) �→
H1

loc(R
3), that it satisfies certain jump relations, and that it induces a Hermitian

H−1/2(Γ)-elliptic bilinear form [39, Chap. XI, sect. 2, Thm. 3]. We aim to establish
similar results for the potentials occurring in (5.1), too. To this end we closely follow
the approach in [35]. First, for a tangential vectorfield λ on Γ, we define the vectorial
single layer potential by

ΨA(λ)(x) :=

∫
Γ

λ(y)E(x,y) dS(y) , x �∈ Γ .(5.3)

Introducing the vectorial Newton-potential as

G(λ)(x) :=

∫
R3

λ(y)E(x,y) dy ,(5.4)

which defines a continuous mapping G :H−1
comp(R

3) �→H1
loc(R

3), we formally get for
a smooth compactly supported test field Φ ∈ D(R3)∫

R3

ΨA(λ)(x) ·Φ(x) dx =
∫

R3

∫
Γ

E(x,y)λ(y) ·Φ(x) dS(y) dx

=

∫
Γ

λ(y) ·G(Φ)(y) dS(y) .

We conclude

(ΨA(λ),Φ)0;R3 = (λ, γtG(Φ))0;Γ = (γt
∗λ,G(Φ))0;R3 = (G(γt

∗λ),Φ)0;R3 ,

which means, by density,

Ψ∗
A = γt ◦G ⇔ ΨA = G ◦ γt

∗ .(5.5)

Theorem 5.1. ΨA :H
−1/2
|| (Γ) �→H1

loc(R
3) is a continuous operator.

Proof. By Theorem 3.1, the L2-adjoint γt
∗ :H−1/2

|| (Γ) �→H−1(R3) is continuous.

Then the assertion is immediate from (5.5).
The next lemma supplies an important auxiliary relationship.

Lemma 5.2. For λ ∈H−1/2
|| (divΓ,Γ) we have

divΨA(λ) = ΨV (divΓλ) in L2(R3) .

Proof. Cf. the proof of Lemma 2.3 in [59].
From the decay properties of the kernel we infer ΨA(λ) ∈ W 1,−1(R3). Now, we

confine ourselves to λ ∈ H
−1/2
|| (divΓ0,Γ). According to the previous lemma, this

implies divΨA(λ) = 0, and, since ∆ΨA(λ) = 0 away from Γ, curl curlΨA(λ) is
seen to vanish in R

3 \Γ as well. Thus, γNΨA(λ) is well defined from both sides of Γ.
Now we can apply Green’s formula to ΩC and ΩE separately and add up the

expressions: For all Φ ∈ D(R3)∫
R3

ΨA(λ) · curl curlΦ dx = 〈[γDΨA(λ)]Γ, γNΦ〉τ − 〈[γNΨA(λ)]Γ, γDΦ〉τ .
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On the other hand, using divΨA(λ) = 0, we get∫
R3

ΨA(λ)(x) · curl curlΦ(x) dx = −
∫

R3

ΨA(λ)(x) ·∆Φ(x) dx
=− 〈λ, (Ψ∗

A ◦∆)Φ〉τ = 〈λ, γDΦ〉τ .

We have made use of (5.5), i.e., Ψ∗
A = γt ◦G, and G ◦∆ = −Id. Next, we see from

the regularity result of Theorem 5.1 that [γDΨA(λ)]Γ = 0. Subtracting the previous
equation, we establish

[γNΨA(λ)]Γ = −λ in H
− 1

2

|| (divΓ,Γ),(5.6)

thanks to the density of D(R3)|Γ in H
−1/2
|| (divΓ,Γ). This is the desired jump relation

for the vectorial single layer potential.
The vectorial double layer potential for a tangential vectorfield u is given by

ΨM(u) := curlΨA(Ru), Ru := n× u .(5.7)

From the regularity of the vectorial single layer potential (Theorem 5.1) and the fact

that R :H
−1/2
|| (Γ) �→H

−1/2
⊥ (Γ) is an isometry, we can infer that ΨM is a continuous

mapping from H
−1/2
⊥ (Γ) to H(div;R3).

Armed with these regularity results and the continuity of the trace mappings, we
can extend the representation formula (5.1) to vectorfields u ∈W (curl,R3) decaying
according to (2.5) and satisfying divu|ΩC

∈ L2(ΩC), divu|ΩE
∈ L2(ΩE) compactly

supported, curl curl u|ΩC
∈ L2(ΩC), and curl curl u|ΩE

∈ L2(ΩE) compactly sup-
ported: We get the transmission formula

u =−G(curl curl u) + gradG(divu) +ΨM([γDu]Γ)

−ΨA([γNu]Γ)− gradΨV ([γnu]Γ).
(5.8)

Let us write S : H
− 1

2

⊥ (curlΓ,Γ) �→ W (curl2,Ω) ∩H(div 0; Ω) for a continuous so-
lution operator for the Dirichlet problem (4.2) on both sides of Γ. It fulfills (for

g ∈H−1/2
⊥ (curlΓ,Γ))

Sg = ΨM(g)−ΨA(γN Sg)− gradΨV (γn Sg) in ΩE ,

Sg = −ΨM(g) +ΨA(γN Sg) + gradΨV (γn Sg) in ΩC .
(5.9)

Of course, the introduction of S entails some gauging of Sg to render it well defined.
As the kind of gauging involved ultimately turns out to be immaterial, we do not have
to bother about its details.

Theorem 5.3. ΨM is a continuous mapping from H
−1/2
⊥ (curlΓ,Γ) to

H(div 0; Ω) ∩H(curl; Ω), for both Ω = ΩC and Ω = ΩE.
Proof. Equations (5.9) mean that, e.g., in ΩE , ΨM = (Id−ΨA ◦γN +grad ◦ΨV ◦

γn) ◦S. Employing the continuity properties of the other potentials and of the trace
operators, we get the result.

We may plug an (arbitrarily gauged) solution of the Dirichlet problem (4.2) into
the transmission formula and extend u to the other side of Γ by solving a Neumann
problem (4.3) such that [γnu]Γ = 0 and [γNu]Γ = 0. In the end, we have u =
ΨM([γDu]Γ) and can state Im(ΨM) ⊂W (curl2,ΩC)×W (curl2,ΩE). So it is legal
to evaluate the Neumann trace γN for the vectorial double layer potential.
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Next, we aim to establish the jump relations for ΨM. Note that from (5.5)

ΨM = curl ◦ΨA ◦R = curl ◦G ◦ γt
∗ ◦R = curl ◦G ◦ (γ×

t )
∗,

where I used R∗ = −R. By virtue of curl curl curl = − curl ◦∆ and curl∗ = curl,
this implies

curl curlΨM = − curl ◦(∆ ◦G) ◦ (γ×
t )

∗ = (γ×
t ◦ curl)∗ = γ∗

N(5.10)

in the sense of distributions. As above, we get from Green’s formula for Φ ∈ D(R3)∫
R3

ΨM(u) · curl curlΦ dx = 〈[γDΨM(u)]Γ, γNΦ〉τ − 〈[γNΨM(u)]Γ, γDΦ〉τ .

Combining this with (5.10) confirms that for all Φ ∈ D(R3)

〈[γDΨM(u)]Γ − u, γNΦ〉τ − 〈[γNΨM(u)]Γ, γDΦ〉τ = 0 .(5.11)

As we can see along the lines of the proof of Lemma 1.5.39 in [43], D(Ω) is dense
in W (curl2,Ω). This means that we can equivalently state (5.11) to hold for all
Φ ∈W (curl2,Ω). Finally, let p ∈W (curl2,Ω) be a solution of the Dirichlet problem

curl curl p = f in Ω, divp = 0 in Ω, γDp = 0 on Γ ,

with f ∈ H(div 0; Ω) compactly supported. On top of that, define η ∈ W (curl2,Ω)
as a solution of the Dirichlet problem

curl curlη = 0 in Ω, divη = 0 in Ω, γDη = [γDΨM(u)]Γ − u on Γ .

By using the definition of the Neumann trace operator γN ,

0 = 〈γDη, γNp〉τ = 〈γDη, γNp〉τ − 〈γNη, γDp〉τ
=(curl curlη,p)0;Ω − (η, curl curl p)0;Ω = − (η, f)0;Ω .

Hence, η must vanish, as divη = 0. At this stage, we already know

[γDΨM(u)]Γ = u in H
− 1

2

⊥ (curlΓ,Γ) ,(5.12)

and from (5.11) [γNΨM(u)]Γ = 0 is readily available. This finishes the proof of the
jump relations for the vectorial double layer potential.

6. Boundary integral operators. The regularity properties demonstrated in
the previous section pave the way for defining related boundary integral operators

Aλ := γDΨA(λ), Bλ := γ+
NΨA(λ) ,

Cu := γ+
DΨM(u), Nu := γNΨM(u) ,

Sφ := γ+
D(gradΨV (φ)).

Alternatively, we could have written Sφ := gradΓΨV (φ). The continuity of the po-
tential mappings and that of the trace operators bear out the following theorem.

Theorem 6.1. The mappings

A :H
− 1

2

|| (Γ) �→H
1
2

|| (Γ), B :H
− 1

2

|| (divΓ,Γ) �→H
− 1

2

|| (divΓ,Γ) ,

C :H
− 1

2

⊥ (curlΓ,Γ) �→H
− 1

2

⊥ (curlΓ,Γ), N :H
− 1

2

⊥ (curlΓ,Γ) �→H
− 1

2

|| (divΓ,Γ) ,

S : H− 1
2 (Γ) �→H

− 1
2

⊥ (Γ)

are continuous.
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Next, pick arbitrary p,q ∈ H−1/2
⊥ (curlΓ,Γ), ζ,η ∈ H−1/2

|| (divΓ0,Γ) and define

solutions to the transmission problem for the exterior eddy current problem by

u :=ΨM(p) +ΨA(ζ) , in ΩC ∪ ΩE ,

v :=ΨM(q) +ΨA(η) , in ΩC ∪ ΩE .

By definition,

γ+
Du =C(p) +A(ζ), γ+

Nu =N(p) +B(ζ) ,

γ+
Dv =C(q) +A(η), γ+

Nv =N(q) +B(η) ,

and from the jump relations we get

γ−
Du =C(p)− p+A(ζ), γ−

Nu =N(p) +B(ζ) + ζ ,

γ−
Dv =C(q)− q+A(η), γ−

Nv =N(q) +B(η) + η.

As curl curl u = 0 and curl curl v = 0 in R
3\Γ, Green’s formula implies the identities

〈
γ+
Nv, γ

+
Du
〉

τ
= − (curl u, curl v)0;ΩE

=
〈
γ+
Nu, γ

+
Dv
〉

τ
,(6.1) 〈

γ−
Nv, γ

−
Du
〉

τ
= (curl u, curl v)0;ΩC

=
〈
γ−
Nu, γ

−
Dv
〉

τ
.(6.2)

By setting ζ = 0, η = 0, we deduce

(6.1) ⇒ 〈N(q),C(p)〉τ = 〈N(p),C(q)〉τ ,

(6.2) ⇒ 〈N(q), (C− Id)(p)〉τ = 〈N(p), (C− Id)(q)〉τ ,

which directly leads to

〈N(q),p〉τ = 〈N(p),q〉τ .(6.3)

As we admitted any p,q ∈ H−1/2
⊥ (curlΓ,Γ), this shows that N is self-adjoint. In a

parallel fashion, by setting p = 0, q = 0, it can be proved that

〈η,A(ζ)〉τ = 〈ζ,A(η)〉τ ∀ζ,η ∈H− 1
2

|| (divΓ0,Γ) .(6.4)

Finally, we choose p = 0, η = 0 and observe

(6.1) ⇒ 〈N(q),A(ζ)〉1/2,Γ = 〈B(ζ),C(q)〉τ ,

(6.2) ⇒ 〈N(q),A(ζ)〉1/2,Γ = 〈(B+ Id)(ζ), (C− Id)(q)〉τ ,

which implies

〈B(ζ),q〉τ = 〈ζ, (C− Id)q〉τ ∀q ∈H− 1
2

⊥ (curlΓ,Γ), ζ ∈H− 1
2

|| (divΓ0,Γ) .(6.5)

The main properties of the operators A and N, including “ellipticity,” are summed
up in the following theorems.
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Theorem 6.2. The bilinear form on H
−1/2
|| (divΓ0,Γ) induced by the operator A

is symmetric and there is a constant c > 0 depending on Γ such that

〈λ,Aλ〉τ ≥ c ‖λ‖2
H

− 1
2

|| (divΓ,Γ)
∀λ ∈H− 1

2

|| (divΓ0,Γ) .

Proof. Symmetry can be concluded from (6.4). Pick λ ∈ H−1/2
|| (divΓ0,Γ) and

set u := ΨA(λ), which provides a solution of the exterior eddy current problem in
ΩC ∪ ΩE . We apply Green’s formula on both domains separately and also resort to
the jump relations (5.6) for the vectorial simple layer potential:

‖curl u‖2L2(ΩC∪ΩE) = −〈[γNu]Γ, γDu〉τ = 〈λ,Aλ〉1/2,Γ .

Thus, Lemma 3.3 justifies the contention of the theorem.
The examination of the operator N will rely on the following equivalent expres-

sion.
Lemma 6.3. For all u,v ∈H−1/2

⊥ (curlΓ,Γ)

〈N(u),v〉τ = −〈curlΓ v, V (curlΓ u)〉1/2,Γ
holds, where V : H− 1

2 (Γ) �→ H
1
2 (Γ) is the ordinary scalar single layer potential oper-

ator on Γ.
Proof. I refer to the derivation of formula (2.86) in [32].
Theorem 6.4. The bilinear form induced by the boundary integral operator N on

H
−1/2
⊥ (curlΓ,Γ) is symmetric and negative semidefinite. In particular

−〈N(u),u〉τ ≥ c ‖curlΓ u‖2
H− 1

2 (Γ)
∀u ∈H− 1

2

⊥ (curlΓ,Γ) ,

for some constant c > 0.
Proof. Symmetry is a consequence of (6.3). For the estimate we simply rely upon

the well-known H−1/2(Γ)-ellipticity of V and use Lemma 6.3.
Remark. The boundary integral operator that has been investigated in a Sobolev

space setting in this section can also be considered in spaces of Hölder-continuous
functions. This was done (for similar boundary integral operators) in [33, 32, 54].

7. Symmetric coupling. By setting u ≡ 0 in ΩC , the transmission formula
(5.8) is turned into a representation formula for the (arbitrarily gauged) solutions u
of the exterior eddy current problem in ΩE :

u = ΨM(γ+
Du)−ΨA(γ

+
Nu)− gradΨV (γ

+
n u) .(7.1)

Formally applying both trace operators γ+
D and γ+

N to (7.1), we arrive at

γ+
Du = C(γ

+
Du)−A(γ+

Nu)− S(γ+
n u) ,(7.2)

γ+
Nu = N(γ

+
Du)−B(γ+

Nu) .(7.3)

The first equation is set inH
−1/2
⊥ (curlΓ,Γ) and the second inH

−1/2
|| (divΓ0,Γ), which

are the appropriate spaces of Dirichlet and Neumann data, as explained in section 3.
The goal is to extract a Calderón-projector [27, sect. 4.5], [38] from (7.2) and (7.3).
In a straightforward fashion, this is not possible, foiled by the presence of the extra
Neumann data γ+

n u. The idea is to get the equivalent of a weak Calderón-projector.
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We attempt to achieve this goal by testing (7.2) against functions in

H
−1/2
|| (divΓ0,Γ) only. Apparently this sacrifices a lot of information: Whereas the

dual space of H
−1/2
⊥ (curlΓ,Γ) is the entire space H

−1/2
|| (divΓ,Γ), the dual of

H
−1/2
|| (divΓ0,Γ) is the orthogonal complement of gradΓ H1/2(Γ) in H

−1/2
⊥ (curlΓ,Γ).

(Orthogonality has to be understood with respect to the duality pairing 〈·, ·〉τ .) On
the other hand, the reward is clear from the observation

〈ζ,S(φ)〉τ = 0 ∀ζ ∈H− 1
2

|| (divΓ0,Γ)(7.4)

because S(φ) ∈ gradΓ H1/2(Γ). It reveals that, after all, the test space

H
−1/2
|| (divΓ0,Γ) suppresses the impact of gauging because (7.4) can be used to get

rid of the “artificial” Neumann data γ+
n u due to the gauge condition. Thus, we can

derive the following variational equations from (7.2) and (7.3):

〈
ζ, γ+

Du
〉

τ
=
〈
ζ,C(γ+

Du)
〉

τ
− 〈

ζ,A(γ+
Nu)
〉

τ
∀ζ ∈H− 1

2

|| (divΓ0,Γ) ,〈
γ+
Nu,w

〉
τ
=
〈
N(γ+

Du),w
〉

τ
− 〈

B(γ+
Nu),w

〉
τ

∀w ∈H− 1
2

⊥ (curlΓ,Γ) ,
(7.5)

which are satisfied by all solutions u ∈ W (curl2,ΩE) of the exterior eddy current
problem. This is the desired Calderón-projector in weak form.

Now, we can pursue the classical policy due to Costabel [34] in order to couple the
interior problem in ΩC with (7.5). Given a solution u ∈W (curl,R3)∩W (curl2,ΩE)
of the full eddy current problem (1.3), we find through Green’s formula and the
coupling conditions (4.1) that

q(u,v)− 〈γ+
Nu, γDv

〉
τ
= −iω (j0,v)0;ΩC

(7.6)

for all v ∈H(curl; ΩC). For the sake of brevity I have set

q(u,v) :=
(

1
µ curl u, curl v

)
0;ΩC

+ iω (σu,v)0;ΩC
.

Equation (7.6) with γ+
Nu replaced by λ is added to the second equation of (7.5) tested

with γDv. The first equation of (7.5) completes the coupled variational problem: Seek

u ∈H(curl; ΩC), λ ∈H−1/2
|| (divΓ0,Γ) such that

q(u,v)− 〈N(γDu), γDv〉τ + 〈Bλ, γDv〉τ = −iω (j0,v)0;ΩC
,

〈ζ, (Id−C)γDu〉τ + 〈ζ,Aλ〉τ = 0
(7.7)

for all v ∈H(curl; ΩC), ζ ∈H−1/2
|| (divΓ0,Γ).

For ease of presentation, I am going to write d(·, ·) for the sesquilinear form on

W := H(curl; ΩC) ×H−1/2
|| (divΓ0,Γ) spawning the variational problem (7.7). The

right-hand side will be designated by f ∈H(curl; ΩC)
′. Existence and uniqueness of

a solution (u,λ) of (7.7) follow from the next theorem by the Lax–Milgram lemma.

Theorem 7.1. The sesquilinear form d is W-elliptic and continuous.
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Proof. The continuity of the sesquilinear form is an immediate consequence of the
continuity of the boundary integral operators (Theorem 6.1) and that of the traces
(Theorem 3.2). Owing to (6.5), the operator in (7.7) is block skew-symmetric:

|d((v, ζ), (v, ζ))|
=
∣∣∣q(v,v)− 〈N(γDv), γDv〉τ + 〈Bζ, γDv〉τ+ 〈ζ, (Id−C)γDv〉τ+ 〈ζ,Aζ〉1/2,Γ∣∣∣

=
∣∣∣q(v,v)− 〈N(γDv), γDv〉τ + 〈Aζ, ζ〉1/2,Γ∣∣∣

≥ c

((
1
µ curl v, curl v

)
0;ΩC

+ (σv,v)0;ΩC
+ ‖curlΓ γDv‖2

H− 1
2 (Γ)

+ ‖ζ‖2
H

− 1
2

|| (Γ)

)

≥ c

(
‖v‖2H(curl;ΩC) + ‖ζ‖2

H
− 1

2
|| (divΓ,Γ)

)
,

with generic constants c > 0 independent of v ∈ H(curl; ΩC) and ζ ∈
H

−1/2
|| (divΓ0,Γ). The estimates relied on Theorems 6.2 and 6.4 and used the uni-

form boundedness of µ and σ (the latter in ΩC).
Uniqueness of the solution for the coupled problem ultimately justifies our ap-

proach. We know that, taking u := E from (2.1), u|ΩC
and γNu are unique (even

independent of gauging). The derivation of (7.7) ensures that a solution of (2.1) will
always give rise to a corresponding solution of the coupled problem. Uniqueness guar-
antees that we get the one correct answer.

Remark. The unknown λ corresponds to the equivalent surface current density
H× n scaled by −iω.

Remark. In the case of good conductors, smooth surfaces, and high frequency ω,
a skin-effect approximation is feasible, which neglects the interior of the conductors.
Instead, impedance boundary conditions γtE = ηγ×

t H are imposed on Γ, where η :=
(1 + i)

√
ωµ/2σ ∈ L∞(Γ) is the surface impedance expressed through the material

parameters that are expected to prevail on Γ [75] and [32, sect. 4.7]. In this case we
should replace (7.6) with

(
η−1γDu,v

)
0;Γ
− 〈γ+

Nu, γDv
〉

τ
= 0 ∀v ∈H− 1

2

⊥ (curlΓ,Γ) .(7.8)

This will give an analogue of the coupled problem (7.7) with λ and γDu as unknowns.
Of course, the sources j0 are no longer meaningful, but prescribing total currents in
conducting loops continues to make sense.

Yet, (7.8) is pointless without higher regularity of γDu so that we have to seek
γDu in the space L

2(Γ). After this alteration, all the above considerations carry over
to the skin-effect model, because �η > 0.

8. Discretization. The domain ΩC is equipped with a triangulation Ωh in the
sense of [29, Chap. 2, sect. 2.2], which may consist of tetrahedra, hexahedra, and
prisms. It induces a surface mesh Γh of Γ composed of triangles and quadrangles.

As conforming finite element space for approximation inH(curl; ΩC), we use edge
elements [64, 14] and adopt the notation ND1(Ωh) for the resulting finite element
space. Edge elements can be regarded as discrete 1-forms [13] and they match the
tangential continuity of the electric field. In the presence of re-entrant edges of ΩC
or discontinuous material parameters their use is mandatory, because the fields might
not belong to H1(ΩC) [37, 36].
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The Neumann data λ ∈ H−1/2
|| (divΓ0,Γ) require an approximation by means of

solenoidal divΓ-conforming surface finite elements. They are supplied by the space
RT 0

0(Γh) := {λh ∈ RT 0(Γh), divΓλh = 0} of divergence-free lowest order Raviart–
Thomas elements on Γh [67]. It is worth noting that both kinds of finite elements form
affine equivalent families in the sense of [29] based on suitable co- and contravariant
transformations of vectorfields [64, 20]. These transformations also make it possible
to extend the definition of the finite element spaces to curved elements of Ωh and Γh
[9].

Setting Wh :=ND1(Ωh)×RT 0
0(Γh) ⊂ W for the discrete approximation space,

the discrete problem can be stated as follows: Seek (uh,λh) ∈ Wh such that

d((uh,λh), (vh, ζh)) = f(vh) ∀(vh, ζh) ∈ Wh .(8.1)

As before, we get existence and uniqueness of a discrete solution (uh,λh), and from
Theorem 7.1 we conclude the a priori error estimate

(8.2) ‖u− uh‖H(curl;ΩC) + ‖λ− λh‖
H

− 1
2

|| (Γ)

≤ C inf(vh,ζh)∈Wh

{
‖u− vh‖H(curl;ΩC) + ‖λ− ζh‖

H
− 1

2
|| (Γ)

}
,

with a constant C > 0 depending only on the geometry and the material parameters
σ and µ. A more concrete estimate is also available.

Theorem 8.1. Let h > 0 be the meshwidth of Ωh and assume that the solution
u of the eddy current problem is as regular as u ∈ Hs(ΩC), curl u ∈ Hs(ΩC),
curl curl u ∈Hs(ΩC) for some s > 1

2 . Then

‖u− uh‖H(curl;ΩC) + ‖λ− λh‖
H

− 1
2

|| (Γ)

≤ C ′hmin{s,1}
(
‖u‖Hs(ΩC) + ‖curl u‖Hs(ΩC) + ‖curl curl u‖Hs(ΩC)

)
,

where C ′ > 0 depends on C from (8.2) and the shape-regularity constants (cf. [29,
Chap. 3, sect. 3.1]) of the triangulation Ωh.

Proof. Recall the canonical interpolation operators Π and ΠΓ for the spaces
ND1(Ωh) and RT 0(Γh) [64, 20]. Π is well defined for vectorfields satisfying the
assumptions of the theorem (cf. [5, Lemma 4.7]) and there holds (cf. [30, Lemmas 3.2,
3.3])

‖u−Πu‖H(curl;ΩC) ≤ Chmin{s,1}
(
‖u‖Hs(ΩC) + ‖curl u‖Hs(ΩC)

)
,(8.3)

with a constant merely depending on the shape-regularity of the mesh. Hence, we may
choose vh = Πu on the right-hand side of (8.2).

We set qh := Π curl u, which is also well defined for the given u. We may then
pick ζh := γ×

t qh because we have the commuting relationship γ×
t ◦ Π = ΠΓ ◦γ×

t for
sufficiently smooth vectorfields (cf. [49]). Since divΓ(γNu) = 0 on Γ, γn(curl curl u) =
0, too. Then we may use the commuting diagram property [49, Thm. 13]

divΓ ◦ΠΓ ◦γ×
t = QΓ ◦ divΓ ◦ γ×

t = QΓ ◦ γn ◦ curl ,
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where QΓ stands for the L2(Γ)-orthogonal projection onto the space of piecewise
constants with respect to Γh. In short, we get divΓζh = 0; i.e., ζh ∈RT 0

0(Γh).

Next, denote by P : H
1/2
|| (Γ) �→ H1(ΩC) the continuous extension operator

mentioned in Theorem 3.1. Then we can evaluate ‖λ− ζh‖
H

− 1
2

|| (Γ)
by

‖λ− ζh‖
H

− 1
2

|| (Γ)
= sup

Ψ∈H
1
2
|| (Γ)

(λ− ζh,Ψ)0;Γ
‖Ψ‖

H
1
2
|| (Γ)

= sup

Ψ∈H
1
2
|| (Γ)

(
γNu− γ×

t qh, γtPΨ
)
0;Γ

‖Ψ‖
H

1
2
|| (Γ)

= sup

Ψ∈H
1
2
|| (Γ)

1

‖Ψ‖
H

1
2
|| (Γ)

∫
ΩC

curl(PΨ) · (curl u− qh)− curl(curl u− qh) · (PΨ) dx

≤ sup

Ψ∈H
1
2
|| (Γ)

‖PΨ‖H1(ΩC)

‖Ψ‖
H

1
2
|| (Γ)

‖curl u− qh‖H(curl;ΩC) ≤ C ‖curl u− qh‖H(curl;ΩC) .

Applying (8.3) for curl u instead of u and using (8.2) finishes the proof.
Still one issue looms large, namely, how to deal with the subspace RT 0

0(Γh)
of solenoidal surface Raviart–Thomas vectorfields. If Γ was simply connected, we
could exploit RT 0

0(Γh) = curlΓS1(Γh), where S1(Γh) is the space of scalar, contin-
uous, piecewise linear finite element functions on Γh [49] (“stream functions,” “loop
currents” [51]). Yet, as we allowed more general topology of ΩC , harmonic surface
vectorfields can also contribute to the kernel of divΓ.

The attack on the problem starts from the results of [55, sect. III] and [45,
Chap. 3]: They show that there exists an orientable cutting surface Σ1, . . . ,ΣL in

ΩE such that in Ω̃E := ΩE \ (Σ1 ∪ · · · ∪ ΣL) each irrotational vectorfield has a sin-
gle valued scalar potential (i.e., the cohomology group H1(Ω̃E ,R) is trivial). Their
number L equals the first Betti-number of ΩE . Moreover, ∂Σk ⊂ Γ, k = 1, . . . , L, and
none of the Σk is tangent to Γ. In addition, under the current assumptions on ΩC ,
these surfaces can be chosen to be piecewise smooth and Lipschitz-continuous, and
their boundaries can be 1-cycles (i.e., closed paths) of edges in Γh. Collect these paths
in the set C := {γ1, . . . , γL}.

As ΩE is connected, the first Betti-numbers of ΩE and ΩC coincide. Thus we
can find orientable and piecewise smooth cutting surfaces Σ′

1, . . . ,Σ
′
L that render the

cohomology group H1(Ω̃C ,R) trivial: Ω̃C := ΩC \(Σ′
1∪· · ·∪Σ′

L). Their boundaries can
also be 1-cycles of edges in Γh, again, and give the set C′ := {γ′

1, . . . , γ
′
L}. The union

C∪C′ is a set of generators of the homology group H1(Γh,Z), when Γh is regarded as
cell complex (cf. [45, Chap. 2]).

The cutting surfaces can be chosen in a way that renders C and C′ dual to each
other. This means that C∪C′ \{γ′

k} is a set of generators of H1(Γh \{γk},Z), and C∪
C′ \{γk} a set of generators of H1(Γ\{γ′

k},Z), k = 1, . . . , L. The simplest example for
dual 1-cycles are the “large” and ”small” circle of a torus. Without loss of generality,
dual edge cycles may intersect in one point only.

Let me cite a simple observation: As γk ∈ C, k = 1, . . . , L, is the boundary of
Σk ⊂ ΩE , we get from Stokes’ theorem (Σk is orientable!)∫

γk

RγNu · d(s =
∫

Σk

curl curl u · n dS = 0 ,
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where R is defined in (5.7). We have this, first, for smooth solutions of the exterior
eddy current problem and then, by continuity, for all. This means that in the discrete
variational problem (8.1) we can confine ourselves to those λh ∈RT 0

0(Γh) that satisfy∫
γ

Rλh · d(s = 0 ∀γ ∈ C .

The space of vectorfields in RT 0
0(Γh) complying with this constraint will be denoted

by R̂T 0

0(Γh).
For each γk ∈ C, k = 1, . . . , L, pick a function φk ∈ L2(Γ) that is piecewise linear

with respect to Γh and continuous except for a jump of size 1 across γk. Then, setting

ηk := c̃urlΓφk, where c̃urlΓ is the surface-curl on Γ \ γk, we find ηk ∈ RT 0
0(Γh).

Duality of the cycles implies ∫
γ′
k

Rηk · d(s = [φk]γk = 1 .

A κh ∈ RT 0(Γh) is in curlΓS1(Γh) if and only if
∫
γ
Rκh · d(s = 0 for all closed

paths γ: Just define the stream function by φh(x) :=
∫
γ(x0,x)

Rκh · d(s, x,x0 ∈ Γ (x0

arbitrary, but fixed), where the path γ(x0,x) links x and x0. Then curlΓφh = κh and
φh ∈ S1(Γh) by plain computations.

Now, given ζh ∈ R̂T 0

0(Γh), the circulation of Rζ̃h with

ζ̃h := ζh −
L∑
k=1

∫
γ′
k

Rζh · d(s · ηk

vanishes for all closed paths, because any closed path is bounding in Γ relative to
C ∪ C′. Finally, we have found

R̂T 0

0(Γh) = curlΓS1(Γh) + Span {η1, . . . ,ηL} .(8.4)

We can now phrase the discrete variational problem (8.1): Seek uh ∈ ND1(Ωh),
φh ∈ S1(Γh), α1, . . . , αL ∈ C such that

q(uh,vh) + (V (curlΓ γtuh), curlΓ γtvh)0;Γ + (B(curlΓφh), γtvh)0;Γ

+
L∑
k=1

αk (Bηk, γtvh)0;Γ = −iω (j0,v)0;ΩC
,

− (B(curlΓψh), γtuh)0;Γ + (A(curlΓφh), curlΓψh)0;Γ

+
L∑
k=1

αk (Aηk, curlΓψh)0;Γ = 0 ,

− (Bηj , γtuh
)
0;Γ

+
(
A(curlΓφh),ηj

)
0;Γ

+
L∑
k=1

αk
(
Aηk,ηj

)
0;Γ

= 0

(8.5)

for all vh ∈ND1(Ωh), ψh ∈ S1(Γh), and j = 1, . . . , L. Of course, the solution for φh
is unique only up to a constant.

Remark. Exciting total loop currents in the conductor can be easily coped with:
Let the cycles γ1, . . . , γK ∈ C belong to those loops. Write Il, l = 1, . . . ,K, for the
total current in loop #l. Then, thanks to Ampere’s law,

Il =

∫
Σ′

l

j · n dS =

∫
γ′
l

− 1
µiω curlE · d(s = − 1

iω

∫
γ′
l

R( 1
µγ

−
NE) · d(s = − 1

iω

∫
γ′
l

Rλ · d(s .
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Hence, the jump of the stream function across γl must be set to −iωIl. This amounts
to fixing αl = −iωIl, l = 1, . . . ,K, in (8.5), while −iω (j0,v)0;ΩC

is dropped. Only
L−K jumps αK+1, . . . , αL remain as unknowns.

9. Implementation. The choice of local basis functions for the spaces
ND1(Ωh) and S1(Γh) is canonical. They are associated with the edges of Ωh and
the vertices of Γh, respectively. The assembly of the linear system of equations re-
lated to (8.5) poses no unusual difficulties. First, we note that curlΓ γtvh, curlΓ γtuh,
curlΓψh, curlΓφh, and ηk are piecewise constant on Γh and γtuh, γtvh piecewise
(bi-)linear. On top of that, all boundary integral operators are structurally equal to
those for second order elliptic problems. For instance (see [68]),

(Bζh,vh)0;Γ =

∫
Γ

∫
Γ

ζh(y) · vh(x)
∂E(x,y)

∂n(x)
dS(y)dS(x)

−
∫

Γ

∫
Γ

gradx E(x,y)(ζh(y) · n(x)) · vh(x) dS(y)dS(x)

− 1

2

∫
Γ

ζh(x) · vh(x) dS(x) .

Even more striking, [39, Chap. XI, sect. 2, Thm. 7] reveals that

(A(curlΓφh), curlΓψh)0;Γ = 〈Dφh, ψh〉1/2,Γ ∀φh, ψh ∈ S1(Γh) ,

where D : H1/2(Γ) �→ H−1/2(Γ) is the hypersingular operator for the Laplacian.

This permits us to apply all the sophisticated techniques developed for Galerkin
boundary element methods for second order elliptic problems. In particular, the same
quadrature rules [73] and panel-clustering techniques [47] may be used in an imple-
mentation.

When the linear system has been built, it must be solved iteratively, because the
sheer dimension of ND1(Ωh) will usually overwhelm any direct solver. Let us first
study the case of trivial topology of ΩC , i.e., L = 0. Then, in compact notation, the
variational problem related to (8.5) is characterized by the bilinear form

d̃((uh, φh), (vh, ψh)) := d((uh, curlΓφh), (vh, curlΓψh)) ,

with uh,vh ∈ ND1(Ωh), φh, ψh ∈ S1(Γh). Setting Uh := ND1(Ωh) × S1(Γh) with
seminorm

‖(vh, ψh)‖2U :=

(
1

µ
curl vh, curl vh

)
0;ΩC

+ ω (σvh,vh)0;ΩC
+ 〈Dψh, ψh〉1/2,Γ ,

the proof of Theorem 7.1 teaches that

1√
2
‖(uh, φh)‖U ≤ ‖Ph(uh, φh)‖U ′ ≤ c ‖(uh, φh)‖U ∀(uh, φh) ∈ Uh .(9.1)

Here, Ph : Uh �→ U ′
h is the operator associated with d̃, and c is a positive constant that

is utterly independent of the choice of conforming finite element/boundary element
spaces. More precisely, as can be seen from the proof of Theorem 7.1, it depends only
on the norm bound for the boundary integral operators N,B,C.
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As exposed in [6, sect. 7] and [28, sect. 4], (9.1) means that solving discrete varia-
tional problems connected with the inner product on U will supply a good precondi-
tioner for Ph. Thus we define the symmetric positive definite operator P̂h : U ′

h �→ Uh

by P̂(f� + if�, ρ� + iρ�) = (v� + iv�, ψ� + iψ�) ∈ Uh with (∗ = �,!)

(
1
µ curl v∗, curl qh

)
0;ΩC

+ ω (σv∗,qh)0;ΩC
= f∗(qh) ∀qh ∈ND1(Ωh) ,

〈Dψ∗, ηh〉1/2,Γ = ρ∗(ηh) ∀ηh ∈ S1(Γh) .

(9.2)

Here, subscripts � and ! tag the (real valued) real and imaginary parts of functionals
and functions. Consequently, the ansatz and test functions in the above variational
formulation are real valued, too. Besides, we have to demand that ρ∗ vanishes for
constants. As the right-hand sides of the discrete systems are consistent and the
preconditioner is applied to residuals, this trivially holds. Altogether, we infer from
(9.1) that the spectrum of P̂hPh is contained in [−c,− 1

2

√
2] ∪ {0} ∪ [ 12

√
2, c]. This

carries over to the spectrum of the product P̂P of the matrices representing P̂h and
Ph with respect to some basis of Uh.

However, solving either equation in (9.2) is still prohibitively expensive. A second
stage is required in the following way: To determine an approximation for v∗, I suggest
to use a symmetric V-cycle of the multigrid method for edge elements presented in
[50, sect. 6], if a hierarchy of nested regularly refined meshes, whose finest is Ωh, is at
one’s disposal. This amounts to solving the modified variational problem

b(v∗,qh) = f∗(qh) ∀qh ∈ND1(Ωh) ,

with a bilinear form b :ND1(Ωh)×ND1(Ωh) �→ R that fulfills

cb ‖(vh, 0)‖2U ≤ b(vh,vh) < ‖(vh, 0)‖2U ∀vh ∈ND1(Ωh) .(9.3)

Here, cb is uniformly bounded away from zero (cf. [50, sect. 5]), way above 1
2 , as

numerical evidence suggests. In case a hierarchy of meshes is not available, one may
resort to algebraic multigrid methods [8, 69]. Yet, theoretical estimates like (9.3) are
elusive in this case.

The second equation of (9.2) can be tackled following the recipe of [74]. The idea
is to use the scalar single layer potential operator V as a preconditioner for D (see
also [62, 61]): We know

k ‖ψh‖2L2(Γ) ≤ 〈V Dψh, ψh〉1/2,Γ ≤ k ‖ψh‖2L2(Γ) ∀ψh ∈ S1(Γh)/R

with constants k, k > 0 that can be chosen independently of S1(Γh). S1(Γh)/R des-
ignates the subspace of S1(Γh) containing only functions with zero mean. Thus, an
efficient way to determine an approximation for ψ∗ from (9.2) is to use a small num-
ber of steps of a damped linear or (nonlinear) gradient-type iteration preconditioned
by V . As alternatives, domain decomposition or multilevel methods might be used
[76, 48].

This practical preconditioner can then be used to accelerate the conjugate residual
method [46, sect. 9.5] applied to the symmetric linear system

P(x :=




M� −M� BT 0
−M� −M� 0 −BT

B 0 −D 0
0 −B 0 D





(u�
(u�
(φ�
(φ�


 =




(f�
(f�
(ρ�
(ρ�


 [=: (y].(9.4)
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Here, (u�, (u�, (φ�, (φ� are the vectors of the real/imaginary components of degrees of
freedom in ND1(Ωh) and S1(Γh), respectively. The matrices M�, M�, B, and D arise

from a discretization of d̃ in a straightforward manner. Thus, D = DT and M∗ = MT
∗ .

The right-hand sides can be deduced from (8.5). Note that, compared to (8.5), signs
in the second equation have been flipped to achieve a symmetric system.

If L > 0, we face the system(
P F
FT H

)(
(x
(α

)
=

(
(y
(ρ

)
,

where H ∈ R
2L,2L is symmetric, positive definite. Switching to the Schur-complement

system

S(x := (P− FH−1FT )(x = (y − FH−1(ρ,

we realize that it can be considered a rank-2L perturbation of (9.4). The spectrum

of P̂S will still lie in [−c,− 1
2

√
2]∪ {0} ∪ [ 12

√
2, c], except for 2L eigenvalues. However,

as is typical of gradient-type schemes [7], the convergence of the conjugate residual
method after at most 2L steps will no longer be affected by these eigenvalues. As L
is moderate (typically 1 or 2), that many steps are not too expensive to conduct.
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electric field formulation for 3D eddy–current problems, IEEE Trans. Magnetics, 36 (1990),
p. 473.

[71] Z. Ren, F. Bouillault, A. Razek, and J. Verité, Comparison of different boundary integral
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Abstract. We consider the electric field integral equation on the surface of polyhedral domains
and its Galerkin discretization by means of divergence-conforming boundary elements. With respect
to a Hodge decomposition, the continuous variational problem is shown to be coercive. However,
this does not immediately carry over to the discrete setting, as discrete Hodge decompositions fail to
possess essential regularity properties. Introducing an intermediate semidiscrete Hodge decomposi-
tion, we can bridge the gap and come up with asymptotically optimal a priori error estimates. Until
now, those had been elusive, in particular for nonsmooth boundaries.
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1. Introduction. One of the main tasks in computational electromagnetism is
the computation of the scattering of electromagnetic waves at a perfectly conducting
body Ω ⊂ R

3. It boils down to solving the time-harmonic Maxwell’s equations in the
exterior Ω′ = R

3\Ω of Ω for a fixed frequency, subject to a vanishing tangential trace of
the total electric field on the surface of the scatterer and the Silver–Müller radiation
conditions at ∞. It is known that the exterior scattering problem for Maxwell’s
equations has a unique solution (see, e.g., [26, Chap. 6] and [23]). In most technical
applications, the boundary Γ of Ω will be only piecewise smooth.

Starting from the Stratton–Chu representation formulas in Ω′ (see, e.g., [19,
sect. 3]), an indirect method yields the well-known electrical field boundary integral
equation (EFIE) for the unknown jump j of the magnetic field [19, sect. 4]. Cast in
variational form, this integral equation is sometimes referred to as Rumsey’s principle

[9] and reads as follows: Find a complex amplitude j ∈H− 1
2 (divΓ,Γ) such that

〈VςdivΓj,divΓv〉 1
2 ,Γ
− ς2 〈Aςj,v〉||,Γ = f(v) ∀v ∈H− 1

2 (divΓ,Γ).(1.1)

Here, ς ∈ R+ is the nondimensional wavenumber, the continuous linear functional

f :H− 1
2 (curlΓ,Γ) 	→ C represents the excitation due to an incident wave, and Vς ,Aς

stand for scalar and vectorial single layer potential integral operators, respectively. In
(1.1), the (sesquilinear) duality pairings 〈·, ·〉 1

2 ,Γ
and 〈·, ·〉||,Γ coincide with the usual

H1/2(Γ) × H−1/2(Γ) duality when Γ is smooth. On polyhedra, however, there are
several nonequivalent definitions of these dualities. Details will be explained below.
For the well-posedness of the integral equation formulation (1.1), we adopt the fol-
lowing assumption throughout this paper.

Assumption 1.1. The wavenumber ς is bounded away from the spectrum of the
interior Maxwell’s problem.
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This implies the injectivity of the boundary integral operator in (1.1).
Recalling the derivation of (1.1), the unknown j emerges as the jump of tangential

traces H×n of magnetic field solutions for the full Maxwell’s equations in the interior
and exterior of Ω. When Maxwell’s equations are concisely stated in the language
of differential forms [6, 13], the magnetic field is modeled by a twisted 1-form. The
same will hold for its trace on Γ. This suggests that two-dimensional discrete twisted
1-forms built upon a triangulation of Γ should be used to approximate j. Those
are provided by the boundary element counterparts of the two-dimensional Raviart–
Thomas H(div; Ω)-conforming finite elements. We could also reason in an entirely
discrete setting: it is no longer a moot point that a suitable discretization of magnetic
fields is provided by H(curl; Ω)-conforming edge elements [44], which are discrete
1-forms in three dimensions. Taking a look at their tangential traces, again, we
discover Raviart–Thomas elements mapped onto the surface [35]. Thus, we argue
that the latter offer a “natural” boundary element discretization of (1.1) as follows:
Find jh ∈RT 0(Γh) such that

〈VςdivΓjh,divΓvh〉 1
2 ,Γ
− ς2 〈Aςjh,vh〉||,Γ = f(vh) ∀vh ∈RT 0(Γh),(1.2)

where RT 0(Γh) denotes the lowest order Raviart–Thomas boundary element space
on a triangulation Γh on Γ.

The Galerkin discretization (1.2) is commonplace in engineering codes. The first
convergence analysis of this scheme was given by Bendali in [7, 8] and was based on
a saddle point formulation and elliptic regularization, which is inherently confined
to smooth surfaces. Using parametric variants of the Raviart–Thomas boundary ele-
ments, he established asymptotic a priori convergence estimates. Attempts to adapt
his approach to nonsmooth surfaces have not been successful. Recently, Buffa, Costa-
bel, and Schwab [19] succeeded in showing convergence of a mixed discretization of
(1.1) which, however, is different from the “natural” scheme (1.2) used in engineering.

Obstructions of convergence analysis on nonsmooth surfaces are threefold. First,
the correct function spaces and relevant surface differential operators have to be prop-
erly characterized. For smooth domains, using smooth charts and trace theorems for
the entire scale of Sobolev spaces, this is not hard to do [2, 23]. It becomes a chal-
lenge in a nonsmooth setting, as is vividly conveyed in the introduction of [20]. The
situation on polyhedral boundaries Γ was clarified only recently by Buffa and Ciarlet
[17, 18, 15], and general Lipschitz boundaries were presented in [20]. We emphasize
that it is these results only that made possible the progress reported in the current
paper.

Second, with (1.1) we recognize the typical difficulty faced when dealing with
variational problems arising from Maxwell’s equations: owing to the large kernel of
the surface divergence operator divΓ, it becomes impossible to assign one term the
role of a principal part and, thus, the sesquilinear form of (1.1) fails to be coercive. A
remedy was first found in the case of Maxwell’s differential equations [42, 39] and it
is marked by the use of Hodge decompositions. Also, for boundary integral equations
this idea is fruitful and in fact was exploited many times to recover coercive problems
[31, 19, 3].

Unfortunately, Hodge decompositions and the divergence-conforming boundary
elements do not match easily. This is the third obstacle and it is also faced in the
analysis of H(curl; Ω)-conforming finite element schemes. In that context, a solution
has been devised relying on judiciously combining discrete and continuous Hodge
decompositions. This idea was successful in the analysis of multigrid methods for
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edge elements [36, 4, 38] and in the numerical analysis of schemes for Maxwell’s
eigenproblems that are free of spurious modes [10, 12, 11, 43, 22].

It is this idea that permits us to launch a successful attack on Galerkin discretiza-
tions of the EFIE (1.1) on polyhedral domains. Yet, numerous adjustments of this
technique are necessary to cope with the low regularity of the function spaces of in-
terest on Γ. Whereas for problems on domains ⊂ R

3 all fields are at least square

integrable, here we find that surface vectorfields in H− 1
2 (divΓ,Γ) do not necessarily

have this property. In this paper we aim to elucidate how to handle this difficulty.
Christiansen [24] pursues a policy partly similar to ours, but with a different objective,
suboptimal results, and confinement to smooth domains. Other related publications
are [21] and [16].

The paper is organized as follows. In the next section we summarize important
results about spaces of tangential vectorfields on polyhedra. The third and fourth
sections establish the coercivity of the continuous variational problem with respect to

a Hodge decomposition ofH− 1
2 (divΓ,Γ). In the fifth section we introduce divergence-

conforming boundary elements and review their main properties. In the sixth section
we define and scrutinize mappings that create a link between discrete and continuous
Hodge decompositions. The seventh section is dedicated to proving a discrete inf-sup
condition. The final section covers asymptotic a priori estimates of the discretization
error.

It was our objective to keep the treatment as focused and self-contained as pos-
sible. To that end we forgo any generalizations and investigate only the lowest order
Raviart–Thomas boundary elements and Lipschitz polyhedra with plane faces. By
and large, generalizations are straightforward. Numerical experiments are skipped,
since the Galerkin discretization of the EFIE by Raviart–Thomas boundary elements
is widely and successfully used in electrical engineering.

2. Spaces. The domain Ω ⊂ R
3 is assumed to be a Lipschitz polyhedron (cf. the

introduction of [29]). In particular, we assume that the Lipschitz boundary Γ can be
written as a union of a finite number of plane faces Γj , j = 1, . . ., NΓ, i.e., Γ̄ =

⋃
i Γ̄j .

For each face Γj we find a constant unit normal vector ni pointing into the exterior of
Ω. These vectors can be blended into an exterior unit normal vectorfield n ∈ L∞(Γ),
defined almost everywhere on Γ. In addition, we can fix two orthogonal unit vectors
e1
j , e

2
j that span the tangential plane for Γi. It goes without saying that each Γj can

be identified with a bounded subset of R
2.

Next, we introduce two different tangential surface trace operators [20, sect. 2].
The tangential components trace πt is defined for u ∈ C∞(Ω̄) by πtu(x) := n(x) ×
(u(x) × n(x)) for almost all x ∈ Γ. Accordingly, the tangential surface trace γt can
be computed through γtu(x) := u(x) × n(x). The same traces from Ω′ are πt

′ and
γ′
t. To begin with, the trace operators supply functions in

L2
t(Γ) := {u ∈ (L2(Γ))3,u · n = 0}.

The usual Sobolev spaces of scalar functions and related functionals, Hs(Γ) and
H−s(Γ), can be defined invariantly for 0 ≤ s ≤ 1 [34, sect. 1.3.3]. For indices s > 1
we resort to the piecewise definition

Hs(Γ) := {u ∈ H1(Γ), u|Γj
∈ Hs(Γj), j = 1, . . ., NΓ}.
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We equip this space with the graph norm

‖u‖2Hs(Γ) := ‖u‖2H1(Γ) +

NΓ∑
j=1

‖u‖2Hs(Γj)
.

Using the local coordinate systems introduced above, spaces of tangential vectorfields
that feature certain Sobolev regularity in a piecewise sense are readily available:

Hs
t(Γ) := {u ∈ L2

t(Γ), u|Γj
· eij ∈ Hs(Γj), j = 1, . . ., NΓ, i = 1, 2}.

By localization to Γj we can define the tangential surface gradient gradΓ [20, Def. 3.1].
Its continuity as a mapping Hs+1(Γ) 	→Hs

t(Γ), s ≥ 0, is straightforward. The surface
divergence is obtained as a formal L2

t(Γ)-adjoint divΓ : L
2
t(Γ) 	→ H−1

∗ (Γ). Its range
space is

H−s
∗ (Γ) := {φ ∈ H−s(Γ), 〈χ, φ〉s,Γ = 0∀χ ∈ Z},(2.1)

where Z is the space of piecewise constants on connected components of Γ and 〈·, ·〉s,Γ
denotes the Hs(Γ)×H−s(Γ) duality pairing.

The two operators can be used to define the surface Laplace–Beltrami operator
∆Γ : H

1(Γ) 	→ H−1
∗ (Γ) by ∆Γ := divΓ gradΓ. This will be a key tool, because it

possesses the following lifting property shown in Theorem 5.3 of [19].
Theorem 2.1. If f ∈ Hs

∗(Γ) for s ≥ −1, then the (unique) solution u ∈ H1(Γ)/Z
of −∆Γu = f belongs to H1+r(Γ) for 0 ≤ r ≤ min{s + 1, s∗}, where s∗ > 0 depends
on the geometry of Γ in neighborhoods of vertices only.

In other words, with C̃ = C̃(t,Γ) and 0 ≤ r ≤ min{s+ 1, s∗},

f ∈ Hs
∗(Γ), −∆Γu = f ⇒ ‖u‖Hr+1(Γ)/Z ≤ C̃ ‖f‖Hs(Γ) .(2.2)

We adopt the convention that C and c stand for generic positive constants, whose
values might be different between different occurrences, but must not depend on any
concrete function. When tagged with a tilde on top, they may depend only on ς,
continuous function spaces, and the geometry of Γ.

Note that there exist polyhedral vertices for which s∗ > 0 is arbitrarily small
(see [19]). Nevertheless, reasonable geometries will allow for s∗ to be well bounded
above zero. For instance, if only three edges meet at a vertex O, we find s∗ =
2π/(ϕ1+ϕ2+ϕ3)−ε for any ε > 0, where ϕ1, ϕ2, ϕ3 are the opening angles at vertex
O of the three plane faces Γj meeting at O.

Owing to Theorem 2.1, the space

H− 1
2 (∆Γ,Γ) := {u ∈ H1(Γ), ∆Γu ∈ H− 1

2 (Γ)}

will actually be embedded in H1+r(Γ) for all 0 ≤ r ≤ min{ 3
2 , s

∗}. Based on divΓ, we
get the Hilbert spaces (s ≥ 0)

Hs(divΓ; Γ) := {u ∈Hs
t(Γ), divΓu ∈ Hs(Γ)}.

Tangential traces of vectorfields inH1
loc(Ω) form the spacesH

1
2

|| (Γ) andH
1
2

⊥(Γ) which

were characterized in [17, Prop. 1.6]. Loosely speaking,H
1
2

|| (Γ) contains the tangential

surface vectorfields that are inH
1
2 (Γi) for each smooth component Γi of Γ and feature
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a suitable “weak tangential continuity” across the edges of the Γi. A corresponding

“weak normal continuity” is satisfied by surface vectorfields in H
1
2

⊥(Γ). For smooth

Γ these spaces coincide with the spaces of tangential surface vectorfields in H
1
2
t (Γ).

The associated dual spaces will be denoted by H
− 1

2

|| (Γ) and H
− 1

2

⊥ (Γ), respectively,

where the duality pairings are taken with L2
t(Γ) as pivot space. Further, we denote

by 〈·, ·〉||,Γ and 〈·, ·〉⊥,Γ the respective duality pairings. A fundamental result of [17]
asserts that the tangential trace mapping πt : H

1
loc(Ω) 	→ H

1
2

|| (Γ) is continuous,
surjective, and possesses a continuous right inverse (see Proposition 1.7 in [17]).

One of the crucial insights gained in [17] and [20] was that the tangential surface
gradient gradΓ : H

1(Γ) 	→ L2
t(Γ) can be both extended and restricted to continuous,

closed, and injective linear operators

gradΓ : H̃
3
2 (Γ)/Z 	→H

1
2

|| (Γ), gradΓ : H
1
2 (Γ)/Z 	→H

− 1
2

⊥ (Γ)

(cf. Propositions 3.4 and 3.6 in [20]), where H̃
3
2 (Γ) is the space of traces of functions in

H2(Ω). Consequently, divΓ also can be read as a continuous and surjective operator

divΓ :H
− 1

2

|| (Γ) 	→ H̃
− 3

2∗ (Γ), divΓ :H
1
2

⊥(Γ) 	→ H
− 1

2∗ (Γ).

This is important for the definition of the space H− 1
2 (divΓ,Γ), introduced in [17], as

H− 1
2 (divΓ,Γ) = {v ∈H− 1

2

|| (Γ), divΓv ∈ H− 1
2 (Γ)}.

It is endowed with the natural graph norm ‖·‖
H− 1

2 (divΓ,Γ)
.

The key role of Hodge decompositions was emphasized in the introduction. The
following theorem reveals the nature of the Hodge decomposition that we will need.
More details are given in [20, sect. 5], [18], and [15].

Theorem 2.2. The space H− 1
2 (divΓ,Γ) has the direct and stable decomposition

H− 1
2 (divΓ,Γ) := gradΓ H

− 1
2 (∆Γ,Γ)⊕ (H− 1

2 (divΓ,Γ) ∩Ker(divΓ)).

Moreover, when restricted to L2
t(Γ) ∩ H− 1

2 (divΓ,Γ) the decomposition is L2
t(Γ)-

orthogonal.
Proof. Any function in gradΓ H

− 1
2 (∆Γ,Γ)∩Ker(divΓ) must be the gradient of a

function in the kernel of ∆Γ on Γ. The latter contains only piecewise constants with
respect to the connected components of Γ and, therefore, the decomposition is direct.

Next, pick some v ∈H− 1
2 (divΓ,Γ). Since divΓ :H

1
2

⊥(Γ) 	→ H
− 1

2∗ (Γ) is surjective,

we can find ψ ∈H 1
2

⊥(Γ) such that divΓψ = divΓv ∈ H
− 1

2∗ (Γ). Define ϕ by

ϕ ∈ H1(Γ)/Z : (gradΓ ϕ,gradΓ η)0;Γ = (ψ,gradΓ η)0;Γ ∀η ∈ H1(Γ)/Z,

that is, as the unique weak solution of ∆Γϕ = divΓψ. This yields the decomposition

v = gradΓ ϕ+ (ψ − gradΓ ϕ+ v −ψ),
whose second part is readily seen to be divergence free. Since divΓ is surjective, the
open mapping theorem ensures that ψ can be chosen such that

‖ψ‖
H

1
2
⊥(Γ)

≤ C̃ ‖divΓψ‖
H− 1

2 (Γ)
.
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This implies

‖gradΓ ϕ‖L2(Γ) ≤ ‖ψ‖L2(Γ) ≤ ‖ψ‖
H

1
2
⊥(Γ)

≤ C̃ ‖divΓψ‖
H− 1

2 (Γ)
,

which confirms the stability of the decomposition. For v ∈ L2
t(Γ) ∩H− 1

2 (divΓ,Γ),
the L2

t(Γ)-orthogonality is immediate from the definition of divΓ.
In what follows, we write

X := gradΓ H
− 1

2 (∆Γ,Γ) and N :=H− 1
2 (divΓ,Γ) ∩Ker(divΓ).

From the stability of the Hodge decomposition, we conclude that both X and N are

closed subspaces of H− 1
2 (divΓ,Γ).

Lemma 2.3. If v ∈ X satisfies divΓv ∈ Hs(Γ) for some s ≥ − 1
2 , then for all

0 ≤ r ≤ min{s+ 1, s∗},

v ∈Hr
t(Γ) and ‖v‖Hr(Γ) ≤ C̃ ‖divΓv‖Hs(Γ) ,

with a constant C̃ = C̃(r, s) and s∗ > 0 as in Theorem 2.1.
Proof. v ∈ X means v = gradΓ ϕ for some ϕ ∈ H1(Γ). By definition of X, we

see ∆Γϕ = divΓv, and the assertion follows from Theorem 2.1.
In particular, we conclude that

‖v‖
H

− 1
2

|| (Γ)
≤ ‖v‖L2(Γ) ≤ C̃ ‖divΓv‖

H− 1
2 (Γ)

∀v ∈ X.(2.3)

3. Continuous variational problem. We recall the scalar single layer poten-
tial ΨVς : H

− 1
2 (Γ) 	→ H1

loc(R
3) for the Helmholtz operator ∆ + ς2. Its relative, the

vectorial Helmholtz single layer potential ΨA
ς (v) for v ∈H− 1

2

|| (Γ), is given by

ΨA
ς (v)(x) :=

∫
Γ

Φς(x,y)v(y), Φς(x,y) :=
exp(iς|x− y|)
4π|x− y| .

For every v ∈H− 1
2

|| (Γ), it defines a function in H
1
loc(R

3) and, as a consequence of the

trace theorem for πt, we can introduce the vectorial single layer boundary operator

Aς :H
− 1

2

|| (Γ) 	→H
1
2

|| (Γ), Aς := πt ◦ΨA
ς ,

in analogy to the scalar single layer integral operator

Vς : H
−1/2(Γ) 	→ H

1
2 (Γ), Vς := γ ◦ΨVς ,

where γ : H1
loc(R

3) 	→ H
1
2 (Γ) is the standard trace operator. In the static case, i.e.,

at wavenumber ς = 0, these operators are coercive.
Lemma 3.1. The operators V0 and A0 are continuous, self-adjoint, and elliptic;

i.e., there are constants c̃1, c̃2 > 0 depending only on Γ such that for all µ ∈ H− 1
2 (Γ)

and all µ ∈H− 1
2

|| (Γ), divΓµ = 0,

〈V0µ, µ〉 1
2 ,Γ
≥ c̃1 ‖µ‖2

H− 1
2 (Γ)

, 〈A0µ,µ〉||,Γ ≥ c̃2 ‖µ‖2
H

− 1
2

|| (Γ)
.
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Proof. See Corollary 8.13 in [41], or Theorem 3 in [30, Vol. IV, Chap. XI, sect. 2],
and Theorem 6.2 in [37] or Proposition 4.1 in [19].

Along with the following result, this lemma yields the coercivity of Vς and Aς

(cf. the proof of Theorem 4.4 in [19]).
Lemma 3.2. The following operators are compact:

δVς := Vς − V0 : H
− 1

2 (Γ) 	→ H
1
2 (Γ), δAς := Aς −A0 :H

− 1
2

|| (Γ) 	→H
1
2

|| (Γ).

Proof. We write Gς for the Green’s operator in R
3 for the Helmholtz equation

defined by (Gςϕ)(x) =
∫
y∈R3 Φς(x,y)ϕ(y)dy for ϕ ∈ C∞

0 (R
3). With γ∗ denoting

a right inverse of the trace operator and appealing to the continuity of the trace
map γ : Hs

loc(R
3)→ Hs−1/2(Γ), s ∈ (1/2, 3/2) (see Lemma 3.6 in [27]), we find δVς =

γ◦(Gς−G0)◦γ∗ : H−1/2(Γ)→ H1/2(Γ) compactly, since the kernel Φς(x,y)−Φ0(x,y)
of the operator Gς −G0 has essentially bounded derivatives in x and y. The vectorial
case follows in the same way.

The main tool in the analysis of variational problem (1.1) is Hodge decompositions
according to Theorem 2.2 (cf. [19, sect. 4.3]). Based on Theorem 2.2, we Hodge
decompose j := j⊥ + j0, j⊥ ∈ X, j0 ∈ N, and v := u⊥ + v0, v⊥ ∈ X, v0 ∈ N, in
(1.1). In this way, we end up with the following equivalent variational problem: Find
j⊥ ∈ X, j0 ∈ N such that for all v⊥ ∈ X, v0 ∈ N,〈

VςdivΓj
⊥,divΓv

⊥〉
1
2 ,Γ
− ς2

〈
Aςj

⊥,v⊥〉
||,Γ− ς2

〈
Aςj

0,v⊥〉
||,Γ = f(v⊥),

ς2
〈
Aςj

⊥,v0
〉
||,Γ + ς2

〈
Aςj

0,v0
〉
||,Γ = −f(v0).

(3.1)

Remember that 〈., .〉||,Γ stands for the H
1
2

|| (Γ)×H
− 1

2

|| (Γ) duality pairing.
The natural setting for formulation (3.1) is the Hilbert space G := X⊕N endowed

with the graph norm∥∥(v⊥,v0)
∥∥2

G :=
∥∥v⊥∥∥2

H− 1
2 (divΓ,Γ)

+
∥∥v0

∥∥2

H
− 1

2
|| (Γ)

, (v⊥,v0) ∈ G.

Thanks to Theorem 2.2, the space G is isomorphic toH− 1
2 (divΓ,Γ) algebraically and

topologically. The sesquilinear form a : G × G 	→ C that belongs to (3.1) reads

a((j⊥, j0), (v⊥,v0)) :=
〈
VςdivΓj

⊥,divΓv
⊥〉

1
2 ,Γ

− ς2
〈
Aςj

⊥,v⊥〉
||,Γ − ς2

〈
Aςj

0,v⊥〉
||,Γ

+ ς2
〈
Aςj

⊥,v0
〉
||,Γ + ς2

〈
Aςj

0,v0
〉
||,Γ

(3.2)

and is continuous, i.e.,

|a(ϕ,η)| ≤ C̃a ‖ϕ‖G ‖η‖G ∀ϕ,η ∈ G.(3.3)

Using the form a(·, ·), we can express variational problem (3.1) succinctly as follows:
Find ι ∈ G such that

a(ι,η) = f(η) ∀η ∈ G,(3.4)

where f(η) := f(v⊥) − f(v0), η := (v⊥,v0). We point out that (3.4) is entirely

equivalent to (1.1) in the sense that, if j ∈ H− 1
2 (divΓ,Γ) is a solution of (1.1), then

ι := (j⊥, j0) ∈ G will solve (3.4). In particular, assertions on existence and uniqueness
of solutions of (1.1) instantly carry over to (3.4) and vice versa.
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4. Strong ellipticity. To establish strong ellipticity of the form a(·, ·) in (3.4),
we proceed as in [19] and write a = a0 − k0, where k0 : G × G 	→ C reads

k0((j
⊥, j0), (v⊥,v0)) :=− 〈δVςdivΓj

⊥,divΓv
⊥〉

1
2 ,Γ
+ ς2

〈
δAςj

⊥,v⊥〉
||,Γ

+ ς2
〈
δAςj

0,v⊥〉
||,Γ − ς2

〈
δAςj

⊥,v0
〉
||,Γ − ς2

〈
δAςj

0,v0
〉
||,Γ,

and where a0 : G × G 	→ C emerges from a by replacing Vς with V0 and Aς with A0.
The next lemma is crucial for establishing the strong ellipticity of variational problem
(3.4).

Lemma 4.1. The operator L : X 	→ H− 1
2 (divΓ,Γ)

′, defined by Lu⊥(z) :=〈
A0u

⊥, z
〉
||,Γ for all u⊥ ∈ X, z ∈H− 1

2 (divΓ,Γ), is compact.

Proof. Consider a bounded sequence (u⊥
n )n∈N

in X. By Lemma 2.3 it is also

bounded in H
1
2
t (Γ). By Rellich’s theorem we can find a subsequence, also designated

by (u⊥
n )n, that converges in L

2
t(Γ). Observe that, due to the continuity of the vectorial

single layer boundary integral operator,

∥∥Lz⊥∥∥
H− 1

2 (divΓ,Γ)′
= sup
v∈H− 1

2 (divΓ,Γ)

|(Lz⊥)(v)|
‖v‖

H− 1
2 (divΓ,Γ)

≤ sup
v∈H− 1

2 (divΓ,Γ)

| 〈A0z
⊥,v

〉
||,Γ |

‖v‖
H

− 1
2

|| (Γ)

≤ ∥∥A0z
⊥∥∥

H
1
2
|| (Γ)

≤ C̃
∥∥z⊥∥∥

H
− 1

2
|| (Γ)

≤ C̃
∥∥z⊥∥∥

L2(Γ)
.

Thus (Lu⊥
n )n will converge in X

′.
At once, from X ⊂ H− 1

2 (divΓ,Γ) and N ⊂ H− 1
2 (divΓ,Γ), we deduce that L :

X 	→ X′ and L : X 	→ N′ are compact as well.
To establish the strong ellipticity of the form a(·, ·), we accordingly split a0(·, ·)

as a0 = d− k1, where the sesquilinear form k1 : G × G 	→ C is defined by

k1((j
⊥, j0), (v⊥,v0)) := ς2

〈
A0j

⊥,v⊥〉
||,Γ + ς2

〈
A0j

0,v⊥〉
||,Γ − ς2

〈
A0j

⊥,v0
〉
||,Γ ,

and the definite part d : G × G 	→ C reads

d((j⊥, j0), (v⊥,v0)) :=
〈
V0divΓj

⊥,divΓv
⊥〉

1
2 ,Γ
+ ς2

〈
A0j

0,v0
〉
||,Γ .

Theorem 4.2. The sesquilinear form a : G×G 	→ C is coercive; that is, it can be
written as the difference of a G-elliptic sesquilinear form d and a compact sesquilinear
form k : G × G 	→ C.

Proof. Recall a = a0 − k0. Lemma 3.2 reveals that k0 is a compact perturbation
of a0. Further, a0 = d−k1, and Lemma 4.1 implies that k1 is a compact perturbation
of d. From the ellipticity of the single layer boundary integral operators in Lemma
3.1, we immediately get

|d((v⊥,v0), (v⊥,v0))| = | 〈V0divΓv
⊥,divΓv

⊥〉
1
2 ,Γ
+ ς2

〈
A0v

0,v0
〉
||,Γ|

≥ c̃1
∥∥divΓv

⊥∥∥2

H− 1
2 (Γ)

+ c̃2ς
2
∥∥v0

∥∥2

H
− 1

2
|| (Γ)

for all (v⊥,v0) ∈ G. Now, we can appeal to (2.3) and obtain

|d(ϕ,ϕ)| ≥ c̃d ‖ϕ‖2G ∀ϕ ∈ G.
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Setting k = k0 + k1 yields a = d− k with a principal part d, which is positive on G,
and a compact perturbation k, as claimed.

The strong ellipticity of the form a(·, ·) together with its injectivity ensured by
Assumption 1.1 implies, as usual, the unique solvability of the EFIE (3.4) (and hence
of (1.1)) for any admissible right-hand side. Moreover, there holds the continuous
inf-sup condition for a(·, ·),

sup
ν∈G

|a(ϕ,ν)|
‖ν‖G

≥ c̃a ‖ϕ‖G ∀ϕ ∈ G.(4.1)

5. Boundary element spaces. We equip Γ with a family of shape-regular,
quasi-uniform triangulations (Γh)h>0 [25] comprising only flat triangles. The param-
eter h designates the meshwidth, that is, the length of the longest edge. Let H stand
for the collection of meshwidths occurring in (Γh)h∈H

and assume that H ⊂ R
+ forms

a decreasing sequence converging to zero. The set Th will include all triangles of Γh,
and Eh stands for the set of edges of Γh.

Using the local coordinate systems on the faces Γj , j = 1, . . ., NΓ, each T ∈ Th
can be embedded in R

2. Then we can define the local spaces (cf. [45])

RT 0(T ) := {x 	→ a+ βx, a ∈ C
2, β ∈ C}, T ∈ Th.

They give rise to the global boundary element space

RT 0(Γh) := {v ∈H(divΓ; Γ), v|T ∈RT 0(T )∀T ∈ Th}.
Keep in mind that this definition is based on a weak notion of divΓ. So Green’s
formula applied to the surface triangles can be used to confirm that the “edge-normal”
components of the tangential vectorfields in RT 0(Γh) must be continuous across
interelement edges. This renders the following degrees of freedom well-defined:

φe :RT 0(Γh) 	→ C, φe(vh) :=

∫
e

(vh × nj) · d&s, e ∈ Eh ,

where nj is the normal of a face Γj in whose closure e is contained. Given the degrees
of freedom, we have nodal interpolation operators Πh onto RT 0(Γh) at our disposal.
To begin with, those can be declared for {Γj}-piecewise continuous tangential surface
vectorfields whose edge-normal components are continuous, too. It turns out that this
is not enough, and we badly need to apply Πh to less regular surface vectorfields. A
first step towards this goal is the following lemma (cf. formula (3.40) in [14]).

Lemma 5.1. For any s > 0 the local interpolation operator ΠT : Hs(T ) ∩
H(div;T ) 	→RT 0(T ), T ∈ Th, is continuous.

Proof. Only the case s ≤ 1
2 is of interest. We consider a single degree of freedom

on T as follows: Pick an edge e ⊂ ∂T and regard its characteristic function χe as an

element in W
1− 1

q
q (e) for q := 1+ s. As 1 < q < 2, Theorem 1.4.5.2 of [34] reveals that

extension by zero of χe onto all of ∂T will provide a function ψ̃ in W
1− 1

q
q (∂T ). Then

we can use the trace theorem [34, Thm. 1.5.1.3] to extend ψ̃ to a function ψ ∈W 1
q (T )

in a continuous fashion. Using Green’s formula, extended by continuity, we estimate
for any smooth vectorfield v that∫

e

v · ne ds =
∫
∂T

ψ̃v · n ds =
∫
T

(gradψ · v + ψ divv) dx

≤ ‖gradψ‖Lq(T ) ‖v‖Lp(T ) + ‖ψ‖L2(T ) ‖divv‖L2(T ) ,
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where p is the exponent conjugate to q, i.e., p−1 + q−1 = 1. The Sobolev embedding
theorem [1, Thm. 4.5] gives the continuous inclusionsW 1

q (T ) ↪→ L2(T ) andHs(T ) ↪→
Lp(T ). This implies, with C̃ = C̃(s, T ),∫

e

v · ne ds ≤ C̃
(
‖gradψ‖2Lq(T ) + ‖ψ‖2W 1

q (T )

) 1
2
(
‖v‖2Hs(T ) + ‖divv‖2L2(T )

) 1
2

for all v ∈Hs(T ) ∩H(div;T ) and the assertion of the lemma, since ψ is fixed.
The importance of the interpolation operators Πh can be traced back to the

commuting diagram property as follows [14, Prop. 3.7]:

divΓΠhv = QhdivΓv ∀v ∈H(div; Γ) ∩Dom(Πh),(5.1)

where Qh is the L
2(Γ)-orthogonal projection onto the space

Q0(Γh) := {µ ∈ L2(Γ), µ|T = const.∀T ∈ Th}.
Identity (5.1) is a simple consequence of the definition of the degrees of freedom and
Gauss’s theorem applied to elements. An important consequence is that

divΓv = 0 ∧ v ∈ Dom(Πh) ⇒ divΓ(Πhv) = 0.

The relationship (5.1) also reveals that divΓRT 0(Γh) = Q0(Γh).
Remark. The reader should be aware that we have restricted ourselves to lowest

order Raviart–Thomas elements only for the sake of simplicity. All other H(div; Ω)-
conforming finite elements in two dimensions that provide valid discrete 1-forms could
be used as well. A rich collection is offered in [14, sect. III.3]. All arguments in what
follows will carry over to these elements with only slight alterations.

The Raviart–Thomas elements form an affine family of finite elements in the sense
of [25] with respect to Piola’s transformation [14, sect. III.1.3],

PT : L
2(T̂ ) 	→ L2

t(T ) , PT (v̂h)(x) := |detDΦT |−1DΦT v̂h(Φ
−1
T (x)), x ∈ T,

where T̂ is the reference triangle T̂ := {x ∈ R
2, x1, x2 > 0, x1 + x2 < 1}, T ∈ Th,

and ΦT the unique affine mapping that takes T̂ to T . The Piola transform preserves
the values of degrees of freedom. Shape regularity and quasi-uniformity guarantee
that |detDΦT | � h2 and ‖DΦT ‖ � h uniformly in T ∈ Th and h ∈ H. Here and in
what follows, we use the symbol � to indicate equivalence up to constants that may
depend on Γ and the shape regularity of {Γh}h, but are independent of h. The same
is understood of all generic constants unless they bear a tilde.

Now, using standard affine equivalence techniques, the effect of Piola’s transform
on fractional Sobolev norms can be controlled as shown below.

Lemma 5.2. The Piola transform PT , T ∈ Th, satisfies, for 0 ≤ s ≤ 1,
|û|

Hs(T̂ )
� hs |PT û|Hs(T ) ∀û ∈Hs(T̂ ),

with constants depending only on the shape regularity of T .
Proof. See Lemma 3 in [45] for the cases s = 0 and s = 1. The rest follows by

interpolation.
Remark. Using Piola’s transform, one easily constructs parametric divergence-

conforming surface elements [8, 32] for piecewise smooth Γ. Thus, our approach can
be instantly extended to curved Lipschitz polyhedra.
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6. Hodge mapping. Coercivity of the sesquilinear form related to (1.1) could
only be established in the split space G arising from the Hodge decomposition. This
means that, though the boundary element spaces RT 0(Γh) are conforming and nat-
ural for the EFIE (1.1), Theorem 4.2, i.e., the validity of a G̊arding inequality on
the continuous level, gives no immediate information about the convergence of the
Galerkin discretization. The reason is that we would need conforming finite element
subspaces of both X and N in order to apply the usual results (cf., e.g., [47, sect. 2.3])
about the convergence of Galerkin schemes for strongly elliptic variational problems.

A discrete L2
t(Γ)-orthogonal Hodge decomposition

RT 0(Γh) = Xh ⊕Nh, Nh := Ker(divΓ) ∩RT 0(Γh),(6.1)

yields Nh ⊂ N, but generally we cannot expect Xh ⊂ X. In short, Xh provides
only a nonconforming discretization of X, and a discrete inf-sup condition does not
follow from the strong ellipticity of the continuous problem. On the other hand, no
modification of the sesquilinear form a(·, ·) is necessary if we consider the variational
problem (3.4) over Gh := Xh ×Nh. This is simply due to the fact that everything

remains perfectly conforming in H− 1
2 (divΓ,Γ). In particular, Gh can be equipped

with the graph norm ‖·‖G of H− 1
2 (divΓ,Γ) ×H− 1

2 (divΓ,Γ). However, embedding
and regularity properties of X (cf. Lemmas 2.3 and 4.1) are crucial and the space Xh

lacks them. We deal with this by introducing semidiscrete spaces arising from the
continuous Hodge decomposition of the discrete boundary element space as follows:
We split vh ∈RT 0(Γh) in two ways,

vh = v⊥
h + v0

h, v⊥
h ∈ Xh, v

0
h ∈ Nh and vh = v⊥ + v0, v⊥ ∈ X, v0 ∈ N.

The discrete field v⊥
h is a genuine boundary element function, but only the semidiscrete

field v⊥ has the desired properties. We have labeled it semidiscrete because divΓv
⊥ =

divΓvh is still piecewise constant and, hence, v
⊥ still depends on the triangulation.

To bridge the gap between v⊥
h and v

⊥, we need the following device (cf. Def. 4.1 in
[38]).

Definition 6.1. We define the Hodge mapping Hh :RT 0(Γh) 	→ X by

Hhvh ∈ X : divΓHhvh := divΓvh, vh ∈RT 0(Γh).

Owing to (2.3), Hh is well defined. The Hodge mappings are uniformly continuous
with respect to h ∈ H. They create the desired link between Xh and X (cf. Lemma
4.2 in [38]) as follows.

Lemma 6.2. For any s ≥ − 1
2 , the Hodge mappings satisfy the estimate

‖vh −Hhvh‖L2(Γ) ≤ Chr ‖divΓvh‖Hs(Γ) ∀vh ∈ Xh ∀h ∈ H

with 0 ≤ r ≤ min{s+ 1, 1, s∗} and constants depending only on s, r,Γ, and the shape
regularity of the surface triangulations.

Proof. We follow the proof of Lemma 4.2 from [38], pick uh ∈ RT 0(Γh), and
focus on a single triangle T ∈ Γh. Take Hhuh|T to the reference element and set
ŵ := P−1

T Hhuh. By (2.3), we see ŵ ∈Hr(T̂ ) so that the assumptions of Lemma 5.1
are satisfied. We have for any r > 0

‖Π̂ŵ‖
L2(T̂ )

≤ C̃(r)
(
‖ŵ‖

Hr(T̂ )
+ ‖div ŵ‖

L2(T̂ )

)
,
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where Π̂ is the local interpolation operator on T̂ . Remember that divΓHhuh is piece-
wise constant, which renders div ŵ constant. Exploiting the equivalence of all norms
on finite-dimensional spaces, we can easily bound ‖div ŵ‖

L2(T̂ )
and arrive at

‖Π̂ŵ‖
L2(T̂ )

≤ C̃(r) ‖ŵ‖
Hr(T̂ )

.

Constant vectorfields on T̂ are preserved by the interpolation Π̂. Thus, for any p ∈ C
2,

‖ŵ − Π̂ŵ‖
L2(T̂ )

= ‖ŵ − p− Π̂(ŵ − p)‖
L2(T̂ )

≤ ‖ŵ − p‖
L2(T̂ )

+ C̃(r) ‖ŵ − p‖
Hr(T̂ )

.

From the definition of the fractional Sobolev norm [34, Def. 1.3.2.1] and 0 ≤ r ≤ 1, it
is immediate that

‖ŵ − p‖2
Hr(T̂ )

= ‖ŵ − p‖2
L2(T̂ )

+ |ŵ|2
Hr(T̂ )

.

As, according to Proposition 6.1 in [33], a Bramble–Hilbert-type estimate of the form

inf
c∈R

‖f − c‖
L2(T̂ )

≤ C̃(r) |f |
Hr(T̂ )

∀f ∈ Hr(T̂ )

also holds in fractional Sobolev spaces, we end up with the estimate

‖ŵ − Π̂ŵ‖
L2(T̂ )

≤ C̃(r) |ŵ|
Hr(T̂ )

.

Since interpolation and the Piola transform commute, we may use Lemma 5.2 to pull
the estimate back to the element T ,

‖Hhuh −ΠhHhuh‖L2(T ) ≤ Chr ‖Hhuh‖Hr(T ) .

At this stage, shape regularity starts affecting the constants. Squaring and summing
over all elements yields

‖Hhuh −ΠhHhuh‖L2(Γ) ≤ Chr ‖Hhuh‖Hr(Γ) ,

which, in light of Lemma 2.3, involves

‖Hhuh −ΠhHhuh‖L2(Γ) ≤ Chr ‖divΓuh‖Hs(Γ) .(6.2)

By the commuting diagram property of Πh, we conclude from divΓ(uh −Hhuh) = 0
that also divΓ(uh − ΠhHhuh) = 0. This means uh − ΠhHhuh ∈ Nh and makes it
possible for us to apply Nédélec’s trick [44, sect. 3.3],

‖uh −Hhuh‖2L2(Γ) = (uh −Hhuh,uh −ΠhHhuh +ΠhHhuh −Hhuh)0;Γ

= (uh −Hhuh,ΠhHhuh −Hhuh)0;Γ .

Together with (6.2) this shows the assertion of the lemma.
Now, we fix t ≤ min{ 1

2 , s
∗} and keep it constant for the remainder of this paper.

A legal choice for r in the previous lemma is r = t for s = − 1
2 , and we denote the

associated constant by C3.

Lemma 6.3. The decomposition RT 0(Γh) = Xh⊕Nh is uniformlyH− 1
2 (divΓ,Γ)-

stable.
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Proof. For uh ∈ Xh we can use the Hodge mapping and the previous lemma to
estimate

‖uh‖
H

− 1
2

|| (Γ)
≤ ‖uh −Hhuh‖L2(Γ) + ‖Hhuh‖

H
− 1

2
|| (Γ)

≤ C(ht + 1) ‖divΓuh‖
H− 1

2 (Γ)
,

as Hhuh ∈ X. Since divΓHhuh = divΓuh and H is bounded, the proof is
finished.

We also shall require the following right inverse of the Hodge mapping.
Definition 6.4. We define the linear continuous mappings Th : X 	→ Xh, h ∈ H,

by

Thw ∈ Xh : divΓThw = Q
− 1

2

h divΓw ∀w ∈ X,

where Q
− 1

2

h : H− 1
2 (Γ) 	→ Q0(Γh) are the H− 1

2 (Γ)-orthogonal projections.
Note that it is only due to the preceding stability result that this definition makes

real sense. In addition, Lemma 6.3 guarantees that the family of operators (Th)h∈H

is uniformly continuous, as

‖Thw‖
H

− 1
2

|| (Γ)
≤ C ‖divΓThw‖

H− 1
2 (Γ)
≤ C ‖divΓw‖

H− 1
2 (Γ)

.

Lemma 6.5. For any fixed w ∈ X we have

lim
h→0
‖w − Thw‖

H− 1
2 (divΓ,Γ)

= 0.

Proof. We resort to the same trick as in the proof of Lemma 6.3 and use HhThw−
w ∈ X,

‖Thw −w‖
H

− 1
2

|| (Γ)
≤ ‖HhThw − Thw‖L2(Γ) + ‖HhThw −w‖

H
− 1

2
|| (Γ)

≤ C3h
t ‖divΓThw‖

H− 1
2 (Γ)

+ C̃ ‖divΓ(HhThw −w)‖
H− 1

2 (Γ)

≤ Cht ‖divΓw‖
H− 1

2 (Γ)
+ C̃ inf

µh∈Q0(Γh)
‖divΓw − µh‖

H− 1
2 (Γ)

.

As
⋃
h∈H
Q0(Γh) is dense in L2(Γ), which, in turn, is dense in H− 1

2 (Γ), the lemma
holds true.

Remark. The operator Th of Definition 6.4 is closely related to the so-called
Fortin projector for edge elements introduced by Boffi [10].

7. Stability of the Galerkin scheme. Galerkin discretization of (3.4) leads
to the following discrete variational problem: Seek ιh ∈ Gh such that

a(ιh,ηh) = f(ηh) ∀ηh ∈ Gh.(7.1)

The discrete Hodge decomposition (6.1) shows (7.1) to be equivalent to the Galerkin
discretization (1.2) of the EFIE (1.1). From Theorem 4.2, we saw that problem
(3.4) is strongly elliptic, i.e., a = d − k, with a G-elliptic sesquilinear form d and a
G-compact form k. Discretization of (3.4) by a dense and conforming family of finite-
dimensional subspaces would therefore imply quasi-optimal asymptotic convergence of
the approximate solutions. The problem here is that Gh is generally nonconforming,
i.e., Gh �⊂ G. Therefore, coercivity in the discrete setting must be established by
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a separate argument. For the proof, we draw on an idea of Schatz [46]. A similar
strategy is pursued in [21, sect. 4].

To get compact formulas, we replace bilinear forms by the associated Riesz op-
erators. First, A : G 	→ G′ is associated to the sesquilinear form a. Next, the
operator K : G 	→ G′ is associated with the sesquilinear form k defined in the proof
of Theorem 4.2. Both operators are continuous from G 	→ G′. However, since Gh is
nonconforming, these operators are not defined on Gh a priori. To extend them, we
use Hodge mappings on Gh which are defined through

Hh : Gh 	→ G, Hh(v
⊥
h ,v

0
h) := (Hhv

⊥
h ,v

0
h) ∈ G, (v⊥

h ,v
0
h) ∈ Gh.

Lemma 6.2 ensures the uniform boundedness in h of this family of operators. We also
define the extension Th : G 	→ Gh to Gh of the right inverses Th, h ∈ H, of the Hodge
mappings from Definition 6.4:

Th(v
⊥,v0) := (Thv

⊥,Q− 1
2

h v0) ∈ Gh, (v⊥,v0) ∈ G,

where Q
− 1

2

h is the H
− 1

2

|| (Γ)-orthogonal projection N 	→ Nh. The operator Th is well

defined, since Nh ⊂ N and N is a closed subspace of H
− 1

2

|| (Γ). Density of
⋃
h∈H

Nh

in N and Lemma 6.5 confirm pointwise convergence

lim
h→0
‖ϕ−Thϕ‖G = 0 ∀ϕ ∈ G.(7.2)

Next, we consider the operator S : G′ 	→ G defined as the solution operator of the
G-elliptic variational problem

η′ ∈ G′ : d(Sη′,ϕ) = η′(ϕ) ∀ϕ ∈ G.
Continuity and ellipticity of the sesquilinear form d ensure that S is well defined and
give

C̃−1
d ‖η′‖G′ ≤ ‖Sη′‖G ≤ c̃−1

d ‖η′‖G′ ∀η′ ∈ G′,(7.3)

where C̃d := ‖d‖. Note also that the operator S is confined to the continuous setting.
Lemma 7.1. There is a decreasing function b : H 	→ R

+ with b(h)→ 0 as h→ 0
such that

‖(Th − Id)SKη‖G ≤ b(h) ‖η‖G ∀η ∈ G.
Proof. We follow the ideas of the proof of Corollary 10.4 in [40]. Set B1(G) :=

{ϕ ∈ G : ‖ϕ‖G ≤ 1}. As K : G 	→ G′ is compact, the set KB1(G) is precompact in
G′. Thanks to the continuity of S, the closure w.r.t. the ‖·‖G-norm M := SKB1(G)
is compact in G. Pick some ε > 0 and write Bε(ν) for the ε-neighborhood of ν in G.
We can find finitely many ν1, . . .,νL, L = L(ε) ∈ N, in M such that M ⊂ ⋃lBε(νl).
From (7.2) we learn that there is h0 = h0(ε) ∈ H such that

‖Thνl − νl‖G ≤ ε ∀h < h0, l = 1, . . ., L.

For any η ∈M , there exists a νl such that η ∈ Bε(νl). Hence,

‖Thη − η‖G ≤ ‖Thη −Thνl‖G + ‖Thνl − νl‖G + ‖νl − η‖G ≤ (‖Th‖G �→G + 2)ε
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if h < h0. Undoing the substitutions, we get

‖(Th − Id)SKη‖G ≤ (‖Th‖G �→G + 2)ε ∀η ∈ B1(G), h < h0.

A homogeneity argument finishes the proof.
Next, we prove the discrete inf-sup condition for the form a(·, ·): Given ηh ∈ Gh,

we set

ϕh := (Id−ThSKHh)ηh ∈ Gh.
The uniform boundedness with respect to h of the operators involved ensures that
there is C4 > 0 independent of h ∈ H and ηh such that

‖ϕh‖G ≤ C4 ‖ηh‖G .(7.4)

We therefore estimate

|a(ηh,ϕh)| = |a(ηh, (Id−ThSKHh)ηh)|
= |a(ηh, ((Id−Th)(SKHh) + (Id− SKHh))ηh)|
≥ |a(ηh, (Id− SKHh)ηh)| − |a(ηh, (Id−Th)SKHhηh)|
≥ |a(ηh, (Id− SKHh)ηh)| − C̃a ‖ηh‖G ‖(Id−Th)SKHhηh‖G
≥ |a(ηh, (Id− SKHh)ηh)| − b(h)C̃a ‖ηh‖2G ,

the final inequality being a consequence of Lemma 7.1. Further, we estimate the first
term,

|a(ηh, (Id− SKHh)ηh)| = |a(ηh, ((Id−Hh) + (Id− SK)Hh)ηh)|
≥ |a(ηh, (Id− SK)Hhηh)| − |a(ηh, (Id−Hh)ηh)|
≥ |a(ηh, S(S−1 −K)Hhηh)| − C̃a ‖ηh‖G ‖(Id−Hh)ηh‖G
≥ |a(ηh, S(S−1 −K)Hhηh)| − C̃aC3h

t ‖ηh‖2G ,

by Lemma 6.2. Now, we note that ψ := S(S−1 −K)λ ∈ G, λ ∈ G, satisfies
d(ψ,ν) =

〈
(S−1 −K)λ,ν

〉
= d(λ,ν)− k(λ,ν) = a(λ,ν)

for all ν ∈ G (〈·, ·〉 stands for the duality pairing G×G′ 	→ C). In short, S(S−1−K) =
SA. This enables us to continue the estimates

|a(ηh, S(S−1−K)Hhηh)| = |a(ηh −Hhηh +Hhηh, SAHhηh)|
≥ |a(Hhηh, SAHhηh)| − C̃a ‖(Id−Hh)ηh‖G ‖SAHhηh‖G
≥ |d(SAHhηh, SAHhηh)| − C̃2

a c̃
−1
d C3h

t ‖ηh‖2G .

For the last time we target the first term

|d(SAHhηh, SAHhηh)| ≥ c̃d ‖SAHhηh‖2G ≥ c̃dC̃
−1
d ‖AHhηh‖2G′

≥ c̃dC̃
−1
d c̃a ‖ηh − (Id−Hh)ηh‖2G

≥ c̃4(‖ηh‖2G − ‖(Id−Hh)ηh‖2G)
≥ c̃4 ‖ηh‖2G − c̃4C

2
3h

2t ‖ηh‖2G ,
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with c̃4 := c̃dC̃
−1
d c̃a. Summing up, we have obtained

|a(ηh,ϕh)| ≥
(
c̃4 − (c̃4C3h

t + C̃2
a c̃

−1
d + C̃a)C3h

t − C̃ab(h)
)
‖ηh‖2G .

If h < h∗ with (c̃4C3h
t
∗+ C̃2

a c̃
−1
d + C̃a)C3h

t
∗+ C̃ab(h∗) < 1

2 c̃4, then we obtain the lower
bound

|a(ηh,ϕh)| ≥
1

2
c̃4 ‖ηh‖2G ∀h < h∗.

This is valid for any ηh. Recalling (7.4), an immediate consequence is the discrete
inf-sup condition

sup
ϕh∈Gh

|a(ηh,ϕh)|
‖ϕh‖G

≥ c̃4
2C4
‖ηh‖G ∀ηh ∈ Gh, h < h∗.(7.5)

Based on this discrete stability condition, stability (4.1) of the continuous problem,
and the continuity (3.3) of the bilinear forms involved, we obtain quasi-optimal asymp-
totic convergence for the sequence of Galerkin solutions.

Theorem 7.2. There exists a meshwidth h∗ ∈ H depending only on Γ, ς, and on
the shape regularity of the triangulations Γh such that for any h < h∗ the Galerkin
discretization of variational problem (1.1) in RT 0(Γh) possesses a unique solution
jh. It converges quasi-optimally according to

‖j− jh‖
H− 1

2 (divΓ,Γ)
≤ C inf

vh∈RT 0(Γh)
‖j− vh‖

H− 1
2 (divΓ,Γ)

with C > 0 independent of j and h.

Proof. We denote by â(j,v) := 〈VςdivΓj,divΓv〉 1
2 ,Γ
− ς2 〈Aςj,v〉||,Γ the bilinear

form in (1.1) and (1.2). SinceRT 0(Γh) isH
− 1

2 (divΓ,Γ)-conforming, theH
− 1

2 (divΓ,Γ)-

stable Hodge decompositions RT 0(Γh) = Xh ⊕ Nh, H
− 1

2 (divΓ,Γ) = X ⊕ N and
the equivalence of (1.1) with (3.4) and of (1.2) with (7.1) imply that for every
(v⊥
h ,v

0
h) ∈ Gh, (z⊥h , z0

h) ∈ Gh, the sums vh := v⊥
h + v0

h, zh := z⊥h + z0
h belong to

RT 0(Γh). Further, there holds

a((z⊥h , z
0
h), (v

⊥
h ,−v0

h)) = â(j,vh).(7.6)

From Lemma 6.3, we conclude the h-uniform equivalence of norms

∥∥(z⊥h , z0
h)
∥∥

G � ‖zh‖H− 1
2 (divΓ,Γ)

,
∥∥(v⊥

h ,v
0
h)
∥∥

G � ‖vh‖H− 1
2 (divΓ,Γ)

with constants independent of h and the functions. Thus, by (7.6), the h-uniform
discrete inf-sup condition for â on RT 0(Γh),

sup
vh∈RT 0(Γh)

|â(zh,vh)|
‖vh‖

H− 1
2 (divΓ,Γ)

≥ C ‖zh‖
H− 1

2 (divΓ,Γ)
∀zh ∈RT 0(Γh),(7.7)

immediately follows from (7.5). Taking the cue from the standard approach of [5], we
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resort to Galerkin orthogonality â(j− jh,vh) = 0 for all vh ∈RT 0(Γh) and get

‖j− jh‖
H− 1

2 (divΓ,Γ)
≤ ‖j− zh‖

H− 1
2 (divΓ,Γ)

+ ‖zh − jh‖
H− 1

2 (divΓ,Γ)

≤ ‖j− zh‖
H− 1

2 (divΓ,Γ)
+ C sup

vh∈RT 0(Γh)

|â(zh − jh,vh)|
‖vh‖

H− 1
2 (divΓ,Γ)

≤ ‖j− zh‖
H− 1

2 (divΓ,Γ)
+ C sup

vh∈RT 0(Γh)

|â(zh − j,vh)|
‖vh‖

H− 1
2 (divΓ,Γ)

≤ (1 + C‖â‖) ‖j− zh‖
H− 1

2 (divΓ,Γ)

for any zh ∈RT 0(Γh). Here, ‖â‖ stands for the norm of â on H− 1
2 (divΓ,Γ). Thus,

we get the assertion of the theorem.

8. Convergence rates. Quantitative estimates of rates of convergence of jh
towards j hinge on extra smoothness of j. Under corresponding assumptions the

asymptotic decay of the error of best RT 0(Γh)-approximations in H
− 1

2 (divΓ,Γ) can
be quantified.

Lemma 8.1. If z ∈Hσ(divΓ; Γ), σ > 0, then for any ε > 0,

inf
uh∈RT 0(Γh)

‖z− uh‖
H− 1

2 (divΓ,Γ)
≤ Chmin{ 3

2−ε,σ+ 1
2−ε,1+s∗,σ+s∗} ‖z‖Hσ(divΓ;Γ) ,

with C > 0 depending on Γ, s∗, ε, and the shape regularity of the meshes Γh.

Proof. The proof is based on duality techniques used to deal with the nega-
tive norms occurring in the definition of ‖·‖

H− 1
2 (divΓ,Γ)

as follows: Pick any z ∈
Hσ(divΓ; Γ) and ε > 0. We consider the following mixed variational problem: Seek
u ∈H(div; Γ), p ∈ L2(Γ)/Z such that

(u,v)0;Γ + (divΓv, p)0;Γ = (z,v)0;Γ ∀v ∈H(div; Γ),
(divΓu, q)0;Γ = (divΓz, q)0;Γ ∀q ∈ L2(Γ)/Z.

(8.1)

The usual techniques employed for the analysis of mixed variational formulations for
second order elliptic boundary value problems [14, sect. IV.1.2] in conjunction with
Theorem 2.1 confirm the existence and uniqueness of solutions of this variational
problem. Evidently, we have

u = z and p = 0.

Now, we look at a conforming Galerkin discretization of (8.1). Seek uh ∈RT 0(Γh),
ph ∈ Q0(Γh)/Z with

(uh,vh)0;Γ + (divΓvh, ph)0;Γ = (z,vh)0;Γ ∀vh ∈RT 0(Γh),

(divΓuh, qh)0;Γ = (divΓz, qh)0;Γ ∀qh ∈ Q0(Γh)/Z.

For each qh ∈ Q0(Γh)/Z we can find a solution ψ ∈ H1+s∗(Γ)/Z, s∗ from Theorem 2.1,
of ∆Γψ = qh on Γ. By Lemma 5.1, the interpolant Πh gradΓ ψ is well defined. The
commuting diagram property (5.1) involves

divΓΠh gradΓ ψ = QhdivΓ gradΓ ψ = Qhqh = qh
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and continuity means

‖Πh gradΓ ψ‖L2(Γ) ≤ C
(
‖gradΓ ψ‖Hs∗ (Γ) + ‖divΓ gradΓ ψ‖L2(Γ)

)
≤ C̃ ‖qh‖L2(Γ) .

We owe the second estimate to Theorem 2.1. Now we are in a position to establish the
crucial uniform discrete Ladyshenskaya–Babuška–Brezzi condition [14, sect. II.2.1]

sup
vh∈RT 0(Γh)

(divΓvh, qh)0;Γ
‖vh‖H(div;Γ)

≥ (divΓΠh gradΓ ψ, qh)0;Γ√
‖Πh gradΓ ψ‖2L2(Γ) + ‖divΓΠh gradΓ ψ‖2L2(Γ)

≥ 1

1 + C̃
‖qh‖L2(Γ) .

Along with divΓRT 0(Γh) = Q0(Γh)/Z, this settles the issue of existence, uniqueness,
and asymptotic quasi-optimality of discrete solutions uh, ph [14, Prop. 2.6]. In par-
ticular, plain interpolation error estimates based on affine equivalence techniques and
a Bramble–Hilbert-type result (cf. the proof of Lemma 6.2) give us

‖z− uh‖H(div;Γ) ≤ C inf
vh∈RT 0(Γh)

‖z− vh‖H(div;Γ) ≤ Chmin{1,σ} ‖z‖Hσ(divΓ;Γ) .(8.2)

Next, pick q ∈Hs(Γ), s := max{0, 1
2 − ε}, and fix ϕ ∈ H1(Γ)/Z by

−∆Γϕ = divΓq ∈ Hs−1
∗ (Γ).

From Theorem 2.1, we learn that ϕ ∈ Hr+1(Γ), r := min{s, s∗}, 0 < r < 1
2 , and

‖ϕ‖Hr+1(Γ) ≤ C ‖divΓq‖Hs−1(Γ) .

Set w := q + gradΓ ϕ ∈ Hr(Γ) and observe divΓw = 0. Immediately we have the
estimate

‖w‖Hr(Γ) ≤ ‖q‖Hr(Γ) + ‖gradΓ ϕ‖Hr(Γ)

≤ ‖q‖Hr(Γ) + C ‖divΓq‖Hs−1(Γ) ≤ C ‖q‖Hs(Γ) .
(8.3)

The ultimate goal is to get information about the error z− uh. To that end we note
that Galerkin orthogonality implies

(z− uh,vh)0;Γ − (divΓvh, ph)0;Γ = 0 ∀vh ∈RT 0(Γh),

(divΓ(z− uh), qh)0;Γ = 0 ∀qh ∈ Q0(Γh)/Z.
(8.4)

This has two obvious consequences. First, we see from the usual interpolation esti-
mates for the L2(Γ)-orthogonal projections Qh that for all η ∈ Ht(Γ), 0 ≤ t ≤ 1,

| (divΓ(z− uh), η)0;Γ | = | (divΓ(z− uh), η −Qhη)0;Γ |
≤ Cht ‖divΓ(z− uh)‖L2(Γ) ‖η‖Ht(Γ) .

(8.5)

This immediately yields the duality estimate

‖divΓ(z− uh)‖
H− 1

2 (Γ)
≤ Ch

1
2 ‖divΓ(z− uh)‖L2(Γ) .(8.6)
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Second, (8.4) and the error estimates for Πh lead to

| (z− uh,w)0;Γ | = | (z− uh,Πhw)0;Γ + (z− uh,w −Πhw)0;Γ |
= | (divΓΠhw, ph)0;Γ + (z− uh,w −Πhw)0;Γ |
≤ Chr ‖z− uh‖L2(Γ) ‖w‖Hr(Γ) .

The last step relied on the commuting diagram property (5.1), which implies divΓΠhw =
QhdivΓw = 0. Estimate (8.5)—more precisely, the case t = 1 with η replaced by ϕ—
and (8.3) can be combined with what we have just obtained. This yields

| (z− uh,q)0;Γ | = | (z− uh,w − gradΓ ϕ)0;Γ |
= | (z− uh,w)0;Γ + (divΓ(z− uh), ϕ)0;Γ |
≤ Chr ‖z− uh‖H(div;Γ) ‖q‖Hs(Γ) .

By definition of the dual norm for 0 ≤ s < 1
2 , this means

‖z− uh‖H−s(Γ) = sup
q∈Hs(Γ)

(z− uh,q)0;Γ
‖q‖Hs(Γ)

≤ Chr ‖z− uh‖H(div;Γ) .

To finish the proof we have only to recall (8.2) and (8.6).
Combined with Theorem 7.2, the preceding lemma instantly translates into an

asymptotic convergence estimate for the electric field integral equation discretized by
means of lowest order Raviart–Thomas elements.

Theorem 8.2. Provided that j ∈Hσ(divΓ; Γ), σ > 0, and h < h∗, the discretiza-
tion error encountered when using lowest order Raviart–Thomas surface elements for
the Galerkin discretization of the electric field integral equation (1.1) behaves like

‖j− jh‖
H− 1

2 (divΓ,Γ)
≤ Chmin{ 3

2−ε,σ+ 1
2−ε,1+s∗,σ+s∗} ‖j‖Hσ(divΓ;Γ) ,

where C > 0 may depend only on Γ, ς, ε > 0, and the shape regularity of the surface
triangulations.

Remark. From the discussion of s∗ after Theorem 2.1, it is clear that s∗ ≥ 1
2 if at

most three edges of Γ meet at a vertex.
Remark. As j is the jump of traces of magnetic field solutions of Maxwell’s

equations on both sides of Γ, the regularity theory of [28] illustrates that the regularity
requirements of Theorem 8.2 will always be satisfied. However, σ ≥ 1

2 cannot be
expected for nonsmooth Γ, since any edge of Γ will appear as a re-entrant when seen
from either inside or outside.

Remark. Why is the case ε = 0 not covered by Lemma 8.1 in general? The

reason is that in this case we would have to choose q ∈ H 1
2

⊥(Γ) in order to achieve

divΓq ∈ H− 1
2 (Γ). However, we would need q ∈H 1

2

|| (Γ) to gain information about the
dual norm ‖z− uh‖

H
− 1

2
|| (Γ)

. This mismatch foils the proof for ε = 0. Yet, for smooth

surface Γ the spacesH
1
2

|| (Γ) andH
1
2

⊥(Γ) coincide, and the best approximation estimate
remains true for ε = 0.

Remark. Lemma 8.1 easily can be extended to kth order Raviart–Thomas bound-
ary elements, k ≥ 0, yielding asymptotic convergence of order min{k+ 3

2 − ε, 1
2 + σ−

ε, 1 + k + s∗, σ + s∗}.
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Remark. In [19] an equivalent mixed formulation of (1.1) is proposed that takes
the variational problem to classical Sobolev spaces. In this setting, duality techniques
are available that give slightly better rates of asymptotic convergence (not reduced
by ε), provided that s∗ is sufficiently large. In [16], an alternative approach to the
error estimates of section 8 is presented which shows that the convergence estimates
in Theorem 8.2 are not limited by s∗ but only by the regularity of the solution j.
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Abstract. Let Xt be the solution of a stochastic differential equation (SDE) with starting point
x0 driven by a Poisson random measure. Additive functionals are of interest in various applica-
tions. Nevertheless they are often unknown and can only be found by simulation on computers. We
investigate the quality of the Euler approximation. Our main emphasis is on SDEs driven by an
α-stable process, 0 < α < 2, where we study the approximation of the Monte Carlo error E[f(XT )],
f belonging to L∞. Moreover, we treat the case where the time equals T ∧ τ , where τ is the first
exit time of some interval.

Key words. stochastic differential equations, Euler scheme, Poisson random measure, α-stable
process, Malliavin calculus, first exit time
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1. Introduction. Let Xt be a real valued process and solution to

Xt(x0) = x0 +

∫ t

0

∫
σ(Xs− , z)(µ− γ)(dz, ds) +

∫ t

0

b(Xs−)ds,(1.1)

where µ is a Poisson random measure satisfying certain conditions and γ is its com-
pensator. Assume that b : R �→ R and σ : R × R �→ R are Lipschitz continuous in
x. Then the stochastic differential equation (SDE) admits a unique solution and the
solution is a semimartingale. Cinlar and Jacod [7] have shown that up to a random
time change, every Hunt process (right continuous and quasi-left continuous) can be
represented as a solution of an SDE driven by a Wiener process, a Lebesgue measure,
and a compensated Poisson random measure. Thus, a large class of stochastic pro-
cesses can be covered by considering SDEs driven by Brownian motion and Poisson
random measures.

In contrast to the Brownian case, the Poissonian case is barely investigated. Kurtz
and Protter [14] have studied the convergence in law of the normalized error for
the path-by-path Euler scheme, and Lp estimates of the Euler scheme are given by
Kohatsu-Higa and Protter [13]. Protter and Talay [16] investigate the weak error
E[f(XT )], which has to be evaluated at a fixed time T ; the diffusion coefficient σ(x, z)
is of the form σ0(x)h(z); and f , σ, and b are supposed to be four times differentiable.
In contrast, we assume f to be only measurable but σ : R×R → R and b : R → R to be
five times differentiable. Additionally, we consider the approximation of E[f(XT∧τ )],
where τ denotes the first hitting time of zero (∧ denotes the minimum).

We proceed as in Bally and Talay [1], in which the Brownian case is treated.
Moreover, Bally and Talay [2] give an expansion of the density for the Brownian case
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in terms of 1
n . We do not treat this case, but we conjecture that the same procedure

can be applied to treat the Poissonian case to get an expansion.
Let Xnt be the approximation of Xt by the Euler scheme with step size 1

n defined
by {

Xn0 = x0,

Xnt = Xn[t]n + b(Xn[t]n)(t− [t]n) +
∫ t
[t]n

∫
σ(Xn[t]n , z)(µ− γ)(ds, dz),

where [t]n = [tn]/n. The entity E[f(XT )] will be approximated by a finite sum over
a large number N of independent trajectories, i.e.,

E[f(XT )] ≈ 1

N

N∑
i=1

f(XnT (ωi)).

The resulting error e(n,N) depends on the sample size N and on the step size 1
n , i.e.,

e(n,N) ≤
∣∣∣∣ 1

N

N∑
i=1

f(XnT (ωi))− E[f(XnT )]

∣∣∣∣ +
∣∣∣E[f(XnT )]− E[f(XT )]

∣∣∣ = I + II.

If the driving process has finite variance, an upper bound for (I) can be found by the
central limit theorem or deviation results. The main result of our paper is an error
bound for the entity (II) under appropriate hypotheses for σ and b.

We suppose that µ is a random measure generated by a Poisson point process
whose characteristic measure is Lebesgue, γ its compensator. Let Xt be a solution of
(1.1).

Definition 1.1 (Bass and Cranston [3, p. 513]). Let us call σ(x, z) quasi-stable
of order k between the indices α− and α+ if there exist 0 ≤ z0 <∞ and 0 < c1, c2 <∞
such that

c1|z|−
1

α− −i ≤ |∂izσ(x, z)| ≤ c2|z|−
1

α+ −i(1.2)

for i = 0, . . . , k, |z| > z0, and all x.
Theorem 1.2. Let Xt be a solution of the SDE (1.1), where σ(x, z) is quasi-stable

of order five between the indices α− and α+, 0 < α− ≤ α+ < 2, such that σz(x, z) ≥ 0.
Moreover, assume that there exist constants 1 ≤M <∞ and 1 ≤ mb �M such that
σ and b satisfy each of the following hypotheses:

(H0) For j, 0 < j ≤ 5, x ∈ R, and i = 1, . . . , 5−j, either ∂jxσ(x, z) = 0 or estimate
(1.2) holds for ∂jxσ(x, z).

(H1) For all x, z the quantities |∂iz∂jxσ(x, z)| are bounded uniformly by M in z and
x for all i and j, i + j ≤ 5, j �= 0.

(H2) supx |∂ixb(x)|, i = 1, . . . , 5, is bounded by mb and supx |∂ixσ(x, z)|, i = 1, . . . , 5,
is bounded by hσ(z) such that |hσ|p ≤M for all p ≥ 2.

(H3) Let z̄ = supz{|σx(x, z)| > 1
4 for all x}. The functions (∂x+σx(x,z)

σz(x,z)∂z
)i
σx(x, z),

i = 1, 2, 3, 4, are then uniformly bounded by M in x for all |z| < z̄ with the
convention that 0/0 = 0.

If Xt is approximated by the Euler scheme, i.e., by Xnt , then we have for f ∈ L∞

|E[f(XT )]− E[f(XnT )]| ≤ C(T ) · 1

n
·M21 · (1 + exp(M16)

)
.
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Remark 1.1. If σ(x, z) is quasi-stable of order six, and the indices five and four,
respectively, are replaced by six and five, respectively, in (H0), (H1), (H2), and (H3),
then for a Dirac-function f = δ, we have

|E[δ(XT )]− E[δ(XnT )]| ≤ C · 1

n
·M28 · (1 + exp(M16)

)
.

If σ(x, z) is quasi-stable of order i, i = 2, 3, 4, and the indices five and four, respec-
tively, are replaced by i and i − 1, respectively, in (H0), (H1), (H2), and (H3), then
we have for f ∈ C5−i

b (R)

|E[f(XT )]− E[f(XnT )]| ≤ C · |f (5−i)|∞ · 1

n
·M ci ·

(
exp(M25−i

) + exp(M16)
)
,

and if 2/α+ > (i− 1)/α− − 1,

|E[f(XT )]− E[f(XnT )]| ≤ C · |f (5−i)|∞ · 1

n
·M ci · exp(M25−i

),

where c2 = 6 and ci = ci−1 + i + 1 for i > 2.
If the driving process has infinite variance, e.g., if it is an α-stable process, the

case is more complicated. (I) is given by the percentiles of an α-stable variable, and to
handle (II), we first truncate the driving process, i.e., we throw away all jumps larger
than an integer M , and then we apply the result stated above to get the following
error bounds:

• Let f ∈ Cib(R), i = 2, 3, 4. Then we have for any integer M ≥ 1

|(II)| ≤ C1(T ) · 1

n
·M ci

(
1 + exp(M25−i

)
)

+ C2 ·
(
1− exp(TM−α)

)
,

where ci is defined by c2 = 6, ci = ci−1 + i + 1 for i > 2, and α > i− 3.

• f ∈ L∞, and limx→∞
|σ(x,z)|
xp < C|z|− 1

α , where C < ∞, for all p ≥ 1: the
error bound of (II) is given by |(II)| ≤ C 1

n .
C1, C2, and C are constants. Let τ = inft≥0{Xt = 0} and τn = inft≥0{Xnt = 0} and
M = 1. Finally we show for 2/α+ > (i− 1)/α− − 1 and f ∈ C5−i

b (R), i = 2, 3, 4,

|E[f(XT∧τ )]− E[f(XnT∧τn)]| ≤ C1(T )1/
√
n + C2(T )|f (5−i)|∞ · 1

n
M ci exp(M25−i

).

The paper is organized as follows: In the second section, we give some prelimi-
naries on point processes and Malliavin calculus. The third section is concerned with
the main result, i.e., the error bound for f ∈ L∞. After that we give some additional
remarks and consider the remaining cases.

2. Preliminaries. In this section we recall some basic facts about point pro-
cesses, α-stable processes, and the Malliavin calculus. For details on point processes,
α-stable processes, and semimartingales, see Bertoin [4] and Cinlar et al. [8].

Let Ft be a filtration satisfying the usual conditions. Let Z be a measurable
space. A point process with state space Z is a countable collection of adapted random
variables (Zi, Ti) ∈ Z × R

+. Given a point process, one usually works with the
associated random measure µ defined by µ(A × [0, t])(ω) =

∑
Ti≤t 1A(Zi(ω)). A

random measure µ has a random measure γ as compensator if γ is predictable and
µ(A × [0, t]) − γ(A × [0, t]) is a local martingale in t for all Borel sets A such that
E[γ(A× [0, t])] <∞ for all t > 0.
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A point process is a Poisson point process with characteristic measure ν on Z
if for each Borel set A with ν(A) < ∞ and for each t the counting measure of the
set A × [0, t] is Poisson with parameter ν(A) t. It follows that µ has independent
increments and that µ(A× [0, t]) and µ(B × [0, t]) are independent for A ∩B = ∅. If
the compensator γ(dz, ds) of the random measure µ is of the form γ(dz, ds) = ν(dz)ds
for some σ-finite measure ν on Z, then the process t �→ µ(A× [0, t]) is called a Poisson
point process with characteristic measure ν mentioned above, and the law of the point
process is uniquely determined.

In analogy to the Wiener case, we can define a stochastic integral with respect to
a Poisson measure. Let h(s, z, ω) be a simple, càdlàg, and predictable process; i.e.,
h(s, z, ω) =

∑n
i=1 1(ti−1,ti](s)1Ai(z)Hi(ω), where 0 = t1 < · · · < tn < ∞ is a finite

sequence of stopping times, Hi is bounded and adapted to Fti , and ν(Ai) <∞ for all
i = 1, . . . , n. The stochastic integral is defined by the Stieltjes integral∫ t

0

∫
Z
h(s, z, ω)(µ− γ)(dz, ds) =

n∑
i=1

Hi(ω)(µ− γ)(Ai × (ti−1 ∧ t, ti ∧ t]).

The above definition can be extended by L2 limits to M2 = {h : h predictable,

E[
∫ t
0

∫
Z h2(s, z, ω)γ(dz, ds)] <∞}. In what follows we omit ω and Z for simplicity if

there is no danger of confusion.
A purely discontinuous martingale is one where E[M2

t ]− E[M2
0 ] = E[

∑
s≤t∆M2

s ]

with ∆Mt = Mt − Mt− . In this case, let [M,M ]t =
∑
s≤t∆M2

s . One can show

that Mt =
∫ t
0

∫
h(s, z)(µ−γ)(dz, ds) is a purely discontinuous (local) martingale with

[M,M ]t =
∫ t
0

∫
h2(s, z)µ(dz, ds) for h ∈M2. In particular,

E[M2
t ] = E

[∫ t

0

∫
h2(s, z)µ(dz, ds)

]
= E

[∫ t

0

∫
h2(s, z)γ(dz, ds)

]
.

We will suppose throughout the remainder of this paper that Z = R \ {0}, and
µ is a random measure generated by a Poisson point process whose characteristic
measure is Lebesgue, denoted by λ, and γ is its compensator.

Remark 2.1. Suppose that Zt =
∫ t
0

∫
h(z)µ(dz, ds) is of finite variation on

compacts, i.e., the Lévy measure defined by νh([y,∞)) = λ{h(z) > y} for y > 0 and
νh(x, (−∞, y]) = λ{h(z) < y} for y < 0 satisfies

∫
(1 ∧ |x|)νh(dx) < ∞. It follows

(see, e.g., Bertoin [4, Proposition III.8]) that t−1 Zt tends to a constant a.s. as t
tends to zero. By Billingsley [6, p. 25] we know that t−1‖Zt‖p is uniformly bounded
as t tends to zero for all Zt, where ‖Zt‖p <∞.

Remark 2.2. Let Zt =
∫ t
0

∫
h(z)µ(dz, ds) with Lévy measure νh (cf. Remark

2.1). If {z|h(z) �= 0} is compact in Z, νh has finite total mass and Zt is a compound

Poisson process. Let us define Yt =
∫ t
0

∫ √|h(z)|µ(dz, ds). It follows that Yt is also a
compound Poisson process and we have a.s. Zt ≤

∑
s≤t |∆Zs| =

∑
s≤t∆Y 2

s = [Y, Y ]t.

Since Yt has finite variation on compacts, t−p‖Yt‖pp is bounded for t→ 0 (see Remark
2.1). On the other hand, we have for p ≥ 1 (see Barlow, Jacka, and Yor [11])
C(p) t−2p‖Yt‖2p2p ≥ t−2p‖ [Y, Y ]t‖pp ≥ t−2p‖Zt‖pp a.s. and therefore t−2‖Zt‖p is bounded
as t tends to zero. By iterating we see that t−n‖Zt‖p is bounded as t→ 0 for n = 2k

k ∈ N.
Remark 2.3. Suppose that Zt =

∫ t
0

∫
h(z)µ(dz, ds) has finite Lévy measure with

νh(Z) = Ch and supz |h(z)| = hmax < ∞. We are interested in an upper bound

for t−1‖Zt‖p. Note that Zt ≤ hmaxR, where R =
∫ t
0

∫
µ(dz, ds) is an exponential
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distributed random variable with parameter t νh(A) and moments (t νh(A))k, k ∈ N.
It follows that

t−p‖Zt‖pp ≤ hpmaxE

[
Rp

tp

]
= t−p hpmaxνh(A)p,

and therefore sup0<t≤T t−1‖Zt‖p ≤ hmaxνh(A).

2.1. Stable processes. In Definition 1.1 we introduced the notion of quasi-
stable processes to the class of processes which are the solution to Xt =

∫ t
0

∫
σ(Xs− , z)

(µ− γ)(dz, ds) for some σ : R×Z → R. Assume that Xt is well defined and consider

the process Zt =
∫ t
0

∫
Z σZ(Xs− , z)µ(dz, ds), where |z|− 1

α− ≤ |σZ(x, z)| ≤ |z|− 1

α+ for
0 < α− ≤ α+ < 2 and for all z, where |z| ≥ z0 for some 0 < z0 < ∞. Obviously,
the driving process σZ(Xs− , z) behaves like a quasi-stable process of order zero with
indices α− and α+ but does not necessarily belong to the class of processes for which
Definition 1.1 is given. Thus, in order to also consider these cases, we extend the
notation of quasi-stable processes to a more general class of processes.

Definition 2.1. Let h : R
+ × Z × Ω → R be adapted. We call h(t, z, ω) quasi-

stable of order k between the indices α− and α+ if there exist z0 <∞ and c1, c2 <∞
such that

c1|z|−
1

α− −k ≤ |∂kzh(t, z, ω)| ≤ c2|z|−
1

α+ −k

for |z| > z0 uniformly for all ω ∈ Ω and t ∈ R
+.

Remark 2.4. In Definition 1.1 we introduced quasi-stable processes for the so-
lution to Xt =

∫ t
0

∫
σ(Xs− , z) (µ − γ)(dz, ds). Now σ(Xs− , z) can also be written as

h(s, z, ω) = σ(Xs−(ω), z), i.e., Xt =
∫ t
0

∫
h(s, z, ω)(µ−γ)(dz, ds). The above h(s, z, x)

can be regarded as quasi-stable in the sense of both Definition 1.1 and Definition 2.1.
Remark 2.5. In contrast to Bass and Cranston [3] we include the kth derivative.

The number k depends on the highest order of the Malliavin derivative involved.
Since the function h : R → R : z �→ |z|−1/α does not belong to L2(Z) for

0 < α < 2, we define the truncated α-stable process Zmt by throwing away all jumps

larger than m, i.e., for 0 < α < 2, Zmt =
∫ t
0

∫
(|z|−1/α∧m)(µ−γ)(dz, ds). Furthermore,

if 0 < α < 1, we can also define the truncated α-stable subordinator by

Zmt =

∫ t

0

∫
(|z|−1/α ∧m)µ(dz, ds).(2.1)

Proposition 2.1. Let Zt =
∫ t
0

∫
h(s, z, ω)µ(dz, ds), where h is bounded and

belongs to M2 such that h(s, z, ω) is a quasi-stable process of order zero between the
indices α− and α+ with 0 < α− ≤ α+ < 1.

(i) Define σ+ := sup(s,z,ω) |z|
1

α+ |h(s, z, ω)|, and

m = (σ+)−1 sup
(s,z,ω)

(
1 ∨ |z| 1α

)
|h(s, z, ω)|,

where ∨ denotes the maximum. Let Zm,+t be defined by (2.1), where α is
replaced by α+. Then ‖Zt‖p ≤ σ+‖Zm,+t ‖p for p ≥ 1 and t ∈ R

+.

(ii) Assume that h(s, z, ω) is positive a.s. and define σ− = inf(s,z,ω) |z|
1

α− h(s, z, ω).

Then σ−‖Zm,−t ‖p ≤ ‖Zt‖p for p ≥ 1 and t ∈ R
+, where Zm,−t =∫ t

0

∫
1(−∞,−1]∪[1,∞)(z) |z|− 1

α− µ(dz).
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Proof. For (i) note that from |h(s, z, ω)| ≤ σ+(m∧|z|− 1

α+ ) it follows that |∆Zs| ≤
∆Zm,+s and therefore

|Zt| =
∣∣∣∑
s≤t

∆Zs

∣∣∣ ≤∑
s≤t
|∆Zs| ≤ σ+

∑
s≤t

∆Zm,+s ≤ σ+Zm,+t a.s.

Thus, we obtain ‖Zt‖p ≤ σ+‖Zm,+t ‖p. Part (ii) can be proved in an analogous way

because h(s, z, ω) ≥ σ− |z|− 1

α− .

Proposition 2.2. Let Zmt =
∫ t
0

∫
Z(|z|− 1

α ∧m)µ(dz, ds), where 0 < α < 1 and

0 < t ≤ 1, and let Vt =
∫ t
0

∫
1(−∞,−1]∪[1,∞)(z) |z|− 1

αµ(dz, ds). Then the following
conditions are satisfied:

1. for β > α, t−
1
β ‖Zmt ‖ ≤ c(p) (m + ‖Zm1 ‖p), and

2. for β ≤ α, V1 ≤ t−
1
β Zmt .

Proof. To show (i), we decompose Zt into two processes, i.e.,

Zmt =
∑
s≤t

1
{∆Zm

s <t
1
β }

∆Zms +
∑
s≤t

1
{∆Zm

s ≥t
1
β }

∆Zms =: Ṽ tt + K̃t
t ,

where Ṽ ts and K̃t
s are defined by Ṽ ts =

∫ s
0

∫
Z 1

(−∞,−t−
α
β )∪(t

−α
β ,∞)

(z) |z|− 1
α µ(dz, dr)

and K̃t
s =

∫ s
0

∫
Z 1

[−t−
α
β , t

−α
β ]

(z) (m ∧ |z|− 1
α )µ(dz, dr). Note that since Z = R \ {0},

the process K̃t
s is well defined. A short calculation shows that the Laplace transform

Ψ(λ) of Ṽ tt /t
1
β is Ψ(λ) = exp(t

∫ t 1
β

0
e−λx/t

1
β
ν̄(dx)), where

ν̄(x) = ν(x,∞) =

{
x−α, x < m−α,
0, m−α ≤ x.

Substitution yields Ψ(λ) = exp(t
∫ 1

0
e−λxν̄(t

1
β dx)). It is easy to see that ν̄(tx) ≤

t−αν̄(x) for 0 < x < m. Thus it follows Ψ(λ) ≤ exp(t1−
α
β
∫ 1

0
e−λxν̄(dx)), and therefore

Ṽ tt /t
1
β ≤ Ṽ 1

1 = V1 ≤ Zm1 a.s. It remains to calculate t−
1
β ‖K̃t

t‖p. We take k such that
k − 1 < 1

β ≤ k. Fix k0 = 2n0 for some fixed n0 ∈ N such that k0(1− α
β ) ≥ k. Let

Ki,t
s =

∫ s

0

∫
Z

1
[−t−

α
β ,t

−α
β ]

(z)
(
m

1

2i ∧ |z|− 1

2iα

)
µ(dz, dr), i = 1, . . . , n0.

Note that Ki,t
s has Lévy measure with total mass C t−

α
β . Therefore, Ki,t

s is a com-
pound Poisson process for 0 < t ≤ 1 and Remark 2.2 implies, for p ≥ 1,∥∥∥K̃t

s

∥∥∥p
p

=
∥∥[K1,t,K1,t

]
s

∥∥p
p
≤ c1(p)

∥∥K1,t
s

∥∥2p

2p
.

Iteration yields∥∥∥K̃t
s

∥∥∥
p
≤ c1(p)

∥∥K1,t
s

∥∥2

2p
≤ · · · ≤ ci−1(p)

∥∥Ki−1,t
s

∥∥2i−1

2i−1p

= ci−1(p)
∥∥[Ki,t,Ki,t

]
s

∥∥2i−1

2i−1p

≤ ci(p)
∥∥Ki,t

s

∥∥2i

2ip
≤ · · · ≤ cn0(p)

∥∥Kn0,t
s

∥∥k0
k0p

.
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By letting s = t and Remark 2.3 we see that t−1‖Kn0,t
t ‖p ≤ m

1
k0 t−

α
β and therefore

t−
1
β ‖K̃t

t‖p ≤ t−k‖K̃t
t‖p ≤ cn0

(p) t−k ‖Kn0,t
s ‖k0k0p = mt−k0

α
β −k+k0 ≤ m,

since −k + k0 − α
β k0 ≥ 0. Thus t−

1
β ‖Zmt ‖p ≤ C(p) (m + ‖Zm1 ‖p) ≤ C(p)m. To show

(ii), let β ≤ α. Proceeding as above, we see that the Laplace transform of Ṽ tt /t
1
β is

Ψ(λ) = exp(t1−
α
β
∫ 1

0
e−λxν̄(dx)). Because K̃t

t has only positive jumps, V1 ≤ Ṽ tt /t
1
β ≤

t−
1
β Zmt for β ≤ α.
Remark 2.6. Let At be defined as in Bass and Cranston [3, Lemma 6.1], i.e.,

At =
∫ t
0

∫
exp(−|z|/p0)µ(dz, ds). Since |z|−1/α ≥ exp(−|z|/p0) for all |z| ≥ z0, z0

large enough, CZt ≥ At a.s. for a constant C > 0, and therefore Z−1
t ≤ CA−1

t

a.s. Because A−1
t is in Lp0 , the inverse Z−1

t is also in Lp0 . Analyzing the proof
of Bass and Cranston, we see for a truncated, quasi-stable subordinator (see (2.1))
that ‖Zmt −1‖p ≤ C 1

α Γ( 1+p
α − 1), and therefore we can give a threshold of ‖Zmt −1‖p

independent of m.
Remark 2.7. Let Zmt be defined as in (2.1). Combining Proposition 2.2 and

Remark 2.6, we obtain an estimate for the inverse of Zmt , i.e., ‖(Zmt )−1‖p ≤ C t−
1
β ,

where β ≤ α.

2.2. The Doléans–Dade exponential. Let us now introduce the stochastic
exponential, or Doléans–Dade exponential, and its generalization. Since it is necessary
for our computations, we list some properties. The proofs can be found in Protter
[15, Chapter II.8].

Let Xt be a semimartingale whose martingale part is purely discontinuous. The
stochastic exponential E(X)t is defined by

E(X)t = exp(Xt −X0)
∏
s≤t

[(1 + ∆Xs) exp(−∆Xs)].

Before giving an estimate of ‖E(X)t‖p, p ≥ 2, we state the following lemmas.
Lemma 2.2 (Bass and Cranston [3, Lemma 5.2]). Let n ≥ 1 and p = 2n.

Suppose that h(s, z) is predictable and |h(s, z)| ≤ Ksh̄(z), where h̄ is a deterministic

bounded function that is in L2(ν). Suppose that Zt =
∫ t
0

∫
h(s, z)(µ − γ)(dz, ds)

and let Z∗
t = sup0≤s≤t |Zs|. Then we have E[Z∗p

t ] ≤ c∗(p, h̄, t)
∫ t
0

E[ |Ks|p] ds and

E[Zpt ] ≤ c(p, h̄, t)
∫ t
0

E[|Ks|p] ds .
Remark 2.8. Analyzing the proof of [3, Lemma 5.2], we see that

c∗(p, h̄, t) ≤ c̄(t)c(2n)
(

2p−1c(2n−1)
(

2p−1 . . .
(

2p−1c(4)

×
(
c(2)|h̄|2n

2n + |h̄|2n

2n−1

)
+ |h̄|2n

2n−2

)
+ · · ·

)
+ |h̄|2n

2

)
,

where the constant c(p) arises by the Burkholder–Gundy inequality, c̄(t) ≥ 1 and
increasing in t. Thus, if |h̄|q ≤ m̄ for all q ≥ 2, then c∗(p, h̄, t) ≤ c(p, t) m̄p

for a constant c(p, t) depending only on p and t. Further, we have c(p, h̄, t) ≤
c(t) 2np

∑n
k=1 |h|2n2k .

Proof. For the first part see [3, Lemma 5.2]. For the second part, the only differ-
ence is that we use the isometry of the stochastic integral instead of the Burkholder
inequality.



94 ERIKA HAUSENBLAS

Corollary 2.3. Let Xt be a solution of Xt = x0+
∫ t
0

∫
σ(Xs− , z) (µ−γ)(dz, ds)+∫ t

0
b(Xs−) ds, where supx σ(x, z) is bounded by a bounded deterministic function h̄(z)

in L2(ν). Furthermore, assume that b(x) is bounded by mb. Then for n ≥ 1 and
p = 2n,

‖E(X)∗t ‖pp ≤ 2p−1 exp(x0p) exp
(
2p−1

[
c∗(p, h̄, t) + mpb

]
t
)

and

‖E(X)t‖pp ≤ 2p−1 exp(x0p) exp
(
2p−1

[
c(p, h̄, t) + mpb

]
t
)
,

where the constants c∗(p, h̄, t) and c(p, h̄, t) coincide with those in Lemma 2.2.

Proof. Note that E [X∗
t
p]

1
p is a norm for p ≥ 2 (see Protter [15, Chapter V.2]).

By Lemma 2.2 we have

E

[ ∣∣∣∣E(X)t − exp(x0)−
∫ t

0

E(X)s−b(Xs−) ds

∣∣∣∣
∗
p

]
≤ c∗(p, h̄, t)

∫ t

0

E [|E(X)s|p] ds.

The triangle inequality yields

E [E(X)∗t
p]

1
p ≤ exp(x0) + mb

(∫ t

0

E [E(X)∗s
p] ds

) 1
p

+

(
c∗(p, h̄, t)

∫ t

0

E [E(X)∗s
p] ds

) 1
p

and therefore

E [|E(X)t|∗p] ≤ 2p−1

(
exp(px0) +

(
c∗(p, h̄, t) + mpb

) ∫ t

0

E [E(X)∗s
p] ds

)
.

Gronwall’s lemma then yields the assertion. The proof of the second inequality is in
analogy.

Let Ht be a càdlàg and adapted semimartingale and suppose that Xt satisfies the
assumption of Corollary 2.3. The generalization of the stochastic exponential is the
solution of the SDE Zt = Ht+

∫ t
0
Zs−dXs, which is explicitly given by Zt = EH(X)t =

E(X)t(H0 +
∫ t
0
E(X)−1

s dHs). Suppose that H0 = 0. As above, we can show that for
n ≥ 1 and p = 2n we have∥∥∥∥Zt −Ht −

∫ t

0

b(Xs−)Zs− ds

∥∥∥∥
p

p

≤ c(p, h̄, t)

∫ t

0

‖Zs‖pp ds.

The triangle inequality implies

‖EH(X)t‖p = ‖Zt‖p ≤ ‖Ht‖p + mb

(∫ t

0

‖Zs‖pp ds
) 1

p

+

(
c(p, h̄, t)

∫ t

0

‖Zs‖pp ds
) 1

p

.

Therefore we get

‖EH(X)t‖pp ≤ 2p−1‖Ht‖pp + 2p−1
(
c(p, h̄, t) + mpb

) ∫ t

0

‖EH(X)s‖pp ds.(2.2)

Proceeding as above, we also obtain

‖EH(X)∗t ‖pp ≤ 2p−1‖Ht‖pp + 2p−1
(
c∗(p, h̄, t) + mpb

) ∫ t

0

‖EH(X)∗s‖pp ds.(2.3)
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If ‖Ht‖p in (2.2) or (2.3) is of polynomial growth in t, i.e., ‖Ht‖p = O(tδ) for some
δ ∈ R, δ ≥ 0, we can apply the following modification of Gronwall’s lemma to obtain
an estimate of EH(X)t.

Lemma 2.4 (modification of Gronwall’s lemma). Suppose that g is a continuous

function satisfying 0 ≤ g(t) ≤ a tδ + β
∫ t
0
g(s)ds for 0 ≤ t ≤ T with β > 0, δ ∈ R,

δ ≥ 0. Then g(t) ≤ a tδ exp(βt) for 0 ≤ t ≤ T .
Proof. Using Gronwall’s lemma and integration by parts, the proof is done by

direct calculations.
Now assume that ‖Ht‖p = O(tδ) for some δ ∈ R, δ ≥ 0. A combination of Lemma

2.4 and (2.2) leads to the estimate

‖EH(X)t‖pp ≤ 2p−1 tδp exp
(
2p−1

(
c(p, h̄, t) + mpb

)
t
)
.(2.4)

We now investigate the inverse of E(X)t and EH(X)t, where Xt satisfies the
assumption of Corollary 2.3. First we have to make sure that the jump sizes are not
too large. For this we additionally assume that there exists a 0 < ρ ≤ 1 such that
there are no jumps ∆Xs smaller than −(1− ρ) and larger than one. Since for fixed ω
there is only a finite number of s such that |∆Xs| ≥ 1

2 on each compact interval, it is
sufficient to show that

Vt =
∏

0<s≤t

(
1 + ∆Xs1{|∆Xs|≤ 1

2}
)

exp
(
−∆Xs1{|∆Xs|≤ 1

2}
)

converges and is of finite variation. But since | ln(1 + x)− x|, | ln(1− x) + x| ≤ x2/2
for |x| ≤ 1/2, it follows that both Vt and V −1

t are bounded by exp ([X,X]t) (see also
Bass and Cranston [3, p. 510]). Now, consider

Ut =
∏

0<s≤t

(
1 + ∆Xs1{|∆Xs|> 1

2}
)

exp
(
−∆Xs1{|∆Xs|> 1

2}
)
.

Because
(
1 + ∆Xs1{|∆Xs|> 1

2}
)−1 ≤ ρ−1 and |x| ≤ 2x2 for |x| ≥ 1

2 , U−1
t is bounded

by exp (2[X,X]t) /ρ. Thus we have E(X)−1
t ≤ C · exp(|X|∗t ) exp(2[X,X]t) a.s. Since

supx σ(x, z) is bounded by a bounded deterministic function, Lemma 2.1 [3] shows
that ‖E(X)−1

t ‖p is finite. Now, let Zt = EH(X)t, where Xt is defined in Corollary 2.3
and the jumps are bounded from below by −(1 − ρ), 0 < ρ < 1, and from above by
one. Then we have (see Bass and Cranston [3, p. 510]) Zt ≥ E(X)t(infs≤t E(X)−1

s )Ht,
and, if Ht is invertible, Z−1

t ≤ E(X)−1
t E(X)∗t (Ht)

−1. Assume furthermore that Xt
and σ, respectively, are quasi-stable of order zero between the indices α+ and α−,
0 < α− ≤ α+ < 2. We then obtain

‖E(X)−1
t ‖pp ≤ C(t, q1, h̄,mb) ‖H−1

t ‖q2 ,

where 1/q1 + 1/q2 = 1/p.

2.3. Malliavin calculus. In this section we recall briefly some main features of
the Malliavin calculus for Poisson random measures. For details see Bass and Cranston
[3] (we use the notation of this article) or the book of Bichteler, Gravereaux, and Jacod
[5].

In the Wiener case, the key ingredient in the Malliavin calculus, or calculus of
variations, is the introduction of a symmetric linear operator L defined on a dense
subspace of the Hilbert space of L2 functionals, together with a bilinear form Γ(·, ·)
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defined by Γ(X,Y ) := L(XY ) − LXY − XLY , X,Y in the domain of L. These
operations satisfy that if X and Y are in the domain of L and φ is a C1 function,
then φ ◦X is also in the domain of L and E[Γ(φ(X), Y )] = −E[φ′(X)Γ(X,Y )]. This
formula is also called the “integration by parts setting,” and if Γ(X,Y ) is invertible,
we can give an estimate of the quantity E[φ′(X)F ] for some L2 functional F . Bass
and Cranston [3] transferred this idea to the Poissonian case to prove the existence
of the local time for certain Lévy processes. To show the convergence of the Euler
scheme we have to show that E[φ(IV )(X)Y ] is bounded, where X is the solution to
(1.1) and Y ≈ X − x0. In the following we recall the main results of the Malliavin
calculus for quasi-stable processes.

One approach of the Malliavin calculus is due to Bismut and is based on a per-
turbation argument. In contrast to the Wiener case, infinitely many jumps have to
be perturbed simultaneously—this essentially requires that the jump times of µ be
left unchanged and that only the jump size be modified. We can do it as follows.

Define M2
∞ = {h : h is predictable, and we have for some bounded deterministic

function H(z) ∈ L2(µ): |h(s, z, ω)| ≤ H(z) for all s, z a.s.}. Suppose that l ∈ M2
∞

with |l(s, z)| ≤ 1 a.s., and let

v(s, z) =

∫ z

0

l(s, y)dy.(2.5)

Now the process Xt will be perturbed in direction l by shifting the random measure
µ as µε(B × [0, T ]) =

∫ t
0

∫
1B(z + εv(s, z))µ(dz, ds), and

Lt =

∫ t

0

∫
l(s, z)(µ− γ)(dz, ds).(2.6)

By the Girsanov transformation we can construct a martingale M ε
t such that

µε(B, [0, t])−tν(B) is a local martingale. The martingale M ε
t is given by the stochastic

exponential of εLt. The associated probability measure Qεt is defined by its Radon–
Nikodým derivative.

In the Wiener case, the Malliavin derivative is the Fréchet derivative of the per-
turbed path with respect to ε at ε = 0. Analogously, the derivative for a functional
G of µ in the direction of l is given in the following definition.

Definition 2.5. A functional G of µ will be called Lp(P ) smooth with derivative
DlG(µ) ∈ Lp(P ) if for every l ∈M2

∞, E[|ε−1[G(µε)−G(µ)−εDlG(µ)]|p] −→ 0 as ε→
0.

Then the following theorem gives the integration by parts setting.
Theorem 2.6 (Bass and Cranston [3, Theorem 3.4]). Suppose that G is an

L1(P ) smooth functional of µ and belongs to Lp(P ) for some p > 1. Suppose that
l ∈M2

∞, and Lt is defined by (2.6). Then E[G(µ)Lt] = −E[DlG(µ)].
Let h ∈ C2 with compact support and set G(µ) = h(Y ). Suppose that Y is L1

smooth. From

|h(Y (µε))− h(Y )− εh′(Y )DlY | ≤ |h(Y (µε))− h(Y )− h′(Y )(Y (µε)− Y )|
+ ‖h′‖ · |Y (µε)− Y − εDlY |,

and since ε−1(Y (µε)−Y (µ)) tends to DlY (µ) as ε tends to zero in L1, we can conclude
that h(Y ) is L1(P ) smooth with derivative h′(Y )DlY . Moreover, thanks to Theorem
2.6 we know E[h′(Y )DlY ] = −E[h(Y )L]. Assume that DlY is strictly positive. Let
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F be a functional of µ. Setting h0(µ) = h(Y (µ)) F (µ) (DlY )−1(µ) we obtain

E[h0(µ)L] = −E[Dlh0(µ)]

= −E[h′(Y )F (µ) + h(Y )DlF (µ)(DlY )−1 + h(Y )F (µ)(DlY )−2D2
l Y ],

and therefore

E[h′(Y )F (µ)] = −E[h(Y )HY [F (µ)]],(2.7)

where HY [F (µ)] := (DlY )−1((DlY )−1D2
l Y F (µ) + F (µ)L + DlF (µ)).

Suppose that Xt satisfies the hypothesis of Theorem 5.1 [3] and l belongs to M2
∞.

Then Xt is Lp(P ) smooth for all p ≥ 1 and the derivative DlXt is a solution to

DlXt =

∫ t

0

∫
σx(Xs− , z)DlXs−(µ− γ)(dz, ds) +

∫ t

0

bx(Xs−)DlXs−ds

+

∫ t

0

∫
σz(Xs− , z)v(s, z)µ(dz, ds),(2.8)

where v is given by (2.5).
Fix k0 ∈ N. Suppose in the next paragraph that Dkl Xt is well defined for 0 ≤

k ≤ k0 and DlX
−1
t exists. Until now we have investigated the forward variable. But

considering E
x[f(Xt)] =: E[f(Xt(x))] it is easy to see how the Malliavin calculus can

be applied to the study of the backward variable x. We use the method of Gihman
and Skorokhod [9, Chapter II.2.8] (see also Bichteler, Gravereaux, and Jacod [5, Proof
of Theorem 28, resp., Chapter 4-c]), i.e.,

∂xkE[f(Xt)] =

k∑
i=1

E
x
[
(∂yk−i+1f)(y)

∣∣
y=Xt

∇iXt
]
,

where ∇Xt satisfies

∇Xt = 1 +

∫ t

0

∫
σx(Xs− , z)∇Xs−(µ− γ)(dz, ds) +

∫ t

0

bx(Xs−)∇Xs− ds,(2.9)

and ∇iXt = ∇i−1∇Xt. Now it follows from (2.7) that

∂xkE
x[f(Xt)] =

k∑
i=1

E
x
[
f(Xt)H

k−i+1
X

[∇ilXt]] .(2.10)

Now, assume that Xt is a solution of (1.1), where σ is quasi-stable of order
one between indices α− and α+ with σz(x, z) positive. Furthermore, assume that
σ : R× R → R and b : R → R satisfy the following hypotheses for some constants M
and mb (compare also Bass and Cranston [3, Theorem 4.4]):

(H0*) The function σx(x, z) satisfies inequality (1.2) uniformly in x for i = 0 and
|z| > z0, 0 ≤ z0 <∞.

(H1*) sup(x,z) |σz(x, z)| ≤M .
(H2*) (i) supx |bx(x)| ≤ mb.

(ii) supx,z |σx(x, z)| ≤M and supx |σx(x, ·)|p ≤M .

(H3*) Let z0(x) = supz{|σx(x, z)| > 1
4}. Then |σx(x, z)/σz(x, z)| is bounded by M

for all |z| < z0(x), with the convention that 0/0 = 0.
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Next we have also to specify the direction of the derivative, i.e., the function l. Of
course, there are many choices of l, but l should be chosen so that DlXt is invertible
and ‖DlXt‖p is not too large. Our choice is

l(s, z) =
∂

∂z

(
z2

1 + |z|1+ 1
p0

)
− ∂

∂z

(
σx(Xs− , z)

σz(Xs− , z)
ϕ (σx(Xs− , z))

)
DlXs− ,(2.11)

where 1
2 < p0 < 2

3 and ϕ ∈ C3(R) such that ϕ(i)(x) ≤ 40, i = 1, 2, 3, 4, and

ϕ(x)




= 0, x ∈ (− 1
4 ,

3
4

)
,

∈ (0, 1), x ∈ (− 3
4 ,− 1

4

) ∪ (
3
4 , 1

)
,

= 1, x ∈ (−∞,− 3
4 ,

) ∪ (1,∞) .

In fact, l(s, z) does not belong to M2
∞. But as in Bass and Cranston [3, Proof

of Theorem 4.4, p. 509] we can show under the hypothesis (H0*), (H1*), (H2*),
and (H3*) and a limit argument that this choice is valid. For simplicity, we write
v(s, z) = v1(z) + v2(s, z).

Remark 2.9. Defining φ(x, z) := (ϕ ◦ σx) (x, z) and taking (H0*) into account,
we see that the set ∪x∈R{z ∈ R; φ(x, z) �= 0} has finite mass. Analogously, defining
φ′(x, z) := (ϕ′ ◦ σx) (x, z), the set ∪x∈R{z ∈ R; φ′(x, z) �= 0} has finite mass.

The process DlXt = Yt can also be written as a Doléans–Dade exponential, i.e.,
Yt =

∫ t
0
Ys−dKs + Ht, where Kt and Ht are given by

Kt =

∫ t

0

∫
σx(Xs− , z)(µ− γ)(dz, ds) +

∫ t

0

bx(Xs−)ds

−
∫ t

0

∫
σx(Xs− , z)ϕ(σx(Xs− , z))µ(dz, ds),(2.12)

Ht =

∫ t

0

∫
σz(Xs− , z)v1(z)µ(dz, ds).(2.13)

Our next objective is to give an upper bound of the derivative DlXt. For clarity, we
set α = α+. Since γ(dz, ds) = ν(dz) ds = dz ds, we can write for Kt

Kt =

∫ t

0

∫
σx(Xs− , z) [1− ϕ(σx(Xs− , z))] (µ− γ)(dz, ds)

−
∫ t

0

∫
σx(Xs− , z)ϕ(σx(Xs− , z)) dz ds +

∫ t

0

bx(Xs−)ds.(2.14)

Let hK(z) := supx σx(x, z) [1− ϕ(σx(x, z))]. Note that hK(z) is bounded from below
by− 3

4 and from above by one. Moreover, by Remark 2.9 the function σx(x, ·)ϕ(σx(x, ·))
has a uniformly bounded support in x, and since supx,z |σx(x, z)| is bounded,
the integral

∫
σx(x, z)ϕ(σx(x, z)) dz is bounded uniformly for all x. Setting Ca =

supx
∣∣ ∫ σx(x, z) ϕ(σx(x, z)) dz

∣∣, we obtain by (2.3)

‖DlX∗
t ‖pp ≤ 2p−1‖Ht‖pp + 2p−1 (c∗(p, hK , t) + (mb + Ca)

p)

∫ t

0

‖DlX∗
s ‖pp ds,

where p = 2n for some n ≥ 1 and Ht is given by (2.13). Let us define

σ+
H = sup

x,z
|z|− 1

α− 1
p0 |σz(x, z)v1(z)| and mH = σ+

H
−1 sup

x,z

(|σz(x, z)v1(z)| ∨ 1
)
.
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Since σ(x, z) is quasi-stable of order one, we know that σ+
H < ∞ and σ+

H is strictly
larger than zero. Therefore and by (H1*), it follows that mH < ∞. Proposition 2.1
leads to ‖Ht‖p ≤ σ+

H‖ZHt ‖p, where

ZHt =

∫ t

0

∫ (
mH ∧ |z|−

1
α− 1

p0

)
µ(dz, ds).

By Proposition 2.2 we obtain t−δH‖ZHt ‖p ≤ C(T )σ+
HmH ≤ C(T )M for 0 < t < T

and 1/p0 + 1/α > δH . It follows by a generalization of Gronwall’s lemma 2.4 (see also
(2.4)) that

t−δH‖DlX∗
t ‖pp ≤ C(T )Mp 2p−1 exp

(
2p−1 (c∗(p, hK , t) + (mb + Ca)

p) t
)
.(2.15)

Assume σ(x, z) is a quasi-stable process with indices α+ and α− of order five satisfying
the hypotheses of Theorem 1.2. Our next objective is to compute the Malliavin
derivative D2

lXt. The second derivative D2
lX satisfies the SDE

D2
lXt =

∫ t

0

∫ [
σxx(Xs− , z)DlX

2
s− + σx(Xs− , z)D2

lXs−
]
(µ− γ)(dz, ds)

+

∫ t

0

[bxx(Xs−)DlX
2
s− + bx(Xs−)D2

lXs− ] ds

−
∫ t

0

∫
∂x (σx(Xs− , z)ϕ(σx(Xs− , z)))DlX

2
s− µ(dz, ds)

−
∫ t

0

∫
σx(Xs− , z)ϕ(σx(Xs− , z))D2

lXs− µ(ds, dz)

+

∫ t

0

∫
σxz(Xs− , z)DlXs−v1(z)µ(dz, ds)

+

∫ t

0

∫ [
σxz(Xs− , z)DlXs− + ∂z (σx(Xs− , z)ϕ(σx(Xs− , z)))DlXs−

+ ∂z (σz(Xs− , z)v1(z))
]
v(s, z)µ(dz, ds).

Analogously to DlXt, we can write D2
lXt as a generalized stochastic exponential with

H̄ and K defined by (2.14) and

H̄t =

∫ t

0

∫
σxx(Xs− , z)DlX

2
s−(µ− γ)(dz, ds) +

∫ t

0

bxx(Xs−)DlX
2
s− ds

+

∫ t

0

∫
2DlXs−σxz(Xs− , z)v1(z)µ(dz, ds)

+

∫ t

0

∫
σz(Xs− , z)v1(z)v1z(z) + σzz(Xs− , z)v2

1(z)µ(dz, ds)

+

∫ t

0

∫ {
a1(Xs− , z)DlX

2
s− + a2(Xs− , z)DlXs−

}
µ(dz, ds) ,(2.16)

where

a1(x, z) =
σxz(x, z)

σz(x, z)
σx(x, z)φ(x, z)− ∂x

(
σx(x, z)φ(x, z)

)
+ ∂z

(
σx(x, z)φ(x, z)

)σx(x, z)

σz(x, z)
φ(x, z),

a2(x, z) = ∂z
(
σz(x, z)v1(z)

)σx(x, z)

σz(x, z)
φ(x, z).
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Note that we set φ(x, z) := (ϕ ◦ σx)(x, z) and φ′(x, z) = (ϕ′ ◦ σx)(x, z).
Remark 2.10. Set

A1t =

∫ t

0

∫
a1(Xs− , z)µ(dz, ds),

A2t =

∫ t

0

∫
a2(Xs− , z)µ(dz, ds).

By Remark 2.9 we know the processes A1t and A2t are compound Poisson processes.
Thanks to condition (H3), the quantities supx,z |a1(x, z)| and supx,z |a2(x, z)| are
bounded by CM2 and by M . Combining Remarks 2.2 and 2.3 yields t−n‖A1t‖p ≤
3
4 C(T )M2 and t−n‖A2t‖p ≤ 3

4 C(T )M for 0 < t ≤ T and n = 2k, k ∈ N.
Analogous to (2.3), we obtain

‖D2
lX

∗
t ‖pp ≤ 2p−1 ‖H̄t‖pp + 2p−1 (c∗(p, hK , t) + (mb + Ca)

p)

∫ t

0

‖D2
lX

∗
s ‖pp ds.(2.17)

Defining Jt =
∫ t
0

∫
σxz(Xs− , z)v1(z)µ(dz, ds) and Vt =

∫ t
0

∫
σz(Xs− , z)v1(z)v1z(z) +

σzz(Xs− , z)v2
1(z)µ(dz, ds), we can write for H̄t

H̄t =

∫ t

0

∫
σxx(Xs− , z)DlX

2
s−(µ− γ)(dz, ds) +

∫ t

0

bxx(Xs−)DlX
2
s− ds

+

∫ t

0

DlXs− dJt + Vt +

∫ t

0

DlX
2
s−dA1s +

∫ t

0

DlXs−dA2s.

Applying Lemma 2.2 to the first summand and Emery’s inequality to the third, fifth,
and sixth summands, we obtain

‖H̄t‖pp ≤ (c (p, t) Mp + mpb)

∫ t

0

‖DlX2
s‖pp ds + ‖DlX∗

t ‖pq1‖Jt‖pq2 + ‖Vt‖pp
+ ‖DlX∗

t
2‖p2q1‖A1t‖pq2 + ‖DlX∗

t ‖pq1‖A2t‖pq2 ,

where 1/q1 + 1/q2 = 1/p. Let σ+
J and σ+

V be two constants given by σ+
J =

sup(x,z) |z|
1
α+ 1

p0 |σxz(x, z)v1(z)| and σ+
V = sup(x,z) |z|

1
α+ 2

p0 |σz(x, z)v1(z)v1z(z) +

σzz(x, z)v2
1(z)|, respectively. The suprema exist and are finite, because we have first

(see (2.11)) supz |z|
1
p0 v1(z) ≤ C · z for some C > 0 and second, by condition (H1),

sup(x,z) |z|
1
α+1σxz(x, z) ≤ C. Note that the constant C may vary from line to line.

Thus, we have sup(x,z) |z|
1
α+ 1

p0 σxz(x, z)v1(z) ≤ C < ∞, and therefore σ+
J exists and

is finite. To show the existence of σ+
V , we have to take into account that σ(x, z) is

quasi-stable at least of order two. Let

mJ =
(
σ+
J

)−1
sup
x,z

(|σxz(x, z)v1(z)| ∨ 1
)
,

and

mV = (σ+
Z )−1 sup

x,z

(|σz(x, z)v1(z)v1z(z) + σzz(x, z)v2
1(z)| ∨ 1

)
.

Setting hJ(s, z, ω) = σxz(Xs−(ω), z)v1(z) and

hV (s, z, ω) = σz(Xs−(ω), z)v1(z)v1z(z) + σzz(Xs−(ω), z)v2
1(z),
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we know

sup
(s,z,ω)

|z| 1α+ 1
p0 hJ(s, z, ω) ≤ σ+

J and sup
(s,z,ω)

|z| 1α+ 2
p0 hV (s, z, ω) ≤ σ+

V ,

respectively, and therefore hJ and hV are quasi-stable of order zero with above indices
(1/α + 1/p0)−1 and (1/α + 2/p0)−1, respectively. Further, let ZJt =

∫ t
0

∫
(mJ ∧

|z|− 1
α− 1

p0 )µ(dz, ds) and ZVt =
∫ t
0

∫
(mV ∧|z|−

1
α− 2

p0 )µ(dz, ds). Since (1/α + 1/p0)−1 <
1 and (1/α + 2/p0)−1 < 1, we can apply Proposition 2.1 in order to get ‖Jt‖p ≤
σ+
J ‖ZJt ‖p and ‖Vt‖p ≤ σ+

V ‖ZVt ‖p, respectively. Proposition 2.2 yields t−δJ‖ZJt ‖p ≤
C(T )σ+

JmJ ≤ C(T )M for 1/p0 + 1/α > δJ = δH and t−δV ‖ZVt ‖p ≤ C(T )σ+
VmV ≤

C(T )M for 2/p0 + 1/α > δV and 0 < t ≤ T , respectively. Thus, we can conclude for
H̄t and 0 < t ≤ T that

t−δV p‖H̄t‖pp ≤ (c(p, t)Mp + mpb) t−δV p 22p−1

×
∫ t

0

s2δHp exp
(
22p−1

(
c(2p, hK , t) + (mb + Ca)

2p
)
s
)
ds

+Mp 22p−1 exp
(
22p−1

(
c∗(2p, hK , t) + (mb + Ca)

2p
)
t
)
t−δJp‖Jt‖pp︸ ︷︷ ︸
≤C(T )Mp

+ t−δV p‖Vt‖pp︸ ︷︷ ︸
≤C(T )Mp

+ ‖DlX∗
t
2‖p2q1 t−δV p‖A1t‖pq2︸ ︷︷ ︸

≤C(T )M2p

+‖DlX∗
t ‖pq1 t−δV p‖A2t‖pq2︸ ︷︷ ︸

≤C(T )Mp

.

Substituting H̄t in (2.17) and applying Lemma 2.4 we get for q1 = q2 = 2p

t−δV p‖D2
lX

∗
t ‖pp ≤ C

(
M4p + mpb

)
× exp

(
22p−1

(
c∗(4p, hK , t) + (mb + Ca)

4p
)
t
)
.(2.18)

Therefore t−δV ‖D2
lX

∗
t ‖p is uniformly bounded by C(T )M4 in t on (0, T ]. Iterating

(2.18) we obtain that D3
lXt equals EĤ(K)t, where Kt is given by (2.12) and

Ĥt =

∫ t

0

∫ [
3σxx(Xs− , z)DlXs−D

2
lXs− + σxxx(Xs− , z)DlX

3
s−

]
(µ− γ)(dz, ds)

+

∫ t

0

[
3bxx(Xs−)DlXs−D

2
lXs− + bxxx(Xs−)DlX

3
s−

]
ds

+

∫ t

0

∫ {
3σxz(Xs− , z)v1(z)D2

lXs− + · · ·+ σz(Xs− , z)v2
1z

}
µ(dz, ds)

+

∫ t

0

∫ [
â1(Xs− , z)DlX

3
s− + â2(Xs− , z)DlXs−D

2
lXs− + â3(Xs− , z)D2

lXs−

+ â4(Xs− , z)DlX
2
s− + â5(Xs− , z)DlXs−

]
µ(dz, ds),(2.19)

where âi(x, z) i = 1, . . . , 5, have bounded support (see condition (H3)). Observe that
â1(x, z) = ∂2

x (σx(x, z)φ(x, z)) + · · · ≤ CM3, â2(x, z) ≤ CM3, â3(x, z), â4(x, z) ≤
CM2, and â5(x, z) ≤ CM . Further we have the identity D4

lXt = EH̃(K)t, where Kt
is given in (2.12) and

H̃t =

∫ t

0

∫ {
4σxx(Xs− , z)D3

lXs−DlXs− + · · ·+ σz(Xs− , z)v1(z)v3
1z(z)

}
µ(dz, ds)
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+

∫ t

0

∫ [
ã1(Xs− , z)DlX

4
s− + ã2(Xs− , z)DlX

3
s−DlXs−

+ · · ·+ â9(Xs− , z)DlXs−
]
µ(dz, ds).

Next, we investigate in the norm of D3
lXt. Defining Âit =

∫ t
0

∫
â1(Xs− , z)µ(dz, ds),

we know

‖Ĥt‖pp ≤ C (Mp + mpb)
[
‖DlX3

t ‖pp + ‖DlX2
t ‖p2p‖DlXt‖p2p

]
ds

+ ‖DlX2
t
∗‖p2p ‖J1

t ‖p2p‖D2
lX

∗
t ‖p2p ‖J2

t ‖p2p
+ ‖DlXt∗‖p2p ‖Vt‖p2p + ‖Wt‖pp + ‖DlX3

t
∗‖p2p‖Â1t‖p2p

+ ‖D2
lXt

∗‖p3p‖DlXt∗‖p3p ‖Â2t‖p3p + · · ·+ ‖DlXt∗‖p2p ‖Â9t‖p2p,(2.20)

where J1
t =

∫ t
0

∫
2σxxz(Xs− , z)v1(z)µ(dz, ds), J2

t =
∫ t
0

∫
3σxz(Xs− , z)v1(z)µ(dz, ds),

Vt =
∫ t
0

∫
3
(
σxzz(Xs− , z)v1(z) + σxz(Xs− , z)v1z(z)

)
v1(z)µ(dz, ds), and

Wt =

∫ t

0

∫
∂z

(
∂z

(
σz(Xs− , z)v1(z)

)
v1(z)

)
v1(z)µ(dz, ds)

=:

∫ t

0

∫
hW (s, z, ω)µ(dz, ds).(2.21)

By the same arguments as above and Proposition 2.1, we can conclude that ‖J it‖p ≤
Ci(T ) ‖Zmi

t ‖p for i = 1, 2, for 0 < t ≤ T , and for some Ci and mi such that Cimi ≤M .
Applying Proposition 2.2 yields that t−δH‖J it‖p and t−δV ‖Vt‖pp are uniformly bounded
by C(T )M as t tends to zero, i = 1, 2. It remains to tackle Wt. Since σ(x, z) is quasi-

stable at least of order three, we know that supx,z |z|
1
ασzzz(x, z) ≤ C |z|3. By defini-

tion of v1(z), we know that supz |z|
1
p0 |v1(z)| ≤ C|z| and supz |z|

1
p0 |v1z(z)| ≤ C|z|2.

Therefore we have supx,z |z|
3
p0

+ 1
α |σzzz(v2

1(z) + v1z(z))v1(z)| ≤ C < ∞. Analogously,

we can show supx,z |z|
3
p0

+ 1
α |σzz(Xs− , z)∂z(v

2
1(z) + v1z(z))v1(z)| ≤ C < ∞. Thus,

σ+
W = supx,z |z|

3
p0

+ 1
α |∂z(∂z(σz(x, z)v1(z))v1(z))v1(z)| is finite and strictly larger than

zero. Let mW = σ+
W

−1(supx,z |∂z(∂z(σz(x, z)v1(z))v1(z))v1(z)| ∨ 1). By Proposi-

tion 2.1 we know Wt ≤ σ+
W

∫ t
0

∫ (
mW ∧ |z|− 3

p0
− 1

α
)
µ(dz, ds), and by Proposition 2.2

t−δW ‖Wt‖p is uniformly bounded on [0, T ] by C(T )M for 3/p0 + 1/α > δW .

Remark 2.11. Note, concerning the processes Âit, that the process which pos-
sesses the highest exponent in M is

∫ t
0

∫
DlXs−D

2
lXs−dÂ2s. To be more precise, we

know t−3p ‖Ã2t‖3p ‖DlXt∗‖3p‖D2
lXt

∗‖3p ≤ CM8 and that the other summands are
at least of the same order.

Combining (2.19), (2.4), and (2.20) we get

t−δW p‖Ĥt‖pp ≤ 24p−1 C1 (M + mpb)

∫ t

0

exp
(

24p−1
(
c∗(4p, hK , t) + m4p

b

)
s
)
ds

+C2 M
4p exp

(
24p−1

(
c(4p, hK) + m4p

b

)
t
)

t−iδHp
(‖J1

t ‖p2p + ‖J2
t ‖p2p

)
+Mp C3 exp

(
22p−1

(
c(2p, hK) + m2p

b

)
t
)

t−δV p‖Vt‖p2p + C4 t−δW p‖W 3
t ‖pp

+C5M
8p exp

(
22p−1

(
c(6p, hK) + m2p

b

)
t
)
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as t tends to zero. Thus, we have

t−δW p‖D3
lX

∗
t ‖pp ≤ C(T )M8p exp

(
28p−1

(
c∗(8p, hk, t) + m4p

b

)
t
)
.(2.22)

Remark 2.12. Observe that the function hK is bounded from above by one
and from below by − 3

4 . Therefore since |σx(x, z)| ≤ C|z|− 1
α for z large enough,

|hK |p ≤ C(p) and the term c∗(8p, hK , t) is bounded by a constant C(p, t) depending
only on p and t.

Remark 2.13. Analyzing the proof of the estimates (2.15), (2.18), and (2.22)

we see (see also Remark 2.11) that the worst term is
∫ t
0
Di−1
l Xs−DlXs−dȦ2s, where

Ȧ equals A in the case of i = 2, equals Â in the case of i = 3, and equals Ã and in
the case of i = 4. A short calculation shows that the norm is bounded by Mki , where
ki = ki−1 + 1 + i, k2 = 4.

Analogously to the computations of ‖D4
lX

∗
t ‖ and taking into account Remarks

2.12 and Remark 2.13, we obtain

‖D4
lX

∗
t ‖pp ≤ C(t)M13p exp

(
216p

(
c∗(16p, hK , t) + m16p

b

)
t
)
≤ C(p, t,mb)M

13p,(2.23)

‖D5
lX

∗
t ‖pp ≤ C(t)M19p exp

(
232p

(
c∗(32p, hK , t) + m32p

b

)
t
)
≤ C(p, t,mb)M

19p.(2.24)

Finally we have to investigate some estimates of ‖Dil∇jXt‖p, where i+ j ≤ 4 and
∇jXt is given in (2.9). First, ∇Xt is the Doléans–Dade exponential E(K)t with

Kt =

∫ t

0

∫
σx(Xs− , z)(µ− γ)(dz, ds) +

∫ t

0

bx(Xs−) ds,

and norm ‖E(K)∗t ‖p ≤ exp( 1
p (c∗(p, t, σx) + mb)t) ≤ exp (c(p, t) (Mp + mb)) for p ≥ 2.

Recursively applied, (2.9) yields ∇iXt = EHi(K)t, where

Hit =
∑∫ t

0

∫
∂jxσ(Xs− , z)∇|I1|Xs− . . .∇|In|Xs− (ν − γ)(dz, ds)

+
∑∫ t

0

∂jxb(Xs− , z)∇|I1|Xs− . . .∇|In|Xs− ds,

where the sum runs over the set of all partitions with length larger than 1 of {1, . . . , i} =
I1 ∪ · · · ∪ Iν and | · | denotes the length. A short calculation yields

H2t =

∫ t

0

∫
σxx(Xs− , z)∇X2

s− (µ− γ)(dz, ds) +

∫ t

0

bxx(Xs− , z)∇X2
s− ds,

. . . . . .

H4t =

∫ t

0

∫ (
σxxxx(Xs− , z)∇X4

s− + · · ·+ σxx(Xs− , z)∇3Xs−∇Xs−
)

(µ− γ)(dz, ds)

+

∫ t

0

(
bxxxx(Xs− , z)∇X4

s− + · · ·+ bxx(Xs− , z)∇3Xs−∇Xs−
)
ds.

Applying [3, Lemma 2.1] we get for p ≥ 2

‖∇2Xt‖p ≤ exp

(
1

p
(c(p, t, σx) + mb)t

)
· ‖∇X2

t ‖p ≤ exp
(
C(p, t)(M2p + mb)

)
,

‖∇3Xt‖p ≤ exp
(
C(p, t)(M4p + mb)

)
,

‖∇4Xt‖p ≤ exp
(
C(p, t)(M8p + mb)

)
.(2.25)
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Obviously Dl∇Xt is the generalized Doléans–Dade exponential EH(K)t with

Ht =

∫ t

0

∫
σxx(Xs− , z)DlXs−∇Xs−(µ− γ)(dz, ds)

+

∫ t

0

∫
σxz(Xs− , z)

(
v1(z) + DlXs−

σx(Xs− , z)

σz(Xs− , z)
ϕ(σx(Xs− , z))

)
∇Xs−v(s, z)µ(dz, ds).

Remark 2.12 and hypotheses (H0), (H1), (H2), and (H3) lead to

‖Ht‖ ≤ C(p, t) ·M ·
∫ t

0

‖DlXs‖2p‖∇Xs‖2p ds,

and therefore

‖Dl∇Xt‖p ≤ C(p, t)M exp

(
1

p
(c∗(p, t, σx) + mb) t

)
· ‖DlX∗

t ‖2p · ‖∇X∗
t ‖2p

≤ C(t, p) ·M · exp
(
c(t, p)(M2p + mb)

)
.(2.26)

Iterating (2.18) yields

‖D2
l∇Xt‖P ≤ exp

(
1

p
(c(p, t, σx) + mb) t

)
‖∇Xt‖2p

(
M2‖DlX2

t ‖2p + M‖D2
lXt‖2p

)
,

≤ C(t, p)M5 exp
(
c(t, p)(M2p + mb)

)
,

‖D3
l∇Xt‖P ≤ C(t, p)M9 exp

(
c(t, p)(M2p + mb)

)
,

and

‖D4
l∇Xt‖P ≤ C(t, p)M14 exp

(
c(t, p)(M2p + mb)

)
for M ≥ 1. Finally we have for Dl∇4Xt

‖Dl∇4Xt‖p ≤ C(p, t)M exp
(
c(t, p)(M8p + mb)

)
.(2.27)

As our last point we give an estimate of ‖Lt‖p and ‖DilLt‖p, i = 1, . . . , 4. Com-
bining (2.6) and (2.11), we obtain

Lt =

∫ t

0

∫
∂

∂z

(
z2

1 + |z|1+ 1
p0

)
(µ− γ)(dz, ds)−

∫ t

0

∫
φ(x, z)DlXs− (µ− γ)(dz, ds)

=: L1
t − L2

t .

A short calculation shows t−
1
p0 ‖L1

t‖p ≤ C(p). Further, by the Emery and Burkholder–

Gundy inequality it follows for L2
t and p ≥ 2 that t−

1
p0 ‖L2

t‖p ≤ M‖DlX∗
t ‖p and

therefore

t−
1
p0 ‖Lt‖p ≤ (M2 + 1).(2.28)

Evaluating DlLt we get

DlLt =

∫ t

0

∫
∂

∂x
φ(x, z)DlX

2
s− (µ− γ)(dz, ds) +

∫ t

0

∫
φ(x, z)D2

lX
2
s− (µ− γ)(dz, ds)

+

∫ t

0

∫
∂2

∂z2

(
z2

1 + |z|1+ 1
p0

)
(v1(z) + φ(s, z)DlXs−) µ(dz, ds),

and therefore

‖DlLt‖p ≤ c1(p)M‖DlX∗ 2
t ‖p + c2(p)M‖D2

lX
∗
t ‖p + c3(p) + c4(p)M‖DlX∗

t ‖p
≤ C(p)M5.(2.29)
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3. Proof of Theorem 1.2. Suppose that Xt is a solution of the SDE (1.1) and
Xnt is its Euler approximation, and for the sake of simplicity, let T = m

n . Following
Bally and Talay [1], we define the functional u(x, t) = Ex[f(XnT−t)]. Then we can
write

|Ex0 [f(XT )]− Ex0 [f (XnT )]| = |Ex0 [u(XT , T )− u(x0, 0)]|(3.1)

=

∣∣∣∣∣
m∑
k=1

Ex0

[
u

(
X k

n
,
k

n

)
− u

(
X k−1

n
,
k − 1

n

)]∣∣∣∣∣ =:

∣∣∣∣∣
m∑
k=1

Ex0 [δnk ]

∣∣∣∣∣ .
For simplicity we consider only δn1 and omit the index x0. Applying the Dynkin
formula, we get

E [δn1 ] = E

[
u

(
X 1

n
,

1

n

)
− u (x0, 0)

]

= E

[∫ 1
n

0

(
∂xu(Xs− , s)b(Xs−) + R(u(Xs− , s), Xs−) + ∂tu(Xs− , t)

∣∣∣
t=s

)
ds

]
,

where R(f(·), x) =
∫
|y|≤1

(f(·+y)−f(·)−f ′(·)y)ν(x, dy), with ν(x, [y,∞)) = infz{σ(x, z)

≤ y}. Applying the Dynkin formula to ∂tu(x, t), we get

E [δn1 ] = E

[∫ 1
n

0

∂xu(Xs− , s)b(Xs−)− ∂xu(Xs− , s)b(x0) + R(u(Xs− , s), Xs−)

−R(u(Xs− , s), x0) ds

]

= E

[∫ 1
n

0

∂xu(Xs− , s)b(Xs−)− ∂xu(x0, 0)b(x0)− ∂xu(Xs− , s)b(x0)

+ ∂xu(x0, 0)b(x0) + R(u(Xs− , s), Xs−)−R(u(Xs− , s), x0)

+ R(u(x0, 0), x0)−R(u(Xs− , s), Xs−) ds

]
.

Applying the Dynkin formula a third and fourth time, we get

E[δn1 ] = E

[∫ 1
n

0

∫ s

0

∂x

(
∂xu(Xr− , r)(b(Xr−)− b(x0))

)
(b(Xr−)− b(x0))

+R
(
∂xu(Xr− , r)(b(Xr−)− b(x0)), Xr−

)
−R

(
∂xu(Xr− , r)(b(Xr−)− b(x0)), x0

)
∂x

(
R(u(Xr− , r), Xr−)−R(u(Xr− , r), x0)

)
(b(Xr−)− b(X0))

+R
(
R(u(Xr− , r), Xr−)−R(u(Xr− , r), x0), Xr−

)

−R
(
R(u(Xr− , r), Xr−)−R(u(Xr− , r), x0), x0

)
dr ds

]
.(3.2)

Before continuing, we investigate the operator R. By the Taylor formula, we know
that for the remainder term we have

f(·+ y)− f(·)− f ′(·) · y =

∫ y

0

zf ′′(·+ y + z)dz.
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Set hx(z) = σ(x, z). A short calculation shows that ν(x, dy) = g(x, y)dy, where
g(x, y) = 1/[h′

x(h
−1
x (y)]. What happens if the operator R is applied to the product

u(x)g(x)? Set f(x) = (ug)(x). Then we have

f(x + y)− f(x)− f ′(x) · y =
(
u(x + y)− u(x)− ux(x) · y)g(x)

+u(x + y)
(
g(x + y)− g(x)

)− gx(x)u(x)y

=
(∫ y

0

zuxx(x + y + z)dz
)
g(x)

+
(
u(x + y)

(
g(x + y)− g(x)

)− gx(x)u(x)y
)
.(3.3)

Set x = Xr− and g(x) = b(x) − b(x0) or g(x) = g(x, y) − g(x0, y). Taking the
expectation, obviously the second summand of (3.3) is bounded, because no derivative
of u appears. Thus, we have

E[δn1 ] =

∫ 1
n

0

∫ s

0

{
E
[
uxx(Xr− , r)

(
b(Xr−)− b(x0)

)2

+ ux(Xr− , r)bx(Xr−)
(
b(Xr−)− b(x0)

)]
+

∫
|y|≤1

∫ y

0

E
[
2uxxx(Xr− + y + z, r) · z

× (
b(Xr−)− b(x0)

)(
g(Xr− , y)− g(x0, y)

)]
dy dz

+

∫
|y1|≤1

∫ y1

0

∫
|y2|≤1

∫ y2

0

E[uxxxx(Xr− + y1 + z1 + y2 + z2, r) · z

× (
g(Xr− , y1)− g(x0, y1)

)(
g(Xr− , y2)− g(x0, y2)

)]
dy1 dz1 dy2 dz2

+ C
}
dr ds.(3.4)

Due to (H1) we know that g(x, y) is differentiable with respect to x; i.e., gx(x, y) =
−h′

x(z)−2 (σxz(x, z) +σzz(x, z)∂xz), where z = h−1
x (y). Thus g(x, y) − g(x0, y) =

(x− x0)gx(ξx,x0 , y) for some ξx,x0 ∈ (x, x0). It follows for R(·, ·) that

R(f(·), x)−R(f(·), x0) = (x− x0)

∫
|y|≤1

∫ y

0

zf ′′(·+ y − z)gx(ξx,x0 , y) dz dy.

Setting j = 1 in condition (H3), we know
∫ |y2gx(x, y)|dy to be uniformly bounded in

x and therefore |R(f(·), x) − R(f(·), x0)| ≤ C |x − x0|. Going back to (3.4) we have
to show that the terms

(1) E
[
uxx(Xr− , r)

(
b(Xr−)− b(x0)

)2
+ ux(Xr− , r)bx(Xr−)

(
b(Xr−)− b(x0)

)]
,

(2) E
[
2uxxx(Xr− + y, r)

(
b(Xr−)− b(x0)

)(
g(Xr− , y)− g(x0, y)

)]
,

(3) E
[
uxxxx(Xr− + y, r)

(
g(Xr− , y1)− g(x0, y1)

)(
g(Xr− , y2)− g(x0, y2)

)]
are bounded for all y with |y| ≤ 2.

Next, analogously to Bally and Talay we distinguish in the following small t from
large t. If t is large, i.e., t/2 ≤ t ≤ T , we get rid of the derivatives of u(t, x) using
Malliavin’s integration by parts formula with respect to the functional Xt(x) and
apply formula (2.7). For small t, i.e., 0 ≤ t ≤ t/2, we apply formula (2.10).
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The case T/2 ≤ t ≤ T . Picking up the worst case, we must show |E[∂4
xf̄(Xt))]|

≤ C(T )M21 for f̄(x) = u(x, t). Define HX [Y ] = (DlX)−1(Y L + D2
lXDlX

−1Y +
DlY ) = Dl(DlX

−1Y ) + LY DlX
−1, where L is defined by (2.6) and (2.11). First,

note that we have chosen l so that DlXt is invertible (see Remarks 2.6 and 2.7).
By the integration by parts formula (2.7), we know E[∂xg(X)Y ] = E[g(X)HX [Y ]].
Applying integration by parts and u(x, ·) ≤ |f |∞ to the inner part of (3.4), we get

|E[δn1 ]| ≤
∫ 1

n

0

∫ t

0

(|f |∞E
[|H4

X [(b(X)− b(x0))2]s + H4
X [(g(·, X)− g(·, x0))2]s

+ 2 H4
X [(b(X)− b(x0))(g(·, X)− g(·, x0))|]

s
+ C

)
ds dt.(3.5)

The worst case is due to the summand H4
X [(g(·, X) − g(·, x0))2]. Thus we restrict

ourselves to this case and define Yt = b(Xt)−b(x0) and R(·, Xt)−R(·, x0). For clarity,
we omit the index t if it is obvious and write G for L+DlX

−1D2
lX. Define the operator

ĤX [Y ] = DlY + (L + DlX
−1D2

lX)Y . Obviously, we have HX [Y ] = DlX
−1ĤX [Y ].

Next we evaluate H4
X [Y 2]:

Ĥ4
X [Y 2] = D2

l (Ĥ
2
X [Y 2]) + 2GDl(Ĥ

2
X [Y 2]) + (DlG + G2)Ĥ2

X [Y 2].

After some computations we get

Ĥ4
X [Y 2] = Y 2

(
G4 + D3

lG + 6G2DlG + 3(DlG)2 + 4GD2
lG

)
+ 8DlY Y

(
3DlGG + G3 + D2

lG
)

+ 12
(
D2
l Y Y + (DlY )2

)
(G2 + DlG)

+ 8G
(
D3
l Y Y + 3D2

l Y DlY
)

+ 2
(
D4
l Y Y + 4D3

l Y DlY + 3(D2
l Y )2

)
= L4Y 2 + 6L2Y 2DlL + 3Y 2DlL

2 + 8L3Y DlY + · · ·
+ 8DlX

−1Y DlY D4
lX + 2Y D4

l Y + DlX
−1Y 2D5

lX.(3.6)

Set Y = b(X) − b(x0). Since b is four times boundedly differentiable, DlY =
b′(X)DlX, . . ., D4

l Y =
∑

b(4)(X)DlX
4 + · · ·+ b(1)(X)D4

lX are bounded by DlX, . . .,∑4
i=1 D

i
lX. In the case of the operator R, we can set Y ∼ X.

Next we investigate (3.6) term by term and show that the terms are, when mul-
tiplied by DlX

−4
t , bounded by C(T )M21. Note that thanks to Remark 2.6 we have

an upper bound of ‖DlX−1
t ‖p independent of M . The first term we consider is Y 2L4.

Using (2.28) we get

‖Y 2
t L

4
tDlX

−4
t ‖1 ≤ ‖Y 2

t ‖4‖L4
t‖4‖DlX−4

t ‖2
≤ t−Q C(t) ·M2 ·M8 = t−Q C(t) ·M10

for t ∈ [T/2, T ] and Q <∞. Since T > t > T/2, the right side is uniformly bounded
by C(T )M10 for all t ∈ [T/2, T ]. Analyzing term by term we get, by Remark 2.12
and the estimates (2.15), (2.18), (2.22), (2.23), (2.24), (2.28), and (2.29),

‖DlX−4
t L2

tY
2
t DlLt‖1 ≤ ‖DlX−4

t ‖3 · ‖L2
t‖4 · ‖Y 2

t ‖6‖DlLt‖4
≤ t−Q C(t) ·M4 ·M2 ·M5 = t−Q C(t) ·M11,

‖DlX−4
t Y 2

t DlL
2
t‖1 ≤ ‖DlX−4

t ‖4 · ‖Y 2
t ‖4 · ‖DlL2

t‖2
≤ t−Q C(t) ·M2 ·M10 ≤ t−Q C(t) ·M14,

. . .
... . . .
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‖DlX−4
t Yt

(
8DlX

−1
t DlYtD

4
l Yt + 2D4

l Yt + DlX
−1
t YtD

5
lXt

)‖1
≤ t−Q C(t) ·M · (MM13 + M13 + MM19

)
≤ t−Q C(t) ·M21 .

Collecting all together, we get for t ∈ [T/2, T ]

E[|H4[Y 2]t|] = ‖H4[Y 2]t‖1 ≤ C(T ) ·M21.

The case 0 < t ≤ T/2. Here, we have to apply formula (2.10) with time
r = T − t > T/2. A short calculation shows that the terms E

[
E
[
HX [∇4Xr]|Ft

]
Y 2
t

]
,

E
[
E
[
H2
X [∇2X2

r ]|Ft
]
Y 2
t

]
, E

[
E
[
H2
X [∇3Xt∇Xr]|Ft

]
Y 2
t

]
, E

[
E
[
H3
X [∇X2

r∇2Xr]|Ft
]
Y 2
t

]
,

and E
[
E
[
H4
X [∇X4

r ]|Ft
]
Y 2
t

]
have to be bounded by r−Q C(r)·M4 ·exp(M16) for some

Q <∞ and C(r) is uniformly bounded on [0, T ]. But the estimates given in equations
(2.15), (2.18), and (2.22)–(2.29) lead to

‖HX [∇4Xr]‖1 ≤ ‖DlX−1
r

(
Dl∇4Xr +∇4XrLt +∇4XrD

2
lXrDlX

−1
r

)‖1
≤ r−Q C(r) · exp(M16) · (M + M2 + M4

)
,

‖H2
X [∇2X2

r ]‖1 ≤ ‖DlX−2
r

(
L2
r∇2X2

r + DlLr∇2X2
r + · · ·+ DlX

−1
r ∇2X2

rD
3
lXr

)‖1
≤ r−Q C(r) · exp(M8) · (M4 + M5 + · · ·+ exp(M4) + M8

)
,

. . . . . .

‖H4
X [∇X4

r ]‖t ≤ ‖DlX−4
r

(
L4
r∇X4

r + 6L2
r∇X4

rDlLt + · · ·+∇X4
tD

5
lXt

)‖1
≤ r−Q C(r) · (exp(M16)M8 + 6 exp(M16)M4M5 + · · ·+ M19 exp(M16)).

Integration of (3.4) and applying the same localization argument as Bally and Talay
[1] completes the proof.

4. Conclusions and additional remarks.

Remark 4.1. To handle the case where f is a Delta function, we have to in-
vestigate the upper bound of ‖H5[Y 2]‖1, M2 ‖H5

X [∇X5
t ]t‖1, and M2‖HX [∇5X]t‖1.

But analyzing the preceding proof it is obvious that the worst term in the first case
is ‖D6

lXtY
2
t DlX

−5
t ‖1, which is of order M28. In the second and third case the worst

term is ‖H5
X [∇X5]‖M2, which is of order M28 exp(M32).

Remark 4.2. Assume that f belongs to C1
b (R) and consider u(x, t) = E

x[f(XnT−t)]
≈ E

x[f(XT−t)]. To give an upper bound of ∂4
x4u(x, t), we have again to distinguish

between small t and large t.

Let T/2 ≤ t ≤ T . Note that formula (2.10) leads to ∂xu(x, t) = E
x[f ′(XT−t)∇XT−t]

and therefore |∂xu(x, t)|∞ ≤ |f ′|∞ supx ‖∇XT−t(x)‖1 ≤ |f ′|∞ exp
(
(T − t)M2

)
. To

get rid of the remaining derivatives, we have to apply the operator HX [·] only three
times to Y 2:

H3
X [Y 2]t = DlX

−3
t

{
L3
tY

2
t + 3LtY

2
t DlLt + 6L2

tYtDlYt + · · ·(4.1)

+ 6YtDlYtD
3
lXtDlX

−2
t + 2YtD

3
l Yt + Y 2

t D
4
lXtDlX

−1
t

}
.

The worst factor is Y 2
t D

4
lXtDlX

−4
t . But ‖Y 2

t D
4
lXtDlX

−4
t ‖1 ≤M2M13 ≤ C(T )M15,

and therefore E[∂4
xu(t, x)] ≤ |f ′|∞ exp

(
TM2

)
M15.
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Let 0 ≤ t ≤ T/2. Then we have

∣∣∂4
xu(t, x)

∣∣ =
∣∣∣Ex [f (4)(XT−t)∇X4

t + · · ·+ f ′(XT−t)∇4Xt

]∣∣∣
=

∣∣Ex [f ′(XT−t)H3
X [∇X4]t + · · ·+ f ′(XT−t)∇4Xt

]∣∣
≤ |f ′|∞

(‖H3
X [∇X4]t‖1 + · · ·+ ‖∇4Xt‖1

)
≤ C |f ′|∞

(‖L3
t∇X4

tDlX
−3
t ‖1 + · · ·+ ‖∇X4

tD
4
lXtDlX

−3
t ‖1 + · · ·+ ‖∇4Xt‖1

)
≤ C |f ′|∞

(
M6 exp(M16) + · · ·+ M exp(2M8) + exp(M16) ·M13 + · · ·+ exp(M16)

)
.

Collecting all together, we get as an error bound

|E [f(Xt)]− E [f(Xnt )]| ≤ |f ′|∞ C

n
M15

(
exp(M2) + exp(M16)

)
.

Remark 4.3. Assume that 2/α+ > 3/α− − 1 and f ∈ C1(R). Without any
restriction on α+ and α−, we can see by the scaling properties that the right-hand
side of (4.1) tends to infinity as t tends to zero. But with the restriction above on
α+ and α−, the right-hand side of (4.1) is of order O(tδ), where δ > −1. Integration
leads to the error bound

|E [f(Xt)]− E [f(Xnt )]| ≤ |f ′|∞ C

n
M15 exp(M2).

It remains to show the right-hand side of (4.1) is of order O(tδ), i.e., ‖H3
X [Y 2]t‖1

≤ O(tδ). Analyzing term by term by the estimates (2.15), (2.18), (2.22), (2.23), (2.24),
(2.28), and (2.29) we see that the leading term in (4.1) is the worst. Thus, we pick
it up and show ‖DlX−3

t Y 2
t L

3
t‖1 ≤ O(tδ), where δ > −1. As t tends to zero we know

by Proposition 2.2 and Remark 2.7 that ‖DlX−3
t ‖p ≤ c(p) t−

3

α− − 3
p0 and ‖Y 2

t ‖p ≤
C(M) tδY , where α+ > 2δY . Thanks to estimate (2.28), we see that

∫ T
0
‖H3

X [Y 2]t‖1 dt
is bounded for 2

α+ > 3
α− − 1. To get the exact threshold of ‖H3

X [Y 2]t‖1, we have to

investigate the last summand of (4.1), i.e., ‖DlX−4
t D4

lXtY
2
t ‖1, which is of O(M15).

Remark 4.4. Assume that f is in C2
b (R). To show

|E [f(Xt)]− E [f(Xnt )]| ≤ |f ′′|∞ C

n
M10

(
exp(M4) + exp(M16)

)
,(4.2)

we have again to distinguish between large and small t.
Let T/2 ≤ t ≤ T . Then we have ∂2

xu(x, t) = E
x[f ′′(XT−t)∇2XT−t] and

|∂2
xu(x, t)|∞ ≤ |f ′′|∞ exp

(
(T − t)M4

)
. To get rid of the two remaining derivatives,

we have to apply the operator HX [·] only twice to Y 2, i.e.,

H2
X [Y 2]t = DlX

−2
t

{
L2
tY

2
t + Y 2

t DlLt + · · ·+ 2YtD
2
l Yt − Y 2

t D
3
lXtDlX

−1
t

}
.(4.3)

But we have ‖Y 2
t D

3
lXtDlX

−3
t ‖t ≤ C(T )M10.

Let 0 ≤ t ≤ T/2 and set r = T − t. Analogous to Remark 4.2 we have

∣∣∂4
xu(t, x)

∣∣ =
∣∣∣Ex [f (4)(XT−t)∇X4

t + · · ·+ f ′(XT−t)∇4Xt

]∣∣∣
=

∣∣∣Ex [f (2)(XT−t)H2
X [∇X4]t + · · ·+ f (2)(XT−t)∇4Xt

]∣∣∣
≤ |f ′′|∞

(‖H2
X [∇X4]t‖1 + · · ·+ ‖∇4Xt‖1

) ≤ C |f ′′|∞ exp(M16) ·M8.
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Collecting all together, we get (4.2).
Remark 4.5. Assume that 2/α+ > 3/α− − 1 and f ∈ C2

b (R). Without any
restriction on α+ and α− we can see by the scaling properties that the right-hand side
of (4.1) tends to infinity as t tends to zero. But with the restriction above on α+ and
α−, the right-hand side of (4.3) is of order O(tδ), where δ > −1. Integration leads to
the error bound

|E [f(Xt)]− E [f(Xnt )]| ≤ |f ′′|∞ C

n
M10 exp(M4).

It remains to show the right-hand side of (4.3) is of order O(tδ), i.e., ‖H2
X [Y 2]t‖1 ≤

O(tδ). The worst term in (4.3) is the leading term. Thus, we have to show ‖DlX−2
t

Y 2
t L

2
t‖1 ≤ O(tδ), where δ > −1. As t tends to zero we know by Proposition 2.2

and Remark 2.7 that ‖DlX−2
t ‖p ≤ c(p) t−

2

α− − 2
p0 and ‖Y 2

t ‖p ≤ C(M) tδY , where

α+ > 2δY . Thanks to estimate (2.28), we see that
∫ T
0
‖H3

X [Y 2]t‖1 dt is bounded for
2
α+ > 2

α− − 1. To get the exact threshold of ‖H2
X [Y 2]t‖1, we have to investigate the

last summand of (4.3), which is of order O(M10).
Remark 4.6. Analogous to Remarks 4.2 and 4.4 we can show

|E [f(Xt)]− E [f(Xnt )]| ≤ |f ′′′|∞ C

n
M6

(
exp(M8) + exp(M16)

)
for f ∈ C3

b (R). If 2
α+ > 1

α− − 1, the same consideration as in Remarks 4.3 and 4.5
yields

|E [f(Xt)]− E [f(Xnt )]| ≤ |f ′′′|∞ C

n
M6 exp(M8).

Remark 4.7. If the driving process is α-stable, i.e., σ(x, z) can be written as
σ0(x)z−1/α, we have to truncate the process before applying Theorem 1.2. To be more
exact, we call Xmt the truncated process if Xmt is a solution to (1.1), where σ(x, z) is
replaced by σ0(x)(z−1/α ∧m). The error now splits into three parts:

|E[f(XT )− f(Xnt )]| ≤ |E[f(XT )− f(XmT )]|+ |E[f(XmT )− f(Xm,nT )]|
+ |E[f(XmT )− f(Xm,nT )]| =: I + II + III.

Given an estimate of (II), we can apply Theorem 1.2. Further, we have

(I) ≤ |E[f(XT )− f(XmT )1{Tm≤T}]| ≤ 2|f |∞P(Tm ≤ T ),

where Tm = inft>0{|∆Z| > m}. Hence the counting process of [m,∞) is Poisson dis-
tributed with parameter µ([m,∞)) (see section 2 or Protter and Talay [15, Proposition
4.5]); it follows that P(Tm ≤ T ) = (1− exp(Tm−α)). Therefore, setting M = m, the
error is given by

|E[f(XT )− f(XnT )]| ≤ C(T )
1

n
· (m21 + m4 exp(m16)

)
+

(
1− exp

(
Tm−α)) .

Remark 4.8. Let Xt be a solution to (1.1), where σ and b satisfy the assumption
of Theorem 1.2 with M = 1. Proceeding as Kanagawa [12] (see also Talay [17,
Proposition 2.1]) we can show that ‖Xnt − Xt‖2 ≤ C/

√
n. Let t = [t]n. Using

condition (H3), an induction on k shows that for any n ∈ N,

E

[
sup
t∈[0,T ]

|Xnt |2
]
≤ K(T )(1 + x2

0) exp(K(T ))(4.4)
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for some increasing function K(·). For t ∈ (k/n, (k + 1)/n] consider the process

εt := X k
n
−Xnk

n
+

∫ t

k
n

(b(Xs−)− b(Xnk
n

))ds +

∫ t

k
n

(σ(Xs− , z)− σ(Xnk
n
, z))(µ− γ)(dz, ds).

Apply the Itô formula to (εt)
2 between t = k/n and t = (k + 1)/n: Standard com-

putations, condition (H3), and (4.4) show that we have, for an increasing function
K(·),

E[ε2
k+1
n

] ≤ E[ε2
k
n

]

(
1 +

K(T )

n

)
+

1

n2
.

Noting that ε0 = 0, an induction on k provides the estimate

sup
0≤k≤n

E

[
ε2

k+1
n

]
≤ C exp(K(T )).

To conclude, it remains to use (4.4) again.
Remark 4.9. Let Xt be a solution to (1.1), where σ and b satisfy the assumption

of Theorem 1.2 with M = 1 and f ∈ C1
b (R), 2/α+ < 3/α− − 1. Let T > 0 fixed,

τ = inft≤0{Xt = 0}, and τn = inft≤0{Xnt = 0}. Now, the error taken at the stopping
time T ∧ τ equals

|E[f(Xτ∧T )]− E[f(Xnτ∧T )]| ≤ |E[f(Xτ∧T )]− E[f(Xnτ∧T )]|
+ |E[f(Xnτ∧T )]− E[f(Xnτn∧T )]|.

Replacing the first summand we can write

|E1| =

∣∣∣∣∣
m∑
k=1

Ex0

[
u

(
X k

n∧τ ,
k

n
∧ τ

)
− u

(
X k−1

n ∧τ ,
k − 1

n
∧ τ

)]∣∣∣∣∣ =:

∣∣∣∣∣
m∑
k=1

Ex0 [δnk ]

∣∣∣∣∣ ,
and therefore we have to show that

|E[δn1 ]| ≤
∫ 1

n∧τ

0

∫ s

0

E

[
4∑
i=2

CiH
i[Y 2]t + C

]
dr ds

is bounded. But in Remark 4.3 we have seen that Hi[Y 2]t, i = 2, 3, is uniformly
bounded in t ∈ [0, T ] for Y = b(X) − b(x0) or Y = R(u,X) − R(u, x0), respectively
(see Remarks 4.2 and 4.4). It remains to investigate E2. Suppose that F : R → R is
Lipschitz with F (x) > 0 for x > 0 and F (x) = 0 for x ≤ 0. By the same arguments
as Gobet [10], we can conclude for the second summand S2 that

|S2| ≤ |f |∞
∫ T

0

|P(t < τ)− P(t < τn)| dt = |f |∞T |1IT<τ − 1It<τn |.

Continuing we get

|1IT<τ − 1It<τn | =
(
1Iinft∈[0,T ] F (Xt)=01Iinft∈[0,T ] F (Xn

t )>0 + 1Iinft∈[0,T ] F (Xt)>0

1Iinft∈[0,T ] F (Xn
t )=0

) · (1Iinft∈[0,T ] F (Xt)>δ + 1Iinft∈[0,T ] F (Xt)≤δ
)× (

1Iinft∈[0,T ] F (Xn
t )>δ

+ 1Iinft∈[0,T ] F (Xn
t )≤δ

) ≤ |1I| inft∈[0,T ] F (Xt)−inft∈[0,T ] F (Xn
t )|>δ
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+ 1Iinft∈[0,T ] F (Xt)=0 · 1I0<inft∈[0,T ] F (Xn
t )≤δ + 1Iinft∈[0,T ] F (Xn

t )=0 · 1I0<inft∈[0,T ] F (Xt)≤δ

≤ P

(∣∣∣∣ inf
t∈[0,T ]

F (Xt)− inf
t∈[0,T ]

F (Xnt )

∣∣∣∣ > δ

)
+ P

(
0 < inf

t∈[0,T ]
F (Xt) ≤ δ

)

+ P

(
0 < inf

t∈[0,T ]
F (Xnt ) ≤ δ

)
.

Using the Chebyshev inequality and Remark 4.8 we get

P

(∣∣∣∣ inf
t∈[0,T ]

F (Xt)− inf
t∈[0,T ]

F (Xnt )

∣∣∣∣ > δ

)
≤ P

(
inf

t∈[0,T ]
|F (Xt)− F (Xnt )| > δ

)

≤ 1

δ
· ‖F (Xt)− F (Xnt )‖22 ≤

1

δ
· 1

n
.

Moreover, since Xt has a continuous density (see Bass and Cranston [3, Theorem
4.1]) we have P(0 < inft∈[0,T ] F (Xt) ≤ δ) ≤ Cδ. Set δ ∼ n−1/2. Collecting all
together, we get

|E[f(Xτ∧T )]− E[f(Xnτ∧T )]| ≤ C1(T )
1√
n

+ |f ′|∞ C2(T )
M15 exp(M2)

n
.

Remark 4.10. If an interval I is bounded, the jumps of an α-stable process are
bounded by the length of I and we can apply Remark 1.1, setting M = |I| to handle
the quality of approximation for the first exit time.

Remark 4.11. If Xt is driven by an α-stable process, the solution Xt does not be-
long to L2 in general. But, e.g., if σ is flat of order q at infinity, i.e., limx→∞σ(x, z)/xq

< C|z|− 1
α , the solution X belongs to ∩p<α(q+1)Lp. Thus, if σ is flat at infinity of all

orders, the stochastic exponential belongs to Lp, p ≥ 1, and we do not need to truncate
the driving process before applying Theorem 1.2.
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Abstract. A scheme for the computation of the zeros of special functions and orthogonal
polynomials is developed. We study the structure of the first order difference-differential equations
(DDEs) satisfied by two fundamental sets of solutions of second order ODEs y′′n(x)+An(x)yn(x) = 0,
n being the order of the solutions and An(x) a family of continuous functions. It is proved that,
with a convenient normalization of the solutions, T±1(z) = z ± sign(d) arctan(yn(x(z))/yn±1(x(z)))

are globally convergent iterations with fixed points z(x
(i)
n ), x

(i)
n being the zeros of yn(x); d is one of

the coefficients in the DDEs and z(x) is a primitive of d. The structure of the DDEs is also used to
set global bounds on the differences between adjacent zeros of functions of consecutive orders and
to find iteration steps which guarantee that all the zeros inside a given interval can be found with
certainty. As an illustration, we describe how to implement this scheme for the calculation of the
zeros of arbitrary solutions of the Bessel, Coulomb, Legendre, Hermite, and Laguerre equations.

Key words. special functions, zeros, fixed point iteration, second order ODE, recurrence
relations

AMS subject classifications. 33XX, 65H05
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1. Introduction. The literature concerning the evaluation of the real zeros of
special functions is extensive, with special emphasis on the zeros of Bessel functions [2,
11, 20, 21, 23, 27, 28, 24]. There exist several algorithms with different characteristics
[13, 22, 28] and a great variety of papers dealing with properties of the zeros of
cylinder functions (see, for instance, [3, 5, 9, 17]). However, little is known regarding
the real zeros of other special functions. Methods for the computation of the zeros
of first kind Bessel functions [2, 10, 20, 21, 22, 24, 28], second kind Bessel functions
[20, 22, 24, 28], Airy functions [26, 22, 6], and regular Coulomb wave functions [10, 2]
have been described. Only matrix methods [10] have been applied for finding zeros of
special functions other than Bessel or related functions (Airy functions).

The main task when evaluating zeros of a given function is usually the brack-
eting of the roots (with the exception of matrix eigenvalue methods [10]). After
this, bisection or other standard methods can be used. However, the distribution of
zeros changes drastically from one family of functions to another and from one set
of values or parameters (like the order of Bessel functions) to another. In addition,
the distribution of zeros may be highly nonuniform. Thus, bracketing is generally a
difficult issue which requires, for instance, the use of the concept of topological degree
[12]. Bracketing can be avoided if initial approximations for the roots [24, 20, 19]
are available which allow local methods (such as the Newton–Raphson method) to
converge.

We will build a single and simple numerical method which can be applied to all
the previously mentioned functions as well as to more general cases. No bracketing is
needed; instead we provide iterative relations between consecutive zeros. The method
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applies for special functions (and orthogonal polynomials) which are solutions of a
second order ODE and satisfy systems of difference-differential equations (DDEs) of
the type

y′n(x) = an(x)yn(x) + dn(x)yn−1(x),

y′n−1(x) = bn(x)yn−1(x) + en(x)yn(x),
(1.1)

with continuous coefficients an, bn, dn, en. The method is able to find the zeros
of any solution of the Bessel equation (including Airy functions), of any Coulomb
wave function (not necessarily the regular Coulomb wave function, as matrix methods
require [10, 2]), of any Legendre function, and so on.

Our method makes use of information regarding the distribution of the zeros that
is carried by the coefficients of the DDEs. The main ingredients of the method consist
of globally convergent fixed point iterations (FPIs) together with prescriptions, based
on global bounds on the distance between adjacent zeros, to compute with certainty all
the zeros inside a given interval. These global bounds on differences of consecutive and
adjacent zeros apply to a broad family of special functions and orthogonal polynomials.

The structure of the paper is as follows. In section 2 we describe the properties
of the coefficients in the DDEs, satisfied by the solutions of a second order ODE
y′′k + Ak(x)yk = 0, under the assumption that such coefficients are continuous func-
tions. The DDEs relating y′n and y′n−1 with yn and yn−1 for two sets of fundamental
solutions exist and are unique [15]. The properties shown will be thus quite general.
With these properties, we will show (section 3) that the ratios yn(x(z))/yn±1(x(z))
satisfy nonlinear first order ODEs resembling the equation for the function tan(z(x));
z = z(x) is a change of variables given by a primitive of one of the coefficients of
the DDEs. We will use this similarity to build a globally convergent FPI in section
4. This FPI, together with bounds on the distance between the zeros of yn and the
adjacent zeros of yn±1, will be used to build a global method to find with certainty
all the roots inside a given interval (section 5). The method is monotonically con-
vergent except for two possible exceptions which are treated in section 6. In section
7, we give explicit algorithms to compute with certainty all the zeros inside a given
interval. Finally (section 8), we compile the analytical information needed to apply
the method to arbitrary solutions of the Bessel, Coulomb, Legendre, Hermite, and
Laguerre differential equations.

2. Structure of the DDEs. We will consider the solutions of second order
ODEs in normal form,

y′′k (x) + Ak(x)yk(x) = 0,(2.1)

which are defined for all x in an interval I, where Ak(x) is a family of continuous
functions. The solutions yk(x) have continuous second derivative in I. This is a
common situation: most special functions and orthogonal polynomials satisfy second
order differential equations, reducible to the normal form (2.1), in which Ak(z) is an
analytic function in the complex plane except for a few singularities. The results in
this paper apply to real intervals free of singularities of Ak.

Given a solution corresponding to a given value k = n, yn, we will say that n is
the order of the solution.
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Let {y(1)
k (x)} and {y(2)

k (x)} be two families of independent solutions of (2.1) in I,
i.e., two families of solutions with Wronskians different from zero,

W [y
(1)
k , y

(2)
k ] = y

(1)
k y

(2)′
k − y

(1)′
k y

(2)
k ≡ wk �= 0.(2.2)

It is obvious from (2.1) that the Wronskians are constant.
Following [15, Thm. 1], it can be proved that for every fixed pair of sequences

{y(1)
k (x)}, {y(2)

k (x)} of fundamental solutions of (2.1), there exists a unique pair of
DDEs, relating yk with yk−1 and its first derivative and yk−1 with yk and its first
derivative, which is valid for both fundamental sets of solutions (and hence for any
linear combination of them with constant coefficients).

Let us consider two orders k = n, n− 1 and write these relations in the form

y′n(x) = an(x)yn(x) + dn(x)yn−1(x),

y′n−1(x) = bn(x)yn−1(x) + en(x)yn(x).
(2.3)

Let us now denote by Zn(x) the determinant

Zn(x) =

∣∣∣∣∣ y
(1)
n y

(1)
n−1

y
(2)
n y

(2)
n−1

∣∣∣∣∣ .(2.4)

It is easy to prove that Zn(x) cannot be identically zero [15, Thm. 1]; see also [14].

By expressing the coefficients an, bn, dn, en in terms of y
(1)
n , y

(2)
n , y

(1)
n−1, y

(2)
n−1, and

their derivatives, the following result can be easily proved.

Lemma 2.1. Let relations (2.3) be satisfied by solutions {y(1)
n , y

(1)
n−1} and {y(2)

n , y
(2)
n−1},

where {y(1)
n , y

(2)
n } and {y(1)

n−1, y
(2)
n−1} are independent solutions of second order ODEs

in normal form. Then
1. dn(x) �= 0, en(x) �= 0.
2. dn(x)/en(x) ≡ cn �= 0 is a constant.
3. an(x),bn(x),dn(x),en(x) are continuous ⇐⇒ an(x),bn(x),dn(x),en(x) are

differentiable ⇐⇒ Zn(x) �= 0 ∀x ∈ I.
Proof. Writing the first equation of (2.3) for {y(1)

n , y
(1)
n−1} and {y(2)

n , y
(2)
n−1} and

solving the resulting system, we get Zn(x)dn(x) = wn, wn being the Wronskian (2.2).
Similarly, from the second equation in (2.3) we get Zn(x)en(x) = −wn−1. Considering
these relations, the first two properties follow because the solutions of (2.1) and their
first derivatives are continuous in I and the Wronskians are constant and different
from zero. It is also evident that dn and en are continuous in I if and only if Zn(x)
does not vanish in I; obviously, the same is true for an and bn. In addition, the
coefficients are differentiable when Zn(x) �= 0, because the solutions of the differential
equation are at least twice differentiable in I.

By taking into account that both sets of solutions satisfy the second order ODE
(2.1) we can obtain relations between the coefficients appearing in relations (2.3).

Lemma 2.2. Let relations (2.3), with continuous coefficients in I, be satisfied

by solutions {y(1)
n , y

(1)
n−1} and {y(2)

n , y
(2)
n−1}, where {y(1)

n , y
(2)
n } and {y(1)

n−1, y
(2)
n−1} are

independent solutions of second order ODEs in normal form (2.1). Then, the following
relations hold:

1. dn/en = cn �= 0 with cn constant and dn(x) �= 0∀x.
2. an + bn = −d′n/dn.
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3. W [dn, gn] ≡ dng
′
n − d′ngn = (An −An−1)dn, where gn ≡ bn − an.

4. a′n + a2
n = −An − endn

Conversely, given two DDEs verifying relations 1, 2, 3, and 4 for all n, there exist two

sets of independent solutions {y(1)
k }, {y(2)

k } which verify the DDEs and are solutions
of the differential equation (2.1) for each k.

Proof. The first relation was already shown in Lemma 2.1. Taking the derivative
of the first DDE and using yn−1 = 1

dn
(y′n − anyn) to eliminate yn−1 (recall that

dn �= 0), we find

y′′n =

[
an +

d′n
dn

+ bn

]
y′n +

[
a′n + dnen − an

d′n
dn
− anbn

]
yn,

and given that yn satisfies y′′n + Anyn = 0, by subtracting we have[
an +

d′n
dn

+ bn

]
y′n +

[
a′n + dnen − an

d′n
dn
− anbn + An

]
yn = 0.

We demand that this equation be satisfied by two independent functions y
(1)
n and y

(2)
n ,

and therefore

an + bn +
d′n
dn

= 0,

a′n + dnen − an
d′n
dn
− anbn + An = 0.

(2.5)

Proceeding in a similar way, starting from the second equation in (2.3), we find

an + bn +
e′n
en = 0,

b′n + dnen − bn
e′n
en − anbn + An−1 = 0.

(2.6)

Subtracting the first equations in (2.5) and (2.6), we obtain

d′n
dn
− e′n
en

= 0,(2.7)

which implies, as already known, that dn/en is a constant (and dn and en never
vanish, as we know from Lemma 2.1).

Combining the two equations in (2.5), we have

a′n + a2
n = −An − endn,(2.8)

and proceeding in a similar way with (2.6), obtain

b′n + b2n = −An−1 − endn.(2.9)

Subtracting these last two equations and using the first equation in (2.5), we get the
third equation of the theorem.

Conversely, given the two DDEs with coefficients satisfying relations 1, 2, 3, and 4,
the sets of functions satisfying such DDEs automatically satisfy second order ODEs in
normal form. Furthermore, one can always generate two sets of fundamental solutions
by iterative application of the DDEs: take two sets of independent solutions of the

ODE for one order (let’s say y
(1)
m−1 and y

(2)
m−1) and use the second DDE to obtain y

(1)
m
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and y
(2)
m , which necessarily satisfy the first DDE on account of the relations between

coefficients. y
(1)
m and y

(2)
m are necessarily independent because dm/em = −wm/wm−1,

dm �= 0, em �= 0, and wm−1 = W [y
(1)
m−1, y

(2)
m−1] �= 0; this implies that wm �= 0.

Further properties of the coefficients of the DDEs are obtained in Corollary 2.3
and Lemma 2.4.

Corollary 2.3. Let An, An−1, an, bn, dn, and en be continuous in I. If
An(x)−An−1(x) �= 0∀x ∈ I, then an − bn can have only one zero in I.

Proof. Let us define the function f(x) = (bn(x)−an(x))/dn(x), which is differen-
tiable in I. By taking the derivative and considering relation 3 of Lemma 2.2 we get
f ′ = (An −An−1)/dn.

Thus, f is monotonic in I because neither dn nor An − An−1 change sign in I.
Therefore, f can have no more than one zero in I.

An additional property satisfied by the coefficients is the fact that the coefficients
dn and en have opposite signs. This property is a key ingredient of the global method
that we will describe.

Lemma 2.4. Let yn and yn−1 be two nontrivial solutions of (2.1), for k = n and
k = n − 1, such that they satisfy (2.3) with continuous dn. If one of these functions
has, at least, two zeros in I, then

1. the zeros of yn, yn−1 are simple.
2. yn and yn−1 cannot vanish simultaneously.
3. the zeros of yn and yn−1 are interlaced.
4. en(x)dn(x) < 0 ∀x ∈ I.

Proof. 1. This is an immediate consequence of the existence and uniqueness
theorem for linear homogeneous ODEs.

2. If yn(x0) = yn−1(x0) = 0, then by virtue of the DDEs and the continuity
of the coefficients, y′n(x0) = y′n−1(x0) = 0. Then both solutions would be trivial:
yn(x) = yn−1(x) = 0.

3. Let x1, x2 be two consecutive zeros of yn. Given that yn is differentiable,
we have y′n(x1)y′n(x2) < 0. By virtue of the first DDE (2.3) and the fact that dn(x)
does not change sign, we get yn−1(x1)yn−1(x2) < 0; however, yn−1 is continuous and
therefore there is at least one x̄1 ∈ (x1, x2) such that yn−1(x̄1) = 0. Since we can
prove in a similar way (using the second difference-differential relation) that between
two zeros of yn−1 there is at least one zero of yn, then there can be no more zeros
of yn−1 in (x1, x2): if there were two zeros of yn−1 in (x1, x2), then there would be a
zero of yn in this interval, and x1 and x2 would not be consecutive zeros, in contrast
to our hypothesis.

This proves that between two zeros of yn there is exactly one zero of yn−1. In the
same way, between two zeros of yn−1 there is exactly one zero of yn.

4. Let x1, x2, and x̄1 be defined as before. Let us take yn(x̄1) > 0 (for yn(x̄1) < 0
the proof is analogous). This assumption implies that y′n(x1) > 0 and y′n(x2) < 0
because the zeros are simple. Considering the first DDE, we get sign(dn)yn−1(x1) > 0,
sign(dn)yn−1(x2) < 0, and so

sign(dn)y′n−1(x̄1) < 0.

Considering the second DDE and given that we assumed that sign(yn(x̄1)) > 0, we
have

sign(y′n−1(x̄1)) = sign(en).

Therefore, endn < 0.
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The following theorem summarizes the main results of this section.
Theorem 2.5. Let y′′k + Ak(x)yk(x) = 0, where Ak(x) are continuous functions

in I. Let {y(1)
n , y

(2)
n },{y(1)

n−1, y
(2)
n−1} be two sets of independent solutions in I for k = n

and k = n− 1. Then, both sets {y(1)
n , y

(1)
n−1} and {y(2)

n , y
(2)
n−1} satisfy the relations

y′n(x) = an(x)yn(x) + dn(x)yn−1(x),

y′n−1(x) = bn(x)yn−1(x) + en(x)yn(x),
(2.10)

where the coefficients an(x), bn(x), dn(x), and en(x) have the same discontinuities in
I. If these coefficients are continuous, then the following properties hold:

1. The coefficients are differentiable in I.
2. dn(x) �= 0 ∀x ∈ I, dn/en = cn �= 0, cn constant.
3. an + bn = −d′n/dn.
4. W [dn, gn] ≡ dng

′
n − d′ngn = (An −An−1)dn, where gn ≡ bn − an.

5. a′n + a2
n = −An − endn.

6. If at least one of the solutions (for n or n− 1) has two (or more) zeros in I,
we can set dn(x) = −en(x) after a convenient normalization of the solutions.

7. If An(x) − An−1(x) does not change sign in I, then an(x) − bn(x) can have
only one zero in I.

Conversely, given two DDEs (2.3) verifying the first 5 conditions for all n, there exist

two sets of fundamental solutions {y(1)
k }, {y(2)

k } which are solutions of the differential
equation (2.1) for each k.

Proof. It is known that the DDEs relating y′n and y′n−1 with yn and yn−1 for two
sets of fundamental solutions of the ODE exist and are unique [15]. The rest of the
theorem, except property 6, is a compilation of the results presented in Lemmas 2.1,
2.2, 2.4, and Corollary 2.3.

The only thing left to prove is that from the initial fundamental sets of solutions,
one of them having at least two zeros in I, one can build other fundamental sets such
that dn = −en. Note that endn < 0 (Lemma 2.4) and that dn/en is a constant.
Therefore, the relation dn = −en can be indeed trivially accomplished by renormaliz-
ing the solutions through constant factors. Of course, such a renormalization does not
change the an and bn coefficients or any other result in this theorem and the previous
ones.

Although we have considered equations in normal form so far, these results apply
more generally. The following result for ODEs in canonical form can be easily proved.

Corollary 2.6. Let y′′n(x)+B(x)y′n(x)+An(x)yn(x) = 0 with An(x) continuous
and B(x) not depending on n and with continuous derivative in I. If the coefficients
of the DDEs are continuous in I, then the following properties hold:

1. The coefficients of the DDEs are differentiable in I.
2. dn(x) �= 0 ∀x ∈ I, dn/en = cn �= 0, cn constant.
3. If there is a solution of order n or n − 1 with at least two zeros in I, then

dn(x) = −en(x) with a convenient normalization of the solutions.
4. W [dn, gn] ≡ dng

′
n − d′ngn = (An −An−1)dn being gn ≡ bn − an.

5. If An(x) − An−1(x) does not change sign in I, then an(x) − bn(x) can have
only one zero in I.

Proof. Transform the ODE to the normal form by the change y(x) = ν(x)ȳ(x),
ν(x) = exp(− 1

2

∫
B(x)dx). In this way,

ȳ′′n + Ānȳn = 0 with Ān = An −B2/4−B′/2,
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and Ān is continuous in I. Then apply Theorem 2.5.
The rest of the properties in Theorem 2.5 must be slightly modified but the

main properties that will be used in what follows (2, 3, and 5 of Corollary 2.6)
remain invariant. Hence, the methods that we will develop can be directly applied for
solutions of these types of equations.

On the other hand, if B(x) also depends on the order n, these results are no
longer valid. For instance, dn/en is not necessarily a constant. However, one can
transform the ODEs to the normal form by applying changes of the dependent vari-
ables depending on the order. We would write yk = νk(x)ȳk, k = n, n − 1, where
νk = exp

(− 1
2

∫
Bk(x)dx

)
and the DDEs for the functions {ȳk}, with the same zeros

as the functions {yk}, satisfy all the relations between coefficients of Theorem 2.5.

3. Ratios of consecutive functions and the change of variables z(x).
From now on, we will consider functions normalized in such a way that dn = −en
(Theorem 2.5).

We define

Hn(x) = sign(dn)yn/yn−1.(3.1)

Hn(x) has the same zeros as yn because the zeros of yn and yn−1 are interlaced. This
ratio will be the basis of our root-finding scheme.

Taking the derivative and using the DDEs, we have

H ′
n(x) = sign(dn)

(
y′n
yn−1

− yn
yn−1

y′n−1

yn−1

)
= |dn|+ (an − bn)Hn + |dn|H2

n .

If relations (2.3), with the conditions of Theorem 2.5, hold with the replacement
n→ n + 1, which is the usual situation, we can write

y′n+1(x) = an+1(x)yn+1(x) + dn+1(x)yn(x),

y′n(x) = bn+1(x)yn(x)− dn+1(x)yn+1(x),
(3.2)

and we can define a second ratio with the same roots as yn:

Hn,+1(x) = −sign(dn+1)
yn(x)

yn+1(x)
.(3.3)

Taking the derivative, we obtain

H ′
n,+1(x) = |dn+1|(1 + H2

n,+1)− (an+1 − bn+1)Hn,+1.(3.4)

In a more compact form, we define

Hn,i(x) = −isign(d)
yn
yn+i

(3.5)

and we have that

H ′
n,i(x) = |d|(1 + H2

n,i) + i(b− a)Hn,i,(3.6)

where i = ±1, and the orders of the coefficients a, b, and d are n for i = −1 and n+ 1
for i = +1.
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We observe that the functions Hn,i(x) satisfy the same differential equation as
tanx if |d| = 1 and if the linear term is missing. This linear term prevents the
Hn,i functions from being monotonic in general. Monotonic functions (except at the
zeros of yn+i) can be obtained from the functions Hn,i, as similarly shown in [21], by
exponentiation of the coefficient of the linear term:

fn,i(x) = exp

(
i

∫
(a− b)dx

)
Hn,i(x).

These functions can be used to build globally convergent Newton iterations. However,
we will see how the properties satisfied by the function Hn,i are enough to find a fixed
point method which implies, as a weaker result, the global convergence of the Newton
iterations based on fn,i.

Let us introduce the changes of variables (one different change for each value of
i):

z(x) =

∫
|d(x)| dx.(3.7)

Denoting

Hi(z) ≡ Hn,i(x(z))(3.8)

and dHi

dz ≡ Ḣi, we find that

Ḣi = (1 + H2
i )− 2ηiHi,(3.9)

where

ηi = i
a− b

2|d| .(3.10)

These expressions are quite similar to those obtained for the particular case of the
Bessel functions [21, 23], the main difference being that (b − a)/d may change sign
(only once if An−An−1 never vanishes), while this phenomenon was absent for Bessel
functions. ηi are monotonic functions if An − An−1 never cancels (see the proof of
Corollary 2.3).

4. Globally convergent fixed point method. The starting point of the fixed
point method for the evaluation of the zeros of Yn(z) ≡ yn(x(z)) is the first derivative
of Hi (see (3.9)).

We will discuss the evaluation of the zeros of Yn(z) ≡ yn(x(z)). Obviously, if zn
is a zero of Yn, then z−1(zn) is a zero of yn and vice versa. We will assume that all
hypotheses of Theorem 2.5 are met.

If we were given a guess value z0 to obtain a zero zn of Yn and ηi was identically
zero (which is the case for Bessel functions of order n = 1/2), the obvious answer
would be

zn = Ti(z0) = z0 − arctan(Hi(z0)).

When ηi �= 0, we will show that Ti(z) can be used to evaluate zeros by taking successive
iterations of this function.
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It is important to bear in mind that, if An(x) − An−1(x) �= 0∀x ∈ I, ηi can
change sign only once in I (see Theorem 2.5, properties 2 and 7, and (3.10)). The
value z ≡ zη for which ηi(zη) = 0 will be called the transition point (TP).

We will first prove the global convergence for the iteration in case ηi does not
change sign, and we will consider the other situation later.

Let us first introduce some notation:
1. We denote by Yk the functions Yk(z) ≡ yk(x(z)).

2. Let us consider that zn is a zero of Yn. We will denote by z
(j)
n+i the closest

zero of Yn+i to zn which is smaller than zn (if it exists). Similarly, we denote

by z
(j+1)
n+i the closest zero of Yn+i to zn which is greater than zn (if it exists).

3. We will denote by Ji an open interval such that there is exactly one zero of
Yn in Ji (zn ∈ Ji) and such that Ji is the largest interval in which there are
no zeros of Yn+i.

It is important to bear in mind the following result.
Lemma 4.1. Let Ji be an interval as defined above. Then Hi is continuous in Ji.

If z ∈ Ji, then sign(Hi) = sign(z − zn). If z
(j)
n+i exists, then lim

z→z
(j)+
n+i

Hi = −∞. If

z
(j+1)
n+i exists, then lim

z→z
(j+1)−
n+i

Hi = +∞.

Proof. Hi is continuous in Ji because Yn+i does not vanish in I. In addition,
(3.9) implies that Ḣi(zn) = 1 because Hi(zn) = 0. Given that the only zero of Yn in
Ji is zn and Hi is increasing at zn, then Hi is positive for z > zn and negative for
z < zn for values of z in Ji.

The following lemma will lead to the definition of subintervals of monotonic
convergence.

Lemma 4.2. Let Ti(z) = z − arctan(Hi(z)).

1. If ηi > 0 ∀z0 ∈ (zn, z
′) ⊂ Ji, then zn < Ti(z0) < z0 and limp→∞ T

(p)
i (z0) = zn

∀z0 ∈ (zn, z
′).

2. If ηi < 0 ∀z0 ∈ (z′′, zn) ⊂ Ji, then z0 < Ti(z0) < zn and limp→∞ T
(p)
i (z0) =

zn ∀z0 ∈ (z′′, zn).
In both cases the FPI converges monotonically.

Proof. The only fixed point of the iteration Ti in Ji is zn. Therefore, convergence
to zn is guaranteed once we have proved that the successive iterations of Ti form
monotonic sequences which approach zn and are bounded by zn.

From (3.9) we have

Ḣi = (1 + H2
i )− 2ηiHi .(4.1)

Rearranging (4.1) gives

sign(ηi)sign(Hi)

(
Ḣi

1 + H2
i

− 1

)
= −2|ηi| |Hi|

1 + H2
i

≤ 0,(4.2)

where the equality holds only for z = zn.
Now, since sign(Hi(z)) = sign(z − zn) ∀z ∈ Ji (see Lemma 4.1),

sign(ηi)

∫ z′

z

(
Ḣi

1 + H2
i

− 1

)
dz < 0(4.3)

for all z, z′ ∈ Ji such that zn ≤ z < z′ or zn ≥ z > z′.
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Integrating, we obtain

sign(ηi)(arctan(Hi(z
′))− arctan(Hi(z))− (z′ − z)) < 0,(4.4)

and taking z = zn gives

sign(ηi)(arctan(Hi(z
′))− (z′ − zn)) < 0, z′ ∈ Ji \ {zn}.(4.5)

Therefore, if ηi > 0 ∀z ∈ (zn, z
′) ≡ K ⊂ Ji, then we have that Hi(z) > 0 in K

(Lemma 4.1), and given a value z0 ∈ K, we have Ti(z0) = z0 − arctan(Hi(z0)) < z0;
in addition, from (4.5) it follows that zn < Ti(z0). This proves the first case of the
lemma; the second case can be proved in a similar way.

This lemma suggests the following definition.

Definition 4.3. When ηi > 0 in (zn, z
(j+1)
n+i ) ⊂ Ji (first case of Lemma 4.2),

we say that zn has a subinterval of monotonic convergence (SMC) on the right. The

interval (z
(j)
n+i, zn) ⊂ Ji when ηi > 0 is called a subinterval of conditioned convergence

(SCC).

zn has an SMC on the left when ηi < 0 holds in an interval (z
(j)
n+i, zn) (second

case of Lemma 4.2). There is an SCC on the right if ηi < 0 in (zn, z
(j+1)
n+i ).

Lemma 4.2 can be used to show that, whenever z
(j)
n+i and z

(j+1)
n+i exist and ηi does

not change sign in (z
(j)
n+i, z

(j+1)
n+i ), the FPI converges for any starting value in such an

interval. Before this, it is convenient to set bounds on the lengths of SMCs and SCCs.

Corollary 4.4 (lengths of SCCs and SMCs). Let z
(j)
n+i and z

(j+1)
n+i be two con-

secutive zeros of Yn+i and let zn be the zero of Yn in Ji = (z
(j)
n+i, z

(j+1)
n+i ). Let ηi �= 0

∀z ∈ Ji. Then
1. the length of the SMC is larger than π/2,
2. the length of the SCC is smaller than π/2.

Proof. Considering (4.5) and taking into account Lemma 4.1, we have

sign(ηi)sign(z′ − zn)(| arctan(Hi(z
′))| − |z′ − zn|) < 0 ∀z′ ∈ Ji \ zn.(4.6)

Taking the limit z′ → zn+i, where zn+i = z
(j)
n+i or zn+i = z

(j+1)
n+i , gives

sign(ηi)sign(zn+i − zn)

(
π

2
− |zn+i − zn|

)
< 0.(4.7)

However, the values between zn and zn+i form an SMC if and only if sign(ηi)sign(zn+i−
zn) > 0, and they are an SCC if and only if sign(ηi)sign(zn+i − zn) < 0 (see Lemma
4.2 and Definition 4.3).

Corollary 4.5. The distance between two consecutive zeros of Yn or Yn+i is
greater than π/2.

We can now prove the global convergence in the intervals (z
(j)
n+i, z

(j+1)
n+i ).

Theorem 4.6. Let z
(j)
n+i and z

(j+1)
n+i be two consecutive zeros of Yn+i and let zn

be the zero of Yn on Ji = (z
(j)
n+1, z

(j+1)
n+1 ). Assume that ηi does not change sign in Ji.

Let Ti(z) = z − arctan(Hi). Then

lim
p→∞T

(p)
i (z0) = zn ∀z ∈ (z

(j)
n+i, z

(j+1)
n+i ).
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Proof. Given that ηi does not change sign, there is an SMC on either the left or
on the right of zn (Lemma 4.2). Let us consider that the SMC is on the right, which
means that ηi > 0 (the case ηi < 0 is proved in a similar way). From (4.5) we have
that zn < Ti(z) = z − arctan(Hi(z))∀z ∈ Ji. As discussed in Lemma 4.2 this implies

monotonic convergence to zn for all the starting values z0 in the SMC (zn, z
(j+1)
n+i ). For

initial values z0 in the SCC (z
(j)
n+i, zn), given that z0 < zn < z1 ≡ Ti(z0) < z0 + π/2

(see (4.5)), the value of z after the first iteration (z1) is greater than zn and in fact

lies in the SMC; this is so because the length of the SMC, z
(j+1)
n+i − zn, is larger than

π/2 while z1 − z0 < π/2. The next iterations starting from z1 will therefore converge
monotonically.

The preceding proof illustrates how the convergence for starting values in an SCC
inside an interval Ji is conditioned to the existence of an adjacent SMC in Ji.

Remark. Given that the zeros of Yn and Yn+i are interlaced, the preceding the-
orem guarantees (except for a trivial exception) convergence to a zero of Yn for any
starting value in an interval (zn+i, z

′
n+i), zn+i and z′n+i being any two zeros of Yn+i,

not necessarily consecutive. The trivial exception to this result comes from the fact
that Hi(z) is not defined at the zeros of Yn+i. However, this “overflow problem” in
the evaluation of Hi is easy to handle numerically. Let us avoid this circumstance by
defining Ti(zn+i) = π/2; then, convergence in intervals (zn+i, z

′
n+i) is global without

exception.

The convergence theorems established so far, as well as all the following results,
also apply to the Newton iteration based on the monotonic functions fi. This iteration
is given by

T̂i(z) = z − fi

ḟi
= z − Hi

1 + H2
i

≡ z −Ri(z).

However, sign(Ri(z)) = sign(arctan(Hi(z))) and |Ri(z)| < | arctan(Hi(z))| and there-
fore this Newton iteration is also globally convergent.

5. Finding the zeros inside an interval. In order to compute with certainty
all the zeros of Yn inside an interval I ⊂ (zn+i, z

′
n+i), with zn+i, z

′
n+i zeros of Yn+i,

we need to find a step ∆z such that, once a zero of Yn (zn) is known, the starting
value z0 = zn+∆z (or z0 = zn−∆z) will lead to convergence to a zero Yn consecutive
to zn. This is provided by the following proposition.

Proposition 5.1. Let I = [z1, z2] ⊂ (z
(1)
n+i, z

(M)
n+i ), where z

(1)
n+i, z

(2)
n+i, . . . , z

(M)
n+i

denote M consecutive zeros of Yn+i; ηi is such that ηi �= 0∀z ∈ I. All the zeros of Yn
in I can be found by applying one of the following algorithms:

1. If ηi < 0∀z ∈ I, then z
(1)
n = limp→∞ T

(p)
i (z1) is a zero of Yn and the succes-

sive consecutive zeros z
(1)
n < z

(2)
n . . . are recursively obtained in the following

way: z
(k+1)
n = limp→∞ T

(p)
i (z

(k)
n + π/2). The convergence to the zeros z

(k)
n ,

k > 1, is always monotonic. The process is repeated until an m is reached for

which z
(m)
n + π/2 > z2.

2. If ηi > 0∀z ∈ I, then z
(1)
n = limp→∞ T

(p)
i (z2) is a zero of Yn and the succes-

sive consecutive zeros z
(1)
n > z

(2)
n . . . are recursively obtained in the following

way: z
(k+1)
n = limp→∞ T

(p)
i (z

(k)
n − π/2). The convergence to the zeros z

(k)
n ,

k > 1, is always monotonic. The process is repeated until an m is reached for

which z
(m)
n − π/2 < z1.
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Proof. 1. If ηi < 0, then the SMCs are on the left of the zeros of Yn and the SCCs
are on the right. By Theorem 4.6, the FPI with starting value z1 converges to a zero

z
(1)
n of Yn.

Given a zero of Yn, z
(k)
n ∈ (z

(j)
n+i, z

(j+1)
n+i ), the right subinterval (z

(k)
n , z

(j+1)
n+i ) is

an SCC, with length smaller than π/2, and therefore z
(k)
n + π/2 “jumps” outside

this SCC and falls into the next SMC (z
(j+1)
n+i , z

(k+1)
n ), which guarantees monotonic

convergence to the next zero of Yn, z
(k+1)
n . This shows that the step ∆z = π/2

guarantees convergence to the successive zeros of Yn.
Because the algorithm always evaluates successive values of z in increasing order,

except, perhaps, when calculating the first zero, after z
(m)
n + π/2 > z2 for some m,

the iteration can be stopped since the next zero of Yn would be larger than z2.
2. The proof for ηi > 0 is very similar and it is omitted.

6. Special cases. In order to circumvent the limitations present in Proposition
5.1 and to thus be able to build a general algorithm which will find all the real roots
inside any real interval [z1, z2], we must study the convergence of the method when

1. the starting value lies in an interval which is not contained in an interval

(z
(1)
n+i, z

(M)
n+i ).

2. ηi changes sign in an interval (z
(j)
n+i, z

(j+1)
n+i ). We will say that (z

(j)
n+i, z

(j+1)
n+i ) is

a transition subinterval.
The potential problems will be avoided by choosing starting values which guar-

antee monotonic convergence.
It is easy to prove the following result regarding convergence in transition

subintervals.
Proposition 6.1 (transition subintervals). Let Ji ≡ (z

(j)
n+i, z

(j+1)
n+i ), z

(j)
n+i and

z
(j+1)
n+i being two consecutive zeros of Yn+i, and let zη be the zero of ηi in Ji. If

lim
z→z

(j)
n+i

ηi > 0 and lim
z→z

(j+1)
n+i

ηi < 0, then the following hold:

1. limp→∞ T
(p)
i (zη) = zn, where zn is the zero of Yn inside Ji.

2. If zη ≤ zn, then zη − π/2 < z
(j)
n+i and zn + π/2 > z

(j+1)
n+i .

3. If zη ≥ zn, then zn − π/2 < z
(j)
n+i and zη + π/2 > z

(j+1)
n+i .

Proof. 1. ηi is negative between zη and zn if zη < zn, while ηi will be positive
between zη and zn if zη > zn; in both cases, by Lemma 4.2, there is monotonic
convergence for all starting values between zη and zn (including both values).

2. ηi < 0 for z ∈ (zn, z
(j+1)
n+i ); thus, zn has an SCC on the right and hence

zn + π/2 > z
(j+1)
n+i (Corollary 4.4). On the other hand, ηi > 0 in (z

(j)
n+i, zη), where Hi

is negative (such as for an SCC); by using similar arguments to those in Corollary 4.4

(applying (4.3)) one can show that zη − π/2 < z
(j)
n+i.

3. The proof is analogous to the previous case.
This result will be applied when ηi is a decreasing function with a zero zη (recall

that ηi is monotonic and cannot have more than one zero when An − An+i �= 0 ∀x).
The algorithm is said to be expansive, because the zeros are evaluated in increasing
order on the right of zη and in decreasing order on the left. This proposition gives a
recipe for finding the zero in the transition subinterval and for starting the forward
and backward sweeps outside this subinterval.

Regarding convergence in intervals that are not contained in intervals (z
(1)
n+i, z

(M)
n+i ),

the most important case is for intervals of the type [z1, zn+i) or (zn+i, z2]. We have
the following result.
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Proposition 6.2 (first and last subintervals). Let Ji be an interval where there
is no zero of Yn+i.

1. If Ji = [z1, zn+i) and ηi < 0 in Ji, then we have the following:
(a) If Hi(z1) > 0, then there is no zero of Yn in Ji and z1 + π/2 > zn+i.
(b) If Hi(z1) < 0, then there is a zero, zn, of Yn in Ji; limp→∞ T (p)(z1) = zn

(monotonically) and zn + π/2 > zn+i.
2. If Ji = (zn+i, z2] and ηi > 0 in Ji, then we have the following:

(a) If Hi(z1) < 0, then there is no zero of Yn in Ji and z2 − π/2 < zn+i.
(b) If Hi(z1) > 0, then there is a zero, zn, of Yn in Ji; limp→∞ T (p)(z2) = zn

(monotonically) and zn − π/2 < zn+i.
Proof. 1(a) There can be no zero of Yn in Ji because Hi is increasing at the zeros.

Equation (4.4) can be used to prove that z1 + π/2 > zn+i.
1(b) There is a zero in Ji as a consequence of Lemma 4.1. Convergence is guar-

anteed by Lemma 4.2, and Corollary 4.4 proves that z
(1)
n + π/2 > zn+i. (There is an

SCC on the right of z
(1)
n .)

Cases 2(a) and 2(b) can be proved in the same way.
This result will be useful when evaluating the smallest (largest) zero when ηi < 0

(ηi > 0) inside an interval [z1, z2]. Monotonic convergence is guaranteed.
Propositions 6.1 and 6.2 provide convergence results for the zeros of the first

and last subintervals and transition subintervals, as well as steps to abandon such
subintervals. It is important to note that such steps (∆z = π/2) guarantee monotonic
convergence once such subintervals are abandoned.

7. Algorithms. We will build explicit algorithms to compute with certainty all
the zeros inside an interval. These algorithms implement Propositions 5.1, 6.1, and
6.2.

We will first consider evaluation of the zeros inside an interval [z1, z2], where ηi
does not change sign. The algorithm computes zeros in increasing order if ηi < 0
and in decreasing order in the other case (similarly to Proposition 5.1). Both forward
(ηi < 0) and backward (ηi > 0) sweeps can be summarized in a single algorithm as
follows. We use FORTRAN-like syntax.

Algorithm 1. Forward and backward sweeps. Let [z1, z2] be an interval
where ηi does not change sign. Let H(z) ≡ Hi(z). The zeros of Yn in this interval
can be found with certainty using the following algorithm:
Input: j = −sign(ηi) (+1 forward sweep; −1 backward); z1;z2;ε ≡ relative precision
Output: i (number of zeros); z(1), . . . , z(i): zeros in the interval
(0) SUBROUTINE SWEEP(j,z1,z2,ε,i,z(i))
(1) NOTERM = 1

(2) z̄1 = z1 + z2
2 + j

(
z1 − z2

2

)
(3) z = z̄1

(4) z̄2 = z1 + z2
2 − j

(
z1 − z2

2

)
(5) IF (jH(z) > 0) THEN z = z + jπ/2
(6) i = 0
(7) DO WHILE (j(z − z̄2) < 0)
(8) CALL FIXEDPOINT(z,z̄2,ε,zn,NOTERM)
(9) IF(NOTERM = 1) THEN
(10) z(j i) = zn
(11) i = i + 1
(12) z = zn + jπ/2
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(13) ELSE
(14) z = z̄2 + j
(15) ENDIF
(16) END WHILE
(17) END

(0′) SUBROUTINE FIXEDPOINT(z,z̄2,ε,zn,NOTERM)
(1′) Err = 1 + ε
(2′) DO WHILE (NOTERM = 1) AND (Err > ε)
(3′) zp = z
(4′) z = z − arctan(H(z))
(5′) Err = |1− z/zp|
(6′) IF (j(z − z̄2) > 0) THEN NOTERM = 0
(7′) END WHILE
(8′) zn = z
(9′) END
and the zeros generated in a forward sweep are stored in the positive positions of the
array z(i) (z(1), z(2), . . .), while those generated in a backward sweep are stored in the
negative positions (z(−1), z(−2), . . .).

Lines (0′)–(9′) implement the fixed point iteration Ti. Lines (0)–(17) implement
Proposition 5.1, complemented with Proposition 6.2 (line (5)).

Let us, for instance, discuss how the algorithm works in the case of a forward
sweep (j = +1) in an interval [z1, z2]; for a backward sweep, the description is very
similar. The first 4 lines are used to set the initial and final values for the sweep. In
the case we are considering (forward), the starting value for the process is z̄1 = z1 and
the algorithm stops when, at any stage of the process, a value of z is reached which
is greater than z̄2 = z2 (lines (6′) and (7) test whether this condition is reached).

Line (5) tests whether there is a zero of Yn between z1 and the first zero of Yn+i

in [z1, z2]; if there is no such zero (jH(z) < 0), the instruction z = z + jπ/2 sets a
new starting value z to compute the smallest zero of Yn in [z1, z2] (see Proposition
6.2).

Lines (7)–(17) implement Proposition 5.1.

Note that all successive values of z generated in the process form an increasing
sequence because convergence is always monotonic. This explains why the process
can be stopped when a value of z outside this interval is reached. When this happens,
we can be sure that all the zeros in the interval have been found.

The previous algorithm always can be applied when ηi does not change sign
inside the interval under consideration; however, when ηi changes sign in I, we have
to combine the forward and backward sweeps. If ηi is negative on the left of the
interval and positive on the right, then we can use an algorithm which approaches the
TP from both sides of the interval.

Algorithm 2. Contractive sweep. Let [z1, z2] be an interval where ηi
changes sign in such a way that ηi < 0 as z → z1. Let zη be such that ηi(zη) = 0.
The zeros of Yn in such an interval can be found with certainty using the following
two successive calls:

CALL SWEEP(+1,z1,zη,ε,i,z(i))
CALL SWEEP(−1,zη,z2,ε,i,z(i))

If ηi is negative on the right of the interval and positive on the left, then the sweep
starts from the TP and propagates away from it (expansive sweep). Convergence
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starting from any value z in an interval (z
(j)
n+i, z

(j+1)
n+i ) with a TP is not guaranteed

because there is no SMC in such an interval. However, given the way ηi changes sign,
Proposition 6.1 tells us that the starting value zη ensures convergence to the zero of
Yn near the TP. In addition, the same proposition gives the recipe for abandoning the
region of convergence to this zero. These are the main characteristics of the following
algorithm.

Algorithm 3. Expansive sweep. Let [z1, z2] be a real interval where ηi changes
sign in such a way that ηi > 0 as z → z1. Let zη be such that ηi(zη) = 0. The zeros
of Yn in such an interval can be found with certainty using the following algorithm:

(0) SUBROUTINE EXPANSIVE(z1,z2,zη,ε,z(i))
(1) z = zη
(2) Err = 1 + ε
(3) DO WHILE (Err > ε) AND (NOTERM = 1)
(4) zp = z
(5) z = z − arctan(H(z))
(6) IF (z > z2) OR (z < z1) NOTERM = 0
(7) Err = |1− z/zp|
(8) END WHILE
(9) ztp = z
(10) IF NOTERM= 1 THEN
(11) z(0) = z
(12) IF (ztp > zη)THEN
(13) CALL SWEEP(+1,z(0) + π/2,z2,ε,i,z(i))
(14) CALL SWEEP(−1,z1,zη − π/2,ε,i,z(i))
(15) ELSE
(16) CALL SWEEP(+1,zη + π/2,z2,ε,i,z(i))
(17) CALL SWEEP(−1,z1,z(0)− π/2,ε,i,z(i))
(18) ENDIF
(19) ENDIF
(20) END
z(0) is the zero of Yn in the transition subinterval.

The three algorithms described are sufficient to find all the zeros of any solution
of a second order ODE y′′n(x) + B(x)y′n(x) + An(x)yn(x) = 0, An(x) − An−1(x) �=
0∀x satisfying general DDEs (satisfied by two fundamental sets) with continuous
coefficients. The forward and backward (or expansive and contractive) sweeps are
most often simultaneously available given that we will normally have two iterations to
choose, one with η−1 = −(an−bn)/2dn and another with η+1 = (an+1−bn+1)/2dn+1.

The condition An(x)−An−1(x) �= 0∀x was used to show that ηi can change sign
only once. However, if this condition is not met, strategies combining contractive and
expansive sweeps can be developed. In any case, as we will see, this condition is met
with great generality.

8. Applications. Considering that we started from basic ingredients, it is not
surprising that the method developed is valid for a wide spectrum of special functions.
The method can be applied to any combination of fundamental solutions of the ODE.
In contrast, matrix eigenvalue methods apply only to orthogonal polynomials and to
minimal solutions of three term recurrence relations

yn+1 + αnyn + βnyn−1 = 0.(8.1)
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The matrix methods for minimal solutions were developed by Grad and Zakrajsek [8],
enhanced by Ikebe et al. (see [10, 11, 16] and references therein), and later revisited
by Ball [2].

The fixed point method described here becomes especially simple to implement
for minimal solutions of the recurrence (8.1) related to (2.3). The reason is that
Pincherles’s theorem [4, 18] guarantees the existence of continued fractions for the
ratios of minimal solutions yn/yn−1 and yn/yn+1, which are the only evaluations
needed in our method. In this case, the method is based solely on the coefficients of
the recurrence relations, as happens with matrix methods [10], with the advantage
that the fixed point method is not affected by truncation errors, which need to be
estimated. The fixed point method is not restricted to minimal solutions; for any
dominant solution, the method still can be applied by using an alternative method
for calculating yn/yn±1.

We are now explicitly showing how to implement these algorithms for general
solutions of the Bessel, Coulomb, and Legendre equations (with emphasis on coni-
cal functions and Legendre polynomials) as well as for general solutions of second
order ODEs satisfied by some classical orthogonal polynomials (Hermite, Laguerre).
Computational details are given in [7].

8.1. Bessel equation (cylinder functions). The Bessel equation is

y′′n(x) + B(x)y′n(x) + An(x)yn(x) = 0,(8.2)

with B(x) = 1/x, An(x) = 1− n2/x2, and An(x)− An−1(x) = 2n− 1
x2 which is only

zero for n = 1/2. This case is trivial: yn(x) ∝ cos(x + φ). The coefficients of the
DDEs are

an = −n/x ; bn = (n− 1)/x ; dn = −en = 1,(8.3)

and then ηi = −ini−1/2
x , with i = ±1, n+1 = n + 1, and n−1 = n. There are no

TPs (x = 0 is a regular singular point and our analysis is only for intervals where
all the solutions are continuous). No change of variable z(x) is required. The DDEs
are satisfied by general cylinder functions; therefore, the algorithm can be applied to
combinations of first and second kind Bessel functions, including Airy functions.

8.2. Coulomb equation (Coulomb wave functions). The coefficient An(x)
for the Coulomb equation (which is an equation in normal form) is An(x) = 1−2γ/x−
n(n+ 1)/x2; we use n instead of the more standard notation L, γ instead of η, and x
instead of ρ (see [1, 25]). n and γ are parameters.

We can take n > −1 because A−n−1 = An. Observe that An(x) − An−1(x) =
−2n/x which equals zero only for n = 0. n = 0 is a special case only in the sense that
the iteration with i = −1 has no meaning because y0 and y−1 are not independent
solutions (but the iteration for i = +1 always can be used).

The coefficients for the DDEs (see [1, eqs. (14.2.1) and (14.2.2)]) are

an = −bn = − 1

n

(
n2

x
+ γ

)
; dn = −en =

√
n2 + γ2

n
.(8.4)

We need only consider positive zeros because the negative ones are positive zeros
of the functions with the sign of γ reversed. The change of variables can be chosen as
z =

∫
dni(x)dx = dnix (again, ni = n for i = −1 and ni = n + 1 for i = +1).
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We have that ηi = −i(n2
i + γx)/(x

√
n2
i + γ2). Thus, there is a TP at zη =

−dnn2/γ which is positive for n ∈ (−1, 0) and γ > 0 as well as for n > 0 and γ < 0.

If there is no positive TP, then the forward sweep (i = +1) always can be used
and the backward sweep (i = −1) can be used except for n = 0. When there is a
TP, we can use both contractive and expansive sweeps (except for the case n = 0, for
which only the expansive sweep can be used).

The DDEs are satisfied by both the regular and irregular Coulomb wave functions;
the algorithm applies to any combination of them (general solutions of the differential
equation).

8.3. Legendre equation (conical functions). Conical functions are chosen
to illustrate the application of the fixed point method to Legendre functions Pnm, Qnm,
which are solutions of a differential equation y′′n(x) + B(x)y′n(x) + An(x)yn(x) = 0
with coefficients

B(x) = 2x/(x2 − 1); An(x) = −[m(m + 1) + n2/(x2 − 1)](x2 − 1).(8.5)

We have reversed the use of m and n with respect to the standard notation [1] in
order to be consistent with our own notation. We will consider the case x > 1.

We have An −An−1 = (−2n + 1)/(x2 − 1)2 which vanishes (identically) only for
n = 1/2; this is, as for Bessel functions with n = 1/2, a trivial case.

Conical functions are defined by m = −1/2 + iτ with real τ . The corresponding
coefficients of the difference-differential relations are

an =
−nx
x2 − 1

, bn =
(n− 1)x

x2 − 1
, dn = − λ2

n√
x2 − 1

, en =
1√

x2 − 1
,(8.6)

with

λn =
√

(n− 1/2)2 + τ2 .(8.7)

In order to set dn = −en we need to renormalize the solutions. We then use new
functions ȳ: yp = Kpȳp with Kn =

√
(n− 1/2)2 + τ2Kn−1. With this, the new

coefficients dn and en are dn = −en = −λn/
√
x2 − 1 and the change of variables

z(x) can be taken as z(x) =
∫ |dni(x)|dx = λni ln(x +

√
x2 − 1), which means that

x(z) = cosh(z/λni).

The iterations read Ti(z) = z − arctan(Hi(z)) with

H−1(z) = sign(dn)
ȳn(x(z))
ȳn−1(x(z))

= − 1
λn

yn(x(z))
yn−1(x(z))

,

H+1(z) = −sign(dn+1)
ȳn(x(z))
ȳn+1(x(z))

= λn+1
yn(x(z))
yn+1(x(z))

.

(8.8)

From the coefficients we get ηi = i(−ni + 1/2)x/(λni

√
x2 − 1), with ni as defined

before. There are no TP for x > 1. However, ηi vanishes identically for ni = 1/2.
This is a trivial case because Ḣi = 1 + H2

i .

Forward and backward sweeps are possible.

The same DDEs are satisfied by first kind (Pn−1/2+iτ ) and second kind (Qn−1/2+iτ )
conical functions and therefore the algorithm also applies to any linear combination.
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8.4. Legendre equation (Legendre polynomials). Differential equation:
(1− x2)Pn(x)− 2xP ′

n(x) + n(n + 1)Pn(x) = 0, |x| < 1.
Coefficients in the DDEs: an = −bn = − nx

1−x2 , dn = −en = n
1−x2 .

Change of variable: z(x) = ni

2 ln 1+x
1−x ; x(z) = tanh(z/ni). Range of z: (−∞,+∞).

TPs: ηi = −ix; TP at xη = 0 = z(xη) ≡ zη.
Applicable algorithms: expansive from z = 0; contractive is not appropriate given

the range of z. Only the positive z-roots of Legendre polynomials need to be calculated
because they are symmetric around x = 0 and z(−x) = −z(x); thus, a forward sweep
from z = 0 is sufficient to find all the zeros.

The algorithms apply to any solution of the differential equation, satisfying the
same DDEs. Then we can use them for cosαPn − sinαQn for any α.

8.5. Hermite equation (Hermite polynomials). Differential equation: y′′n−
2xy′n + 2nyn = 0.

Coefficients in the DDEs: an = 0, bn = 2x, dn = 2n, en = −1.
Normalization: We must renormalize Hermite polynomials by yp = kpȳp with

kn =
√

2nkn−1 (n > 0).
Renormalized coefficients: same as before except that dn = −en =

√
2n.

Change of variable: z(x) =
√

2nix. Range of z: (−∞,+∞).
TPs: ηi = −ix(z)/

√
2ni; TP at xη = 0 = z(xη) ≡ zη.

Applicable algorithms: same as for Legendre polynomials.
The functions e−x

2/2yn(x) satisfy an equation in normal form and two DDEs
with An(x) = 1 − x2 + 2n, an = −bn = −x, dn = 2n, en = −1 which satisfy all the
conditions of Lemma 2.2. Thus, the DDEs are satisfied by general solutions (with a
convenient normalization). The algorithms apply to arbitrary solutions of the ODE.

8.6. Laguerre equation (generalized Laguerre polynomials). Differential
equation: xy′′n + (α + 1− x)y′n + nyn = 0, x > 0.

Coefficients: an = n/x, bn = 1− (n + α)/x, dn = −(n + α)/x, en = n/x.
Normalization: We must renormalize Laguerre polynomials by yp = kpȳp with

kn =
√

(n + α)/nkn−1.

Renormalized coefficients: same as before except that dn = −en = − 1
x

√
(n + α)n.

Change of variable: z(x) =
√

(ni + α)ni lnx. Range of z: (−∞,+∞).

TPs: ηi = i(ni + α/2 − x/2)/
√
ni(ni + α); TP at xη = 2ni + α, zη = z(xη) =√

ni(ni + α) ln(2ni + α).
Applicable algorithms: expansive or contractive from zη. Given the range of z,

expansive is more appropriate.
Writing the differential equation in normal form and using Lemma 2.2 we conclude

that the algorithms apply to arbitrary solutions of the ODE.

9. Conclusions and perspectives. The method described here can be applied
to any oscillating special function when DDEs (with continuous coefficients) satisfied
by two sets of fundamental solutions are available. We also require that An and An+i

are never equal (which is a condition generally met).
The method has several advantages with respect to matrix methods: not only

can the zeros of minimal solutions be obtained, but also the zeros of general solutions.
The zeros in any interval (x1, x2) can be found, and not necessarily the first n zeros.
The method can be used to investigate the existence of zeros in a given interval
(where perhaps there is no zero at all). In addition, although fast (see [22] for a
similar method for Bessel functions), the method admits improvements when there is
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additional information on the zeros of a function (like asymptotic [24] or Chebyshev
approximations for the zeros of Bessel functions), in contrast to matrix methods.
Finally, the fixed point method is not affected by matrix truncation errors, which
are function dependent [16, 2]. With respect to more general purpose methods [12],
the fixed point method has the advantage of being much more simple to implement.
Besides, it proves to be faster: the global Newton method for Bessel functions in [22]
compared favorably with respect to [28] and the speed of convergence of this Newton
method [21] is improved by the implementation of the fixed point method described
in this paper. More computational details are given in [7].

The main difficulty when evaluating zeros of a given function is usually the brack-
eting of the roots, given that the distribution of zeros can change drastically from one
set of parameters to another. The fixed point method here presented does not require
bracketing. A good example of this variability are Coulomb functions, which present
very rapid oscillations for γ < 0, large |γ|, and not too large x and oscillate slowly
for large and positive n and/or γ and not too large x. It is observed that the number
of iterations needed by the algorithm to converge to the different zeros is quite stable
with varying parameters [7]. For instance, for Coulomb functions we have experienced
that around 10 iterations are enough to get a precision of 10−8 for moderate values
of n and γ and that as n and γ increase this number is quite stable, reaching 20–30
for values as large as 500 (in spite of the fact that the spacing between the first zeros
increases considerably).

Not only can the spacing between zeros vary for different parameter selection but
also, for a fixed function, the spacing between zeros can vary drastically for different
ranges of x. The change of variable z(x) tends to smooth this variation; for instance,
this is observed for conical functions, which oscillate very fast for x close to 1 and slow
down for large x. The change of variables z(x) (see the previous section) automatically
sets a much more uniform distribution of zeros with respect to z, which explains why
the fixed point method has a fairly uniform behavior regarding convergence to all the
zeros.

Both the method and the bonus information regarding the distances between
zeros have the property of being valid for a broad family of special functions, which is
a rather singular event. In future papers, we plan to investigate how broad this class
of functions is and to provide a comprehensive lexicon for its application.

Also, the zeros of the derivatives of this class of functions can be investigated
using similar techniques. Given a family of functions {yn} satisfying a second order
linear ODE in normal form, after a change of the dependent variable one can write
a second order linear ODE for zn ∝ y′n, together with first order DDEs; the main
difficulty consists of finding analytic expressions for the change of variable z(x) and
its inverse. An alternative consists of realizing that for positive An the zeros of yn and
y′n are interlaced. This suggests that fixed point methods based on the logarithmic
derivative of yn are more appropriate, as discussed in [7].

Acknowledgments. The author thanks A. Gil, W. Koepf, and N.M. Temme for
carefully reading the manuscript. The author thanks A. Gil for testing the algorithms.
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WEAK ILL-POSEDNESS OF SPATIAL DISCRETIZATIONS
OF ABSORBING BOUNDARY CONDITIONS
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Abstract. When we wish to solve numerically a differential problem defined on an infinite
domain, it is necessary to consider a finite subdomain and to use artificial boundary conditions in
such a way that the solutions in the finite subdomain approximate the original solution. These
boundary conditions are called absorbing when small reflections to the interior domain are allowed.
In this paper, we develop a general class of absorbing boundary conditions for Schrödinger-type
equations by using rational approximations to the transparent boundary conditions. With this
approach, previous absorbing boundary conditions in the literature are included in this class. We
use the method of lines for the discretization of the initial boundary value problems obtained this way.
We show that the ordinary differential systems that arise after the spatial discretization are weakly
ill-posed, explaining a previous conjecture of Fevens and Jiang. The time discretization is carried
out with A-stable Runge–Kutta methods, where the high order ones may be used to compensate for
the possible troubles present in the problems semidiscretized in space.

Key words. Schrödinger equation, absorbing boundary conditions, initial boundary value prob-
lems, method of lines
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1. Introduction. The numerical solution of initial value problems on unbounded
domains arises in a wide variety of differential equations. In order to obtain a man-
ageable problem, it is necessary to consider a finite subdomain [xl, xr] and to impose
artificial boundary conditions. When the solution of this new problem is equal to
the restriction to the subdomain of the original solution, we say that the boundary
condition is transparent (TBC). However, when the transparent boundary conditions
are nonlocal it is convenient to use local absorbing boundary conditions (ABCs), per-
mitting that the computed solution presents some reflections.

The TBCs and ABCs and their discretizations are widely studied (see [5, 9, 23]
for hyperbolic problems, [4, 8] for parabolic ones). In this paper, we are interested in
the study of ABCs for the equation

∂tu = − i

c
(∂2
xu+ V (x, t)u), x ∈ R, t > 0,(1.1)

where c is a real constant and V is the potential. (In this paper, we suppose without
loss of generality that c > 0. The case c < 0 is analogous.) This equation arises in
two well-known cases: the one-dimensional time dependent Schrödinger equation for
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a particle with mass m,

i�∂tΨ = − �
2

2m
∂2
xΨ+ V (x, t)Ψ,

and the Fresnel equation for the evolution of a paraxial electrical field E along the
z-direction in a Cartesian coordinate system [17, 24],

2in0k0∂zE = ∂2
xE + (n

2(x)− n2
0)k

2
0E,(1.2)

where n(x) is the refractive index (n = 1 if the solution propagates in a vacuum) and
n0 the reference index. We suppose in this paper that the potential V is constant
or almost constant. With these hypotheses, it is possible to obtain an expression for
the TBCs. Equation (1.1) along with these TBCs give rise to a well-posed problem
when the support of the initial condition is contained in the domain [xl, xr]. But these
TBCs are nonlocal and thus their practical interest is limited. Baskakov and Popov
[2] considered these TBCs, using for their implementation linear approximations of
the solution in the time intervals. However, such an approach may cause instabilities,
as is proved in [15].
As an alternative, Schmidt and Yevick [19] proposed a TBC for the Fresnel equa-

tion discretized in time with the θ-method and another one for the fully discretized
problem. As they are transparent, we can expect very small reflections at the bound-
ary. Nevertheless, these boundary conditions have some troubles: they are nonlocal
and thus the computational cost is high, and they are specific to the method used
for the discretization in time (θ-method) and also in space in the case of the fully
discretized ones. In this way, we cannot use other different numerical schemes in
the interior domain. Previously, Schmidt and Deuflhard [18] had already obtained
these boundary conditions for the Fresnel equation discretized in time with variable
coefficients.
Several works have been done to develop local ABCs for the Schrödinger equa-

tion. Di Menza [3] considered the Schrödinger equation without potential in several
dimensions. In order to get local ABCs from the transparent ones, he obtains the
expression analogous to (2.3) below for the TBCs in Fourier variables, and he uses
interpolating rational functions whose numerator and denominator are both polyno-
mials of the same degree. The interpolatory nodes are chosen in order to obtain least
squares approximations to the Fourier symbol of the TBCs in a given interval.
In a recent work, Fevens and Jiang [6] have developed the following ABCs for the

Schrödinger equation:

p∏
l=1

(
i∂x − alc

2

)
u = 0.(1.3)

This boundary condition is developed in order to absorb completely the components
of the wave solutions that travel with group velocities al, l = 1, . . . , p. They showed
how Shibata’s boundary conditions [20] is equivalent to (1.3) with p = 2 and so is
Kuska’s [13] for p = 3 and a1 = a2 = a3.
In this paper, we define a general class of ABCs considering interpolating rational

functions, as Di Menza did, but here the degree of the numerator and denominator
is not necessarily the same, and we do not fix the interpolatory nodes in any way.
However, we show what is the optimal choice in order to absorb the solution when it is
a plane wave. These ABCs are denoted ABC(j1, j2), where j1, j2 are the degrees of the
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polynomials in the numerator and denominator of the rational function, respectively.
We will call order of absorption the value j1 + j2 + 1.
We prove that the ABCs obtained are a generalization of ABCs in [6]. However,

a well-posedness study in a similar way to the one carried out in [6] shows that the
initial boundary value problem that arises by using these ABCs may be well-posed
only for the ABCs obtained in [6].
We study the discretization of the ABCs by using the method of lines. First, we

discretize in space, obtaining a system of ordinary differential equations. We use the
same standard finite differences discretization used in [6, 19] for the interior domain,
together with several implementations at the boundary, depending on the ABCs that
we use.
With our analysis, we can prove that the semidiscrete problems that arise after the

spatial discretization are weakly ill-posed. In fact, these problems are dissipative when
we use an adequate weighted norm. However, the bound depends on the parameter
of the spatial discretization and this may lead to a growth of this bound when the
spatial grid is refined. We prove this fact for the case of ABC(1,0), showing that
the ill-posedness is very weak. Therefore, the ABC(1,0) may be useful in practical
applications, although they are not very absorbing. Moreover, we show numerically
that the semidiscrete problems associated with higher order ABCs are worse posed.
This explains why in some cases we can get better results with ABCs of smaller order
of absorption, as is conjectured in [6]. On the other hand, when the solution is a wave
traveling with a concrete group velocity, the worse behavior of ABCs of higher order
can be canceled because of the greater absorption at the boundary.
Second, we use a Runge–Kutta method for the time integration, although other

time integration methods can be considered. Since the problem discretized in space
is weakly ill-posed, it is very important to use a high order method for the time
integration to compensate for the troubles in space, allowing a moderate time stepsize.
Therefore, it is crucial to use an algorithm obtained by using the method of lines.
The organization of the paper is the following. The ABCs are studied in section

2, together with the relations with other ABCs previously proposed in the literature.
Section 3 is devoted to the spatial discretization of the case ABC(1,0). Some theorems
of linear algebra, which are necessary to show the weak ill-posedness of the semidis-
crete problems, are proved in section 4. In section 5 we study the time discretization
by using Runge–Kutta methods. In section 6 we analyze the discretization of ABCs
of higher order, showing numerically the weak ill-posedness. The higher-dimensional
case is studied in section 7. Finally, section 8 presents some numerical experiments
showing results previously obtained.

2. Absorbing boundary conditions. Let us suppose xr = 0 and consider the
right exterior domain x > 0. In order to obtain an expression for the TBCs, we use
an argument similar to the one in [19]. Let us denote by û(x, ω) the Fourier–Laplace
transform of u(x, t), where ω = �(ω) + i�(ω) with �(ω) < 0. From (1.1), we get

∂2
xû− λ2û = 0,(2.1)

where λ2 = −(V +cω), and since we are interested in solutions that go to 0 as x→∞,
it should be

û(x, ω) = û(0, ω)e−λx(2.2)

with λ =
√−(V + cω) (

√
is the square root with positive real part). If Û(p, ω)

denotes the Laplace transform of û(x, ω), in view of (2.2), it is Û(p, ω) = û(0, ω)/(p+
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λ), and then Û(λ, ω) <∞. On the other hand, if we take Laplace transform in (2.1),
we obtain

Û(p, ω) =
pû(0, ω) + ∂xû(0, ω)

(p2 − λ2)
.

So in order for Û(p, ω) to be finite at p = λ, the numerator in the previous expression
should be 0 for this value of p. We have developed the expression for the TBCs:

i
√
V + cω û(xr, ω) + ∂xû(xr, ω) = 0.(2.3)

An analogous expression can be obtained for the left boundary. Our purpose is to
approximate these nonlocal boundary conditions by local ones. We are going to
consider approximations

√
V + cω ≈ q(V + cω),(2.4)

where q(s) is a rational function that interpolates
√
s. This is a generalization of [1]

where we considered as q the Taylor expansion of first order. We use the notation
ABC(j1, j2) when q(s) = p1(s)/p2(s), where p1 and p2 are relatively prime polyno-
mials with degrees j1 and j2, respectively. We recall that j1 + j2 + 1 is the order of
absorption. Notice that the ABC also depends on the interpolatory nodes, but this
dependence is not displayed in our notation.
We will not consider the cases ABC(0,j) for j ≥ 0, since with a study similar to

the one made later in this section, we see that ABC(0,1) and ABC(0,2) cannot give
rise to a well-posed problem, and although this does not happen for ABC(0,0), its
order of absorption is too small. The simplest cases are the following.

ABC(1,0). Let us consider in (2.4) the polynomial q(s) that interpolates
√
s at

the points s2
1 and s2

2 (with s1, s2 > 0),

q(s) =
s1s2

s1 + s2
+

s

s1 + s2
.(2.5)

Then the differential operator associated with the symbol obtained in (2.3) by con-
sidering the approximation (2.4) is

β0∂tu(xr, t) + β1u(xr, t) + ∂xu(xr, t) = 0,(2.6)

where β0 = c/(s1 + s2), β1 = i(s1s2 + V )/(s1 + s2). In the particular case when
s2
1 = s2

2 = b, the approximation (2.4) reduces to the Taylor expansion of first order of√
V + cω at ω = ω∗, with ω∗ = (b− V )/c.
ABC(1,1). We can also replace

√
V + cω by q(V + cω), where q(s) = (α0 +

α1s)/(1+α2s) is a rational function that interpolates
√
s at s2

1, s
2
2, and s

2
3. This gives

rise to

β0u(xr, t) + β1∂tu(xr, t) + β2∂xu(xr, t) + β3∂txu(xr, t) = 0(2.7)

for certain coefficients βj depending on s1, s2, and s3. In particular, when s2
1 = s2

2 =
s2
3 = b, the approximation considered reduces to the Padé(1,1) expansion of

√
V + cω

at ω = ω∗.
ABC(2,1). Let us now consider q(s) = (α0 + α1s + α2s

2)/(1 + α3s) so that it
interpolates

√
s at the points s2

1, s
2
2, s

2
3, and s2

4. In this way, we get

β0u(xr, t) + β1∂tu(xr, t) + β2∂
2
t u(xr, t) + β3∂xu(xr, t) + β4∂txu(xr, t) = 0(2.8)
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for certain coefficients βj that depend on s1, s2, s3, and s4. The special case s
2
1 = s2

2 =
s2
3 = s2

4 = b corresponds to a Padé(2,1) approximation of
√
V + cω at ω = ω∗.

ABC(3,2). Finally, let q(s) = p1(s)/q1(s) with p1(s) and q1(s) of degree 3,
2, respectively, interpolate

√
s at the points s2

1, s
2
2, s

2
3, s

2
4, and s2

5. With a similar
reasoning as in previous cases, we obtain

0 = β0u(xr, t) + β1∂tu(xr, t) + β2∂
2
t u(xr, t) + β3∂

3
t u(xr, t)(2.9)

+ β4∂xu(xr, t) + β5∂txu(xr, t) + β6∂ttxu(xr, t).

ABC(2,0). We can also consider the second order polynomial q(s) that interpo-
lates

√
s at three points. Nevertheless, the ABC obtained is useless for practice as we

will see later on.
Let us now see which should be the value for the interpolatory nodes. Con-

sider the equation in the interior domain along with a solution of kind u(x, t) =
exp i(kx− ω(k)t), where ω(k) = (V − k2)/c. When we use the ABC obtained by
considering the approximation (2.4) in (2.3), we need

√
V + cω − q(V + cω) to be

small when ω = −ω(k), that is, when V + cω = k2. This way, the approximation
should be good when at least one of the nodes of interpolation is s2

1 = k2.
Let us now study the relation between our ABCs and the ones proposed in [6].

Because of the derivatives of the solution appearing in the ABCs, only ABC(j + 1,j)
and ABC(j,j) for a natural number j could coincide with (1.3). If we take sj = ajc/2,
j = 1, 2 in ABC(1,0), we obtain the ABCs proposed in [6] for p = 2. Similarly,
ABC(1,1) coincides with the one in [6] for p = 3 and sj = ajc/2, j = 1, 2, 3. In the
same way, ABC(2,1) is that of [6] for p = 4 and sj = ajc/2, j = 1, 2, 3, 4.
The study in a rigorous way of the well-posedness of the initial boundary value

problems obtained with these ABC is not the purpose of this paper. However, the
theory of well-posedness for hyperbolic problems of Kreiss [12, 21] provides necessary
conditions for the study of well-posedness for these problems (cf. [10]). In this way,
in [6] it is checked whether there exist solutions Ψ(s) = exp(st+ ηx) of the equation
and the ABCs with �(s) ≥ 0, concluding that the only solution of this kind satisfies
�(s) = 0. For our ABC(1,0) (that coincides with the one of [6] for p = 2), these
solutions should satisfy

ics− V = η2, β0s+ β1 + η = 0,

and then the only possibilities for s are s = i(s2
j − V )/c, for j = 1, 2, both imaginary.

The group velocities associated with these solutions are 2sj/c > 0 and as we are
considering the right boundary, this will not produce a reflected wave. We have
obtained similar conclusions for ABC(1,1), ABC(2,1), ABC(2,2), and ABC(3,2). For
ABC(2,0) and ABC(1,2) there exists a value of s that although it is imaginary, it
gives rise to a solution with negative group velocity. For ABC(3,0) and ABC(1,3)
there exists s with �(s) > 0 such that exp(st + ηx) is a solution of the equation
and the ABCs, giving rise to an exponentially unstable problem. We see that among
the ABCs previously mentioned, the only ones that could give rise to a well-posed
problem are those of the form ABC(j + 1,j) and ABC(j,j), that is, particular cases
of [6].

3. Spatial discretization of ABC(1,0). Let
{
xj : 0 ≤ j ≤ N

}
be a uniform

mesh of the interval [xl, xr], where x
j = xl + jh, 0 ≤ j ≤ N with h = L/N and

L = xr−xl. We will denote by u
j(t) an approximation of u(xj , t). We have considered,
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as in [6, 19], finite differences for the discretization in space of the equation in the
interior domain [xl, xr]:

d

dt
uj(t) = m̃1(h)u

j−1(t) + m̃2(h)u
j(t) + m̃1(h)u

j+1(t), 1 ≤ j ≤ N − 1,(3.1)

with m̃1(h) = −i/ch2, m̃2(h) = i(2− V h2)/ch2.
Let us study now how to discretize the equation at the right boundary when

we consider ABC(1,0) given by (2.6). An analogous reasoning is valid for the left
boundary. Let us consider, as an approximation to ∂2

xu at the right boundary x
N ,

∂2
xu(x

N , t) ≈ 2
h2
(uN−1(t)− uN (t) + h∂xu(x

N , t))(3.2)

so that, along with (2.6), we can develop the following discretization of the equation
at xN :

d

dt
uN (t) ≈ −i

c
(∂2
xu(x

N , t) + V uN (t))

≈ −2i
ch2

(
uN−1(t)− uN (t)− hβ0

d

dt
uN (t)− hβ1u

N (t)

)
− iV

c
uN (t).

We have obtained duN (t)/dt ≈ α̃(h)uN (t) + β̃(h)uN−1(t) this way, where

α̃(h) =
i(2− h2V )(s1 + s2)− 2h(s1s2 + V )

ch(−2i+ hs1 + hs2)
, β̃(h) =

−2i
ch2

(
1− 2i

h(s1+s2)

) .
For the left boundary, we have a similar expression. With this implementation of
ABC(1,0), we have obtained a first order ordinary differential system

U ′(t) =M(h)U(t)(3.3)

with U(t) =
[
u0(t), u1(t), . . . , uN−1(t), uN (t)

]T
and

M(h) =




α̃ β̃ 0 0 · · · 0
m̃1 m̃2 m̃1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 m̃1 m̃2 m̃1

0 · · · 0 0 β̃ α̃


 ∈M(N+1)×(N+1),(3.4)

where we omit the dependence on h in the notation of the elements of M(h). The
solution of (3.3) is

U(t) = exp(M(h)t)U(0).

Our following objective is to study the well-posedness in the Euclidean norm of
(3.3), with the corresponding scalar product denoted by 〈·, ·〉. We have

d

dt
‖U‖2 =

d

dt
〈U,U〉 = 2�〈U,U ′〉 = 2�〈U,M(h)U〉.
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Table 3.1
Maximum of the real part of the ε-pseudoeigenvalues.

ε ABC(1,0) ABC(1,1) ABC(1,1) ABC(2,1) ABC(3,2)
2nd implementation

1.0d-1 1.2004d-2 2.3979 2.8647d-1 4.3121d-1 7.3975d+2

1.0d-3 -5.4649d-4 -8.5165d-2 -6.8467d-4 -1.1292d-3 3.3262

1.0d-6 -5.6102d-4 -9.0410d-2 -6.6837d-4 -1.1210d-3 -3.6804d-3

1.0d-9 -5.6107d-4 -9.0412d-2 -6.6838d-4 -1.1210d-3 -3.8212d-3

1.0d-12 -5.6107d-4 -9.0412d-2 -6.6838d-4 -1.1210d-3 -3.8213d-3

Let µ2(M(h)) be the logarithmic norm of M(h), i.e., the largest eigenvalue of
(M(h) +M(h)∗)/2. From the estimate [7]

�〈y,M(h)y〉 ≤ µ2(M(h))‖y‖2,(3.5)

the solution decays in the Euclidean norm (i.e., (3.3) is dissipative) when µ2(M(h)) ≤
0. But a straightforward calculation shows that µ2(M(h)) > 0 and µ2(M(h)) =
1/(2ch2) + O(h−1), providing a bound that permits an exponential instability when
h goes to 0.
Since the numerical experiments do not show this catastrophic behavior, and

µ2(M(h)) is the smallest number satisfying (3.5) [7], some kind of weak well-posedness
must be present. In fact, the following result is proved in section 4.

Theorem 3.1. For every h > 0, all the eigenvalues of the matrix M(h) have
negative real part.
A first consequence of Theorem 3.1 is that the solution U(t) of (3.3) goes to zero

as t→∞. However, the matrix M(h) is nonnormal and it is known that in this case
the eigenanalysis is not always an efficient means to determine the behavior of an
exponential matrix [16, 22]. In fact, for small values of t it is possible that U(t) is
unbounded when h goes to zero. To examine this growth, we first make use of the
analysis of the ε-pseudospectrum, defined in [22] by

Λε(M(h)) = {µε ∈ C : µε is an eigenvalue ofM(h) + E for someE with ‖E‖ ≤ ε}.

From Theorem 5.1 in [16], when the estimate

‖ exp(tM(h))‖ ≤ C exp(ωt)

holds for all t ≥ 0, we have the following bound for the real parts of the ε-pseudoeigen-
values µε of M(h):

�µε ≤ ω + Cε

for all ε ≥ 0. We have computed these ε-pseudoeigenvalues for some typical values of
ε for an example of section 8 with a moderate size of h (h = 1/80). The maximum of
the real parts are displayed in the second column of Table 3.1. Notice that all these
values are negative and vary slowly for ε = 10−3, 10−6, 10−9, 10−12, showing that the
nonnormality of M(h) is mild for the h considered.
However, it is necessary to estimate the initial growth of the solution of (3.3)

when h goes to zero. Suppose that M(h) is diagonalizable for h > 0. Let P (h) be
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an invertible matrix such that M(h) = P (h)D(h)P (h)−1, where D(h) is the diagonal
matrix of eigenvalues. Therefore,

‖exp(M(h)t)‖ = ∥∥P (h) exp(D(h)t)P (h)−1
∥∥

≤ ‖P (h)‖ ‖exp(D(h)t)‖∥∥P (h)−1
∥∥ ≤ ‖P (h)‖∥∥P (h)−1

∥∥ = κh,

where κh is the condition number of P (h).
If M(h) is not diagonalizable, the analysis of the behavior of U(t) may be more

complicated (see, for example, [11]). However, the diagonalizable case can be consid-

ered as generic. Moreover, since α̃(h) = O(h−1) and β̃(h) = O(h−1) while the rest of
the elements ofM(h) are O(h−2),M(h) can be considered as a perturbation of the di-
agonalizable matrixM0, defined as the tridiagonal matrix such thatM0(j, j) = 2i/ch

2,
M0(j, j+1) =M0(j, j− 1) = −i/ch2, and the first and last rows vanish. For this ma-
trix, it is straightforward to prove thatM0 = P0D0P

−1
0 , where D0 is the diagonal ma-

trix of eigenvalues, with σ(M0) =
{
(2i/ch2)(1− cos(jπ/N)) : j = 1, . . . , N − 1}∪{0} .

Therefore,

‖exp(M0t)‖ =
∥∥P0 exp(D0t)P

−1
0

∥∥ ≤ κ0,

where κ0 = ‖P0‖
∥∥P−1

0

∥∥ is the condition number of the matrix P0 whose columns are
the eigenvectors of M0. Therefore,

P0 =




1√
N+1

0 0

e√
N+1

C0
d
sN

1√
N+1

0 N
sN


 , P−1

0 =



√
N + 1 0 0

a C0 b

− sN
N 0 sN

N


 ,

where C0 is the unitary matrix with elements C0(l, j) =
√
2/N sin(ljπ/N), 1 ≤

l, j ≤ N − 1, sN =
√

N(N + 1)(2N + 1)/6, e = [1, . . . , 1]T , d = [1, 2, . . . , N − 1]T ,
a = − 1

NC0[N − 1, N − 2, . . . , 1]T , and b = − 1
NC0d.

Now, it is possible to prove that ‖P0‖ = O(1) and
∥∥P−1

0

∥∥ = O(N1/2), and we

deduce that κ0 = O(N1/2). By considering κ0 as an approximation of κh, it is
reasonable to suppose that κh = O(h−1/2). We have numerically checked this value
with an example used in section 8 (see Figure 3.1), obtaining this behavior for κh.
The matrices M(h) of these numerical tests were always diagonalizable because the
eigenvalues were distinct.

4. Results on the eigenvalues of a certain class of matrices. Let us con-
sider a matrix MN+1 of dimension (N + 1) × (N + 1) with the structure of (3.4)
with α̃ = α, β̃ = β, m̃j = mj , j = 1, 2, where α, β, m1, and m2 are, at first, arbi-
trary nonzero complex numbers. If λ is an eigenvalue of this matrix with eigenvector
x = [x0, . . . , xN ]

T
, the following equation must be satisfied:

m1xj−1 + (m2 − λ)xj +m1xj+1 = 0, 1 ≤ j ≤ N − 1.

The solutions of this equation are xj = Ayj1 + Byj2 for certain constants A,B, where
y1, y2 are the roots of

y2 +
m2 − λ

m1
y + 1 = 0,(4.1)
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Fig. 3.1. Condition number as a function of h: –∗ ABC(1, 0), –◦ ABC(1, 1), – –◦ ABC(1, 1)
(second implementation), –× ABC(2, 1), –+ ABC(3, 2).

and then λ = m2 +m1(y1 + y2). The following system also has to be satisfied:

(α− λ)(A+B) + β(Ay1 +By2) = 0,

β(AyN−1
1 +ByN−1

2 ) + (α− λ)(AyN1 +ByN2 ) = 0.
(4.2)

In order that this system has nontrivial solutions A,B, the determinant of its coeffi-
cients should vanish. In this way, taking into account that y1y2 = 1, we obtain

(α− λ)2(yN1 − yN2 ) + 2β(α− λ)(yN−1
1 − yN−1

2 ) + β2(yN−2
1 − yN−2

2 ) = 0.(4.3)

Let AN−1 be the tridiagonal matrix obtained fromMN+1 by eliminating the first and
last rows and columns. It is a well-known fact that σ(AN−1) = {m2+2m1 cos(πj/N) :
j = 1, . . . , N − 1}. Notice that σ(AN−1) ∩ σ(AN ) = ∅, N > 0. Let us denote
RN−1(λ) = det(AN−1 − λIN−1) (where IN−1 is the identity matrix of dimension
N − 1). It is clear that

det(MN+1 − λIN+1) = (α− λ)2RN−1(λ)(4.4)

− 2m1(α− λ)βRN−2(λ) + β2m2
1RN−3(λ).

Notice that RN (λ) = mN
1 PN ((m2 − λ)/m1), where PN (x) is the monic polynomial of

degree N :

PN (x) = det




x 1 0 · · · 0
1 x 1 · · · 0
...
. . .

. . .
. . .

...
0 · · · 0 1 x


 .

From this expression we deduce that the following recurrence formula is satisfied:

Pn(x) = xPn−1(x)− Pn−2(x), n = 1, 2, . . . ,(4.5)

with P0(x) = 1 and P−1(x) = 0. RN−1(λ) and RN (λ) have no common roots, so the
same is true for the polynomials PN (x). Finally, (4.4) reduces to

det(MN+1 − λIN+1) = mN−1
1 QN+1

(
m2 − λ

m1

)
,
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where

QN+1(x) = (α−m2 +m1x)
2PN−1(x)− 2β(α−m2 +m1x)PN−2(x)(4.6)

+ β2PN−3(x).

So we can conclude that λ is an eigenvalue of MN+1 iff

QN+1

(
m2 − λ

m1

)
= 0.

In the rest of this section, we will assume that the coefficients m1 and m2 of
MN+1 are m1 = −i, m2 = i(2− δ).

Lemma 4.1. Let us consider the matrix MN+1 previously defined, with α, β ∈ C
and δ ∈ R. We shall use the notation αr = �(α), αi = �(α), βr = �(β) �= 0,
βi = �(β) �= 0, where these coefficients satisfy one of the following properties:

|β| ≤ |αr|,(4.7)

|β| > |αr| and
√
|β|2 − α2

r < δ + αi < 4−
√
|β|2 − α2

r.(4.8)

We will also assume the following hypotheses:

δ + αi <
αrβi
βr

,(4.9)

(δ + αi)(2 + βi) < −αrβr − 2βi.(4.10)

Then the matrix MN+1 has no imaginary eigenvalues.
Proof. Let us suppose there exists an imaginary eigenvalue λ of M , λ = iλ0

with λ0 real. The Gersgorin disks are D1 = {x ∈ C : |x − i(2 − δ)| ≤ 2} and
D2 = {x ∈ C : |x − α| ≤ |β|}. If (4.7) is satisfied, D2 has no imaginary eigenvalues
except maybe iαi. But if this point was an eigenvalue of MN+1, it should be also in
the boundary ofD1 (MN+1 is irreducible; see the theorem of Taussky [14]). Therefore,
−δ ≤ λ0 ≤ 4 − δ. Otherwise, if |β| > |αr|, D2 intersects the imaginary axis at the
points i(αi ±

√|β|2 − α2
r) that are in D1 because of (4.8), then we obtain this way

the same condition for λ0, −δ ≤ λ0 ≤ 4− δ.
On the other hand, as we have already seen, if λ is an eigenvalue of MN+1,

QN+1(X0) = 0, where X0 = −2 + δ + λ0 ∈ R, so X0 should satisfy −2 ≤ X0 ≤ 2.
Making use of the recurrence formula (4.5) in (4.6),

QN+1(x) = (−β2 + (αr − iγ)2 − 2i(αr − iγ)x− x2)PN−1(x)

− (2β(αr − iγ)− (2iβ + β2)x)PN−2(x),

where γ = 2− δ−αi. We can write QN+1(x) = Qr
N+1(x)+ iQi

N+1(x) where Q
r
N+1(x)

and Qi
N+1(x) are real polynomials. Since X0 is a real root of QN+1(x), it will be a

root of Qr
N+1(x) and Qi

N+1(x):

0 = Qr
N+1(X0) = (−β2

r + β2
i + α2

r − γ2 − 2γX0 −X2
0 )PN−1(X0)(4.11)

− (2αrβr + 2γβi − (−2βi + β2
r − β2

i )X0)PN−2(X0),

0 = Qi
N+1(X0) = 2(−βrβi − αrγ − αrX0)PN−1(X0)(4.12)

− 2(αrβi − γβr − (βr + βrβi)X0)PN−2(X0).
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As we have previously mentioned, PN−1(x) and PN−2(x) have no common roots.
If we consider (4.11)–(4.12) as a system with variables PN−1(X0) and PN−2(X0), in
order that it has a nontrivial solution, it should be

0 = (−β2
r + β2

i + α2
r − γ2 − 2γX0 −X2

0 )(αrβi − γβr − (βr + βrβi)X0)(4.13)

− (2αrβr + 2γβi − (−2βi + β2
r − β2

i )X0)(−βrβi − αrγ − αrX0).

Let us suppose first that βi �= −1. The roots of this equation are

Xa
0 = −γ − αrβi

βr
, Xb,c

0 =
A±√

A2 −B

D

with A = αrβr − γ(2 + βi), B = 4(1 + βi)(α
2
r + β2

i + β2
r + γ2), D = 2(1 + βi).

Because of (4.9), Xa
0 < −2, which is not possible. If A2 − B < 0, Xb,c

0 /∈ R,
concluding the proof. Let us suppose then that A2 − B ≥ 0. We consider first the
case βi + 1 > 0. Let us prove X

b
0 < −2, which is equivalent to A+ 2D < −√A2 −B.

Making use of (4.10), we see that A+ 2D < 0, and then

A+ 2D < −
√

A2 −B iff A2 + 4AD + 4D2 = |A+ 2D|2 > A2 −B.

It remains only to prove that

4AD + 4D2 +B = 4(1 + βi)φ1(δ) > 0,

where φ1(δ) = (αi + βi)
2 + (αr + βr)

2 + 2δ(αi + βi) + δ2. Notice that φ1(δ) goes to
∞ as δ → ±∞. The roots of φ1(δ) are −αi − βi ±

√−(αr + βr)2. If |β| ≤ |αr|, since
βi �= 0, it should be αr + βr �= 0, and then φ1(δ) > 0 for all δ ∈ R. Otherwise, if
(4.8) is satisfied, we see that the only case when we cannot guarantee that φ1(δ) > 0
is for δ = −αi − βi when αr + βr = 0. But then

√|β|2 − α2
r = |βi| �< δ + αi = −βi,

which goes against hypothesis (4.8). So we obtain that φ1(δ) > 0, and then X
b
0 < −2,

which is not possible. Similarly, Xc
0 < −2 iff A+ 2D <

√
A2 −B which is true since

A+ 2D < 0 from (4.10).
Let us now consider the case βi + 1 < 0. It can be proved that X

b
0 < −2 with a

reasoning analogous to that for βi + 1 > 0. Let us see X
c
0 > 2, which is equivalent to

A− 2D <
√
A2 −B. If A− 2D < 0, this is trivially true. Otherwise,

A− 2D <
√

A2 −B iff − 4AD + 4D2 +B = 4(1 + βi)φ2(δ) < 0,

where φ2(δ) = (4−αi)
2+ (αr − βr)

2+8βi− 2αiβi+ β2
i +2(αi− 4− βi)δ+ δ2. It can

be proved that φ2(δ) > 0 in a manner similar to that for φ1, concluding X
c
0 > 2.

Finally, if βi = −1, (4.13) reduces to
0 = (−β2

r + 1 + α2
r − γ2 − 2γX0 −X2

0 )(−αr − γβr)(4.14)

− (2αrβr − 2γ − (1 + β2
r )X0)(βr − αrγ − αrX0),

whose roots are

Xd
0 =

αr
βr

− γ, Xe
0 =
1 + α2

r + β2
r + γ2

αrβr − γ
.

From hypothesis (4.9) for βi = −1, we deduce that Xd
0 < −2. Let us see that

Xe
0 < −2. Taking into account (4.10), we have that αrβr − γ < 0, so Xe

0 < −2 iff
1 + α2

r + β2
r + γ2 + 2αrβr − 2γ = (αr + βr)

2 + (1− γ)2 > 0,
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which is true unless αr = −βr and δ+αi = 1. It can be seen that this cannot happen
if (4.7) or (4.8) is satisfied. Therefore, (4.14) cannot be satisfied, and then MN+1

cannot have any imaginary eigenvalues.
Lemma 4.2. Let MN+1(h) be the matrix MN+1 where the coefficients α(h), β(h),

δ(h) are functions regular enough in a neighborhood V of zero and the dimension of
the matrix is independent of h. Let us suppose that there exist a1, b1, d1 ∈ R such that

α(h) = hα0 + h2α1(h), where α0 < 0, α1(0) = ia1,(4.15)

β(h) = −hα0 + h2β1(h), where β1(0) = ib1,(4.16)

δ(h) = h2δ1(h) ∈ R, where δ1(0) = d1,(4.17)

0 > a1 + b1 + d1,(4.18)

0 > α0(1−N)(a1 + b1 + d1) + 2�(α′
1(0) + β′

1(0)).(4.19)

Then there exists h0 > 0 such that for all h ∈ (0, h0), the eigenvalues of MN+1(h)
have negative real part.

Proof. Let λ be an eigenvalue of MN+1(h) with eigenvector x = [x0, . . . , xN ]
T .

As we have remarked previously, xj = Ayj1 + Byj2 where y1 and y2 are the roots of
(4.1) and λ = i(2− δ(h)− y1 − y2). We observe this way that

�(λ) = �(y1)

(
1− 1

|y1|2
)

< 0 iff

{
�(y1) < 0 and |y1| > 1 or
�(y1) > 0 and |y1| < 1,

(4.20)

where we have used that y1y2 = 1. Equation (4.3) also has to be satisfied (where the
coefficients now depend on h). If we multiply this expression by yN+2

1 , we obtain
T (y1, h) = 0, with

T (y, h) = α(h)2(y2N+2 − y2)− 2iα(h)((2− δ(h))y − y2 − 1)(y2N+1 − y)

− ((2− δ(h))y − y2 − 1)2(y2N − 1) + 2α(h)β(h)(y2N+1 − y3)

− 2iβ(h)((2− δ(h))y − y2 − 1)(y2N − y2) + β(h)2(y2N − y4).

Our purpose is to study whether the roots of T (y, h) satisfy (4.20) for h small enough.
Let us notice that T (y, 0) = −(y − 1)4(y2N − 1), and therefore, the roots of T (y, 0)
are y = 1 and {exp(iπj/N) : j = 0, . . . , 2N − 1}. Taking into account that α(0) =
β(0) = δ(0) = 0, we get

∂yT (y, 0) = −2N(y − 1)4y2N−1 + 4(y − 1)3(1− y2N ),

so for j ∈ {1, . . . , 2N − 1}, T (exp(iπj/N), 0) = 0 and ∂yT (exp(iπj/N), 0) �= 0. Then
we can apply the implicit function theorem: there exist neighborhoods Aj ⊂ V of 0
and Bj of exp(iπj/N) and a unique regular function yj : Aj → Bj such that

T (yj(h), h) = 0 for all h ∈ Aj and yj(0) = exp(iπj/N).

In a neighborhood of 0, yj(h) = exp(iπj/N) + hy′j(0) +O(h2). Therefore,

|yj(h)|2 = | exp(iπj/N) + hy′j(0) +O(h2)|2

= 1 + 2h(�(y′j(0)) cos(πj/N) + �(y′j(0)) sin(πj/N)) +O(h2).
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Let us now study y′j(0). Taking into account that β
′(0) = −α′(0), δ′(0) = 0,

yj(0)
2N = 1, and yj(0)

−1 = ȳj(0),

y′j(0) =
−∂hT (yj(0), 0)

∂yT (yj(0), 0)
=

−2iα′(0)(yj(0) + yj(0)
2N )

−2N(yj(0)− 1)yj(0)2N−1 + 4(1− yj(0)2N )

=
iα′(0)(yj(0) + 1)

N(yj(0)− 1)yj(0)−1
=

iα0(yj(0) + 1)

N(1− ȳj(0))
=

iα0(1− yj(0)
2)

N |1− ȳj(0)|2 ,

and then

�(y′j(0)) =
2α0 cos(πj/N) sin(πj/N)

N |1− ȳj(0)|2 , �(y′j(0)) =
2α0 sin

2(πj/N)

N |1− ȳj(0)|2 .

Since α0 < 0 from (4.15), we deduce that �(y′j(0)) < 0 for 0 < j < 2N , j �= N .

If 0 < j < �N2 �, cos(πj/N) sin(πj/N) > 0 and then �(y′j(0)) < 0. We have
�(y′j(0)) cos(πj/N) + �(y′j(0)) sin(πj/N) < 0 this way, and therefore, |yj(h)|2 < 1
and �(yj(h)) > 0 for h small enough. Reasoning this way for the rest of the cases, we
can conclude that there exists h0 > 0 such that, for all h ∈ (0, h0),

(i) if 0 < j < N, �(yj(h)) > 0 and |yj(h)| < 1;
(ii) if N < j < 2N, �(yj(h)) < 0 and |yj(h)| > 1.
For j = N, yj(0) = −1. It can be checked that T (−1, h) = 0, so yN ≡ −1 because

of the uniqueness of yN . Nevertheless, it does not correspond to an eigenvalue of
MN+1(h). Otherwise, the associated eigenvalue λ = i(2 − δ(h)) + 2i = 4i − iδ(h)
would have the eigenvector x with xj = (−1)j(A+B), and from (4.2),

(α(h)− λ)(A+B)− β(h)(A+B) = 0,

so A+B = 0, since α(h)− λ− β(h) = −4i+ 2hα0 + h2(α1(h) + iδ1(h)− β1(h)) �= 0
for h small enough.
Finally, let us consider the zero y = 1 of T (y, 0). We cannot use the implicit

function theorem directly because ∂yT (1, 0) = 0. Let us define r such that y = 1+rh,
obtaining in this way the function t(r, h) defined by

t(r, h) =
1

h4
T (1 + rh, h) = (r2 + (1 + rh)(iα0r − iα1(h)− iβ1(h)(1 + rh) + δ1(h)))

2

− (1 + hr)2N (−iα0r + r2 − iβ1(h) + (1 + rh)(−iα1(h) + δ1(h)))
2

= 4iα0r(a1 + b1 + d1 + r2) + h(−2nr(a1 + b1 + d1 − iα0r + r2)2

+ 2r(2b1 + iα0r)(a1 + b1 + d1 + r2) + 2iα0r(2a1r + 2b1r + 2d1r + iα0r
2)

+ 2iα0r(−2iα′
1(0)− 2iβ′

1(0) + 2δ1(0))) +O(h2).(4.21)

We are going to use the implicit function theorem for t(r, h). The roots of t(r, 0) are
r0 = 0, r1 =

√−a1 − b1 − d1, and r2 = −√−a1 − b1 − d1. Making use of (4.18),

∂rt(r0, 0) = 4α0(α1(0) + β1(0) + iδ1(0)) = 4iα0(a1 + b1 + d1) �= 0,
∂rt(r1, 0) = ∂rt(r2, 0) = −8iα0(a1 + b1 + d1) �= 0.

Therefore, for j = 0, 1, 2, there exist neighborhoods Uj ⊂ V of zero and Wj of rj and
a unique regular function rj : Uj →Wj such that

t(rj(h), h) = 0 for all h ∈ Uj , and rj(0) = rj .
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Let us define φj(h) = 1 + hrj(h) for j = 0, 1, 2. For these functions,

T (φj(h), h) = T (1 + hrj(h), h) = h4t(rj(h), h) = 0 and φj(0) = 1.

For j = 0, 1, 2, φj(h) = 1 + hφ′
j(0) + (h

2/2)φ
′′
j (0) + O(h3). Let us study each of the

cases:
1. φ1(h) = 1+hr1(h). Taking into account (4.21), (4.18), (4.19), and δ1(h) ∈ R,

φ′
1(0) = r1(0) =

√
−a1 − b1 − d1 > 0,

�(φ′′
1 (0)) = �(2r′

1(0)) = −�
(
2∂ht(r1, 0)

∂rt(r1, 0)

)
=

−�(∂ht(r1, 0))
4α0(a1 + b1 + d1)

=
α0(1−N)(a1 + b1 + d1) + 2�(α′

1(0) + β′
1(0))

2
√−a1 − b1 − d1

< 0.

Therefore, for h > 0 small enough, �(φ1(h)) < 0 and

|φ1(h)|2 =
∣∣∣∣1 + hφ′

1(0) +
h2

2
φ

′′
1 (0) +O(h3)

∣∣∣∣
2

= 1 + 2hφ′
1(0) +O(h2) > 1.

2. Similarly for φ2(h) = 1 + hr2(h), we obtain �(φ2(h)) > 0 and |φ2(h)|2 < 1
for h > 0 small enough.

3. Finally, notice that t(0, h) = 0 for all h, so r0 ≡ 0 and φ0 ≡ 1. Nevertheless,
the root y = 1 of T (y, h) does not give rise to any eigenvalue of MN+1(h). This can
be proved similarly as we have done previously for the root y = −1.

Theorem 4.3. With the notation of Lemma 4.2 let us consider the matrix
MN+1(h) whose coefficients satisfy (4.15)–(4.19), and let us suppose that the hypothe-
ses of Lemma 4.1 are satisfied for all h > 0 (where now the coefficients are functions
of h). Then, for every h > 0, all the eigenvalues of MN+1(h) have negative real part.

Proof. Lemma 4.2 asserts that there exists h0 such that for h ∈ (0, h0), all
the eigenvalues of MN+1(h) have negative real part. Lemma 4.1 asserts that for
h > 0,MN+1(h) has not imaginary eigenvalues. On the other hand, the eigenvalues of
MN+1(h) are continuous functions of h, so if there were h

∗ ≥ h0 such that MN+1(h
∗)

had an eigenvalue with real part greater or equal to zero, there should exist h ∈ [h0, h
∗]

such that MN+1(h) had an imaginary eigenvalue, which is not possible.
Proof of Theorem 3.1. It suffices to prove that all the eigenvalues of ch2M(h) have

negative real part. Notice that ch2M(h) is the matrixMN+1(h) previously considered

with α(h) = ch2α̃(h), β(h) = ch2β̃(h), and δ(h) = h2V . These coefficients satisfy
(4.15)–(4.17) for

α0 = −(s1 + s2) < 0, a1 =
s2
1 + s2

2

2
− V ∈ R, b1 =

−(s1 + s2)
2

2
∈ R, d1 = V ∈ R.

We also have

α′
1(0) =

1

4
(s3

1 + s2
1s2 + s1s

2
2 + s3

2), β′
1(0) = −1

4
(s1 + s2)

3.

Then, hypotheses (4.18) and (4.19) are satisfied,

a1 + b1 + d1 = −s1s2 < 0,

α0(1−N)(a1 + b1 + d1) + 2�(α′
1(0) + β′

1(0)) = −Ns1s2(s1 + s2) < 0.
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Let us see now that the hypotheses of Lemma 4.1 are satisfied. With the previous
notation,

αr(h) =
−2h(s1 + s2)(2 + s1s2h

2)

4 + h2(s1 + s2)2
, αi(h) =

h2(2(s2
1 + s2

2)− 4V − h2V (s1 + s2)
2)

4 + h2(s1 + s2)2
,

βr(h) =
4

h(s1 + s2) +
4

h(s1+s2)

, βi(h) =
−2

1 + 4
h2(s1+s2)2

.

For these coefficients we have, omitting the dependence on h in the notation,

|β|2 − |αr|2 = 4h
4(s1 + s2)

2((s1 − s2)
2 − h2s2

1s
2
2)

(4 + h2(s1 + s2)2)2
,

so |β| ≤ |αr| for h ≥ |s1− s2|/s1s2 and (4.7) is satisfied. Let us see (4.8) is satisfied if
0 < h < |s1 − s2|/s1s2. It can be checked that δ − 4 + αi < 0; therefore, δ − 4 + αi <
−√|β|2 − α2

r iff (δ − 4 + αi)
2 > |β|2 − α2

r, which is satisfied:

(δ − 4 + αi)
2 − |β|2 + α2

r =
4(4 + s1s2h

2)2

4 + h2(s1 + s2)2
> 0.

Similarly, −αi +
√|β|2 − α2

r < δ iff (δ + αi)
2 > |β|2 − α2

r, which is true:

(δ + αi)
2 − |β|2 + α2

r =
4s2

1s
2
2h

4

4 + h2(s1 + s2)2
> 0.

Therefore, (4.8) is satisfied.
The following relations are true for every h:

δ + αi − αrβi
βr
= −h2s1s2 < 0,

(δ + αi)(2 + βi) + αrβr + 2βi =
−4h2(s2

1 + 4s1s2 + s2
2)

4 + h2(s1 + s2)2
< 0.

Therefore, hypotheses (4.9) and (4.10) are satisfied.
Therefore, Theorem 4.3 asserts that for all h > 0 the eigenvalues of M(h) (where

h = L/N) have negative real part.

5. Time discretization. We now study the full discrete method obtained by
using the method of lines. For this, it is necessary to apply a time integration method
to solve numerically the ordinary differential system (3.3). Although there are many
available integration schemes, notice that (3.3) is stiff and the stiffness grows when h,
the parameter of the spatial discretization, goes to zero. Moreover, there exist several
eigenvalues of the matrixM(h) with real part nearly 0 but with large imaginary parts.
Therefore, it is convenient to use A-stable methods. As a consequence, the widely
used backward differentiation formulae methods are not suited to solve (3.3), and we
consider only implicit Runge–Kutta methods in this paper.
Let us take a Runge–Kutta method of order p and denote by r(z) its stability

function. We suppose that the Runge–Kutta method is A-stable, i.e., |r(z)| ≤ 1 for
�(z) ≤ 0. Moreover, since the order is p, r(z) is a rational approximation to exp(z)
of order p, i.e.,

exp(z)− r(z) = Czp+1 +O(zp+2) as z → 0,
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where C �= 0 is the error constant. We remark that this constant may be dependent on
the parameter k, causing the well-known order reduction phenomenon [7]. Therefore,
the order observed in practice is smaller than the classical order p when the time
stepsize is not small enough. We do not study in detail this problem here; nevertheless,
we remark that the semidiscrete problems arising when we use higher order ABCs are
usually stiffer.

By applying the Runge–Kutta method with stepsize k to (3.3), we obtain approx-
imations Un = rn(kM(h))U(0) to the values U(nk) = U(tn) = exp(tnM(h))U(0),
0 ≤ n ≤ N , with U being the solution of (3.3). Our main objective is to study the
troubles caused by the weak ill-posedness of the semidiscrete problems (3.3) to the
convergence of these approximations. Notice that we do not take into account the
error due to the spatial approximation and the ABCs.

We denote by en = U(tn)−rn(kM(h))U(0) the global errors and by ρn = U(tn)−
r(kM(h))U(tn−1) the local errors. Then

en+1 = U(tn+1)− r(kM(h))U(tn) + r(kM(h))U(tn)− rn+1(kM(h))U(0)

= ρn+1 + r(kM(h))en,

and, assuming that M(h) is diagonalizable and by using a recursion argument, we
deduce that

en =

n∑
j=1

rn−j(kM(h))ρj =
n∑
j=1

rn−j(kM(h))(U(tj)− r(kM(h))U(tj−1))

=
n∑
j=1

rn−j(kM(h))(exp(kM(h))− r(kM(h))) exp(tj−1M(h))U(0)

=

n∑
j=1

P (h)rn−j(kD(h))(exp(kD(h))− r(kD(h))) exp(tj−1D(h))P (h)
−1U(0).

Taking the Euclidean norm, we deduce

‖en‖ ≤ κh

n∑
j=1

‖rn−j(kD(h))(exp(kD(h))− r(kD(h))) exp(tj−1D(h))‖‖U(0)‖

≤ κh

n∑
j=1

sup
�z≤0

{|rn−j(z)|| exp(tj−1z)|} sup
z∈σ(D(h))

| exp(kz)− r(kz)|‖U(0)‖

≤ κh

n∑
j=1

sup
z∈σ(D(h))

{| exp(kz)− r(kz)|}‖U(0)‖ = O(κhk
p).

From this estimate, we conclude that the global error may grow when h goes to
zero and k is fixed because of the growth of κh. Nevertheless, this possible growth is
made up for the presence of the factor kp, which goes to zero when the stepsize k goes
to zero. Therefore, it is very convenient to use Runge–Kutta methods of high order
when the factor κh is ill-behaved. Otherwise, the stepsize k must be very small.
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6. Discretization of other ABC. We are going to propose spatial approxima-
tions of some ABC defined in section 2. Notice that it is possible to consider several
spatial approximations for each one. Therefore, the properties of the correspond-
ing ordinary differential system analogous to (3.3) depend on both the ABCs and
the spatial discretization. As an example, we propose two different discretizations of
ABC(1,1).

ABC(1,1). First, let us define the new function v(x, t) = ∂tu(x, t) and denote
by vN (t) an approximation of v(xN , t). Taking ABC(1,1) and (3.2) into account,

vN ≈ d

dt
uN ≈ −i

c
(∂2
xu(x

N , t) + V uN )

≈ −2i
ch2

(
uN−1 − uN − h

β2
(β0u

N + β1v
N + β3∂xv(x

N , t))

)
− iV

c
uN ,

where we have omitted the dependence on t in the notation. This allows us to obtain
∂xv(x

N , t) ≈ γ0u
N−1 + γ1u

N + γ2v
N . Finally, making use of this expression,

d

dt
vN ≈ −i

c
(∂2
xv(x

N , t) + V vN ) ≈ −2i
ch2

(
d

dt
uN−1 − vN + h∂xv(x

N , t)

)
− iV

c
vN

≈ −2i
ch2
(m̃1(u

N−2 + uN ) + m̃2u
N−1 − vN + h(γ0u

N−1 + γ1u
N + γ2v

N ))

− iV

c
vN = δ0v

N + δ1u
N + δ2u

N−1 + δ3u
N−2

for certain coefficients δj . We have obtained in this way a system U ′ = MU with
U = [v0, u0, . . . , uN , vN ]T and

M =




δ0 δ1 δ2 δ3 0 · · · 0
1 0 0 0 0 · · · 0
0 m̃1 m̃2 m̃1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 m̃1 m̃2 m̃1 0
0 · · · 0 0 0 0 1
0 · · · 0 δ3 δ2 δ1 δ0



.(6.1)

Let us implement ABC(1,1) in a different way. As for the previous implementa-
tion, we consider (3.2) so that

d

dt
uN ≈ −2i

ch2

(
uN−1 − uN − h

β2

(
β0u

N + β1
d

dt
uN + β0∂xtu(x

N , t)

))
− iV

c
uN .

Using the approximation

∂xtu(x
N , t) ≈ 3

d
dtu

N − 4 ddtuN−1 + d
dtu

N−2

2h

and taking (3.1) into account, we obtain

d

dt
uN = γ0u

N + γ1u
N−1 + γ2u

N−2 + γ3u
N−3
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for certain coefficients γj . Therefore, in this case, we have a system with matrix

M =




γ0 γ1 γ2 γ3 0 · · · 0
m̃1 m̃2 m̃1 0 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 0 m̃1 m̃2 m̃1

0 · · · 0 γ3 γ2 γ1 γ0


 .(6.2)

A study similar to the one done previously for ABC(1,0) could be done for
ABC(1,1). We have checked numerically that matrices (6.1) and (6.2) have their
eigenvalues with negative real part and the ε-pseudoeigenvalues are close to the eigen-
values for some typical values of ε. These numerical results are displayed in Table 3.1.
Nevertheless, the condition number κh of the corresponding matrix Ph behaves with
h worse than it did for matrix (3.4). In Figure 3.1, we can observe that for matrix
(6.1) κh is approximately O(h

−2) and for (6.2) it is O(h−3/2).
ABC(2,1). Continuing this approach and using the notation v(x, t) = ∂tu(x, t),

for the ABC(2,1) we have

vN ≈ −i

c
(∂2
xu(x

N , t) + V uN ) ≈ −2i
ch2

(
uN−1 − uN

− h

β3

(
β0u

N + β1v
N + β2

d

dt
vN + β4∂xv(x

N , t)

))
− iV

c
uN .

Solving last equation for ∂xv
N , we get

∂xv(x
N , t) ≈ γ0u

N−1 + γ1u
N + γ2v

N + γ3
d

dt
vN

for certain coefficients γj . This expression allows us to obtain

d

dt
vN ≈ −i

c
(∂2
xv(x

N , t) + V vN ) ≈ −2i
ch2

(
d

dt
uN−1 − vN + h∂xv(x

N , t)

)
− iV

c
vN

≈ −2i
ch2

(
m̃1(u

N−2 + uN ) + m̃2u
N−1 − vN

+ h

(
γ0u

N−1 + γ1u
N + γ2v

N + γ3
d

dt
vN
))

− iV

c
vN ,

where an approximation similar to (3.2) has been used for ∂2
xv(x

N , t). Finally, we
obtain

d

dt
vN = δ0v

N + δ1u
N + δ2u

N−1 + δ3u
N−2.

Similar to previous cases, after discretization in space, we have to solve a system whose
matrix is of the form (6.1) (with different coefficients). We have checked numerically
(see Table 3.1) that all the ε-pseudoeigenvalues of this matrix have negative real part
for some typical values of ε smaller or equal to 1.0d-3, and in Figure 3.1 we can observe
that κh = O(h−2).
For the discretization in time of these ordinary differential systems, we may use

the same analysis of section 5. We remember that it is convenient to use higher order
Runge–Kutta methods for the more ill-behaved problems semidiscretized in space.
This fact will be clear in section 8.
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7. Higher dimensions. We extend the ABCs obtained in section 2 to the two-
dimensional case (the three-dimensional case is analogous). Consider the equation

∂tu(x, y, t) =
−i

c
(∂2
xu(x, y, t) + ∂2

yu(x, y, t) + V u(x, y, t)), (x, y) ∈ R2, t > 0.(7.1)

Let us take the finite subdomain [xl, xr] × [yl, yr], where we will impose artificial
boundary conditions. We consider the boundary x = xr. Let us call û(x, ξ, ω) the
Fourier–Laplace transform in time and Fourier transform in variable y of u(x, y, t).
From (7.1) we obtain

∂2
xû(x, ξ, ω)− λ2û(x, ξ, ω) = 0,

which is analogous to (2.1) with λ2 = −V − cω + ξ2. With an argument similar to
that of the one-dimensional case, we obtain the TBC for the right boundary,

i
√

V + cω − ξ2 û(xr, ξ, ω) + ∂xû(xr, ξ, ω) = 0.(7.2)

In order to approximate this nonlocal boundary condition, we consider the approx-
imation

√
V + cω − ξ2 ≈ q(V + cω − ξ2), where, as in section 2, q(s) is a rational

interpolatory function of
√
s. In this way, we may consider the following simplest

cases (other ABC of higher order can be obtained with a similar argument).
ABC(1,0). We take the rational function given by (2.5), and we deduce the

ABC

β0∂tu(xr, y, t) + β1u(xr, y, t) + β2∂
2
yu(xr, y, t) + ∂xu(xr, y, t) = 0,(7.3)

where β0 = c/(s1+ s2), β1 = i(s1s2+V )/(s1+ s2), and β2 = i/(s1+ s2). In a similar
way, we obtain the following ABC for the boundary y = yr:

β0∂tu(x, yr, t) + β1u(x, yr, t) + β2∂
2
xu(x, yr, t) + ∂yu(x, yr, t) = 0.(7.4)

ABC(1,1). We now approximate
√
s by q(s) = (α0 + α1s)/(1 + α2s). In this

case, the ABC is of the form

0 = β0u(xr, y, t) + β1∂tu(xr, y, t) + β2∂
2
yu(xr, y, t) + β3∂xu(xr, y, t)(7.5)

+ β4∂xtu(xr, y, t) + β5∂xyyu(xr, y, t)

for certain coefficients βj . In fact, when q(s) is the Padé(1,1) approximation to
√
s,

(7.5) coincides with the ABC given by Kuska in [13] and by Fevens and Jiang in [6].
Let us consider the spatial discretization of (7.1) with ABC(1,0). Without loss

of generality, we suppose that xr − xl = yr − yl. We consider a uniform grid of
[xl, xr] × [yl, yr] given by {(xj , ym) : 0 ≤ j,m ≤ N}, where xj = xl + jh, ym =
yl+mh with h = (xr −xl)/N = (yr − yl)/N , and we denote by u

j,m(t) the numerical
approximation of u(xj , ym, t). For the discretization of (7.1) in the interior domain,
we consider the finite difference scheme

d

dt
uj,m =

−i

c

(
uj−1,m − 2uj,m + uj+1,m

h2
+

uj,m−1 − 2uj,m + uj,m+1

h2
+ V uj,m

)
.

Now, we consider the spatial discretization at the boundary x = xr. We take the
node (xN , ym) with 0 < m < N . First, we consider the approximation

d

dt
uN,m ≈ −i

c

(
2

h2
(uN−1,m − uN,m + h∂xu(x

N , ym, t)) + ∂2
yu(x

N , ym, t) + V uN,m
)
,
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and taking into account the ABC(1,0) given by (7.3),

d

dt
uN,m ≈ i

c

(−2
h2

uN−1,m −
(
V − 2

h2
− 2β1

h

)
uN,m −

(
1− 2β2

h

)
∂2
yu(x

N , ym, t)

+
2β0

h

d

dt
uN,m

)
.

Finally, using the approximation ∂2
yu(x

N , ym, t) ≈ (uN,m−1 − 2uN,m + uN,m+1)/h2,

d

dt
uN,m = α0u

N−1,m + α1u
N,m−1 + α1u

N,m+1 + α2u
N,m

for certain coefficients αj . Similar expressions are obtained for du
j,N/dt, du0,m/dt,

and duj,0/dt, 1 ≤ j,m ≤ N − 1.
Let us see now the spatial discretization for the corner (xN , yN ). We consider the

approximation

∂2
xu(x

N , yN , t) ≈ 2
h2

(
uN−1,N + uN,N − h

(
β0

d

dt
uN,N + β1u

N,N(7.6)

+ β2∂
2
yu(x

N , yN , t)

))
,

where we have used ABC(1,0) given by (7.3). Similarly, taking into account (7.4),

∂2
yu(x

N , yN , t) ≈ 2
h2

(
uN,N−1 + uN,N − h

(
β0

d

dt
uN,N + β1u

N,N(7.7)

+ β2∂
2
xu(x

N , yN , t)

))
.

Adding expressions (7.6) and (7.7), we obtain

∂2
xu(x

N , yN , t) + ∂2
yu(x

N , yN , t) ≈ ε0u
N−1,N + ε0u

N,N−1 + ε1u
N,N + ε2

d

dt
uN,N

for certain coefficients εj . Finally, making use of this expression in

d

dt
uN,N ≈ −i

c
(∂2
xu(x

N , yN , t) + ∂2
yu(x

N , yN , t) + V uN,N ),

we obtain

d

dt
uN,N ≈ δ0u

N,N + δ1u
N,N−1 + δ1u

N−1,N

for certain coefficients δj . Analogous expressions are obtained for the spatial dis-
cretization of duN,0/dt, du0,N/dt, and du0,0/dt.
We have obtained a first order ordinary differential system

U ′(t) =M(h)U(t),(7.8)

where U(t) = [u0,0(t), u0,1(t), . . . , u0,N (t), u1,0(t), . . . , uN,N (t)]T andM(h) is a matrix
of dimension (N + 1)2 × (N + 1)2 with coefficients depending on h. This matrix
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Table 7.1
Maximum of the real part of the ε-pseudoeigenvalues for ABC(1, 0) 2-dimensional.

ε =1.0d-1 ε =1.0d-3 ε =1.0d-6 ε =1.0d-9 ε =1.0d-12

-2.3324d-01 -2.2152d-01 -2.2172d-01 -2.2172d-01 -2.2172d-01

is nonnormal as in the one-dimensional case. In order to study the behavior of the
solutions of (7.8), we have carried out an analysis of the ε-pseudospectrum of M(h).
In Table 7.1 we show an example of the maximum real part of the ε-eigenvalues for
some values of ε. As in section 3, we deduce from this table that the nonnormality
of M(h) is mild. We have also computed for some examples the condition number
κh of the matrix P (h) such that M(h) = P (h)D(h)P (h)−1 with D(h) diagonal. The
growth of κh observed is approximately O(h

−1).

8. Numerical experiments. Like Schmidt and Yevick in [19], we will consider
for the numerical experiments the Fresnel equation (1.2) with n = 1, β = 21.8◦,
n0 = cos(β), λ = 0.832, k0 = 2π/λ. This case is a generalization of the two test
cases of [25] associated with optical beam propagation in the Fresnel approximation.
In order to obtain a solution describing an angle α with respect to the t-axis, we are
going to consider the initial condition

u0(x) = exp
(−((x− L/2)/σ)2

)
exp(iη(x− L/2)), x ∈ [0, L],(8.1)

with η = − cos(β)k0 tan(α).
We will compare the results, in terms of reflection, obtained when we consider

ABC(1,0), ABC(1,1), and ABC(2,1) using the spatial discretizations previously dis-
cussed. In the case of ABC(1,1) we will use the discretization in space that gives
rise to a system with matrix (6.1). We will also consider ABC(3,2) using a spatial
discretization similar to the one of ABC(2,1). In every case, the interpolatory nodes
s2
j are considered equal to a unique positive number b. As we have already said, with

the initial condition (8.1) we will hope to obtain optimal results if b = η2.
Let us consider first an initial condition (8.1) with α = 10◦, σ = 10, and L = 200

so that it is 0 at the boundary. (This is very important, as we will discuss later.) In
Figure 8.1(a) we have represented the reflection (the discrete L2-norm of the solution
remaining inside the computational window) as a function of time when we consider
the optimal value b = η2 and h = 0.025. The integration in time has been carried
out with the implicit midpoint rule using a stepsize k = 0.4. It is clear that the
behavior observed in Figure 8.1(a) is due to the order of absorption of the ABCs.
Nevertheless, this is not the only thing we should take into account to compare the
different ABC. As we have already remarked, the semidiscrete problems associated
with these ABC are weakly ill-posed and are worse posed for higher order absorbing
boundary conditions. This bad behavior is not visible in Figure 8.1(a) because the
initial condition is 0 at the boundary and as the solution is a wave traveling with a
concrete group velocity, this bad behavior of high order ABCs is canceled because of
the greater absorption at the boundary.
Let us see the influence of taking an initial condition (8.1) which is not zero at

the boundary, although this should not be done in practice since the interior domain
must be long enough to contain the support of the initial condition. Let us consider
(8.1) with σ = 10, α = 20◦, and L = 40. We will take the optimal value b = η2

and the same discretization and stepsizes as in the previous experiment. Notice that
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Fig. 8.1. Reflection as a function of time: –∗ ABC(1, 0), – –◦ ABC(1, 1), –·–× ABC(2, 1),
· · ·+ ABC(3, 2). (a) Initial value vanishing at the boundary. (b) Initial value nonvanishing at the
boundary.
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Fig. 8.2. Reflection as a function of time. Random initial value nonvanishing at the boundary.
(a) –∗ ABC(1, 0), – –◦ ABC(1, 1), –·–× ABC(2, 1). (b) ABC(3, 2)

u0(x) is approximately 0.018 at the boundary. This way, in Figure 8.1(b) the worse
behavior of high ABCs due to its weak ill-posedness (see Figure 3.1) is present. We
observe that ABCs with high order of absorption produce more reflection than the
less absorbing ones. We remark that a similar behavior is present in the numerical
experiments in [6]. The authors take as initial condition a single Gaussian distribution
w0(x) = exp

(−(x− ξ)2/2σ2
0

)
exp(iK0x), x ∈ [0, L], with L = 10, ξ = 3L/4, and

σ0 = L/10. They also consider a narrow Gaussian pulse distribution z0(x) taking
ξ = 3L/4, σ0 = L/100, and L = 10, concluding that although for the initial condition
w0(x) the ABC given by (1.3) with p = 4 behaves worse that the one with p = 3;
for z0(x) the higher order ABC is more effective. Taking into account our previous
analysis, this behavior is due to the fact that w0(x) is not 0 at the boundary.
In the previous examples we have considered only regular solutions. In order to see

that the weak ill-posedness does not produce unbounded growths when the solution
is not regular, we consider now a random initial condition. The discretization of the
equation is done as in the previous experiment with h = 0.025 and k = 0.1. We
observe in Figure 8.2 that although for all ABC the norm of the solution goes to 0
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Fig. 8.3. Reflection as a function of time. Random initial value vanishing at the boundary: –∗
ABC(1, 0), – –◦ ABC(1, 1), –·–× ABC(2, 1), · · ·+ ABC(3, 2).
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Fig. 8.4. Reflection as a function of time. Nonoptimal value of b and very small spatial stepsize:
ABC(3, 2), – IMPR, – – DIRK order 3.

as t → ∞, for ABC(1,1), ABC(2,1), and ABC(3,2) there is an initial growth due to
the condition number of the semidiscrete systems in space associated with these ABC
(see Figure 3.1). In the case of ABC(3,2), this condition number is O(h−4) and the
norm of the solutions grows initially to 140. This behavior is more accentuated the
smaller h is.

Let us see how important it is to consider an initial condition which is 0 at the
boundary. In Figure 8.3 we have considered the same random initial condition but
with vanishing values for the four first and last nodes. For the same values of h and
k as in Figure 8.2, the worse behavior of high order ABCs is not visible.

The fact that we have used the method of lines is very important since the problem
discretized in space is weakly ill-posed. We can consider this way a high order method
for the time integration that compensates for the troubles in space. This can be seen
in Figure 8.4. We have considered ABC(3,2), taking as initial condition (8.1) with
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Fig. 8.5. Reflection as a function of time. Comparison of the velocity in the interior domain:
ABC(1, 0) – IMPR, – – 2-stage Gauss.

α = 30◦, σ = 3, and L = 36 (notice that it is 0 at the boundary). We have not
chosen the optimal value of b for this solution but rather the optimal value for a wave
traveling with a velocity tan(10◦), so that the weak ill-posedness of the semidiscrete
problem is not canceled because the great absorption of this ABC. We have integrated
the semidiscrete problem with two different methods: the implicit midpoint rule and
a diagonally implicit Runge–Kutta of order 3. In both cases we have considered the
very small value h = 36/76800 and the time stepsize k = 0.4. In Figure 8.4 we can
observe that with the implicit midpoint rule the instability in space makes the norm
of the solution grow, while with the method of order 3 this behavior is not present.

The possibility of using different integrators in time is also important for the
integration of the solution in the interior domain. Let us see the result of taking
as initial condition (8.1) with α = 40◦, σ = 10, and L = 200. We have considered
ABC(1,0) using for the integration in time first the implicit midpoint rule, and second
the 2-stage Gauss method. In both cases we have taken h = 0.025 and k = 0.4. In
Figure 8.5 we observe that with the implicit midpoint rule the numerical solution does
not travel with the right velocity (describing an angle α = 40◦ with respect to the
t-axis) because k is not small enough, while this does not happen for the 2-stage Gauss
method. The possibility of considering high order methods for the time integration
allows us to use bigger stepsizes.
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DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL
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Abstract. In this paper, certain iterative substructuring methods with Lagrange multipliers
are considered for elliptic problems in three dimensions. The algorithms belong to the family of
dual-primal finite element tearing and interconnecting (FETI) methods which recently have been
introduced and analyzed successfully for elliptic problems in the plane. The family of algorithms
for three dimensions is extended and a full analysis is provided for the new algorithms. Particular
attention is paid to finding algorithms with a small primal subspace since that subspace represents
the only global part of the dual-primal preconditioner. It is shown that the condition numbers of
several of the dual-primal FETI methods can be bounded polylogarithmically as a function of the
dimension of the individual subregion problems and that the bounds are otherwise independent of
the number of subdomains, the mesh size, and jumps in the coefficients. These results closely parallel
those of other successful iterative substructuring methods of primal as well as dual type.

Key words. domain decomposition, Lagrange multipliers, FETI, dual-primal methods, precon-
ditioners, elliptic equations, finite elements, heterogeneous coefficients
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1. Introduction. The finite element tearing and interconnecting (FETI) meth-
ods are domain decomposition methods of iterative substructuring type. They are
thus a special type of preconditioned conjugate gradient methods which have been
developed for solving the often huge algebraic systems of equations which arise in finite
element computations. The dual-primal FETI (FETI-DP) methods were introduced
recently by Farhat et al. [9]. Their work was followed by a significant contribution
to the theory of two-dimensional second and fourth order problems by Mandel and
Tezaur [17]; by Farhat, Lesoinne, and Pierson [10], who specifically address an al-
gorithm for three-dimensional problems; and by Pierson [19], who has also recently
used his codes to solve very difficult and huge problems. The algorithm presented in
[10, 19] uses constraints on the averages over edges and faces in a way similar to that
of the algorithms considered in this paper. Our contribution is to both the extension
of the family of algorithms for problems in three dimensions and the analysis. We
also show that good convergence bounds can be maintained even for quite general
coefficients such as those that model highly heterogeneous materials. Our work has
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been inspired by that of Mandel and Tezaur and is also based on our own earlier work,
in particular, [5, 6], and [13].

It is well known that domain decomposition algorithms cannot be scalable, i.e.,
have a rate of convergence which is independent of the number of subregions, unless
a coarse space component is included. We note that the underlying coarse spaces
for three-dimensional problems are often more complicated than the quite simple
constructions that work well for problems in the plane; see [24] for a discussion.
We will construct several of our FETI-DP methods using relatively exotic coarse
spaces. Thus, our Algorithms B and C in section 4 are closely related to certain
interpolation operators and coarse spaces known from earlier work on primal iterative
substructuring methods; see [5, 6]. Both of these methods have relatively large global,
primal subspaces.

The term dual-primal refers to the idea of enforcing some continuity constraints
across the interface between the subregions, throughout the iteration, as in a primal
method, while all other constraints are enforced by using dual variables, i.e., Lagrange
multipliers, as in a dual method. We will see that the FETI-DP methods differ in
several important respects from the strictly dual FETI methods, in particular, the one-
level FETI method which is described in section 3. In fact, from both an algorithmic
and an analytic point of view, the FETI-DP methods are closer to the primal iterative
substructuring methods than the FETI methods previously developed. While the
global part of the preconditioner for a strictly dual FETI method is directly associated
with the dual variables, that of a FETI-DP method is not.

We note that primal iterative substructuring methods have been studied quite
extensively (see, e.g., [6, 8], and [5]) well before a similarly complete, and quite chal-
lenging, mathematical theory was developed for the FETI methods (see [16, 21], and
[13]; FETI algorithms using inexact subdomain solvers also have been developed and
analyzed by two of the authors in [12]). We note that primal iterative substructuring
methods have been developed extensively even for elliptic systems, e.g., in [18], and
that we believe we have many of the tools necessary to extend our current results
and algorithms to the systems of linear elasticity; cf. also [12]. We also note that,
algorithmically, some of the FETI-DP methods that we consider have certain features
in common with very early work on iterative substructuring methods for problems
with many substructures; cf. the studies on Neumann–Dirichlet algorithms by Dryja,
Proskurowski, and Widlund [4] and the contributions of Dryja [3] and Widlund [23] to
the first international symposium on domain decomposition. We note, in particular,
that the Neumann subsystems of these early algorithms are nonsingular; there are
no floating subregions because of a device very similar to that used in the FETI-DP
methods. The use of Lagrange multipliers, in a special context, was also suggested in
[23].

The remainder of this paper is organized as follows. In section 2, we introduce
our scalar elliptic equation, which can have very different coefficients in different
subregions and which has served as a standard, nontrivial model problem in many
studies of iterative substructuring methods. We also introduce a simple finite element
space, the decomposition of our region, and our variational problem. In section 3, we
give a brief description of a one-level FETI method to provide a necessary background.
In section 4, we introduce our four FETI-DP methods; we note that we have recently
analyzed still another FETI-DP algorithm in [14]. In section 5, we provide, with a
few proofs, some auxiliary results, many of which have been previously developed
for the analysis of primal iterative substructuring methods. In section 6, we prove
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almost optimal bounds on the condition number of three of the methods. They are
independent of the number of substructures and grow only polylogarithmically with
the number of degrees of freedom associated with the individual substructures.

2. Elliptic model problem, finite elements, and geometry. Let Ω ⊂ R3

be a bounded, polyhedral region; let ∂ΩD ⊂ ∂Ω be a closed set of positive measure,
and let ∂ΩN := ∂Ω \ ∂ΩD be its complement. We impose homogeneous Dirichlet
and general Neumann boundary conditions, respectively, on these two subsets and
introduce the Sobolev space H1

0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}.
For simplicity, we will consider only a piecewise linear, conforming finite el-

ement approximation of the following scalar, second order model problem: Find
u ∈ H1

0 (Ω, ∂ΩD), such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂ΩD),(2.1)

where

a(u, v) :=

∫
Ω

ρ(x)∇u · ∇vdx, f(v) :=

∫
Ω

fvdx +

∫
∂ΩN

gNvds,(2.2)

and where gN is the Neumann boundary data defined on ∂ΩN ; it provides, together
with the volume load f , the contributions to the load vector of the finite element
problem. The coefficient ρ(x) > 0 for x ∈ Ω.

We decompose Ω into nonoverlapping subdomains Ωi, i = 1, . . . , N, also known
as substructures, and each of which is the union of shape-regular elements with the
finite element nodes on the boundaries of neighboring subdomains matching across

the interface Γ := (
⋃N
i=1 ∂Ωi) \ ∂Ω. The interface Γ is composed of subdomain faces,

regarded as open sets, which are shared by two subregions; of edges which are shared
by more than two subregions; and of vertices which are endpoints of edges. If Γ
intersects ∂ΩN along an edge common to the boundaries of only two subdomains, we
will regard it as part of the face common to this pair of subdomains. We denote the
faces of Ωi by F ij , its edges by E ik, and its vertices by Vi�.

We denote the standard finite element space of continuous, piecewise linear func-
tions on Ωi by W

h(Ωi); we always assume that these functions vanish on ∂ΩD. For
simplicity, we assume that the triangulation of each subdomain is quasi-uniform. The
diameter of Ωi is Hi or, generically, H. We denote the corresponding finite element
trace spaces by Wi := Wh(∂Ωi ∩ Γ), i = 1, . . . , N, and the associated product space

by W :=
∏N
i=1Wi. We will often consider elements of W which are discontinuous

across the interface.

The finite element approximation of the elliptic problem is continuous across
Γ and we denote the corresponding subspace of W by Ŵ . We note that while the
stiffness matrix K and Schur complement S, which correspond to the product space
W, generally are singular, those of Ŵ are not.

We also will use additional, intermediate subspaces W̃ of W for which only a
relatively small number of continuity constraints is enforced across the interface. One
of the benefits of working in W̃ , rather than in W , will be that certain related Schur
complements, S̃ and S∆, are strictly positive definite; see sections 3 and 4.

We assume that possible jumps of ρ(x) are aligned with the subdomain boundaries
and, for simplicity, that on each subregion Ωi, ρ(x) has the constant value ρi > 0.
Our bilinear form and load vector can then be written, in terms of contributions from
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individual subregions, as

a(u, v) =

N∑
i=1

ρi

∫
Ωi

∇u · ∇vdx, f(v) =

N∑
i=1

(∫
Ωi

fvdx +

∫
∂Ωi∩∂ΩN

gNvds

)
.

(2.3)
In our theoretical analysis, we assume that each subregion Ωi is the union of a number
of shape-regular tetrahedral coarse elements and that the number of such tetrahedra
is uniformly bounded for each subdomain. Thus, the subregions are not very thin
and we also can easily show that the diameters of any pair of neighboring subdomains
are comparable. We also assume that if a face of a subdomain intersects ∂ΩD, then
the measure of this set is comparable to that of the face. Similarly, if an edge of a
subdomain intersects ∂ΩD, we assume that the length of this intersection is bounded
from below in terms of the length of the edge as a whole. The sets of nodes on ∂Ω, ∂Ωi,
and Γ are denoted by ∂Ωh, ∂Ωi,h, and Γh, respectively.

As in previous work on Neumann–Neumann and FETI algorithms, a crucial role is
played by the weighted counting functions µi, which are associated with the individual
subdomain boundaries ∂Ωi; cf. [5, 8, 15, 20]. In this paper they will be used in
the definition of certain diagonal scaling matrices. These functions are defined for
γ ∈ [1/2,∞) and for x ∈ Γh ∪ ∂Ωh by a sum of contributions from Ωi and its relevant
neighbors

µi(x) =




∑
j∈Nx

ργj (x) x ∈ ∂Ωi,h ∩ ∂Ωj,h,

ργi (x) x ∈ ∂Ωi,h ∩ (∂Ωh \ Γh),
0 x ∈ (Γh ∪ ∂Ωh) \ ∂Ωi,h.

(2.4)

Here, Nx is the set of indices of the subregions which have x on their boundaries.
We note that any node of Γh either belongs to two faces, belongs to at least three
edges, or is a vertex of several substructures. The µi are continuous, piecewise discrete
harmonic functions; for a definition see section 3. The pseudoinverses µ†i , which belong
to the same class of functions, are defined for x ∈ Γh ∪ ∂Ωh by

µ†i (x) =
{
µ−1
i (x) if µi(x) �= 0,
0 if µi(x) = 0.

(2.5)

We note that these functions provide a partition of unity:∑
i

ργi (x)µ
†
i (x) ≡ 1 ∀x ∈ Γh ∪ ∂Ωh.(2.6)

3. One-level FETI methods. In this section, we will introduce some notation
and certain other aspects of the older one-level FETI methods which we will use
in the rest of this paper. We begin by defining a stiffness matrix K for the entire
product space

∏N
i=1W

h(Ωi). K is a direct sum of local stiffness matrices K(i) which
correspond to the subdomains Ωi, i = 1, . . . , N, and to the appropriate terms in the
first formula of (2.3). The local load vectors are obtained similarly; see the second
formula of (2.3).

Any nodal variable not associated with Γh is called interior and belongs only to one
substructure; the nodal values on ∂ΩN \Γ also belong to this set. The interior variables
of any subdomain can be eliminated by block Gaussian elimination in work which
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clearly can be parallelized across the subdomains. The resulting reduced matrices are
the Schur complements

S(i) = K
(i)
ΓΓ −K(i)

ΓI (K
(i)
II )

−1K
(i)
IΓ , i = 1, . . . , N.

Here Γ and I represent the interface and interior, respectively. We note that the
S(i), and their inverses or pseudoinverses, are needed only in terms of matrix-vector
products and that their elements therefore need not be explicitly computed. We
also obtain a reduced load vector for each subdomain. The one originating in Ωi is
denoted by fi, and the local vector of interface nodal values, which can be regarded
as a component of an element of the product space W, is denoted by ui.

The elimination of the interior variables of a substructure also can be viewed in
terms of an orthogonal projection, with respect to the bilinear form 〈K(i)·, ·〉, onto the
subspace of vectors with components that vanish at all the nodes of ∂Ωi \ ∂ΩN . Here
〈·, ·〉 denotes the �2-inner product. We note that these vectors represent elements of
Wh(Ωi) ∩ H1

0 (Ωi, ∂Ωi \ ∂ΩN ). These local subspaces are orthogonal, in this energy
inner product, to the space of discrete harmonic vectors which represent discrete
harmonic finite element functions with vΓ and wΓ vectors of interface values, such a
vector w = (wI , wΓ) is defined by

〈K(i)w, v〉 = 0 ∀v such that vΓ = 0(3.1)

on the subdomain Ωi, or, equivalently, by

K
(i)
II wI +K

(i)
IΓwΓ = 0.(3.2)

We can regard wΓ as a vector of Dirichlet data given on ∂Ωi,h ∩ Γh and note that
a piecewise discrete harmonic function is completely defined by its values on the
interface.

The Schur complement S(i) satisfies the following minimum property: For all
w ∈Wi,

〈S(i)w,w〉 = min〈K(i)v, v〉,(3.3)

where the minimum is taken over all v = (vI , vΓ) ∈Wh(Ωi) such that vΓ = w.
We note that we can view the Schur complement S(i) as the restriction of the

stiffness matrix K(i) to the space of discrete harmonic functions. In what follows,
we will work almost exclusively with functions in the trace spaces Wi and, whenever
convenient, consider such an element as representing a discrete harmonic function
in Ωi. We also note that it is this piecewise discrete harmonic part of the solution,
representing an element of Ŵ , that is determined by any iterative substructuring
method; the other, interior, parts of the solution are computed locally as indicated
above.

We now briefly review a part of the derivation of the traditional FETI methods
prior to showing in the next section how matters change in the FETI-DP case. We
begin by reformulating the finite element problem, reduced to the interface Γ, as a
minimization problem with constraints given by the requirement of continuity across
Γ: find u ∈W , such that

J(u) := 1
2 〈Su, u〉 − 〈f, u〉 → min

Bu = 0

}
,(3.4)
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where u = [u1, . . . , uN ]
t, f = [f1, . . . , fN ]

t, and S = diagi(S
(i)).

The matrix B = [B(1), . . . , B(N)] is constructed from {0, 1,−1} such that the
values of the solution u, associated with more than one subdomain, coincide when
Bu = 0. Here, as in [13, sections 5 and 4], we can work with either fully redundant
or nonredundant constraints, i.e., with either all possible or the smallest possible
number of constraints for each node of Γh. The local Schur complement matrices S(i)

are positive semidefinite and, in fact, in many cases, there are floating subdomains,
i.e., subregions for which the S(i) are singular. Problem (3.4) is uniquely solvable if
and only if ker (S) ∩ ker (B) = {0}, i.e., S is invertible on the null space of B. This
condition holds since the original finite element model is elliptic.

In a standard one-level FETI method, a vector of Lagrange multipliers λ is intro-
duced to enforce all the constraints Bu = 0, and we obtain a saddle point formulation
of (3.4): find (u, λ) ∈W × U such that

Su + Btλ = f
Bu = 0

}
.(3.5)

In this paper, we will work exclusively with fully redundant sets of Lagrange multipli-
ers. The matrix Bt then has a null space and, to ensure uniqueness, it is appropriate
to restrict the choice of Lagrange multipliers to range (B). In fact, in the one-level
FETI methods the space of Lagrange multipliers is chosen as a subspace of range (B),
since further constraints on the Lagrange multipliers must be introduced in order to
ensure the solvability of the first equation of (3.5); see, e.g., [11, 16, 13].

We also will use a full column rank matrix R built from all of the null space
elements of S; these elements are associated with individual subdomains (the rigid
body motions in the case of elasticity) and are continued by zero outside the subregion
in question. Thus, range (R) = ker (S). We note that no subdomain with a boundary
which intersects ∂ΩD contributes to R.We also note that the case of linear elasticity is
somewhat more complicated. There also can be contributions to R from subdomains
with boundaries intersecting ∂Ω for which there are not enough essential boundary
conditions to fully eliminate the entire space of rigid body motions.

The solution of the first equation in (3.5) exists if and only if f−Btλ ∈ range (S);
this constraint leads to the introduction of an orthogonal projection P from U onto
ker (Gt) with G := BR. We note that we do not need any such projection in the
FETI-DP methods defined in the next section.

Eliminating the primal variables from (3.5) and considering the component or-
thogonal to range (G), we obtain

P tFλ = P td
Gtλ = e

}
(3.6)

with F := BS†Bt, d := BS†f, S† a pseudoinverse of S, and e := Rtf ; this last
constraint ensures that the first equation of (3.5) is solvable.

The original FETI method is a conjugate gradient method applied to

P tFλ = P td, λ ∈ λ0 + range (P ),(3.7)

with an initial approximation λ0 chosen such that Gtλ0 = e; this constraint guarantees
that the first equation of (3.5) is consistent.

We will not describe the preconditioners used in the solution of this dual problem
but will postpone this topic to the next section; there are no essential differences



DUAL-PRIMAL FETI METHODS 165

between the two cases as far as preconditioners are concerned. For a more detailed
description and analysis of a number of one-level FETI algorithms, see Klawonn and
Widlund [13].

4. FETI-DP methods. In previous studies of FETI-DP methods for problems
in two dimensions (see Farhat et al. [9] and Mandel and Tezaur [17]), the constraints on
the degrees of freedom associated with the vertices of the substructures are enforced
in each iteration; i.e., the corresponding degrees of freedom belong to the primal
set of variables, while all the constraints associated with the edge nodes are fully
enforced only at the convergence of the iterative method. A linear system of algebraic
equations is solved exactly in each step of the iteration. All unknowns except those of
the subdomain vertices can be eliminated at a modest expense, and in parallel across
the subdomains, resulting in a Schur complement for the vertex variables. In this first
step, we can take full advantage of a high quality sparse matrix Cholesky solver when
solving the individual subdomain problems, which in fact are Neumann problems on
the individual subregions except for a Dirichlet condition at the subdomain vertices.
The order of the Schur complement equals the number of subdomain vertices which
do not belong to ∂ΩD. It is sparse since it can be shown quite easily that no nonzero
off-diagonal elements exist in the reduced system matrix except those that correspond
to pairs of vertices which belong to the same substructure.

In their recent paper, Mandel and Tezaur [17] established a condition number
bound of the form C(1 + log(H/h))2 for the resulting FETI-DP method, in two di-
mensions, and if it is equipped with a Dirichlet preconditioner similar to those used
for some of the older FETI methods; cf. Farhat, Mandel, and Roux [11]. This precon-
ditioner is built from local solvers on the subregions with zero Dirichlet conditions at
the vertices of the subregions. This algorithm is scalable in the sense that the constant
C is independent of the number of subregions, the subdomain diameters, as well as
the mesh size h of the finite element model. Mandel and Tezaur also established a
corresponding result for a fourth order elliptic problem in the plane. Their proof in
[17] for the second order equation uses linear algebra arguments and a lemma from a
classical paper by Bramble, Pasciak, and Schatz [2, Lem. 3.5].

The same algorithm, our Algorithm A, also can be defined for the three-dimensional
case but it does not perform well; see Farhat et al. [9, sect. 5]. This is undoubtedly
related to the poor performance of vertex-based iterative substructuring methods; see
[6, sect. 6.1]. A condition number estimate for this algorithm is given in Remark 2 at
the end of the paper.

In the present study, as well as in others of FETI-DP methods, we work with
subspaces W̃ ⊂ W for which sufficiently many constraints are enforced so that the
resulting leading diagonal block of the saddle point problem, though no longer block
diagonal, is strictly positive definite. We also introduce two subspaces, ŴΠ ⊂ Ŵ and
W̃∆, corresponding to a primal and a dual part of the space W̃ . These subspaces will
play an important role in the description and analysis of our iterative method. The
direct sum of these spaces equals W̃ , i.e.,

W̃ = ŴΠ ⊕ W̃∆.(4.1)

The second subspace, W̃∆, is the direct sum of local subspaces W̃∆,i of W̃ , where

each subdomain Ωi contributes a subspace W̃∆,i; only its ith component in the sense

of the product space W̃ is nontrivial.
In the descriptions of our algorithms, we will need certain standard finite element

cutoff functions θEik , θFij , and θVi� . The first two are the discrete harmonic functions
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which equal 1 on E ikh and F ijh , respectively, and which vanish elsewhere on Γh; θVi�

denotes the piecewise discrete harmonic extension of the standard nodal basis function
associated with the vertex Vi�. These cutoff functions also will be used in the analysis
of the methods; see sections 5 and 6.

We are now ready to define our algorithms in terms of pairs of subspaces.
Algorithm A. The primal subspace, ŴΠ, is spanned by the nodal finite element

basis functions θVi� . The local subspace W̃∆,i is defined as the subspace of Wi of
elements which vanish at the subdomain vertices, i.e., by

W̃∆,i := {u ∈Wi : u(Vi�) = 0 ∀Vi� ∈ ∂Ωi}.

Hence, W̃ = W̃A is the subspace of W of functions that are continuous at the subdo-
main vertices.

Algorithm B. The primal subspace, ŴΠ, is spanned by the vertex nodal finite
element basis functions θVi� and the cutoff functions θEik and θFij associated with all

the edges and faces, respectively, of the interface. The local subspace W̃∆,i is defined
as the subspace of Wi, where the values at the subdomain vertices vanish, together
with the averages uEik and uFij , i.e., by

W̃∆,i := {u ∈Wi : u(Vi�) = 0, uEik = 0, uFij = 0 ∀Vi�, E ik,F ij ⊂ ∂Ωi}.

Here,

uEik =

∫
Eik uds∫
Eik 1ds

and uFij =

∫
Fij udx∫
Fij 1dx

.(4.2)

Hence, W̃ = W̃B is the subspace of W of functions that are continuous at the sub-
domain vertices and that have the same values of uEik and uFij . These functions

are independent of the component of u ∈ W̃B that is used in the evaluation of these
averages.

Algorithm C. The primal subspace, ŴΠ, is spanned by the vertex nodal finite
element basis functions θVi� and the cutoff functions θEik of all the edges of Γ. The

local subspace W̃∆,i is defined as the subspace of Wi, where the values at the subdomain
vertices vanish together with the averages uEik , i.e., by

W̃∆,i := {u ∈Wi : u(Vi�) = 0, uEik = 0 ∀Vi�, E ik ⊂ ∂Ωi}.

Hence, W̃ = W̃C is the subspace of W of functions that are continuous at the subdo-
main vertices and have common averages uEik for all the edges. The number of degrees

of freedom of the corresponding primal subspace ŴΠ is therefore equal to the sum of
the number of vertices and the number of edges; this ŴΠ will be of lower dimension
than the primal space of Algorithm B.

The number of constraints enforced in all the iterations of Algorithms B and
C is substantially larger than when only the vertex constraints are satisfied, as in
Algorithm A, but we are still able to work with a uniformly bounded number of such
constraints for each substructure. In order to put this in perspective, we consider
Algorithms B and C in the very regular case of cubic substructures. There are then
seven global variables for each interior substructure in the case of Algorithm B since
there are eight vertices, each shared by eight cubes; twelve edges, each shared by four
cubes; and six faces, each shared by a pair of substructures. The count for Algorithm



DUAL-PRIMAL FETI METHODS 167

C is four. We note that the counts would be different, relative to the number of
substructures, in the case of tetrahedral subregions.

It is useful to distinguish between the continuity constraints at the vertices and
the other constraints. The latter are sometimes called optional constraints since they
are not needed to guarantee solvability of the subproblems if there are enough vertex
constraints. The optional constraints could be handled as the vertex variables after a
change of basis. Another possibility, which we advocate, is to introduce an additional
set of Lagrange multipliers which are computed exactly in each iteration to enforce
the required optional constraints of the primal subspace; see Farhat, Lesoinne, and
Pierson [10], where this approach is used; for a more detailed description, see section
4.2, especially formulae (24)–(28), of that paper.

We are able to show as strong a result for Algorithm C as for Algorithm B. It is
therefore natural to attempt to drop additional constraints, i.e., further decrease the
primal subspace ŴΠ while preserving the fast convergence of the FETI-DP method.
This leads to the introduction of our final algorithm.

Algorithm D. The primal subspace, ŴΠ, is defined in terms of constraints
associated with a subset of the edges and vertices of the interface. Our recipe for
selecting such primal edges and vertices is relatively complicated and can only be fully
understood by carefully reading the proof of Lemma 10 in section 6.

We first describe the requirements on a minimal set of primal constraints which
we have found necessary to give a complete proof of a good bound for Algorithm D.
For each face, we should have at least one designated, primal edge. Additionally, for
all pairs of substructures Ωi,Ωj , which have an edge in common, we must have an
acceptable edge path between the two subdomains. An acceptable edge path is a path
from Ωi to Ωj , possibly via several other subdomains, Ωk, which have the edge E ij in
common and such that their coefficients satisfy TOL∗ρk ≥ min(ρi, ρj) for some chosen
tolerance TOL. The path can only pass from one subdomain to another through an
edge designated as primal. Finally, we consider all pairs of substructures which have
in common a vertex Vi� but not a face or an edge. Then, we assume either that Vi� is
a primal vertex or that we have an acceptable edge path of the same nature as above,
except that we can be more lenient and insist only on TOL∗ρk ≥ (hk/Hk)min(ρi, ρj).
We also note that we could allow our edge paths to stray somewhat further away from
the edge E ij , or the vertex Vi�, and that in fact a careful examination of the proof
of Lemma 10 would reveal that alternative, more liberal rules concerning the paths
could be adopted.

We now give a description of a possible way of selecting the set of primal con-
straints. We start by choosing enough edges so that for each face of the interface
there is at least one designated, primal edge which is part of the boundary of the
face. In addition, we can exercise an option of designating some of the vertices of the
substructures as primal; this is not strictly necessary but if constraints are enforced
at enough vertices throughout the computation, then the related Schur complement
can be made invertible even without any edge constraints. As pointed out above, this
can be an advantage in the implementation of the method.

After this initial phase, which in the case of hexagonal substructures can involve
as few as three edge constraints per subdomain, and hence a very small primal space,
we consider the effects of the possibly very large variation of the coefficients ρi; if there
are no great variations in the coefficients, we need do nothing more. We examine one
by one each edge E ij not previously designated as primal. We consider all pairs of
subdomains that have this edge in common and try to find an acceptable edge path
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between the two subdomains Ωi and Ωj . If no such path can be found, we add the
edge E ij to the set of designated edges; a trivial, acceptable edge path is then created.
We also note that since two subdomains that share a face always have at least one
designated edge in common, we need not consider any such pairs of subdomains in
this step.

Finally, we consider, one by one, all vertices which so far have not been designated
as primal. We consider pairs of substructures that have such a vertex Vi� in common
but which do not have a face or edge in common. For each vertex inspected, we
try to find an acceptable edge path subject only to the more lenient condition on
the coefficients. If we fail to find such a path, we mark the vertex Vi� as primal,
i.e., a vertex where the constraints should be exactly satisfied throughout the FETI
iteration.

We note that we are free to add any other vertex, edge, or face constraints to
our definition of the primal space; the bounds on the condition numbers will only
improve. If all edges and vertices are primal, we are back to Algorithm C.

We can now formulate our FETI-DP algorithms. Each is expressed in terms of
a Schur complement S̃ related to the dual space W̃∆. We can arrive at this reduced
problem by eliminating the primal variables associated with the interior nodes, the
vertex nodes designated as primal, as well as the Lagrange multipliers related to the
optional constraints. This Schur complement S̃ can be equally well defined by a
variational problem: for all w∆ ∈ W̃∆,

〈S̃w∆, w∆〉 = min〈Sw,w〉,(4.3)

where we take the minimum over all w ∈ W̃ of the form w = wΠ +w∆, wΠ ∈ ŴΠ.We
note that any Schur complement of a positive definite, symmetric matrix is always
associated with such a variational problem. We also obtain, analogously, a reduced
right-hand side f̃∆ from the load vectors associated with the individual subdomains.

We now reformulate the original finite element problem, reduced to the degrees
of freedom of the second subspace W̃∆, as a minimization problem with constraints
given by the requirement of continuity across all of Γh: find u∆ ∈ W̃∆, such that

J(u∆) :=
1
2 〈S̃u∆, u∆〉 − 〈f̃∆, u∆〉 → min

B∆u∆ = 0

}
.(4.4)

The matrix B∆ is constructed from {0, 1,−1} in a way very similar to the matrix B
discussed in section 3 and in such a way that the values of the solution u∆, associated
with more than one subdomain, coincide when B∆u∆ = 0. Again, these constraints
are very simple and just express that the nodal values coincide across the interface;
in comparison with the FETI method described in the previous section, we can drop
some of the constraints, in particular, those associated with the vertex nodes of the
primal space. However, we will otherwise use all possible constraints and thus work
with a fully redundant set of Lagrange multipliers as in [13, sect. 5].

By introducing a set of Lagrange multipliers λ ∈ V := range (B∆) to enforce the
constraints B∆u∆ = 0, we obtain a saddle point formulation of (4.4), as in (3.5).

Since S̃ is invertible, we can eliminate the subvector u∆, and we obtain the following
system for the dual variables:

Fλ = d := B∆S̃
−1f̃∆,(4.5)

where

F := B∆S̃
−1Bt∆.
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Algorithmically, the matrix S̃ is needed only in terms of S̃−1 times a vector, and
such an operation can be computed relatively inexpensively. While it is natural to
describe a Schur complement in terms of a second set of variables and resulting from
the elimination of a first set, the action of its inverse on a vector can often be ob-
tained advantageously by solving the entire linear system from which it originates
after augmenting the given right-hand side with zeros. Full advantage can then be
taken of algorithms that symmetrically reorder the larger matrix so as to preserve
sparsity. In the case at hand, it is thus advantageous to group together all the interior
and dual variables of each subdomain and to factor the resulting blocks in parallel
across the subdomains using a good ordering algorithm. The contributions to the
remaining Schur complement, of the primal variables, can also be computed locally
prior to subassembly and factorization of this final, global part of the linear system
of equations.

The operator F will obviously depend on the choice of the subspaces ŴΠ and W̃∆,
and we denote the operators of the resulting linear systems by FA, FB , FC , and FD,
respectively. To define the FETI-DP Dirichlet preconditioner, we need to introduce

an additional set of local Schur complement matrices, S
(i)
∆ , which is obtained by

restricting S(i) to the space W̃∆,i; in the case of Algorithm A, we simply remove the
rows and columns corresponding to the subdomain vertices from S(i). The associated
block-diagonal matrix is given by

S∆ := diagNi=1(S
(i)
∆ ).

We can compute S∆ times a vector w∆ ∈ W̃∆ by solving a local Dirichlet problem
with a solution in W̃∆,i, i = 1, . . . , N, and then multiplying it by the stiffness matrix
of its subdomains. Such solutions are constrained to vanish at designated subdomain
vertices and to have zero edge and face averages, as required by the algorithm in
question.

We also introduce diagonal scaling matrices D
(i)
∆ that operate on the Lagrange

multiplier spaces. Each of their diagonal elements corresponds to a Lagrange mul-
tiplier which enforces continuity between the nodal values of some wi ∈ W̃i and
wj ∈ W̃j at some point x ∈ Γh; it is given by ργj (x)µ

†
j(x). Finally, we define a scaled

jump operator by

BD,∆ :=
[
D

(1)
∆ B

(1)
∆ , . . . , D

(N)
∆ B

(N)
∆

]
.

As in Klawonn and Widlund [13, sect. 5], we solve the dual system (4.5) using
the preconditioned conjugate gradient algorithm with the preconditioner

M−1 := BD,∆S∆B
t
D,∆.(4.6)

The FETI-DP method is the standard preconditioned conjugate gradient algorithm
for solving the preconditioned system

M−1Fλ =M−1d.

This definition ofM clearly depends on the choice of the subspaces ŴΠ and W̃∆ for the
different algorithms. The resulting preconditioners are denoted by M−1

A ,M−1
B ,M−1

C ,
and M−1

D , respectively.
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5. Some auxiliary lemmas. The purpose of this section is to provide, in most
cases without proofs, the few auxiliary results that are required for a complete proof
of Lemmas 9 and 10, which provide the core of the proofs of our main results. Some
of these results are borrowed from [6, 8, 7]; see also [25] for similar material. Here,
we formulate them using trace spaces on the subdomain boundaries, i.e., H1/2(∂Ωi)
instead of the spaces H1(Ωi) and discrete harmonic extensions; given the well-known
equivalence of the norms, nothing essentially new needs to be proven. In our proofs, we
will work with the S-norm defined by |u|2S =

∑N
i=1 |ui|2S(i) and |ui|2S(i) = 〈S(i)ui, ui〉.

A proof of the equivalence of S(i)- and H1/2(∂Ωi)-seminorms of elements of Wi can
be found in [1] for the case of piecewise linear elements and two dimensions. The tools
necessary to extend this result to more general finite elements are provided in [22]; in
our case, we of course have to multiply |ui|2H1/2(∂Ωi)

by the factor ρi.

We also recall that we can define the H
1/2
00 (Γ̃)-norm, Γ̃ ⊂ ∂Ωi, of an element of

Wi which is supported in Γ̃, as the H1/2(∂Ωi)-norm of the function extended by zero
onto ∂Ωi \ Γ̃.

The first lemma can, essentially, be found in Dryja, Smith, and Widlund [6,
Lem. 4.4].

Lemma 1. Let θFij be the finite element function that is equal to 1 at the nodal
points on the face F ij, which is common to two subregions Ωi and Ωj, and that

vanishes on (∂Ωi,h ∪ ∂Ωj,h) \ F ijh . Then,

|θFij |2H1/2(∂Ωi)
≤ C(1 + log(Hi/hi))Hi.

The same bounds also hold for the other subregion Ωj .
The following result can, essentially, be found in Dryja, Smith, and Widlund [6,

Lem. 4.5] or in Dryja [3, Lem. 3].
Lemma 2. Let θFij be the function introduced in Lemma 1 and let Ih denote the

interpolation operator onto the finite element space Wh(Ωi). Then, for all u ∈Wi,

‖Ih(θFiju)‖2
H

1/2
00 (Fij)

≤ C(1 + log(Hi/hi))
2

(
|u|2H1/2(Fij) +

1

Hi
‖u‖2L2(Fij)

)
.

We will also need two additional results which are used to estimate the contribu-
tions to our bounds from the edges of Ωi. For the next lemma, see Dryja, Smith, and
Widlund [6, Lem. 4.7].

Lemma 3. Let θEik be the cutoff function associated with the edge E ik. Then, for
all u ∈Wi,

|Ih(θEiku)|2H1/2(∂Ωi)
≤ C‖u‖2L2(Eik).

This result follows by an elementary estimate of the energy norm of the zero
extension of the boundary values and by noting that the harmonic extension has a
smaller energy.

We will also need a Sobolev-type inequality for finite element functions; see Dryja
and Widlund [7, Lem. 3.3] or Dryja [3, Lem. 1].

Lemma 4. Let E ik be any edge of Ωi which forms part of the boundary of a face
F ij ⊂ ∂Ωi. Then, for all u ∈Wi,

‖u‖2L2(Eik) ≤ C(1 + log(Hi/hi))

(
|u|2H1/2(Fij) +

1

Hi
‖u‖2L2(Fij)

)
.
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We also state a nonstandard version of Friedrichs’ inequality that is given in a
somewhat different form in [8, Lem. 6].

Lemma 5. Let E ik be an edge of F ij . Then, for all u ∈Wi that vanish on E ik,
‖u‖2L2(Fij) ≤ CHi(1 + log(Hi/hi))|u|2H1/2(Fij).

The proof of the main results in Mandel and Tezaur [17] is based on a bound for
a certain interpolation operator. In our proofs, we also could use a different interpola-
tion operator for each of our algorithms. Although these operators now play no direct
role in the proofs of our main results, they are nevertheless of independent interest.
They also illustrate how, in the cases of Algorithms B and C, we can approximate an
arbitrary element in W̃B and W̃C , respectively, by a continuous interpolant which is
almost uniformly stable in the energy norm; concerning W̃D, see Remark 1.

The first interpolation operator, IhA, is given by the continuous piecewise linear
interpolant on the coarse triangulation of Γ used in the definition of the Ωi.

Our second interpolation operator IhB is defined, for all u ∈ W̃B , by sums over all
the vertices, edges, and faces of Γ:

IhBu(x) =
∑

Vi�∈Γ

u(Vi�)θVi�(x) +
∑

Eik⊂Γ

uEikθEik(x) +
∑

Fij⊂Γ

uFijθFij (x).(5.1)

The operator IhB , a modification of an operator introduced in [6, p. 1690], has almost
optimal stability properties. We note that the values of IhBu(x) on ∂Ωi depend only
on the Wi component of u.

We also introduce a third interpolation operator, IhC , which provides an alternative
to IhB :

IhCu(x) =
∑

Vi�∈Γ

u(Vi�)θVi�(x) +
∑

Eik⊂Γ

uEikθEik(x) +
∑

Fij⊂Γ

u∂FijθFij (x).(5.2)

Here the average uEik is defined as in (4.2), and u∂Fij is given by

u∂Fij =

∫
∂Fij uds∫
∂Fij 1ds

.

This average is a convex combination of the values of the uEik of the face in question.

This interpolant is well defined for any element u ∈ W̃C .
The next lemma provides L2- and H

1/2-estimates for the vertex-based interpo-
lation operator IhA. This is essentially Lemma 4.1 of Dryja, Smith, and Widlund [6].
The proof follows directly from Poincaré’s inequality and a standard discrete Sobolev
inequality; see also [6, sect. 4].

Lemma 6. The vertex-based interpolation operator IhA satisfies

|IhAu|2H1/2(Fij) ≤ C (Hi/hi) |u|2H1/2(Fij) ∀u ∈Wi

and

‖u− IhAu‖2L2(Fij) ≤ C (Hi/hi)Hi |u|2H1/2(Fij) ∀u ∈Wi.

Here the constant C is independent of the diameter Hi of Ωi and the mesh size hi.
We have better results for the interpolation operators IhB and IhC , introduced in

(5.1) and (5.2), respectively. A bound for IhB can be found in a somewhat different
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form in Dryja, Smith, and Widlund [6, pp. 1689–1690]. We note that our L2-estimate
is now improved in comparison to [6, p. 1690] since our estimate of the interpolation
error contains no logarithmic factor.

Lemma 7. The interpolation operators IhB and IhC , defined in (5.1) and (5.2),
respectively, satisfy

|IhBu|2H1/2(Fij) ≤ C(1 + log(Hi/hi))|u|2H1/2(Fij) ∀u ∈Wi,

|IhCu|2H1/2(Fij) ≤ C(1 + log(Hi/hi))|u|2H1/2(Fij) ∀u ∈Wi

and

‖u− IhBu‖2L2(Fij) ≤ CHi|u|2H1/2(Fij) ∀u ∈Wi,

‖u− IhCu‖2L2(Fij) ≤ CHi(1 + log(Hi/hi))|u|2H1/2(Fij) ∀u ∈Wi.

Here the constant C is independent of the diameter Hi of Ωi and the mesh size hi.

6. Convergence analysis. Our analysis borrows ideas from the recent paper
by Mandel and Tezaur [17] and from our own paper [13]. In the latter, fast one-level
FETI algorithms and a theory for the elliptic problem of the class defined by (2.3)
were developed for an arbitrary choice of the ρi.

As in [17], the two different Schur complements, S̃ and S∆, introduced in section
4 play an important role in the analysis of the dual-primal iterative algorithm. Both
operate on the second subspace W̃∆, and we also recall that S̃ represents a global
problem while S∆ does not.

Let V := range (B∆) be the space of Lagrange multipliers. As in [13, sect. 5], we
introduce a projection

P∆ := BtD,∆B∆.

A simple computation shows (see [13, Lem. 4.2]) that P∆ preserves the jump of

any function u∆ ∈ W̃∆, i.e., B∆P∆u∆ = B∆u∆, and we also have P∆u = 0 for all
u ∈ Ŵ .

Analogous to [13, Lem. 5.2], we have the following.
Lemma 8. For any µ ∈ V , there exists a w∆ ∈ range (P∆) such that µ = B∆w∆.
Proof. We note that for any µ ∈ V = range (B∆), there exists a w′

∆ such that
µ = B∆w

′
∆. Choosing w∆ := P∆w

′
∆, we have B∆w∆ = B∆w

′
∆ = µ.

Let x ∈ Γh and let w∆ ∈ W̃∆. We borrow the following formula from [13]:

P∆w∆(x) =
∑

j∈N∆,x

ργj µ
†
j(w∆,i(x)− w∆,j(x)), x ∈ ∂Ωi,h ∩ Γh.(6.1)

Here, N∆,x is the set of indices of the subregions which have the node x on their
boundaries. We note that the coefficients in this expression are constant on the set of
the nodal points of each face and each edge of ∂Ωi and that this formula is independent
of the particular choice of B∆.

We first analyze Algorithm B and begin by proving the following core estimate.
Lemma 9 (Algorithm B). For all w∆ ∈ W̃∆,B, we have

|P∆w∆|2S∆
≤ C (1 + log(H/h))2|w∆|2

S̃
,

where C > 0 is independent of h, H, γ, and the ρi.
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Proof. We consider an arbitrary w∆ ∈ W̃∆,B . In order to compute its S̃-norm (cf.

(4.3)), we determine the element w = wΠ + w∆ ∈ W̃B , wΠ ∈ ŴΠ,B , with the correct

minimal property. Then, by the definition of S̃, |w∆|S̃ = |w|S . We next note that we
can subtract any continuous function from w∆ without changing the values of P∆w∆;
thus, P∆w = P∆w∆. It is also easy to see, by carrying out a simple computation and
by using formula (6.1), that P∆w∆ ∈ W̃∆,B . We also recall that the S∆-norm of any

element of W̃∆ equals its S-norm.
We model our proof on [13, Lem. 4.7 and 5.4] but note that the arguments need

to be modified to some extent. We also note that we have contributions only from
faces and edges since all elements in W̃B are continuous at the vertices. Here, in
contrast to the proof in [13], we do not need to assume that there is no subdomain,
with boundaries, that intersects ∂ΩD only in isolated points.

We introduce the notation (vi)i=1,...,N := P∆w. Then, we have to estimate

|P∆w|2S =

N∑
i=1

|vi|2S(i) .

We can therefore focus on the estimate of the contribution from a single subdomain
Ωi. We first assume that its boundary and the boundaries of its relevant neighbors
do not intersect ∂ΩD.

We cut the function vi, using the functions θFij and θEik , and write it as a sum
of terms which vanish at all the interface nodes outside individual faces and edges;
cf., e.g., [6, 8, 7]. We then have, since vi vanishes at the subdomain vertices,

vi =
∑

Fij⊂∂Ωi

Ih(θFijvi) +
∑

Eik⊂∂Ωi

Ih(θEikvi).

We find that the face F ij contributes
Ih(θFijργj µ

†
j(wi − wj))

and we have to estimate its H
1/2
00 (F ij)-norm; this formula follows from (6.1).

With γ ≥ 1/2, we can easily prove that

ρi(ρ
γ
j µ

†
j)

2 ≤ min(ρi, ρj).(6.2)

We note that ργj µ
†
j is constant on F ijh and that w has common face averages, i.e.,

wi,Fij = wj,Fij . Using inequality (6.2), these observations, and Lemma 2, we obtain

(6.3)

ρi‖Ih(θFijργj µ
†
j(wi − wj))‖2H1/2

00 (Fij)

= ρi‖Ih(θFijργj µ
†
j((wi − wi,Fij )− (wj − wj,Fij )))‖2

H
1/2
00 (Fij)

≤ C (1 + log(Hi/hi))
2 min(ρi, ρj)

(
|wi − wj |2H1/2(Fij)

+
1

Hi
‖(wi − wi,Fij )− (wj − wj,Fij )‖2L2(Fij)

)
.

We can estimate this expression by

C (1 + log(Hi/hi))
2
(
ρi|wi|2H1/2(Fij) + ρj |wj |2H1/2(Fij)

)
,
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as desired, by applying a Poincaré inequality. We note that, by assumption, Hj and
Hi are comparable and so are hj and hi, since the triangulations of Ωi and Ωj are
quasi-uniform.

By using Lemma 3, we can estimate the contributions of the edges of Ωi to the
energy of vi in terms of L2-norms over the edges. These L2-terms are then estimated
by using Lemma 4. If four subdomains, e.g., Ωi,Ωj ,Ωk, and Ω�, have an edge E ik in
common, then, according to (6.1), there are three contributions to the estimate of the
contribution of Ωi to |P∆w|2S , namely,

ρi ‖Ih(ργj µ†j θEik(wi − wj))‖2L2(Eik) + ρi ‖Ih(ργk µ†k θEik(wi − wk))‖2L2(Eik)

+ ρi ‖Ih(ργ� µ†� θEik(wi − w�))‖2L2(Eik).
(6.4)

We first consider the second term in detail, assuming that Ωi shares a face with each
of Ωj and Ω� but only an edge with Ωk. In the next estimate, we use |wi,Eik |2 ≤
1/Hi‖wi‖2L2(Eik) and ‖θEik‖2L2(Eik) ≤ C Hi. Using formula (6.2), Lemma 4, and the

fact that w has common edge averages, i.e., wi,Eik = wk,Eik , we obtain

ρi ‖Ih(ργkµ†kθEik(wi − wk))‖2L2(Eik)

= ρi ‖Ih(ργkµ†k(θEik(wi − wi,Eik)− θEik(wk − wk,Eik)))‖2L2(Eik)

≤ 2
(
ρi‖Ih(θEik(wi − wi,Eik))‖2L2(Eik) + ρk‖Ih(θEik(wk − wk,Eik))‖2L2(Eik)

)
≤ C

(
ρi‖wi‖2L2(Eik) + ρk‖wk‖2L2(Eik)

)
≤ C(1 + log(H/h))

(
ρi

(
|wi|2H1/2(Fij)

+ 1
Hi
‖wi‖2L2(Fij)

)
+ ρk

(
|wk|2H1/2(Fkj)

+ 1
Hk
‖wk‖2L2(Fkj)

))
≤ C(1 + log(H/h))

(
ρi|wi|2H1/2(Fij)

+ ρk|wk|2H1/2(Fkj)

)
,

(6.5)

with F ij a face of Ωi and Fkj a face of Ωk, both of which have the edge E ik in
common. The last inequality follows from the shift invariance of the expressions on
the third line; i.e., we can add constants to wi and wk without changing the value of
the expressions and then use Poincaré’s inequality.

Since Ωi and Ωj , as well as Ωi and Ω�, have a face in common, the argument
given above could be simplified for the first and third edge contributions; they can be
reduced to estimates for face terms directly.

Finally, we have to consider boundary subregions which have a nonempty inter-
section with ∂ΩD and show that we can obtain bounds of the same quality. We then
need different arguments to eliminate the L2(F ij) terms. In case this intersection is a
face or an edge, we can use exactly the same arguments as in [13, p. 71] which include
using Lemma 5. If the boundary of a substructure intersects ∂ΩD in just one or a few
single points, the shifting can be done exactly as above for the face and edge terms
of an interior subregion.

We now prove our condition number estimate for Algorithm B, which only de-
pends polylogarithmically on the dimension of the subproblems.

Theorem 1 (Algorithm B). The condition number satisfies

κ(M−1
B FB) ≤ C (1 + log(H/h))2.

Here, C is independent of h,H, γ, and the values of the ρi.
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Proof. We have to estimate the smallest eigenvalue λmin(M
−1
B FB) from below

and the largest eigenvalue λmax(M
−1
B FB) from above. We will show that

〈MBλ, λ〉 ≤ 〈FBλ, λ〉 ≤ C (1 + log(H/h))2〈MBλ, λ〉 ∀λ ∈ V.(6.6)

Lower bound. This bound is derived using purely algebraic arguments. As in the
analysis of the one-level FETI methods, we can use the following formula (see Mandel
and Tezaur [16] or Klawonn and Widlund [13, p. 73]):

〈FBλ, λ〉 = sup
0 =v∆∈W̃∆

〈λ,B∆v∆〉2
|v∆|2

S̃

.

Let µ ∈ V be arbitrary. It then follows from Lemma 8 that there exists a w∆ ∈
range (P∆) with µ = B∆w∆. Since w∆ = P∆w∆ and |u∆|S̃ ≤ |u∆|S∆ for all u∆ ∈ W̃∆,
we obtain

〈FBλ, λ〉 ≥ 〈λ,B∆w∆〉2
|w∆|2

S̃

≥ 〈λ,B∆w∆〉2
|w∆|2S∆

=
〈λ, µ〉2
|BtD,∆µ|2S∆

=
〈λ, µ〉2
〈M−1

B µ, µ〉 .

The left inequality of (6.6) follows by choosing µ :=MBλ.
Upper bound. Using Lemma 9, we obtain, for all λ ∈ V ,

〈FBλ, λ〉 = sup
0 =w∆∈W̃∆

〈λ,B∆w∆〉2
|w∆|2

S̃

≤ C (1 + log(H/h))2 sup
w∆ =0

〈λ,B∆w∆〉2
|P∆w∆|2S∆

= C (1 + log(H/h))2 sup
w∆ =0

〈λ,B∆w∆〉2
〈M−1

B B∆w∆, B∆w∆〉

= C (1 + log(H/h))2 sup
µ∈V

〈λ, µ〉2
〈M−1

B µ, µ〉 = C (1 + log(H/h))2〈MBλ, λ〉.

We now turn to the analysis of Algorithms C and D.
Lemma 10 (Algorithms C and D). For all w∆ ∈ W̃∆,C , we have

|P∆w∆|2S∆
≤ C (1 + log(H/h))2|w∆|2

S̃
.

For all w∆ ∈ W̃∆,D, we have

|P∆w∆|2S∆
≤ C max(1, TOL) (1 + log(H/h))2|w∆|2

S̃
.

In both cases, C > 0 is independent of h,H, γ, and the ρi.
Proof. We can proceed as in the proof of Lemma 9; we will use the same notation

and discuss only details that are technically different. We note that in Algorithm
D all vertices are not necessarily constrained and that therefore we have to estimate
terms of P∆w(x) related to the vertices which are not primal.

We cut the function vi using the functions θFij , θEik , and θVil and write it as a
sum of terms which vanish at all the interface nodes outside individual faces, edges,
and vertices, respectively; cf., e.g., [6, 8, 7]. We then have

vi =
∑

Fij⊂∂Ωi

Ih(θFijvi) +
∑

Eik⊂∂Ωi

Ih(θEikvi) +
∑

Vil∈∂Ωi

θVilvi(Vil).
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As in [13] and the proof of Lemma 9, we find that the face F ij contributes

Ih(θFijργj µ
†
j(wi − wj))

and we have to estimate its H
1/2
00 (F ij)-norm. Using inequality (6.2) and the fact that

ργj µ
†
j is constant on F ijh , we obtain

ρi‖Ih(θFijργj µ
†
j(wi − wj))‖2H1/2

00 (Fij)

= ρi‖Ih(θFijργj µ
†
j((wi − wi,Fij )− (wj − wj,Fij )

+ (wi,Fij − wj,Fij )))‖2
H

1/2
00 (Fij)

≤ 2 min(ρi, ρj)

(
‖Ih(θFij ((wi − wi,Fij )− (wj − wj,Fij )))‖2

H
1/2
00 (Fij)

+ ‖(wi,Fij − wj,Fij )θFij‖2
H

1/2
00 (Fij)

)
.

(6.7)

The first term can be estimated as in (6.3) by

C (1 + log(Hi/hi))
2
(
ρi|wi|2H1/2(Fij) + ρj |wj |2H1/2(Fij)

)
,

as desired, by applying a Poincaré inequality. There remains to estimate ‖((wi,Fij −
wj,Fij )θFij‖2

H
1/2
00 (Fij)

. Let E ik ⊂ ∂F ij be a designated, primal edge. Then, we have

|wi,Fij − wj,Fij |2 ≤ 2
(|wi,Fij − wi,Eik |2 + |wj,Fij − wj,Eik |2) .

It is sufficient to consider the first term on the right-hand side. The shift invariance
allows us to assume that wi,Fij = 0. Using |wEik |2 ≤ C/Hi‖wi‖2L2(Eik) and Lemmas

1 and 4, we obtain

‖(wi,Fij − wj,Fij )θFij‖2
H

1/2
00 (Fij)

≤ C (1 + log(H/h))2
(
|wi|2H1/2(Fij) + |wj |2H1/2(Fij)

)
.

The remainder of the proof of the result for Algorithm C can be carried out as in the
proof of Lemma 9. However, for Algorithm D, we need to do some further work.

Proceeding as in the proof of Lemma 9, we can estimate the contributions of the
edges of Ωi to the energy of vi in terms of L2-norms over the edges. We first consider
the second term of (6.4) in detail, again assuming that Ωi shares a face with each of Ωj
and Ω� but only an edge with Ωk. If we have a trivial, acceptable edge path, i.e., the
common edge is designated as primal, we can proceed exactly as in (6.5). Otherwise
assume that we have a nontrivial, acceptable edge path through the subdomain Ωj via
the edges E ij and Ejk; in general the acceptable edge path could be more complicated
but such a case could be analyzed similarly. We obtain

ρi ‖ργkµ†kIh(θEik(wi − wk))‖2L2(Eik)

= ρi ‖ργkµ†k
(
Ih(θEik(wi − wi,Eij )) + θEik(wj,Eij − wj,Ejk)

−Ih(θEik(wk − wk,Ejk))
) ‖2L2(Eik)

≤ Cmin(ρi, ρk)
(
‖Ih(θEik(wi − wi,Eij ))‖2L2(Eik) +Hj |wj,Eij − wj,Ejk |2

+ ‖Ih(θEik(wk − wk,Ejk))‖2L2(Eik)

)
.

(6.8)
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The terms of the last expression can be estimated as in (6.5). The only difference is
that, additionally, we have to use TOL ∗ ρj ≥ min(ρi, ρk). We obtain

ρi ‖ργkµ†kIh(θEik(wi − wk))‖2L2(Eik) ≤ C(1 + log(H/h))
(
ρi|wi|2H1/2(Fij)

+ ρk|wk|2H1/2(Fik)
+ TOL ∗ ρj

(
|wj |2H1/2(Fij)

+ |wj |2H1/2(Fjk)

))
.

Since Ωi and Ωj , as well as Ωi and Ω�, have a face in common, the argument
given above could be simplified for the first and third edge contributions (see (6.4));
they can be reduced to estimates of face terms.

Finally, we consider the terms resulting from the vertices. We have, according to
(6.1),

ρi|θVi�vi(Vi�)|2H1/2(∂Ωi)

≤ C
∑

j∈N
∆,Vi�

ρi(ρ
γ
j µ

†
j)

2|θVi� |2H1/2(∂Ωi)
|wi(Vi�)− wj(Vi�)|2

≤ C
∑

j∈N
∆,Vi�

min(ρi, ρj)hi|wi(Vi�)− wj(Vi�)|2.

We now consider each pair of substructures separately. Let Ωi,Ωl be such a pair and
assume that we have an acceptable edge path through Ωj via the edges E ij and Ejl
with the condition

TOL ∗ ρj ≥ hj
Hj

min(ρi, ρl).(6.9)

We can proceed as in the analysis of the edge terms and obtain

min(ρi, ρl)hi|wi(Vil)− wl(Vil)|2
≤ 3 min(ρi, ρl)hi

(|wi(Vil)− wi,Eij |2 + |wj,Eij − wj,Ejl |2 + |wl(Vil)− wl,Ejl |2) .
It is sufficient to estimate the first term on the last line; the third term can be treated
in exactly the same way, and the second term can be estimated as above with the
only difference of an additional factor hj/Hj which is accounted for in (6.9). Using
hi|wi(Vil)|2 ≤ C‖wi‖2L2(Eij) and Lemma 4, and estimating |wi,Eij | as before, we obtain

|wi(Vil)− wi,Eij |2 ≤ 2
(|wi(Vil)|2 + |wi,Eij |2)

≤ C(1 + log(Hi/hi))h
−1
i

(
|wi|2H1/2(Fij) + 1/Hi‖wi‖2L2(Fij)

)
≤ C(1 + log(Hi/hi))h

−1
i |wi|2H1/2(Fij).

Here, the last line follows again from the shift invariance of the first expression. Using
(6.9), we finally obtain

min(ρi, ρl)hi|wi(Vil)− wl(Vil)|2

≤ C (1 + log(H/h))
(
ρi|wi|2H1/2(Fij) + ρ�|w�|2H1/2(Fj�)

+ TOL ∗ ρj
(
|wj |2H1/2(Fij) + |wj |2H1/2(Fj�)

))
.

The boundary subregions can again be treated as in the proof of Lemma 9.
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We can now prove our condition number estimates for Algorithms C and D,
which are as strong as those in Theorem 1. The proof can be carried out exactly as
for Theorem 1, using Lemma 10 instead of Lemma 9.

Theorem 2 (Algorithms C and D). The condition numbers satisfy

κ(M−1
C FC) ≤ C (1 + log(H/h))2

and

κ(M−1
D FD) ≤ C max(1, TOL) (1 + log(H/h))2.

Here, C is independent of h,H, γ, and the values of the ρi.
Remark 1. It is possible to define a fourth interpolation operator IhD, based on the

weights ρi, the pseudoinverses µ†i , and the averages over the subdomain boundaries,
by

IhDu(x) =
∑
i

u∂Ωi
ργi (x)µ

†
i (x).(6.10)

Here the average u∂Ωi is defined by

u∂Ωi =

∫
∂Ωi

uds∫
∂Ωi

1ds
,

where we use the component in Wi when computing this average. This operator
naturally appears in studies of Neumann–Neumann algorithms. We can establish the
same type of bounds as for IhC in Lemma 7, provided that we introduce the same
constraints as for Algorithm D.

Remark 2. It is already known from the numerical results in [9, 10] that Algorithm
A is not competitive. We can prove that the condition number of Algorithm A satisfies
the weaker bound,

κ(M−1
A FA) ≤ C (H/h) (1 + log(H/h))2,

in the same way as Theorem 1, using Lemma 6 and a variant of Lemma 10. Here, C
is independent of h,H, γ, and the values of the ρi.
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Abstract. The notion of the affine figure closest to a given quadrilateral can be given a precise
mathematical definition. The resulting figure is referred to as the equivalent parallelogram associ-
ated with a quadrilateral. Equipped with such a concept, it is then feasible to consider finite element
approximations in which the original quadrilateral elements are replaced by their equivalent parallel-
ograms. The idea is appealing, not least because of the resulting economy arising from computations
performed on an element generated by an affine map. Furthermore, numerical experiments reported
recently indicate that highly efficient and accurate schemes result when such a concept is combined
with the enhanced strain method or the method of incompatible modes. The purpose of this work is
to analyze finite element schemes resulting from approximation of quadrilaterals by their equivalent
parallelograms. The focus is on low-order (bilinear) elements, and the analysis is carried out in
the context of linear elasticity for standard approximations as well as for those which use enhanced
strains. The affine approximation applies only to the element map, and the primary unknown (the
displacement vector in the context of elasticity) is approximated by conventional piecewise bilinear
functions. The analysis confirms convergence at the optimal rate, provided that the deviations of
the quadrilaterals from their equivalent parallelograms are at most O(h).

Key words. equivalent parallelogram, affine approximations, four-noded quadrilateral, error
estimates
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1. Introduction. The use of low-order elements in finite element analyses of
complex problems carries with it significant advantages. Most particularly, such
schemes are highly economical and for this reason are attractive.

Finite element analyses based on four-noded quadrilaterals in two dimensions, and
on eight-noded hexahedral elements in three, are widely used. Unfortunately, they
are not without their drawbacks. In problems of solid mechanics in which bending
deformations dominate, analyses based on these elements exhibit poor accuracy, at
least when coarse meshes are used. In addition, in the incompressible limit, or when
the compressibility is small, locking behavior is experienced.

There is a vast literature that is devoted to the construction of methods which
are intended to overcome the problems referred to, while retaining the advantages
of using low-order elements. One commonly used set of remedies is that based on a
combination of underintegration plus stabilization (see, for example, the work of [4]
and [8]). The great advantage of this approach is its efficiency, in that only a single
integration point is used. However, the eigenvalues of the stiffness matrix are required
in the process, and it is not possible to evaluate these without a relatively high degree
of effort, for nonaffine elements.

Another popular approach is that associated with the enrichment or enhancement
of the strain by the addition of suitably chosen basis functions. The key work dealing
with enhanced strain formulations is [14], which in turn contains as a special case
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the nonconforming method of incompatible modes due to Wilson, Taylor, Doherty,
and Ghaboussi [17] for rectangular elements and extended by Taylor, Beresford, and
Wilson [16] to incorporate arbitrary quadrilaterals. The method has been successfully
extended to nonlinear problems (see, for example, [15]). Reddy and Simo [11] have
shown, for linear problems and for affine elements, that the enhanced strain method
is stable and convergent, while Arunakirinathar and Reddy [3] have extended that
work to include the case of arbitrary quadrilaterals.

The enhanced strain method is still not without its drawbacks. For example,
the quality of approximations for arbitrary elements declines with an increase in dis-
tortion of the elements. Consideration of this shortcoming, together with a desire
to improve the efficiency of computations associated with arbitrary quadrilaterals or
hexahedra, leads naturally to the notion of replacing the arbitrary quadrilateral by
the affine element that is closest to it, in a manner that can be made precise. Such
an affine element is known as the equivalent parallelogram in two dimensions, and
the equivalent parallelepiped in three. It is important to bear in mind that the affine
approximation applies only to the element map and that the primary unknown (the
displacement vector in the context of elasticity) is still approximated by piecewise
bilinear functions in two dimensions and by piecewise trilinear functions in three.

It has been shown in [2] that the interpolation error obtained by using the equiv-
alent parallelogram instead of the original quadrilateral is of the same order as that
corresponding to the usual interpolation error. The element stiffness matrices associ-
ated with the equivalent elements are therefore admissible alternatives to the “exact”
stiffness matrices of the original elements, while at the same time they are far easier
to construct. This set of ideas has been proposed, and then tested numerically, first
in the context of problems of linear elasticity in [9] and subsequently for problems in-
volving nonlinearly elastic materials in [12, 13]. In all cases the numerical results are
encouraging and suggest a significant improvement in efficiency and accuracy when
this approach is used, particularly in circumstances in which element distortions are
significant.

The purpose of this work is to carry out a detailed analysis of these affine-
approximate finite element methods, for linear problems. The analysis is confined to
plane problems but can be extended to three dimensions with little difficulty, though
the details are messy. The analysis includes treatment of finite elements without and
with the inclusion of enhanced strains. The key results, with respect to both classes
of approximations, is that the method converges at the optimal rate provided that
the element distortion is sufficiently small—more precisely, provided that deviation of
the quadrilateral from the equivalent parallelogram is of the order of mesh size. This
notion will be made precise in what follows.

The plan of the remainder of this work is as follows. In section 2 the problem
is formulated. Finite element approximations are introduced in section 3, as is the
notion of the equivalent parallelogram. The analysis of the affine-approximate method
is carried in section 4 for the problem without enhancement, while section 5 is devoted
to an analysis of the problem with enhancement.

2. The boundary-value problem of elasticity. The model problem of rele-
vance is the displacement boundary-value problem of linear elasticity. Suppose that
a linear elastic body occupies a region Ω ⊂ R

d (d = 2, 3). The body has boundary
Γ. Then the governing equations which are required to hold on Ω are the equation of
equilibrium

−divσ = b,(1)
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the strain-displacement relation

ε(u) = 1
2 (∇u+ [∇u]T ),(2)

and the elastic constitutive equation

σ = C[ε].(3)

Here σ is the symmetric Cauchy stress tensor, ε is the infinitesimal strain tensor, u is
the displacement vector, C is the fourth-order elasticity tensor, and b is a prescribed
body force vector.

For convenience we assume that the displacement satisfies the homogeneous
Dirichlet boundary condition, that is,

u = 0 on Γ.(4)

The tensor C has the symmetries

Cijkl = Cjikl = Cijlk = Cklij(5)

and is assumed to be pointwise stable, in the sense that there exists a constant c0 > 0
such that

CijklMijMkl ≥ c0MijMij(6)

for all symmetric matrices M , the summation convention for repeated indices being
invoked here and henceforth. In addition, the components of C are assumed to be
bounded measurable functions; that is,

Cijkl ∈ L∞(Ω)(7)

for all indices i, j, k, l ranging over 1 to d, with

c∞ := max
i,j,k,l

ess sup{Cijkl(x) : x ∈ Ω }.(8)

For isotropic elastic materials the elasticity tensor takes the simple form

C[ε] = λ tr ε+ 2µ ε,

in which λ and µ are the Lamé constants. Pointwise stability of C is equivalent to
the condition that the Lamé constants satisfy the inequalities [10]

µ > 0 and λ > − 2
3µ.

We will make use of the space L2(Ω) of square-integrable functions defined on Ω.
The inner product and norm on this space are denoted, respectively, by (·, ·)0 and
‖ · ‖0. We recall also the definition of the Sobolev spaces Hm(Ω), where m is an
integer; for nonnegative m, these are equivalence classes of functions which, together
with their generalized derivatives up to and including those of order m, are members
of L2(Ω). The Sobolev spaces are Hilbert spaces with inner product and associated
norm given by

(u, v)m =

∫
Ω

∑
|α|≤m

Dαu(x)Dαv(x) dx, ‖u‖m = (u, u)1/2m
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for all u, v ∈ Hm(Ω). Here α = (α1, . . . , αd) is a multi-index whose components αi
are nonnegative integers, |α| = α1 + · · · + αd, and Dα = ∂|α|/∂xα1

1 · · · ∂xαd

d . The
seminorm | · |m on Hm(Ω) is defined by

|u|m =

∫
Ω

∑
|α|=m

Dαu(x)Dαv(x) dx.

We define the space Hm
0 (Ω) of functions in Hm(Ω) which, together with their deriva-

tives of order up to and including those of order m − 1, vanish on the boundary in
the sense of traces. The seminorm | · |m is a norm on Hm

0 (Ω), equivalent to the stan-
dard norm ‖ · ‖m. Finally, the space H−m(Ω), for m a nonnegative integer, may be
identified with the topological dual space of Hm

0 (Ω).
We are now in a position to define the standard variational problem in linear

elasticity. For this purpose we denote by V := [H1
0 (Ω)]

d the space of admissible
displacements and define the bilinear form a(·, ·) and linear functional �(·) by

a : V × V → R, a(u,v) =

∫
Ω

Cε(u) : ε(v) dx,(9)

� : V → R, �(v) =

∫
Ω

b · v dx.(10)

The properties of C guarantee that a(·, ·) is symmetric, continuous, and V -elliptic;
that is, a(v,u) = a(u,v), and there exist positive constants M and α such that

|a(u,v)| ≤M‖u‖V ‖v‖V and a(v,v) ≥ α‖v‖2V
for all u, v ∈ V .

The topological dual of V is denoted by V ′.
The standard variational problem is as follows.
Problem S. Given b ∈ V ′, find u ∈ V which satisfies

a(u,v) = �(v)(11)

for all v ∈ V .
It is well known (see, for example, [7]) that Problem S has a unique solution,

which satisfies the bound

‖u‖V ≤ (1/α) ‖�‖V ′ .(12)

3. Finite element approximations. We confine attention to plane situations,
so that d = 2. The domain Ω is assumed to be polygonal, and a finite element
mesh T of quadrilateral elements is constructed on Ω in the usual manner. A typical
element K in T is generated by an isoparametric map F from a reference element
K̂ ≡ (−1, 1)× (−1, 1). The mesh parameter h is defined by

h = max
K∈T

sup{|x− y| : x, y ∈ K}.(13)

We define basis functions N̂A (A = 1, . . . , 4) on K̂ by

N̂A(ξ) =
1
4 (1 + ξξA)(1 + ηηA),
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where ξA ≡ (ξA, ηA) are the nodal coordinates on K̂ with (ξ1 · · · ξ4) = (1 − 1 − 1 1)
and (η1 · · · η4) = (1 1 −1 −1). Denote by Q1 the space of bilinear functions spanned
by N̂A. Then it is convenient to express the map F in the form

F : K̂ → K, x = F (ξ) =

4∑
A=1

xAN̂A(ξ),(14)

in which xA are the nodal points of K.
The Jacobian matrix J is defined to be the gradient of the map F and is the

matrix with components

Jij =
∂Fi(ξ)

∂ξj
, i, j = 1, 2.

We also set

j = detJ .

Next we define the space V h by

V h = {vh ∈ V : (vh)i|K ◦ F ∈ Q1}.(15)

In other words, if we define the function v̂ on K̂ by

v̂(ξ) = v|K(x),

in which ξ and x are related through (14), then v̂ ∈ Q1.
The standard discrete variational problem takes the following form.
Problem Sh. Given b ∈ V ′, find uh ∈ V h which satisfies

a(uh,vh) = �(vh)(16)

for all vh ∈ V h.
It is well known (see [7]) that Problem Sh has a unique solution, and furthermore,

provided that u ∈ [H2(Ω)]2, there exists a constant C > 0, depending on Ω and on
u, but independent of h, such that

‖u− uh‖V ≤ Ch.

It is instructive, and relevant to the developments that follow, to note that the bilinear
form and linear functional appearing in (16) are usually evaluated on the reference
element. In order to do this it is necessary to carry out transformations of the functions
appearing in a(·, ·) and �(·). Thus, if we define v̂ as above, the chain rule gives

∂v̂i
∂ξj

=

2∑
k=1

∂vi
∂xk

∂Fk
∂ξj

,

or if we define the tensors or matrices L and L̂ by

Lij =
∂vi
∂xj

, L̂ij =
∂v̂i
∂ξj

,
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then

L̂ = LJ .

The transformation of the strain tensor may now be easily carried out, and we have,
using an obvious notation,

ε(v) = 1
2 (L+LT )

= 1
2 (L̂J

−1 + J−T L̂
T
) := ε̂(v̂).(17)

Hence the bilinear form may be evaluated according to

a(uh,vh) =
∑
K∈T

aK(uh,vh)(18)

in which

aK(uh,vh) =

∫
K

C[ε(uh)] : ε(vh) dxdy

=

∫
K̂

Ĉ[ε̂(ûh)] : ε̂(v̂h) j dξdη(19)

and where Ĉ = C ◦ F .
3.1. The equivalent parallelogram. The notion of the equivalent parallelo-

gram associated with a quadrilateral arises naturally when one seeks to define the
parallelogram that is closest to the quadrilateral in a sense that can be made mathe-
matically precise. Assuming that such a parallelogram can be constructed, the quadri-
lateral can then be viewed as a perturbation of the parallelogram.

This problem was considered by Arunakirinathar and Reddy [2], who showed
that the equivalent parallelogram can be constructed as follows. Suppose that the
map from the reference element K̂ to an arbitrary quadrilateral K is given by (14);
then the equivalent parallelogram K̃ associated with K is defined by the affine map
F̃ obtained simply by discarding the bilinear terms in (14). That is, if we define the
vector k by

k = 1
4 (x1 − x2 + x3 − x4),

then the map F̃ may be expressed in the form

F̃ (ξ) = F (ξ)− kξη

=

4∑
A=1

NA(ξ)x̃A,

in which the nodal points x̃A of the equivalent parallelogram are defined by

x̃A = 3
4xA + 1

4 (xA+1 − xA+2 + xA+3), A = 1, . . . , 4 (modulo 4).

These notions are illustrated in Figure 1.
The equivalent parallelogram has some interesting properties [2]: for example, K

and K̃ have the same areas, their sides intersect at midpoints, and the lengths of the
corresponding diagonals are equal. These last two properties are evident in Figure 1.
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x1

x̃1

quadrilateral K

reference element K̂

equivalent parallelogram K̃

k

Fig. 1. The equivalent parallelogram associated with a quadrilateral.

It is necessary to characterize mathematically the relationship between the quadri-
lateral and its equivalent parallelogram; more particularly, we need to characterize the
notion of closeness between K and K̃. Suppose that the affine map from K̂ to K̃ takes
the form

x̃ = Cξ + c,(20)

in which C and c are, respectively, a constant matrix and vector; then the distortion
parameter τK for element K is defined by

τK = |C−1k|.(21)

The distortion is thus measured by mapping the vector k back to the reference element
K̂, usingC−1. From Figure 1 and the definition of k it is clear that k = 0, and τK = 0,
if and only if K is a parallelogram.

The distortion parameter associated with a finite element mesh may now be de-
fined by

τ = max
K∈T

|τK |.(22)

We will also require the notion of an h-regular mesh, which is defined to be a
finite element mesh for which τ = O(h).

The role played by τK in characterizing the difference between K and K̃ may
be seen more clearly by examining the properties of the map G : K̃ → K from the
parallelogram to the quadrilateral. If we set J ′ = DG and j′ = detJ ′, then since

x = G(x̃) = x̃+ kξη,

it is straightforward to show, also using (20), that

J ′ = I +C−1k ⊗ l
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and

j′ = 1 +C−1k · l,
in which l = (η, ξ). It follows from (21) that

sup
x∈K

|j′(x)| := ‖j′‖∞ ≤ 1 +
√
2 τK .(23)

If |A| = (
∑2
i,j=1 AijAij)

1/2 for any matrix A, then

|J ′| ≤ |I|+ |C−1k ⊗ l|
≤ |I|+ |C−1k| |l|
≤
√
2 (1 + τK).(24)

The inverse of the map J ′ is given by

(J ′)−1 = I −R,(25)

in which

R =
C−1k ⊗ l

1 +C−1k · l .(26)

It follows from (21) that

|R| ≤ |C−1k| |l|
|1 +C−1k · l| ≤

√
2τK

1−√2τK
.(27)

Likewise, using the identity

det (I +B) = 1 + detB(1 + trB−1) + trB

and (25) and (26), we find that

(j′)−1 = det ((J ′)−1)

= 1− C−1k · l
1 +C−1k · l

≤ 1

1−√2τK
so that

‖(j′)−1‖∞ ≤ 1

1−√2τK
.(28)

Thus, roughly, it is seen that the Jacobians of K̃ and K differ by a term that is
O(τK).

Finally, a transformation similar to that in (17) may be obtained by defining on
K̃ a coordinate system x̃ = (x̃, ỹ) and by defining the gradient ∇̃ and strain ε̃ relative
to this coordinate system by

(∇̃ṽ)ij = ∂ṽi
∂x̃j

, ε̃(ṽ) =
1

2
(∇̃ṽ + [∇̃ṽ]T ).(29)

For convenience we set

L̃(ṽ) = ∇̃ṽ;
then we have

L̃(ṽ) = L(v)J̃ .(30)
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4. Affine finite element approximations. Since the equivalent parallelogram
associated with a quadrilateral is “close” to that quadrilateral, it is natural to enquire
whether approximate solutions to Problem S of the desired degree of accuracy might
be obtained if Problem Sh were modified by replacing the integral in (18) with an
integral over K̃ for each element K in the mesh. Such a procedure would have
the advantage that, since the map from K to K̃ is affine, the associated Jacobian
matrix and determinant are constant, and the integrals can be evaluated exactly, for
homogeneous materials at least, for which case C is constant.

We now show that such a procedure does in fact lead to finite element approxi-
mations that converge at the usual rate. Numerical results presented by Küssner and
Reddy [9] in the case of linear elasticity and by Reese and coworkers [12, 13] for prob-
lems involving nonlinear elasticity and finite deformations show in addition that, when
this concept is applied to enhanced assumed strain formulations, the results represent
in many cases an improvement over those obtained by the conventional approach.

From (25), (29), and (30), we have

ε(v) = 1
2 (L(v) +L

T (v))

= 1
2 (L̃(J

′)−1 + (J ′)−T L̃
T
)

= ε̃(ṽ)−∆(ṽ),(31)

in which

∆(ṽ) := 1
2 [L̃R+RT L̃

T
],(32)

and R is defined by (26).

Next, for continuous functions ũ and ṽ on K̃ we define the bilinear form aK̃(·, ·)
and linear functional �K̃(·) by

aK̃(ũ, ṽ) =

∫
K̃

C̃[ε̃(ũ)] : ε̃(ṽ) dx̃dỹ, �K̃(ṽ) =

∫
K̃

b · ṽ dx̃dỹ.(33)

Here, and henceforth, C̃(x̃) := C(G(x̃)), and we write dx̃dỹ for dx1dx2 for conve-
nience. Likewise, for functions u, v ∈ V we set

ã(u,v) =
∑
K∈T

aK̃(ũ, ṽ), �̃(v) =
∑
K∈T

�K̃(ṽ),(34)

where it is to be understood that ũ and ṽ are the maps to K̃ of the restrictions u|K
and v|K . In particular, in what follows, for any function vh ∈ V h we set

ṽh := vh|K ◦G−1.

We are now in a position to define the affine-approximate problem.

Problem S̃h. Given b ∈ V ′, find wh ∈ V h which satisfies

ã(wh,vh) = �̃(vh)(35)

for all vh ∈ V h.
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Remark. It is important to note that Problem S̃h is defined not by transforming
the integrals in (18) onto K̃ but rather by replacing the integrals over K with those
over K̃. Thus the relevant functions are mapped from K to K̃, after which the appro-
priate gradients are evaluated on K̃. So, for example, the integrals in the definitions
of aK̃ and �K̃ contain no Jacobian determinants.

Lemma 1. The bilinear form ã is V h-elliptic; that is, there exists a constant
α̃ > 0, independent of τ , such that

ã(vh,vh) ≥ α̃(1 + τ + τ2)‖vh‖2V for all vh ∈ V h,(36)

where τ is defined by (22).
Proof. From the V h-ellipticity of a(·, ·) we have

α ‖vh‖2V ≤ a(vh,vh) =
∑
K∈T

aK(vh,vh),(37)

where aK(·, ·) is given by

aK(u,v) :=

∫
K

C[ε(u)] : ε(v) dxdy.(38)

Using (31) we have

aK(vh,vh) =

∫
K̃

C̃[ε̃(ṽh)−∆(ṽh)] : (ε̃(ṽh)−∆(ṽh)) j
′ dx̃dỹ.(39)

We now examine each of the terms on the right-hand side of (39) in turn.
We set

(E,F )
C,K̃ :=

∫
K̃

C̃[E] : F dx̃dỹ

for any E, F ∈ L
2(K̃), and we note that this is an inner product on L

2(K̃), equivalent
to the standard inner product, as a result of the properties (6) and (7) of C. We will
also make use of the symmetry property C[E] : F = C[F ] : E, which follows from
(5).

Now, setting L̃R := A in the definition (32) of ∆, consider the expression

(I) :=

∫
K̃

C̃[∆] : ∆ j′ dx̃dỹ

≤ ‖j′‖∞(∆,∆)
C,K̃

= 1
4‖j′‖∞(A+AT ,A+AT )

C,K̃

= 1
2‖j′‖∞

(
‖A‖2

C,K̃
+ (A,AT )

C,K̃

)
≤ ‖j′‖∞‖A‖2C,K̃ .(40)

Next, from the definition of A we have

‖A‖
C,K̃ ≤ ‖L̃‖C,K̃‖R‖C,K̃ .(41)
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Furthermore, we have, using the definition of the norm ‖ · ‖
C,K̃ , (8), and (27),

‖R‖2
C,K̃
≤ c∞µK max

x̃∈K̃
|R|2(x̃)

≤ 2c∞µKτ2
K

(1−√2 τK)2
,(42)

in which µK is the area of K (and of K̃).
We also have

‖L̃‖2
C,K̃

=

∫
K̃

C̃[L̃] : L̃ dx̃dỹ

=

∫
K̃

C̃[ε̃] : ε̃ dx̃dỹ

= aK̃(ṽh, ṽh).(43)

From (41)–(43), it follows that

(I) ≤ c2K aK̃(ṽh, ṽh),(44)

where the constant cK is defined by

cK = τK(1−
√
2 τK)

−1

√
2c∞µK(1 +

√
2 τK).(45)

Next, consider the expression

(II) :=

∫
K̃

C̃[ε̃(ṽh)] : ε̃(ṽh)j
′ dx̃dỹ

≤ (1 +
√
2 τK)

∫
K̃

C̃[ε̃] : ε̃ dx̃dỹ

= (1 +
√
2 τK)aK̃(ṽh, ṽh),(46)

where we have used the positivity of the integrand and (23).
Finally, consider the term

(III) := −
∫
K̃

[
C̃[ε̃(ṽh)] : ∆(ṽh) + C̃[∆(ṽh)] : ε̃(ṽh)

]
j′ dx̃dỹ

= −2
∫
K̃

C̃[ε̃(ṽh)] : ∆(ṽh)j
′ dx̃dỹ

= −2(j′ε̃,∆)
C,K̃

≤ 2‖j′‖∞
∣∣∣(ε̃,∆)

C,K̃

∣∣∣
= 2‖j′‖∞

∣∣∣(ε̃,A)
C,K̃

∣∣∣
≤ 2‖j′‖∞‖ε̃‖C,K̃‖A‖C,K̃ ,

where we have used the representation ∆ = 1
2 (A + AT ) and the Cauchy–Schwarz

inequality. Now we know that ‖ε̃‖
C,K̃ =

√
aK̃(ṽh, ṽh) and, from (41)–(43),

‖A‖2
C,K̃
≤ c2K(1 +

√
2 τK)

−1aK̃(ṽh, ṽh).
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So we have

(III) ≤ 2cK

√
1 +
√
2 τK aK̃(ṽh, ṽh).(47)

Expanding (39) and substituting the estimates for (I), (II), and (III), we have

α‖vh‖2V ≤ a(vh,vh) =
∑
K∈T

aK(vh,vh)

≤
∑
K∈T

(I)+ (II)+ (III)

≤
∑
K∈T

[
cK +

√
1 +
√
2 τK

]2

aK̃(ṽh, ṽh)

≤ γ ã(vh,vh),

where the constant γ is given by

γ = [1 +
√
2c∞ (1−

√
2 τK)

−1hτ ]2(1 +
√
2 τ).

It follows that ã(·, ·) is V h-elliptic.
Since ã and �̃ are clearly continuous, it follows therefore that Problem S̃h has a

unique solution wh.
Remark. The consistency and convergence of the solution to Problem Sh de-

pends in a fundamental way on the following lemma, which is analogous to the first
Strang lemma (see [7, Theorem 4.4.1]) associated with errors induced by numerical
quadrature in finite element approximations.

Lemma 2. There exists a positive constant C, independent of h, such that

‖u−wh‖V ≤ C

(
inf

vh∈V h

{
‖u− vh‖V + sup

zh∈V h

|a(vh,zh)− ã(vh,zh)|
‖zh‖V

}

+ sup
zh∈V h

|�(zh)− �̃(zh)|
‖zh‖V

)
.(48)

Proof. The proof follows that of the Strang lemma very closely, and we therefore
merely sketch the details. Using the V h-ellipticity of ã, we have

α̃‖wh − vh‖2V ≤ ã(wh − vh,wh − vh)
= a(u− vh,wh − vh) + [a(vh,wh − vh)− ã(vh,wh − vh)]
+ [�̃(wh − vh)− �(wh − vh)].(49)

Here we have used (11) and (35). Now

a(vh,wh − vh)− ã(vh,wh − vh)
‖wh − vh‖V ≤ sup

zh∈V h

|a(vh,zh)− ã(vh,zh)|
‖zh‖V ,(50)

and a similar inequality exists for �− �̃. The triangle inequality gives

‖u−wh‖V ≤ ‖u− vh‖V + ‖wh − vh‖V .(51)

We divide throughout in (49) by ‖wh − vh‖V and make use of the continuity of a in
the first term on the right-hand side of (49); next, we use (50) and the corresponding
expression for |� − �̃| and take the supremum of the terms in square brackets in
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(49). Finally, (48) is obtained by using (51) and by taking the infimum over all
vh ∈ V h.

Next, we address the task of estimating the expression

sup
zh∈V h

|a(vh,zh)− ã(vh,zh)|
‖zh‖V .

From (33) and (39) we have

aK(vh,zh)− aK̃(ṽh, z̃h)

=

∫
K

C[ε(vh)] : ε(zh) dxdy −
∫
K̃

C̃[ε̃(ṽh)] : ε̃(z̃h) dx̃dỹ

=

∫
K̃

C̃[ε̃(ṽh)] : ε̃(z̃h)j
′ dx̃dỹ −

∫
K̃

C̃[ε̃(ṽh)] : ∆(z̃h) j
′ dx̃dỹ

−
∫
K̃

C̃[∆(ṽh)] : ε̃(z̃h) j
′ dx̃dỹ +

∫
K̃

C̃[∆(ṽh)] : ∆(z̃h) j
′ dx̃dỹ

−
∫
K̃

C̃[ε̃(ṽh)] : ε̃(z̃h) dx̃dỹ

=

∫
K̃

C̃[ε̃(ṽh)] : ε̃(z̃h)(j
′ − 1) dx̃dỹ −

∫
K̃

C̃[ε̃(ṽh)] : ∆(z̃h)j
′ dx̃dỹ

−
∫
K̃

C̃[∆(ṽh)] : ε̃(z̃h)j
′ dx̃dỹ +

∫
K̃

C̃[∆(ṽh)] : ∆(z̃h)j
′ dx̃dỹ

≤
√
2 τK aK̃(ṽh, z̃h) +

√
aK̃(ṽh, ṽh)aK̃(z̃h, z̃h)

[
c2K + 2cK

√
1 +
√
2 τK

]
.(52)

Here we have used the estimates leading to (44) and (47).
Now

aK̃(ṽh, z̃h) ≤MK̃ ‖ṽh‖H1(K̃)‖z̃h‖H1(K̃)

for some positive constant MK̃ , independent of hK and τK , and, using (24), (28), and
(30), we have

‖ṽh‖2H1(K̃)
=

∫
K̃

(
|ṽh|2 + |∇̃ṽh|2

)
dx̃dỹ

=

∫
K

[|vh|2 + |(∇vh)J ′|2](j′)−1 dxdy

≤ CK‖vh‖2H1(K),

where CK = 2(1 + τK)
2(1−√2 τK)−1.

Hence

|a(vh,zh)− ã(vh,zh)|
‖zh‖V

≤
∑
K∈T MK̃CK

[(
cK +

√
1 +
√
2 τK

)2

− 1

]
‖vh‖H1(K)‖zh‖H1(K)

‖zh‖V
≤ Cτ

∑
K∈T ‖vh‖H1(K)‖zh‖H1(K)

‖zh‖V
≤ Cτ‖vh‖V ,(53)

where the constant C is independent of h and τ .
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Choosing vh = Πhu, where Πh is the interpolation operator onto V h, and noting
that ‖Πhu‖V ≤ ‖u‖V + ‖u−Πhu‖V ≤ ch|u|H2 + ‖u‖V , we finally obtain

inf
vh∈V h

sup
zh∈V h

|a(vh,zh)− ã(vh,zh)|
‖zh‖ ≤ Cτ,

where the constant C depends on the geometry and on the solution u. In exactly the
same way we can derive the estimate

inf
vh∈V h

sup
zh∈V h

|�(zh)− �̃(zh)|
‖zh‖ ≤ Cτ,

where again C depends on the geometry and on u. We therefore have the following
result.

Theorem 3. Let T be an h-regular finite element mesh of quadrilaterals, with
the maximum distortion of quadrilaterals being bounded in the sense that τ ≤ ch for
some constant c, independent of h, as h→ 0. Then problem S̃h has a unique solution
wh which satisfies

‖u−wh‖V ≤ Ch,

the constant C depending on the geometry and the solution u to the continuous prob-
lem, but not on h.

5. The enhanced strain problem. In the context of the finite element method,
the enhanced strain method refers to an approach proposed by Simo and Rifai [14],
in which the discrete strain εh takes the form

εh = ε(uh) + ηh,(54)

the first term on the right-hand side being evaluated as in (2), while the second term
on the right-hand side is the enhanced strain, which is required to have the property
ηh → 0 as h→ 0.

In order to formulate the problem in weak form it is necessary to add to the
spaces already defined the space Γh of enhanced strains, which is defined by

Γh :=

{
γ = (γij) : γij ∈ L2(Ω), γji = γij ,

∫
K

Cγ|K dxdy = 0 for all K ∈ T
}
.

(55)

In practice Γh will comprise functions of the form γ = j−1γ̂ on each element, in which
the components of γ̂ are simple polynomials defined on the reference element K̂. A
consequence of this definition is that

∫
K̂

Cγ̂ dξdη = 0 [3]. Concrete examples of bases

for Γh, together with applications, may be found in [14, 1].
We set φh = (uh,ηh) and ψh = (vh,γh) for uh, vh ∈ V h and ηh, γh ∈ Γh. Also,

we define the product space

Ψh := V h × Γh,

which is a Hilbert space with the natural norm

‖ψh‖Ψ :=
(‖vh‖2V + ‖γh‖2L2

)1/2
.
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The bilinear form A : Ψh ×Ψh −→ R is defined by

A(φh,ψh) =

∫
Ω

C(ε(uh) + ηh) : (ε(vh) + γh) dxdy,(56)

and we recall the definition (10) of the linear functional �.
The weak formulation of the problem then takes the following form [11, 14].
Problem Eh. Find (uh,ηh) ∈ V h × Γh such that

A(φh,ψh) = �(vh) for all ψh ∈ Ψh.(57)

We have the following result, proved in [11] for affine-equivalent meshes (see also
[5]) and in [3] for isoparametric meshes and stated here for the special case in which
V h is chosen as in (15).

Theorem 4. Let T be a regular mesh of quadrilaterals on a bounded polygonal
domain Ω ∈ R

2. Let the space V h be defined by (15) and the space Γh by (55).
Assume, in addition, that

(a) ε(V h) ∩ Γh = {0},
(b) there exists a constant c1 with 0 < c1 < 1 such that, for any γh ∈ Γh,
‖Pγh‖Γ ≤ c1‖γh‖, where P is the L2-orthogonal projection onto ε(V h).

Then there exists a unique solution to Problem Eh. Furthermore, if u ∈ [H2(Ω)]2,
then there exists a constant C > 0, independent of h, such that

‖u− uh‖V + ‖ηh‖Γ ≤ Ch|u|H2 .

We now consider the affine-approximate problem analogous to Problem S̃h.
Define

AK̃(χ̃h, ψ̃h) =

∫
K̃

C̃(ε̃(w̃h) + β̃h) : (ε̃(ṽh) + γ̃h) dx̃dỹ(58)

and

�K̃(ψ̃h) =

∫
K̃

b · ṽh dx̃dỹ,(59)

where χh = (wh,βh) and superposed tildes have the same interpretation as previ-
ously. Set

Ã(χh,ψh) =
∑
K∈T

AK̃(χ̃h, ψ̃h)(60)

and

�̃(ψh) =
∑
K∈T

�K̃(ψ̃h).(61)

Problem Ẽh. Given b ∈ V ′, find χh := (wh,βh) ∈ V h ×Ψh which satisfy

Ã(χh,ψh) = �̃(ψh)(62)

for all ψh ∈ Ψh.
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We need to show that Ã is Ψh-elliptic. We proceed as in the case of Lemma
1, beginning with the observation that A(·, ·) is Ψh-elliptic (see [11]), from which it
follows that

αA‖ψh‖2Ψ ≤ A(ψh,ψh)

=
∑
K∈T

AK(ψh,ψh).(63)

Now we have, from the positivity of the integrand of AK and the symmetry of C,

AK(ψh,ψh) =

∫
K

C(ε(vh) + γh) : (ε(vh) + γh) dxdy

=

∫
K̃

C(ε(vh) + γh) : (ε(vh) + γh) j
′ dx̃dỹ

≤ ‖j′‖∞
∫
K̃

C(ε(vh) + γh) : (ε(vh) + γh) dx̃dỹ

= ‖j′‖∞
∫
K̃

C̃[ε̃(ṽh)−∆(ṽh) + γ̃h) : (ε̃(ṽh)−∆(ṽh) + γ̃h) dx̃dỹ

= ‖j′‖∞


AK̃(ψ̃h, ψ̃h)−2

∫
K̃

C̃[∆(ṽh)] : [ε̃(ṽh)− 1
2∆(ṽh) + γ̃h] dx̃dỹ︸ ︷︷ ︸

F

+ 2

∫
K̃

C̃[γ̃h] : (ε̃(ṽh) +
1
2 γ̃h) dx̃dỹ




≤ ‖j′‖∞
[
AK̃(ψ̃h, ψ̃h) + 2(ε̃, γ̃)

C,K̃ + (γ̃, γ̃)
C,K̃ + F(ṽh, γ̃h, τK)

]
.

Here the term F is of the form F = cK · [terms depending on (ṽh, γ̃h, τK)], as can be
deduced by a series of manipulations similar to those carried out in (44)–(46). From
the definition of AK̃ it follows therefore that

AK(ψh,ψh) ≤ (1 +
√
2 τK)[2AK̃(ψ̃h, ψ̃h) + F(ṽh, γ̃h, τK)].

We therefore have the following result.
Lemma 5. The bilinear form Ã is Ψh-elliptic for sufficiently small τ . Further-

more, Problem Ẽh has a unique solution χh = (wh,βh) in Ψh.
Next, we have the following counterpart to Lemma 2.
Lemma 6. Set φ = (u,0), where u is the solution to Problem S, and denote the

solution to Problem Ẽh by χh = (wh,βh). Then there exists a constant C, indepen-
dent of h, such that

‖φ− χh‖Ψ ≤ C

[
inf

ψh∈Ψh

{
‖φ−ψh‖Ψ + sup

ωh=(zh,ρh)∈Ψh

✸

‖ωh‖Ψ

}]
,(64)

where ✸ is given by

✸ = |A(ψh,ωh)− Ã(ψh,ωh)|+ |�(ψh)− �̃(ψh)|+
∣∣∣∣
∫

Ω

Cε(u) : γh dxdy

∣∣∣∣ .(65)
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Proof. From the Ψh-ellipticity of Ã, we have

α̃‖χh −ψh‖2Ψ ≤ Ã(χh −ψh,χh −ψh)
= A(φ−ψh,χh −ψh) + [A(ψh,χh −ψh)− Ã(ψh,χh −ψh)]
− A(φ,χh −ψh) + Ã(χh,χh −ψh)

= A(φ−ψh,χh −ψh) + [A(ψh,χh −ψh)− Ã(ψh,χh −ψh)]
+ [�̃(χh −ψh)− �(χh −ψh)] + [�(χh −ψh)−A(φ,χh −ψh)].

The rest of the proof proceeds in much the same way as the proof of Lemma 2.

Finally, the expression ✸ in (64) must be estimated. We have, from (58) and
(64),

AK(ψh,ωh)−AK̃(ψ̃h, ω̃h)

= aK(vh,zh)− aK̃(ṽh, z̃h) (i)

+

∫
K

(C[ε(vh)] : ρh + C[ε(zh)] : γh) dxdy

−
∫
K̃

(C̃[ε̃(ṽh)] : ρ̃h − C̃[ε̃(z̃h)] : γ̃h) dx̃dỹ (ii)

+

∫
K

C[γh] : ρh dxdy −
∫
K̃

C̃[γ̃h] : ρ̃h dx̃dỹ. (iii)(66)

We now examine the expressions (i)–(iii) in (66) in turn. First, we see that (i) is
estimated in (52). Next, we have

(ii) ≤
∫
K̃

(j′ − 1)C̃[ε̃(ṽh)] : ρ̃h dx̃dỹ +

∫
K̃

(j′ − 1)C̃[ε̃(z̃h)] : γ̃h dx̃dỹ

−
∫
K̃

C̃[∆(ṽh)] : ρ̃h j̃ dx̃dỹ −
∫
K̃

C̃[∆(z̃h)] : γ̃h j̃ dx̃dỹ

≤
[√

2τK +

√
1 +
√
2τK cK

]{
‖ρ̃h‖C,K̃‖ε̃(ṽh)‖C,K̃ + ‖γ̃h‖C,K̃‖ε̃(z̃h)‖C,K̃

}
.(67)

Here we have used (23) and the manipulations leading to (44). Finally,

(iii) ≤
√
2τK‖ρ̃h‖C,K̃‖γ̃h‖C,K̃ .(68)

It is not difficult to see, from the arguments leading to (53) and from (67) and (68),
that

sup
ωh∈Ψh

A(ψh,ωh)− Ã(ψ̃h, ω̃h)

‖ωh‖Ψ ≤ Cτ,(69)

in which the constant C depends on the geometry and on the solution u but not on
h nor on τ . In the same way, one may derive an estimate of the form (69) for the
second term in the definition (65) of ✸.

Finally, the last term on the right-hand side of (65) is shown in [11] to be bounded,
up to a constant, by h|u|1.

Theorem 7. Let T be an h-regular finite element mesh of quadrilaterals, with
the maximum distortion of quadrilaterals being bounded in the sense that τ ≤ ch for
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some constant c, independent of h, as h → 0. Let φ = (u,0) ∈ Ψ, where u is the
solution to Problem S. Then Problem Ẽh has a unique solution χh which satisfies

‖φ− χh‖Ψ ≤ Ch,

the constant C depending on the geometry, on the material tensor C, and on u, but
not on h.

Remark. The analysis presented here has been carried out for the case of com-
pressible materials, for which the components of C are bounded. A modified approach,
such as that presented in [11, section 5] or in [6], is required for the limiting cases
of incompressibility or near incompressibility. Such an analysis would combine the
approaches presented here and in those works.
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Abstract. In 1996 Hazard and Lenoir suggested a variational formulation of Maxwell’s equations
using an overlapping integral equation and volume representation of the solution [SIAM J. Math. Anal.,
27 (1996), pp. 1597–1630]. They suggested a numerical scheme based on this approach, but no error
analysis was provided. In this paper, we provide a convergence analysis of an edge finite element
scheme for the method. The analysis uses the theory of collectively compact operators. Its novelty
is that a perturbation argument is needed to obtain error estimates for the solution of the discrete
problem that is best suited for implementation.

Key words. Maxwell system, edge finite element, integral representation, error estimate

AMS subject classifications. 65N15, 65N30, 78A45

PII. S003614290038131X

1. Introduction. A key feature of scattering problems is that they are typically
posed as exterior boundary value problems. When using finite element methods to
compute approximate solutions to these problems, the truncation of the computational
domain needs to be done carefully. The truncated problem should be chosen to
provide a convenient and accurate approximation of the true problem. In [25], Hazard
and Lenoir proposed a new variational approach to the time-harmonic scattering
problem for Maxwell’s equations that can be used as the basis of a finite element
method. This was extended to layered media in [19]. Hazard and Lenoir suggested
the use of standard continuous finite elements, which are known to require special
care if the scatterer has corners [4, 17, 21]. In this paper, we propose the use of edge
elements [31, 32] to approximate the problem. A direct application of this approach
leads to unwieldy matrices. Thus we apply flux-recovery procedures [35, 5, 6, 7] in
the discretization of the Hazard–Lenoir method resulting in a fully discrete problem
that is better suited to implementation. We then provide the first error analysis of
the discrete Hazard–Lenoir scheme for Maxwell’s equations (see [18] for convergence
studies of the method applied to the time-harmonic Helmholtz problem).

For simplicity we will not describe the general scattering problem discussed in
[19]. Instead, we shall confine ourselves to time-harmonic scattering from a bounded
perfect conductor. The finite element scheme applies in the more general case, but
some estimates in the analysis still need to be performed. The plan for the paper is as
follows. In the next subsection we describe the continuous problem and introduce a
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ν

Γ

D

Fig. 1.1. The perfectly conducting scatterer, D.

truncated boundary value problem based on an integral representation of the scattered
field. In section 2 we describe the finite elements to be used, and in section 3 we
provide an error analysis of the method without discretizing the integral operator. In
section 4 we provide an analysis of the fully discrete scheme and discuss briefly the
solution of the discrete problem, and we draw some conclusions in section 5.

1.1. Problem description. We consider a perfectly conducting scatterer, which
occupies a bounded, Lipschitz, polyhedral region D in R

3. We assume that the bound-
ary of the scatterer, Γ, is connected and we denote by ν the unit outward normal (see
Figure 1.1). For simplicity we shall also assume that both D and R

3 \ D̄ are simply
connected. We wish to approximate the total electric field E = E(x), x ∈ R

3 \ D,
where this field satisfies the time-harmonic Maxwell’s equation,

∇×∇×E− k2E = 0 in R
3 \D,(1.1)

and the boundary condition appropriate for a perfect conductor,

ν ×E = 0 on Γ.(1.2)

The real parameter k > 0 is called the wave number of the time-harmonic field. The
total field E is given by

E = Ei + Es in R
3 \D,(1.3)

where the given incident field Ei satisfies Maxwell’s equation (1.1) in all of R
3, and

Es is the unknown scattered field. A typical choice for the incident field is a plane
wave, in which case

Ei = p exp(ikd · x),
where the real vectors p (polarization) and d satisfy |p| = |d| = 1 and p · d = 0.

In order to uniquely determine the scattered field, we need to impose the Silver–
Müller radiation condition,

lim
|x|→∞

(∇×Es)× x− ik|x|Es
T = 0,(1.4)

uniformly in x̂ = x/|x|, where
Es
T = (x̂×Es)× x̂.
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Γ

ν

Σ
Ω

ν

D

Fig. 1.2. The truncated computational domain, Ω := DΣ \D.

More generally, for a sufficiently smooth vector function u, we use the notation

uT := (ν × u|S)× ν

to denote the tangential component of u on a given surface S with normal ν. Equa-
tions (1.1)–(1.4) are uniquely solvable in appropriate function spaces which will be
given shortly.

1.2. Truncation of the problem. As stated in the previous section, the scat-
tering problem is posed on an infinite region. In order to apply a finite element
method, we need to truncate the domain. Following Hazard and Lenoir, we intro-
duce a simply connected, Lipschitz, polyhedral surface Σ, with interior DΣ, such that
D ⊂ DΣ. The outward unit normal on Σ is again denoted ν. For technical reasons
associated with the proof of Lemma 3.3, we restrict Σ to be a right parallelepiped. We
expect that a more general polyhedral surface also would be appropriate. A smooth
surface such as a sphere might also be used, but the analysis of such a scheme would
involve the use of curvilinear finite elements which is outside the scope of this paper.
We define the truncated computational domain

Ω := DΣ \D.

Our assumptions imply that the boundary of Ω consists of two disjoint, connected
components Σ and Γ, and the region Ω is simply connected (see Figure 1.2). The goal
is to use finite elements on Ω to approximate E, but we need a boundary condition on
Σ. This is provided by recalling the Stratton–Chu formula that gives a representation
of classical solutions of (1.1)–(1.4) away from Γ (see [15]). More precisely, let

G(x,y) = Φ(x,y)I + k−2Hess(Φ)(x,y),

where I is the identity matrix, Φ(x,y) is the fundamental solution of the Helmholtz
equation in R

3, given by

Φ(x,y) :=
eik|x−y|

4π|x− y| ,
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and Hess(·) is the Hessian operator defined by

Hess(Φ)l,m =
∂2Φ

∂yl∂ym
, 1 ≤ l, m ≤ 3.

For x ∈ R
3 \D, we have

Es(x) =

∫
Γ

{
G(x,y)T (νy × (∇×Es(y)))

(∇y ×G(x,y))T (νy ×Es(y))
}

dA(y)
=: I(Es),

(1.5)

where ∇y×G(x,y) is the columnwise curl of G with respect to y. Using the fact that
Ei is a regular solution of Maxwell’s equations inside D, we have I(Ei) = 0 in Ω, and
thus

E = Ei + I(E) in Ω,

provided E is regular enough for I(E), defined in (1.5), to be well defined.

1.3. A modified integral representation. Unfortunately, the regularity re-
quirement implicit in (1.5) is not met by edge finite elements. We therefore need to
extend the definition of I to allow for less regular arguments Es. In order to do this,
we first recall that

H(curl; Ω) =
{
u ∈ (L2(Ω))3| ∇ × u ∈ (L2(Ω))3

}
and define the subspace

X :=
{
u ∈ H(curl; Ω)|ν × u = 0onΓ, and ν × u|Σ ∈ (L2(Σ))3

}
.

The space X is equipped with the norm

‖u‖2X = ‖u‖2H(curl;Ω) + ‖uT ‖2(L2(Σ))3 ,(1.6)

where ‖·‖H(curl;Ω) is the standard norm on H(curl; Ω), and ‖·‖(L2(Σ))3 is the (L2(Σ))3

norm.
Let χ ∈ C∞

0 (DΣ) denote a cutoff function such that χ = 1 on Γ, and define

G̃(x, ·) ∈ H(curl; Ω) by

G̃(x,y) = χ(y)G(x,y).(1.7)

We can now define the integral operator

IR(Es) :=

∫
Ω

(
(∇y × G̃)T ∇×Es − k2

G̃
T Es

)
dV (y)(1.8)

+

∫
Γ

(∇y ×G)T νy ×Es dA(y),

where the curl is taken with respect to y and the integral is evaluated for x outside
the support of the cutoff function χ (in particular, for x ∈ Σ). Using integration by
parts we can verify that for a smooth solution Es of (1.1)–(1.4),

IR(Es) = I(Es),



202 G. C. HSIAO, P. B. MONK, AND N. NIGAM

and thus

E = Ei + IR(E).

Note also that since IR(E) is evaluated outside the support of χ (for example, on
Σ), a further integration by parts, and the use of the perfect conducting boundary
condition on Γ, show that

IR(E) =

∫
Ω

(
∇× (∇× G̃)− k2

G̃

)T
E dV (y).(1.9)

This is the form of IR we shall use for the first part of the analysis.
Before stating the variational problem for Maxwell’s equations, we define one

further operator. For a sufficiently smooth field u, we can define a tangential boundary
operator on Σ as follows:

T (u) := (∇× u)|Σ × ν − ikuT ,(1.10)

where uT is the tangential component of u on Σ. With this notation, the truncated
version of problem (1.1)–(1.4) is to find E ∈ X such that∫

Ω

∇×E · ∇ × φ̄− k2E · φ̄ dV(1.11)

−
∫

Σ

ikET · φ̄T dA−
∫

Σ

T (IR(E)) · φ̄T dA =

∫
Σ

T (Ei) · φ̄T dA ∀φ ∈ X.

Hazard and Lenoir show [25] that problem (1.11) has a unique solution for every k > 0
and given incident field Ei. It is also easy to see that the solution does not depend
on the choice of χ. Indeed, (1.11) is identical to (4.12) of [25], allowing for differences
in notation and with τ = t =∞, ξ0 = 1, ξ = 1, λ = ik, and ζ−1 = 1. The space X is
HE
τ from [25] but without the constraint on ∇ ·E. As we shall see, this constraint is

implied directly by the variational equation (1.11).
We shall use (1.11) as the basis of the finite element method we shall analyze.

There are several advantages to this formulation compared to other finite element
formulations. One advantage is that, unlike methods which use standard absorbing
boundary conditions, the convergence of the formulation in this paper can be verified
as the mesh size decreases; moreover, the method can be easily applied to a layered
medium. Further, compared to a standard coupled finite element–boundary element
scheme, the advantage of this method is that no singular integrals must be approxi-
mated (since x �= y in (1.5)). The main disadvantages relate to the matrices arising
from the discrete problem. We shall discuss these issues more at the end of the paper,
but mention here that the matrices have dense blocks.

2. The finite element method. We describe a method based on the tetrahe-
dral edge elements of Nédélec [31] which we summarize next. Results for the hex-
ahedral elements discussed in the same paper follow in the same way and will not
be detailed here. In addition, smooth curved boundaries can be handled using the
mapping scheme described in [22], but only for elements of the lowest order.

We suppose that Ω has been covered by a regular, quasi-uniform mesh τh consist-
ing of tetrahedra of maximum diameter h. Let P� denote the set of all polynomials
in x1, x2, and x3 of maximum degree  , and let P̃� denote the set of homogeneous
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polynomials of degree  in x1, x2, and x3. On each tetrahedron K ∈ τh, the finite
element functions are taken from the set

R� = (P�−1)
3 ⊕ S�

for some  = 1, 2, . . ., where

S� = {p ∈ P̃ 3
� | p(x) · x = 0 ∀x}.

Using these basis functions, we can define

Vh = {uh ∈ H(curl; Ω) | uh|K ∈ R� ∀K ∈ τh}
and

Xh = {uh ∈ Vh | uh × ν = 0 on Γ}.(2.1)

Following [2], we can define an interpolation operator. We proceed by recalling
the standard degrees of freedom for these tetrahedral elements. Let K be an element
and suppose that u ∈ (H

1
2+ε(K))3, ε > 0, and ∇ × u ∈ (Lq(K))3, q > 2. Then the

following degrees of freedom on K are well defined. Let e be any edge of K with unit
tangent vector τ and let ν denote the outward normal to K for any face f . Then let

Me(u) =

{∫
e

u · τ q ds ∀q ∈ P�−1(e), ∀ edges e of K

}
,(2.2a)

Mf (u) =

{∫
f

u× ν · q dA ∀q ∈ (P�−2(f))
2, ∀ faces f of K

}
,(2.2b)

MK(u) =

{∫
K

u · q dV ∀q ∈ (P�−3(K))3
}

.(2.2c)

The set M�(u) ∪Mf (u) ∪MK(u) is unisolvent for Rl and curl-conforming (see [31]).
Thus, we can define an interpolant πh elementwise by requiring that πhu

∣∣
K
∈ R� and

Me(u− πhu) = Mf (u− πhu) = MK(u− πhu) = {0}.
Error estimates can be proved by scaling to a reference element. In [1] it is shown

that

‖u− πhu‖H(curl;Ω) ≤ Ch�
′ (‖u‖(H�′ (Ω))3 + ‖∇ × u‖(H�′ (Ω))3

)
(2.3)

for any  ′ with  ≥  ′ > 1
2 .

Now suppose that u is such that ∇×u|K ∈ (P�)
3 for each element K ∈ τh. Then

using a standard scaling argument like the one proving the above estimate, and using
the equivalence of norms for piecewise polynomials on the reference element as in the
proof of equation (2.4) of [3], we obtain that for 0 < ε ≤ 1

2 ,

‖u− πhu‖(L2(Ω))3 ≤ C
(
h

1
2+ε‖u‖

(H
1
2
+ε(Ω))3

+ h‖∇ × u‖(L2(Ω))2

)
.(2.4)

For later use we need to discretize the operator IR defined in (1.8). Let G̃h(x, ·)
denote the matrix function such that if g̃h,m(x, ·) is the mth column of G̃h(x, ·) and
g̃m(x, ·) is the mth column of G̃(x, ·), then (recalling that x ∈ Σ)
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1. g̃h,m(x, ·) ∈ Vh, 1 ≤ m ≤ 3;
2. (g̃h,m(x, ·))T interpolates (gm(x, ·))T on Γ (using edge and face degrees of

freedom (2.2a) and (2.2b));
3. (g̃h,i(x, ·))T = 0 on all tetrahedra having a face or edge on Σ.

Obviously, this discretization of G̃(x,y) is not uniquely determined. For computa-
tional convenience, we use (g̃h,m), m = 1, 2, 3, that decay to zero rapidly away from

Γ. This minimizes the support of G̃h and is the reason for discretizing G̃.

We can then define the discretized version of the integral operator defined in (1.8),

denoted by Ih(u), for u ∈ H(curl Ω) and x outside the support of G̃h (in particular,
for x ∈ Σ) by

Ih(u)(x) =
∫

Ω

(
(∇× G̃h(x,y))T∇× u(y)− k2(G̃h(x,y))Tu(y)

)
dV (y).(2.5)

As long as x is on Σ, Ih(u) is a smooth function of x. Hence T (Ih(u)) is a well
defined and smooth (tangential) vector field on each face on Σ.

The finite element analogue of (1.11) is to find Eh ∈ Xh such that∫
Ω

∇×Eh · ∇ × φh − k2Eh · φh dV −
∫

Σ

(ikEh,T + T (Ih(Eh))) · φh,T dA(2.6)

=

∫
Σ

T (Ei) · φh dA ∀φh ∈ Xh.

Unfortunately, we have been unable to prove directly that Eh converges to E.
Instead we first analyze the convergence of the solution of the following intermediate
problem of finding Ẽh ∈ Xh such that∫

Ω

∇× Ẽh · ∇ × φh − k2Ẽh · φh dV −
∫

Σ

(
ikẼh,T + T (IR(Ẽh))

)
· φh,T dA(2.7)

=

∫
Σ

T (Ei) · φh dA ∀φh ∈ Xh.

Here the operator IR is not discretized.

In the next section we shall show that Ẽh is well defined and converges to the true
solution E. In principle, we could implement (2.7) but the integral operator IR would
become increasingly more expensive to evaluate as the mesh size decreases, since a
volume integral over a fixed volume must be evaluated. Hence we prefer to compute
with (2.6) since Ih can be constructed to involve only a skin of tetrahedra that share
an edge with Γ.

Another justification for the use of (2.6) is that the solution Eh is independent

of the choice of G̃h (provided the conditions mentioned earlier in this section are
satisfied). In order to show this, we state the following lemma, which also partially

justifies our choice of G̃h. The proof of this lemma is straightforward and is postponed
until the appendix.

Lemma 2.1. Suppose (2.6) has a unique solution for each G̃h satisfying require-
ments (1)–(3) discussed earlier in this section. Then the solution is independent of

the choice of G̃h.

From this lemma it suffices to prove existence and uniqueness for a particular
choice of G̃h to then conclude the result for any G̃h.
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3. Analysis of the scheme. We will prove that as the mesh size h decreases,
the solutions of the discrete problem (2.7) approach the exact solution of (1.11). In
order to prove this, we first need to carefully describe the function spaces we will be
working with. This is done in subsection 3.1. In subsection 3.2, we rewrite both the
continuous and the discrete problems in a convenient operator form. In subsection
3.3, we show that the operator equations are of Fredholm type. We also demonstrate
the convergence (in some suitable norm) of the discrete operators to their continuous
analogues as the mesh size decreases.

Subsection 3.5 concerns a collective compactness result. We follow the general
approach of [34] in that we verify convergence of some operation using the theory of
collectively compact operators. The main property of edge elements relevant to this
approach is the discrete compactness property (see [27, 28, 29, 34]). Subsection 3.6
combines all these results into our first theorem about the finite element scheme.

An alternative approach to proving the operator convergence via the theory of
mixed methods has been employed by Boffi [9] and Boffi, Brezzi, and Gastaldi [10, 11].
So far this approach has been aimed at proving convergence in (L2(Ω))3 which is
appropriate for eigenvalue problems. In that case, Boffi proved the equivalence of
the mixed method and the discrete compactness approaches [8] (see also [14]), so the
choice of which method to use is immaterial.

For the remainder of the paper we shall assume that Γ and Σ are each connected,
so ∂Ω = Γ ∪Σ and Γ ∩Σ = φ. We could allow both boundaries to be disconnected if
necessary at the cost of using more notation and complexity.

3.1. Some function spaces and estimates. In this subsection, we define use-
ful function spaces, which shall be used in the remainder of the paper. Convenient
decompositions and properties of these spaces are also listed. Let

S =
{
p ∈ H1(Ω) | p = 0 on Γ and p = constant on Σ

}
.(3.1)

Then ∇S ⊂ X and is a closed subspace of X. Hence we may write, using the (L2(Ω))3

inner product,

X = X0 ⊕∇S(3.2)

and

X0 =

{
u ∈ X

∣∣∣∣
∫

Ω

u · ∇ξ dV = 0 ∀ξ ∈ S

}
.(3.3)

Using Costabel’s regularity result [16] we know that the injection X0 → (L2(Ω))3 is
compact. Furthermore, suppose u ∈ X0, ∇ × u = 0 in Ω and uT = 0 on Σ. Then
since ∇ × u = 0, and Ω is simply connected, there is a scalar potential p ∈ H1(Ω)
such that

u = ∇p.

The tangential components of u vanish on Γ and Σ, and thus we can take p ∈ S. The
fact that u ∈ ∇S and u ∈ X0 then implies u = 0. Thus, using the compactness result
above, for u ∈ X0 there is a constant C > 0 such that

‖u‖X ≤ C
(‖∇ × u‖(L2(Ω))3 + ‖uT ‖(L2(Σ)3)

)
.(3.4)
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We can also decompose Xh. It is well known (see [31]) that if

Sh = {ph ∈ S | ph|K ∈ P� ∀K ∈ τh} ,(3.5)

then

∇Sh ⊂ Xh,(3.6)

and we may write (again using the (L2(Ω))3 inner product)

Xh = X0,h ⊕∇Sh,(3.7)

where

X0,h =

{
uh ∈ Xh

∣∣∣∣
∫

Ω

uh · ∇ξh dV = 0 ∀ξh ∈ Sh

}
(3.8)

is the space of discrete divergence-free fields. The main difficulty with the analysis of
the error is that X0,h �⊂ X0.

3.2. An operator equation. In order to use the Fredholm alternative in the
analysis of the finite element formulation, we rewrite the continuous variational prob-
lem (1.11) and the discrete finite element problem (2.6) as operator equations. We
introduce some convenient notation to be used in the remainder of this section. For
u,v ∈ X we denote

a(u,v) =

∫
Ω

∇× u · ∇ × v̄ + k2u · v dV − ik

∫
Σ

uT · vT dA.(3.9)

Note that |a(u,u)| is a norm equivalent to ‖u‖X . Define the operator A : (L2(Ω))3 →
(L2(Ω))3 such that for all f ∈ (L2(Ω))3, Af ∈ X0 ⊂ (L2(Ω))3 satisfies

a(Af ,φ) = −2k2

∫
Ω

f · φ dV −
∫

Σ

T (IR(f)) · φT dA ∀φ ∈ X0.(3.10)

By the Lax–Milgram lemma this problem is well posed. In particular, using the
expression for IR in (1.9) shows that

‖T (IR(u))‖(L2(Σ))3 ≤ C‖u‖(L2(Ω))3

which allows us to prove the continuity of the right-hand side of (3.10).
Similarly, we define F ∈ X0 by

a(F,φ) =

∫
Σ

T (Ei) · φ̄dA ∀φ ∈ X0.(3.11)

We proceed to show that the operator problem of finding E ∈ (L2(Ω))3 such that

E +AE = F(3.12)

is exactly equivalent to solving the Hazard–Lenoir equation (1.11). Any solution of
(1.11) is divergence free, and thus if we pick a test function φ ∈ X0, then (1.11) can
be recast as follows: Find E ∈ X0 such that

a(E +AE− F,φ) = 0 ∀φ ∈ X0.
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Hence, E + AE− F = 0 in X0 and this certainly implies equality in (L2(Ω))3. Con-
versely, if we have a solution E ∈ (L2(Ω))3 of

E +AE = F,

then since E = F−AE, we know that E ∈ X0. Therefore E satisfies

a(E +AE− F, ξ) = 0 ∀ξ ∈ X,

which is the Hazard–Lenoir equation (1.11). This shows the equivalence of the op-
erator equation (3.12) and the Hazard–Lenoir equation (1.11). The existence and
uniqueness of solutions to (3.12) now follow from those of (1.11) (see [25]).

3.3. The Fredholm alternative. Hazard and Lenoir proved the compactness
of A as an operator from X0 to X0. We need to perform the analysis in (L2(Ω))3

since X0,h �⊂ X0. In fact, A is compact as a map from (L2(Ω))3 to (L2(Ω))3, as the
next lemma shows.
Lemma 3.1. The map A : (L2(Ω))3 → (L2(Ω))3 is compact.
Proof. By the Lax–Milgram lemma, A is well defined and bounded as a map from

(L2(Ω))3 into X0. The extension of Weber’s compactness theorem due to Costabel
[16] proves that X0 is compactly embedded in (L2(Ω))3. This proves the compactness
of A.

Using this lemma we can see that (3.12) is a Fredholm equation on (L2(Ω))3 and
hence, via Hazard and Lenoir’s uniqueness result, (3.12) has a unique solution E in
(L2(Ω))3.

Now we write the discrete problem (2.7) as an operator equation. We define the
operator Ãh : (L2(Ω))3 → (L2(Ω))3 as the straightforward discrete analogue of A. By
this we mean that for a given f ∈ (L2(Ω))3, Ãhf ∈ X0,h satisfies

a(Ãhf , ξh) = −2k2

∫
Ω

f · ξ̄h dV −
∫

Σ

T (IR(f)) · ξ̄h,T dA ∀ξh ∈ X0,h.(3.13)

We can also define Fh ∈ X0,h by

a(Fh, ξh) =

∫
Σ

T (Ei) · ξh,T dA ∀ξh ∈ X0,h.(3.14)

The operator Ãh and vector Fh are well defined by the Lax–Milgram lemma.
We can then pose the problem of finding Ẽh ∈ (L2(Ω))3 such that

Ẽh + ÃhẼh = Fh.(3.15)

Assuming such a solution can be found, we have

Ẽh = Fh − ÃhẼh ∈ X0,h.

As a first step in our analysis of this problem, we now need to demonstrate that as the
mesh size h decreases, the discrete operator Ãh converges to A. This is the content
of the next lemma, the proof of which is rather classical (see [26]).
Lemma 3.2. For fixed f ∈ (L2(Ω))3, Ãhf → Af in X as h→ 0.
Proof. We rewrite the problem defining A, (3.10), as the mixed problem of finding

Af ∈ X and p ∈ S such that

a(Af , ξ) +

∫
Ω

ξ · ∇p̄ dV = −2k2

∫
Ω

f · ξ̄ dV −
∫

Σ

T (IR(f)) · ξ̄T dA ∀ξ ∈ X,∫
Ω

Af · ∇φ̄ dV = 0 ∀φ ∈ S.
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Since a(·, ·) is coercive on X and ∇S ⊂ X, we can easily verify the Babuška–Brezzi
condition and conclude that this is a well-posed problem (taking ξ ∈ X0 shows it
reduces to (3.10) in this case).

Similarly, the discrete problem (3.13) may be written as

a(Ãhf , ξh) +

∫
Ω

ξh · ∇p̄h dV = −2k2

∫
Ω

f · ξh dV −
∫

Σ

T (IR(f)) · ξ̄h,T dA ∀ξh ∈ Xh,∫
Ω

Ãhf · ∇φ̄h dV = 0 ∀φh ∈ Sh.(3.16)

The coercivity of a(·, ·) and the fact that ∇Sh ⊂ Xh allows us to verify the discrete
Babuška–Brezzi condition, and we conclude that the following estimate holds (see
[13]):

‖Af − Ãhf‖X + ‖∇(p− ph)‖(L2(Ω))3(3.17)

≤ c

{
inf

χh∈Xh

‖Af − χh‖X + inf
ξh∈Sh

‖∇(p− ξh)‖(L2(Ω))3

}
.

The theorem follows from standard arguments using the density of Sh in S and Xh

in X.
The pointwise convergence of Ãh to A is not sufficient to conclude that the opera-

tor (I+Ãh) is invertible. Before proving this invertibility we need to prove a technical
regularity result.

3.4. A regularity result. Before stating and proving our main compactness
result we need the following regularity result. This result claims that if a vector
field u ∈ X and a discrete field uh ∈ Xh have curls which agree in Ω, and if the
tangential components of the fields agree on the boundary, then u possesses some
extra regularity. The proof of this lemma proceeds by considering a decomposition of
u and establishing a regularity result for each component.
Lemma 3.3. Let uh ∈ X0,h and suppose u ∈ X0 satisfies

∇× u = ∇× uh in Ω,

ν × u = ν × uh on ∂Ω.

Then there is an εmax > 0 such that u ∈ (Hs(Ω))3, for 1/2 ≤ s < 1/2 + εmax, and

‖u‖(Hs(Ω))3 ≤ C
(‖∇ × u‖(L2(Ω))3 + ‖ν × u‖(Hs−1/2(Σ))3

)
.

Remark 1. (1) In [16] this result is proved for S = 1/2, and in [2] the result is
proved when ν × u = 0 on ∂Ω (including Σ). The result here is possible because
ν × uh is a piecewise polynomial on Γ and Σ and hence is smoother than just square
integrable on Γ and Σ. The proof we shall give combines those in [2] and [16].

(2) It is in the proof of this theorem that we use the fact that Σ is a paral-
lelepiped. This is a hypothesis for an extension result given in Lemma A.2. Note that
extension results of this type are valid for arbitrary Lipschitz polygons in R

2 (see [24,
Thm. 1.5.2.3], for example). Dauge (in private communication) suggested that the
same is true in R

3. Assuming this is so, the proofs in this paper are valid for more
general outer boundaries Σ.

Proof. In this proof we shall use the spaces H l(Σ) for l > 0. We define (on Σ
here, but using obvious notation also on Γ)

H l(Σ) =
{
g = ξ|Σ | ξ ∈ H l+1/2(Ω)

}
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with the norm

‖g‖Hl(Σ) = inf
ξ∈Hl+1/2(Ω), ξ|Σ=g

‖ξ‖Hl+1/2(Ω).

This definition makes sense for all l > 0 and agrees with the trace space defined in
terms of intrinsic norms for l ≤ 1.

As in [16], let O denote a smooth, bounded, connected domain with simply con-
nected boundary ∂O containing Ω̄ in its interior (see Figure 3.1). First we construct
a vector potential w ∈ (H1(O))3 such that

∇×w = ∇× u
∇ ·w = 0

}
in Ω.(3.18)

Let z be defined on O by

z =




0 in D,
∇× u in Ω,

∇ξ in O \ (Ω ∪D),

where ξ ∈ H1(O \ (Ω ∪D))/R solves the boundary value problem

∆ξ = 0 in O \ (Ω ∪D),

∂ξ

∂ν
= ν · ∇ × u on Σ,

∂ξ

∂ν
= 0 on ∂O.

Note that ν · ∇ × u ∈ H−1/2(Σ) since ∇ · (∇× u) = 0 and that this also implies the
necessary compatibility condition for solvability.

Of course, ν ·∇×u = 0 on Γ since the boundary condition is perfectly conducting.
Thus z has a continuous normal component across Σ and Γ, ∇ · z = 0 in O. Hence
Lemma 3.5 of [2] ensures that there is a function w ∈ (H1(O))3 such that

∇×w = z and ∇ ·w = 0 in O.

Hence w verifies the desired properties in (3.18).
As ∇× (u−w) = 0, in Ω there is a scalar potential p ∈ H1(Ω) such that

u−w = ∇p.

The fact that ∇ · (u−w) = 0 then implies that

∆p = 0 in Ω.

We need to demonstrate that p possesses extra regularity in order to establish the
smoothness of u. This can be done following [2]. Inside D we have ∇×w = 0, and
since w ∈ (H1(O))3, there is a scalar potential η ∈ H2(D) such that w = ∇η in D.
On the boundary Γ, we have

(ν × (u−w))× ν = (ν ×∇p)× ν.
We now use the boundary condition on Γ and the fact that w = ∇η in D to obtain

∇Γp = −∇Γη,
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Γ

ν

Σ
Ω

ν

D

Fig. 3.1. The configuration of the smooth enclosing domain O.

where we have used the notation ∇Γp = (ν × ∇p) × ν so that ∇Γ is the surface
gradient. Since η ∈ H3/2(Γ), we can conclude p ∈ H3/2(Γ).

For the outer boundary Σ, we follow [16]. Clearly p|Σ ∈ H1/2(Σ) and w|Σ ∈
(H1/2(Σ))3 . Furthermore, on Σ,

(ν × (u−w))× ν = (ν ×∇p)× ν.

Thus, on Σ,

uT −wT = ∇Σp.

Unlike the boundary condition on Γ, now uT does not vanish on Σ, since

uT = uh,T .

The polyhedral nature of Σ implies that on each face F of the surface, we have that
ν is a constant vector, and uh is a piecewise polynomial, so

uh,T = (ν × uh)× ν ∈ (Hε(F ))3

for 0 ≤ ε < 1/2. Thus ∇Σp ∈ (Hε(F ))3 and hence p ∈ H1+ε(F ). Moreover, since
p ∈ H1/2(Σ) it cannot have line discontinuities, so in fact p is continuous on Σ.

We are thus assured that p is continuous at each edge of Σ, and p ∈ H1+ε(F ) for
each face F . Hence, via Lemma A.2 there is an extension denoted p̃ ∈ H3/2+ε(Ω).
Then using this extension and considering p−p̃, we can conclude, using Corollary 18.15
of Dauge [20], that there is an εmax with 0 < εmax < 1/2 such that p ∈ H3/2+ε(Ω)
for 0 ≤ ε < εmax. Using the fact that u = w +∇p completes the proof.

3.5. A collective compactness result. Let Λ be a countable set of positive
real numbers whose only accumulation point is at zero. We assume that the mesh
size h ∈ Λ and hence that there is a sequence of mesh sizes hn → 0 as n→∞.
Lemma 3.4. The set of operators {Ãh : (L2(Ω))3 → (L2(Ω))3}h∈Λ is collectively

compact.
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Remark 2. This is essentially the discrete compactness property (for a full dis-
cussion of this property see [27, 28, 29, 9]).

Proof. Let U ⊂ (L2(Ω))3 be a bounded set and define

A(U) = {w ∈ (L2(Ω))3 | w = Ãh(u) for some u ∈ U and h ∈ Λ}.

To prove collective compactness, we need to show thatA(U) is precompact in (L2(Ω))3.
Let {wn} ⊂ A(U) be a sequence. Then for each n there is an hn and un ∈ U such
that

wn = Ãhn
(un) ∈ X0,hn

.

Without loss of generality, we can assume hn → 0 as n → ∞ (otherwise we are in a
finite-dimensional vector space, and a convergent subsequence of {wn} is guaranteed).

Let pn ∈ S satisfy∫
Ω

∇pn · ∇ξ dV =

∫
Ω

wn · ∇ξ dV ∀ξ ∈ S.

We can decompose wn ∈ (L2(Ω))3 by defining wn as

wn = wn −∇pn.

Clearly, wn ∈ X0. Since {wn} is a bounded subset of X, we can conclude {wn}
is a bounded subset in X0. Thus, using the compactness result of [16], there is a
subsequence, still denoted {wn}, and an element w ∈ X0, such that

wn −→ w as n→∞
{

weakly in X,
strongly in (L2(Ω))3.

Moreover, the definition of wn reveals that since wn is a finite element function,

∇×wn = ∇×wn ∈ (Lq(Ω))3,

and ν ×wn = ν ×wn on Σ (and Γ).

Hence by Lemma 3.3, wn ∈ (H
1
2+ε(Ω))3 for some ε > 0. Since ∇×wn ∈ (Lq(Ω))3

for any q ≥ 2, we can conclude that the interpolant πhn
wn is well defined. The

interpolant of wn, and hence the interpolant of ∇pn, is also well defined. Thus,

πhnwn = πhn(wn −∇pn) = wn −∇pn

for some pn ∈ Shn . The relation

πhn∇p = ∇pn for some pn ∈ Shn

follows from properties of edge elements (see [23]). Hence, using the fact that w ∈ X0

and wn ∈ X0,hn , we have∫
Ω

(w −wn) · (wn −wn) dV =

∫
Ω

(w −wn) · (wn − πhn
wn −∇pn) dV

=

∫
Ω

(w −wn) · (wn − πhnwn) dV
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so that

‖w −wn‖(L2(Ω))3 ≤ ‖w −wn‖(L2(Ω))3 + ‖wn − πhnwn‖(L2(Ω))3 .

Now we can use the estimate (2.4) to conclude (using the fact that ∇×wn = ∇×wn)
that

‖w −wn‖(L2(Ω))3 ≤ ‖w −wn‖(L2(Ω))3

+C
(
h1/2+ε‖wn‖(H1/2+ε(Ω))3 + h‖∇ ×wn‖(L2(Ω))3

)
.

Using this estimate, the a priori estimate in Lemma 3.3, and the following inverse
estimate for fractional power Sobolev spaces norms of piecewise polynomial functions
on quasi-uniform meshes proved in [12]:

‖ν ×wn‖(Hε(Σ))3 ≤ Ch−ε‖ν ×wn‖(L2(Σ))3 ,

we have that

‖w −wn‖(L2(Ω))3 ≤ ‖w −wn‖(L2(Ω))3 + Ch1/2‖wn‖X .

The first term on the right-hand side tends to zero by construction, and the second
term tends to zero since hn → 0 as n → ∞. Hence we have proved the desired
result.

3.6. Error estimates. We can now analyze the operator based problems (3.12)
and (3.15) which are to find E ∈ (L2(Ω))3 and Eh ∈ (L2(Ω))3 such that

(I +A)E = F,

(I + Ãh)Ẽh = Fh,

for h ∈ Λ. We have the following theorem.
Theorem 3.5. For h ∈ Λ sufficiently small, (I + Ãh)

−1 exists and is uniformly
bounded as a map from (L2(Ω))3 to (L2(Ω))3. The error estimate

‖Ẽh −E‖(L2(Ω))3 ≤ c
(
‖F− Fh‖(L2(Ω))3 + ‖(A− Ãh)F‖(L2(Ω))3

+‖(A− Ãh)AE‖(L2(Ω))3

)
holds with c independent of h, E, and F.

Proof. We start with a slight modification of the proof of Theorem 10.9 of [30].
From that theorem we know that if h ∈ Λ is small enough, then (I + Ãh) is invertible
with a uniformly bounded inverse as a map from (L2(Ω))3 to (L2(Ω))3 (because
{Ah}h∈Λ is a collectively compact and pointwise convergent sequence of operators).
Thus Ẽh is well defined.

Then

E− Ẽh = (I + Ãh)
−1(F− Fh) +

(
(I +A)−1 − (I + Ãh)

−1
)

F

and the following error estimate follows from the bound on ((I +A)−1 − (I + Ãh)
−1)

in [30]:

‖Ẽh −E‖(L2(Ω))3 ≤ c
(
‖F− Fh‖(L2(Ω))3 + ‖(A− Ãh)F‖(L2(Ω))3

+ ‖(A− Ãh)AE‖(L2(Ω))3

)
.(3.19)
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Theorem 3.6. Provided h ∈ Λ is small enough, the discrete variational problem
(2.7) has a unique solution Ẽh ∈ Xh. Furthermore,

‖Ẽh−E‖X ≤ C

(
inf

χh∈Xh

‖F− χh‖X + inf
φh∈Xh

‖AF− φh‖X + inf
ψh∈Xh

‖AE−ψh‖X
)

.

In general, Ẽh → E in X as h→ 0.
Proof. From the previous theorem, Eh is proved to exist uniquely, and it remains

to estimate the error in X. From (3.12) and (3.15),

‖E− Ẽh‖X = ‖AE− ÃhẼh + F− Fh‖X
≤ ‖(A− Ãh)E‖X + ‖Ãh(E− Ẽh)‖X + ‖F− Fh‖X .

However, using the definition of Ãh,

‖Ãh(E− Ẽh)‖X ≤ C‖E− Ẽh‖(L2(Ω))3 .

Hence, via the previous theorem (and using the fact that the (L2(Ω))3 norm is
bounded by the X norm),

‖E− Ẽh‖X ≤ C
(
‖(A− Ãh)E‖X + ‖F− Fh‖X
+‖(A− Ãh)F‖(L2(Ω))3 + ‖(A− Ãh)AE‖(L2(Ω))3

)
.

Since AE = F−E, this can be rewritten

‖E− Ẽh‖X ≤ C
(
‖(A− Ãh)E‖X + ‖F− Fh‖X + ‖(A− Ãh)F‖(L2(Ω))3

)
.

Now we can estimate each term. Via the estimates for the mixed method used previ-
ously, we get

‖F− Fh‖X ≤ C inf
χh∈Xh

‖F− χh‖X .

Since E ∈ X0, the potential ph in (3.16) vanishes when F = E. Therefore,

‖(A− Ãh)E‖X ≤ C inf
φh∈Xh

‖AE− φh‖X .

In the same way, since F ∈ X0,

‖(A− Ãh)F‖X ≤ C inf
ξh∈Xh

‖AF− ξh‖X .

The convergence result now follows from a density argument.
This result can be made more specific provided the solution is regular enough.

Let

Hs(curl; Ω) =
{
u ∈ (Hs(Ω))3 | ∇ × u ∈ (Hs(Ω))3, ν × u ∈ (Hs(f))3

for each face f of Σ}
for some s ≥ 0 with norm

‖u‖2
Hs(curl; Ω)

:= ‖u‖2Hs(Ω) + ‖∇ × u‖2Hs(Ω) +
∑
f∈Σ

‖ν × u‖2Hs(f).
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Then, the error estimate of Theorem 3.6 can be written as shown below.
Corollary 3.7. If F, AF, AE ∈ Hs(curl; Ω) for some s > 1

2 , then

‖E− Ẽh‖X ≤ chmin(s,�),

where the norm on X is given by (1.6).
Remark 3. For a Lipschitz polyhedral domain, the best we can generally expect

is that the above regularity requirements hold for some s with 1
2 < s but possibly

with s less than 1.

4. The fully discrete problem. The discretization we have considered up to
this point is not optimal for implementation since IR is expensive to compute. We
prefer to use (2.6) in place of (2.7). Let us define Ah : (L2(Ω))3 → (L2(Ω))3 such that
if f ∈ (L2(Ω))3, then Ahf ∈ X0,h satisfies

a(Ahf , ξh) = −2k2

∫
Ω

f · ξ̄h dV −
∫

Σ

T (Ih(f)) · ξ̄h,T dA ∀ξh ∈ X0,h.(4.1)

Then (2.6) is equivalent to solving

(I +Ah)Eh = Fh.(4.2)

In order to prove convergence we make a specific choice of G̃h. We choose G̃h to
interpolate G̃ on Ω (as a function of y). Using this choice we can prove the following
lemma.
Lemma 4.1. There is a constant C such that for any u ∈ X,

‖(Ah − Ãh)u‖X ≤ Chl‖u‖X .

Proof. By the definition of Ah and Ãh,

a((Ah − Ãh)u, (Ah − Ãh)u) = −
∫

Σ

T (Ih(u)− IR(u)) · (Ah − Ãh)u dA.

Thus

‖(Ah − Ãh)u‖X ≤ C‖T (Ih(u)− IR(u))‖(L2(Σ))3 .

However, for any derivative Dx with respect to x, for any x ∈ Σ,

∣∣Dx(Ih(u)− IR(u))
∣∣ = ∣∣∣∣

∫
Ω

(∇×Dx(G̃h − G̃))T∇× u− k2Dx(G̃h − G̃)Tu dV

∣∣∣∣
≤ C‖Dx(G̃h − G̃)‖X‖u‖X .

But since DxG is smooth when x �= y, and G̃h interpolates G̃, we may use the
interpolation estimate (2.3) to show that

‖Dx(G̃h − G̃)‖X ≤ Chl,

and we are done.
Next we verify that (I + Ãh) is invertible as a map from X to X.
Lemma 4.2. The operator (I+Ãh) is invertible with a uniformly bounded inverse

as a map from X to X.
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Proof. We have already seen that this lemma holds with (L2(Ω))3 in place of X.
Now let u ∈ (L2(Ω))3 solve

u + Ãhu = F

for some F ∈ X; then since u = F− Ãhu ∈ X,

‖u‖X ≤ ‖F‖X + ‖Ãhu‖X
≤ ‖F‖X + C‖u‖(L2(Ω))3

≤ ‖F‖X + C‖F‖(L2(Ω))3 .

Thus

‖(I + Ãh)
−1F‖X ≤ C‖F‖X ,

and we are done.
Now we can prove that (4.2) has a unique solution that is close to the solution

Ẽh of (2.7).
Theorem 4.3. Provided h is sufficiently small, (4.2) (or equivalently, (2.6)) has

a unique solution Eh ∈ Xh, and if Ẽh is the solution of (2.7), then

‖Eh − Ẽh‖X ≤ Chl‖Eh‖X .

Remark 4. As a result of this theorem we can conclude that Eh satisfies the error
estimates in Theorem 3.6 and Corollary 3.7.

Proof. We have already verified (Lemma 4.2) that (I + Ãh) is invertible as a map
from X to X and that the inverse is uniformly bounded. Since

Eh + ÃhEh + (Ah − Ãh)Eh = Fh,

we have

(I + Ch)Eh = (I + Ãh)
−1Fh,

where Ch = (I+Ãh)
−1(Ah−Ãh) and hence, using Lemma 4.1, ‖Ch‖L(X,X) ≤ Chl < 1

for h sufficiently small. This implies that (I +Ch) is invertible with bounded inverse
in X, and hence Eh exists.

Furthermore,

(I + Ãh)(Eh − Ẽh) = (Ãh −Ah)Eh

so that by using Lemma 4.1 and the boundedness of (I + Ãh)
−1 we have

‖Eh − Ẽh‖X ≤ C‖(Ãh −Ah)Eh‖X ≤ Chl‖Eh‖X .

Thus we can conclude that Theorem 3.6 holds for Eh.
Now we shall show why (2.6) helps in the discretization of this problem. Let

{ξi}Nh
i=1 be a basis for Xh. Usually this basis would be constructed using the degrees

of freedom (2.2), but other choices are possible [32]. Then we can express Eh ∈ Xh

as

Eh =

Nh∑
i=1

Eiξi,
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and we may write the variational equation (2.6) as a matrix equation. Let 5E =
(E1, . . . , ENh

)T , and let S and L be Nh ×Nn matrices with

Si,j =

∫
Ω

∇× ξj · ∇ × ξ̄i − k2ξj · ξ̄i dV − ik

∫
Σ

ξj,T · ξ̄i,T dA,

Lij = −
∫

Σ

T (Ih(ξj)) · ξ̄i dA.

Let 5F be the vector with

Fj =

∫
Σ

T (Ei) · ξ̄j dA.

Then

(S + L) 5E = 5F .(4.3)

Our analysis guarantees that S + L is invertible for h sufficiently small, but S + L is
not particularly well structured from the point of view of numerical linear algebra. It
is nondefinite and nonsymmetric.

The matrix S is somewhat better behaved than L. It is sparse and symmetric (but
not Hermitian). It corresponds to the standard discretization of an interior boundary
value problem for Maxwell’s equations and is also invertible for h sufficiently small.
In general, S has O(Nh) nonzero entries.

If we choose G̃h to interpolate zero away from Γ, then Ih(ξj) vanishes when
ξj is zero on all tetrahedra sharing an edge with Γ. Thus Lij �= 0 only if ξi is
associated with an edge or face on Σ and if ξj is associated with a tetrahedron

touching Γ. For a quasi-uniform mesh, we expect O(N
2
3

h ) edges and faces on Σ, and

O(N
2
3

h ) tetrahedra to touch Γ. Hence L has O(N
4
3

h ) nonzero entries which is far more
than S. Thus L is very expensive to compute and store. This suggests that (4.3)
should be solved by an iterative technique (Bi-CGSTAB has worked well for us when
applying similar methods to the Helmholtz equation) and then only the action of L
needs to be computed. We expect that this can be computed rapidly using the fast
multipole method [33] to yield a fast overall solver.

5. Conclusion. We have proved convergence of the combined finite element–
integral equation technique under fairly general conditions on the scatterer and the
auxiliary boundary. When the domain is well behaved so that the exact solution is
regular, we can even obtain optimal order estimates.

The scheme results in a large dense submatrix in the overall matrix for the discrete
problem. This suggests the necessity of using the fast multipole scheme to evaluate
the integral operator Ih(f). We are now programming the combined scheme and hope
to report numerical results and algorithmic details in the near future.

Appendix. In this appendix, we provide a proof of Lemma 2.1 and an extension
theorem for functions defined on a parallelepiped (Lemma A.2). Let G̃h(x, ·) denote
the matrix function such that if g̃h,l(x, ·) is the lth column of G̃h(x, ·) and gl(x, ·) is
the lth column of G(x, ·), then
(a) g̃h,l(x, ·) ∈ Vh, 1 ≤ l ≤ 3;
(b) (g̃h,l(x, ·))T interpolates (gl(x, ·))T on Γ (using edge and face freedoms (2.2a)

and (2.2b));
(c) (g̃h,l(x, ·))T = 0 on all tetrahedra sharing an edge or face with Σ.
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Lemma A.1. Suppose (2.6) has a unique solution for each given G̃h satisfying
the properties assumed in section 2. Then the solution is independent of the choice of
G̃h.

Proof. Suppose E
(i)
h is the solution of (2.6) corresponding to G̃

(i)
h , i = 1, 2. Let

I(i)
h , i = 1, 2, denote the operator in (2.5) using G̃

(i)
h . Since solutions of the finite

element formulation (2.6) are unique, it suffices to show that

I(2)
h (E

(1)
h ) = I(1)

h (E
(1)
h ).

By definition,

(
I(2)
h (E

(1)
h )− I(1)

h (E
(1)
h )
)T

=

∫
Ω

{
(∇×E

(1)
h )T∇× (G̃

(2)
h − G̃

(1)
h )− k2(E

(1)
h )T (G̃

(2)
h − G̃

(1)
h )
}

dV.

Now the lth column of G̃
(2)
h − G̃

(1)
h is

(G̃
(2)
h − G̃

(1)
h )l = g̃

(2)
h,l − g̃

(1)
h,l ,

and since g
(j)
h,l , j = 1, 2, interpolates gl on Γ, the tangential component of the difference

vanishes there. Hence g̃
(2)
h,l − g̃

(1)
h,l ∈ Xh. Since (g

(2)
h,i − g

(1)
h,i)T = 0 on Σ we have, from

the definition of E
(1)
h in (2.6) and using the test function φh = (g̃

(2)
h,l − g̃

(1)
h,l ),∫

Ω

{
(∇×E

(1)
h ) · ∇ × (g̃

(2)
h,l − g̃

(1)
h,l )− k2E

(1)
h · (g̃(2)

h,l − g̃
(1)
h,l )
}

dV = 0.

This implies I(2)
h (E

(1)
h ) = I(1)

h (E
(1)
h ). Thus E

(1)
h satisfies (2.6) with Ih = I(2)

h . The

assumed uniqueness of E
(2)
h then implies E

(2)
h = E

(1)
h .

Lemma A.2. Suppose Σ is the surface of a right parallelepiped, that there is a
function u ∈ H1(Σ) such that on each face f of Σ, u ∈ H1+ε(Σ), 0 ≤ ε < 1/2,
and that u is continuous at the edges of the face of Σ. Then there is an extension
u ∈ H3/2+ε(P ), where P denotes the interior of the parallelepiped.

Remark 5. The proof is similar to that of Theorem 1.5.2.4 of [24].

Proof. By a partition of unity we need only consider the problem in the neighbor-
hood of a corner. Suppose the corner is at (0, 0, 0) and that the planes x = 0, y = 0,
and z = 0 meet there. Furthermore, suppose we wish to extend u to the octant x > 0,
y > 0, and z > 0.

Let u = g1 on the quarter plane {0} × R+ × R+, u = g2 on the quarter plane
R+ × {0} × R+, and u = g3 on the quarter plane R+ × R+ × {0}. We can assume
g1, g2, and g3 vanish outside a sphere of radius R around (0, 0, 0) (because of the
partition of unity).

Using the standard extension theorem we can extend g1 to a function g̃1 ∈
H1+ε({0} × R × R). This can then be extended to a function G1 ∈ H3/2+ε(R3)
such that G1|x=0 = g̃1.

Now consider v = u − G1. Clearly, v = 0 on {0} × R+ × R+, v = g2 − G1 on
R+ × {0} ×R+, and v = g3 −G1 on R+ ×R+ × {0}. In particular, v = 0 on the line
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x = 0, z = 0, y > 0. Define a function w by

w(x, y) =




v(x, y, 0) if x > 0, y > 0,
−v(−x, y, 0) if x < 0, y > 0,
v(x,−y, 0) if x > 0, y < 0,
−v(−x,−y, 0) if x < 0, y < 0.

Clearly, w is continuous on the whole plane z = 0 and is antisymmetric in x. Since it
is continuous we can conclude w ∈ H1+ε(R × R × {0}). Using this as Dirichlet data
for solving Laplace’s equation (with zero data on the hemisphere of radius R in the
upper half-space) shows that there is a function G2 ∈ H3/2+ε(R×R×R+) such that
v = G2 on the plane z = 0. The odd symmetry of the data is maintained by the
solution and so G2 vanishes on the plane x = 0. Hence if p = v − G2, then we can
conclude p = 0 on {0} × R+ × R+, p = g2 −G1 −G2 on R+ × {0} × R+, and p = 0
on R+ × R+ × {0}.

Now we again extend p to the plane y = 0 by reflection. Let q be defined for
y = 0 by

q(x, z) =




p(x, 0, z) if x > 0, z > 0,
−p(−x, 0, z) if x < 0, z > 0,
−p(x, 0,−z) if x > 0, z < 0,
p(−x, 0,−z) if x < 0, z < 0.

Now q ∈ H1+ε(R× {0} ×R) and is antisymmetric about the lines y = z = 0 and y =
x = 0. Thus, again using this as boundary data for the Dirichlet problem for Laplace’s
equation (again with zero Dirichlet data on the hemisphere in the appropriate half-
space), we can conclude that there is a function G3 such that p = G3|y=0 and that
G3 vanishes on x = 0 and z = 0. Thus the function

u = G1 +G2 +G3

is the required extension with the required smoothness.
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EFFICIENT COMPUTATION OF SENSITIVITIES FOR ORDINARY
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Abstract. For models described by ordinary differential equation boundary value problems
(ODE BVPs), we derive adjoint equations for sensitivity analysis, giving explicit forms for the bound-
ary conditions of the adjoint boundary value problem. The solutions of the adjoint equations are
used to efficiently compute gradients of both integral-form and pointwise constraints. Existence and
stability results are given for the adjoint system and its numerical solution. The use of the method
is demonstrated for a simple example, where it is seen that the method is particularly advantageous
for problems with more than a few parameters.

Key words. sensitivity analysis, ODE boundary value problem, adjoint method
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1. Introduction. Sensitivity analysis generates essential information for design
optimization, parameter estimation, optimal control, data assimilation, process sen-
sitivity, and experimental design. Virtually any scientific or engineering problem can
take advantage of sensitivity analysis, for example, problems in chemical engineering
applications, multibody mechanical systems, structural engineering, materials science,
electric and electronic circuit simulation, and weather prediction models.

There is a large body of work on methods and software for forward sensitivity
analysis of initial value problems (IVPs) for ordinary differential equation (ODE)
systems [16] and differential-algebraic equation (DAE) systems [11, 22]. Recent re-
search [21, 25] has demonstrated that forward sensitivities can be computed reliably
and efficiently via automatic differentiation [4] in combination with ODE/DAE/PDE
solution techniques designed to exploit the structure of the sensitivity system.

Forward sensitivity analysis has been shown to be very efficient for problems
in which the sensitivities of a (potentially) very large number of quantities, with
respect to relatively few parameters, are needed. However, for problems where the
number of uncertain parameters is large, the forward sensitivity method becomes
computationally intractable. The adjoint (reverse) method is advantageous in the
complementary situation, where the sensitivities of a few quantities, with respect to
a large number of parameters, are needed. Adjoint sensitivity analysis is particularly
attractive for boundary value problems (BVPs). In contrast to the situation for
IVPs, where the adjoint method requires considerable memory resources above what
is required for the solution of the original problem, the solution values required by
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the adjoint method for BVPs are naturally available from the solution of the original
problem.

Adjoint sensitivity analysis raises a set of entirely new issues ranging from exis-
tence of adjoint operators [3, 5, 6, 20] to construction of adjoint models [10, 17, 18],
derivation of boundary conditions for the adjoint states [5], and algorithm imple-
mentation [13]. Adjoint sensitivity analysis for BVPs has focused mainly on models
described by partial differential equations (PDEs). We cite here the work of Cacuci
[5, 6] on general sensitivity theory for nonlinear systems, that of Ghione and Filicori
on sensitivity of semiconductor devices [12], the work of Giles and Pierce [14] on ad-
joint equations in computational fluid dynamics, and that of Machiels, Maclay, and
Patera [23, 24] on the use of adjoint methods to obtain a posteriori finite element
output bounds.

In [5, 6, 26], adjoint operators are constructed for general nonlinear systems, and
results are given for solvability of the original and adjoint systems. However, because
of the generality of this setting, boundary conditions for the adjoint problem cannot
be explicitly constructed. Instead, for each particular example, proper boundary con-
ditions are obtained by imposing the condition that the Lagrange identity is satisfied.
For the adjoint equations for inviscid and viscous compressible flow, Giles and Pierce
[14] constructed correct boundary conditions for adjoint problems used in evaluating
integral-form quantities. In computational fluid dynamics, most quantities of interest
are in integral form. However, in other engineering areas, point quantities such as
maximum stresses and/or deformations in structural analysis are of major concern.
Being able to efficiently compute gradients of such quantities is thus of high interest.

In the present work we derive adjoint equations for sensitivity analysis of models
described by ODE BVPs. For a general form ODE BVP, which is assumed to be
well conditioned and to have a unique solution, we derive in section 2 adjoint sys-
tems for which we explicitly construct proper boundary conditions. Our goals are
to demonstrate that the adjoint method offers an efficient means of computing ODE
BVP sensitivities, particularly if there are many parameters, and to show how the
adjoint method is formulated for ODE BVPs for different classes of derived func-
tions. Thus we derive adjoint equations to efficiently evaluate not only gradients of
integral-form quantities, but also (using the Leibnitz integral rule) gradients of point-
wise constraints. In section 3 we establish that, for the problems considered here, the
adjoint problems are well-posed and inherit the stability of the original system. We
show that numerical stability of the midpoint method for the original system implies
numerical stability for the adjoint system. In section 4 we illustrate the computation
of sensitivities via the adjoint method on a simple example.

2. Derivation of the adjoint BVP. Consider a state vector x ∈ RN that
satisfies the BVP depending on parameters p ∈ RNp ,

F(ẋ,x,p, t) = 0,
(1)

h(x(a),x(b),p) = 0,

and the function g(x,p, t) whose gradient with respect to p, dg/dp is to be evaluated
at some time τ ∈ [a, b]. We assume that the Jacobian of F with respect to the vector
ẋ is nonsingular (meaning that (1) represents a system of ODEs and not DAEs) and
that h represents a set of N independent equations. Note that if g also depends on
the time derivatives ẋ, then the first set of relations (1) can be used to express g as
a function of only x, p, and t. We assume also that (1) is well conditioned and has a
unique solution.
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In section 2.1 we derive the gradient (dg/dp) at τ ∈ (a, b). Using the result-
ing expressions, the particular case of computing (dg/dp) at τ = b is analyzed in
section 2.2.

2.1. Gradients of g between the integration bounds. We start by deriving
the gradient (dg/dp) at some τ ∈ (a, b). The derivation closely follows the IVP case
[7], with differences arising from the definition of proper boundary conditions for the
adjoint equations.

First, define the function

Gτ (p) =

∫ τ

a

g(x,p, t)dt.

The gradient of Gτ with respect to p is then simply

dGτ

dp
=

∫ τ

a

dg

dp
(x,p, t)dt =

∫ τ

a

(gp + gxxp) dt,(2)

where subscripts represent partial differentiation. Applying the Leibnitz integral rule
we obtain

d

dτ

dGτ

dp
=

dg

dp

∣∣∣∣
τ

.

Thus (dg/dp)|τ can be computed as

dg

dp

∣∣∣∣
τ

=
d

dτ

(∫ τ

a

(gp + gxxp) dt

)
.

The challenge of adjoint sensitivity analysis is now to compute the above quantity
without solving for the sensitivities xp. To do this, we first form the linear sensitivity
problem from the BVP (1),

Fẋẋp + Fxxp + Fp = 0,
(3)

Axp(a) +Bxp(b) + hp = 0,

whereA = hx0
(x(a),x(b),p) andB = hx1(x(a),x(b),p). Then, for arbitrary λ1,λ2 ∈

RN , the following holds:

0 ≡
∫ τ

a

λ∗
1 (Fẋẋp + Fxxp + Fp) dt+

∫ b

τ

λ∗
2 (Fẋẋp + Fxxp + Fp) dt,(4)

where ∗ indicates the transposed conjugate. Integrating by parts, the first term in the
first integral in the above relation becomes∫ τ

a

λ∗
1Fẋẋpdt = (λ∗

1Fẋxp)|τa −
∫ τ

a

(
λ̇
∗
1Fẋ + λ∗

1

dFẋ

dt

)
xpdt,

where

λ∗
1

dFẋ

dt
=

[(
dFẋ

dt

)∗
λ1

]∗
=
(
F∗

ẋλ̄1

)∗
t
+
[(
F∗

ẋλ̄1

)
x
ẋ
]∗

+
[(
F∗

ẋλ̄1

)
ẋ
ẍ
]∗
.(5)

A bar over a variable indicates that the variable is held fixed for the purpose of the
current differentiation. Without loss of generality, we can assume that F depends
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linearly on ẋ and that therefore, the last term in (5) is zero. Indeed, any other case
can be reduced to this one by introducing the additional variables y = ẋ. So from
now on, we calculate λ∗

1 (dFẋ/dt) by

λ∗
1

dFẋ

dt
=
(
F∗

ẋλ̄1

)∗
t
+
[(
F∗

ẋλ̄1

)
x
ẋ
]∗
.

Thus we have from (4) that

0 ≡ (λ∗
1Fẋxp)|τa + (λ∗

2Fẋxp)|bτ −
∫ τ

a

(
λ̇
∗
1Fẋ − λ∗

1Fx + λ∗
1

dFẋ

dt

)
xpdt

(6)

−
∫ b

τ

(
λ̇
∗
2Fẋ − λ∗

2Fx + λ∗
2

dFẋ

dt

)
xpdt+

∫ τ

a

λ∗
1Fpdt+

∫ b

τ

λ∗
2Fpdt.

A suitable choice for λ1 and λ2 to compute dGτ/dp is given by the following.
Proposition 1. If λ1 and λ2 satisfy

λ̇
∗
1Fẋ − λ∗

1

(
Fx − dFẋ

dt

)
= gx,

λ̇
∗
2Fẋ − λ∗

2

(
Fx − dFẋ

dt

)
= 0,

(7)
ĀF∗

ẋ(a)λ1(a) + B̄F∗
ẋ(b)λ2(b) = 0,

λ1(τ)− λ2(τ) = 0,

where Ā and B̄ are such that

span

[
ĀT

B̄T

]
= null [−A|B] ,(8)

that is, the rows of [Ā|B̄] span the null space of [−A|B], then

dGτ

dp
= −α∗hp +

∫ τ

a

(gp + λ∗
1Fp) dt+

∫ b

τ

λ∗
2Fpdt,(9)

where α = (AA∗ +BB∗)−1
(−A(F∗

ẋλ1)(a) +B(F∗
ẋλ2)(b)).

Proof. First note that the requirement that the boundary conditions in (1) rep-
resent N linearly independent equations is equivalent to [A|B] (as well as [−A|B])
having full row rank. As a consequence, the matrixAA∗+BB∗ is invertible. The defi-
nition (8) of Ā and B̄ implies that the rows of [−A|B] span the null space of [Ā|B̄]. On
the other hand, the third relation in (7) imposes that the vector [(F∗

ẋλ1)(a), (F
∗
ẋλ2)(b)]

is in the null space of [Ā|B̄]. Therefore, there exists a vector α ∈ RN such that

(F∗
ẋλ1)(a) = −A∗α,

(10)
(F∗

ẋλ2)(b) = B∗α,

and thus

(λ∗
1Fẋxp)|τa + (λ∗

2Fẋxp)|bτ = (λ1(τ)− λ2(τ))
∗
(Fẋxp) (τ)

− (λ∗
1Fẋ) (a)xp(a) + (λ∗

2Fẋ) (b)xp(b) = α∗ (Axp(a) +Bxp(b)) = −α∗hp,
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where the second relation in (3) and the last relation in (7) have been used. Since
[A|B] has full row rank, the N ×N matrix AA∗ +BB∗ is nonsingular, and α can be
computed from (10) as

α = (AA∗ +BB∗)−1
(−A(F∗

ẋλ1)(a) +B(F∗
ẋλ2)(b)) .

Substituting this result together with the first two relations of (7) into (6), we have

0 = −α∗hp −
∫ τ

a

gxxpdt+

∫ τ

a

λ∗
1Fpdt+

∫ b

τ

λ∗
2Fpdt

and therefore

dGτ

dp
=

∫ τ

a

(gp + gxxp) dt = −α∗hp +

∫ τ

a

(gp + λ∗
1Fp) dt+

∫ b

τ

λ∗
2Fpdt.

Returning to the problem of computing dg/dp at τ , by taking the total derivative
with respect to τ in (9) we obtain

d

dτ

dGτ

dp
=

d

dτ

(
−α∗hp +

∫ τ

a

(gp + λ∗
1Fp) dt+

∫ b

τ

λ∗
2Fpdt

)

and therefore

dg

dp

∣∣∣∣
τ

= −αTτ hp + gp(τ) +

∫ τ

a

µ∗
1Fpdt+

∫ b

τ

µ∗
2Fpdt,(11)

where we have used λ1(τ) = λ2(τ). The quantities µ1 = (λ1)τ and µ2 = (λ2)τ are
the solution of the following sensitivity system, obtained by direct differentiation of
(7):

µ̇∗
1Fẋ − µ∗

1

(
Fx − dFẋ

dt

)
= 0,

µ̇∗
2Fẋ − µ∗

2

(
Fx − dFẋ

dt

)
= 0,

ĀF∗
ẋ(a)µ1(a) + B̄F∗

ẋ(b)µ2(b) = 0,

µ1(τ) + λ̇1(τ)− µ2(τ)− λ̇2(τ) = 0.

The last boundary condition is obtained by taking the total derivative with re-
spect to τ of the boundary condition λ1(τ) − λ2(τ) = 0 and taking into account all
dependencies on τ . These can be better seen if λ1 and λ2 are considered as functions
of two arguments, λ1(t, τ) and λ2(t, τ). In this case, direct differentiation of

λ(t, τ)|t=τ − λ(t, τ)|t=τ = 0

yields

λ1t(τ, τ) + λ1τ (τ, τ)− λ2t(τ, τ)− λ2τ (τ, τ) = 0,

that is,

λ̇1(τ) + µ1(τ)− λ̇2(τ) + µ2(τ) = 0.
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Note that, upon substitution of λ̇1(τ) and λ̇2(τ), this boundary condition can be
further simplified to

µ1(τ)− µ2(τ) +
(
gxF

−1
ẋ

)∗
(τ) = 0.

The quantity ατ is obtained by taking the total derivative of α with respect to τ :

ατ = (AA∗ +BB∗)−1
(−A(F∗

ẋµ1)(a) +B(F∗
ẋµ2)(b)) .

2.2. Gradients of g at the integration bounds. The gradient of Gb =∫ b
a
g(x,p, t)dt can be derived by applying a similar procedure, leading to

dGb

dp
= −α∗hp +

∫ b

a

(gp + λ∗fp) dt,(12)

where λ is the solution of

λ̇
∗
Fẋ − λ∗

(
Fx − dFẋ

dt

)
= gx,

ĀF∗
ẋ(a)λ(a) + B̄F∗

ẋ(b)λ(b) = 0,

and α = (AA∗ +BB∗)−1
(−A(F∗

ẋλ)(a) +B(F∗
ẋλ)(b)).

The gradient of g at t = b could, in principle, be obtained as in the previous
section by taking the total derivative of (12) with respect to b. Such an approach
would be considerably complicated by the fact that g now depends on b implicitly
through x. However, if we take

dg

dp

∣∣∣∣
b

= lim
τ→b

dg

dp

∣∣∣∣
τ

,

then these difficulties can be circumvented. Indeed, if we specify τ = b in (11), we
obtain

dg

dp

∣∣∣∣
b

= −α∗
bhp + gp(b) +

∫ b

a

µ∗Fpdt,(13)

where µ = λb is the solution of

µ̇∗Fẋ − µ∗
(
Fx − dFẋ

dt

)
= 0,

ĀF∗
ẋ(a)µ(a) + B̄F∗

ẋ(b)
(
µ(b) +

(
gxF

−1
ẋ

)∗
(b)
)

= 0,

or, rearranging the boundary condition, is the solution of

µ̇∗Fẋ − µ∗
(
Fx − dFẋ

dt

)
= 0,

ĀF∗
ẋ(a)µ(a) + B̄F∗

ẋ(b)µ(b) = −B̄g∗x(b).
The expression of αb in (13) can be derived as

αb = (AA∗ +BB∗)−1
(−A(F∗

ẋµ)(a) +B(F∗
ẋµ+ g∗x)(b)) .
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3. On existence and stability of the adjoint solution. Consider a linear
implicit ODE BVP of the form (3), written here as

M(t)ẋ+K(t)x+ q(t) = 0,
(14)

Ax(a) +Bx(b) + c = 0,

whose adjoint BVP can be written as

d

dt
(M∗(t)λ)−K∗(t)λ+ r(t) = 0,

(15)
ĀM∗(a)λ(a) + B̄M∗(b)λ(b) = 0,

where Ā and B̄ are defined as before.
In this section we investigate the stability of the adjoint system. More precisely,

if the original system is stable, will the adjoint system also be stable? If we consider
the adjoint system (15), the answer may be negative. Indeed, consider the following
IVP example [7]:

etẋ+
1

2
etx = 0,(16)

with some initial condition at t = a. This system is equivalent to

ẋ+
1

2
x = 0,

so it is stable to integration from the left. However, the adjoint system (15) for (16)
is

etλ̇− 1

2
etλ+ etλ = 0 ⇒ λ̇+

1

2
λ = 0.(17)

Note that the adjoint system must be solved in a backward direction. Thus the adjoint
system (17) is unstable.

Denoting λ̄(t) = M∗(t)λ(t), we can form the augmented adjoint system for (15),

˙̄λ−K∗(t)λ+ r(t) = 0,

λ̄−M∗(t)λ = 0,(18)

ĀM∗(a)λ(a) + B̄M∗(b)λ(b) = 0.

If, instead of (17), we solve the augmented adjoint system (18), then λ̄ satisfies

˙̄λ− 1

2
λ̄ = 0,

which is stable to integration from the right. We will show that, in general, if the
original system (14) is stable, then the augmented adjoint system (18) for λ̄ is stable.
First, note that since M is nonsingular, λ̄ satisfies

˙̄λ−K∗(t) (M∗(t))−1
λ̄+ r(t) = 0,

Āλ̄(a) + B̄λ̄(b) = 0.

In other words, for the implicit ODE BVP, the augmented adjoint system for λ̄ is
the same as the adjoint system of the explicit ODE BVP equivalent to the original
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system (14). Therefore it is sufficient to investigate stability of the adjoint system for
the explicit ODE BVP,

ẋ = C(t)x+ q(t),
(19)

Ax(a) +Bx(b) = c,

whose adjoint BVP can be written as

λ̇ = −C∗(t)λ+ r(t),
(20)

Āλ(a) + B̄λ(b) = 0.

We begin by deriving the relationship between fundamental solutions of these two
problems. This is given by the following.

Lemma 1. Let X and Λ be any fundamental solutions of (19) and (20), respec-
tively. Then, for any t, s ∈ [a, b], Λ∗(t)X(t) = Λ∗(s)X(s).

Proof. Consider Z(t) = Λ∗(t)X(t). Then

Ż = Λ̇
∗
(t)X(t) +Λ∗(t)Ẋ(t) = (−C∗(t)Λ(t))

∗
X(t) +Λ∗(t) (C(t)X(t)) = 0.

Therefore Λ∗(t)X(t) = Λ∗(s)X(s) for all t, s ∈ [a, b]; in particular, Λ∗(t)X(t) =
Λ∗(a)X(a) = Λ∗(b)X(b) for any t ∈ [a, b].

As a direct consequence of Lemma 1, ‖Λ(t)Λ−1(s)‖ = ‖X(s)X−1(t)‖ for all s ≥ t.
This proves the following.

Theorem 1. The adjoint system (20) of an (asymptotically) stable linear ODE
IVP (19) is (asymptotically) stable.

We now concentrate on the ODE BVP. We first show the following.
Theorem 2. If the BVP (19) has a unique solution, then a solution for the

adjoint BVP (20) exists and is unique.
Proof. Consider the fundamental solution X(t) of the homogeneous equivalent of

(19) which satisfies X(a) = I. Then the matrix Q = A + BX(b) is nonsingular [2].
Similarly, let Λ(t) be the fundamental solution of the homogeneous equivalent of (20),
which satisfies Λ(b) = I, and construct the matrix Q̄ = Āλ(a) + B̄. From Lemma 1
we have that Λ(a) = X∗(b). Then

QĀ∗ = AĀ∗ +BX(b)Ā∗ = BB̄∗ +BΛ∗(a)Ā∗ = BQ̄∗

and

QX−1(b)B̄∗ = AX−1(b)B̄∗ +BB̄∗ = A (Λ∗(a))−1
B̄∗ +AĀ∗

= A (Λ∗(a))−1
Q̄∗ = AX−1(b)Q̄∗,

where we have used AĀ∗ = BB̄∗. Since Q is invertible, we can write

Ā∗ = Q−1BQ̄∗,
B̄∗ = X(b)Q−1AX−1(b)Q̄∗.

Thus [
Ā∗

B̄∗

]
=

[
Q−1B

X(b)Q−1AX−1(b)

]
Q̄∗.
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Since [Ā|B̄] has full row rank, it follows that Q̄∗ has full rank. Therefore, Q̄ is
invertible and (20) has a unique solution.

Stability results for the adjoint problem are given by the following [9].

Theorem 3. If the BVP (19) is well conditioned, then its adjoint BVP (20) is
well conditioned.

We now consider numerical stability for the adjoint system. As a consequence of
Theorem 3, zero-stability (i.e., stability as the stepsize h→ 0 and the number of steps
n→∞) for the adjoint BVP (20) is inherited from zero-stability of the original BVP
(19). Here we are concerned with the question of whether a numerical method which
is stable for the original system (19) on the mesh

π : a = t0 < t1 < · · · < tN−1 < tN = b

is also stable for the adjoint system (20). We consider the midpoint method for which
we show the following.

Theorem 4. Numerical stability of the midpoint method for the original system
on some mesh π implies numerical stability for the adjoint system on the same mesh.

Proof. Discretizing the original system (19) with the midpoint rule, we obtain

xn − xn−1

hn
= C(tn−1/2)

xn + xn−1

2
+ q(tn−1/2), n = 1, . . . , N,

(21)
Ax0 +BxN = −c,

where hn = tn − tn−1. The first N relations in (21) can be written as

−Snxn−1 +Rnxn = q(tn−1/2), n = 1, . . . , N,

where

Sn =
1

hn
I+

1

2
C(tn−1/2),

Rn =
1

hn
I− 1

2
C(tn−1/2).

Thus we have that [x∗
0;x

∗
N ] is the solution of a linear system of the form

[
P −I
A B

] [
x0

xN

]
=

[
q̂
−c

]
(22)

for some right-hand side q̂, where P = R−1
N SNR

−1
N−1SN−1 · · ·R−1

1 S1.

The midpoint method applied to the adjoint problem (20) yields the linear equa-
tions

S∗
nλn −R∗

nλn−1 = r(tn−1/2), n = 1, . . . , N.

Since Sn and R−1
n commute, it follows that [λ∗

N ;λ∗
0] is the solution of a linear system

[
P∗ −I
B̄ Ā

] [
λN
λ0

]
=

[
r̂
0

]
(23)
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for some right-hand side r̂. We show next that with Ā and B̄ defined by (8), solving
linear system (23) is equivalent to solving linear system (22). Indeed, system (22) can
be solved as

(A+BP)x0 = Bq̂− c,
xN = Px0 − q̂.

On the other hand, by construction, there exists a vector α defined as in (10). Thus
system (23) can be solved as

(P∗B∗ +A∗)α = r̂,

λ0 = −A∗α,
λN = B∗α.

Noting that ‖(P∗B∗ +A∗)−1‖ = ‖(A+BP)−1‖, this concludes the proof.

4. Numerical example. As an example we consider the following ODE BVP:

(J +ml2)θ̈ = u(t)−mgl cos(θ),
θ(a) = θ0,(24)

θ(b) = θ1,

which describes the motion of a 2-D pendulum of length 2l, mass m, and inertia J
under the action of gravity (g) and a time varying applied torque u(t). The position
of the pendulum is imposed at the initial and final times. Considering the torque u(t)
parameterized by p ∈ RNp , we wish to estimate the sensitivity with respect to p of
the energy g(θ, θ̇, p, t) = 1

2 (J +ml2)θ̇2 +mgl sin(θ) at some time t ∈ (a, b), as well as

the sensitivity of the total energy Gτ (p) =
∫ τ
a
g(θ, θ̇, p, t)dt over the interval [a, τ ].

As an alternative to using adjoint sensitivity analysis for the solution of these
problems, one could generate the sensitivity ODE BVP systems (3) by the following
forward method: For each of the parameters pi, compute the sensitivities of the
trajectories (θ(t), θ̇(t)) and then, using the chain rule of differentiation, evaluate the
gradients of g and Gτ . However, such an approach is computationally expensive,
especially if the dimension Np of the parameterization of u(t) is very large.

We first transform (24) into a first order ODE BVP:

ẋ1 = x2,

ẋ2 =
1

J +ml2
(u(t)−mgl cos(x1)) ,(25)

x1(a) = θ0,

x1(b) = θ1,

in which case

g(x, p, t) =
1

2
(J +ml2)x2

2 +mgl sin(x1)(26)

and

Gτ (p) =

∫ τ

a

(
1

2
(J +ml2)x2

2 +mgl sin(x1)

)
dt.(27)
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Fig. 1. Torque u(t) for the pendulum example (N = 8, Np = 9).

Consider a piecewise linear approximation of u given by

u(t) = −pk t− k∆t
∆t

+ pk+1
t− (k − 1)∆t

∆t
;(28)

(k − 1)∆t ≤ t ≤ k∆t, k = 1, 2, . . . , N,

where ∆t = (b− a)/N . This gives Np = N +1 parameters p. Let N = 8 and let u be
as in Figure 1. For a = 0, b = 1, θ0 = 0, θ1 = 0, τ = 0.25, and m = g = l = J = 1,
we compare gradients of g and Gτ at both τ ∈ (a, b) and τ = b obtained by the
adjoint sensitivity analysis presented in the previous sections with gradients computed
through forward sensitivity analysis. Differences in gradients computed with the two
methods are summarized in Table 1.

Table 1
Differences in gradients computed with adjoint (a) and forward methods (f).

i
[
dGτ

dp

]
(a)

−
[
dGτ

dp

]
(f)

[
dg(τ)
dp

]
(a)

−
[
dg(τ)
dp

]
(f)

1 4.068486 · 10−06 −5.219818 · 10−09

2 8.042969 · 10−06 −9.258004 · 10−12

3 7.934972 · 10−06 −3.032900 · 10−11

4 5.331125 · 10−06 1.268874 · 10−06

5 9.902579 · 10−08 3.172192 · 10−06

6 −4.355139 · 10−08 5.555800 · 10−11

7 −2.891162 · 10−08 2.859599 · 10−11

8 −1.443129 · 10−08 8.619001 · 10−12

9 −3.178720 · 10−10 5.191848 · 10−09

i

[
dGb

dp

]
(a)

−
[
dGb

dp

]
(f)

[
dg(b)
dp

]
(a)

−
[
dg(b)
dp

]
(f)

1 1.013121 · 10−05 −4.789156 · 10−09

2 1.990550 · 10−05 −8.493997 · 10−12

3 1.943275 · 10−05 −2.782700 · 10−11

4 1.906737 · 10−05 −5.279502 · 10−11

5 1.883816 · 10−05 −7.485801 · 10−11

6 1.875241 · 10−05 −8.563900 · 10−11

7 1.879674 · 10−05 −7.838902 · 10−11

8 1.893979 · 10−05 −4.928702 · 10−11

9 9.530949 · 10−06 −1.530841 · 10−06
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All ODE BVPs involved in both adjoint and forward computations were numeri-
cally solved with colsys [1]. We note that the version of colsys that we used has a
limit of 20 on the number of differential equations, thus limiting the number of param-
eters that we could include for the forward sensitivity system to Np = 9. Of course,
when using the adjoint approach this is not an issue, as only one additional BVP of
the same size as the original problem must be solved to evaluate gradients with respect
to an array of parameters of any size. The other obvious advantage of using adjoint
sensitivity versus forward sensitivity is, of course, computational efficiency. Indeed,
solution of the BVP (original + adjoint) required by the adjoint approach was 15
times faster than solution of the BVP (original + Np forward sensitivities) required
by the forward approach. In all fairness, we must note that a careful implementation
of forward sensitivity analysis (which takes advantage of the special structure of the
sensitivity systems and the fact that they share the same Jacobian matrices with the
original BVP) will lead to a speedup of only about (1 + Np)/(1 + 1) = 5. Since
colsys does not provide a sensitivity analysis capability, the overhead computations
(especially in the linear algebra) explain the much higher speedup obtained.
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Abstract. Augmented Lagrangian-SQP methods using Lipschitz-continuous Lagrange multi-
plier updates are analyzed. Kantorovich-style convergence results are proved and applied to the
discretization of optimal control problems. The existence of stationary points for the discretized
problems is also discussed.

Key words. nonlinear programming, multiplier methods, Lipschitz-continuous multiplier meth-
ods, Burgers equation

AMS subject classifications. 49M15, 49M37, 65K05, 90C30, 90C55

PII. S0036142998348212

1. Introduction. This paper is concerned with an optimization problem of the
following type:

minimize J(x) subject to e(x) = 0,(1.1)

where J : X → R and e : X → Y are sufficiently smooth functions and X, Y are real
Hilbert spaces. These types of problems occur, for example, in the optimal control
of systems described by partial differential equations. In many applications (1.1) is
solved by variants of SQP methods. The principal idea of these algorithms is to
replace J and e by a quadratic approximation of the Lagrangian and a linearization
of the constraint. The resulting augmented Lagrangian-SQP method is as follows
[GMW81, pp. 225–233].

Algorithm 1.
(a) Choose (x0, λ0) ∈ X × Y , c ≥ 0, and set n = 0.
(b) Solve the following quadratic minimization problem for s:

minL′
c(x

n, λn)s+
1

2
L′′
c (xn, λn)(s, s) subject to e′(xn)s+ e(xn) = 0,(QP)

where Lc denotes the augmented Lagrangian

Lc(x, λ) = J(x) + 〈e(x), λ〉Y +
c

2
‖e(x)‖2Y for c ≥ 0.(1.2)

(c) Set xn+1 = xn + s, λn+1 = Λ(xn, λn), and go back to step (b).
The parameter c is called the augmentation or penalty parameter. Versions of

the augmented Lagrangian-SQP methods differ in the choice of the multiplier update
Λ(x, λ). We refer the reader to [FST87] for a review of multiplier updates in finite
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dimensions. It is well known that different multiplier updates lead to different rates
of convergence. If Λ is the Newton multiplier update, i.e.,

ΛN (x, λ) =
(
e′(x)L′′

c (x, λ)−1e′(x)�
)−1 (

e(x)− e′(x)L′′
c (x, λ)−1L′

c(x, λ)
)
,(1.3)

then Algorithm 1 coincides with the augmented Lagrangian Newton-SQP method.
This method was analyzed by Ito and Kunisch in [IK96]. In this paper we consider
Lipschitz-continuous update formulas for the Lagrange multiplier that depend only
on the x-variable. We assume that λn = Λ(xn), where λ : X → Y satisfies

‖Λ(x)− Λ(x̄)‖Y ≤ γΛ ‖x− x̄‖X(1.4)

for all x, x̄ in an appropriate neighborhood of the starting point and a constant γΛ ≥
0 such that as an example, consider the least-squares multipliers [Kle97], i.e., the
solution of

minimize ‖J ′(xn+1) + e′(xn+1)�λ‖X over λ ∈ Y.

The least-squares solution is given by

λn+1 = − (e′(xn+1)e′(xn+1)�
)−1

e′(xn+1)J ′(xn+1),(1.5)

where e′(xn+1)� denotes the adjoint of the operator e′(xn+1). Another example is
given by the update of Kunisch and Sachs in [KS92]. Note that, in contrast, the
Newton multiplier update (1.3) does not generally satisfy the Lipschitz continuity
condition (1.4).

In this paper we prove convergence results using the Kantorovich theory. As is
well known, the advantage of this theory is that the existence of a stationary point is
not required. This is particularly useful in the case of discretized infinite-dimensional
optimization problems arising in optimal control. In addition to proving that the
iterates converge, we show that stationary points for the discretized problem exist.
In [KV97] and [Vol00a] the convergence of the augmented Lagrangian-SQP method
is considered in terms of the pair (x, λ). In this paper we sharpen the convergence
statement by considering only the variable x. This requires the definition of a new
fixed point map in order to prove contraction properties only for x. This approach
is presented for Lipschitz-continuous multiplier updates. We keep the update rule as
general as possible and impose additional assumptions such as Λ(x∗) = λ∗ at a later
stage.

The paper is organized as follows. In section 2 an example of a constrained
optimal control problem is presented. In the next section the augmented Lagrangian-
SQP method is formulated with a Lipschitz-continuous update. We prove under
certain conditions that the first-order necessary optimality conditions for (1.1) have a
solution x∗. Therefore, we need not assume that Λ(x∗) = λ∗, where λ∗ is the Lagrange
multiplier associated with x∗. In section 4 these results are applied to discretized
problems. If the infinite-dimensional first-order necessary optimality conditions have
a solution, it can be shown that the discretized optimality conditions also have a
solution. Finally, a numerical example is presented in section 5.

We introduce some notation that will be used throughout the paper. Let (V, ‖·‖V )
and (W, ‖·‖W ) be normed linear spaces. The set B(v; r) denotes an open ball of radius
r > 0 centered at the point x ∈ X. By L(V,W ) we denote the normed linear space of
all bounded linear operators from V into W and write L(V ) = L(V, V ). By 〈· , ·〉V ′,V
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we denote the dual pair associated with V and its dual. For A ∈ L(V,W ) the set
N(A) = {v ∈ V : A(v) = 0} denotes the null space of A. Let X and Y be two real
Hilbert spaces with inner products 〈· , ·〉X and 〈· , ·〉Y , respectively, and A ∈ L(X,Y ).
The (Hilbert space) adjoint A� ∈ L(Y,X) of A is defined by

〈A�(λ), x〉X = 〈λ,A(x)〉Y for all x ∈ X,λ ∈ Y.
2. Formulation of the problem. Let us consider the following constrained

optimal control problem:

minimize J(x) subject to e(x) = 0,(P)

where J : X → R, e : X → Y , and X, Y are real Hilbert spaces. Note that we do
not distinguish between a functional in the dual space and its Riesz representation
in the Hilbert space. The Hilbert space X × Y is endowed with the Hilbert space
product topology. The Fréchet-derivatives with respect to the variable x are denoted
by primes. We start with an example that motivates the material of later sections.
We also refer to [KV97] and [Vol00a], where further examples were presented.

Example 2.1. Let Ω = (0, 1) ⊂ R, Ω◦ ⊆ Ω with positive measure, and f ∈
H−1(Ω). For a control u ∈ L2(Ω◦) the state y ∈ H1

0 (Ω) is given by the variational
solution of the steady-state Burgers equation

−νy′′ + yy′ = f + E(u) in H−1(Ω),(2.1)

where E ∈ L(L2(Ω◦), H−1(Ω)) is the extension operator

E(u) = 〈u, ·〉L2(Ω◦).(2.2)

Equation (2.1) is a second-order approximation to the one-dimensional steady-state
Navier–Stokes equations [Lig56]. In the general case f ∈ H−1(Ω) would be a force
density, y a velocity field, and ν > 0 a viscosity parameter. Note that for u ∈ L2(Ω◦),
E(u) belongs to L2(Ω◦)′, which can be identified with L2(Ω◦). We equip H1

0 (Ω) with
the inner product

〈ϕ,ψ〉H1
0

=

∫
Ω

ϕ′ψ′ dx for ϕ,ψ ∈ H1
0 (Ω).

It is proved in [Vol00b] that for all u ∈ L2(Ω◦) there exists at least one y ∈ H1
0 (Ω)

satisfying ∫
Ω

νy′ϕ′ + yy′ϕdx = 〈f + E(u), ϕ〉H−1,H1
0

for all ϕ ∈ H1
0 (Ω),

i.e., (2.1) has at least one variational solution. The cost function is of the tracking
type:

J(y, u) =
1

2

∫
Ω

|y − z|2 dt+
α

2

∫
Ω◦
|u|2 dt,

where z ∈ L2(Ω) denotes a desired state and α > 0 is fixed. We introduce the
nonlinear operator e = H1

0 (Ω)× L2(Ω◦)→ H1
0 (Ω) such that

e(y, u) = (−∆)−1
(− νy′′ + yy′ − f − E(u)

)
,
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where ∆ is the Laplace operator from H1
0 (Ω) to H−1(Ω); i.e., for f̃ ∈ H−1(Ω) v =

(−∆)−1(f̃) solves ∫
Ω

v′ϕ′ dt = 〈f̃ , ϕ〉H−1,H1
0

for all ϕ ∈ H1
0 (Ω).

The resulting optimal control problem is of the form (P) with X = H1
0 (Ω)× L2(Ω◦)

and Y = H1
0 (Ω).

For SQP methods in Hilbert spaces the following smoothness assumptions are
imposed on J and e.

Assumption 1. J and e are twice continuously Fréchet-differentiable, and the
mappings J ′′ and e′′ are Lipschitz-continuous in a neighborhood U(x0) of some given
point x0 ∈ X.

Remark 2.2. In Example 2.1 both J and e are twice continuously Fréchet-
differentiable in X = H1

0 (Ω)× L2(Ω◦). In particular, for (y, u) ∈ X we have

J ′(y, u) =

(
(−∆)−1

(〈y − z, ·〉L2

)
αu

)
∈ X,

J ′′(y, u)(v, q) =

(
(−∆)−1

(〈v, ·〉L2

)
αq

)
∈ X,

e′(y, u)(v, q) = (−∆)−1
(− νv′′ + (yv)′ − E(q)

) ∈ Y,
e′′(y, u)(v, q)(w, p) = (−∆)−1

(〈(vw)′, ·〉L2

) ∈ Y
(2.3)

for (v, q), (w, p) ∈ X. Since the second Fréchet-derivatives of J and e do not depend
on (y, u), J ′′ and e′′ are Lipschitz-continuous in the whole space X.

The Lagrange multiplier rule holds for (1.5) if the following regularity condition
is true.

Assumption 2. The Fréchet derivative e′(x0) is surjective.
Remark 2.3. In [Vol00b] it was shown that for Example 2.1 the operator e′(y, u)

is surjective for all (y, u) ∈ X. In particular, Assumption 2 is satisfied.
Assumption 3. Let Λ : X → Y denote a continuous mapping with a uniform

Lipschitz-constant γΛ ≥ 0 on the set U(x0), i.e.,

‖Λ(x)− Λ(x̄)‖Y ≤ γΛ ‖x− x̄‖X for all x, x̄ ∈ U(x0).(2.4)

The function Λ denotes the Lipschitz-continuous update for the Lagrange multiplier.
Remark 2.4. In case of the least-squares update (1.5) we have

Λ(x) = − (e′(x)e′(x)�)
−1
e′(x)J ′(x).(2.5)

Under Assumptions 1 and 2 we conclude that Λ is Lipschitz-continuous in a neighbor-
hood of x0. In fact, Assumption 2 implies that e′(x)� is injective in a neighborhood of
x0. It follows from the closed range theorem [Bre87, p. 29] that there exists a β > 0
such that

〈e′(x)e′(x)�λ, λ〉X = ‖e′(x)∗λ‖2X ≥ β ‖λ‖2Y for all λ ∈ Y.
Hence, e′(x)e′(x)� is a positive operator and thus invertible.

Remark 2.5. We specify (2.5) for Example 2.1. Let (y, u) ∈ X and let v be the
solution of the Poisson problem

−v′′ = y − z in H−1(Ω), v(0) = v(1) = 0.
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Using (2.3) we set

q = (−∆)−1 (e′(y, u)J ′(y, u)) = −νv′′ + (yv)′ − αE(u) ∈ H−1(Ω).(2.6)

Note that the adjoint of (−∆)−1 is given by its inverse operator −∆. It follows that
for λ ∈ H1

0 (Ω),

(−∆)−1e′(y, u)e′(y, u)�λ = (−∆)−1e′(y, u)
(
(−∆)−1(−νλ′′ − yλ′), E�(−∆)(λ)

)
= −νλ̃′′ + (yλ̃)′ − EE�(−∆)(λ),

where λ̃ = (−∆)−1(−νλ′′ − yλ′) ∈ H1
0 (Ω). The adjoint E� of E is given by E�(f) =

[(−∆)−1(f)]|Ω◦ ∈ L2(Ω◦) for any f ∈ H−1(Ω). Then λ = Λ(y, u) is the unique
solution (λ, λ̃) ∈ H1

0 (Ω)×H1
0 (Ω) of the linear system{ −νλ̃′′ + (yλ̃)′ + EE�(λ′′) = −q in H−1(Ω),

−λ̃′′ + νλ′′ + yλ′ = 0 in H−1(Ω).
(2.7)

We give a sufficient condition that the first-order necessary optimality conditions
for problem (P),

L′
c(x, λ) = 0, e(x) = 0 for c ≥ 0,(2.8)

have a solution. Note that L′
c is the derivative of the augmented Lagrangian (1.2)

with respect to x.
Define the vector

Rc(x) =

(
L′
c(x,Λ(x))
e(x)

)

and matrix

Mc(x) = ∇(x,λ)

(
L′
c(x, λ)
e(x)

)∣∣∣∣
λ=Λ(x)

=

(
L′′
c (x,Λ(x)) e′(x)�

e′(x) 0

)
(2.9)

for all x ∈ U(x0) and for c ≥ 0. Since Λ, e, L′
c, e

′, and L′′
c are Lipschitz-continuous

in U(x0), the maps Rc and Mc are also Lipschitz-continuous with Lipschitz-constants
γR > 0 and γM > 0. For convenience, we assume that γM is also the Lipschitz-
constant for

∇(x,λ)

(
L′
c(x, λ)
e(x)

)
=

(
L′′
c (x, λ) e′(x)�

e′(x) 0

)

in a neighborhood of (x0,Λ(x0)). To guarantee the invertibility of the matrix Mc at
x0 we need Assumption 2 and the following condition.

Assumption 4. The operator L′′
0(x0,Λ(x0)) is coercive on the null space of e′(x0),

i.e., there exists a constant κ > 0 such that

L′′
0(x0,Λ(x0))(φ, φ) ≥ κ ‖φ‖2X for all φ ∈ N(e′(x0)).

Remark 2.6. In case x0 = x∗ and λ∗ = Λ(x∗), this assumption includes the usual
second-order sufficient optimality condition. However, other choices are also possible.
For example, in the case Λ(x0) = 0 Assumption 4 means J ′′(x0) must be positive
definite on the null space of e′(x0).



238 E. SACHS AND S. VOLKWEIN

Remark 2.7. We discuss Assumption 4 for the least-squares update applied to
Example 2.1. Let x0 = (y0, u0) ∈ X. For arbitrary φ = (v, q) ∈ N(e′(x0))

L′′
0(x0,Λ(x0))(φ, φ) = ‖v‖2L2 + α ‖q‖2L2(Ω◦) + 2

∫
Ω

vv′Λ(x0) dx

≥ α ‖q‖2L2(Ω◦) − 2

∫
Ω

vv′
(
e′(x0)e′(x0)�

)−1
e′(x0)J ′(x0) dx.

Note that there exists a constant C1 > 0 such that ‖(e′(x0)e′(x0)�)−1‖L(H1
0 ) ≤ C1.

This bound and the Hölder inequality imply that

L′′
0(x0,Λ(x0))(φ, φ) ≥ α ‖q‖2L2(Ω◦) − 2C1 ‖v‖L∞ ‖v′‖L2 ‖e′(x0)J ′(x0)‖H1

0
.(2.10)

Here we also use the estimate ‖v‖L∞ ≤ ‖v‖H1
0

which holds for all v ∈ H1
0 (Ω). It may

be inferred from (2.6) that

‖e′(x0)J ′(x0)‖H1
0

= ‖ − νw′′ + (wy0)′ − αE(u0)‖H−1 ,

where we put w = (−∆)−1(〈y0 − z, ·〉L2). Since φ = (v, q) ∈ N(e′(x0)), we obtain
that −νv′′ + (y0v)′ − E(q) = 0 in H−1(Ω), which leads to∫

Ω

νv′ϕ′ + (y0v)′ϕdx =

∫
Ω◦
qϕ dx for all ϕ ∈ H1

0 (Ω).

Using Remark B.4 of the appendix, there exists a constant C2 > 0 with

‖v‖2H1
0
≤ C2 ‖q‖2L2(Ω◦).

Thus, we have

L′′
0(x0,Λ(x0))(φ, φ) ≥ α

2
‖q‖2L2(Ω◦) +

(
α

2C2
− 2C1 ‖e′(x0)J ′(x0)‖H1

0

)
‖v‖2H1

0
.(2.11)

If the inequality

‖ − νw′′ + (wy0)′ − αE(u0)‖H−1 <
α

4C1C2
(2.12)

holds, it follows that

κ = min

(
α

2
,
α

2C2
− 2C1 ‖e′(x0)J ′(x0)‖H1

0

)
> 0

and from (2.11) we obtain

L′′
0(x0,Λ(x0))(φ, φ) ≥ κ ‖φ‖2X for all φ ∈ N(e′(x0)).

Condition (2.12) can be deduced from (2.10) if the residual ‖(y0 − z, αu0)‖L2×L2(Ω◦)

is sufficiently small.
Assumption 4 implies the existence of a constant ηc > 0 depending on c, such

that

‖Mc(x
0)−1‖L(X×Y ) ≤ ηc.(2.13)

Moreover, there exists a neighborhood V (x0) ⊆ U(x0) such that, for all x ∈ V (x0),
(a) J(x) and e(x) are twice Fréchet-differentiable and their second Fréchet-deri-

vatives are Lipschitz-continuous in V (x0);
(b) e′(x) is surjective; and
(c) L′′

0(x,Λ(x)) is coercive on the null space of e′(x).
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3. The augmented Lagrangian-SQP method with Lipschitz-continuous
Lagrange multiplier update. If the Newton multiplier update (1.3) is used in
Algorithm 2, then the rate of convergence results hold for the pair of iterates (x, λ)
[IK96, KS97]. If one uses a Lipschitz-continuous multiplier update, the dependence on
λn is eliminated and we derive convergence estimates that depend only on the variable
x. We consider the map xn �→ xn+1 and omit λ. Note that the solution to (QP) is
given by the first component of Mc(x

n)−1Rc(x
n) ∈ X × Y [Kle97]. Therefore, we

introduce the linear and bounded projection P : X × Y → X defined by P(x, λ) = x
for all (x, λ) ∈ X × Y . We formulate Algorithm 2 using a Lipschitz-continuous
multiplier update.

Algorithm 2.
(a) Choose x0 ∈ V (x0), c ≥ 0, and set n = 0.
(b) Compute

xn+1 = xn − P (Mc(x
n)−1Rc(x

n)
)
.(3.1)

(c) Set n = n+ 1 and go back to (b).
Define the nonlinear operator Φc : X → X such that

Φc(x) = x− P (Mc(x)−1Rc(x)
)

for c ≥ 0.

The computation (3.1) can be written as a fixed-point iteration xn+1 = Φc(x
n) for

n = 0, 1, . . . .
In (1.3) we introduced the Newton multiplier update ΛN . On the neighborhood

V (x0) of x0 the element ΛN (x,Λ(x)) is well defined and there exists a constant γN > 0
satisfying

‖ΛN (x,Λ(x))− ΛN (x̄,Λ(x̄))‖Y ≤ γN ‖x− x̄‖X for all x, x̄ ∈ V (x0).

In particular, ΛN (x,Λ(x)) satisfies

Mc(x)

(
Φc(x)− x

ΛN (x,Λ(x))

)
= −Rc(x).(3.2)

Remark 3.1. From (3.2) and (2.13) we infer that

‖x1 − x0‖X = ‖Φc(x0)− x0‖X = ‖P(Mc(x
0)−1Rc(x

0))‖X ≤ ηc ‖Rc(x0)‖X×Y

holds. Thus we conclude that ‖x1 − x0‖X is small if ‖Rc(x0)‖X×Y is sufficiently
small.

The following theorem is of the Kantorovich type since it makes assumptions only
on the initial iterate and some problem data rather than on an unknown solution of
the problem.

Theorem 3.2. Let Assumptions 1–4 at some x0 ∈ X be valid. Assume that

‖ΛN (x0,Λ(x0))‖Y ≤
1

4γMηc
(3.3)

and

‖Φc(x0)− x0‖X ≤
1

16p1
(3.4)
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with p1 = ηcγM ((1 + γ2
Λ)2 + 2γΛ)/2. Then the iterates defined by Algorithm 2 lie in

D = V (x0) ∩ {x ∈ X : ‖x− x0‖X < .
}
,

where . = min
(
(γMηc)

−1, (2γNγMηc)
−1, p−1

1

)
/2, and converge to a fixed point x∗ ∈ D

satisfying

x∗ = Φc(x
∗),(3.5)

i.e., x∗ solves P(Mc(x
∗)−1Rc(x

∗)) = 0.
Proof. To prove the claim we want to apply Lemma A.2; see Appendix A. There-

fore, we have to estimate ‖Φc(Φc(x))−Φc(x)‖X for x,Φc(x) ∈ D. First we show that
Φc is well defined on D. We have for all x ∈ D

‖Mc(x)−Mc(x
0)‖L(X×Y ) ≤ γM ‖x− x0‖X < γM. <

1

2ηc
<

1

ηc
.(3.6)

It follows from (2.13) and (3.6) that

‖Mc(x
0)−1‖L(X×Y ) ‖Mc(x)−Mc(x

0)‖L(X×Y ) < 1.

Now the Banach lemma [OR70, p. 45] gives

‖Mc(x)−1‖L(X×Y ) ≤
ηc

1− ηcγM ‖x− x0‖X
≤ 2ηc for all x ∈ D.(3.7)

This implies that Φc is well defined on D. Now we proceed by deriving an estimate
of the form (A.1). For that purpose let x,Φc(x) ∈ D. Then we have

‖Φc(Φc(x))− Φc(x)‖X
= ‖P[Mc(Φc(x))−1Rc(Φc(x))

]‖
X

=

∥∥∥∥P
[
Mc(Φc(x))−1

{
Rc(Φc(x))−Rc(x)−Mc(x)

(
Φc(x)− x

Λ(Φc(x))− Λ(x)

)

+ (Mc(x)−Mc(Φc(x)))

(
0

Λ(Φc(x))− Λ(x)− ΛN (x,Λ(x))

)

+Mc(Φc(x))

(
0

Λ(Φc(x))− Λ(x)− ΛN (x,Λ(x))

)}] ∥∥∥∥
X

.

(3.8)

From the expression

Rc(Φ(x))−Rc(x)−Mc(x)

(
Φc(x)− x

Λ(Φc(x))− Λ(x)

)

=

(
L′
c(Φc(x),Λ(Φc(x)))

e(Φc(x))

)
−
(
L′
c(x,Λ(x))
e(x)

)

−∇(x,λ)

(
L′
c(x, λ)
e(x)

)∣∣∣∣
λ=Λ(x)

(
Φc(x)− x

Λ(Φc(x))− Λ(x)

)

and Lemma 3.2.12 in [OR70, p. 73] we obtain that∥∥∥∥∥Rc(Φ(x))−Rc(x)−Mc(x)

(
Φc(x)− x

Λ(Φc(x))− Λ(x)

)∥∥∥∥∥
X×Y

≤ γM
2
‖(Φc(x)− x,Λ(Φc(x))− Λ(x))‖2X×Y

≤ γM
2

(1 + γ2
Λ) ‖Φc(x)− x‖2X .

(3.9)
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Furthermore,

P
[
Mc(Φc(x))−1Mc(Φc(x))

(
0

Λ(Φc(x))− Λ(x)− ΛN (x,Λ(x))

)]
= 0.(3.10)

Since P is linear, we derive from (3.8), (3.9), and (3.10) that

‖Φc(Φc(x))− Φc(x)‖X
≤ ‖Mc(Φc(x))−1‖L(X×Y )

(γM
2

(1 + γ2
Λ) + γΛγM

)
‖Φc(x)− x‖2X

+ ‖Mc(Φc(x))−1‖L(X×Y )γM‖ΛN (x,Λ(x))‖Y ‖Φc(x)− x‖X .
(3.11)

Using (3.3) the term ‖ΛN (x,Λ(x))‖Y can be estimated as follows:

‖ΛN (x,Λ(x))‖Y ≤ ‖ΛN (x0,Λ(x0))‖Y + ‖ΛN (x,Λ(x))− ΛN (x0,Λ(x0))‖Y
≤ 1

4γMηc
+ γN ‖x− x0‖X <

1

4γMηc
+ γN. ≤ 1

2γMηc
.

Define p2 = 1/2 and p3 = 2p1. Then, we have p3 ≥ γMηc such that we conclude from
(3.7) and (3.11) that

‖Φc(Φc(x))− Φc(x)‖X ≤
p1 ‖Φc(x)− x‖2X + p2 ‖Φc(x)− x‖X

1− p3 ‖Φc(x)− x0‖X
(3.12)

for all x,Φc(x) ∈ D. Note that ‖Φc(x)− x0‖X < . ≤ 1/p3. Thus (A.1) holds with

ϕ : [0,∞)×
[
0,

1

p3

)
→ R, (t, s) �→ p1t

2 + p2t

1− p3s .

Obviously, ϕ is monotonically increasing in both variables. Note that p1 > 0, p2 ≥ 0,
and 2p1 = p3. Hence p1, p2, and p3 satisfy the hypotheses of Lemma A.3. Using
Lemmas A.2 and A.3 we have proved the theorem.

Remark 3.3. From Theorem 3.2, the iterates xn+1 = Φc(x
n), n ≤ 1, lie in D.

Applying estimate (3.12) for xn+1 ∈ D leads to

‖xn+1 − xn‖X ≤
p1 ‖xn − xn−1‖2X + p2 ‖xn − xn−1‖X

1− p3 ‖xn − x0‖X
for n ≥ 1.

If ‖xn − x0‖X ≤ 1/(2p3), we obtain

‖xn+1 − xn‖X ≤
p1
2
‖xn − xn−1‖2X +

p2
2
‖xn − xn−1‖X for n ≥ 1.

This is an estimate for the iterates of the sequence {xn}n∈N. To prove the quadratic
convergence of the fixed-point iteration we need, in addition, that λ∗ = Λ(x∗) is
satisfied; see Theorem 3.6 below.

Theorem 3.2 yields not only the existence of a fixed point x∗ but also the existence
of a pair (x∗, λ∗) ∈ D × Y that solves the first-order necessary optimality conditions
(2.8) for problem (P).

Corollary 3.4. Under the hypotheses of Theorem 3.2 the multiplier λ∗ =
ΛN (x∗,Λ(x∗)) + Λ(x∗) ∈ Y satisfies together with x∗ the first-order necessary op-
timality conditions for problem (P).
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Proof. Equations (2.9), (3.2), and (3.5) give

e′(x∗)�ΛN (x∗,Λ(x∗)) = −L′
c(x

∗,Λ(x∗)),(3.13)

0 = −e(x∗).(3.14)

From (3.14) we have e(x∗) = 0. Equation (3.13) implies that

L′
c(x

∗,ΛN (x∗,Λ(x∗)) + Λ(x∗)) = 0 for c ≥ 0.

Setting λ∗ = ΛN (x∗,Λ(x∗)) + Λ(x∗) ∈ Y we conclude that L′
c(x

∗, λ∗) = 0.
Corollary 3.5. Let all hypotheses of Theorem 3.2 hold. In case of the least-

squares update we have λ∗ = Λ(x∗). Furthermore, x∗ is a solution to (P).
Proof. From (3.13) and e(x∗) = 0 we obtain that

e′(x∗)�ΛN (x∗,Λ(x∗)) = −J ′(x∗)− e′(x∗)�Λ(x∗)

= −J ′(x∗) + e′(x∗)�(e′(x∗)e′(x∗)�)−1e′(x∗)J ′(x∗).

Since e′(x∗) is surjective, we have (e′(x∗)e′(x∗)�)−1 ∈ L(Y ). Hence, ΛN (x∗,Λ(x∗)) =
0 and λ∗ = ΛN (x∗,Λ(x∗)) + Λ(x∗) = Λ(x∗). The rest follows directly from the
second-order sufficient optimality condition (Remark 2.6).

If λ∗ = Λ(x∗) for a Lipschitz-continuous multiplier update is used in Algorithm 2,
then it is possible to recover the q-quadratic rate of convergence in the iterates xn.
For the proof we refer to [KS97].

Theorem 3.6. Let all hypotheses of Theorem 3.2 and λ∗ = Λ(x∗) hold. Then
there exists ε > 0 such that for all x0 ∈ B(x∗, ε) the sequence xn+1 = Φc(x

n) converges
to x∗ and

‖xn+1 − x∗‖X ≤ C ‖xn − x∗‖2X for n = 0, 1, . . .(3.15)

and

‖λn+1 − λ∗‖X ≤ γΛC ‖xn − x∗‖2X for n = 0, 1, . . .

for a constant C > 0, which is independent of n.

4. Application for discretization methods. Let X and Y be infinite-dimen-
sional Hilbert spaces. The goal of this section is to prove convergence of the discretized
version of Algorithm 3 to a solution of the discrete first-order necessary optimality
conditions. The existence of such a solution can also be demonstrated by Theorem 3.2.

We assume the following: the constrained minimization problem (P) has a local
solution x∗; J and e are twice continuously Fréchet-differentiable; the mappings J ′′

and e′′ are Lipschitz-continuous; e′(x) is surjective in the neighborhood U(x∗) of
x∗; and L′′

0(x,Λ(x)) is coercive on the null space of e′(x) in U(x∗) of x∗ (see the
Assumptions 1–4).

Since e′(x∗) is surjective, there exists an element λ∗ ∈ Y satisfying the first-order
necessary optimality conditions

L′
c(x

∗, λ∗) = L′(x∗, λ∗) = 0 and e(x∗) = 0 for all c ≥ 0.(4.1)

In addition to (2.4) we assume that the multiplier update Λ satisfies

Λ(x∗) = λ∗.(4.2)
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Remark 4.1. In Remark 2.4 we introduced the least-squares update

Λ(x) = − (e′(x)e′(x)�)
−1
e′(x)J ′(x).

Using (4.1) we get J ′(x∗) = −e′(x∗)�λ∗. Thus, (4.2) holds for the least-squares
update.

Since X and Y are infinite-dimensional real Hilbert spaces, they have to be dis-
cretized for a numerical solution of (P). For this purpose we suppose that we are given
finite-dimensional spaces {Xh}h and {Yh}h approximating X and Y , respectively.

Let pXh ∈ L(Xh, X) and pYh ∈ L(Yh, Y ) be given injective prolongations. In
addition, we introduce surjective restrictions rXh ∈ L(X,Xh) and rYh ∈ L(Y, Yh). For
brevity we set ph = (pXh , p

Y
h ) and rh = (rXh , r

Y
h ).

In many applications it turns out that the solution (x∗, λ∗) of (4.1) as well as the
iterates xn of Algorithm 2 have “better smoothness” than the elements of X ×Y and
X, respectively. This is a motivation for the following assumption.

Assumption 5. There are bounded subsets V ∗ ⊂ X such that

x∗, xn, xn − x∗, xn+1 − xn ∈ V ∗(4.3)

hold for all n = 0, 1, . . . .
Let eh, L′

h, L′′
h, and e′h denote Lipschitz-continuous discretizations of the operators

e, L′
0, L′′

0 , and e′, respectively. We refer the reader to [Vol00a], where Lipschitz-
continuous discretizations are introduced as internal approximations of the infinite-
dimensional operators, for instance, eh = (pYh )� ◦ e ◦ pXh . Further, we define Λh =
rYh ◦ Λ ◦ pXh .

We make the following assumptions on the discretization method.
Assumption 6. The discretization methods are described by a family of quadru-

ples

{Rc,h,Mc,h, ph, rh} for h > 0,(4.4)

where the operators

Rc,h : Uh ⊆ Xh → Xh × Yh, Mc,h : Uh ⊆ Xh → L(Xh × Yh) for h > 0

are given by

Rc,h(xh) =

(
L′

0(xh,Λh(xh))
eh(xh)

)
, Mc,h(xh) =

(
L′′

0(xh,Λh(xh)) e′h(xh)�

e′h(xh) 0

)
,

and

rXh (U(x∗) ∩ V ∗) ⊆ Uh for h > 0.(4.5)

The discretization (4.4) is Lipschitz-uniform with respect to h, i.e., there exist con-
stants r > 0, ΓR > 0, and ΓM > 0 independent of h such that

Bh = {xh ∈ Xh : ‖xh − rXh x∗‖X ≤ r} ⊆ Uh for h > 0(4.6)

and

‖Rc,h(xh)−Rc,h(x̄h)‖X×Y ≤ ΓR ‖xh − x̄h‖X ,
‖Mc,h(xh)−Mc,h(x̄h)‖L(Xh×Yh) ≤ ΓM ‖xh − xh‖X

(4.7)

for all xh, x̄h ∈ Bh. Moreover, the discretization family {Rc,h,Mc,h, ph, rh}h>0 is
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(1) uniformly bounded, i.e., there exists a constant µ > 0 independent of h such
that

‖ph‖L(Xh×Yh,X×Y ) ≤ µ and ‖rh‖L(X×Y,Xh×Yh) ≤ µ;(4.8)

(2) stable in Uh, i.e.,

‖Mc,h(xh)−1‖L(Xh×Yh) ≤ σc for all xh ∈ Uh,

where the constant ηc > 0 does not depend on h; and
(3) consistent of order s > 0, i.e., there is a constant C̄ > 0 independent of h

such that

‖Rc,h(rXh x)− (ph)�Rc(x)‖X×Y ≤ C̄hs

for all x ∈ U(x∗) ∩ V ∗.
We derive from (2.4) and (4.8) that

‖Λh(rXh x)− Λh(rXh x̄)‖Y = ‖rYh
(
Λ(pXh r

X
h x)− Λ(pXh r

X
h x̄))‖

Y
≤ µ2γΛ ‖rXh x− rXh x̄‖X

for all x, x̄ ∈ U(x∗). Hence, ΓΛ = µ2γΛ is a uniform Lipschitz-constant for Λh.
To formulate the discretization of Algorithm 2 we need the following linear and

bounded projection Ph : Xh× Yh → Xh defined by Ph(xh, λh) = xh for all (xh, λh) ∈
Xh × Yh.

Algorithm 3.
(a) Choose c ≥ 0, x0

h ∈ Uh, and n = 0.
(b) Compute

xn+1
h = Φc,h(xnh) = xnh − Ph

(
Mc,h(xnh)−1Rc,h(xnh)

)
.(4.9)

(c) Set n = n+ 1 and go back to (b).
Theorem 4.2. Let Assumptions 1–6 hold. Then there exists an h̄ ∈ [0, 1] such

that for all h ∈ (0, h̄] the operators Φc,h possess fixed points x∗h satisfying

‖x∗h − rXh x∗‖X = O(hs).(4.10)

If in addition ‖x0 − x∗‖X is sufficiently small, then there exists an h̃ ∈ (0, h̄] such
that for all h ∈ (0, h̃] the sequence xn+1

h = Φc,h(xnh) with the starting value x0
h = rXh x

∗

converges to x∗h.
Proof. We apply Theorem 3.2 to prove this claim. In the constants p1 and . of

Theorem 3.2 we replace γM and γΛ by the Lipschitz-constants of Mc,h and Λh, i.e.,

p1 =
1

2
σcΓM

(
(1 + Γ2

Λ)2 + 2ΓΛ

)
.

Further, define the constant

ρ = min

(
1

8σ2
cΓRΓM

,
1

2p1

)

and the set

Dh =
{
x ∈ Bh : ‖xh − rXh x∗‖Xh

< ρ
}
.



AUGMENTED LAGRANGE-SQP METHODS 245

We prove that the claim holds for

h̄ = min

((
1

8σ2
c C̄ΓM

)1/s

,

(
1

16p1σcC̄

)1/s
)
.(4.11)

By applying Assumption 6 we find that

‖Mc,h(x0
h)−1‖L(Xh×Yh) ≤ σc

for a constant ηc > 0 independent of h. This is the estimate (2.13). Condition (3.3)
has the form

‖ΛN,h(x0
h,Λh(x0))‖Y <

1

4ΓMσc
,(4.12)

where ΛN,h(x0
h,Λh(x0)) ∈ Yh satisfies

Mc,h(x0
h)

(
Φc,h(x0

h)− x0
h

ΛN,h(x0
h,Λh(x0))

)
= −Rc,h(x0

h).

We find that

‖ΛN,h(x0
h,Λh(x0))‖Y ≤ σc ‖Rc,h(x0

h)‖X×Y .(4.13)

From Rc(x
∗) = 0 and Assumption 6 we deduce that for xh ∈ Dh
‖Rc,h(xh)‖X×Y = ‖Rc,h(xh)−Rc,h(rXh x

∗)‖X×Y
+ ‖Rc,h(rXh x

∗)− (ph)�Rc(x
∗)‖X×Y

≤ ΓR ‖xh − rXh x∗‖X + C̄hs

<
1

8σ2
cΓM

+ C̄hs.

Thus (4.13) and (4.11) yield (4.12):

‖ΛN,h(x0
h,Λh(x0))‖Y ≤

1

8σcΓM
+ σcC̄h̄

s ≤ 1

4ΓMσc
.

From Assumption 6, Rc(x
∗) = 0, and x0

h = rXh x
0 we conclude that

‖Φc,h(x0
h)− x0

h‖X
≤ ‖Mc,h(x0

h)−1‖L(Xh×Yh) ‖Rc,h(rXh x
∗)− (ph)�Rc(x

∗)‖X×Y

≤ σcC̄h̄s ≤ 1

16p1
.

(4.14)

This is the estimate (3.4). Applying Theorem 3.2 leads to the existence of (x∗h, λ
∗
h)

which solve the first-order necessary optimality condition of (Ph).
We now verify (4.10). Let p2 = 1/2 and p3 = 2p1. From Lemmas A.2 and A.3

and (4.14) it follows that

‖x∗h − rXh x∗‖X = t∗ ≤ 1

p3

(
1− p2 −

√
(1− p2)2 − 4p1 ‖Φc,h(x0

h)− x0
h‖X

)

=
4p1 ‖Φc,h(x0

h)− x0
h‖X

p3

(
1− p2 +

√
(1− p2)2 − 4p1 ‖Φc,h(x0

h)− x0
h‖X

)
≤ 4p1 ‖Φc,h(x0

h)− x0
h‖X

p3(1− p2)
≤ 4p1σcC̄

p3(1− p2)
hs,
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which gives (4.10).
Remark 4.3. From Theorem 4.2 and Corollary 3.4 there exists λ∗h ∈ Yh such that

(x∗h, λ
∗
h) solves the first-order necessary optimality conditions for (Ph). If λ∗h = Λh(x∗h)

holds, the q-quadratic convergence follows for the iterates xn+1
h = Φc,h(xnh) analogous

to the proof of Theorem 3.6.

5. Application to Example 2.1. This section is devoted to the discussion of
the assumptions of Theorem 4.2 for Example 2.1.

It was proved in [Vol00b] that (P) has a solution, and that e′(y∗, u∗) is surjective,
if f ∈ L2(Ω) holds. Moreover, L′′

0(y∗, u∗, λ∗) is coercive on the null space of e′(y∗, u∗)
if ‖y∗ − z‖L2 is sufficiently small.

To approximate the Hilbert spaces X and Y in case of Example 2.1 we set
h = 1

m+1 , xj = jh for j = 0, . . . ,m + 1 and introduce piecewise linear functions

ϕ1, . . . , ϕm ∈ H1
0 (Ω) satisfying ϕi(xj) = δij . We restrict our discussion to the

case where the set Ω◦ = (a, b) ⊆ Ω is an open nonempty interval. The numbers
ia, ib ∈ {1, . . . ,m} are defined by

0 ≤ a < xia < xia+1 < · · · < xib < b ≤ 1.

For the approximation of X and Y we set

Xh = Span {ϕ1, . . . , ϕm} × Span {ϕia , . . . , ϕib}, Yh = Span {ϕ1, . . . , ϕm}.
To define the prolongations and restrictions we set

ph(yh, uh, λh) = (yh, uh, λh) for (yh, uh) ∈ Xh and λh ∈ Yh
and

rh(y, u, λ) =

(
m∑
i=0

y(xi)ϕi,
1

h

ib∑
i=ia

∫ xi+
h
2

xi−h
2

u dxϕi,

(
m−1∑
i=1

λ(xi)ϕi, µ

))

for (y, u) ∈ X and (λ, µ) ∈ Y . The Hilbert spaces Xh and Yh are endowed with the
inner products in X and Y , respectively. It follows directly that ph is a linear injective
operator satisfying ‖ph‖L(Xh×Yh,X×Y ) = 1 and that rh is linear and surjective.

We discuss Assumption 5 in the case of Example 2.1. We prove that there exists
a bounded subset V ∗ in H2(Ω)×H1(Ω◦) such that (4.3) holds. By Theorem 3.6 there
exists ε > 0 such that

lim
n→∞ ‖(y

n, un)− (y∗, u∗)‖X = 0

for all initial values (y0, u0) ∈ B((y∗, u∗); ε). Hence,

‖(yn, un)‖X ≤ C3 for all n,(5.1)

where C3 > 0 does not depend on n. This implies that

‖Λ(yn, un)‖H1
0
≤ ‖Λ(yn, un)− Λ(y∗, u∗)‖H1

0
+ ‖λ∗‖H1

0
≤ C4 for all n,(5.2)

where C4 = γgC3 + ‖(y∗, u∗)‖X + ‖λ∗‖Y is independent of n. Let y0 ∈ H2(Ω) and
u0 ∈ H1(Ω◦). Then both (5.1) and (5.2) hold with n = 0 and n = 1. If (ȳ, ū, λ̄) is the
solution of the linear system

Mc(y
0, u0)


 ȳ

ū
λ̄


 = −Rc(y0, u0) +Mc(y

0, u0)


 y0

u0

Λ(y0, u0)


 ,
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then the new iterate (y1, u1) = Φc(y
0, u0) is given by (y1, u1) = (ȳ, ū). This implies

that

−νλ̄′′ − ynλ̄′ = −ȳ + Λ(yn, un)′ȳ + z − ynΛ(yn, un)′,(5.3)

αū = λ̄,(5.4)

−νȳ′′ = −(ynȳ)′ + E(ū) + f + yn(yn)′.(5.5)

Since yn+1 ∈ L∞(Ω), we have −νλ′′− ynλ′ ∈ L2(Ω). As (5.1) holds for all n, we have
‖ȳ‖H1

0
≤ C3. To show that λ̄′′ ∈ L2(Ω) we estimate the right-hand side of (5.3):

‖ − ȳ + Λ(y0, u0)′ȳ + z − y0Λ(y0, u0)′‖L2

≤ ‖ȳ‖L2 + ‖Λ(y0, u0)‖H1
0
‖ȳ‖L∞ + ‖z‖L2 + ‖y0‖L∞ ‖Λ(y0, u0)‖H1

0

≤ C3 + C4C3 + ‖z‖L2 + C3C4 =: C5.

(5.6)

Hence λ̄′′ ∈ L2(Ω) and we can apply the Sturm–Liouville theory in Appendix B. We
obtain from Remark B.2, (5.1), and (5.6) that

‖λ̄‖H1
0
≤ 1

ν
exp

(
2

ν
‖y0‖L1

)
‖ − ȳ + Λ(y0, u0)′ȳ + z − y0Λ(y0, u0)′‖L2

≤ 1

ν
exp

(
2C3

ν

)
C5 =: C6.

(5.7)

Thus, we infer from (5.4) that

‖ū′‖L2(Ω◦) =
1

α
‖λ̄′‖L2(Ω◦) ≤

1

α
‖λ̄‖H1

0
≤ C6

α
.(5.8)

By (5.5) and (5.8) we find that

‖ȳ′′‖L2 ≤ 1

ν

(
2 ‖y0‖H1

0
‖ȳ‖H1

0
+ ‖ū‖L2(Ω◦) + ‖f‖L2 + ‖y0‖2H1

0

)
≤ 1

ν

(
2C2

3 + C3 + ‖f‖L2 + C2
3

)
=: C7.

(5.9)

Hence, (y1, u1) ∈ H2(Ω)×H1(Ω◦) and for C8 = max(C6/α,C7) it follows that

‖(y1)′′‖L2 ≤ C8 and ‖(u1)′‖L2(Ω◦) ≤ C8.(5.10)

Now let (yn, un) be given for n ≥ 0. Then (5.1) and (5.2) hold. As in the case n = 0
we derive that

‖(yn+1)′′‖L2 ≤ C8 and ‖(un+1)′‖L2(Ω◦) ≤ C8

hold, where C8 is the same constant as in (5.10). The first-order necessary optimality
conditions for Example 2.1 are given by

y∗ − z − ν(λ∗)′′ − y∗(λ∗)′ = 0 in Ω (the adjoint equation),

αu∗ − λ∗ = 0 in Ω◦ (the optimality condition),

−ν(y∗)′′ + y∗(y∗)′ − f − E(u∗) = 0 in Ω (the state equation).

By using Remark B.2, the adjoint equation, and ‖y∗‖H1
0
≤ C3 it can be shown that

‖λ∗‖H1
0
≤ 1

ν
exp

(
2

ν
‖y∗‖L2

)
‖y∗ − z‖L2 ≤ C6,



248 E. SACHS AND S. VOLKWEIN

where the constant C6 > 0 is given by estimate (5.7). Thus, from the optimality
condition we infer that ‖(u∗)′‖L2(Ω◦) ≤ C6/α, which coincides with estimate (5.8).
The state equation gives

‖(y∗)′′‖L2 ≤ 1

ν

(
2 ‖y∗‖L∞ ‖y∗‖H1

0
+ ‖u∗‖L2(Ω◦) + ‖f‖L2

)
≤ C7,

where the constant C7 > 0 is given by estimate (5.9). We set

V ∗ =
{

(v, q) ∈ H2(Ω)×H1(Ω◦) : ‖v′′‖L2 ≤ 2C8 and ‖q′‖L2(Ω◦) ≤ 2C8

}
.(5.11)

Thus, we obtain that

(y∗, u∗), (yn, un), (yn, un)− (y∗, u∗), (yn+1, un+1)− (yn, un) ∈ V ∗.

Now let us discuss Assumption 6 in case of Example 2.1.
(a) We have ‖ph‖L(Xh×Yh,X×Y ) = 1. It was proved in [Aub72, p. 38] that

lim
h→∞

‖((y, u), λ)− rh((y, u), λ)‖X×Y = 0 for all ((y, u), λ) ∈ X × Y.

Hence ‖rh((y, u), λ)‖X×Y is bounded for all ((y, u), λ) ∈ X×Y . According to
the principle of uniform boundedness [Wou79, p. 112], there exists a constant
C9 > 0 such that ‖rh‖L(X×Y,Xh×Yh) ≤ C9. Thus, the discretization family is
uniformly bounded.

(b) If we define the operator Rc,h by the internal approximation of Rc, i.e., Rc,h =
(ph)� ◦Rc ◦ pXh , then it follows from ‖p�h‖L(X×Y,Xh×Yh) = 1 that

‖Rc,h(yh, uh)−Rc,h(ȳh, ūh)‖Xh×Yh
≤ γR ‖(yh, uh)− (ȳh, ūh)‖X×Y .

Analogously, if we define Mc,h(·) = (ph)� ◦Mc(p
X
h (·)) ◦ pXh , we find that

‖Mc,h(yh, uh)−Mc,h(ȳh, ūh)‖L(Xh×Yh) ≤ γM ‖(yh, uh)− (ȳh, ūh)‖X×Y .

Thus, (4.7) follows with ΓR = γR and ΓM = γM .
(c) The discretization family is stable in Uh if the uniform sufficient optimality

condition

L′′
h(yh, uh,Λh(yh, uh))(φh, φh) ≥ κ∗ ‖φh‖2X for all φh ∈ N(e′h(yh, uh))

(5.12)

and the uniform Babuška–Brezzi condition

inf
λh∈Yh\{0}

sup
φh∈Xh\{0}

〈e′h(yh, uh)�λh, φh〉X
‖φh‖X ‖λh‖Y

≥ β∗(5.13)

hold for all (yh, uh) ∈ Uh and constants κ∗ ≥ 0 and β∗ > 0 that do not
depend on h; see [GR86, p. 114]. If we define L′′

h = (pXh )� ◦ L′′
0(ph(·)) ◦ pXh

and use (a), then (5.12) leads to

L′′(yh, uh,Λh(yh, uh))(φh, φh) ≥ κ∗ ‖φh‖2X for all φh ∈ N(e′h(yh, uh)).

Hence, (5.12) follows if L′′
0 is coercive in the whole space X. It is proved in

[Vol00b] that (5.13) holds if the mesh-size is sufficiently small and if (yh, uh)
is sufficiently close to rXh (x∗, u∗).
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Table 1
Rc,h(y

n
h , u

n
h) for the Newton (ΛN ) and the least-squares update (Λ).

n Rc,h(y
n
h , u

n
h) for ΛN Rc,h(y

n
h , u

n
h) for Λ

1 1.56e-01 1.62e-01
2 5.98e-02 4.33e-02
3 7.30e-03 9.15e-03
4 1.31e-03 1.29e-03
5 1.04e-04 5.26e-06
6 1.56e-09 1.37e-09
7 6.42e-14 5.87e-14

(d) In (5.11) we introduced the set V ∗. Standard estimates for finite elements
(see, for instance, [Hac92]) lead to

‖(y, u)− rXh (y, u)‖X ≤ C10h for all (y, u) ∈ V ∗.

Thus,

‖Rc,h(rXh (y, u))− (ph)�Rc(y, u)‖X×Y ≤ γR ‖pXh rXh (y, u)− (ȳ, ū)‖X×Y
≤ γRC10h = C11h,

with C11 = γRC10, so that the discretization family is consistent of order
s = 1.

6. Numerical example. Let us consider the optimal control problem

minimize J(y, u) =
1

2
‖y − z‖2L2 +

α

2
‖u‖2L2(Ω◦)

with z(x) = sin(2πx), Ω = (0, 1), Ω◦ = (0, 0.5), and α = 0.001

subject to − νy′′ + yy′ = E(u) in Ω and y(0) = 0, y(1) = 0,

where ν = 0.01. The codes are written in MATLAB 5.3 and executed on a 550 MHz
PC Pentium III. We apply the augmented Lagrangian-SQP method with c = 1 and
compare the Newton update ΛN with the least-squares update Λ given in (2.5). The
two algorithms are stopped if

‖Rc(ynh , unh)‖X×Y < 10−10.

As initial iterates we choose y0
h = z and u0

h = 0, and the step-size h is set equal to
1

150 . It turns out that both updates behave similarly; see Table 1.
Further, the second-order convergence rate in the variables (ynh , u

n
h) can be ob-

served empirically in both cases. For this purpose we define

eh(n) =
‖(ynh , unh)− (y∗h, u

∗
h)‖H1×L2

‖(yn−1
h , un−1

h )− (y∗h, u
∗
h)‖2

H1×L2

for n ≥ 2.

Then we observe in Table 2 that the term eh(n) is bounded, which yields the quadratic
convergence rate of convergence.

An important feature of iterative approximation schemes for infinite-dimensional
problems is mesh-independence. It asserts that the number or iterations to reach a
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Table 2
eh(n) for the Newton (ΛN ) and the least-squares update (Λ).

n eh(n) for ΛN eh(n) for Λ

1 1.33e− 01 1.33e− 01
2 3.63e− 01 2.80e− 01
3 3.98e + 00 5.90e + 00
4 1.66e− 00 3.43e− 01
5 1.44e− 00 5.89e + 00
6 4.29e− 01 1.29e + 00

Table 3
nh(ε) for different h.

m = 1/h 150 200 300 500 700 900 1300

ε = 10−0 1 1 1 1 1 1 1

ε = 10−1 2 2 2 2 2 1 1

ε = 10−2 3 3 3 3 3 2 2

ε = 10−3 5 4 4 4 4 4 4

ε = 10−4 5 5 5 5 5 5 5

ε = 10−5 5 5 5 5 5 5 5

ε = 10−6 6 6 5 5 5 5 5

ε = 10−7 6 6 6 6 6 6 6

ε = 10−8 6 6 6 6 6 6 6

ε = 10−9 7 7 6 6 6 6 6

certain approximation quality ε > 0 is independent of the mesh-size. Let us introduce
the following notation:

nh(ε) = min
{
n◦|n ≥ n◦ : ‖Rc,h(xnh)‖X×Y < ε

}
.

From Table 3 one can observe empirically that Algorithm 3 has a mesh-independent
behavior. For a proof we refer the reader to [Vol01].

7. Conclusions. In this paper we prove convergence results of the Kantorovich
type for Lagrange-SQP methods. The theory is extended to the case of Lipschitz-
continuous multiplier updates and is applied to obtain convergence rates for the dis-
cretized optimization problems. In addition, we obtain the existence of stationary
points for the discretized problems. The assumptions are verified for an optimal
control problem for the steady-state Burgers equation, and a numerical example il-
lustrates the theoretical results. Numerical examples for the augmented Lagrange-
SQP methods with Lipschitz-continuous Lagrange multiplier updates exhibit mesh-
independence.

Appendix A. Nonlinear majorants. For more details and for the proofs we
refer the reader to [OR70, Part V].

Definition A.1. Let {xn}n∈N be any sequence in a real Hilbert space X. Then
a sequence {tn}n∈N ⊂ [0,∞) for which

‖xn+1 − xn‖X ≤ tn+1 − tn , n = 0, 1, . . . ,

holds is a majorizing sequence for {xn}n∈N.
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Note that any majorizing sequence is necessarily monotonically increasing. In
the proof of Theorem 3.2 a majorizing sequence occurs as the solution of a certain
nonlinear difference equation. It is based on an estimate for Φ(Φ(x)) − Φ(x). The
idea is presented in the following lemma.

Lemma A.2. Let X be a real Hilbert space, Φ : D ⊆ X → X, and ϕ : J1 × J2 ⊂
R

2 → [0,∞), where each Ji is an interval of the form [0, α], [0, α), or [0,∞) and ϕ is
monotonically increasing in each variable. Suppose that there is an element x0 ∈ D
such that

‖Φ(Φ(x))− Φ(x)‖X ≤ ϕ
(‖Φ(x)− x‖X , ‖Φ(x)− x0‖X

)
(A.1)

holds whenever x,Φ(x) ∈ D, and that with t0 = 0, t1 = ‖Φ(x0) − x0‖X the solution
of the difference equation

tn+1 − tn = ϕ(tn − tn−1, tn) , n = 1, 2, . . . ,(A.2)

exists and converges to t∗ < ∞. Finally, assume that B(x0, t∗) ⊂ D. Then the
iterates xn+1 = Φ(xn), n = 0, 1, . . . , are well defined, lie in B(x0, t∗), converge to
some x∗ ∈ B(x0, t∗), and satisfy

‖x∗ − xn‖X ≤ t∗ − tn for all n = 0, 1, . . . .

If x∗ ∈ D and Φ is continuous at x∗, then x∗ = Φ(x∗).
Using (3.12) the difference equation (A.2) has the form

tn+1 − tn =
p1 (tn − tn−1)2 + p2 (tn − tn−1)

1− p3 tn for all n = 0, 1, . . . .(A.3)

The following lemma gives sufficient conditions for the convergence of the sequence
satisfying (A.3).

Lemma A.3. Assume that p1 > 0, 1 > p2 ≥ 0, 2p1 = p3, and 0 ≤ ‖Φ(x0) −
x0‖X ≤ (1 − p2)2(4p1)−1. Then the sequence {tn}n∈N of (A.3) with initial values
t0 = 0 and t1 = ‖Φ(x0)− x0‖X is strictly increasing unless ‖Φ(x0)− x0‖X = 0, and

lim
n→∞ tn = t∗ =

1

p3

(
1− p2 −

√
(1− p2)2 − 4p1 ‖Φ(x0)− x0‖X

)
.

Appendix B. Linear boundary value problems of second order. Let
f ∈ L2(Ω), y ∈ C(Ω), and ν > 0. We consider the linear boundary value problem

v′′ +
y

ν
v′ = f in Ω, v(0) = v(1) = 0.(B.1)

Let

ϕ0(x) = −
∫ x

0

exp

(
−1

ν

∫ t

0

y(s) ds

)
dt, ϕ1(x) =

∫ 1

x

exp

(
−1

ν

∫ t

0

y(s) ds

)
dt.

Observe that ϕ0 and ϕ1 are two linear independent fundamental solutions of the
homogeneous problem v′′ + y

ν v
′ = 0 with ϕ0(0) = 0 and ϕ1(1) = 0. The Green’s

function associated with problem (B.2) is given by

G(x, t) =




ϕ0(x)ϕ1(t)

ϕ1(0)
, 0 ≤ x ≤ t ≤ 1,

ϕ0(t)ϕ1(x)

ϕ1(0)
, 0 ≤ t ≤ x ≤ 1.

(B.2)
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For the proof of the next result we refer the reader to [Con78, p. 51].
Proposition B.1. Let f ∈ L2(Ω) and let G denote the Green’s function given

by (B.2). Then there exists a unique solution v ∈ H2(Ω) ∩H1
0 (Ω) of (B.1), with the

integral representation

v(x) =

∫
Ω

G(x, t)f(t) dt for x ∈ Ω.(B.3)

Remark B.2. Proposition B.1 allows us to give an H1
0 -estimate for the solution

of (B.1):

‖v‖H1
0
≤ 1

|ϕ1(1)| ‖ϕ0 ϕ1‖L∞ ‖f‖L2 ≤ exp

(
2

ν
‖y‖L1

)
‖f‖L2 .

For y ∈ C1(Ω) we consider the linear boundary value problem

v′′ − 1

ν
(yv)′ = f in Ω, v(0) = v(1) = 0.(B.4)

Let

ϕ0(x) = − exp

(∫ x

0

y(s)

ν
ds

)∫ x

0

exp

(∫ 0

t

y(s)

ν
ds

)
dt,

ϕ1(x) = exp

(∫ x

0

y(s)

ν
ds

)∫ 1

0

exp

(∫ 1

t

y(s)

ν
ds

)
dt− exp

(∫ 1

0

y(s)

ν
ds

)

· exp

(∫ x

0

y(s)

ν
ds

)∫ x

0

exp

(
−
∫ t

0

y(s)

ν
ds

)
dt.

Note that ϕ0 and ϕ1 are linear independent fundamental solutions of the homogeneous
problem v′′ 1

ν (yv)′ = 0 with ϕ0(0) = 0 and ϕ1(1) = 0. Let the Green’s function
associated with problem (B.4) be given by

G(x, t) =




ϕ0(x)ϕ1(t)

ϕ1(1)
, 0 ≤ x ≤ t ≤ 1,

ϕ0(t)ϕ1(x)

ϕ1(1)
, 0 ≤ t ≤ x ≤ 1.

(B.5)

Proposition B.3. Let f ∈ L2(Ω) and let G denote the Green’s function given
by (B.5). Then there exists a unique solution v ∈ H2(Ω ∩ H1

0 (Ω) of (B.4) with the
integral representation

v(x) =

∫
Ω

G(x, t)f(t) dt for x ∈ Ω.

Remark B.4. Proposition B.3 allows us to give an estimate for the solution of
(B.4) in the H1

0 -norm:

‖v‖H1
0
≤ max

(x,t)∈[0,1]2
|Gx(x, t)| ‖f‖L2 ≤ c◦ ‖f‖L2 ,

where

c◦ = exp

(
3

ν
‖y‖L1

)(
1 +
‖y‖L∞

ν

)2 [
1 +

1

|ϕ1(1)| exp

(
2

ν
‖y‖L1

)]
.
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AN ANALYSIS OF SMOOTHING EFFECTS OF UPWINDING
STRATEGIES FOR THE CONVECTION-DIFFUSION EQUATION∗

HOWARD C. ELMAN† AND ALISON RAMAGE‡
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Abstract. Using a technique for constructing analytic expressions for discrete solutions to
the convection-diffusion equation, we examine and characterize the effects of upwinding strategies
on solution quality. In particular, for grid-aligned flow and discretization based on bilinear finite
elements with streamline upwinding, we show precisely how the amount of upwinding included in
the discrete operator affects solution oscillations and accuracy when different types of boundary layers
are present. This analysis provides a basis for choosing a streamline upwinding parameter which also
gives accurate solutions for problems with non-grid-aligned and variable speed flows. In addition,
we show that the same analytic techniques provide insight into other discretizations, such as a finite
difference method that incorporates streamline diffusion and the isotropic artificial diffusion method.

Key words. convection-diffusion equation, oscillations, Galerkin finite element method, stream-
line diffusion

AMS subject classifications. 65N22, 65N30, 65Q05, 35J25

PII. S0036142901374877

1. Introduction. There are many discretization strategies available for the lin-
ear convection-diffusion equation

−ε∇2u(x, y) +w · ∇u(x, y) = f(x, y) in Ω,(1.1)

u(x, y) = g(x, y) on δΩ,

where the small parameter ε and divergence-free convective velocity fieldw = (w1(x, y),
w2(x, y)) are given. In this paper, we analyze some well-known methods which in-
volve the addition of upwinding to stabilize the discretization for problems involving
boundary layers. In particular, we focus on characterizing exactly how this upwinding
affects the resulting discrete solutions.

A standard discretization technique is the Galerkin finite element method (see,
for example, [5], [9], [10], [11], [13]). This is based on seeking a solution u of the weak
form of (1.1),

ε(∇u,∇v) + (w.∇u, v) = (f, v) ∀ v ∈ V,

where the test functions v are in the Sobolev space V = H1
0(Ω). Restricting this to a

finite-dimensional subspace Vh of V gives

ε(∇uh,∇v) + (w.∇uh, v) = (fh, v) ∀ v ∈ Vh,(1.2)

where fh is the L2(Ω) orthogonal projection of f into Vh and h is a discretization
parameter. Choosing the test functions equal to a set of basis functions for Vh (usually
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continuous piecewise polynomials with local support) leads to a sparse linear system
whose solution can be used to recover the discrete solution uh.

One quantity which has an important effect on the quality of the resulting discrete
solution is the mesh Péclet number

P el
e =

hel|w|
2ε

,

where hel is a measure of element size and |w| represents the strength of the convective
field within an element. In particular, if the mesh Péclet number is greater than
one, then the discrete solution obtained from the Galerkin method may exhibit non-
physical oscillations. For the one-dimensional analogue of (2.1), this is well understood
(see, for example, [10, p. 14]); for an analysis of the Galerkin discretization of the
two-dimensional case, see [2]. An approach for minimizing the deleterious effects of
these oscillations, especially in areas of the domain away from boundary layers, is
to stabilize the discrete problem by using an upwind discretization. A particularly
effective implementation of this idea is via the streamline diffusion method (see, e.g.,
[8], [9, sect. 9.7]). For linear or bilinear elements, the weak form (1.2) is replaced by

ε(∇uh,∇v) + (w.∇uh, v) +
∑

αel(w · ∇uh,w · ∇v)el = (fh, v) +
∑

αel(fh,w · ∇v)el

∀v ∈ Vh,(1.3)

where the sums are taken over all elements in the discretization. The stabilization
parameters αel are given by

αel =
δelhel

|w| ,(1.4)

where δel ≥ 0 are parameters to be chosen. Note that setting δel = 0 on each
element reduces (1.3) to the standard Galerkin case (1.2): this is the usual practice
when P el

e < 1. Formulation (1.3) has additional coercivity in the local flow direction,
resulting in improved stability. More on the motivation behind this method can be
found in [6, p. 289]. However, the best way of choosing δel for a general convection-
diffusion problem is not known: for a discussion of this difficulty, see, for example,
[13, Remark 3.34, p. 234].

In [2], we developed an analytic technique for characterizing the nature of os-
cillations in discrete solutions arising from the Galerkin discretization (1.2). More
specifically, for the case of grid-aligned flow, we presented an analytic representation
of the discrete solution, enabling isolation of any oscillatory behavior in the direction
of the flow. Using this framework, we studied the dependence of solution behavior on
the mesh Péclet number in some detail.

In this paper, we apply the tools developed in [2] to various upwinding strategies
for discretizing (1.1). For the most part, we focus on the streamline diffusion method
(1.3), examining the effect of stabilization on the quality of the resulting discrete
solutions. In section 2, we summarize the Fourier analysis presented in [2] and derive
an explicit formula for the discrete streamline diffusion solution for a model problem
with constant grid-aligned flow. Section 3 contains the details of this process in
the case of bilinear finite elements. The resulting formulae allow us to investigate
various issues which influence the choice of stabilization parameters. In section 4,
we characterize the effect of stabilization on oscillations in the discrete solution in
the flow direction for three test problems whose solutions exhibit different types of
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u=f (x)

u=f (x)b

t

l ru=f (y)u=f (y)

(1,0)

(0,1) (1,1)

(0,0)

Fig. 1. Boundary conditions.

boundary layers. The implications of this analysis for solution accuracy are examined
in section 5. In section 6, we discuss the relevance of our results for problems with non-
grid-aligned and variable flow and present our recommended choice for the streamline
diffusion parameters. Finally, in section 7, we illustrate how the same approach
can be used to understand other discretization methods. We analyze an analogous
streamline diffusion (upwind) discretization for a finite difference stencil and explain
the comparative lack of effectiveness of isotropic artificial diffusion.

2. Summary of Fourier analysis. In this section, we summarize the Fourier
techniques used in [2] to construct an analytic expression for the entries in the discrete
solution vector u.

Setting w = (0, 1) and f = 0 in (1.1), we obtain the “vertical wind” model
problem

−ε∇2u+
∂u

∂y
= 0 in Ω = (0, 1)× (0, 1),(2.1)

with Dirichlet boundary conditions as shown in Figure 1. Using a natural ordering of
the unknowns on a uniform grid of square bilinear elements with N = 1/h elements
in each dimension, both (1.2) and (1.3) give rise to a linear system

Au = f ,(2.2)

where the coefficient matrix A is of order (N − 1)2. Denoting the coefficients of the
computational molecule by

m4 m3 m4

↖ ↑ ↗
m2 ← m1 → m2

↙ ↓ ↘
m6 m5 m6

,(2.3)

the matrix A can be written as

A =




M1 M2 0
M3 M1 M2

. . .
. . .

. . .

M3 M1 M2

0 M3 M1


 ,(2.4)
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whereM1 = tridiag(m2,m1,m2),M2 = tridiag(m4,m3,m4), andM3 = tridiag(m6,m5,
m6) are all tridiagonal matrices of order N −1. Given that the eigenvalues and eigen-
vectors of the blocks of A satisfy

M1vj = λjvj , λj = m1 + 2m2 cos
jπ
N ,

M2vj = σjvj , σj = m3 + 2m4 cos
jπ
N ,

M3vj = γjvj , γj = m5 + 2m6 cos
jπ
N

(2.5)

for j = 1, . . . , N − 1, where the eigenvectors are

vj =

√
2

N

[
sin

jπ

N
, sin

2jπ

N
, . . . , sin

(N − 1)jπ
N

]T
,(2.6)

we may obtain the decomposition

A = (VP )T (VP )T ,(2.7)

where V = diag(V, V, . . . , V ) is a block diagonal matrix with each block V having the
N − 1 eigenvectors (2.6) as its columns, and P is a permutation matrix of order (N −
1)2. The matrix T is also block diagonal, with diagonal blocks Ti = tridiag(γi, λi, σi),
i = 1, . . . , N − 1. Using this decomposition and observing that P and V are both
orthogonal, (2.2) implies

u = VPy,(2.8)

where the vector y is the solution to the linear system

Ty = PTVT f ≡ f̂ .(2.9)

As T is block diagonal, this system can be partitioned into N−1 independent systems
of the form

Tiyi = f̂i,(2.10)

where Ti is defined above and y and f̂ are partitioned in the obvious way. Because Ti is
a Toeplitz matrix, each of these systems can be considered as a three-term recurrence
relation which can be solved analytically to give an expression for each entry yik of
yi, k = 1, . . . , N − 1, in (2.10). Finally, to obtain an explicit formula for the entries
of u, we permute and transform these entries via (2.8) to get

ujk =

√
2

N

N−1∑
i=1

sin
ijπ

N
yik(2.11)

for j, k = 1, . . . , N − 1.
To obtain an expression for the entries yik in (2.11), we must consider the vectors

f̂i. As f = 0 in (2.1), the only nonzero entries in the original right-hand side vector f
in (2.2) involve sums of certain matrix coefficients times boundary values, which are

transformed and permuted to obtain f̂ in (2.9). The details of this process can be

found in [2]. Here we simply state that each right-hand side vector f̂i, i = 1, . . . , N−1,
in (2.10) can be written as

f̂i =




b̄i + s̄i
s̄i
...
s̄i

t̄i + s̄i



N−1

,
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where b̄i involves data from the bottom boundary values, t̄i involves data from the
top boundary values, and s̄i combines information from the left and right boundary
values. We will make the same assumption as in [2] that the functions fl(y) and fr(y)
on the left and right boundaries are constant. This simplifies the presentation of the
analysis.

The solution of each system (2.10) is now the solution of a three-term recurrence
relation with constant coefficients whose auxiliary equation has roots

µ1(i) =
−λi +

√
λ2
i − 4σiγi

2σi
, µ2(i) =

−λi −
√

λ2
i − 4σiγi

2σi
.(2.12)

The solution of this recurrence relation can be written as

yik = F3(i) + [F1(i)− F3(i)]G1(i, k) + [F2(i)− F3(i)]G2(i, k),(2.13)

where

G1(i, k) =
µk1 − µk2
µN1 − µN2

,

G2(i, k) = (1− µk1)− (1− µN1 )

[
µk1 − µk2
µN1 − µN2

]
,

and the functions

F1(i) = − t̄i
σi

, F2(i) =
s̄i

σi + λi + γi
, F3(i) = − b̄i

γi

involve the coefficient matrix entries and boundary condition information (see [2] for
details).

We emphasize that the functions Fm(i), m = 1, 2, 3, in (2.13) are independent of
the vertical grid index k: for fixed i, the behavior of y in the streamline (vertical)
direction depends only on the functions G1(i, k) and G2(i, k). In addition, as F1(i) is
related to the top boundary values, F2(i) is related to the sum of the left and right
boundary values (which have been assumed to be constant for this analysis), and F3(i)
is related to the bottom boundary values, (2.13) shows that different boundary condi-
tions will dictate how the functions G1(i, k) and G2(i, k) combine to produce different
two-dimensional recurrence relation solutions yik. In the next section, we analyze the
behavior of these solutions in some detail for the streamline diffusion finite element
discretization (1.3) with bilinear elements.

3. Streamline diffusion discretization. In [2], an explicit expression for (2.13)
for the Galerkin finite element method with bilinear elements was derived and ana-
lyzed. Here we present the equivalent analysis for the streamline diffusion finite ele-
ment discretization (1.3) with a view to precisely characterizing the effect of the extra
diffusion on the oscillations that occur with the Galerkin method when P el

e > 1. We
again use bilinear elements. Note that for a uniform grid and constant grid-aligned
flow, δ = δel is constant over all elements.

3.1. The recurrence relation solution. The coefficients in stencil (2.3) for a
streamline diffusion discretization (1.3) using bilinear finite elements are given by

m1 =
4
3 (δh+ 2ε), m2 =

1
3 (δh− ε), m3 = − 1

3 [(2δ − 1)h+ ε],

m4 = − 1
12 [(2δ − 1)h+ 4ε], m5 = − 1

3 [(2δ + 1)h+ ε], m6 = − 1
12 [(2δ + 1)h+ 4ε].
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For convenience, we introduce the notation

Ci = cos
iπ

N

and write the eigenvalues (2.5) as

γi =
1

6
{−2[δh(2 + Ci) + ε(1 + 2Ci)]− h(2 + Ci)},

λi =
2

3
{[δh(2 + Ci) + ε(1 + 2Ci)] + 3ε(1− Ci)},

σi =
1

6
{−2[δh(2 + Ci) + ε(1 + 2Ci)] + h(2 + Ci)},

i = 1, . . . , N − 1. Substituting these into (2.12) gives the expressions

µ1,2 =

−2δ −
[
4− Ci
2 + Ci

]
1

Pe
±
√
1 +

12δ(1− Ci)

(2 + Ci)

1

Pe
+
3(5 + Ci)(1− Ci)

(2 + Ci)2
1

P 2
e

−2δ + 1−
[
1 + 2Ci
2 + Ci

]
1

Pe

(3.1)

for the auxiliary equation roots in (2.13).

3.2. Oscillations in the recurrence relation solution. We know from [2,
Thm 5.1] that if Pe > 1, then the recurrence relation solution y and the related
discrete solution u to the pure Galerkin problem (1.2) usually exhibit oscillations. In
this section we address the question of how the streamline diffusion parameter δ can
be chosen to eliminate oscillations in the recurrence relation solution y. The issue of
how this affects the resulting u will be discussed in section 3.3.

Theorem 3.1. If Pe > 1, then for any value of i ∈ SN ≡ {1, . . . , N − 1} there
exists a parameter

δci =
1

2

(
1−
[
1 + 2Ci
2 + Ci

]
1

Pe

)
(3.2)

such that δ > δci implies that G1(i, k) and G2(i, k) in (2.13) are nonoscillatory func-
tions of k.

Proof. We have

G1(i, k) =
µk1 − µk2
µN1 − µN2

=



(
µ1

µ2

)k
− 1

(
µ1

µ2

)N
− 1


µk−N2 = Θ(i, k)µk−N2 .

As |µ1/µ2| < 1, Θ(i, k) is always positive. Hence if µ2 is negative, G1(i, k) alternates
in sign as k goes from 1 to N − 1, that is, G1(i, k) is oscillatory for fixed i ∈ SN .
From (3.1), the numerator of µ2 is always negative so, for δci given by (3.2), we have
the conditions 


δ > δci ⇒ µ2 > 0, G1(i, k) is nonoscillatory,

δ < δci ⇒ µ2 < 0, G1(i, k) is oscillatory.
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Fig. 2. Plots of G1(i, k) against k for fixed i with δ = 0.2 (solid, o), δ = 0.4 (dotted, ♦), and
δ = 0.6 (dashed, �).

In addition, it can be shown that 0 < µ1 < 1 so that if G1(i, k) is nonoscillatory, then
G2(i, k) = (1− µk1)− (1− µN1 )G1(i, k) must also be nonoscillatory.

Sample plots of G1(i, k) for various values of i ∈ SN when N = 16 and Pe = 3.125
are given in Figure 2. Only the right half of the range of k has been plotted in each
case to magnify the area of interest. Each subplot shows the behavior for three distinct
values of δ, namely δ = 0.2 (solid line, o), δ = 0.4 (dotted line, ♦), and δ = 0.6 (dashed
line, �). Given the relevant critical values δc1 � 0.34, δcN/2 � 0.42, and δcN−1 � 0.65
for this problem, the dependence of oscillations on the value of δ is clear. For δ = 0.2
(that is, δ < δci for all i ∈ SN ), all functions G1(i, k) are oscillatory; for δ = 0.4,
G1(1, k) is nonoscillatory (as δ > δc1) and G1(N/2, k) is only very mildly oscillatory;
for δ = 0.6, only G1(N − 1, k) is oscillatory (as δ > δci for i = 1, N/2). Analogous
behavior is seen in Figure 3 for G2(i, k) with the same parameter values, although the
oscillations here occur about the function 1− µk1 rather than zero.

We now define

δ∗ =
1

2

(
1− 1

Pe

)
, δ∗ =

1

2

(
1 +

1

Pe

)
(3.3)
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Fig. 3. Plots of G2(i, k) against k for fixed i with δ = 0.2 (solid, o), δ = 0.4 (dotted, ♦), and
δ = 0.6 (dashed, �).

(as in [3]) so that

δ∗ < δci < δ∗(3.4)

for all values of i ∈ SN . If δ ≥ δ∗, then δ > δci for each i ∈ SN and all of the
functions G1(i, k) and G2(i, k) will be nonoscillatory in terms of k. We therefore have
the following corollary to Theorem 3.1.

Corollary 3.2. For any value of δ such that δ ≥ δ∗, the functions G1(i, k)
and G2(i, k) in (2.13) are nonoscillatory functions of k for every i ∈ SN . Hence
the recurrence relation solution y is a sum of smooth functions and will not exhibit
oscillations in the streamline direction.

The case δ = δci requires special attention. With this value, σi = 0 in (2.5) and
the resulting matrix Ti in (2.10) is bidiagonal. This leads to a two-term recurrence
relation with auxiliary equation root

ρ =
1

1 +
3(1− Ci)

2 + Ci

1

Pe
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and solution

yik = F3(i)ρ
k + F2(i)(1− ρk).(3.5)

As 0 < ρ < 1 for any i ∈ SN , yik is nonoscillatory in the streamline direction. In
addition, ρ → 1 as Pe → ∞, giving the solution yik = F3(i). Looking ahead to
section 3.3, applying transformation (2.11) gives ujk = fb(xj) (see (3.8)). This is
the solution to the reduced problem (obtained by setting ε = 0 in (2.1)) where the
bottom boundary values are simply transported in the direction of the flow without
any diffusion present. That is, with the choice δ = δci for each i, the discrete solution
is exact at every interior node in the limit as Pe → ∞.

3.3. Oscillations in the discrete solution. In this section we consider the
impact of transformation (2.11) on the recurrence relation solution y, with a view to
choosing δ to obtain an oscillation-free discrete solution u. We begin by considering
the functions Fm(i), m = 1, 2, 3, in (2.13). Following the analysis of [2, sect. 4.4 and
appendix] we can derive the following expressions

F1(i) =

√
2

N

N−1∑
s=1

ft(xs) sin
siπ

N
,

F2(i) = fl

√
2

N

N−1∑
s=1

sin
siπ

N
,(3.6)

F3(i) =

√
2

N

N−1∑
s=1

fb(xs) sin
siπ

N

for the streamline diffusion weight functions in the special case where the constant
left and right boundary values fl and fr are equal. From (2.13), we therefore have

yik =

√
2

N

N−1∑
s=1

fb(xs) sin
siπ

N
+

√
2

N

N−1∑
s=1

[ft(xs)− fb(xs)] sin
siπ

N
G1(i, k)

+

√
2

N

N−1∑
s=1

[fl − fb(xs)] sin
siπ

N
G2(i, k)(3.7)

[2, Thm 4.2]. Note that the expressions in (3.6) hold for any stencil of the form (2.3)
whose entries sum to zero. In particular, this implies that the functions in (3.6) are
the same for discretizations (1.2) and (1.3).

We now apply transformation (2.11) to (3.7) to obtain an expression for the entries
of the discrete solution vector u. As in [2], for the first term we have

√
2

N

N−1∑
i=1

sin
ijπ

N

{√
2

N

N−1∑
s=1

fb(xs) sin
siπ

N

}
= fb(xj),(3.8)

where fb(x) is the bottom boundary function in Figure 1. Applying (2.11) to the full
expression (3.7) therefore gives

ujk = fb(xj) +
2

N

N−1∑
i=1

[aijG1(i, k) + bijG2(i, k)] ,(3.9)
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where

aij = sin
ijπ

N

N−1∑
s=1

[ft(xs)− fb(xs)] sin
siπ

N
,

(3.10)

bij = sin
ijπ

N

N−1∑
s=1

[fl − fb(xs)] sin
siπ

N
.

That is, along a streamline (j fixed), u consists of the bottom boundary value on that
line plus a linear combination of the functions G1(i, k) and G2(i, k) for i ∈ SN . Note
that ai(N−j) = aij and bi(N−j) = bij , so that if fb(x) is symmetric about the center
vertical line of the grid, then so is u.

We can use the representation (3.9) to obtain insight into the effect of δ on the
quality of the solution in the streamline direction. Recall from section 3.2 that if
δ ≥ δci in (3.2), then the functions G1(i, k) and G2(i, k) are nonoscillatory in the
streamline direction for that particular i ∈ SN . It follows from Corollary 3.2 that if
δ ≥ δ∗ in (3.3), then (3.9) is a sum of smooth functions. We have therefore established
a sufficient condition for the discrete solution to be nonoscillatory.

Theorem 3.3. For a streamline diffusion discretization of (2.1) with bilinear
finite elements, the discrete solution u does not exhibit oscillations in the streamline
direction when δ ≥ δ∗.

4. Analysis of boundary layer effects. In practice, it turns out that the
restriction on δ given by Theorem 3.3 is too harsh, and better solutions can be obtained
using values of δ smaller than δ∗ due to the “smoothing” nature of transformation
(2.11). The precise effect of this transformation in the context of the behavior of the
Galerkin finite element solution for different mesh Péclet numbers was studied in [2].
Here we present a discussion of the effects of varying δ in the streamline diffusion
method. We illustrate the ideas with three examples containing different types of
boundary layers. The first two examples contain an exponential layer at the outflow
and parabolic layers along the characteristic (vertical) boundaries, respectively. The
third example has a Neumann boundary condition at the outflow, and we show that
the analysis generalizes to this case.

Throughout this section we will use notation based on considering ujk in (3.9)
as a sum of smooth and oscillatory parts. That is, letting i∗ be the lowest value of
i ∈ SN such that δ < δci , we write

(4.1)

ujk = fb(xj) +
2

N

(
i∗−1∑
i=1

[aijG1(i, k) + bijG2(i, k)] +

N−1∑
i=i∗

[aijG1(i, k) + bijG2(i, k)]

)

= fb(xj) + Ssmooth + Sosc.

Note that the preceding analysis implies Ssmooth = 0 when δ ≤ δ∗ and Sosc = 0 when
δ ≥ δ∗. As δ increases from δ∗, i∗ will increase so that Ssmooth contains more and
more of the terms, with the overall smoothness of u dependent on the relative size of
the two sums Ssmooth and Sosc.

Problem I. In this example we apply the Dirichlet boundary conditions

ft(x) = 1, fb(x) = fl(y) = fr(y) = 0,



264 HOWARD C. ELMAN AND ALISON RAMAGE

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

i

(a) j = 1.

0 5 10 15
−2

−1

0

1

2

3

4

5

6

7

8

i

(b) j = N/4.

0 5 10 15
−4

−2

0

2

4

6

8

10

12

i

(c) j = N/2.

Fig. 4. Plots of coefficients aij against i for N = 16.

as per Figure 1, so that the solution has an exponential boundary layer of width ε
along the top boundary. For this problem, (3.7) implies

yik =

√
2

N

N−1∑
s=1

sin
siπ

N
G1(i, k)(4.2)

so the coefficients in (3.10) simplify to

aij = sin
ijπ

N

N−1∑
s=1

sin
siπ

N
, bij = 0,(4.3)

with the magnitude of each aij decreasing rapidly as i goes from 1 to N−1 as shown in
Figure 4 (taken from [2]). This means that the contributions to ujk from the functions
G1(i, k) are much larger for small indices i, so that the smoothness of G1(i, k) for small
i plays a much more important role. In particular, it is not necessary for G1(i, k) to be
nonoscillatory for all i ∈ SN in order for |Ssmooth| to dominate |Sosc| and the resulting
function u to be smooth.

We illustrate these ideas in Figures 5 and 6 for this example problem with N = 16
and Pe = 2. The first figure shows u1k (or, equivalently, u(N−1)k) plotted against k.
This is the vertical cross-section of the solution obtained by fixing j = 1, which is
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Fig. 5. Comparison of Ssmooth (dashed line, o) and Sosc (dotted line, o) with u1k (solid line,
x) for Problem I.

the most oscillatory of the vertical cross-sections for this problem. Each plot shows
a comparison of Ssmooth (dotted line, o) and Sosc (dashed line, o) with u1k (solid
line, x) for a different value of δ, where again only the right half of the range of k
has been plotted to magnify the area of interest. For this example, δ∗ = 0.25 and
δ∗ = 0.75. Plot (a) shows the Galerkin case (δ = 0) where all of the functions G1(i, k)
are oscillatory and Ssmooth is zero. This is still true in plot (b), where δ = δ∗, but
the magnitude and extent of the oscillations has been reduced considerably. The
result of choosing δ = δ∗ according to Theorem 3.3 to guarantee an oscillation-free
discrete solution by ensuring a nonoscillatory y is shown in plot (d). Here too much
extra diffusion has been added. Plot (c) shows u1k for δ = δs = 0.354, which lies in
the interval (δc7,δ

c
8), that is, i

∗ = 8. This is the lowest value of i∗ such that Ssmooth

dominates (3.9) for this problem and u1k is nonoscillatory.

The corresponding full two-dimensional solutions u are shown in Figure 6, where
the boundary values have been omitted so that the fine detail of each solution is
visible. The overall behavior corresponds to that seen from the cross-sections: the
severe oscillations present when δ = 0 are almost eliminated by choosing δ = δ∗, and
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Fig. 6. Discrete solution at interior node points for Problem I with N = 16, Pe = 2.

setting δ = δ∗ gives a smooth but overly diffuse solution. For δ = δs, the oscillations
along the lines u1k and u(15)k have just been eliminated to give a completely smooth
solution in the flow direction.

Problem II. Next we consider the Dirichlet boundary conditions

fb(x) = ft(x) = 0, fl(y) = fr(y) = 1,

which result in a solution which has parabolic layers on both vertical sides of the
domain. The recurrence relation solution is

yik =

√
2

N

N−1∑
s=1

sin
siπ

N
G2(i, k),(4.4)

which is the same as for Problem I, except with G2 in place of G1 (see (4.2)). In
addition, the coefficients in the full solution (3.10) are identical to those in Problem I
as given by (4.3). The analysis for this problem is therefore very similar. In particular,
as observed in section 3.2, G2 is oscillatory if and only if G1 is oscillatory, so exactly
the same argument applies as to the effect of δ on solution quality.

Sample solutions for N = 16 with Pe = 2 are shown in Figure 7. These plots
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Fig. 7. Discrete solution at interior node points for Problem II with N = 16, Pe = 2.

show the effect of increasing δ on the solution in the streamline direction: again, the
solutions with δ = 0 and δ = δ∗ exhibit oscillations while the solution with δ = δ∗ is
overly diffuse. The value δs is the first for which the smooth part dominates to give
a smooth solution. Figure 8 shows cross-sections of these plots for fixed values j = 1
on the left and k = 15 on the right.

It is known that parabolic layers such as those exhibited by the solution of this
problem are wider than the exponential layers of the previous example (the widths
are proportional to

√
ε and ε, respectively [13]). Oscillations transverse to the flow

caused by inadequate resolution of parabolic layers will occur, but only for mesh Péclet
numbers much larger than in the examples shown. However, the results given here
demonstrate that streamwise effects also cause difficulties for problems with parabolic
layers. The analysis shows that these are manifested in Problem II by the presence
of G2 in the solution and that streamline upwinding ameliorates these difficulties by
making G2(i, ·) smoother for enough indices i. The right-hand plot in Figure 8 also
shows that excessive diffusivity in the streamline direction gives the appearance of
smearing of the characteristic layers.

Problem III. For this example, we replace the Dirichlet boundary condition u =
ft(x) on the top boundary in Problem I by the Neumann boundary condition ∂u

∂n = 1.
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Fig. 8. Cross-sections of solutions to Problem II for N = 16; Pe = 2 for δ = 0 (solid line, ×),
δ = δ∗ (dashed line, ◦), δ = δs (dotted line, ∗), and δ = δ∗ (dot-dash line, ♦).

The other Dirichlet boundary conditions remain the same. The analysis of section 2
needs to be modified slightly to handle this case. There are now N(N −1) unknowns,
and the coefficient matrix A in (2.4) is replaced by

A� =




M1 M2 0
M3 M1 M2

. . .
. . .

. . .

M3 M1 M2

0 M3 M�
1


 ,

where there are N rows of (N − 1) × (N − 1) blocks. For bilinear finite elements on
a square mesh, M�

1 = tridiag(m
�
2,m

�
1,m

�
2) with entries

m�
1 =

1

3
[(2δ + 1)h+ 4ε], m�

2 = − 1

12
[(2δ − 1)h+ 2ε].

As the vectors vj in (2.6) are eigenvectors of M
�
1 , we may construct a matrix V� with

N copies of V on its diagonal and a permutation matrix P � of order N(N − 1) such
that a decomposition of type (2.7) exists. The associated block tridiagonal matrix T �

has N − 1 diagonal blocks, each one of the form

T �i =




λi σi 0
γi λi σi

. . .
. . .

. . .

γi λi σi
0 γi λ�i



N×N

,

where

λ�i = m�
1 + 2m

�
2 cos

iπ

N
, i = 1, . . . , N − 1,
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are the eigenvalues of M�
1 . Similarly, the transformed right-hand side vector f̂� can

be partitioned into N − 1 vectors of length N to give N − 1 independent systems

T �i yi = f̂�i .(4.5)

For this specific example, the vectors f̂�i are given by

f̂�i = εh




0
...
0√

2
N

∑N−1
s=1 sin

siπ
N



N

.

The solution of each system (4.5) is therefore the solution of the same constant-
coefficient recurrence relation as in the Dirichlet case, but with the right-hand bound-
ary condition now of Neumann type. The roots of the auxiliary equation are given
by (2.12), and the recurrence relation solution is

y�ik = εh

√
2

N

N−1∑
s=1

sin
siπ

N
G�

1(i, k),(4.6)

where

G�
1(i, k) =

µk1 − µk2
(γi + λ�iµ1)µ

N−1
1 − (γi + λ�iµ2)µ

N−1
2

.

This expression compares with (4.2) in the Dirichlet case. The most significant dif-
ference is the factor of εh in front of the Neumann solution: this means that for this
problem the oscillations will be much smaller than those in the Dirichlet case. Because
of the nature of G�

1 and G1, however, the effect of changing δ will be very similar in
both cases. This is borne out by the plots of the Neumann solution shown in Figure 9
(for N = 16 and Pe = 2 so that εh = 9.8× 10−4). As predicted by the analysis, these
solutions are almost identical in shape to those obtained for the Dirichlet problem
(see Figure 6), but any oscillations are much smaller in magnitude.

5. Solution accuracy. We have now characterized the effect of δ on oscillations
in the flow direction. One important question which remains is how the choice of δ
affects the overall accuracy of the discrete solution. To investigate this, we begin with
the example problems of the previous section. In each case, we compare solutions on
a 16× 16 grid with ε = 1/64 (so Pe = 2) with a reference solution for the same value
of ε on a 256 × 256 grid. On this fine grid, we use the Galerkin method (δ = 0) as
Pe = 0.125� 1 and there are no oscillations. In what follows, we will denote the fine
grid nodal solution vector by u256 and its associated finite element solution by u256,
likewise for the coarse grid solutions uδ16 and uδ16.

Figure 10 shows the variation with δ of the error for our test problems measured
in two different norms. In all cases the norm of the error is plotted against δ for
0 ≤ δ ≤ 1 with the values of δ∗ (o), δs (♦), and δ∗ (x) highlighted. For Pe = 6.25
(ε = 1/200), δ∗ = 0.42, δs = 0.468, and δ∗ = 0.58. The solid line represents the
discrete L∞[0, 1] norm defined by

‖u256 − uδ16‖∞ = max
i,j

|u256(xi, yj)− uδ16(xi, yj)|,
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0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−2

0

2

4

6

8

10

12

14

16

x 10
−4

(c) δ = δs = 0.354.
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(d) δ = δ∗ = 0.75.

Fig. 9. Discrete solution at interior node points for Problem III with N = 16, Pe = 2.

where the points (xi, yj) = (ih, jh) are the nodes of the 16× 16 grid. When using the
finite element method, it may be more natural to work with the L2 norm

‖u256 − uδ16‖2 =

{∫
Ω

(
u256 − uδ16

)2} 1
2

.(5.1)

However, this measure leads to misleading results for certain singular perturbation
problems of this type where the overall error is heavily dominated by the error in the
boundary layer, which we cannot hope to resolve on a 16× 16 uniform grid using low
order elements. For Problems I and III, a more meaningful measure of the error for
our purposes is obtained using the L2 norm of the error away from the boundary layer;
that is, in these cases, we omit the top row of coarse grid elements from the region of
integration in (5.1) and integrate over (0, 1)× (0, 0.9375) instead of Ω = (0, 1)× (0, 1).
This norm is represented by a dotted line in the error plots. We note in passing that
in all of the examples, this curve is very similar to that obtained for the discrete L2

norm defined by

‖u256 − uδ16‖2 =




N∑
i,j=0

(
u256(xi, yj)− uδ16(xi, yj)

)2
1
2

,



SMOOTHING EFFECTS OF UPWINDING 271

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

δ

(a) Problem I: Pe = 2.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

δ

(d) Problem I: Pe = 6.25.

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

δ

(b) Problem II: Pe = 2.

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

δ

(e) Problem II: Pe = 6.25.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−3

δ

(c) Problem III: Pe = 2.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

δ

(f) Problem III: Pe = 6.25.

Fig. 10. Error variation with δ in the discrete L∞ norm (solid) and L2 norm (dotted) for
N = 16.

where (xi, yj) is again a node of the coarse grid.

From Figure 10, we see that the optimal choice of δ in terms of solution accuracy
depends on the norm in which the error is measured, although in most cases both δ∗
and δs are closer than δ∗ to the optimal choice. Note that setting δ = δs to produce
a completely oscillation-free discrete solution u does not result in the most accurate
solution.
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6. Guidelines for choosing the streamline diffusion parameter in prac-
tice. In sections 2–4, we presented model problem analysis which enabled us to char-
acterize the behavior of the discrete finite element solutions. Three highlighted values
of δ play important roles in this analysis: δ∗, where the solution is oscillatory but
the oscillations are extremely small; δs, which is the smallest value of δ such that the
solution is found by numerical experiment to be oscillation free; and δ∗, where the
solution is guaranteed to be oscillation free via Theorem 3.3. The analysis, based on
Fourier techniques, is restricted to grid-aligned flow. (This is needed for the tridiag-
onal matrices M1, M2, and M3 of (2.4) to be symmetric and have a common set of
eigenvectors.) In this section, we consider several more complex problems and make
some observations about choosing δ in practice.

First, we observe that although with δ = δ∗ we have a way of guaranteeing
that there are no oscillations, the resulting discrete solutions are overly diffuse and
inaccurate: both δ∗ and δs are in general much better values to use. The choice δ = δs

produces a completely oscillation-free solution but δs is not readily determined even
for the model problems considered above. However, we know that δs lies between
δ∗ and δ∗, and the empirical results for Problems I–III suggest that the computable
expression

δ• =
1

2

(
1− 0.8

Pe

)
(6.1)

is a good approximation to it. Note that in the limit as Pe → ∞, both δ∗ and δ• tend
to 0.5.

We now introduce three new test problems with non-grid-aligned or variable
winds. For these problems, we use a stabilization strategy which fixes δel locally
on each element by using the local element mesh Péclet number

P el
e =

hel‖wel‖2

2ε

in formulae (3.3) and (6.1). This is calculated using the discrete L2 norm of the
wind value at the element center wel, with the local grid size value hel taken as the
distance across the element measured in the direction of the wind. In what follows,
these element-based values of δ will be denoted using the superscript el. In all cases,
the value of the stabilization parameter used is max(δel, 0) on each element.

Problem IV. Here we impose the Dirichlet boundary conditions

fb(x) =

{
0, 0 < x ≤ 1

2 ,
1, 1

2 < x < 1,
ft(x) = fl(y) = 0, fr(y) = 1

on the domain in Figure 1 and apply the wind w = (cos 115◦, sin 115◦) which has
constant magnitude and direction but is not aligned with the grid. This problem has
an exponential boundary layer on a portion of the outflow boundary and an internal
layer along the characteristic caused by the discontinuity on the inflow boundary. A
sample solution with N = 16, ε = 1/200, and δ = δel∗ is shown in Figure 11 (a).

Error calculations carried out as described in the previous section lead to the
plots in Figure 12 (a) and (d), where the values δel∗ (◦), δel,∗ (×), and δel• (♦) have
been highlighted. When δ = 0, the error is dominated by difficulties associated with
the exponential layers at the outflow. As δ is increased so that these layers begin
to be resolved, the error is then dominated by the effect of the discontinuity in the
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Fig. 11. Sample solutions with N = 16, ε = 1/200, and δ = δel∗ .

inflow boundary condition which is relatively insensitive to the value of δ, causing the
middle of the plots to look fairly flat.

Problem V. Our two variable wind test problems are variants of the “IAHR/CEGB”
test problem proposed in [14]. In this first case, we solve (1.1) on the unit square with

w = (2y(1− (2x− 1)2),−2(2x− 1)(1− y2)).(6.2)

The Dirichlet boundary conditions are given by

u(x, 0) = 1 + tanh[10 + 20(2x− 1)](6.3)

on the inflow boundary (the interval 0 ≤ x ≤ 0.5, y = 0) and u(x, 0) = 2 on the
outflow boundary (the interval 0.5 < x ≤ 1, y = 0). On the remaining boundaries, we
impose ft(x) = fl(y) = fr(y) = 0. The Dirichlet boundary conditions at the bottom
y = 0 are continuous but there is an exponential layer at the outflow portion, i.e.,
where x ≥ 1/2. A sample solution for N = 16 and ε = 1/200 is shown in Figure 11
(b).

As the wind now varies in magnitude and direction from element to element, we
cannot identify a single parameter δ which can be varied for the purposes of comparing
errors as in the previous examples. However, we can compare various strategies for
choosing δel locally within elements by considering the parameterized version of δel
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Fig. 12. Error variation with δ in the discrete L∞ norm (solid) and L2 norm (dotted) for
N = 16.

given by

δel =




t

2

(
1− 1

P el
e

)
, 0 ≤ t ≤ 1,

1

2

(
1 + (t− 2) 1

P el
e

)
, 1 < t ≤ 3.

(6.4)
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As t varies from 0 to 3, the value of δel on each element first increases linearly from
0 to δel∗ (at t = 1) and then varies linearly between δel∗ and δel,∗. The variation with
t of the error for this problem for N = 16 with two different values of ε is shown
in Figure 12 (b) and (e). The errors are again calculated as described in section 5.
The values δel∗ (◦), δel,∗ (×), and δel• (♦) are highlighted. The error is dominated by
problems caused by the exponential layer along the outflow boundary in a similar way
to Problem I.

Problem VI. Our final test problem also has a variable wind given by (6.2) but
the boundary conditions are now of mixed type. We again impose the Dirichlet
condition (6.3) on the inflow boundary but now the condition imposed on the outflow
boundary is a homogeneous Neumann one. The Dirichlet boundary conditions on
the remaining boundaries are ft(x) = fl(y) = 0, fr(y) = 2. This results in the
formation of a characteristic boundary layer along the right-hand wall. A sample
solution for N = 16 and ε = 1/200 is shown in Figure 11 (c). Error plots for this
problem with δ parameterized by t as in (6.4) are shown in Figure 12 (c) and (f). This
problem features a characteristic layer, so we expect the effects of changing δ to be
less pronounced, as for Problem II. This is supported by the error plots: increasing
δ helps to resolve the characteristic layer until the error becomes dominated by the
effects of boundary discontinuities.

The results in these experiments are essentially the same as those for the model
problems. We have not displayed oscillations here, but in all of the examples, the
solutions for δ = δ∗ contain slight oscillations near layers, and the choice δ = δ•
reduces but does not eliminate them in these examples. There is little difference
between these values in terms of solution quality obtained, and both choices are
generally better than δ∗, which adds too much diffusion. Although it is tempting to
use the interpolated value δ• to produce a qualitatively smoother solution, in our view
δ∗ is a better choice. The oscillations it produces indicate that in fact the layers are
not fully resolved and that mesh refinement is needed where they occur; the smoothing
of these effects will be misleading (see, e.g., [4]). Streamline diffusion alone cannot
completely resolve this issue, and the choice δ∗ adds the right amount of diffusion to
keep the errors small in most of the domain. Note that this value has previously been
recommended as a good choice in [1] and was shown to be good for efficient solution
of the resulting linear system by the GMRES iterative method [3]. We also remark
that although the analysis of sections 2–4 does not apply to linear elements, we have
performed a few experiments which indicate that δ∗ yields more accurate solutions
than δ• in the linear case and that the latter choice adds excessive diffusion in this
setting.

7. Application to other discretizations. To conclude, we emphasize that
analysis of this type can be applied to any discretization whose stencil is of the form
(2.3). We comment on two particular cases of interest here.

7.1. Finite differences with streamline diffusion. The usual central finite
difference discretization of (1.1) can also be stabilized using streamline diffusion; see,
for example, [12, p. 1465]. Specifically, we apply the finite difference method to the
differential equation

−(ε∇2 +∇ ·D∇)u(x, y) +w · ∇u(x, y) = f(x, y),
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where diffusion in the streamline direction is added using

D = α

[
c2 cs
cs s2

]

with

c =
w1

‖w‖2
, s =

w2

‖w‖2
,

and α as in (1.4). Assuming for convenience that ‖w‖2 = 1, the full computational
molecule is given by

w1w2δ

2h
− ε

h2
+

w2

2h
− w2

2δ

h
−w1w2δ

2h↖ ↑ ↗
− ε

h2
− w1

2h
− w2

1δ

h
← 4ε

h2
+
2δ

h
→ − ε

h2
+

w1

2h
− w2

1δ

h↙ ↓ ↘
−w1w2δ

2h
− ε

h2
− w2

2h
− w2

2δ

h

w1w2δ

2h

.

This simplifies to a stencil of standard five-point type for our model problem (2.1)
with grid-aligned flow. Using the notation of (2.3), the stencil entries are

m1 =
4ε

h2
+
2δ

h
, m2 = − ε

h2
, m3 = − ε

h2
+
1

2h
− δ

h
,

m4 = 0, m5 = − ε

h2
− 1

2h
− δ

h
, m6 = 0

with related eigenvalues

γi =
1

h2

[
−(ε+ δh)− h

2

]
, λi =

1

h2
[2(ε+ δh) + 2ε(1− Ci)] ,

σi =
1

h2

[
−(ε+ δh) +

h

2

]
.

This results in the expressions

µ1,2 =

−2δ − [2− Ci]
1

Pe
±
√
1 + 4δ(1− Ci)

1

Pe
+ (1− Ci)(3− Ci)

1

P 2
e

−2δ + 1− 1

Pe

for the roots of the recurrence relation which appear in (2.13).
Here the sign of µ2 (and hence the nature of the corresponding functions G1(i, k)

and G2(i, k), i ∈ SN ) is independent of i: as the numerator of µ2 is always negative,
we simply have the conditions


δ > δ∗ ⇒ µ2 > 0, G1(i, k) is nonoscillatory,

δ < δ∗ ⇒ µ2 < 0, G1(i, k) is oscillatory,
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where δ∗ is given by (3.3). Hence the result equivalent to Theorem 3.1 is given by the
following theorem.

Theorem 7.1. For a streamline diffusion finite difference discretization with
Pe > 1, δ > δ∗ implies that G1(i, k) and G2(i, k) in (2.13) are nonoscillatory functions
of k for any value of i ∈ SN .

The special case δ = δ∗ leads to the two-term recurrence with auxiliary equation
root

ρ =
1

1 +
(1− Ci)

Pe

and solution (3.5). Because ρ < 1, this solution is nonoscillatory in the streamline
direction for all i ∈ SN and, as in the finite element case, tends to the nodally exact
solution in the limit as Pe → ∞.

The fact that there is one critical parameter (independent of i) here means that
there is no issue about selecting a global parameter δ as we had in the finite element
case. Furthermore, the analysis of the effect of transforming from y to u (cf. section
3.3) is greatly simplified. In particular, for the same specific example problem with
ft = 1 and fb = fl = fr = 0 studied in section 3.3, the equivalent expression to (4.2)
using finite differences has Ssmooth = 0 when δ < δ∗ and Sosc = 0 when δ > δ∗. Thus
we immediately have the following theorem (cf. Theorem 3.3).

Theorem 7.2. For a streamline diffusion finite difference discretization of (2.1),
the discrete solution u does not exhibit oscillations in the streamline direction when
δ ≥ δ∗.

That is, in contrast to the finite element case, there is no “smoothing” introduced
by the Fourier transformation: the same single parameter governs the presence of
oscillations in both the recurrence relation solution y and the discrete two-dimensional
solution u.

7.2. Artificial diffusion. So far we have focused on adding smoothing in the
streamline direction only, which is just one of the many stabilization methods avail-
able. In this section we analyze the artificial diffusion method (see, for example, [7,
pp. 218–219]) with a view to comparing its smoothing effect with that of streamline
diffusion. The artificial diffusion method works by adding diffusion in an isotropic
way which does not take account of flow direction, and it is well known that this can
result in smearing of internal layers. We can use the analytical techniques presented
in this paper to confirm that the streamline diffusion method avoids this problem.

We again consider a vertical wind model problem using bilinear finite elements
on a uniform grid. The idea of the artificial diffusion method is to replace equation
(2.1) with

−(ε+ δh)∇2u+
∂u

∂y
= 0 in Ω = (0, 1)× (0, 1),(7.1)

with δ once again a stabilization parameter to be chosen. When Pe < 1, we set δ = 0
as before. Galerkin discretization using bilinear finite elements results in a matrix of
the form (2.4), which is therefore covered by our analysis. The stencil entries in this
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case are given by

m1 =
8

3
(δh+ ε), m2 = −1

3
(δh+ ε), m3 = −1

3
[(δ − 1)h+ ε],

m4 = − 1

12
[(4δ − 1)h+ 4ε], m5 = −1

3
[(δ + 1)h+ ε], m6 = − 1

12
[(4δ + 1)h+ 4ε],

so the roots (2.12) of the corresponding recurrence relation are given by

µ1,2 =

−
(
2δ +

1

Pe

)[
4− Ci
2 + Ci

]
±
√
1 +

3(1− Ci)(5 + Ci)

(2 + Ci)2

(
2δ +

1

Pe

)2

1−
(
2δ +

1

Pe

)[
1 + 2Ci
2 + Ci

] .(7.2)

First we briefly consider the issue of oscillations in the streamline direction. Here,
as in section 3.2, the sign of µ2 (and hence the presence of oscillations in the recurrence
relation solution) depends on the value of i ∈ SN . Defining the new critical value

δ̃ci =
1

2

([
2 + Ci
1 + 2Ci

]
− 1

Pe

)
,

we have different conditions for two sets of i values, namely

1 ≤ i ≤ 2
3N :




δ > δ̃ci ⇒ µ2 > 0, G1(i, k) is nonoscillatory,

δ < δ̃ci ⇒ µ2 < 0, G1(i, k) is oscillatory,

2
3N < i ≤ N − 1 : µ2 < 0, G1(i, k) is oscillatory.

Notice that this is different from the streamline diffusion case (cf. Theorem 3.1) in that
there is no choice of δ which will make the recurrence relation solution oscillation free,
as some of the contributing functions G1(i, k) are always oscillatory. However, it can
be seen using an argument of the type presented in section 3.3 that the transformed
solution is again dominated by contributions from functions pertaining to lower values
of i. Hence, despite the fact that G1(i, k) is always oscillatory for large i, it is still
possible to obtain a nonoscillatory discrete solution u. Note that inequality (3.4) is
satisfied with δic replaced by δ̃ic. For the particular (i-independent) choice δ = δ∗ from
(3.3), equation (7.1) (and hence the artificial diffusion solution) is independent of ε.

To gain insight into the main difference between this method and the streamline
diffusion technique, we must examine solution behavior in the “crosswind” direction,
that is, perpendicular to the direction of the flow. To fix ideas, we will use the
discontinuous boundary conditions

fb(x) =

{
0, x < 0.5,
1, x ≥ 0.5,

fr(y) = 1, ft(x) = fl(y) = 0

so that the solution has an internal layer along x = 0.5 as well as a boundary layer
along the right half of the top boundary. The internal layer derives from propagation
of the bottom boundary condition through the domain and, as ε → 0, the width
of this layer tends to zero. Ideally, this phenomenon should be reproduced by a
discretization method, that is, we would like to obtain a set of discrete solutions u in
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this limit whose variation from the bottom boundary function is independent of j for
fixed k. We now show that while the streamline diffusion method has this property,
the artificial diffusion method does not.

Consider the recurrence relation solution vector y for this problem. From (2.13),
its entries are given by

yik = F3(i) (1−G1(i, k)) + [F2(i)− F3(i)]G2(i, k)(7.3)

with

F2(i) =

√
2

N


 (−1)

i+1 sin
iπ

N

2

(
1− cos iπ

N

)



[2, appendix] and F3(i) as in (3.6). As the functions F2(i) and F3(i) are the same for
both discretizations, any difference in solution behavior must come from a difference
in the behavior of the functions G1(i, k) and G2(i, k) associated with the two methods.
We therefore now focus on how these functions vary with i ∈ SN as ε → 0 (Pe → ∞)
for k ∈ SN fixed. To simplify the presentation of this analysis, we will assume that δ
is fixed independent of Pe, with δ != 0, 0.5.

With the streamline diffusion discretization, neglecting terms of O(P−1
e ) and

higher in (3.1) gives the approximations

µ1 � 1, µ2 � 2δ + 1

2δ − 1 ≡ β

so that

G1(i, k) =
µk1 − µk2
µN1 − µN2

� 1− βk

1− βN
≡ Ga

1(k),

G2(i, k) = (1− µk1)− (1− µN1 )G1(i, k) � 0.

Thus, in the limit as Pe → ∞, both functions are independent of i. We then have
yik � F3(i)(1−Ga

1(k));

hence, using (2.8),

ujk � fb(xj)(1−Ga
1(k)).

That is, the variation of ujk from the bottom boundary function is independent of j
in this limit. For the artificial diffusion discretization, however, neglecting terms of
O(P−1

e ) and higher in (7.2) gives

µ1,2 � −2δ(4− Ci)±
√
4(1 + 15δ2) + 4(1− 12δ2)Ci + (1− 12δ2)C2

i

2(1− δ) + (1− 4δ)Ci ,

leading to approximations for G1(i, k) and G2(i, k) which depend on i through Ci.
From (7.3) the solution is therefore

ujk � fb(xj)−
√
2

N

N−1∑
i=1

sin
ijπ

N
(F3(i)G1(i, k)− [F2(i)− F3(i)]G2(i, k)) .
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(a) Streamline diffusion: Pe = 2.
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(b) Streamline diffusion: Pe = 200.
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(c) Artificial diffusion: Pe = 2.
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(d) Artificial diffusion: Pe = 200.

Fig. 13. Solutions and contour plots for δ = 0.4 and N = 16.

This has a j-dependence which the continuous solution in this limit does not.

This fundamental difference between the discretizations is demonstrated pictori-
ally in Figure 13, which shows streamline and artificial diffusion approximations (and
associated contour plots) for this example problem with two values of ε, δ = 0.4,
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and N = 16. Plots (a) and (b) show that the streamline diffusion method captures
the narrowing of the internal layer exhibited by the continuous solution as ε → 0
(Pe → ∞). The equivalent artificial diffusion approximation does not, as shown in
plots (c) and (d).

8. Summary. In this study, we have performed a Fourier analysis of model prob-
lems with grid-aligned flow that identifies the effects of upwinding in discretizations of
the convection-diffusion equation. Our emphasis is on streamline-diffusion discretiza-
tion with bilinear elements, where we show how the choice of streamline diffusion
parameter affects the qualitative behavior of the solution with respect to oscillations.
This analysis gives theoretical justification for the choice

δ = δ∗ =
1

2

(
1− 1

P el
e

)
.

Our analysis also shows that δ∗ is the optimal choice for finite difference discretiza-
tions, provides insight into the method of isotropic artificial diffusion, and yields
qualitatively good solutions in a variety of computational experiments.
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Abstract. Semidiscrete finite element error estimates for linear parabolic equations are de-
rived under minimal regularity with the help of L2 projectors. Then, analogous minimal regularity
semidiscrete error estimates for semilinear parabolic equations are derived.
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1. Introduction. Semidiscrete finite element approximations of linear parabolic
equations have been studied extensively. [38] offers an excellent review of the main
results and mathematical techniques of this subject and contains a comprehensive
list of references. Here, we provide a brief summary along with some representative
(but certainly not exhaustive) citations for each type of semidiscrete error estimate
available in the literature.

• L2(Ω) error estimates—either L∞(0, T ;L2(Ω)) or L2(0, T ;L2(Ω))—[7], [18],
[43], [22, Theorems 4.1–4.3], and [38, Theorems 1.2, 2.3, 2.5, 2.6];
• H1(Ω) error estimates—either L∞(0, T ;H1(Ω)) or L2(0, T ;H1(Ω))—[7], [18],
[22, Theorems 4.1–4.3], and [38, Theorems 1.4, 2.4];
• L∞(Ω) error estimates—[33], [29], [30], [34], [40], [12], [16], [17], [10], [42],
[41], [7], and [38, Theorems 5.2–5.5];
• Negative spatial norm error estimates for u − uh and ∂tu − ∂tu

h and super-
convergence results—[7], [37], [19], and [38, Theorems 6.2–6.6];
• Semidiscrete error estimates with nonsmooth initial data—[36], [37], [31], [27],
[15], [25], and [38, Theorems 3.1–3.6].

There is also an abundant literature on fully discrete approximations; see, e.g., [4],
[3], [18], [6], [8], [20], [32], [44], and [38]. In this paper, we will concern ourselves only
with semidiscrete approximations.

Notwithstanding the vast number of papers and books devoted to semidiscrete
approximations of solutions of parabolic equations, the literature seems to lack L2(Ω)
and H1(Ω) convergence results for parabolic problems under minimal regularity as-
sumptions. The goal of this work is to establish the convergence and derive error
estimates in the norm of the solution space under minimal regularity assumptions on
the solution. Such results will be established for both linear and semilinear parabolic
problems.

The linear problem we consider is the parabolic initial boundary value problem

∂tu− div [A(x)∇u] = f in [0, T ]× Ω ,(1.1)
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u
∣∣
(0,T )×∂Ω

= 0 ,(1.2)

and

u(0) = u0 in Ω ,(1.3)

where ∂tu = ∂u/∂t, Ω is a bounded spatial domain in R
d (d = 2 or 3), and the

matrix function A ∈ L∞(Rd;Rd×d) is uniformly positive definite. In the standard
weak formulation of (1.1)–(1.3) (see, e.g., [21]) the solution u is sought in the space

X ≡ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)).

Of course, the minimal regularity of u for showing the X-norm convergence of semidis-
crete finite element approximations is that u ∈ X. The assumption u ∈ X is equiv-
alent to the requirements that the forcing term f ∈ L2(0, T ;H−1(Ω)) and the initial
condition u0 ∈ L2(Ω); see, e.g., [21, p. 356, Theorem 3]. The X-norm convergence
results in the literature generally assume higher regularity than the minimal regular-
ity u ∈ X. For instance, the estimates in [38] typically require ∂tu ∈ L2(0, T ;L2(Ω))
and those in [43] require ∇u ∈ L∞(0, T ;L∞(Ω)).

To derive O(hm) (m ≥ 0) error estimates in the X-norm, the minimal regular-
ity assumption on u should be u ∈ L2(0, T ;Hm+1(Ω)) ∩ H1(0, T ;Hm−1(Ω)). We
indeed will prove O(hm) error estimates under such minimal regularity assump-
tions. O(hm) error estimates in the literature generally require higher regularity than
what this paper assumes. We note that the assumption u ∈ L2(0, T ;Hm+1(Ω)) ∩
H1(0, T ;Hm−1(Ω)) is essentially equivalent to the assumptions u0 ∈ Hm(Ω) and
f ∈ L2(0, T ;Hm−1(Ω)) plus certain compatibility conditions; see, e.g., [28, p. 287,
Theorem 2.10] (for all m) and [21, p. 365] (for odd m).

In addition to showing the convergence and deriving the error estimates under
the minimal regularity assumptions explained above, we will also establish a parabolic
Cea’s lemma and a parabolic Aubin–Nitsche’s lemma. The collection of these results
comprises a semidiscrete finite element theory for parabolic problems that parallels
classical finite element theories for elliptic problems.

A further linear result of this paper is the derivation of some pointwise-in-time
error estimates under slightly weaker regularity requirements compared to similar
results in the literature (e.g., [38, Theorem 2.4]).

It should be pointed out that a key element of our proof is the use of the L2(Ω)-
and generalized L2(Ω)-projectors instead of the usual elliptic projector. Though some
properties of the L2-projections are well known (see, e.g., [38], [5], and [14] for interior
L2-projections and [24] for boundary L2-projections), we include in this paper some
detailed discussions of the approximation properties of L2(Ω)- and generalized L2(Ω)-
projectors.

It also should be noted that the nonminimal regularity assumptions in the lit-
erature for showing convergence and error estimates are partly tied to the nonlin-
earities appearing in the equations. For instance, if the equation contains a term
div [A(u)∇u], then for u(t) ∈ H1(Ω) and v ∈ H1(Ω) it is not guaranteed that∫
Ω
A(u)(∇u) · (∇v) < ∞. In this case, an assumption such as u(t) ∈ L∞(Ω) is

needed. For this reason the results of this paper do not apply to the approximations
of nonlinear equations involving div [A(u)∇u]. It can be checked that many nonmin-
imal regularity assumptions in the literature could be weakened when the underlying
equations are linear, e.g., the results of [43] and [22]. However, error estimates for
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nonlinear equations under nonminimal regularity do not trivially lead to the mini-
mal regularity error estimates of this paper when the nonlinearity is dropped. For
instance, one may find in [38] a number of linear results under nonminimal regularity
assumptions.

The semilinear problem we consider consists of the partial differential equation

∂tu− div [A(x)∇u] + b(t,x) · ∇u+ φ(u) = f in [0, T ]× Ω ,(1.4)

with boundary-initial conditions (1.2)–(1.3), where b ∈ L∞(0, T ;Lγ(Ω)) (γ > d,
d = 2 or 3 is the space dimension) and φ satisfies certain power growth conditions.
We extend the linear results to the semilinear case. Namely, we prove the X-norm
convergence of semidiscrete finite element solutions if u ∈ X and we derive X-norm
error estimates under minimal regularity assumptions on u. Compared to the re-
sults of [38] and [39] for semilinear parabolic equations, our results not only assume
merely minimal regularity but also allow for a slightly larger exponent in the growth
conditions for φ(u).

In our study of the semilinear problems the linear theory of this paper and the ap-
proximation theory of Brezzi–Rappaz–Raviart both play a crucial role. Other worth-
mentioning technicalities for our semilinear theory involve (i) the proof of an embed-
ding theorem for X and (ii) the choice of a merely continuously embedded subspace
(as opposed to the choice of a compactly embedded subspace that is typical of the
applications of Brezzi–Rappaz–Raviart theory).

The plan of the paper is as follows. In section 2, we introduce some notations
and discuss the approximation properties of L2(Ω)- and generalized L2(Ω)-projectors.
In section 3, we derive semidiscrete error estimates for finite element approximations
of linear parabolic equations under minimal regularity assumptions on the solutions.
Finally, in section 4, we derive error estimates for semidiscrete approximations of
semilinear parabolic equations, again under minimal regularity assumptions on the
solutions.

2. Notations and some properties of L2-projections onto finite element
spaces. We assume that Ω is a convex polygon in R

2 or a convex polyhedron in R
3.

Throughout, we use standard notations (see, e.g., [1]) for the Sobolev spaces Hr(Ω)
and Hs(Γ) for all real r and s, with norms denoted by ‖ · ‖r and ‖ · ‖s,Γ, respectively.
We use Hr

0 (Ω) to denote the completion of C
∞
0 (Ω) in the Hr(Ω)-norm. We denote

the inner products on Hr(Ω) and Hs(Γ) by (·, ·)r and (·, ·)s,Γ, respectively. Note that
H0(Ω) = L2(Ω) and we omit the subscript 0 for the L2(Ω)-norm and L2(Ω) inner
product, i.e., (·, ·)0 = (·, ·) and ‖ · ‖0 = ‖ · ‖. The duality pairing between H−1(Ω)
and H1

0 (Ω) is denoted by 〈·, ·〉, which we assume is generated from the L2(Ω) inner
product, i.e.,

〈v, w〉 = (v, w) ∀ v, w ∈ L2(Ω).

Also, C denotes a generic constant whose value changes with context.
Let V h be a family of finite element subspaces of H1

0 (Ω) with the following ap-
proximation properties:

inf
vh∈V h

‖v − vh‖s → 0 as h→ 0 ∀ v ∈ Hs(Ω) , s = −1, 0, 1.(2.1)

In order to properly state some additional approximation properties for functions in
V h having zero boundary values, we introduce, for all real r, the spaces Φr0(Ω) =
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H
min{1,r}
0 (Ω) equipped with the Hmin{1,r}(Ω)-norm, i.e.,

Φr0(Ω) =




H1
0 (Ω) if r ≥ 1 ,

Hr
0 (Ω) if 1/2 < r < 1 ,

Hr(Ω) if r ≤ 1/2 .
Note that we have used the result that Hr(Ω) = Hr

0 (Ω) for r ≤ 1/2; see [26, p. 55].
Also, when r > 1, r is no longer the differentiability index in Φr0(Ω). The space Φ

r
0(Ω)

simply unifies the notation used below for stating relevant approximation properties.
We assume that V h has the following additional approximation properties:

inf
vh∈V h

‖v−vh‖−1 ≤ Chm+2‖v‖m+1 ∀ v ∈ Hm+1(Ω)∩Φm+1
0 (Ω), −2 ≤ m ≤ k ,(2.2)

inf
vh∈V h

‖v − vh‖ ≤ Chm+1‖v‖m+1 ∀ v ∈ Hm+1(Ω) ∩Φm+1
0 (Ω), −1 ≤ m ≤ k ,(2.3)

and

inf
vh∈V h

‖v − vh‖1 ≤ Chm‖v‖m+1 ∀ v ∈ Hm+1(Ω) ∩H1
0 (Ω), 0 ≤ m ≤ k .(2.4)

In (2.2)–(2.4), C is independent of v and h and k is a positive integer that is usually
determined by the order of the piecewise polynomials used to define V h.

We also assume the following inverse inequalities:

‖vh‖1 ≤ C

h
‖vh‖0 ∀ vh ∈ V h.(2.5)

For a thorough discussion of the properties (2.1)–(2.5) and the construction of
finite element spaces having these properties, see, e.g., [2] and [11].

We denote by Ph the L2(Ω)-projection from L2(Ω) onto V h, Rh the H1(Ω)-
projection from H1

0 (Ω) onto V h, and Sh the H−1(Ω)-projection from H−1(Ω) onto
V h. Namely, for each v ∈ L2(Ω),

(Phv, wh) = (v, wh) ∀wh ∈ V h ;(2.6)

for each v ∈ H1
0 (Ω),

(Rhv, wh)1 = (v, w
h)1 ∀wh ∈ V h ;(2.7)

and for each v ∈ H−1(Ω),

(Shv, wh)−1 = (v, w
h)−1 ∀wh ∈ V h .(2.8)

We also define the generalized L2(Ω)-projection operator Qh : H−1(Ω) → V h as
follows: for each v ∈ H−1(Ω),

〈Qhv, wh〉 = 〈v, wh〉 ∀wh ∈ V h .(2.9)

Remark. One can easily show that Qh is well defined by introducing a basis
{ei}Mi=1 for V

h and examining the solvability of a vh =
∑M
j=1 cjej from the equations

〈∑ cjej , ei〉 = 〈v, ei〉 for i = 1, . . . ,M . Also, it is evident that Qhv = Phv whenever
v ∈ L2(Ω); thus, Qh : H−1(Ω) → V h can be thought of as the generalization of the
operator Ph : L2(Ω)→ V h into an operator from H−1(Ω) to V h.
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It is trivial that Phv is the best approximation in the L2(Ω)-norm to v ∈ L2(Ω).
We will show that Phv is a quasi-best approximation to v in the H1(Ω)-norm and Qhv
is a quasi-best approximation to v in the H−1(Ω)-norm in the sense of the following
two propositions.

Proposition 2.1. Let Ph : L2(Ω) → V h be defined by (2.6) and Rh : H1
0 (Ω) →

V h be defined by (2.7). Then there exists a constant C, independent of v and h, such
that

‖v − Phv‖1 ≤ C‖v −Rhv‖1 ∀ v ∈ H1
0 (Ω) .(2.10)

Proof. Let v ∈ H1
0 (Ω) be given. The inverse inequality (2.5) yields

‖Rhv − Phv‖1 ≤ C

h
‖Rhv − Phv‖ .

The best approximation property of the projection operators gives

‖v − Phv‖ ≤ ‖v −Rhv‖ .
As Ω is assumed to be convex, the Aubin–Nitsche lemma (see, e.g., [11, p. 137])
implies

‖Rhv − v‖ ≤ Ch‖Rhv − v‖1 .

Using triangle inequalities and the last three relations we obtain

‖v − Phv‖1 ≤ ‖v −Rhv‖1 + ‖Rhv − Phv‖1 ≤ ‖v −Rhv‖1 + C

h
‖Rhv − Phv‖

≤ ‖v −Rhv‖1 + C

h

(
‖Rhv − v‖+ ‖v − Phv‖

)
≤ ‖v −Rhv‖1 + 2C

h
‖Rhv − v‖

≤ C‖v −Rhv‖1 .

Remark. The key elements of the proof of Proposition 2.1 can be found in, among
others, [38]. We include this proposition and its proof here for completeness.

Proposition 2.2. Let Sh : H−1(Ω)→ V h and Qh : H−1(Ω)→ V h be defined by
(2.8) and (2.9), respectively. Then, there exists a constant C, independent of v and
h, such that

‖v −Qhv‖−1 ≤ C‖v − Shv‖−1 ∀ v ∈ H−1(Ω) .(2.11)

Proof. Let v ∈ H−1(Ω) be given. Then

‖v −Qhv‖−1 = sup
w∈H1

0 (Ω),‖w‖1=1

〈v −Qhv, w〉

= sup
w∈H1

0 (Ω),‖w‖1=1

〈v −Qhv, w − Phw〉 = sup
w∈H1

0 (Ω),‖w‖1=1

〈v, w − Phw〉

= sup
w∈H1

0 (Ω),‖w‖1=1

〈v − Shv, w − Phw〉 ≤ ‖v − Shv‖−1 sup
w∈H1

0 (Ω),‖w‖1=1

‖w − Phw‖1 .

From Proposition 2.1, we see that

‖w − Phw‖1 ≤ C‖w −Rhw‖1 ≤ C‖w‖1 .

Thus, (2.11) is obtained trivially by combining the last two relations.
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Remark. As a consequence of Propositions 2.1 and 2.2, approximation properties
(2.1) with s = −1 and (2.2) can be proved from the inverse inequality (2.5) and
approximation properties (2.1) with s = 0, 1 and (2.3)–(2.4). Indeed, if v ∈ Hk+1(Ω)∩
Φk+1

0 (Ω),

‖v − Shv‖−1 ≤ ‖v − Phv‖−1 = sup
φ∈H1

0 (Ω)

〈v − Phv, φ〉
‖φ‖1

= sup
φ∈H1

0 (Ω)

〈v − Phv, φ− Phφ〉
‖φ‖1

≤ ‖v − Phv‖ · sup
φ∈H1

0 (Ω)

‖φ− Phφ‖
‖φ‖1 ≤ Chk+1‖v‖k+1 · h.

For v ∈ H−1(Ω) ∩ Φ−1
0 (Ω) = H−1(Ω),

‖v − Shv‖−1 ≤ 2‖v‖−1.

Thus (2.1) with s = −1 and (2.2) follows from these estimates.
Next we examine approximation properties on time-space function spaces. If B

is a spatial function space such as Hr(Ω) for a real r, then we denote by L2(0, T ;B)
and H1(0, T ;B) the time-space function spaces such that

‖v‖2L2(0,T ;B) ≡
∫ T

0

‖v(t)‖2B dt <∞ ∀ v ∈ L2(0, T ;B)

and

‖v‖2H1(0,T ;B) ≡
∫ T

0

(‖v(t)‖2B + ‖∂tv(t)‖2B) dt <∞ ∀ v ∈ H1(0, T ;B),

respectively. If Bh is a finite dimensional subspace of B, the norm of L2(0, T ;Bh)
and H1(0, T ;Bh) is taken to be that of L2(0, T ;B) and H1(0, T ;B), respectively.

Based on the approximation properties of V h, we may derive the following approx-
imation properties of the semidiscrete function spaces L2(0, T ;V h) and H1(0, T ;V h).

Proposition 2.3. Let V h be a family of finite element subspaces of H1
0 (Ω)

satisfying (2.1)–(2.5). Then, the following convergence properties hold as h→ 0:

inf
vh∈L2(0,T ;V h)

‖v − vh‖L2(0,T ;Hs(Ω)) → 0 ∀ v ∈ L2(0, T ;Hs(Ω)), s = −1, 0, 1.(2.12)

Moreover, the following approximation properties hold:

inf
vh∈L2(0,T ;V h)

‖v − vh‖L2(0,T ;Hs(Ω)) ≤ Chm+1−s‖v‖L2(0,T ;Hm+1(Ω))

∀ v ∈ L2(0, T ;Hm+1(Ω) ∩ Φm+1
0 (Ω)), −2 ≤ m ≤ k , s = −1, 0, 1.

(2.13)

Proof. We will prove (2.12) and (2.13) for the case s = −1 only; the cases when
s = 0 or 1 can be proved in a similar manner.

To prove (2.13) when s = −1, we need only to verify it for the cases m = k and
m = −2 thanks to interpolation theorems. Let v ∈ L2(0, T ;Hk+1(Ω) ∩ Φk+1

0 (Ω)) be
given and let Shv(t) be defined by (2.8) for almost every t ∈ (0, T ), i.e.,

(Shv(t), wh)−1 = (v(t), w
h)−1 ∀wh ∈ V h, a.e. t .
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It follows from v ∈ L2(0, T ;Hk+1(Ω) ∩ Φk+1
0 (Ω)) that Shv ∈ L2(0, T ;V h). Using

(2.2), we see that for almost every t ∈ (0, T ),
‖v(t)− Shv(t)‖−1 ≤ Chk+2‖v(t)‖k+1 a.e. t

so that integration in t yields

‖v − Shv‖L2(0,T ;H−1(Ω)) ≤ Chk+2‖v(t)‖L2(0,T ;Hk+1(Ω)) .(2.14)

Let v ∈ L2(0, T ;H−1(Ω)) = L2(0, T ;H−1(Ω) ∩ Φ−1
0 (Ω)) be given and let Shv(t)

be defined by (2.8) again for almost every t. The best approximation property of
projection operators implies

‖v(t)− Shv(t)‖−1 ≤ C‖v(t)‖−1 a.e. t

so that integration in t leads to

‖v − Shv‖L2(0,T ;H−1(Ω)) ≤ C‖v(t)‖L2(0,T ;H−1(Ω)) .(2.15)

Interpolation of (2.14) and (2.15) yields (2.13).
We now proceed to prove (2.12) when s = −1. Let v ∈ L2(0, T ;H−1(Ω)) be given.

For each ε > 0, we may choose a vε ∈ C([0, T ];H−1(Ω)) such that

‖v − vε‖L2(0,T ;H−1(Ω)) < ε/3 .

Then, using triangle inequalities and the fact that ‖Shw‖−1 ≤ ‖w‖−1, we have that

‖v − Shv‖L2(0,T ;H−1(Ω))

≤ ‖v − vε‖L2(0,T ;H−1(Ω)) + ‖vε − Shvε‖L2(0,T ;H−1(Ω)) + ‖Shvε − Shv‖L2(0,T ;H−1(Ω))

≤ 2‖v − vε‖L2(0,T ;H−1(Ω)) +
√
T max
t∈[0,T ]

‖vε(t)− Shvε(t)‖−1

< 2ε/3 +
√
T ‖vε(t0)− Shvε(t0)‖H−1(Ω)

for some t0 ∈ [0, T ]. The approximation property (2.1) implies that there exists an
h0 > 0 such that, for all h ∈ (0, h0),

‖vε(t0)− Shvε(t0)‖−1 ≤ ε/(3
√
T ) .

Combining the last two relations, we have that, for all h ∈ (0, h0),

‖v − Shv‖L2(0,T ;H−1(Ω)) < ε .

This completes the proof of (2.12) when s = −1.
Similar to Propositions 2.1 and 2.2, we can establish the best approximation prop-

erties of the L2(Ω)-projector Ph in L2(0, T ;H1
0 (Ω)) and of the generalized L2(Ω)-

projector Qh in L2(0, T ;H−1(Ω)).
Proposition 2.4. Let V h be a family of finite element subspaces of H1

0 (Ω)
satisfying (2.1)–(2.5). Then, the following approximation properties hold:

‖v − Phv‖L2(0,T ;H1(Ω)) → 0 as h→ 0 ∀ v ∈ L2(0, T ;H1
0 (Ω)) ,(2.16)

‖v −Qhv‖L2(0,T ;H−1(Ω)) → 0 as h→ 0 ∀ v ∈ L2(0, T ;H−1(Ω)) ,(2.17)
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‖v − Phv‖L2(0,T ;H1(Ω)) ≤ Chm‖v‖L2(0,T ;Hm+1(Ω))

∀ v ∈ L2(0, T ;Hm+1(Ω) ∩H1
0 (Ω)), 0 ≤ m ≤ k ,

(2.18)

and

‖v −Qhv‖L2(0,T ;H−1(Ω)) ≤ Chm+2‖v‖L2(0,T ;Hm+1(Ω))

∀ v ∈ L2(0, T ;Hm+1(Ω) ∩ Φm+1
0 (Ω)), −1 ≤ m ≤ k .

(2.19)

Moreover, the following inequalities hold:

‖v − Phv‖L2(0,T ;H1(Ω)) ≤ C‖v − vh‖L2(0,T ;H1(Ω))

∀ v ∈ L2(0, T ;H1
0 (Ω)) ∀ vh ∈ L2(0, T ;V h)

(2.20)

and

‖v −Qhv‖L2(0,T ;H−1(Ω)) ≤ C‖v − vh‖L2(0,T ;H−1(Ω))

∀ v ∈ L2(0, T ;H−1(Ω)) ∀ vh ∈ L2(0, T ;V h) .
(2.21)

Proof. Let v ∈ L2(0, T ;H1
0 (Ω)) be given. From (2.10) we see that

‖v(t)− Phv(t)‖1 ≤ C‖v(t)−Rhv(t)‖1 a.e. t .

Squaring both sides and integrating in t we obtain

‖v − Phv‖L2(0,T ;H1(Ω)) ≤ C‖v −Rhv‖L2(0,T ;H1(Ω)) .(2.22)

Also, it is evident from the best approximation properties of Rh in the ‖ · ‖1-norm
that

‖v(t)−Rhv(t)‖L2(0,T ;H1(Ω)) = inf
vh∈V h

‖v − vh‖L2(0,T ;H1(Ω)) .

Thus, (2.16) and (2.18) follow from (2.12) (with s = 1), (2.13) (with s = 1), and the
last two relations.

Let v ∈ L2(0, T ;H−1(Ω)) be given. From (2.11) we see that

‖v(t)−Qhv(t)‖−1 ≤ C‖v(t)− Shv(t)‖−1 a.e. t .

Squaring both sides and integrating in t we obtain

‖v −Qhv‖L2(0,T ;H−1(Ω)) ≤ C‖v − Shv‖L2(0,T ;H−1(Ω)) .(2.23)

Also, it is evident from the best approximation properties of Sh in the ‖ · ‖−1-norm
that

‖v − Shv‖L2(0,T ;H−1(Ω)) = inf
vh∈V h

‖v − vh‖L2(0,T ;H−1(Ω)) .

Thus, (2.17) and (2.19) follow from (2.12), (2.13), and the last two relations.
Inequalities (2.20) and (2.21) are trivial consequences of (2.22) and (2.23), respec-

tively.
Remark. Note that using (2.6) and (2.8), we can prove that Ph is the L2-projection

from L2(0, T ;L2(Ω)) onto L2(0, T ;V h).
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3. Semidiscrete error estimates for linear parabolic equations. We as-
sume in what follows that the data

f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω)

or, equivalently, the solution u ∈ X, where X is as introduced in section 1, is the
space

X = L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω))

equipped with the norm

‖v‖2X = ‖v‖2L2(0,T ;H1(Ω)) + ‖∂tv‖2L2(0,T ;H−1(Ω)) .

Whenever further regularity assumptions on the solution u (or equivalently on the
data f and u0) are used, they will be explicitly stated. In this section we consider the
approximations of the linear parabolic problem

∂tu− div [A(x)∇u] = f in (0, T )× Ω ,(3.1)

u
∣∣
(0,T )×∂Ω

= 0 ,(3.2)

and

u(0) = u0 in Ω .(3.3)

We introduce a bilinear form

a(v, w) =

∫
Ω

[A(x)∇v(x)] · [∇w(x)] dx ∀ v, w ∈ H1(Ω).

We assume that A : Ω→ R
d×d is uniformly positive definite and essentially bounded

so that

a(v, v) ≥ C0‖v‖21 ∀ v ∈ H1
0 (Ω)(3.4)

and

a(v, w) ≤ C1‖v‖1‖w‖1 ∀ v, w ∈ H1(Ω).(3.5)

We define a weak formulation of (3.1)–(3.3) as follows: find

u ∈ X(3.6)

such that

〈∂tu(t), v〉+ a(u(t), v) = 〈f(t), v〉 ∀ v ∈ H1
0 (Ω), a.e. t,(3.7)

and

(u(0), z) = (u0, z) ∀ z ∈ L2(Ω) .(3.8)

Here, a.e. t means “for almost every t ∈ (0, T ).”
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Throughout this paper, V h denotes a family of finite element subspaces of H1
0 (Ω)

satisfying (2.1)–(2.5). The semidiscrete finite element approximation of the weak
formulation (3.6)–(3.8) is defined by

uh ∈ H1(0, T ;V h) ,(3.9)

(∂tu
h(t), vh) + a(uh(t), vh) = 〈f(t), vh〉 ∀ vh ∈ V h, a.e. t ,(3.10)

and

uh(0) = uh0 ,(3.11)

where uh0 ∈ V h is a suitable approximation of u0.
The initial conditions (3.8) and (3.11) make sense because of part (i) of the fol-

lowing embedding results.
Lemma 3.1. The following two embedding results hold for X:
(i) X is continuously embedded into C([0, T ];L2(Ω)). Furthermore, for v ∈ X,

the mapping t �→ ‖v(t)‖ is absolutely continuous on [0, T ] with

1

2

d

dt
‖v(t)‖2 = 〈v′(t), v(t)〉 a.e. t ∈ [0, T ] .

(ii) X is compactly embedded into L2(0, T ;L2(Ω)).
Proof. See, e.g., [21, p. 287] for part (i) and [35, p. 271, p. 274] for part (ii).
Parallel to standard finite element theories for elliptic problems, we will derive

error estimates in the norm of the solution space for the parabolic weak formulation
and establish parabolic Cea’s lemma and Aubin–Nitsche’s lemma. (For the elliptic
version of Cea’s lemma and Aubin–Nitsche’s lemma, see, e.g., [11].) We will also prove
some additional estimates.

3.1. Semidiscrete error estimates in the norm of the solution space. We
will estimate the errors in the X-norm by estimating u−uh and ∂tu−∂tu

h separately.
We have the following error estimates for u− uh.

Theorem 3.2. Let u ∈ X be the solution of (3.7)–(3.8) and uh ∈ H1(0, T ;V h)
be the solution of (3.10)–(3.11). Assume that

‖u0 − uh0‖ → 0 as h→ 0 .(3.12)

Then, for every t ∈ [0, T ],

‖u(t)− uh(t)‖2 +
∫ T

0

‖u(s)− uh(s)‖21 ds→ 0 as h→ 0 .(3.13)

If, in addition,

u ∈ L2(0, T ;Hm+1(Ω)) ∩H1(0, T ;Hm−1(Ω)) for some m ∈ [0, k](3.14)

and uh0 = Phu0, then

‖u(t)− uh(t)‖2 +
∫ T

0

‖u(s)− uh(s)‖21 ds

≤ Ch2m
(
‖u‖2L2(0,T ;Hm+1(Ω)) + ‖∂tu‖2L2(0,T ;Hm−1(Ω))

)
.

(3.15)
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Proof. By subtracting (3.10) from (3.7) we obtain the “orthogonality” condition

〈∂tu(t)− ∂tu
h(t), vh〉+ a(u(t)− uh(t), vh) = 0 ∀ vh ∈ V h, a.e. t .(3.16)

This leads to the relation

1

2

d

dt
‖u(t)− uh(t)‖2 + a(u(t)− uh(t), u(t)− uh(t))

= 〈∂tu(t)− ∂tu
h(t), u(t)− uh(t)〉+ a(u(t)− uh(t), u(t)− uh(t))

= 〈∂tu(t)− ∂tu
h(t), u(t)− vh(t)〉+ a(u(t)− uh(t), u(t)− vh(t))

(3.17)

for every vh(t) ∈ H1(0, T ;V h) and almost every t ∈ (0, T ). Let Phu(t) be defined
through (2.6) for almost every t. Then, we see that Phu has the same regularity as
u, i.e., Phu ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)). Using repeatedly the fact that

(u(t)− Phu(t), wh) = 0 ∀wh ∈ V h, a.e. t ,

we obtain

〈∂tu(t)− ∂tu
h(t), u(t)− Phu(t)〉 = 〈∂tu(t), u(t)− Phu(t)〉

= 〈∂tu(t)− ∂tP
hu(t), u(t)− Phu(t)〉 = 1

2

d

dt
‖u(t)− Phu(t)‖2 a.e. t .

(3.18)

Thus, by setting vh(t) = Phu(t) in (3.17) and with the help of (3.18), (3.4), and (3.5),
we are led to

1

2

d

dt
‖u(t)− uh(t)‖2 + C0‖u(t)− uh(t)‖21

≤ 1
2

d

dt
‖u(t)− uh(t)‖2 + a(u(t)− uh(t), u(t)− uh(t))

=
1

2

d

dt
‖u(t)− Phu(t)‖2 + a(u(t)− uh(t), u(t)− Phu(t))

≤ 1
2

d

dt
‖u(t)− Phu(t)‖2 + C0

2
‖u(t)− uh(t)‖21 + C‖u(t)− Phu(t)‖21

(3.19)

for almost every t. Integrating (3.19) in t and eliminating the factor (1/2) we obtain

‖u(t)− uh(t)‖2 + C0

∫ t

0

‖u(s)− uh(s)‖21 ds

≤ ‖u0 − uh(0)‖2 + ‖u(t)− Phu(t)‖2 − ‖u(0)− Phu(0)‖2

+ C

∫ t

0

‖u(s)− Phu(s)‖21 ds

≤ ‖u0 − uh0‖2 + ‖u(t1)− Phu(t1)‖2 − ‖u(0)− Phu(0)‖2

+ C

∫ t

0

‖u(s)− Phu(s)‖21 ds ∀ t ∈ [0, T ] ,

(3.20)

where t1 ∈ [0, T ] satisfies ‖u(t1)−Phu(t1)‖2 = maxt∈[0,T ] ‖u(t)−Phu(t)‖2. Note that
(3.20) makes sense for all t because of Lemma 3.1. Also, we note that (3.14) implies
u ∈ C([0, T ];Hm(Ω)) so that u0 ∈ Hm(Ω). Thus, (3.13) follows from (3.20), (3.12),
(2.1) with s = 0, and (2.16).
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If uh0 = Phu0, then (3.20) simplifies to

‖u(t)− uh(t)‖2 + C0

∫ t

0

‖u(s)− uh(s)‖21 ds

≤ ‖u(t1)− Phu(t1)‖2 + C

∫ T

0

‖u(s)− Phu(s)‖21 ds ∀ t ∈ [0, T ]
(3.21)

so that under the assumption u ∈ L2(0, T ;Hm+1(Ω)) ∩ H1(0, T ;Hm−1(Ω)), (3.15)
follows from (3.21), (2.3), Lemma 3.1, and (2.18).

Remark. Note that (3.14) implies that u ∈ C([0, T ];Hm(Ω)) so that u0 nec-
essarily satisfies u0 ∈ Hm(Ω). Using the differential equation we also deduce that
f ∈ L2(0, T ;Hm−1(Ω)). On the other hand, if we assume f ∈ L2(0, T ;Hm−1(Ω)) and
u0 ∈ Hm(Ω), we need certain compatibility conditions and some further conditions
on f in order to deduce that u ∈ L2(0, T ;Hm+1(Ω)) ∩H1(0, T ;Hm−1(Ω)); see, e.g.,
[21, p. 365] and [28, pp. 386–387]. In Theorem 3.2 and the remaining theorems in this
paper concerning the order of error estimates, we simply assume (3.14) holds without
stating precisely the compatibility conditions and the conditions on f . Based on [21,
p. 365] and [28, pp. 386–387], we see that regularity assumption (3.14) on u not only
is nonvacuous, but holds quite generally.

Remark. The use of the L2-projection Phu(t) played an important role in the
treatment of the ∂tu − ∂tu

h term. [18, Theorem 3.1] derived an estimate seemingly
similar to the first inequality in (3.20). However, that estimate contained an extra
term, ‖∂tu−∂tu

h‖2L2(0,T ;L2(Ω)), that cannot be estimated under the minimal regularity

∂tu ∈ L2(0, T ;H−1(Ω)). [22, Theorem 4.1] derived an estimate involving the term
‖∂tu − ∂tv

h‖2L2(0,T ;H−1(Ω)) which is in the minimal regularity norm. However, that
estimate by itself does not directly yield the convergence results or error estimates of
this paper under minimal regularity; see [22, Theorem 4.3].

Now we turn to the convergence proof and the estimate for the error ∂tu− ∂tu
h

in L2(0, T ;H−1(Ω)).
Theorem 3.3. Let u ∈ X be the solution of (3.7)–(3.8) and uh ∈ H1(0, T ;V h)

be the solution of (3.10)–(3.11). Assume that (3.12) holds. Then,

‖∂tu− ∂tu
h‖L2(0,T ;H−1(Ω)) → 0 as h→ 0 .(3.22)

If, in addition, (3.14) holds and uh0 = Phu0, then

‖∂tu− ∂tu
h‖L2(0,T ;H−1(Ω))

≤ Chm
(
‖u‖L2(0,T ;Hm+1(Ω)) + ‖∂tu‖H1(0,T ;Hm−1(Ω))

)
.

(3.23)

Proof. Using the orthogonality condition (3.16), we have

〈∂tu(t)− ∂tu
h(t), v〉 = 〈∂tu(t)− ∂tu

h(t), Qhv〉+ 〈∂tu(t)− ∂tu
h(t), v −Qhv〉

= −a(u(t)− uh(t), Qhv) + 〈∂tu(t)− ∂tu
h(t), v −Qhv〉 .

Note that 〈∂tuh(t), v−Qhv〉 = 0 = 〈Qh∂tu(t), v−Qhv〉 so that the previous equality
can be rewritten as

〈∂tu(t)− ∂tu
h(t), v〉 = −a(u(t)− uh(t), Qhv) + 〈∂tu(t)−Qh∂tu(t), v −Qhv〉

≤ C‖u(t)− uh(t)‖1 ‖Qhv‖1 + ‖∂tu(t)−Qh∂tu(t)‖−1‖v −Qhv‖1 a.e. t .
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Taking the supremum over v ∈ H1
0 (Ω) with ‖v‖1 = 1 and noting that ‖Phv − v‖1 ≤

C‖Rhv−v‖1 ≤ C‖v‖1, ‖Phv‖1 ≤ ‖Phv−v‖1+‖v‖1 ≤ C‖Rhv−v‖1+‖v‖1 ≤ C‖v‖1,
and Phv = Qhv, we obtain

‖∂tu(t)− ∂tu
h(t)‖−1

≤ C‖u(t)− uh(t)‖1 + C‖∂tu(t)−Qh∂tu(t)‖−1 a.e. t .
(3.24)

Integration in t in (3.24) yields

‖∂tu− ∂tu
h‖L2(0,T ;H−1(Ω))

≤ C‖u− uh‖L2(0,T ;H1
0 (Ω)) + C‖∂tu−Qh∂tu‖L2(0,T ;H−1(Ω)) .

(3.25)

Thus, (3.22) follows from (3.25), (3.13), and (2.17), and (3.23) follows from (3.25),
(3.15), and (2.19).

3.2. Parabolic Cea’s lemma and Aubin–Nitsche’s lemma. As an immedi-
ate consequence of (2.20), (2.21), (3.21), and (3.25), we obtain the following parabolic
version of Cea’s lemma.

Theorem 3.4. Let u ∈ X be the solution of (3.7)–(3.8) and uh ∈ H1(0, T ;V h)
be the solution of (3.10)–(3.11). Assume uh0 = Phu0. Then

‖u− uh‖X ≤ C‖u− vh‖X ∀ vh ∈ H1(0, T ;V h),

i.e.,

‖u(t)− uh(t)‖L2(Ω) + ‖u− uh‖L2(0,T ;H1
0 (Ω)) + ‖∂tu− ∂tu

h‖L2(0,T ;H−1(Ω))

≤ C
(
‖u(t)− vh(t)‖L2(Ω) + ‖u− vh‖L2(0,T ;H1

0 (Ω)) + ‖∂tu− ∂tv
h‖L2(0,T ;H−1(Ω))

)
for every vh ∈ H1(0, T ;V h). Furthermore,

‖u(t)− uh(t)‖L∞(0,T ;L2(Ω)) + ‖u− uh‖L2(0,T ;H1
0 (Ω)) + ‖∂tu− ∂tu

h‖L2(0,T ;H−1(Ω))

≤ C
(
‖u− vh‖L∞(0,T ;L2(Ω)) + ‖u− wh‖L2(0,T ;H1

0 (Ω)) + ‖∂tu− ∂tz
h‖L2(0,T ;H−1(Ω))

)
for every vh, wh, zh ∈ H1(0, T ;V h).

Remark. Thanks to Lemma 3.1, we may freely add or delete the term

‖v‖L∞(0,T ;L2(Ω))

in the definition of the norm for X.
Next we prove a parabolic Aubin–Nitsche lemma.
Theorem 3.5. Let u ∈ X be the solution of (3.7)–(3.8) and uh ∈ H1(0, T ;V h)

be the solution of (3.10)–(3.11). Assume that uh0 = Phu0. Then

‖u− uh‖L2(0,T ;L2(Ω)) ≤ Ch‖u− uh‖L2(0,T ;H1(Ω)).(3.26)

Proof. Using the embedding

L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) ↪→ C([0, T ];L2(Ω))

we have that u ∈ C([0, T ];L2(Ω)) and uh ∈ C([0, T ];L2(Ω)). Thus for every t ∈
[0, T ] we may define z(t) ∈ H1

0 (Ω) and zh(t) ∈ V h as the solutions of the following
continuous and discrete elliptic problems, respectively:

a(z(t), v) = (u(t)− uh(t), v) ∀ v ∈ H1
0 (Ω)(3.27)
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and

a(zh(t), vh) = (u(t)− uh(t), vh) ∀ vh ∈ V h.(3.28)

Setting v = u(t)− uh(t) in (3.27) we obtain

‖u(t)− uh(t)‖20 = a(z(t), u(t)− uh(t))

= a(z(t)− zh(t), u(t)− uh(t)) + a(zh(t), u(t)− uh(t)),

which, upon an application of the “orthogonality condition” (3.16), can be rewritten
as

‖u(t)− uh(t)‖20 = a(z(t)− zh(t), u(t)− uh(t))− 〈∂tu(t)− ∂tu
h(t), zh(t)〉.(3.29)

Differentiating (3.28) and then setting vh = zh(t) yield

1

2

d

dt
a(zh(t), zh(t)) = a(∂tz

h(t), zh(t)) = 〈∂tu(t)− ∂tu
h(t), zh(t)〉 a.e. t.(3.30)

Substitution of (3.30) into (3.29) and integration over t ∈ [0, T ] lead us to

‖u− uh‖2L2(0,T ;L2(Ω)) ≤ C‖z − zh‖L2(0,T ;H1(Ω)) ‖u− uh‖L2(0,T ;H1(Ω))

− 1
2
a(zh(T ), zh(T )) +

1

2
a(zh(0), zh(0)).

(3.31)

From (3.28) at t = 0 we see that

a(zh(0), zh(0)) = (u(0)− uh(0), zh(0)) = (u(0)− Phu(0), zh(0)) = 0.

Also obviously,

a(zh(T ), zh(T )) ≥ 0.

Elliptic regularity on convex domains implies that z(t) ∈ H2(Ω) with the estimate
‖z(t)‖2 ≤ C‖u(t) − uh(t)‖0. Standard error estimates for the finite element approxi-
mations of elliptic problems yield

‖z(t)− zh(t)‖1 ≤ Ch ‖z(t)‖2 ≤ Ch ‖u(t)− uh(t)‖0.(3.32)

By combining (3.31)–(3.32) we derive

‖u− uh‖2L2(0,T ;L2(Ω)) ≤ Ch‖u− uh‖L2(0,T ;L2(Ω)) ‖u− uh‖L2(0,T ;H1(Ω)),

which yields (3.26) upon cancelling the common factor ‖u− uh‖L2(0,T ;L2(Ω)).

3.3. Pointwise-in-time error estimates. If we make stronger regularity as-
sumptions on u, i.e., u ∈ L2(0, T ;H3(Ω)) ∩ H1(0, T ;H1(Ω)), then we may obtain
pointwise-in-time error estimates for ‖∂tu(t) − ∂tu

h(t)‖−1 and ‖u(t) − uh(t)‖1. We
may also obtain an error estimate for ‖∂tu− ∂tu

h‖L2(0,T ;L2(Ω)).

Theorem 3.6. Let u ∈ X be the solution of (3.7)–(3.8) and uh ∈ H1(0, T ;V h)
be the solution of (3.10)–(3.11). Assume that k ≥ 2,

u ∈ L2(0, T ;Hm+1(Ω)) ∩H1(0, T ;Hm−1(Ω)) for some m ∈ [2, k] ,(3.33)
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and uh0 = Phu0. Then

‖∂tu− ∂tu
h‖L2(0,T ;L2(Ω)) → 0 as h→ 0 ,(3.34)

‖u(t)− uh(t)‖1 → 0 as h→ 0 ∀ t ∈ [0, T ] ,(3.35)

‖∂tu(t)− ∂tu
h(t)‖−1 → 0 as h→ 0 ∀ t ∈ [0, T ] ,(3.36)

‖∂tu− ∂tu
h‖L2(0,T ;L2(Ω))

≤ Chm−1
(
‖u‖L2(0,T ;Hm+1(Ω)) + ‖∂tu‖H1(0,T ;Hm−1(Ω))

)
,

(3.37)

‖u(t)− uh(t)‖1

≤ Chm−1
(
‖u‖L2(0,T ;Hm+1(Ω)) + ‖∂tu‖H1(0,T ;Hm−1(Ω))

)
∀ t ∈ [0, T ] ,

(3.38)

and

‖∂tu(t)− ∂tu
h(t)‖−1

≤ Chm−1
(
‖u‖L2(0,T ;Hm+1(Ω)) + ‖∂tu‖H1(0,T ;Hm−1(Ω))

)
∀ t ∈ [0, T ] .

(3.39)

Proof. From (3.33) we deduce that u0 ∈ Hm(Ω) and that u ∈ L2(0, T ;H3(Ω)) ∩
H1(0, T ;H1(Ω)) so that ∂tu ∈ L2(0, T ;H1(Ω)). Using the orthogonality condition
(3.16) we obtain

(∂tu(t)− ∂tu
h(t), Ph∂tu(t)) + a(u(t)− uh(t), Ph∂tu(t)) = 0 a.e. t(3.40)

and

(∂tu(t)− ∂tu
h(t), ∂tu

h(t)) + a(u(t)− uh(t), ∂tu
h(t)) = 0 a.e. t .(3.41)

With the help of (3.40)–(3.41) we obtain

‖∂tu(t)− ∂tu
h(t)‖2 + 1

2

d

dt
a(u(t)− uh(t), u(t)− uh(t))

= (∂tu(t)− ∂tu
h(t), ∂tu(t)− ∂tu

h(t)) + a(u(t)− uh(t), ∂tu(t)− ∂tu
h(t))

= (∂tu(t)− ∂tu
h(t), ∂tu(t)) + a(u(t)− uh(t), ∂tu(t))

= (∂tu(t)− ∂tu
h(t), ∂tu(t)− Ph∂tu(t)) + a(u(t)− uh(t), ∂tu(t)− Ph∂tu(t))

for almost every t ∈ [0, T ]. Then, from the defining equation of Ph, i.e., (2.6), we see
that

(∂tu
h(t), ∂tu(t)− Ph∂tu(t)) = 0 = (P

h∂tu(t), ∂tu(t)− Ph∂tu(t)) a.e. t .

Combining the last two equations we arrive at

‖∂tu(t)− ∂tu
h(t)‖2 + 1

2

d

dt
a(u(t)− uh(t), u(t)− uh(t))

= (∂tu(t)− Ph∂tu(t), ∂tu(t)− Ph∂tu(t)) + a(u(t)− uh(t), ∂tu(t)− Ph∂tu(t))

≤ ‖∂tu(t)− Ph∂tu(t)‖2 + C‖u(t)− uh(t)‖21 + C‖∂tu(t)− Ph∂tu(t)‖21 .
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Integration in t yields

∫ t

0

‖∂tu(s)− ∂tu
h(s)‖2 ds+

1

2
a(u(t)− uh(t), u(t)− uh(t))

≤ 1
2
a(u(0)− uh(0), u(0)− uh(0)) +

∫ T

0

‖∂tu(t)− Ph∂tu(t)‖2 dt

+ C

∫ T

0

‖u(t)− uh(t)‖21 dt+ C

∫ T

0

‖∂tu(t)− Ph∂tu(t)‖21 dt

≤ 1
2
‖u0 − Phu0‖21 +

∫ T

0

‖∂tu(t)− Ph∂tu(t)‖2 dt

+ C

∫ T

0

‖u(t)− uh(t)‖21 dt+ C

∫ T

0

‖∂tu(t)− Ph∂tu(t)‖21 dt .

(3.42)

Thus, (3.34) and (3.35) follow from (3.42), (2.10), (2.1) with s = 1, (2.12) with s = 0,
(3.13), and (2.16). Relations (3.37) and (3.38) follow from (3.42), (2.10), (2.4), (2.13)
with s = 0, (3.15), and (2.18). Also, (3.36) follows from (3.24), (3.35), (2.11), and
(2.1). Finally, (3.39) follows from (3.24), (3.38), (2.11), and (2.2).

Remark. The H1(Ω)-norm of Ph∂tu(t) was used in the proof of Theorem 3.4. For
this reason we need k ≥ m ≥ 2.

Remark. We used the fact that Ph∂tu = ∂tP
hu, which can be easily

verified.

Remark. (3.42) seems to suggest that, for pointwise-in-time estimate, one should
assume u ∈ L2(0, T ;Hm+1(Ω))∩H1(0, T ;Hm(Ω)) instead of u ∈ L2(0, T ;Hm+1(Ω))∩
H1(0, T ;Hm−1(Ω)). Under the former regularity together with the assumption u0 ∈
Hm+1(Ω), (3.42) yields O(hm) estimates instead of O(hm−1) estimates.

4. Semidiscrete error estimates for semilinear parabolic equations. In
this section, we derive error estimates for the semidiscrete finite element approxima-
tions of the semilinear parabolic problem

∂tu− div [A(x)∇u] + b(t,x) · (∇u) + φ(u) = f in (0, T )× Ω ,(4.1)

u
∣∣
(0,T )×∂Ω

= 0 ,(4.2)

and

u(0) = u0 in Ω(4.3)

under minimal regularity assumptions on u. Throughout this section we assume that
A(x) possesses sufficient smoothness that guarantees the validity of the regularity
theorem [21, p. 360, Theorem 5] for the linear parabolic equation.

The error estimates to be derived in section 4.2 make use of results of [9] (see also
[23] and [13]) concerning the approximation of a class of nonlinear problems. These
results imply that, under certain hypotheses, the error of approximation of solutions
of certain nonlinear problems is basically the same as the error of approximation of
solutions of related linear problems. Here, for the sake of completeness, we state the
relevant results, specialized to our needs.
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4.1. Quotation of results concerning the approximation of a class of
nonlinear problems. The nonlinear problems considered in [9] and [23] are of the
following type. We seek a ψ ∈ X such that

ψ + T G(ψ) = 0 ,(4.4)

where T ∈ L(Y;X ), G is a C2 mapping from X into Y, and X and Y are Banach
spaces. We say that ψ is a regular solution if ψ + TGψ(ψ) is an isomorphism from
X into X . Here, Gψ(·) (or G′ or DG) denotes the Fréchet derivative of G(·). We
assume that there exists another Banach space Z, contained in Y, with continuous
embedding, such that

Gψ(ψ) ∈ L(X ;Z) ∀ψ ∈ X .(4.5)

Approximations are defined by introducing a subspace X h ⊂ X and an approxi-
mating operator T h ∈ L(Y;X h). We seek a ψh ∈ X h such that

ψh + T hG(ψh) = 0 .(4.6)

Concerning the linear operator T h, we assume the approximation properties
lim
h→0
‖(T h − T )ω‖X = 0 ∀ω ∈ Y(4.7)

and

lim
h→0
‖T h − T ‖L(Z;X ) = 0 .(4.8)

Note that whenever the imbedding Z ⊂ Y is compact, (4.8) follows from (4.7) and,
moreover, (4.5) implies that the operator T Gψ(ψ) ∈ L(X ;X ) is compact.

We can now state the result of [9] (see also [23]) that will be used in section 4.2.
In the statement of the theorem, D2G represents the second Fréchet derivatives of G.

Theorem 4.1. Let X and Y be Banach spaces. Assume that G is a C2 mapping
from X into Y and that D2G is bounded on all bounded sets of X . Assume that (4.5),
(4.7), and (4.8) hold and that ψ is a regular solutions of (4.4). Then there exists a
neighborhood O of the origin in X and, for h ≤ h0 small enough, a unique ψh ∈ X h
such that ψh is a regular solution of (4.6) and ψh − ψ ∈ O. Moreover, there exists a
constant C > 0, independent of h, such that

‖ψh − ψ‖X ≤ C‖(T h − T )G(ψ)‖X .(4.9)

4.2. Recasting the semilinear problem into the Brezzi–Rappaz–Raviart
framework. We define the following weak form for the semilinear problem (4.1)–
(4.3): find

u ∈ X(4.10)

such that

〈∂tu(t), v〉+ a(u(t), v) + (b(t) · ∇u(t), v) +
(
φ(u(t)), v

)
= 〈f(t), v〉 ∀ v ∈ H1

0 (Ω), a.e. t
(4.11)

and

(u(0), z) = (u0, z) ∀ z ∈ L2(Ω) .(4.12)
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Certain conditions must be imposed on φ in order to guarantee the existence of a
solution for (4.10)–(4.12) in X. In this paper, we limit ourselves to finite element
analysis only. Thus, we will simply assume the existence of a solution for (4.10)–(4.12)
and then try to derive error estimates for its semidiscrete finite element solution. Of
course, there are many choices of φ (e.g., φ(u) = u11/5) that guarantee a solution to
(4.10)–(4.12) so that our error estimation is not vacuous.

Let V h be a family of finite element subspaces of H1
0 (Ω) satisfying (2.1)–(2.5).

We define a semidiscrete finite element approximation of the weak formulation (4.10)–
(4.12) by

uh ∈ H1(0, T ;V h) ,(4.13)

(∂tu
h(t), vh) + a(uh(t), vh) + (b(t) · ∇uh(t), vh) + (φ(uh(t), vh)

= 〈f(t), vh〉 ∀ vh ∈ V h, a.e. t ,
(4.14)

and

(uh(0), zh) = (u0, z
h) ∀ zh ∈ V h .(4.15)

Error estimates for such approximations were derived in [38, Chapter 14] and [39]
under certain smoothness assumptions on the solution. We will derive error estimates
under minimal regularity in the sense we described in section 1, and we determine the
largest growth exponent for the derivative of the semilinear term that guarantees a
solution with the minimal regularity. For the same order error estimates as those of
[38, Chapter 14] and [39], we assume less smoothness on the solution than what was
required in [38] or [39]. Also, we obtain an estimate for ∂tu− ∂tu

h which was absent
from [38] or [39].

To derive error estimates for the semidiscrete approximations of the semilinear
problem, we first fit the problem into the Brezzi–Rappaz–Raviart framework described
in section 4.1. Then by verifying all assumptions of the Brezzi–Rappaz–Raviart theory
we obtain the desired error estimates.

We set

X = X ≡ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω))

with the norm ‖v‖2X = ‖v‖2L2(0,T ;H1
0 (Ω))

+ ‖∂tv‖2L2(0,T ;H−1(Ω)) for all v ∈ X and

Y = L2(0, T ;H−1(Ω))× L2(Ω)

with the norm ‖(y1, y2)‖2Y = ‖y1‖2L2(0,T ;H−1(Ω)) + ‖y2‖2 for all y = (y1, y2) ∈ Y. We
introduce the linear operator T : Y → X to be the solution operator for the linear
parabolic problem, i.e., T (f̃ , ũ0) = ũ for (f̃ , ũ0) ∈ Y and ũ ∈ X if and only if

〈∂tũ(t), v〉+ a(ũ(t), v) = 〈f̃(t), v〉 ∀ v ∈ H1
0 (Ω), a.e. t,

and

(ũ(0), z) = (ũ0, z) ∀ z ∈ L2(Ω) .

We define G : X → Y by G(v) = (−f + b · ∇v + φ(v),−u0) for all v ∈ X .
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Let X h = H1(0, T ;V h). We define the linear operator T h : Y → X h to be the
semidiscrete solution operator for the linear parabolic problem, i.e., T h(f̃ , ũ0) = ũh

for (f̃ , ũ0) ∈ Y and ũh ∈ X h if and only if

(∂tũ
h(t), vh) + a(ũh(t), vh) = 〈f̃(t), vh〉 ∀ vh ∈ V h, a.e. t,

and

(ũh(0), zh) = (ũ0, z
h) ∀ zh ∈ V h .

Clearly, (4.11)–(4.12) is equivalent to

u+ T G(u) = 0,
and (4.14)–(4.15) is equivalent to

uh + T hG(uh) = 0 .
In other words, we have recast the semilinear problem and its approximation into the
form of (4.4) and (4.6).

4.3. Semidiscrete error estimates for the approximation of semilinear
parabolic equations. Our goal is to obtain convergence and error estimates in the
X-norm for finite element approximations of the semilinear problem. We first examine
conditions on φ that will guarantee the meaningfulness of the term φ(u) when u ∈ X.
We consider the three-dimensional case only (Ω ⊂ R

3). Note that L2(0, T ;H1
0 (Ω)) ⊂

L2(0, T ;L6(Ω)). If φ(s) = O(|s|α), then in order for the term φ(u) = O(|u|α) to make
sense in the function space L2(0, T ;H−1(Ω)), we need |u|α ∈ L2(0, T ;L6/5(Ω)), which
is equivalent to u ∈ L2α(0, T ;L6α/5(Ω)). The next lemma determines the largest value
of allowable α when Ω ⊂ R

3.
Lemma 4.2. Assume Ω ⊂ R

3 and let α ≡ 7/3. Then the embedding

L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) ⊂ L2α1(0, T ;L6α2/5(Ω))(4.16)

is continuous for all α1, α2 ∈ [1, α] and compact for all α1, α2 ∈ [1, α).
Proof. To show (4.16) is a continuous embedding for all α1, α2 ∈ [1, α], it suffices

to show that the embedding

L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω))

⊂ L2α(0, T ;L
6α
5 (Ω)) = L

14
3 (0, T ;L

14
5 (Ω))

(4.17)

is continuous. It is well known that the embeddings

L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) ⊂ L2(0, T ;L6(Ω))

and

L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) ⊂ L∞(0, T ;L2(Ω))

are continuous. For each y ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;H−1(Ω)) the interpolation of

L6 and L2 yields

‖y(t)‖Lq(Ω) ≤ C‖y(t)‖1−θL6(Ω) ‖y(t)‖θL2(Ω)
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for all θ ∈ [0, 1] with q ∈ [2, 6] determined by
1

q
=
1− θ

6
+

θ

2
.(4.18)

This leads to

‖y(t)‖
2

1−θ

Lq(Ω) ≤ C‖y(t)‖2L6(Ω) ‖y(t)‖
2θ

1−θ

L2(Ω)

so that

‖y‖
L

2
1−θ (0,T ;Lq(Ω))

≤ C‖y‖θL∞(0,T ;L2(Ω)) ‖y‖1−θL2(0,T ;L6(Ω)) .

Thus, the embedding

L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)) ⊂ L

2
1−θ (0, T ;Lq(Ω))(4.19)

is continuous for all θ ∈ [0, 1] with q determined by (4.18). By choosing θ = 4/7 in
(4.19), we see that the embedding (4.17) is continuous.

Next, we show the embedding (4.16) is compact for all α1, α2 ∈ [1, α). Let α1, α2 ∈
[1, α) be given. For each y ∈ L2(0, T ;H1

0 (Ω))∩H1(0, T ;H−1(Ω)) the interpolation of

L2α(0, T ;L
6α2
5 (Ω)) and L2(0, T ;L

6α2
5 (Ω)) yields(∫ T

0

‖y(t)‖2α1

L
6α2
5 (Ω)

dt

) 1
2α1

≤ C

(∫ T

0

‖y(t)‖2α
L

6α2
5 (Ω)

dt

) 1−θ1
2α
(∫ T

0

‖y(t)‖2
L

6α2
5 (Ω)

dt

) θ1
2

,

(4.20)

where θ1 satisfies

1

2α1
=
1− θ1

2α
+

θ1

2
.

The interpolation of L
6α
5 (Ω) and L2(Ω) and Holder’s inequality imply∫ T

0

‖y(t)‖2
L

6α2
5 (Ω)

dt ≤ C

∫ T

0

‖y(t)‖2(1−θ2)
L

6α
5 (Ω)

‖y(t)‖2θ2L2(Ω) dt

≤ C

(∫ T

0

‖y(t)‖2
L

6α
5 (Ω)

dt

)1−θ2 (∫ T

0

‖y(t)‖2L2(Ω) dt

)θ2
,

(4.21)

where θ2 satisfies

5

6α2
=
5(1− θ2)

6α
+

θ2

2
.

Substituting (4.21) into (4.20), we obtain

‖y‖
L2α1 (0,T ;L

6α2
5 (Ω))

≤ C

∣∣∣∣∣
∫ T

0

‖y(t)‖2α
L

6α2
5 (Ω)

dt

∣∣∣∣∣
1−θ1
2α
∣∣∣∣∣
∫ T

0

‖y(t)‖2
L

6α
5 (Ω)

dt

∣∣∣∣∣
θ1(1−θ2)

2
∣∣∣∣∣
∫ T

0

‖y(t)‖2L2(Ω) dt

∣∣∣∣∣
θ1θ2

2

= C‖y‖1−θ1
L2α(0,T ;L

6α2
5 (Ω))

‖y‖θ1(1−θ2)
L2(0,T ;L

6α
5 (Ω))

‖y‖θ1θ2L2(0,T ;L2(Ω)) .

(4.22)
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Let {yn} be a weakly convergent sequence in L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;H−1(Ω)).

Then {yn} is bounded in L2α(0, T ;L
6α2
5 (Ω)) and in L2(0, T ;L

6α
5 (Ω)) (because of the

continuous imbedding (4.17)), and {yn} converges strongly in L2(0, T ;L2(Ω)) (see
Lemma 3.1, part (ii)). Thus, (4.22) implies that {yn} converges strongly in L2α1(0, T ;

L
6α2
5 (Ω)).
Based on the recast problems in section 4.2, we now verify all assumptions of

Theorem 4.1 and derive the following error estimates for the semidiscrete solution uh

of the semilinear problem.
Theorem 4.3. Let u ∈ X be a regular solution of (4.10)–(4.12). Assume that

b ∈ L∞(0, T ;Lγ(Ω)) for some γ > d (d = 2 or 3 being the space dimension), φ ∈
C2(R;R),

|φ′(s)| ≤ C|s|α−1 and |φ′′(s)| ≤ C|s|α−2 ∀ s ∈ R(4.23)

for an α ∈ [2, 7/3) when d = 3 or for an α ∈ [2,∞) when d = 2. Then there exists
a sufficiently small h0 > 0 such that for all h ∈ (0, h0), (4.13)–(4.15) has a unique
regular solution uh ∈ H1(0, T ;V h) satisfying

‖u(t)− uh(t)‖2 + ‖u− uh‖2L2(0,T ;H1(Ω)) + ‖∂tu− ∂tu
h‖2L2(0,T ;H−1(Ω))

→ 0 as h→ 0 ∀ t ∈ [0, T ] .(4.24)

If, in addition, u ∈ L2(0, T ;Hm+1(Ω))∩H1(0, T ;Hm−1(Ω)) for some m ∈ [0, k], then
‖u(t)− uh(t)‖2 + ‖u− uh‖2L2(0,T ;H1(Ω)) + ‖∂tu− ∂tu

h‖2L2(0,T ;H−1(Ω))

≤ Ch2m
(
‖u‖2L2([0,T ;Hm+1(Ω)) + ‖∂tu‖2L2([0,T ;Hm−1(Ω))

)
∀ t ∈ [0, T ] .

(4.25)

Proof. We will treat the three-dimensional case only; the two-dimensional case
can be handled similarly and more easily.

Let X and Y be the spaces defined in section 4.2 and let T , T h, and G be the
operators defined in section 4.2. Since α < 7/3 = α, γ > 3, βε ≡ (6− ε)/(5− ε)→ 6/5
as ε→ 0, and (12−2ε)/(4−ε)→ 3 as ε→ 0, we may fix a sufficiently small ε > 0 such
that βεα < 6α/5 and (12− 2ε)/(4− ε) < γ. For this fixed ε, we set ε1 = ε/(12− 2ε)
and Z = L2(0, T ;H−1+ε1(Ω)) ×Hε1

0 (Ω). Note that ε1 is so chosen to guarantee the
continuous embedding H1−ε1(Ω) ⊂ L6−ε(Ω).

Theorems 3.2 and 3.3 imply that

‖(T − T h)(f̃ , ũ0)‖X → 0 as h→ 0

for all (f̃ , ũ0) ∈ Y.
For any (f̃ , ũ0) ∈ Z = L2(0, T ;H−1+ε1(Ω)) ×Hε1

0 (Ω), a regularity theorem (see
[21, p. 360, Theorem 5]) for the solution of the heat equation and interpolation theo-

rems imply that ũ = T (f̃ , ũ0) ∈ L2(0, T,H1+ε1(Ω)) ∩H1(0, T ;H−1+ε1(Ω)) and

‖ũ‖L2(0,T,H1+ε1 (Ω))+ ‖∂tũ‖L2(0,T,H−1+ε1 (Ω)) ≤ C
(
‖f̃‖L2(0,T,H−1+ε1 (Ω))+ ‖ũ0‖Hε1 (Ω)

)
.

Thus, Theorems 3.2 and 3.3 with m = ε1 give

‖(T − T h)(f̃ , ũ0)‖X = ‖ũ− ũh‖X
≤ Chε1

(
‖ũ‖L2(0,T,H1+ε1 (Ω)) + ‖∂tũ‖L2(0,T,H−1+ε1 (Ω))

)
≤ Chε1

(
‖f̃‖L2(0,T,H−1+ε1 (Ω)) + ‖ũ0‖Hε1 (Ω)

)
= Chε1‖(f̃ , ũ0)‖Z
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so that by taking the supremum over (f̃ , ũ0) ∈ Z, we obtain

‖T − T h‖L(Z,X ) ≤ Chε1 → 0 as h→ 0 .

Next we verify (4.5). Let v, w ∈ X be given. A simple calculation reveals

[DG(v)]w = (b · ∇w + φ′(v)w, 0).

We recall the generalized Holder’s inequality∣∣∣ ∫
E

f1 f2 f3 dE
∣∣∣ ≤ ‖f1‖Lr1 (E) ‖f2‖Lr2 (E) ‖f3‖Lr3 (E) ,(4.26)

where E is a measurable set of any dimension and (1/r1)+(1/r2)+(1/r3) = 1. Using
(4.26) with r1 = αβε/(α − 1), r2 = αβε, and r3 = 6 − ε, where βε = (6 − ε)/(5 − ε)
(recall that ε was chosen such that βεα < α), we obtain

∫ T

0

∫
Ω

|v|α−1|w| |y| dx dt

≤
∫ T

0

‖v(t)‖α−1
Lαβε (Ω)

‖w(t)‖Lαβε (Ω) ‖y(t)‖L6−ε(Ω) dt ∀ y ∈ L2(0, T ;H1−ε1(Ω)) .

(4.27)

Applying to (4.27) the inequality (4.26) with r1 = 2α/(α − 1), r2 = 2α, and r3 = 2
we have ∫ T

0

∫
Ω

|v|α−1|w| |y| dx dt

≤ C‖v‖α−1
L2α(0,T ;Lαβε (Ω))

‖w‖L2α(0,T ;Lαβε (Ω)) ‖y‖L2(0,T ;L6−ε(Ω))

≤ C‖v‖α−1
L2α(0,T ;Lαβε (Ω))

‖w‖L2α(0,T ;Lαβε (Ω)) ‖y‖L2(0,T ;H1−ε1 (Ω))

for every y ∈ L2(0, T ;H1−ε1(Ω)). Taking the supremum in the last estimate over all
y ∈ L2(0, T ;H1−ε1(Ω)) we see that∥∥|v|α−1w

∥∥
L2(0,T ;H−1+ε1 (Ω))

≤ C‖v‖α−1
L2α(0,T ;Lαβε (Ω))

‖w‖L2α(0,T ;Lαβε (Ω)).(4.28)

We can also estimate the term b · ∇w as follows:∫ T

0

∫
Ω

|b||∇w| |y| dx dt

≤
∫ T

0

‖b‖L(12−2ε)/(4−ε)(Ω) ‖∇w(t)‖L2(Ω) ‖y(t)‖L6−ε(Ω) dt

≤ ‖b‖L∞(0,T ;Lγ(Ω))‖w‖L2(0,T ;H1(Ω))‖y‖L2(0,T ;H1−ε1 (Ω)) ∀ y ∈ L2(0, T ;H1−ε1(Ω))

so that ∥∥b · ∇w
∥∥
L2(0,T ;H−1+ε1 (Ω))

≤ C‖b‖L∞(0,T ;Lγ(Ω))‖w‖L2(0,T ;H1(Ω)).(4.29)

Thus, (4.28), Lemma 4.2, and (4.29) imply that DG(v) ∈ L(X ,Z) for every v ∈ X .
Similarly, we may use the growth condition for φ′′ to prove that D2G is locally

bounded.
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Hence all the assumptions in Theorem 4.1 are verified, and we conclude from that
theorem that

‖u− uh‖X ≤ ‖(T − T h)G(u)‖X → 0 as h→ 0,

and if, in addition, u ∈ L2(0, T ;Hm+1(Ω)) ∩H1(0, T ;Hm−1(Ω)),

‖u− uh‖X ≤ Chm
(
‖u‖L2(0,T ;Hm+1(Ω)) + ‖∂tu‖L2(0,T ;Hm−1(Ω))

)
.

Thus, the desired estimates (4.24) and (4.25) follow from the definition of ‖ · ‖X ,
Lemma 3.1, and the last two relations.

Remark. The proof of Theorem 4.3 used a regularity theorem of [21, p. 360]
which was proved with the help of an elliptic regularity theorem. Thus, the convexity
assumption on the domain Ω played a role here. Also, since we need only the regu-
larity L2(0, T ;H1+ε1(Ω)) ∩H1(0, T ;H−1+ε1(Ω)) for solutions of the linear equation,
we expect that the convexity assumption on Ω can be weakened.

Remark. If α ∈ [1, 2), then we have to use a modified version of Theorem 4.1,
namely to replace the assumptions G ∈ C2 and D2G being locally bounded by the
assumptions G ∈ C1 and DG being uniformly continuous. This modified version of
Theorem 4.1 can be easily proved upon a routine examination of the proof of [23,
p. 307, Theorem 3.3]. Also, (4.23) should be replaced by φ′(s) = O(|s|α−1) and
φ′ is uniformly continuous. For example, for φ(s) = s3/2 we have that φ′(s) =
(3/2)

√
s. The function

√
s is obviously uniformly continuous away from 0. But on

any neighborhood of s = 0,
√
s is also uniformly continuous so that φ′ is uniformly

continuous on its entire domain.
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Abstract. In [Z. Cai, T. Manteuffel, and S. F. McCormick, SIAM J. Numer. Anal., 34 (1997),
pp. 425–454], an L2-norm version of first-order system least squares (FOSLS) was developed for scalar
second-order elliptic partial differential equations. A limitation of this approach is the requirement
of sufficient smoothness of the original problem, which is used for the equivalence of spaces between
(H1)d and H(div ) ∩ H(curl)-type, where d = 2 or 3 is the dimension. By directly approximating
H(div ) ∩H(curl)-type space based on the Helmholtz decomposition, this paper develops a discrete
FOSLS approach in two dimensions. Under general assumptions, we establish error estimates in the
L2 and H1 norms for the vector and scalar variables, respectively. Such error estimates are optimal
with respect to the required regularity of the solution. A preconditioner for the algebraic system
arising from this approach is also considered.

Key words. least-squares discretization, multigrid, preconditioner, second-order elliptic prob-
lems

AMS subject classifications. 65F10, 65F30

PII. S0036142900381886

1. Introduction. Recently, there has been substantial interest in the use of
least-squares principles for numerical approximations of elliptic partial differential
equations and systems (see the recent review article [1] and references therein). In [5],
Cai, Manteuffel, and McCormick developed an L2-norm version of first-order system
least squares (FOSLS) for scalar second-order elliptic partial differential equations
in d = 2 or 3 dimensions. It was shown that the homogeneous FOSLS functional
is equivalent to a V × H1(Ω) norm with V = H(div ; Ω) ∩ H(curlA; Ω) under gen-
eral assumptions, where A is the diffusion coefficient and Ω is the domain of the
underlying problem. Moreover, such a norm was shown to be in fact an H1(Ω)d+1

norm under the assumption that the original problem is H2-regular. This product
H1 equivalence means that the minimization process amounts to solving a loosely
coupled system of Poisson-like scalar equations. This in turn implies that standard
finite element discretization and standard multigrid solution methods admit optimal
H1-like performance.

The limitation of this L2-norm FOSLS is the requirement of sufficient smoothness
of the underlying problem. Such smoothness guarantees the equivalence of norms be-
tween V and H1(Ω)d so that it can be approximated by standard continuous finite
element space as in [5]. In general, when the domain Ω is not smooth or not convex
or the coefficient A is not continuous, these two spaces are not equivalent. In fact, V
is equal to H1(Ω)d plus a finite-dimensional space which consists of singular functions
associated with corners of the boundary and interfaces. Therefore, standard continu-
ous finite element spaces are not good approximations to V in general. In this paper,
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we will construct an appropriate approximation space for V based on the Helmholtz
decomposition. Since our approximation space is discontinuous and is not contained
in V, we then modify the FOSLS functional to accommodate such discontinuity and
nonconformity of finite element spaces. An alternative for overcoming such a limi-
tation is the inverse-norm version of FOSLS (see [2]), but at the expense of rather
awkward norm evaluation requirements.

The paper is organized as follows. The second-order elliptic boundary value prob-
lem and the L2-norm version of the FOSLS approach are introduced in section 2, along
with some notations. The discrete FOSLS approach is developed in section 3, and its
error estimate is established in section 4. In section 5, we discuss preconditioners for
the resulting system of linear equations.

2. First-order system least squares (FOSLS). Let Ω be a bounded, open,
and simply connected domain in �2 with Lipschitz boundary ∂Ω. We consider the
following scalar second-order elliptic boundary value problem:


−∇ · (A∇p) + b · ∇p + cp = f in Ω,

p = 0 on ΓD,
n · (A∇p) = 0 on ΓN ,

(2.1)

where the symbols ∇· and ∇ stand for the divergence and gradient operators, re-
spectively; A is a 2 × 2 symmetric matrix of functions in L∞(Ω); b and c are the
respective vector and scalar of functions in L∞(Ω); f ∈ L2(Ω) is a given scalar func-
tion; ∂Ω = ΓD ∪ ΓN is the partition of the boundary of Ω; and n is the outward
unit vector normal to the boundary. For simplicity, assume that both ΓD and ΓN
are nonempty, with the obvious generalization to quotient spaces when one of them is
empty in the subsequent sections. We assume that A is uniformly symmetric positive
definite and scaled appropriately; that is, there exist positive constants

0 < λ ≤ 1 ≤ Λ

such that

λξT ξ ≤ ξTAξ ≤ ΛξT ξ(2.2)

for all ξ ∈ �2 and almost all x ∈ Ω̄.
We use standard notation and definitions for the Sobolev spaces Hs(Ω)2, asso-

ciated inner products (·, ·)s, and respective norms ‖ · ‖s, s ≥ 0. (We suppress the
designation Ω on the inner products and norms because dependence on region is clear
by context.) H0(Ω)2 coincides with L2(Ω)2, in which case the norm and inner product
will be denoted by ‖ · ‖ and (·, ·), respectively. Define subspaces of H1(Ω):

H1
D(Ω) = {q ∈ H1(Ω) : q = 0 on ΓD} and H1

N (Ω) = {q ∈ H1(Ω) : q = 0 on ΓN}.

Let H−1
D (Ω) denote the dual of H1

D(Ω) with the norm defined by

‖φ‖H−1
D (Ω) = sup

0 �=ψ∈H1
D(Ω)

(φ, ψ)

‖ψ‖1 .

Denote the curl operator in �2 by

∇× = (−∂2, ∂1)



DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES 309

and its formal adjoint by

∇⊥ =

(
∂2

−∂1

)
.

Let

H(div A
1
2 ; Ω) = {v ∈ L2(Ω)2 : ∇ · (A 1

2 v) ∈ L2(Ω)}
and

H(curlA− 1
2 ; Ω) = {v ∈ L2(Ω)2 : ∇×(A− 1

2 v) ∈ L2(Ω)},
which are Hilbert spaces under norms

‖v‖
H(div A

1
2 ;Ω)

=

(
‖v‖2 +

∥∥∥∇ · (A 1
2 v
)∥∥∥2

) 1
2

and

‖v‖
H(curlA− 1

2 ;Ω)
=

(
‖v‖2 +

∥∥∥∇×(A− 1
2 v
)∥∥∥2

) 1
2

,

respectively. When A is the identity matrix, we use the simpler notations H(div; Ω)
and H(curl; Ω). Define the subspaces

H0(div A
1
2 ; Ω) = {v ∈ H(div A

1
2 ; Ω) : n · (A 1

2 v) = 0 on ΓN},

H0(curlA− 1
2 ; Ω) = {v ∈ H(curlA− 1

2 ; Ω) : τ · (A− 1
2 v) = 0 on ΓD},

and denote

U = H0(div A
1
2 ; Ω) ∩H0(curlA− 1

2 ; Ω),

where τ represents the unit vector tangent to the boundary oriented counterclockwise.
Introducing an independent vector variable

u = A
1
2 ∇p,

by using the homogeneous Dirichlet boundary condition on ΓD we have that

∇×(A− 1
2 u) = 0 in Ω and τ · (A− 1

2 u) = 0 on ΓD.

Then an equivalent extended system for problem (2.1) is


u−A
1
2∇p = 0 in Ω,

−∇ · (A 1
2 u) + b · (A− 1

2 u) + cp = f in Ω,

∇× (A− 1
2 u) = 0 in Ω,

p = 0 on ΓD,

n · (A 1
2 u) = 0 on ΓN ,

τ · (A− 1
2 u) = 0 on ΓD.

(2.3)

Define the FOSLS functional as follows (see [5] or [6] for Poisson’s equations):

G(v, q; f) = ‖v −A
1
2∇q‖2 + ‖f +∇ · (A 1

2 v)− b · (A− 1
2 v)− cq‖2 + ‖∇ × (A− 1

2 v)‖2
for (v, q) ∈ U ×H1

D(Ω). Then the FOSLS variational problem for (2.1) is to minimize
the quadratic functional G(v, q; f) over U × H1

D(Ω): find (u, q) ∈ U × H1
D(Ω) such

that

G(u, p; f) = inf
(v,q)∈U×H1

D(Ω)
G(v, q; f).(2.4)
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3. Discrete FOSLS. The least-squares approach defined in the previous sec-
tion was proposed and analyzed in [5]. In particular, it was shown in [5] that the
homogeneous functional is elliptic in the H1(Ω)3 norm under certain H2 regularity
assumptions. This implies optimal H1-like performance for standard finite element
discretization and standard multigrid solution methods. An unfortunate limitation of
this FOSLS approach is that this product H1 equivalence generally requires sufficient
smoothness of the original problem. Such a requirement is needed for the equiva-
lence between the spaces H1(Ω)2 and U = H0(div A

1
2 ; Ω) ∩H0(curlA− 1

2 ; Ω) and the
quasi-optimality of finite element approximations in the H1 norm for each variable.
To overcome such a difficulty, we use discontinuous approximation spaces for the vec-
tor variable and modify this FOSLS functional to accommodate such a discontinuity
of finite element spaces. Extension of the approach proposed in this section to the
least-squares functional studied in [4, 8] is straightforward.

Discontinuous approximation spaces that we will employ are motivated by the
following Helmholtz decomposition, for any u ∈ U :

u = A
1
2∇s + A− 1

2∇⊥t,(3.1)

where s ∈ H1
D(Ω) is the unique solution of


∇ · (A∇s) = ∇ · (A 1

2 u) in Ω,
s = 0 on ΓD,

n · (A∇s) = 0 on ΓN

and t ∈ H1
N (Ω) is the unique solution of


∇× (A−1∇⊥t) = ∇× (A− 1

2 u) in Ω,
τ · (A−1∇⊥t) = 0 on ΓD,

t = 0 on ΓN .

It is then natural to approximate the scalar functions s ∈ H1
D(Ω) and t ∈ H1

N (Ω) by
standard continuous piecewise polynomials.

Let Th be a partition of the domain Ω into finite elements; i.e., Ω = ∪K∈Th
K

with h = max{hK = diam(K) : K ∈ Th}. Assume that the triangulation Th is regular
(see [7]). Let Phm−1 be a finite-dimensional space consisting of continuous piecewise
polynomials of degree at most m − 1 with respect to the triangulation Th. Denote
standard finite element spaces by

ShD = H1
D(Ω) ∩ Phm−1 and ShN = H1

N (Ω) ∩ Phm−1

and define the approximation space for the vector variable by

Uh =
(
A

1
2∇ShD

)⊕ (A− 1
2∇⊥ShN

)
.

It is an immediate consequence of the integration by parts and homogeneous boundary
conditions that two subspaces A

1
2∇ShD and A− 1

2∇⊥ShN are orthogonal with respect
to the L2 inner product. That is,

(A
1
2∇s, A− 1

2∇⊥t) = 0(3.2)

for any s ∈ ShD and any t ∈ ShN .
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Note that Uh is not contained in U and, hence, the FOSLS functional G(· ; ·)
defined in the previous section is not well defined on Uh ×ShD. Therefore, we need to
replace the divergence and curl operators in the G(· ; ·) by the corresponding discrete
operators. To this end, define the discrete divergence operator, ∇h· : L2(Ω)2 −→ ShD,
for given v ∈ L2(Ω)2 by φ = ∇h · v ∈ ShD satisfying

(φ, q) = −(v, ∇q) ∀ q ∈ ShD
and the discrete curl operator, ∇h× : L2(Ω)2 −→ ShN , for given v ∈ L2(Ω)2 by
ψ = ∇h × v ∈ ShN satisfying

(ψ, q) = (v,∇⊥q) ∀ q ∈ ShN .

Finally, we denote Qh the L2-projection operator onto ShD.
Now, we are ready to define the discrete FOSLS functional:

Gh(v, q; f) = ‖v −A
1
2∇q‖2 + ‖f +∇h · (A 1

2 v)−Qh

(
b · (A− 1

2 v)
)− cq‖2

+ ‖∇h × (A− 1
2 v)‖2

for (v, q) ∈ Uh×ShD. Our discrete FOSLS finite element approximation for (2.1) is then
to minimize the quadratic functional Gh(v, q; f) over Uh×ShD: find (uh, ph) ∈ Uh×ShD
such that

Gh(uh, ph; f) = inf
(v,q)∈Uh×Sh

D

Gh(v, q; f).(3.3)

Denote the norm over Uh × ShD by

|||(v, q)||| =
(
‖q‖21 + ‖v‖2 + ‖∇h · (A 1

2 v)‖2 + ‖∇h × (A− 1
2 v)‖2

) 1
2

.

Theorem 3.1. The homogeneous functional Gh(·; 0) is uniformly elliptic and
continuous in Uh×ShD; i.e., for any (v, q) ∈ Uh×ShD, there exists a positive constant
C such that

1

C
|||(v, q)|||2 ≤ Gh(v, q; 0) ≤ C|||(v, q)|||2.(3.4)

Proof. The upper bound in (3.4) is an immediate consequence of the triangle
inequality and the boundedness of coefficients A, b, c and the L2-projection operator
Qh. To show the validity of the lower bound in (3.4), we first establish the following
inequality: there exists a positive constant C such that

1

C
|||(v, q)|||2 ≤ G̃(v, q) ∀ (v, q) ∈ Uh × ShD,(3.5)

where

G̃(v, q) = ‖v −A
1
2∇q‖2 + ‖∇h · (A 1

2 v)−Qh(b · ∇q)− cq‖2 + ‖∇h × (A− 1
2 v)‖2

=

∥∥∥∥
(

I −A 1
2∇

∇h ·A 1
2 −Qhb · ∇ − cI

)(
v
q

)∥∥∥∥
2

+ ‖∇h × (A− 1
2 v)‖2.
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Then the lower bound in (3.4) follows from the fact that

Gh(v, q; 0) =

∥∥∥∥
(

I 0

−Qhb ·A− 1
2 I

)(
I −A 1

2∇
∇h ·A 1

2 −Qhb · ∇ − cI

)(
v
q

)∥∥∥∥
2

+ ‖∇h × (A− 1
2 v)‖2

and that the largest and smallest singular values of the transformation matrix(
I 0

−Qhb ·A− 1
2 I

)

are bounded.
To prove the validity of (3.5), let Xq = Qh(b · ∇q) + cq for convenience. Since

‖Qh‖ = 1, (2.2) and the triangle and Poincaré–Friedrichs inequalities yield

‖Xq‖ ≤ C‖A 1
2∇q‖.

It now follows from the definition of the discrete divergence operator and the Cauchy–
Schwarz inequality that

‖A 1
2∇q‖2 = (A

1
2∇q − v, A

1
2∇q) + (A

1
2 v,∇q)

= (A
1
2∇q − v, A

1
2∇q)− (∇h · (A 1

2 v), q
)

= (A
1
2∇q − v, A

1
2∇q)− (∇h · (A 1

2 v)−Xq, q
)− (Xq, q)

≤ ‖A 1
2∇q − v‖ ‖A 1

2∇q‖+ ‖∇h · (A 1
2 v)−Xq‖ ‖q‖+ ‖Xq‖ ‖q‖,

which, together with the Poincaré–Friedrichs inequality, implies that

‖A 1
2∇q‖ ≤ C

(
‖A 1

2∇q − v‖+ ‖∇h · (A 1
2 v)−Qh(b · ∇q)− cq‖+ ‖q‖

)
.(3.6)

The triangle and Poincaré–Friedrichs inequalities and (3.6) give that

|||(v, q)|||2 ≤ C
(
G̃(v, q) + ‖q‖2

)
.

Now, (3.5) is a consequence of the standard compactness argument. This completes
the proof of the theorem.

4. Error estimates. This section establishes error estimates in the L2 norm for
the vector variable and the H1 norm for the scalar variable (see Theorem 4.1). Such
error estimates are optimal with respect to the required regularity of the solution.

Let (uh, ph) ∈ Uh × ShD be the solution of the discrete problem in (3.3). The
corresponding variational form of (3.3) is to find (uh, ph) ∈ Uh × ShD such that

bh(uh, ph; v, q) =
(
f,−∇h · (A 1

2 v) + Qh(b · (A− 1
2 v)) + cq

) ∀ (v, q) ∈ Uh × ShD,
(4.1)

where the bilinear form bh(·, ·) is induced from the quadratic form Gh(·; 0):

bh(uh, ph; v, q) =
(
uh −A

1
2∇ph,v −A

1
2∇q)+

(∇h × (A− 1
2 uh),∇h × (A− 1

2 v)
)

+
(∇h · (A 1

2 uh)−Qh(b · (A− 1
2 uh))− cph,∇h · (A 1

2 v)−Qh(b · (A− 1
2 v))− cq

)
.(4.2)

To deduce the error equation, we need the following lemma.
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Lemma 4.1. Let (u, p) ∈ U ×H1
D(Ω) be the solution of first-order system (2.3).

Then it satisfies the following equations:(−∇h · (A 1
2 u) + Qh(b · (A− 1

2 u)) + cp, q
)

= (f, q) ∀ q ∈ ShD(4.3)

and (∇h × (A− 1
2 u), r

)
= 0 ∀ r ∈ ShN .(4.4)

Proof. It follows from the definitions of the discrete divergence and curl operators
and the L2-projection and integration by parts that, for any q ∈ ShD,

(∇h · (A 1
2 u), q

)
=
(∇ · (A 1

2 u), q
)

and
(
Qh(b · (A 1

2 u)), q
)

=
(
b · (A 1

2 u), q
)

and that, for any r ∈ ShN ,

(∇h × (A− 1
2 u), r

)
=
(∇× (A− 1

2 u), r
)

= 0,

which, together with the second and third equations in (2.3), imply equalities (4.3)
and (4.4).

For any (v, q) ∈ Uh × ShD, by (4.3) and (4.4) it is easy to see that

bh(u, p; v, q) =
(
f,−∇h · (A 1

2 v) + Qh(b · (A− 1
2 v)) + cq

)
+
(∇ · (A 1

2 u)−∇h · (A 1
2 u), cq

)− ((I −Qh)(b · (A− 1
2 u)), cq

)
.(4.5)

The difference of equations (4.5) and (4.2) gives the following error equation:

bh(u− uh, p− ph; v, q)

=
(∇ · (A 1

2 u)−∇h · (A 1
2 u), cq

)− ((I −Qh)(b · (A− 1
2 u)), cq

)
(4.6)

for all (v, q) ∈ Uh × ShD.
Lemma 4.2. For any q ∈ Hα−2(Ω) with α ≥ 2, let m− 1, the degree of the finite

element space defined in section 3, be the smallest integer greater than or equal to
α− 1; we then have that

‖(I −Qh)q‖H−1
D (Ω) ≤ C hα−1‖q‖α−2.(4.7)

Proof. It follows from the definitions of the H−1
D (Ω) norm and the L2-projection,

the Cauchy–Schwarz inequality, and the approximation property that

‖(I −Qh)q‖H−1
D (Ω) = sup

r∈H1
D(Ω)

(
(I −Qh)q, r

)
‖r‖1 = sup

r∈H1
D(Ω)

(
(I −Qh)q, (I −Qh)r

)
‖r‖1

≤ C h ‖(I −Qh)q‖ ≤ C hα−1 ‖q‖α−2.

This completes the proof of the lemma.
Now, we are ready to establish error estimates in the L2 and H1 norms for the

vector and scalar variables, respectively, which are optimal with respect to the required
regularity of the solution. Note that the norm for u in the error estimate in (4.8) is
L2 only but H1 in [5]. This contributes to the less smoothness requirement of the
original problem here than in [5].
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Theorem 4.1. Assume that (u, p) is in Hα−1(Ω)2 × Hα(Ω) with α > 1, and
let m − 1, the degree of the finite element space defined in section 3, be the smallest
integer greater than or equal to α− 1. Then the following error estimate holds:

‖u− uh‖+ ‖p− ph‖1 ≤ C hα−1
(‖p‖α + ‖u‖α−1

)
.(4.8)

Proof. Let pI be an interpolant of p in ShD; one then has

‖pI − p‖1 ≤ C hα−1 ‖p‖α.(4.9)

To establish the error bound in (4.8), by the triangle inequality, it suffices to show
that there exists a ũh ∈ Uh such that

‖u− ũh‖ ≤ C hα−1 ‖u‖α−1(4.10)

and that

‖ũh − uh‖+ ‖pI − ph‖1 ≤ C hα−1
(‖p‖α + ‖u‖α−1

)
.(4.11)

Note that u has the decomposition of the form

u = A
1
2∇s + A− 1

2∇⊥t,

where s ∈ H1
D(Ω) and t ∈ H1

N (Ω) are the unique solutions of(
A∇s,∇q) =

(
A

1
2 u,∇q) ∀ q ∈ H1

D(Ω)(4.12)

and (
A−1∇⊥t,∇⊥r

)
=
(
A− 1

2 u,∇⊥r
) ∀ r ∈ H1

N (Ω),(4.13)

respectively. Let s̃h ∈ ShD and t̃h ∈ ShN be the respective finite element approximations
of s and t; i.e., they satisfy the following equations:(

A∇s̃h,∇q
)

=
(
A

1
2 u,∇q) ∀ q ∈ ShD(4.14)

and (
A−1∇⊥t̃h,∇⊥r

)
=
(
A− 1

2 u,∇⊥r
) ∀ r ∈ ShN ,(4.15)

respectively. Assume that Poisson equations (4.12) and (4.13) have the following
regularity estimates:

‖s‖α ≤ C ‖∇ · (A 1
2 u)‖α−2 and ‖t‖α ≤ C ‖∇ × (A− 1

2 u)‖α−2,

respectively. Then standard finite element error bounds give that

‖A 1
2∇(s− s̃h)‖ ≤ C hα−1 ‖s‖α ≤ C hα−1 ‖∇ · (A 1

2 u)‖α−2

and

‖A− 1
2∇⊥(t− t̃h)‖ ≤ C hα−1 ‖t‖α ≤ C hα−1 ‖∇ × (A− 1

2 u)‖α−2.

Hence, choosing

ũh = A
1
2∇s̃h + A− 1

2∇⊥t̃h,
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by orthogonality (3.2) we have that

‖u− ũh‖ =
(
‖A 1

2∇(s− s̃h)‖2 + ‖A− 1
2∇⊥(t− t̃h)‖2

) 1
2

≤ C hα−1
(
‖∇ · (A 1

2 u)‖α−2 + ‖∇ × (A− 1
2 u)‖α−2

)
.

This completes the proof of inequality (4.10).
To show the validity of inequality (4.11), by the definition of the discrete diver-

gence and curl operators, notice first that (4.14) and (4.15) imply

∇h · (A∇s̃h) = ∇h · (A 1
2 u) and ∇h × (A−1∇⊥t̃h) = ∇h × (A− 1

2 u),

respectively. Since ∇h · ∇⊥t̃h = ∇h ×∇s̃h = 0, we then have that

∇h · (A 1
2 ũh) = ∇h · (A 1

2 u) and ∇h × (A− 1
2 ũh) = ∇h × (A− 1

2 u).(4.16)

It follows from Theorem 3.1 and error equation (4.6) that

1

C
|||(ũh − uh, pI − ph)|||2

≤ Gh(ũh − uh, pI − ph; 0) = bh(ũh − uh, pI − ph; ũh − uh, pI − ph)

= bh(ũh − u, pI − p; ũh − uh, pI − ph)− (∇ · (A 1
2 u)−∇h · (A 1

2 u), c(pI − ph)
)

+
(
(I −Qh)(b · (A− 1

2 u)), c(pI − ph)
)
.(4.17)

Now, we bound each term in the above inequality. First, by the definitions of the
discrete divergence operator, the L2-projection, and H−1

D (Ω) norm, we have that(∇ · (A 1
2 u)−∇h · (A 1

2 u), c(pI − ph)
)

=
(∇ · (A 1

2 u), c(pI − ph)
)− (∇h · (A 1

2 u), Qhc(pI − ph)
)

=
(∇ · (A 1

2 u), c(pI − ph)
)− (∇ · (A 1

2 u), Qhc(pI − ph)
)

=
(
(I −Qh)∇ · (A 1

2 u), c(pI − ph)
)

≤ C ‖(I −Qh)∇ · (A 1
2 u)‖H−1

D (Ω)‖pI − ph‖1.(4.18)

Second, it follows from the Cauchy–Schwarz and triangle inequalities, equalities in
(4.16), and the boundedness of the L2-projection and coefficients A, b, and c that

bh(ũh − u, pI − p; ũh − uh, pI − ph)

≤
(
‖ũh − u‖+ ‖A 1

2∇(pI − p)‖
)(
‖ũh − uh‖+ ‖A 1

2∇(pI − ph)‖
)

+
(
‖Qh

(
b ·A− 1

2 (ũh − u)
)‖+ ‖c(pI − p)‖

)
·(

‖∇h · (A 1
2 (ũh − uh))‖+ ‖Qh

(
b ·A− 1

2 (ũh − uh)
)‖+ ‖c(pI − ph)‖

)
≤ C (‖ũh − u‖+ ‖pI − p‖1) |||(ũh − uh, pI − ph)|||.(4.19)

Substituting (4.18) and (4.19) into (4.17) implies that

‖ũh − uh‖+ ‖pI − ph‖1 ≤ C
(
‖ũh − u‖+ ‖pI − p‖1 + ‖(I −Qh)

(∇ · (A 1
2 u)
)‖H−1

D (Ω)

+ ‖(I −Qh)
(
b · (A− 1

2 u)
)‖H−1

D (Ω)

)
.

Now, (4.11) is an immediate consequence of (4.9), (4.10), and Lemma 4.2. This
completes the proof of the theorem.
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5. Preconditioners. In this section, we discuss a spectrally equivalent precon-
ditioner for the system of linear equations arising from the FOSLS discretization which
is uniform in the mesh size.

The equivalence in Theorem 3.1 do not give us an immediate preconditioner since
|||(v, p)|||2 involves the (discrete) divergence and curl operators. Instead of working
with v ∈ Uh, we explicitly make use of its representation:

v = A
1
2∇s + A− 1

2∇⊥t, where s ∈ ShD, t ∈ ShN .(5.1)

Now, |||(v, p)|||2 = |||(s, t, p)|||2 would be equivalent to some weighted Sobolev norm
in terms of (s, t, q) which gives indications on how to construct preconditioners. To
this end, by the definitions of the discrete divergence and curl operators, we first note
that

∇h · (∇⊥t) = 0 in Ω and ∇h × (∇s) = 0 in Ω(5.2)

for any t ∈ ShN and any s ∈ ShD, respectively. We then introduce two discrete diffusion

operators, ∆h,A : ShD −→ ShD and ∆̂h,A : ShN −→ ShN . For a given s ∈ ShD, define
∆h,As ∈ ShD to be the solution of

(∆h,As, q) = −(A∇s, ∇q) ∀ q ∈ ShD,(5.3)

and for a given t ∈ ShD, define ∆̂h,At ∈ ShN to be the solution of

(∆̂h,At, q) = (A−1∇⊥t, ∇⊥q) ∀ q ∈ ShN .(5.4)

It is easy to see that

∆h,A = ∇h ·A∇ and ∆̂h,A = ∇h ×A−1∇⊥.

By using (3.2), we then have that

|||(v, p)|||2 = |||(s, t, p)|||2 = ‖p‖21 + |||s|||2 + |||t|||2,(5.5)

where

|||s|||2 = ‖s‖2 +‖A 1
2∇s‖2 +‖∆h,As‖2 and |||t|||2 = ‖t‖2 +‖A− 1

2∇⊥t‖2 +‖∆̂h,At‖2.
Before discussing the preconditioner based on |||(s, t, q)|||2, we restate our discrete

FOSLS approach in terms of functions (s, t, q). Our FOSLS functional is as follows:

Gh(s, t, q; f) =‖A 1
2∇s + A− 1

2∇⊥t−A
1
2∇q‖2

+ ‖f + ∆h,As−Qh

(
b · (∇s + A−1∇⊥t)

)− cq‖2 + ‖∆̂h,At‖2,
(5.6)

and the FOSLS minimization problem is to find (φh, ψh, ph) ∈ ShD × ShN × ShD such
that

Gh(φh, ψh, ph; f) = inf
(s,t,q)∈Sh

D×Sh
N×Sh

D

Gh(s, t, q; f)(5.7)

with uh = A
1
2∇φh + A− 1

2∇⊥ψh. The corresponding variational problem is to find
(φh, ψh, ph) ∈ ShD × ShN × ShD such that

bh(φh, ψh, ph; s, t, q) = fh(s, t, q) ∀ (s, t, q) ∈ ShD × ShN × ShD,(5.8)
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where the bilinear and linear forms are given by

bh(φh, ψh, ph; s, t, q)

=
(
A

1
2∇φh + A− 1

2∇⊥ψh −A
1
2∇ph, A 1

2∇s + A− 1
2∇⊥t−A

1
2∇q)+

(
∆̂h,Aψh, ∆̂h,At

)
+
(
∆h,Aφh −Qh

(
b · (∇φh + A−1∇⊥ψh)

)− cp, ∆h,As−Qh

(
b · (∇s + A−1∇⊥t)

)− cq
)

and

fh(s, t, q) =
(
f, −∆h,As + Qh

(
b · (∇s + A−1∇⊥t)

)
+ cq

)
.

Theorem 5.1. For any (s, t, q) ∈ ShD ×ShN ×ShD, there exists a positive constant
C such that

1

C
|||(s, t, q)|||2 ≤ Gh(s, t, q; 0) = bh(s, t, q; s, t, q) ≤ C |||(s, t, q)|||2.(5.9)

Proof. It is a direct consequence of Theorem 3.1 and equality (5.5).
Theorem 5.1 indicates that the quadratic form bh(s, t, q; s, t, q) can be precondi-

tioned well by the diagonal quadratic form |||(s, t, q)|||2 because they are spectrally
equivalent uniformly in the mesh size (see (5.9)). We further replace these diagonal
blocks of |||(s, t, q)|||2 by some multigrid preconditioners. To this end, note first that
‖q‖21 is uniformly equivalent to

‖q‖2 + ‖A 1
2∇q‖2 =

(
(I −∆h,A)q, q

)
by using (2.2) and the definitions of the discrete divergence and diffusion operators.
Similarly, |||s|||2 and |||t|||2 are uniformly equivalent to

‖s‖2 + 2‖A 1
2∇s‖2 + ‖∆h,As‖2 =

(
(I −∆h,A)2s, s

)
and ‖t‖2 + 2‖A− 1

2∇⊥s‖2 + ‖∆̂h,At‖2 =
(
(I − ∆̂h,A)2t, t

)
,

respectively. Let P1 be a preconditioner based on a symmetric multigrid V-cycle
applied to the diffusion problem: find v ∈ ShD such that

(A∇v, ∇ξ) + (v, ξ) = 0 ∀ ξ ∈ ShD.
It is well known that P1 is spectrally equivalent to I − ∆h,A uniformly in the mesh
size. Since the solution of

(I −∆h,A)2s = g

for a given g ∈ ShD can be obtained successively by solving two discrete diffusion
equations, i.e.,

(I −∆h,A)ŝ = g and (I −∆h,A)s = ŝ,

it is then natural to precondition (I − ∆h,A)2 by P 2
1 . For further discussions and

numerical experiments on P 2
1 as a preconditioner for (I −∆h,A)2, see [3]. Similarly,

we precondition (I−∆̂h,A)2 by P 2
2 , where P2 is a preconditioner based on a symmetric

multigrid V-cycle applied to the diffusion problem: find v ∈ ShN such that

(A−1∇⊥v, ∇⊥ξ) + (v, ξ) = 0 ∀ ξ ∈ ShN .
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Abstract. In this paper, we introduce and analyze local discontinuous Galerkin methods for the
Stokes system. For a class of shape regular meshes with hanging nodes we derive a priori estimates for
the L2-norm of the errors in the velocities and the pressure. We show that optimal-order estimates are
obtained when polynomials of degree k are used for each component of the velocity and polynomials
of degree k− 1 for the pressure, for any k ≥ 1. We also consider the case in which all the unknowns
are approximated with polynomials of degree k and show that, although the orders of convergence
remain the same, the method is more efficient. Numerical experiments verifying these facts are
displayed.

Key words. finite elements, discontinuous Galerkin methods, Stokes system
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1. Introduction. In this paper, we introduce and analyze local discontinuous
Galerkin (LDG) methods for the Stokes system

−∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = gD on ∂Ω,

(1.1)

where Ω is a bounded domain of R
d and the Dirichlet datum satisfies the usual

compatibility condition
∫
∂Ω
gD · n ds = 0, with n denoting the outward unit normal

to ∂Ω. We thus continue the study of LDG methods as applied to diffusion-dominated
problems started by Castillo, Cockburn, Perugia, and Schötzau [8], who carried out
the analysis of general LDG methods for the Laplacian on general triangulations, and
by Cockburn, Kanschat, Perugia, and Schötzau [13], who obtained superconvergence
results for Cartesian grids and a special LDG method. Our long-term goal is to study
LDG methods for the incompressible Navier–Stokes equations; the analysis of the
Stokes system is thus a necessary intermediate step.
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There are mainly two motivations for using LDG methods for the Navier–Stokes
equations. The first one is that these methods can easily handle meshes with hanging
nodes, elements of general shapes, and local spaces of different types; this makes them
ideally suited for hp-adaptivity. The second one, of no less importance, is that with
their carefully devised numerical fluxes inherited from the corresponding discontinu-
ous Galerkin (DG) discretizations of nonlinear hyperbolic conservation laws—see the
work by Cockburn and Shu [16, 17, 19], Cockburn, Hou, and Shu [12], and Cock-
burn, Lin, and Shu [15]—the LDG methods weakly enforce the conservation laws
element-by-element and in a conservative way. This last property is highly appre-
ciated by the practitioners of computational fluid dynamics, especially in situations
where there are shocks, steep gradients, or boundary layers. In fact, it was for the
convection-dominated compressible Navier–Stokes equations that the DG discretiza-
tion techniques were applied for the first time by Bassi and Rebay in [4] with excellent
results; the LDG method was then introduced by Cockburn and Shu in [18] as an ex-
tension of Bassi and Rebay’s method to general convection-diffusion problems. To give
the reader a flavor of the LDG methods proposed in this paper, we briefly compare
them with other methods.

• Interior penalty methods. In the framework of the Stokes system, the main
difficulty in obtaining numerical approximations is the enforcement of the incompress-
ibility condition on the velocity. For continuous approximations of the velocity, it is
well known that a pointwise enforcement could yield an overconstrained velocity and
the only divergence-free function might turn out to be identically zero; this is the so-
called locking phenomenon. However, in 1990, Baker, Jureidini, and Karakashian [2]
showed how to enforce the incompressibility condition pointwise inside each element
and still obtain optimal error estimates. They achieved this by using interior penalty
(IP) methods, that is, methods that take the velocity approximation to be discontinu-
ous and penalize the size of its discontinuity jumps across the element boundaries; see
also the recent extension of this method to the incompressible Navier–Stokes equa-
tions by Karakashian and Katsaounis [28]. Arnold, Brezzi, Cockburn, and Marini
[1] briefly review IP methods for purely elliptic problems and then relate and com-
pare them to the LDG and other DG methods. A similar comparison can easily
be developed for the Stokes system, but here we restrict ourselves to pointing out
that, like the IP method of Baker, Jureidini, and Karakashian, the LDG methods use
a discontinuous approximate velocity whose discontinuity jumps across the element
boundaries are also penalized. However, unlike the IP method of Baker, Jureidini,
and Karakashian, the LDG methods use discontinuous pressure approximations and
(at least in this paper) do not try to impose the incompressibility condition point-
wise inside the elements; instead, like in standard mixed methods, this condition is
imposed weakly.

• Standard mixed methods. In his review of standard mixed methods for
the Navier–Stokes equations, Fortin [21] points out that the use of discontinuous
approximations for the pressure ensures a better conservation of mass in comparison
with the use of continuous approximations and refers to the work of Pelletier, Fortin,
and Camarero [30] for situations that illustrate this point. This is a property that
these methods have in common with the LDG methods, not only because of the use
of discontinuous approximations of the pressure, but also because the LDG methods
ensure mass conservation. Indeed, to obtain the LDG methods, we first rewrite the
Stokes system as the following collection of conservation laws:
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σ = ∇u in Ω,(1.2)

−∇ · σ +∇p = f in Ω,(1.3)

∇ · u = 0 in Ω,(1.4)

u = gD on ∂Ω.(1.5)

Then we discretize them by using the DG technique, that is, element-by-element and
in a conservative way; this is what ensures mass conservation. Note that to achieve
this, we introduced the stress tensor σ. This could be considered a disadvantage of the
LDG methods with respect to the classical mixed methods, but this is not so because
σ can be eliminated independently and in parallel on each grid cell, as we shall see.

Let us briefly digress to point out that the issue of the possible advantages of
methods that, like the LDG methods, enforce the conservation laws locally and in a
conservative way over finite element methods which cannot do that, and are typically
based on continuous approximations, is the subject of an ongoing discussion which is
far from being exhausted. Although it has been firmly established that this property
is certainly desirable for convection-dominated problems, its possible advantages in
other situations still remain to be thoroughly explored. About this very point, see
the review of DG methods by Cockburn, Karniadakis, and Shu [14] and the paper
by Hughes, Engel, Mazzei, and Larson [25] where a comparison of discontinuous and
continuous Galerkin methods is carried out.

• Stabilized mixed methods. Finally, let us emphasize that for the LDG meth-
ods, the approximation spaces for the velocity and the pressure can be chosen almost
arbitrarily; only a mild local condition has to be satisfied. This is so because the LDG
methods can be considered to be stabilized mixed methods; for a review of stabilized
mixed methods, see the article by Franca, Hughes, and Stenberg [22]. They are thus
related to the Galerkin least squares (GLS) mixed methods introduced in 1986/1987
by Hughes, Franca, and Balestra [27] and Hughes and Franca [26], who used the
jumps of the pressures across boundary elements and residuals inside the elements to
render them stable. However, unlike these methods, LDG methods use discontinuous
approximations to the velocity and employ stabilization terms which involve jumps
across the element boundaries only. Variations of the LDG methods we study here
could be easily constructed which are closely related to the “locally” stabilized meth-
ods introduced and numerically studied in 1989 by Silvester and Kechkar [31] and
then analyzed in 1992 by Kechkar and Silvester [29]; however, this subject will not be
considered in this paper. Finally, we must also point out that in the GLS methods,
one has, in particular for velocities which are piecewise quadratic or of higher degree,
and also for curvilinear mapped elements, to evaluate the GLS stabilization terms
which are quite costly due to the appearance of, e.g., the Laplacian in the bilinear
forms. The LDG methods achieve, as we prove here, the same stabilization effect but
as a rule do this without recourse to domain integrals of second-order derivatives of
finite element functions. Rather, only edge/face integrals of jumps are evaluated.

Now, let us briefly describe our results. We show that if we use polynomials of
degree k to approximate the pressure p, the stresses σ, and the velocity u, the order
of convergence of k is obtained for the L2-norm of p and σ, and of k + 1 for the
L2-norm of the velocity. These orders of convergence are sharp, as they are observed
in our numerical experiments. We also explore the situation in which polynomials of
degree k − 1 are used to approximate the pressure p and the stress tensor σ. In this
case, we prove that the above mentioned orders of convergence remain invariant; in
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other words, in this case the error estimates are optimal. Our numerical experiments
confirm this fact; moreover, they also show that this choice of approximating spaces
gives rise to a method which is less efficient than the one obtained by using the same
approximation spaces for all the variables. In Table 1.1, we summarize our theoretical
results and compare them with the orders of convergence obtained for the IP method
of Baker, Jureidini, and Karakashian [2] and the stabilized mixed methods of Hughes
and Franca [26]. (See also Franca and Stenberg [23] for a unified error analysis.) Note
that when the approximations are continuous, the jumps across elements are zero and
the corresponding penalization term vanishes; we indicate this by writing “none.”

Table 1.1
Theoretical orders of convergence for k ≥ 1.

Method
Penalization of the jumps
of velocity and pressure

‖u− uN‖0 ‖p− pN‖0

LDG O(h−1) O(h) k + 1 k
IP [2] O(h−1) none k + 1 k

Stabilized mixed [26, 23] none O(h) k + 1 k

Finally, let us point out that the technique we use in our analysis is an extension
of that used in [8] for the Laplacian. One of the contributions in this paper is that
we make the technique work for local spaces that might be different for different un-
knowns. In fact, in all previous error analyses of LDG methods involving second-order
operators (see [18, 7, 9, 11, 8, 13, 20]), the local spaces for both the auxiliary stresses
and the main unknowns have been taken to be identical. The second contribution is
that we show how to obtain the inf-sup condition, which is nonstandard given the dis-
continuous nature of our elements, in order to obtain error estimates for the pressure.
Note that, unlike the analysis technique used by Hughes, Franca, and Balestra [27]
and Hughes and Franca [26], who obtained error estimates of the pressure in certain
mesh-dependent norms, we obtain an error of the pressure in the L2-norm by using
an inf-sup condition; in this respect, our technique is closer to that employed in 1991
by Franca and Stenberg [23].

The paper is organized as follows. In section 2, we introduce the method, show
that it determines a unique approximate solution, and then state and discuss our main
results. Finally, a brief overview of its proof is given which is then completed in full
detail in section 3. Section 4 is devoted to numerical experiments devised to verify
our theoretical results and to compare the effect that the use of different spaces has
on the quality of the LDG approximate solution. We end in section 5 by describing
extensions of our analysis and giving some concluding remarks.

2. The main results. In this section, we formulate the LDG method and show
that it possesses a well-defined solution. We then state and discuss our main results,
and finally, we present an abstract framework upon which our error analysis is based.

We assume throughout this section, in order to avoid unnecessary technicalities,
that the exact solution (u, p) of (1.1) belongs at least to H2(Ω)d ×H1(Ω).

2.1. Definition of the LDG method. To define the LDG method, we consider
the system of first-order conservation laws (1.2)–(1.5). We use the standard notation

(∇v)ij = ∂jvi and (∇ ·σ)i =
∑d
j=1 ∂jσij . We also denote by v⊗n the matrix whose
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ijth component is vi nj and write

σ : τ :=

d∑
i,j=1

σijτij , v · σ · n :=
d∑

i,j=1

viσijnj = σ : (v ⊗ n).

Multiplying (1.2), (1.3), and (1.4) by arbitrary, smooth test functions τ , v, and
q, respectively, and integrating by parts over an arbitrary subset K of the domain Ω,
we obtain ∫

K

σ : τ dx = −
∫
K

u · ∇ · τ dx+
∫
∂K

u · τ · nK ds,(2.1) ∫
K

σ : ∇v dx−
∫
∂K

σ : (v ⊗ nK)ds−
∫
K

p∇ · v dx+
∫
∂K

pv · nKds

=

∫
K

f · v dx,(2.2)

−
∫
K

u · ∇q dx+
∫
∂K

u · nK q ds = 0,(2.3)

where nK is the outward unit normal to ∂K. This is the weak form of the Stokes
system that we shall use to define the LDG method. We enforce the above equations
on each element K of a general triangulation T of Ω which can have hanging nodes
and elements of various shapes. Thus, since the above equations are well defined for
any functions (σ,u, p) and (τ ,v, q) in Σ× V ×Q, where

Σ :={σ ∈ L2(Ω)d
2

: σij
∣∣
K
∈ H1(K) ∀K ∈ T , 1 ≤ i, j ≤ d},

V :={v ∈ L2(Ω)d : vi
∣∣
K
∈ H1(K) ∀K ∈ T , 1 ≤ i ≤ d},

Q :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0, q
∣∣
K
∈ H1(K) ∀K ∈ T

}
,

we seek to approximate the exact solution (σ,u, p) with functions (σN ,uN , pN ) in the
finite element space ΣN × V N ×QN ⊂ Σ× V ×Q, where

ΣN :={σ ∈ L2(Ω)d
2

: σij
∣∣
K
∈ S(K) ∀K ∈ T , 1 ≤ i, j ≤ d},

V N :={v ∈ L2(Ω)d : vi
∣∣
K
∈ V(K) ∀K ∈ T , 1 ≤ i ≤ d},

QN :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0, q
∣∣
K
∈ Q(K) ∀K ∈ T

}
,

and the local finite element spaces S(K), V(K), and Q(K) typically consist of poly-
nomials.

The approximate solution (σN ,uN , pN ) is now defined by imposing that for all

K ∈ T , for all (τ ,v, q) ∈ S(K)d2 × V(K)d ×Q(K),∫
K

σN : τ dx = −
∫
K

uN · ∇ · τ dx+
∫
∂K

ûN,σ · τ · nK ds,(2.4) ∫
K

σN : ∇v dx−
∫
∂K

σ̂N : (v ⊗ nK) ds−
∫
K

pN ∇ · v dx+
∫
∂K

p̂N v · nK ds

=

∫
K

f · v dx,(2.5)

−
∫
K

uN · ∇q dx+
∫
∂K

ûN,p · nK q ds = 0.(2.6)
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Here, ûN,σ, σ̂N , p̂N , and ûN,p are the so-called numerical fluxes, which are discrete
approximations to traces on the boundary of the elements. Note how the numerical
fluxes ûN,σ and ûN,p arise naturally from the weak formulation; although both are
approximations to the trace of the velocity u, they are defined in very different ways
since they are associated with different conservation laws.

To define these numerical fluxes, we need to introduce some notation associated
with traces. Let K+ and K− be two adjacent elements of T ; let x be an arbitrary
point of the set e = ∂K+ ∩ ∂K−, which is assumed to have a nonzero (d − 1)-
dimensional measure; and let n+ and n− be the corresponding outward unit normals
at that point. Let (σ,u, p) be a function smooth inside each element K± and let us
denote by (σ±,u±, p±) the traces of (σ,u, p) on e from the interior of K±. Then we
define the mean values {{·}} and jumps [[·]] at x ∈ e as

{{p}} := (p+ + p−)/2, {{u}} := (u+ + u−)/2, {{σ}} := (σ+ + σ−)/2,

[[[[[[p]]]]]] := p+ n+ + p− n−, [[u]] := u+ · n+ + u− · n−, [[[[[[σ]]]]]] := σ+ · n+ + σ− · n−.

Note that the jumps [[[[[[p]]]]]] and [[[[[[σ]]]]]] are both vectors whereas the jump [[u]] is a scalar.
We also need to define a jump of the velocity u which is a matrix, namely,

[[u]] := u+ ⊗ n+ + u− ⊗ n−.

In components, we have [[u]]
2
=
∑d
i=1(u

+
i −u−i )2 and (u±⊗n±)2 =

∑d
i=1(u

±
i )

2. Also,

we remark that, since [[u]] =
∑d
i=1(u

+
i − u−i )n+

i , we have [[u]]
2 ≤ [[u]]

2
, that is, the

norm of the scalar-valued jump of the velocity can be controlled by the norm of the
matrix-valued jump.

We are now ready to introduce the numerical fluxes. We begin by defining the
numerical fluxes σ̂ and ûσ associated with the Laplacian. We pick a direct extension
of the choice of numerical fluxes for the Laplace operator considered in [8] and [13].
That is, on a face e inside the domain Ω, we take[

σ̂
ûσ

]
:=

[{{σ}}
{{u}}

]
−
[
C11[[u]] + [[[[[[σ]]]]]]⊗C12

−[[u]] ·C12

]
,(2.7)

and if e lies on the boundary, we take[
σ̂
ûσ

]
:=

[
σ+ − C11 (u

+ − gD)⊗ n+

gD

]
.(2.8)

The numerical fluxes associated with the incompressibility constraint, ûp and p̂,
are defined by using an analogous recipe. If the face e is on the interior of Ω, we take[

ûp
p̂

]
:=

[{{u}}
{{p}}

]
+

[
D11 [[[[[[p]]]]]] +D12 [[u]]

−D12 · [[[[[[p]]]]]]
]
,(2.9)

and if e lies on the boundary, we take[
ûp
p̂

]
:=

[
gD
p+

]
.(2.10)

The parameters C11, C12 and D11, D12 depend on x ∈ e. This completes the
definition of the LDG method for the Stokes system (1.1).
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We would like to stress the following points about this method:

• Note that since the numerical flux ûσ is independent of the variable σ, it is
possible to use (2.4) to solve σN in terms of uN only, element-by-element. This local
solvability, which allows us to eliminate the stresses σN from the equations, gives the
name to the LDG method. (See [8, 18] for more details.)

• The numerical fluxes are consistent in the sense that equations (2.4)–(2.6) co-
incide with (2.1)–(2.3) for the exact solution (σ,u, p). Note also that the boundary
condition is taken into consideration only through the numerical fluxes ûσ and ûp on
the boundary.

• The purpose of the coefficients C11 and D11 is to ensure the stability of the
method. They are thus referred to as the stabilization coefficients. As we shall see,
they can also affect the accuracy of the method. The parameters C12 andD12 can be
chosen so as to reduce the sparsity of the matrices and, in special cases, to enhance
the accuracy of the method; see the case of the Laplacian treated in [13]. In this
paper, we simply assume that they are of order one.

• Note that if we rewrite the conservation law (1.3) as

−∇ · (σ − p I) = f in Ω,

where I is the identity tensor, we see that we need to define a single numerical
flux for (σ − p I) which, in fact, has been taken to be σ̂ − p̂ I. We could have
taken the following more general ansatz for the numerical flux for the pressure p̂ =
{{p}} −D12 · [[[[[[p]]]]]] +D22 [[u]], but this would result in

σ̂ − p̂ I = {{σ}} − {{p}} I + D12 · [[[[[[p]]]]]] I −
(
C11[[u]] +D22 [[u]] I

)
.

Since, as we shall see, the role of the term C11 [[u]] is to control all the discontinuity
jumps of the velocity u but the term D22 [[u]] I can induce a control on the jumps
of only the normal component of the velocity, it is clear that we can always take
D22 ≡ 0.

2.2. The mixed setting. The study of the LDG method is greatly facilitated
if we recast its formulation in a classical mixed finite element setting. To do that,
we denote by Ei the union of all interior faces of the triangulation T and by ED the
union of faces lying on ∂Ω. By summing (2.4), (2.5), and (2.6) over all elements
and after simple algebraic manipulations, the LDG method can be reformulated more
compactly as follows. Find (σN ,uN , pN ) ∈ ΣN × V N ×QN such that

a(σN , τ)+b(uN , τ) =f(τ),

−b(v, σN )+c(uN ,v)+d(v, pN )=g(v),(2.11)

−d(uN , q)+e(pN , q) =h(q)

for all (τ ,v, q) ∈ ΣN × V N ×QN .
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Here,

a(σ, τ):=

∫
Ω

σ : τ dx,

b(u, τ):=
∑
K∈T

∫
K

u · ∇ · τ dx−
∫
Ei

({{u}}+ [[u]] ·C12) · [[[[[[τ]]]]]] ds,

c(u,v):=

∫
Ei

C11[[u]] : [[v]] ds+

∫
ED
C11(u⊗ n) : (v ⊗ n) ds,

d(v, p):=−
∑
K∈T

∫
K

p∇ · v dx+
∫
Ei

({{p}} −D12 · [[[[[[p]]]]]])[[v]] ds+
∫
ED
pv · n ds,

e(p, q) :=

∫
Ei

D11[[[[[[p]]]]]] · [[[[[[q]]]]]] ds

and

f(τ):=

∫
ED
gD · τ · n ds,

g(v):=

∫
Ω

f · v dx+
∫
ED
C11(gD ⊗ n) : (v ⊗ n) ds,

h(q):=−
∫
ED
gD · n q ds.

Note that, by integration by parts, the forms b and d can also be expressed as

b(u, τ)=−
∑
K∈T

∫
K

∇u : τ dx+
∫
Ei

({{τ}} − [[[[[[τ]]]]]]⊗C12) : [[u]] ds+

∫
ED
τ : (u⊗ n) ds,

d(v, p)=
∑
K∈T

∫
K

v · ∇p dx−
∫
Ei

({{v}}+D12[[v]]) · [[[[[[p]]]]]] ds.

Finally, in order to analyze the method, we write the mixed system (2.11) in the
following equivalent form: Find (σN ,uN , pN ) ∈ ΣN × V N ×QN such that

A(σN ,uN , pN ; τ ,v, q) = F(τ ,v, q)(2.12)

for all (τ ,v, q) ∈ ΣN × V N ×QN by setting

A(σ,u, p; τ ,v, q) := a(σ, τ) + b(u, τ)− b(v, σ) + c(u,v) + d(v, p)− d(u, q) + e(p, q),
F(τ ,v, q) := f(τ) + g(v) + h(q).

2.3. Existence and uniqueness of LDG solutions. Next, we show that the
LDG method defines a unique approximate solution provided that for each element
K ∈ T the following mild conditions on the local spaces hold:

u ∈ V(K) :
∫
K

∇u · v dx = 0 ∀v ∈ Sd(K) implies ∇u ≡ 0 on K,(2.13)

q ∈ Q(K) :
∫
K

v · ∇q dx = 0 ∀v ∈ Vd(K) implies ∇q ≡ 0 on K.(2.14)

See [8] for simple examples of local spaces not satisfying the above conditions.
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Proposition 2.1 (well-posedness of the LDG method). Consider the LDG
method defined by the weak formulation (2.4)–(2.6) and by the numerical fluxes given
by (2.7)–(2.10). Suppose that the coefficients C11 and D11 are positive. Finally, as-
sume that the conditions (2.13) and (2.14) on the local spaces are satisfied. Then the
LDG method defines a unique approximate solution (σN ,uN , pN ) ∈ ΣN ×V N ×QN .

Proof. It is enough to show that the only possible solution to the system (2.11)
with f = 0 and gD = 0 is (σN ,uN , pN ) = (0,0, 0). Indeed, taking τ = σN , v = uN ,
q = pN in (2.11) and adding the three equations yields

a(σN , σN ) + c(uN ,uN ) + e(pN , pN ) = 0,

which implies σN = 0, [[uN ]] = 0 on Ei, uN = 0 on ED, and [[[[[[pN]]]]]] = 0 on Ei since the
coefficients C11 and D11 are positive. Consequently, the first equation in (2.11) reads
as ∑

K∈T

∫
K

∇uN : τ dx = 0 ∀τ ∈ ΣN .

Assumption (2.13) implies that ∇uN = 0 on every K ∈ T , and, since [[uN ]] = 0 on Ei
and uN = 0 on ED, we must have uN = 0.

Taking σN = 0 and uN = 0, the second equation in (2.11) becomes

∑
K∈T

∫
K

v · ∇pN dx = 0 ∀v ∈ V N .

Analogously, we conclude from assumption (2.14) that ∇pN = 0 on every K ∈ T and,
since [[[[[[pN]]]]]] = 0, that pN is a constant. Since we also require that

∫
Ω
pN dx = 0, we

conclude that pN = 0.

2.4. A priori estimates. In this section we state and discuss our a priori error
bounds for the LDG method. We assume that every element K of the triangulation
T is affinely equivalent (see [10, section 2.3]) to one of several reference elements in an
arbitrary but fixed set; this allows us to use elements of various shapes with possibly
curved boundaries. For each K ∈ T , we denote by hK the diameter of K and by ρK
the diameter of the biggest ball included in K; we set, as usual, h := maxK∈T hK .
The triangulations we consider can have hanging nodes but have to be regular ; that
is, there exists a positive constant σ1 such that

hK
ρK

≤ σ1 ∀ K ∈ T(2.15)

(see [10, section 3.1]). Moreover, we let the maximum number of neighbors of a
given element K be arbitrary but fixed. To formally state this property, we need to
introduce the set 〈K,K ′〉 defined as

〈K,K ′〉 =
{
∅ if meas(d−1)(∂K ∩ ∂K ′) = 0,
interior of ∂K ∩ ∂K ′ otherwise.

Thus, we assume that there exists a positive constant σ2 < 1 such that, for each
element K ∈ T ,

σ2 ≤ hK′

hK
≤ σ−1

2 ∀K ′ : 〈K,K ′〉 �= ∅ .(2.16)
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These three hypotheses allow for quite general triangulations and are not restrictive
in practice.

We assume that the local finite element spaces satisfy the following inclusions for
i = 1, . . . , d:

∂iV(K) ⊆ S(K), ∂iS(K) ⊆ V(K), ∂iV(K) ⊆ Q(K), ∂iQ(K) ⊆ V(K).(2.17)

Note that (2.17) also implies the assumptions (2.13) and (2.14) on the local spaces.
We denote by Pκ(K) the set of all polynomials of degree at most κ on K and

by Qκ(K) the polynomials of degree at most κ in each variable. Then, in order to
guarantee certain approximation properties of the local spaces, we assume that they
contain at least the following polynomial spaces:

P k(K) ⊆ V(K), P l(K) ⊆ S(K), Pm(K) ⊆ Q(K),(2.18)

with approximation orders k ≥ 1 and l,m ≥ 0. Since ∂iP
k(K) ⊂ P k−1(K) and

∂iQ
k(K) ⊂ Qk(K), conditions (2.17) and (2.18) are satisfied, for example, by

V(K) = P k(K), S(K) = P l(K), Q(K) = Pm(K),(2.19)

with k ≥ 1, l = k or l = k − 1, and m = k or m = k − 1, or by
V(K) = Qk(K), S(K) = Qk(K), Q(K) = Qk(K), k ≥ 1.(2.20)

Next, we introduce a seminorm that appears in a natural way in the analysis of
LDG methods. We denote by Hs(D), D being a domain in R

d, the Sobolev spaces of
integer orders, and by ‖ · ‖s,D and | · |s,D the usual norms and seminorms in Hs(D),

Hs(D)d, and Hs(D)d
2

; we omit the dependence on the domain in the norms whenever
D = Ω. We define

| (σ,u, p) |2A := ‖σ‖20 +Θ2(u, p),

where

Θ2 (u, p) =

∫
Ei

(
C11[[u]]

2
+D11[[[[[[p]]]]]]

2
)
ds+

∫
ED
C11(u⊗ n)2 ds.

We assume that the stabilization coefficients C11 andD11 defining the numerical fluxes
in (2.7) and (2.9) are given by

C11(x) =

{
c11max{h−1

K+ , h
−1
K−} if x ∈ 〈K+,K−〉,

c11h
−1
K+ if x ∈ ∂K+ ∩ ∂Ω,(2.21)

D11(x) = d11max{hK+ , hK−}, x ∈ 〈K+,K−〉,(2.22)

with c11 and d11 > 0 independent of the meshsize and |C12| as well as |D12| of order
one.

We are now ready to state our a priori error estimates for the LDG method. The
first result is concerned with the error in the seminorm | · |A and the L2-error in the
pressure.

Theorem 2.2. Let (σ,u, p) be the solution of (1.2)–(1.5) and let (σN ,uN , pN )
be the approximate solution given by the LDG method (2.4)–(2.6) with numerical
fluxes (2.7)–(2.10). Assume the hypotheses (2.15), (2.16) on the triangulations, the
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hypotheses (2.17), (2.18) on the local spaces, with approximation orders k ≥ 1 and
l,m ≥ 0, and the hypotheses (2.21), (2.22) on the form of the stabilization parame-

ters. For σ ∈ H l+1(Ω)d
2

, u ∈ Hk+1(Ω)d, and p ∈ Hm+1(Ω), we have that the errors
eσ = σ − σN , eu = u− uN , and ep = p− pN satisfy

| (eσ, eu, ep) |A + ‖ep‖0 ≤ C
[
hl+1‖σ‖l+1 + h

k‖u‖k+1 + h
m+1‖p‖m+1

]
,

where the constant C solely depends on Ω, σ1, σ2, c11, d11, d, and the dimensions of
the local spaces but is independent of the meshsize h.

To prove a priori bounds for the L2-error in u, we assume elliptic regularity, that
is, we assume that the solution (z, q) of the homogeneous Stokes problem

−∆z +∇q = λ in Ω,(2.23)

∇ · z = 0 in Ω,(2.24)

z = 0 on ∂Ω(2.25)

with right-hand side λ ∈ L2(Ω)d satisfies the estimate

‖z‖2 + ‖q‖1 ≤ C‖λ‖0(2.26)

for a constant C > 0 just depending on Ω. For the inequality (2.26) to hold, certain
restrictions on Ω are necessary; see, for example, Proposition 2.3 in Témam [32].

Theorem 2.3. Under the same assumptions as in Theorem 2.2 and the elliptic
regularity assumption (2.26), we have that

‖eu‖0 ≤ C
[
hl+2‖σ‖l+1 + h

k+1‖u‖k+1 + h
m+2‖p‖m+1

]
with a constant C that depends solely on Ω, σ1, σ2, c11, d11, d, the dimensions of the
local spaces, and the constant in (2.26) but that is independent of the meshsize h.

Let us briefly discuss the results of Theorems 2.2 and 2.3:
• When P k- or Qk-elements with k ≥ 1 are used for all field variables, i.e, the

local spaces are chosen as in (2.19) with l = k and m = k or as in (2.20), we obtain

for smooth solutions σ ∈ Hk+1(Ω)d
2

, u ∈ Hk+1(Ω), p ∈ Hk+1(Ω) the error bounds

| (eσ, eu, ep) |A + ‖ep‖0 ≤ Chk, ‖eu‖0 ≤ Chk+1.

Although these rates are sharp in the sense that they are actually observed in the
numerical experiments of section 4, they are not optimal in terms of the approximation
properties of the finite element spaces.

• If the P -elements used for σ and p are of one order lower than the ones used
for the velocities u, i.e., if we consider P -elements as in (2.19) with l = m = k − 1
and k ≥ 1, then an optimal-order error estimate is obtained: for σ ∈ Hk(Ω)d

2

,
u ∈ Hk+1(Ω)d, and p ∈ Hk(Ω) we again have

| (eσ, eu, ep) |A + ‖ep‖0 ≤ Chk, ‖eu‖0 ≤ Chk+1,

which is optimal in terms of the approximation properties and of the regularity re-
quirements of the exact solution.

• The stabilization parameters C11 and D11 are taken to be of order O(1/h) and
O(h), respectively. As can be inferred from our analysis, this choice maximizes the
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rates of convergence. For different selections of C11 and D11, the obtained orders
of convergence are summarized in Table 2.1 for smooth solutions and P k- or Qk-
elements. On the other hand, our numerical results in Table 5.1 below indicate that
for C11 and D11 of order one the parameters C12 and D12 can be chosen in such a
way that the LDG method superconverges on Cartesian grids and for tensor product
polynomials; we rigorously proved this result in [13] for the Laplacian. The extension
of the study there to the Stokes system will be addressed in future work.

Table 2.1
Orders of convergence for Pk- or Qk-elements in dependence of C11 and D11.

C11 D11 | (eσ , eu, ep) |A ‖ep‖0 ‖eu‖0

O(1),O(1/h) O(1) k k k + 1/2
O(1) O(h) k k k + 1/2

O(1/h) O(h) k k k + 1

2.5. The setting for the error analysis. The purpose of this section is to
display as clearly as possible the main ingredients of the proof of our a priori results
in section 2.4. To do so, we base our analysis on an abstract setting similar to the
one introduced in [8] for the Laplacian.

We split the error (eσ, eu, ep) = (σ− σN ,u−uN , p− pN ) into the following sum:
(eσ, eu, ep) = (σ −Πσ,u−Πu, p−Πp) + (Πeσ,Πeu,Πep),

where Π : Σ → ΣN , Π : V → V N , and Π : Q → QN are fixed projections onto the
corresponding finite element spaces.

The basic ingredients. The basic ingredients of our error analysis are two.
The first one is, as it is classical in finite element error analysis, the so-called Galerkin
orthogonality property, namely,

A(eσ, eu, ep; τ ,v, q) = 0 ∀(τ ,v, q) ∈ ΣN × V N ×QN .(2.27)

This property is a straightforward consequence of the consistency of the numerical
fluxes and is valid since (u, p) ∈ H2(Ω)d ×H1(Ω).

The second ingredient is a couple of inequalities that reflect the approximation
properties of the projections Π, Π, and Π; namely, we assume that there exist error
bounds KA and KB such that

| A(σ −Πσ,u−Πu, p−Πp; τ −Πτ ,v −Πv, q −Πq) | ≤ CKA(σ,u, p; τ ,v, q)
(2.28)

for any (σ,u, p), (τ ,v, q) ∈ Σ× V ×Q, and
| A(σ −Πσ,±(u−Πu), p−Πp; τ ,±v, q) | ≤ C| (τ ,v, q) |A KB(σ,u, p)(2.29)

for any (τ ,v, q) ∈ ΣN × V N × QN and (σ,u, p) ∈ Σ × V × Q and with constants
C which are independent of the meshsize (specific forms for KA and KB shall be
provided below). As we show next, all the error estimates we are interested in can be
obtained in terms of KA and KB.
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Error in the A-seminorm. The error in | · |A can be estimated as follows.
Lemma 2.4. We have

| (eσ, eu, ep) |A ≤ CK1/2
A (σ,u, p;σ,u, p) + CKB(σ,u, p),

with C independent of the meshsize.
Proof. This is a straightforward extension of [8, Lemma 2.3]. We present the

proof for the sake of completeness. Since | (·, ·, ·) |A is a seminorm, we have

| (eσ, eu, ep) |A ≤ | (σ −Πσ,u−Πu, p−Πp) |A + | (Πeσ,Πeu,Πep) |A.

By the definition of A in (2.12), by Galerkin orthogonality (2.27), and by assumption
(2.29),

| (Πeσ,Πeu,Πep) |2A =A(Πeσ,Πeu,Πep; Πeσ,Πeu,Πep)
=A(Πσ − σ,Πu− u,Πp− p; Πeσ,Πeu,Πep)
≤C| (Πeσ,Πeu,Πep) |AKB(σ,u, p),

we have that

| (Πeσ,Πeu,Πep) |A ≤ CKB(σ,u, p),(2.30)

and so

| (eσ, eu, ep) |A ≤ | (σ −Πσ,u−Πu, p−Πp) |A + CKB(σ,u, p).

The estimate now follows from a simple application of assumption (2.28). This com-
pletes the proof.

Error in the pressure. To obtain an error estimate in the pressure, we shall
prove a stability result which allows us to measure the error of the pressure in the
L2-norm. It can be viewed as a discrete counterpart of the standard continuous inf–
sup condition for the Stokes problem (see, e.g., [6, 24]), adapted to the discontinuous
spaces considered here. Its proof is obtained by following the techniques used by
Franca and Stenberg [23] in section 3.4 below.

Proposition 2.5. There exist positive constants κ1 and κ2 independent of the
meshsize such that for all (τ ,v, q) ∈ ΣN × V N ×QN there is a w ∈ V N with

A(τ ,v, q; 0,w, 0) ≥ κ1‖q‖20 − κ2| (τ ,v, q) |2A, | (0,w, 0) |A = Θ(w, 0) ≤ ‖q‖0.
(2.31)

Based on this inf-sup condition we obtain the following estimate for ep.
Lemma 2.6. We have

‖ep‖0 ≤ ‖p−Πp‖0 + CKB(σ,u, p),

with C independent of the meshsize.
Proof. We only have to find an estimate for ‖Πep‖0, since we trivially have

‖p−pN‖0 ≤ ‖p−Πp‖0+‖Πep‖0. To do that, we see that by Proposition 2.5 there exists
a test functionw ∈ V N such that (2.31) is satisfied for (τ ,v, q) = (Πeσ,Πeu,Πep). By
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(2.31), Galerkin orthogonality (2.27), assumption (2.29), estimate (2.30), the Cauchy–
Schwarz inequality, and the properties of w, we obtain

κ1‖Πep‖20 ≤ A(Πeσ,Πeu,Πep; 0,w, 0) + κ2| (Πeσ,Πeu,Πep) |2A
= A(Πσ − σ,Πu− u,Πp− p; 0,w, 0) + κ2| (Πeσ,Πeu,Πep) |2A
≤ C1| (0,w, 0) |AKB(σ,u, p) + C2KB(σ,u, p)2

≤ C1

2ε
‖Πep‖20 +

(
C1
ε

2
+ C2

)
KB(σ,u, p)2

for all ε > 0. We can now choose ε in such a way that

‖Πep‖0 ≤ CKB(σ,u, p)

with a constant C depending on C1 and C2. The assertion follows.

Error in the velocity. The estimate for the error ‖eu‖0 is based on a duality
argument similar to the one used in [8].

Lemma 2.7. Assume that the elliptic regularity inequality (2.26) holds. Then we
have

‖eu‖0 ≤ C sup
λ∈L2(Ω)d

KA(σ,u, p; ζ,z, q̃)
‖λ‖0 + CKB(σ,u, p) sup

λ∈L2(Ω)d

KB(ζ,z, q̃)
‖λ‖0 ,(2.32)

with (z, q) denoting the solution of (2.23)–(2.25) with right-hand side λ and ζ = −∇z,
q̃ = −q.

Proof. We introduce the linear functional Λ(u) = (λ,u), where (·, ·) denotes the
L2(Ω)d-inner product. Then we have

‖eu‖0 = sup
λ∈L2(Ω)d

Λ(eu)

‖λ‖0 .(2.33)

Now, let (z, q) be the solution of the adjoint equation (2.23)–(2.25) with right-hand
side λ. It is easy to verify that, if we set ζ = −∇z, q̃ = −q, we have

A(−ζ,z,−q̃;−τ ,w,−r) = Λ(w)

for all (τ ,w, r) ∈ Σ× V ×Q. Taking (τ ,w, r) = (eσ, eu, ep), we get by the definition
of A in (2.12) and by Galerkin orthogonality (2.27)

Λ(eu) =A(−ζ,z,−q̃;−eσ, eu,−ep)
=A(eσ, eu, ep; ζ,z, q̃ )
=A(eσ, eu, ep; ζ −Πζ,z −Πz, q̃ −Πq̃ )
=A(Πeσ,Πeu,Πep; ζ −Πζ,z −Πz, q̃ −Πq̃ )

+A(σ −Πσ,u−Πu, p−Πp; ζ −Πζ,z −Πz, q̃ −Πq̃ ).

We obtain with assumption (2.29) and estimate (2.30)

| A(Πeσ,Πeu,Πep; ζ −Πζ,z −Πz, q̃ −Πq̃ )|
= | A(ζ −Πζ,−(z −Πz), q̃ −Πq̃; Πeσ,−Πeu,Πep) | ≤ CKB(σ,u, p)KB(ζ,z, q̃ ),
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and hence

|Λ(eu) | ≤ CKB(σ,u, p)KB(ζ,z, q̃ )

+ | A(σ −Πσ,u−Πu, p−Πp; ζ −Πζ,z −Πz, q̃ −Πq̃ ) |.

The estimate now follows from a simple application of assumption (2.28) and from
the characterization (2.33) of the L2-norm.

Conclusion. Thus, in order to prove our a priori estimates, all we need to do is
to obtain the functionals KA and KB as well as the stability estimate in Proposition
2.5; this will be carried out in the next section. Then Theorems 2.2 and 2.3 will
immediately follow after a simple application of Lemmas 2.4, 2.6, and 2.7.

3. Proofs. In this section, we prove our main results in the setting of section
2.5. We proceed as follows. After presenting some preliminary results, we obtain the
functional KA for general projection operators Π, Π, and Π. To obtain the functional
KB, the projections Π, Π, and Π are chosen as L2-projections.

3.1. Preliminaries. The following two lemmas contain all the information we
actually use about our finite elements. The first one is a standard approximation
result, valid for any linear continuous and polynomial preserving operator Π from
Hs+1(K) onto a finite-dimensional space N (K) ⊃ Pκ(K); it can be easily obtained
by using the techniques of [10]. The second one is a standard inverse inequality.

Lemma 3.1. Let Π be a linear continuous operator from Hs+1(K), s ≥ 0, onto
N (K) ⊃ Pκ(K) such that Πw = w for all w ∈ Pκ(K), κ ≥ 0. Then we have

|w −Πw|r,K ≤ Chmin(s,κ)+1−r
K ‖w‖s+1,K , r = 0, 1,

‖w −Πw‖0,∂K ≤ Chmin (s,κ)+ 1
2

K ‖w‖s+1,K

for some constant C that solely depends on σ1 in inequality (2.15), the dimension of
N (K), d, and s.

Lemma 3.2. There exists a positive constant Cinv that depends solely on σ1 in
inequality (2.15), the dimension of N (K), and d such that for all s ∈ N (K) we have
‖s‖0,∂K ≤ Cinvh

−1/2
K ‖s‖0,K for all K ∈ T .

Let Π : Σ → ΣN , Π : V → V N , and Π : Q → QN be projection operators onto
the corresponding finite element spaces satisfying (componentwise) the assumptions
in Lemma 3.1. We will make use of the following shorthand notation:

ξ
σ
= σ −Πσ, ξu = u−Πu, ξp = p−Πp

for (σ,u, p) ∈ Σ× V ×Q. We also define the quantities

C∂K11 := inf{C11(x) : x ∈ ∂K}, C
∂K

11 := sup{C11(x) : x ∈ ∂K},
D∂K11 := inf{D11(x) : x ∈ ∂K \ ∂Ω}, D

∂K

11 := sup{D11(x) : x ∈ ∂K \ ∂Ω}.

3.2. The functional KA. Using Cauchy–Schwarz’s inequality, the approxima-
tion properties in Lemma 3.1 and the assumptions (2.15) and (2.16) on the meshes, we
can prove, in exactly the same way as in [8, section 3.2], the following approximation
results for the LDG forms.

Lemma 3.3. Assume (2.15), (2.16), and (2.18). Let Π, Π, and Π be projection
operators satisfying (componentwise with κ = k, κ = l, and κ = m, respectively) the
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assumptions in Lemma 3.1. Let σ ∈ Hr+1(Ω)d
2

, τ ∈ Hr+1(Ω)d
2

, u ∈ Hs+1(Ω)d,

v ∈ Hs+1(Ω)d, p ∈ Ht+1(Ω), and q ∈ Ht+1(Ω) for r, r, s, s, t, t ≥ 0. Then we have

|a(ξ
σ
, ξ
τ
)| ≤ C

(∑
K∈T

h
2 min(r,l)+2
K ‖σ‖2r+1,K

) 1
2
(∑
K∈T

h
2 min(r,l)+2
K ‖τ‖2r+1,K

) 1
2

,

|b(ξu, ξτ )| ≤ C
(∑
K∈T

h
2 min(s,k)
K ‖u‖2s+1,K

) 1
2
(∑
K∈T

h
2 min(r,l)+2
K ‖τ‖2r+1,K

) 1
2

,

|c(ξu, ξv)| ≤ C
(∑
K∈T

C
∂K

11 h
2 min(s,k)+1
K ‖u‖2s+1,K

) 1
2
(∑
K∈T

C
∂K

11 h
2 min(s,k)+1
K ‖v‖2s+1,K

) 1
2

,

|d(ξu, ξq)| ≤ C
(∑
K∈T

h
2 min(s,k)
K ‖u‖2s+1,K

) 1
2
(∑
K∈T

h
2 min(t,m)+2
K ‖q‖2

t+1,K

) 1
2

,

|e(ξp, ξq)| ≤ C
(∑
K∈T

D
∂K

11 h
2 min(t,m)+1
K ‖p‖2t+1,K

) 1
2
(∑
K∈T

D
∂K

11 h
2 min(t,m)+1
K ‖q‖2

t+1,K

) 1
2

,

with constants C independent of the meshsize.
For the special form of C11 and D11 proposed in (2.21) and (2.22), respectively,

we have as a consequence of Lemma 3.3 and (2.16) the following result.
Corollary 3.4. Under the same assumptions as in Lemma 3.3 and for coeffi-

cients C11 and D11 of the form (2.21) and (2.22), respectively, we have

|a(ξ
σ
, ξ
τ
)| ≤ Chmin(r,l)+min(r,l)+2‖σ‖r+1‖τ‖r+1,

|b(ξu, ξτ )| ≤ Chmin(s,k)+min(r,l)+1‖u‖s+1‖τ‖r+1,

|c(ξu, ξv)| ≤ c11Chmin(s,k)+min(s,k)‖u‖s+1‖v‖s+1,

|d(ξu, ξq)| ≤ Chmin(s,k)+min(t,m)+1‖u‖s+1‖q‖t+1,

|e(ξp, ξq)| ≤ d11Chmin(t,m)+min(t,m)+2‖p‖t+1‖q‖t+1,

with constants C independent of the meshsize.
From Corollary 3.4 we immediately obtain a general expression for the functional

KA since

A(ξ
σ
, ξu, ξp; ξτ , ξv, ξq) = a(ξσ, ξτ ) + b(ξu, ξτ )− b(ξv, ξσ)

+ c(ξu, ξv) + d(ξv, ξp)− d(ξu, ξq) + e(ξp, ξq).(3.1)

In the situations encountered in Lemmas 2.4 and 2.7 we obtain the following
results.

Corollary 3.5. Assume (2.15), (2.16), and (2.18) with approximation orders
k ≥ 1, l,m ≥ 0. Assume the coefficients C11 and D11 to be of the form (2.21) and
(2.22), respectively. Let Π, Π, and Π be projection operators as in Lemma 3.3. Let

σ ∈ H l+1(Ω)d
2

, u ∈ Hk+1(Ω)d, and p ∈ Hm+1(Ω). Then we have in Lemma 2.4

KA(σ,u, p;σ,u, p) ≤ C
[
h2l+2‖σ‖2l+1 + h

2k‖u‖2k+1 + h
2m+2‖p‖2m+1

]
.

Furthermore, assume the elliptic regularity inequality (2.26) and let (z, q) denote the
solution of (2.23)–(2.25) with right-hand side λ ∈ L2(Ω)d, ζ = −∇z, q̃ = −q. Then
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we have in Lemma 2.7

KA(σ,u, p; ζ,z, q̃) ≤ C
[
h2+l‖σ‖l+1 + h

1+k‖u‖k+1 + h
2+m‖p‖m+1

]
‖λ‖0.

Proof. The assertions follow immediately from Corollary 3.4, the identity (3.1),
the choice of the coefficients C11 and D11, and from the elliptic regularity estimate
(2.26) which yields ‖ζ‖1 + ‖u‖2 + ‖q̃‖1 ≤ C‖λ‖0.

3.3. The functional KB. In this subsection we determine the functionalKB re-
flecting the approximation properties in (2.29). We start by investigating the forms a,
c, and d. Lemma 3.1 and Cauchy–Schwarz’s inequality immediately give the following
estimates.

Lemma 3.6. Assume (2.15), (2.16), and (2.18). Let Π, Π, and Π be projection
operators satisfying (componentwise with κ = k, κ = l, and κ = m, respectively) the

assumptions in Lemma 3.1. Let σ ∈ Hr+1(Ω)d
2

, u ∈ Hs+1(Ω)d, and p ∈ Ht+1(Ω) for
r, s, t ≥ 0. Then we have

|a(ξ
σ
, τ)| ≤ C

(∑
K∈T

h
2 min(r,l)+2
K ‖σ‖2r+1,K

) 1
2

‖τ‖0 ∀ τ ∈ Σ,

|c(ξu,v)| ≤ C

(∑
K∈T

C
∂K

11 h
2 min(s,k)+1
K ‖u‖2s+1,K

) 1
2

Θ(v, 0) ∀v ∈ V ,

|e(ξp, q)| ≤ C

(∑
K∈T

D
∂K

11 h
2 min(t,m)+1
K ‖p‖2t+1,K

) 1
2

Θ(0, q) ∀q ∈ Q,

with constants C independent of the meshsize.
Next, we estimate the forms b and d in the case where Π : Σ→ ΣN , Π : V → V N ,

and Π : Q→ QN are chosen to be L2-projections. Note that these projections clearly
satisfy the assumptions of Lemma 3.1. It is also important to note that this is the
only part of our analysis in which we actually use the inclusion properties (2.17).

Lemma 3.7. Assume (2.15), (2.16) and (2.17), (2.18). Let Π, Π, and Π be
the (componentwise) L2-projections onto the corresponding finite element spaces. Let

σ ∈ Hr+1(Ω)d
2

, u ∈ Hs+1(Ω)d, and p ∈ Ht+1(Ω) for r, s, t ≥ 0. Then we have

|b(ξu, τ)| ≤ C

(∑
K∈T

h
2 min(s,k)
K ‖u‖2s+1,K

) 1
2

‖τ‖0 ∀ τ ∈ ΣN ,

|b(v, ξ
σ
)| ≤ C

(∑
K∈T

1

C∂K11

h
2 min(r,l)+1
K ‖σ‖2r+1,K

) 1
2

Θ(v, 0) ∀v ∈ V N ,

|d(ξu, q)| ≤ C

(∑
K∈T

1

D∂K11

h
2 min(s,k)+1
K ‖u‖2s+1,K

) 1
2

Θ(0, q) ∀q ∈ QN ,

|d(v, ξp)| ≤ C

(∑
K∈T

1

C∂K11

h
2 min(t,m)+1
K ‖p‖2t+1,K

) 1
2

Θ(v, 0) ∀v ∈ V N ,

with constants C independent of the meshsize.
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Proof. We start by proving the estimates for the form b. We note that
∫
K
(u −

Πu) · ∇ · τ dx = 0 due to the properties of the L2-projection and the inclusion
property ∂iS(K) ⊂ V(K) in (2.17). Therefore, using the fact that C12 is of order
one, a repeated application of Cauchy–Schwarz’s inequality gives

|b(ξu, τ)| =
∣∣∣∣
∫
Ei

({{ξu}}+ [[ξu]] ·C12) · [[[[[[τ]]]]]] ds
∣∣∣∣

≤ C
(∑
K∈T

h−1
K ‖ξu‖20,∂K

) 1
2
(∑
K∈T

ĥK‖τ‖20,∂K
) 1

2

,

where ĥK = sup{hK′ : 〈K,K ′〉 �= ∅}. Assumption (2.16) implies that ĥK ≤ σ−1
2 hK ,

and therefore, the desired estimate follows from Lemma 3.1 and the inverse inequality
in Lemma 3.2.

Furthermore, we also note that
∫
K
∇v : (σ − Πσ) dx = 0, since Π|K is the L2-

projection into S(K) and ∂iV(K) ⊂ S(K) in (2.17). Thus, we obtain

|b(v, ξ
σ
)| =

∣∣∣∣
∫
Ei

({{ξ
σ
}} − [[[[[[ξ

σ
]]]]]]⊗C12) : [[v]] ds+

∫
ED
ξ
σ
: (v ⊗ n) ds

∣∣∣∣
≤
(∫

Ei

1

C11
({{ξ

σ
}} − [[[[[[ξ

σ
]]]]]]⊗C12)

2 ds+

∫
ED

1

C11
ξ2
σ
ds

) 1
2

Θ(v, 0).

≤ C
(∑
K∈T

1

C∂K11

‖ξ
σ
‖20,∂K

) 1
2

Θ(v, 0).

The second estimate for the form b follows from Lemma 3.1.
The estimates for d are obtained in a similar way from Lemma 3.1, observing again

thatD12 is of order one and that the volume terms vanish due to the properties of the
L2-projections and the inclusions in (2.17). Thus, using the inclusion ∂iQ(K) ⊂ V(K),
we have

|d(ξu, q)| =
∣∣∣∣
∫
Ei

({{ξu}}+D12[[ξu]]) · [[[[[[q]]]]]] ds
∣∣∣∣

≤
(∫

Ei

1

D11
({{ξu}}+D12[[ξu]])

2 ds

) 1
2

Θ(0, q)

≤ C
(∑
K∈T

1

D∂K11

‖ξu‖0,∂K
) 1

2

Θ(0, q),

and using the inclusion ∂iV(K) ⊂ Q(K),

|d(v, ξp)| =
∣∣∣∣
∫
Ei

({{ξp}} −D12 · [[[[[[ξp]]]]]])[[v]] ds+
∫
ED
ξpv · n ds

∣∣∣∣
≤ C

(∑
K∈T

1

C∂K11

‖ξp‖20,∂K
) 1

2

Θ(v, 0).

The application of Lemma 3.1 completes the proof.
For the special form of C11 and D11 proposed in (2.21) and (2.22), respectively,

we have as a consequence of Lemma 3.6, Lemma 3.7, and (2.16) the following result.
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Corollary 3.8. Assume (2.15), (2.16) and (2.17), (2.18). Let the coefficients
C11 and D11 be given by (2.21), (2.22), and let Π, Π, and Π be the (componentwise)

L2-projections onto the corresponding finite element spaces. Let σ ∈ Hr+1(Ω)d
2

,
u ∈ Hs+1(Ω)d, and p ∈ Ht+1(Ω) for r, s, t ≥ 0. Then we have

|a(ξ
σ
, τ)| ≤ Chmin(r,l)+1‖σ‖r+1‖τ‖0 ∀ τ ∈ Σ,

|b(ξu, τ)| ≤ Chmin(s,k)‖u‖s+1‖τ‖0 ∀ τ ∈ ΣN ,
|b(v, ξ

σ
)| ≤ c

− 1
2

11 Ch
min(r,l)+1‖σ‖r+1Θ(v, 0) ∀v ∈ V N ,

|c(ξu,v)| ≤ c
1
2
11Ch

min(s,k)‖u‖s+1Θ(v, 0) ∀v ∈ V ,
|d(ξu, q)| ≤ d

− 1
2

11 Ch
min(s,k)‖u‖s+1Θ(0, q) ∀q ∈ QN ,

|d(v, ξp)| ≤ c
− 1

2
11 Ch

min(t,m)+1‖p‖t+1Θ(v, 0) ∀v ∈ V N ,

|e(ξp, q)| ≤ d
1
2
11Ch

min(t,m)+1‖p‖t+1Θ(0, q) ∀q ∈ Q,
with constants C independent of the meshsize.

From Corollary 3.8 we are able to derive the following estimate for KB.
Corollary 3.9. Assume (2.15), (2.16) and (2.17), (2.18), with approximation

orders k ≥ 1, l,m ≥ 0. Let the coefficients C11 and D11 be given by (2.21), (2.22),

and let Π, Π, Π denote L2-projections. For σ ∈ H l+1(Ω)d
2

, u ∈ Hk+1(Ω)d, and
p ∈ Hm+1(Ω) the error bound (2.29) is satisfied with

KB(σ,u, p) ≤ C
[
hl+1‖σ‖l+1 + h

k‖u‖k+1 + h
m+1‖p‖m+1

]
.

Furthermore, assume the elliptic regularity (2.26) and let (z, q) denote the solution of
(2.23)–(2.25) with right-hand side λ ∈ L2(Ω)d, ζ = −∇z, q̃ = −q. Then we have in
Lemma 2.7

KB(ζ,z, q̃ ) ≤ Ch‖λ‖0.
Proof. The first assertion follows from the fact that

A(ξ
σ
,±ξu, ξp; τ ,±v, q) = a(ξσ, τ)± b(ξu, τ)∓ b(v, ξσ)± c(ξu,v)

± d(v, ξp)∓ d(ξu, q) + e(ξp, q),
from the definition of the A-seminorm, and from Corollary 3.8.

The second assertion follows similarly from Corollary 3.8, substituting (σ,u, p)
by (ζ,z, q̃ ), observing the special form of C11 and D11, and (2.26) which gives ‖ζ‖1+
‖z‖2 + ‖q̃ ‖1 ≤ C‖λ‖0.

3.4. Proof of Proposition 2.5. We prove the stability result in Proposition 2.5.
To do so, we fix (τ ,v, q) ∈ ΣN × V N × QN . Then, by the continuous inf-sup
condition for the standard Stokes forms (see, e.g., [6, 24]) there is a velocity field
u ∈ H1

0 (Ω)
d = {u ∈ H1(Ω)d : u|∂Ω = 0} satisfying

−
∫

Ω

q∇ · u dx ≥ κ‖q‖20, ‖u‖1 ≤ ‖q‖0,(3.2)

with a constant κ > 0 just depending on Ω. Let Πu be the L2-projection of u onto
the finite element space V N . By definition of A, we have

A(τ ,v, q; 0,Πu, 0) = −b(Πu, τ) + c(v,Πu) + d(Πu, q) =: T1 + T2 + T3.
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We set ξu := u−Πu and estimate each of the terms T1–T3 separately.
For T1 we have, by Corollary 3.8,

|T1| ≤ |b(ξu, τ)|+ |b(u, τ)| ≤ C‖u‖1‖τ‖0 +
∣∣∣∣
∫

Ω

∇u : τ dx
∣∣∣∣ ≤ C‖u‖1‖τ‖0,

and, by (3.2),

T1 ≥ −C1

ε1
‖q‖20 − C1ε1‖τ‖20.

For the second term T2 we have, analogously,

T2 = c(v,Πu) = c(v, ξu) ≤ c
1
2
11C‖u‖1Θ(v, 0),

and hence

T2 ≥ −C2c11
ε2

‖q‖20 − C2ε2Θ
2(v, q).

For the third term, we write

T3 = d(Πu, q) = d(u, q)− d(ξu, q).
Since, by Corollary 3.8 and (3.2)

|d(ξu, q)| ≤ d−
1
2

11 C‖u‖1Θ(0, q) ≤
Cd−1

11

ε3
‖q‖20 + Cε3Θ2(v, q),

and d(u, q) = − ∫
Ω
q∇ · u dx, we obtain

T3 ≥ κ‖q‖20 −
C3d

−1
11

ε3
‖q‖20 − C3ε3Θ

2(v, q).

From the above estimates we conclude that

A(τ ,v, q; 0,Πu, 0)

≥
(
κ− C1

ε1
− C2c11

ε2
− C3d

−1
11

ε3

)
‖q‖20 − C1ε1‖τ‖20 − (C2ε2 + C3ε3)Θ

2(v, q).

The parameters {εi}3i=1 can be chosen in such a way that

A(τ ,v, q; 0,Πu, 0) ≥ K1‖q‖20 −K2| (τ ,v, q) |2A,
with constants Ki independent of the meshsize.

Furthermore, we have by Corollary 3.4

| (0,Πu, 0) |2A = c(Πu,Πu) = c(ξu, ξu) ≤ c11C‖u‖21 ≤ K2
3‖q‖20.

The function w = Πu/K3 then satisfies the assertion in Proposition 2.5, with κ1 =
K1/K3 and κ2 = K2/K3. This completes the proof.

3.5. Proof of the main results. Theorems 2.2 and 2.3 follow now immediately
by choosing the projection operators Π, Π, and Π as L2-projections, by combining
Corollaries 3.5 and 3.9 with Lemmas 2.4, 2.6, and 2.7 and by taking into account the
form of the coefficients C11 and D11.
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Table 4.1
Convergence rates for Pk-elements.

Degree Grid |e|A ‖eσ‖0 ‖eu‖0 ‖ep‖0
k level Error Order Error Order Error Order Error Order

3 3.4e-1 0.94 2.1e-1 0.69 8.4e-3 2.07 2.0e-2 1.57
1 4 1.7e-1 0.96 1.2e-1 0.85 2.1e-3 2.03 8.2e-3 1.27

5 8.8e-2 0.98 6.2e-2 0.93 5.1e-4 2.01 3.4e-3 1.25
3 1.2e-2 1.87 9.1e-3 1.73 2.0e-4 3.07 5.1e-4 2.46

2 4 3.2e-3 1.84 2.5e-3 1.88 2.4e-5 3.06 1.2e-4 2.08
5 9.2e-4 1.80 6.4e-4 1.94 2.9e-6 3.03 3.0e-5 2.00
2 1.8e-3 2.86 1.4e-3 2.66 5.8e-5 3.98 2.4e-4 2.80

3 3 2.4e-4 2.91 1.9e-4 2.82 3.6e-6 4.02 3.9e-5 2.65
4 3.0e-5 2.96 2.5e-5 2.91 2.2e-7 4.02 5.3e-6 2.87

4. Numerical results. The numerical experiments we present in this section
are devised to verify our theoretical error estimates. We also explore the effect of
the use of several combinations of polynomial spaces on the efficiency of the resulting
LDG methods. The numerical tests are carried out by using the finite element library
deal.II by Bangerth and Kanschat [3].

We consider the Stokes system (1.1) with Ω = (−1, 1)2 and right-hand side f and
Dirichlet boundary condition gD chosen such that the exact solution is

u1(x1, x2) = −ex1(x2 cosx2 + sinx2),

u2(x1, x2) = e
x1x2 sinx2,

p(x1, x2) = 2e
x1 sinx2.

In all our experiments, we use uniform triangulations made of squares; the grid whose
squares have size h = 2−ν+1 is called a grid of level ν.

4.1. Verifying the sharpness of the theoretical error estimates. We be-
gin by considering LDG methods with the same polynomial spaces for σ, u, and p
and taking C11 = h

−1, D11 = h, C12 = 0, and D12 = 0. The results are shown in
Tables 4.1 and 4.2 for P k- and Qk-elements, respectively. The tables confirm that
the orders of convergence predicted by the theory are sharp since they are actually
achieved. However, one exception needs to be pointed out: The pressure converges
better than expected for linear and bilinear shape functions since superlinear conver-
gence is observed. This phenomenon is particularly well accentuated in the case of
bilinear functions for which the order of convergence of 3/2 can be clearly seen. The
same order of convergence has recently been observed by Berrone [5] for the stabilized
P 1-P 1 SUPG method.

4.2. The effect of the use of different polynomial spaces. To get an idea
of what is the effect of the use of P k- versus Qk-spaces on quadrilateral elements, the
errors of quadratic and biquadratic elements are compared in relation to the numerical
effort in Figure 4.1. We use the number of nonzero elements in the stiffness matrix as
a measure of the solution cost of a discretization. The graphs show that it is possible
to compute the velocities u with the same accuracy and effort with P 2- and Q2-shape
functions; however, the pressures are computed more efficiently with P 2-elements.

Finally, since the theoretical results predict the same orders of convergence for all
quantities if we take lower order P -elements for σ and p, we compare the efficiency of
LDG methods obtained with several combinations of local spaces S(K)/V(K)/Q(K)
in Figures 4.2 and 4.3.
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Fig. 4.1. Comparison of quadratic P 2- and biquadratic Q2-elements.

10-6

10-5

10-4

10-3

10-2

10-1

100

103 104 105 106 107 108

||e
u|

|

Matrix entries

P2/P2/P2

P2/P2/P1

P1/P2/P2

P1/P2/P1

10-5

10-4

10-3

10-2

10-1

100

101

103 104 105 106 107 108

||e
p|

|

Matrix entries

P2/P2/P2

P2/P2/P1

P1/P2/P2

P1/P2/P1

Fig. 4.2. Comparison of mixed spaces for quadratic P 2-velocities.
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Fig. 4.3. Comparison of mixed spaces for biquadratic Q2-velocities.
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Table 4.2
Convergence rates for Qk-elements.

Degree Grid |e|A ‖eσ‖0 ‖eu‖0 ‖ep‖0
k level Error Order Error Order Error Order Error Order

3 2.4e-1 0.94 2.2e-1 0.73 5.6e-3 2.06 2.9e-2 1.50
1 4 1.3e-1 0.96 1.2e-1 0.86 1.4e-3 2.04 1.0e-2 1.52

5 6.4e-2 0.97 6.2e-2 0.93 3.4e-4 2.01 3.8e-3 1.43
3 2.6e-3 2.00 6.3e-4 2.10 6.5e-5 3.01 4.5e-4 1.90

2 4 6.4e-4 2.00 1.6e-4 2.02 8.1e-6 3.00 1.2e-4 1.94
5 1.6e-4 2.00 3.9e-5 2.00 1.0e-6 3.00 3.0e-5 1.97
2 6.1e-4 2.76 3.8e-4 2.37 1.9e-5 3.82 2.4e-4 2.24

3 3 8.1e-5 2.92 6.4e-5 2.55 1.1e-6 4.12 3.8e-5 2.63
4 1.0e-5 2.98 9.3e-6 2.80 6.0e-8 4.19 5.2e-6 2.88

We can see that all these LDG discretizations converge with the same order, as
expected and proved for P -elements, and that, in most cases, it is more efficient to
use the same local approximating spaces for all quantities. In fact, only the velocities
in the Q2-case are computed slightly more efficiently using a lower degree for the
pressure. On the other hand, using lower-order polynomials for σ and/or p increases
the error in p such that at least one additional refinement is necessary to recover the
accuracy corresponding to an LDG method using the same local spaces.

5. Extensions and concluding remarks. In this paper, we have introduced
LDGmethods for the Stokes system and have carried out an a priori error analysis. We
have shown that if polynomial approximations of degree k−1 are used for the pressure
p and the stress tensor σ and polynomial approximations of degree k for the velocity
u, then optimal error estimates are obtained when the stabilization parameters C11

and D11 are taken to be of order h
−1 and h, respectively. Future work will be devoted

to the extension of the LDG method to the incompressible Navier–Stokes equations.

Extensions of our analysis to curvilinear elements and to (nonconvex) polygonal
domains as well as to error estimates in negative-order norms for both the velocity and
the pressure can easily be carried out; see [8] for details of the corresponding extensions
for the Laplacian. Here, we simply must note that, to take into account the presence
of the pressure, we have to consider the following modified adjoint problem:

−∆z +∇q = λ in Ω,

∇ · z = g in Ω,

z = 0 on ∂Ω,

where g is inH1(Ω). The elliptic regularity result we have used in (2.26) is a particular
case of the above more general case; see, for example, Proposition 3.14 in [2] and the
references therein.

The technique of the analysis employed is an extension of that used in [8] for
the simpler case of the Laplacian. This same technique was then used in [13] to
get improved convergence estimates for a special LDG method on Cartesian grids by
changing some auxiliary projections used in the analysis. In a forthcoming paper,
we shall carry out a similar study for the Stokes system. The numerical results in
Table 5.1 already suggest an improvement similar to that obtained for the Laplacian.

Indeed, the use of these special fluxes with quadratic shape functions increases
the order of convergence of the pressure by 1/2; moreover, they improve the order of
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Table 5.1
Orders of convergence for “superconvergent” fluxes.

Level P 2-elements Q2-elements

‖eσ‖0 ‖eu‖0 ‖ep‖0 ‖eσ‖0 ‖eu‖0 ‖ep‖0
1 1.77 2.85 2.38 2.28 2.80 2.05
2 1.86 2.94 2.49 2.43 2.90 2.33
3 1.92 2.98 2.60 2.48 2.95 2.45
4 1.96 2.99 2.66 2.49 2.98 2.48
5 1.98 3.00 2.68 2.50 2.99 2.49

convergence of the pressure and the stresses by 1/2 when biquadratic finite elements
are used.
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to their attention the results of Berrone [5].
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Abstract. In this paper we develop fast collocation methods for integral equations of the
second kind with weakly singular kernels. For this purpose, we construct multiscale interpolating
functions and collocation functionals having vanishing moments. Moreover, we propose a truncation
strategy for the coefficient matrix of the corresponding discrete system which forms a basis for fast
algorithms. An optimal order of convergence of the approximate solutions obtained from the fast
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1. Introduction. The main purpose of this paper is to develop a fast colloca-
tion method for solving Fredholm integral equations of the second kind with weakly
singular kernels. Among conventional numerical methods for solving integral equa-
tions, the collocation method receives more favorable attention from engineering ap-
plications due to lower computational cost in generating the coefficient matrix of the
corresponding discrete equations. In comparison, the implementation of the Galerkin
method requires much more computational effort for the evaluation of integrals (for
example, see [At1, AC1, CX]). Nonetheless, it seems that most of the attention in
wavelet methods for boundary integral equations has been paid to Galerkin meth-
ods or Petrov–Galerkin methods (see [BCR, CMX1, CMX3, DPS, MXZ, PS, PSS, R]
and references cited therein). These methods are amenable to L2 analysis and there-
fore the vanishing moments of the multiscale basis functions naturally lead to matrix
truncation techniques.

For collocation methods, the appropriate context to work in is L∞ and this pro-
vides challenging technical obstacles for the identification of good matrix truncation
strategies. It is the goal of this paper to lay the foundations for fast collocation
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methods for solving integral equations of the second kind with weakly singular ker-
nels. This paper is divided into two main parts. In part one we develop and analyze a
fast collocation method for solving general multidimensional integral equations under
a sequence of hypotheses on the basis functions and collocation functionals. In part
two, we present a construction of such functions and functionals when the domain of
interest is an invariant set relative to a finite set of contractive affine mappings. This
construction draws upon ideas developed in [CMX2, MSX1, MSX2].

The equations we consider in this paper are Fredholm integral equations of the
second kind with weakly singular kernels defined on a bounded domain in R

d for d ≥ 1.
These types of equations cover many important applications including boundary in-
tegral equations [At1, At2] and the radiosity equations [ACr, AC2]. In practice, these
equations are solved numerically by using piecewise polynomial collocation methods
and, when the order of the full coefficient matrix is large, the computational cost for
generating the matrix and then solving the corresponding linear system is huge. We
introduce a matrix truncation strategy by making a careful choice of basis functions
and collocation functionals, which leads to a fast algorithm for solving the integral
equations.

We organize this paper as follows. In section 2, we describe the setting of the
collocation methods, including the multiscale basis for the approximate solution space
and the collocation functionals. In section 3, based on an estimate of the entries of the
coefficient matrix of the collocation method, a fast collocation method is proposed,
and in section 4, we analyze the matrix truncation algorithm including the order of
convergence, stability, and computational complexity. The fast collocation methods
that we develop and analyze in sections 3 and 4 are based on a set of hypotheses on the
basis functions of the approximation space and the collocation functionals. In section
5 we present a concrete construction of multiscale bases on an invariant set in R

d

and collocation functionals needed for fast collocation algorithms. This construction
fulfills all the hypotheses imposed in sections 2–4.

2. The collocation scheme. In this section we describe a general setup for
multiscale bases and collocation functionals for solving Fredholm integral equations
of the second kind. We begin establishing our notational conventions. For a compact
subset E of the d-dimensional Euclidean space R

d, we let X = L∞(E), V = C(E)
and denote the dual space of V by V

∗. For � ∈ V
∗ and v ∈ X, we use 〈�, v〉 to denote

the value of the linear functional � evaluated at the function v and use ‖�‖, ‖v‖∞ for
their respective norms. For any s ∈ E we use δs to denote the linear functional in
V

∗ defined for v ∈ V by the equation 〈δs, v〉 = v(s). We shall need to evaluate δs on
functions in X. Therefore, as in [AGS] we take any norm preserving extension of δs to
X and use the same notation for the extension. In particular, this convention allows
us to evaluate piecewise polynomials anywhere on E.

For a set A ⊂ R
d, d(A) represents the diameter of A, i.e.,

d(A) := sup{|x− y| : x, y ∈ A},(2.1)

where | · | denotes the Euclidean norm on the space R
d. We use the index sets

Zn := {0, 1, . . . , n − 1}, Z := {. . . ,−1, 0, 1, . . .}, N := {1, 2, . . .}, and N0 := {0, 1, . . .}
throughout the paper. A vector x in R

d is written in the form x = [xi : i ∈ Zd] and
a lattice point α is an element in N

d
0 written as α := [αi ∈ N0 : i ∈ Zd]. As is usually

the case we set |α| := ∑
i∈Zd

αi and denote the space of polynomials of total degree
less than k by πk.
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A set in R
d is called star-shaped if it contains a point, called the center of the

set, for which the line segment connecting this point and any other point in the set is
contained in the set. As usual, for k a positive integer W k,∞(E) will denote the set
of all functions v on E such that Dαv ∈ X, where we use the standard multi-index
notation for derivatives

Dαv(x) =
∂|α|v(x)

∂xα0
0 · · · ∂xαd−1

d−1

, x ∈ R
d,

and the norm

‖v‖k,∞ := max{‖Dαv‖∞ : |α| ≤ k}
on W k,∞(E). For a star-shaped set E it is easy to estimate the distance of a function
v ∈W k,∞(E) to the space πk. Specifically, there is a positive constant c such that

dist(v, πk) ≤ c(d(E))k‖v‖k,∞.(2.2)

Throughout the paper c will always stand for a generic constant whose value will
change with the context. Its meaning will be clear from the order of the qualifiers
used to describe its role in our estimates.

There are several ingredients required in the development of the fast collocation
algorithms for solving integral equations. First, we require amultiscale of finite dimen-
sional subspaces of X denoted by Fn where n ∈ N0 in which we do our approximation.
These spaces are required to have the property that

Fn ⊆ Fn+1, n ∈ N0,(2.3)

and

V ⊆
⋃
n∈N0

Fn.(2.4)

For efficient computation relative to a scale of spaces we express them as a direct sum
of subspaces

Fn = W0

⊕
W1

⊕
· · ·

⊕
Wn.(2.5)

These spaces serve as multiscale subspaces of X and later will be constructed as
piecewise polynomial functions on E. We use the notation w(n) := dim Wn and so
we have that

f(n) := dim Fn =
∑

r∈Zn+1

w(r).

We need a multiscale partition of the set E. It consists of a family of partitions
{En : n ∈ N0} of E such that for each scale n ∈ N0 the partition En consists of a
family of subsets {Eni : i ∈ Ze(n)} of E with the properties that

meas(Eni ∩ Eni′) = 0, i, i′ ∈ Ze(n), i �= i′,(2.6)

and ⋃
i∈Ze(n)

Eni = E.(2.7)
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At the appropriate time later, we will adjust the number e(n) of elements and the
maximum diameter of the cells in the nth partition to be commensurate with dim Wn.
The family of partitions {En : n ∈ N0} is used in two ways. First, we demand that
there is a basis Wn := {wnm : m ∈ Zw(n)} for the spaces

Wn := span Wn, n ∈ N0,

having the following property.
(I) There exist positive integers ρ and h such that for every n > h and m ∈ Zw(n)

written in the form m = jρ + s where s ∈ Zρ and j ∈ N0

wnm(x) = 0, x /∈ En−h,j .(2.8)

Hypothesis (I) ensures that the basis functions wnm are locally supported and
their supports are shrinking as level n increases. For n > h we use the notation
Snm := En−h,j so that the support of the functions wnm is contained in the set
Snm. Note that the supports of the basis functions at the nth level are not disjoint.
However, for every n > h and every function wnm there are at most ρ other functions
at level n whose support overlaps the support of wnm.

To define the collocation method we need a set of linear functionals in V
∗ given

by

Ln := {�nm : m ∈ Zw(n)}, n ∈ N0.

The multiscale of partitions {En : n ∈ N0} is also used to specify the supports of the
linear functionals by the requirement that the linear functional �nm is a finite sum of
point evaluations

�nm =
∑

s∈Ên−h,j

csδs,(2.9)

where cs are constants and Êni is a finite subset of distinct points in Eni with the
cardinality bounded independent of n ∈ N and i ∈ Zw(n). As with the functions we

set Ŝnm := Ên−h,j and consider it as the “support” of the functionals �nm.
The linear functionals and multiscale basis functions are tied together by the next

requirement.
(II) For any n, n′ ∈ N0

〈�n′m′ , wnm〉 = δnn′δmm′ , (n,m), (n′,m′) ∈ U, n ≤ n′,(2.10)

where U := {(i, j) : i ∈ N0, j ∈ Zw(i)} and δii′ is the Kronecker delta and there exists
a positive constant γ for which∑

m∈Zw(n)

| 〈�n′m′ , wnm〉 | ≤ γ, (n,m), (n′m′) ∈ U, n > n′.(2.11)

To include the commonly used piecewise polynomial collocation methods with a
change of bases as our important special cases, we do not require the linear function-
als and the multiscale basis functions to be biorthogonal. Instead, we require them
to have a “semibiorthogonality” property imposed by condition (2.10) with a con-
trollable perturbation from the biorthogonality, which is ensured by condition (2.11).
Specifically, (2.10) means that the basis functions vanish when they are applied by
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collocation functionals of higher levels. We denote by E the semi-infinite matrix with
entries

En′m′,nm := 〈�n′m′ , wnm〉 , (n′,m′), (n,m) ∈ U.

We note by condition (2.10) that the matrix E can be viewed as a block upper
triangular matrix with the diagonal blocks equal to identity matrices. Consequently,
the infinite matrix E has an inverse E−1 of the same type, that is,

(E−1)n′m′,nm = δnn′δmm′ , n ≤ n′, m ∈ Zw(n), m′ ∈ Zw(n′).

These conditions are more than is needed to introduce the collocation method for
solving integral equations of the second kind. For this purpose, we suppose that K
is a weakly singular kernel, that is, for every s ∈ E, K(s, ·) ∈ L1(E). Therefore, the
operator K : X→ V defined by

(Ku)(s) :=

∫
E

K(s, t)u(t)dt, s ∈ E,

is compact in X. We consider Fredholm integral equations of the second kind in the
form

u−Ku = f,(2.12)

where f ∈ X is a given function and u ∈ X is the unknown to be determined. When
one is not an eigenvalue of K, (2.12) has a unique solution in X. The collocation
scheme for solving (2.12) seeks a vector un := [uij : (i, j) ∈ Un]

T , where Un is the set
of lattice points in R

2 defined as {(i, j) : j ∈ Zw(i), i ∈ Zn+1}, such that the function

un :=
∑

(i,j)∈Un

uijwij

in Fn has the property that

〈�i′j′ , un −Kun〉 = 〈�i′j′ , f〉 , (i′, j′) ∈ Un.(2.13)

Equivalently, we obtain the linear system of equations

(En −Kn)un = fn,

where

Kn := [〈�i′j′ ,Kwij〉]f(n)×f(n),

En := [〈�i′j′ , wij〉]f(n)×f(n) ,

and

fn := [〈�ij , f〉 : (i, j) ∈ Un]
T .

By definition, we have that (En)i′j′,ij = Ei′j′,ij , for (i′, j′), (i, j) ∈ Un and by (2.10)
we see that

(E−1
n )i′j′,ij = (E−1)i′j′,ij , (i′, j′), (i, j) ∈ Un.(2.14)
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The collocation scheme defined in (2.13) which has a multiscale structure is differ-
ent from the traditional collocation scheme. However, it can be viewed as a scheme
obtained from the traditional one by an appropriate change of bases for both approx-
imate spaces and collocation functionals.

Let us use condition (II) to estimate the inverse of the matrix En. To this end,
we introduce a weighted norm on the vector x := [xij : (i, j) ∈ Un]

T . We will find it
convenient for our study of the multiscale collocation methods to define the weighted
vector norms in a way that the weights differ from level to level. Specifically, for any
i ∈ Zn+1 we set

xi := [xij : j ∈ Zw(i)]
T ,

‖xi‖∞ := max{|xij | : j ∈ Zw(i)},

and whenever ν ∈ (0, 1) we define

‖x‖ν := max{‖xi‖∞ν−i : i ∈ Zn+1}.

We also use the notation

‖x‖∞ := max{‖xi‖∞ : i ∈ Zn+1}

for the max norm of the vector x.

Lemma 2.1. If condition (II) holds, 0 < ν < 1 and (1 + γ)ν < 1, then for any
integer n ∈ N0 and vector x ∈ R

f(n) there holds that

‖x‖ν ≤ 1− ν

1− (1 + γ)ν
‖Enx‖ν .

Proof. Let y := Enx so that

yij =
∑

(i′,j′)∈Un

〈�ij , wi′j′〉xi′j′ .

In particular, for i = n, we have that yij = xij , while for 0 ≤ l ≤ n− 1 we have from
(2.10) that

xn−l−1,j = yn−l−1,j −
∑

n−l≤i′≤n,j′∈Zw(i′)

〈�n−l−1,j , wi′j′〉xi′j′ , j ∈ Zw(n−l−1).

Using condition (2.11), we conclude that

‖xn−l−1‖∞ ≤ ‖yn−l−1‖∞ + γ

l∑
i=0

‖xn−i‖∞.

By induction on j, it readily follows that

‖xn−j‖∞ ≤
j−1∑
l=0

γ(1 + γ)l‖yn−j+l+1‖∞ + ‖yn−j‖∞.
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Thus, we have that

‖xn−j‖∞ν−(n−j) ≤ γν

j−1∑
l=0

[(1 + γ)ν]l‖yn−j+l+1‖∞ν−(n−j+l+1) + ‖yn−j‖∞ν−(n−j)

≤
[
1 + γν

j−1∑
l=0

[(1 + γ)ν]l

]
‖Enx‖ν

≤ 1− ν

1− (1 + γ)ν
‖Enx‖ν ,

from which the result is proved.

3. Estimates for matrix Kn. In this section, our goal is to obtain estimates
for the entries of the matrix Kn. This requires conditions on the regularity of kernel
K(·, ·), the support of the basis functions for Wn, and vanishing moments for both
the basis functions and the linear functionals. We describe these conditions next.

(III) There is a positive integer k such that for all p ∈ πk

〈�nm, p〉 = 0, (wnm, p) = 0, (n,m) ∈ U, n ≥ 1,

where (·, ·) denotes the inner product in L2(E).
Condition (III) is crucial for establishing the matrix compression scheme. The

vanishing moment condition for the collocation functionals restricts them to being a
certain type of divided difference functional.

(IV) There exists a positive constant θ0 such that for all (n,m) ∈ U there holds
that

‖�nm‖+ ‖wnm‖∞ ≤ θ0,

where the norm of linear functionals is defined as in the beginning of section 2.
Condition (IV) is equivalent to saying that both basis functions and collocation

functionals are uniformly bounded.
(V) For s, t ∈ E, s �= t, the kernel K has continuous partial derivatives Dα

sD
β
t K(s, t)

for |α| ≤ k, |β| ≤ k. Moreover, there exists positive constants σ and θ1 with σ < d
such that for |α| = |β| = k there holds

∣∣∣Dα
sD

β
t K(s, t)

∣∣∣ ≤ θ1

|s− t|σ+|α|+|β| .(3.1)

In the next lemma, we present an estimate of the entries of the matrix Kn. A
similar estimate for the matrix obtained from the Galerkin method was proved in
[MXZ]. For estimates in a different form for the entries of wavelet Galerkin matrices,
see [Al, BCR, DPS, PS, PSS]. Such an estimate forms the basis for a truncation
strategy. In the statement of the next lemma we use the quantities

di := max{d(Sij) : j ∈ Zw(i)}, i ∈ N0.

Lemma 3.1. If conditions (I), (III)–(V) hold and there is a constant r > 1 such
that

dist(Sij , Si′j′) ≥ r(di + di′),(3.2)
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then there exists a positive constant c such that

|Ki′j′,ij | ≤ c(didi′)
k

∑
s∈Ŝi′j′

∫
Sij

1

|s− t|2k+σ dt.

Proof. Let s0, t0 be centers of the sets Si′j′ and Sij , respectively. Using the Taylor
theorem with remainder we write

K = K1 + K2 + K3,

where K1(s, ·) and K2(·, t) are polynomials of total degree ≤ k − 1 in t and in s,
respectively,

|K3(s, t)| ≤ dki d
k
i′v(s, t), s ∈ Si′j′ , t ∈ Sij ,

where

v(s, t) :=
∑
|α|=k

∑
|β|=k

|rαβ(s, t)|
α!β!

(3.3)

and

rαβ(s, t) =

∫ 1

0

∫ 1

0

Dα
sD

β
t K(s0 + t1(s− s0), t0 + t2(t− t0))(1− t1)

k−1(1− t2)
k−1dt1dt2.

(3.4)

Applying the vanishing moment conditions yields the bound

|Ki′j′,ij | ≤ ‖�i′j′‖‖wij‖∞dki d
k
i′

∑
s∈Ŝi′j′

∫
Sij

|v(s, t)|dt.(3.5)

It follows from the mean-value theorem and condition (V) that

|rαβ(s, t)| = k−2|Dα
sD

β
t K(s′, t′)| ≤ θ1

k2|s′ − t′|2k+σ

holds for some s′ ∈ Si′j′ , t′ ∈ Sij . For s ∈ Ŝi′j′ � Si′j′ , t ∈ Sij the assumption (3.2)
yields

|s′ − t′| ≥ |s− t| − di − di′ ≥ (1− r−1)|s− t|,
from which it follows that

|rαβ(s, t)| ≤ c1
|s− t|2k+σ ,

where

c1 :=
θ1

k2(1− r−1)2k+σ
.

Substituting the above inequality into (3.5) completes the proof with

c :=
θ1θ

2
0e

2d

1−r−1

k2(1− r−1)σ
.
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To present the truncation strategy we partition matrix Kn into a block matrix

Kn = [Ki′i]i′,i∈Zn+1 ,

with

Ki′i = [Ki′j′,ij ]j′∈Zw(i′),j∈Zw(i)
.

We truncate the block Ki′i by using a given positive number ε to form a matrix

K(ε)i′i = [K(ε)i′j′,ij ]j′∈Zw(i′),j∈Zw(i)
,

with

K(ε)i′j′,ij =

{
Ki′j′,ij , dist(Si′j′ , Sij) ≤ ε,
0 otherwise,

where ε is called the truncation parameters and it may depend on i′, i, and n. In
the next section, we will choose these truncation parameters so that the truncation
scheme gives an optimal order of convergence and computational complexity up to
a logarithmic factor. In the next lemma, we use the estimate for the entries of Kn

presented in Lemma 3.1 to obtain estimates for the discrepancy between the blocks
of K(ε) and Kn.

Lemma 3.2. If conditions (I), (III)–(V) hold, then given any constant r > 1
and 0 ≤ σ′ < min{2k, d − σ} there exists a positive constant c such that whenever
ε ≥ r(di + di′)

‖Ki′i −K(ε)i′i‖∞ ≤ cε−η(didi′)k, i′, i ∈ Zn+1,

where η := 2k − σ′.
Proof. We first note that

‖Ki′i −K(ε)i′i‖∞ = max
j′∈Zw(i′)

∑
j∈Zi′j′ (ε)

|Ki′j′,ij |,

where

Zi′j′(ε) := {j : j ∈ Zw(i),dist(Sij , Si′j′) > ε}.
Therefore, by using Lemma 3.1 we have that

‖Ki′i −K(ε)i′i‖∞ ≤ c(didi′)
k max
j′∈Zw(i′)

∑
s∈Ŝi′j′

∑
j∈Zi′j′ (ε)

∫
Sij

1

|s− t|2k+σ dt.

Although the sets Sij are not disjoint we can use property (I) to conclude that

∑
j∈Zi′j′ (ε)

∫
Sij

1

|s− t|2k+σ dt ≤ ρε−η
∫
E

1

|s− t|σ+σ′ dt.

Since σ + σ′ < d and E is a compact set, there holds that

max
s∈E

∫
E

1

|s− t|σ+σ′ dt <∞.

We conclude the above inequalities to obtain the desired estimate.
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4. Analysis of the truncation algorithm. In this section, we discuss the
truncation strategy for the collocation method proposed in previous sections. We
will analyze the order of convergence, stability, and computational complexity of the
truncation algorithm. To this end, we let Pn be the projection operator from X onto
Fn defined by the requirement that

〈�ij ,Pnx〉 = 〈�ij , x〉 , (i, j) ∈ Un.

It follows from (2.10) that Pn is well defined. We now introduce the operator from
Fn into itself defined by the equation

Kn := PnK|Fn

and note that its matrix representation relative to the basis {wij : (i, j) ∈ Un} is given
by E−1

n Kn. For each block Ki′i, i, i
′ ∈ Zn+1 of Kn, we shall specify later truncation

parameters εni′i and reassemble the block to form a truncation matrix

K̃n = [K(εni′i)i′i]i′,i∈Zn+1 .

Using this truncation matrix, we let K̃n : Fn → Fn be the linear operator from Fn

into itself relative to the basis {wij : (i, j) ∈ Un} having the matrix representation

E−1
n K̃n. Our goal is to provide an essential estimate for the difference of these two

operators.
For v ∈ L∞(E) we set

Pnv =
∑

(i,j)∈Un

vijwij

and note that the quantities vij are linear functionals of v. In the next lemma, we
estimates these quantities under the following two additional requirements.

(VI) There exists a positive integer µ > 1 and positive constants c−, c+ such that
as n→∞

c−µn ≤ dim Fn ≤ c+µ
n,

c−µn ≤ dim Wn ≤ c+µ
n,

and

c−µ−n/d ≤ dn ≤ c+µ
−n/d.

Condition (VI) says that the dimension of spaces Fn and Wn grows exponentially
in n and the diameters dn decay exponentially in n. The next condition imposes an
addition restriction on the constant γ appearing in (2.11).

(VII) The constant γ in hypothesis (II) satisfies the condition

(1 + γ)µ−k/d < 1.

Lemma 4.1. Suppose that conditions (I)–(IV), (VI), and (VII) hold. If v ∈
W k,∞(E), then there exists a positive constant c such that

|vij | ≤ cµ−ki/d‖v‖k,∞, (i, j) ∈ Un.(4.1)
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Proof. For v ∈W k,∞(E), we write

Pnv =
∑

(i,j)∈Un

vijwij

and denote v := [vij : (i, j) ∈ Un]. By the definition of the projection Pn, we have
that

Env =



〈
�ij ,

∑
(i′,j′)∈Un

vi′j′wi′j′

〉
: (i, j) ∈ Un


 = [〈�ij , v〉 : (i, j) ∈ Un].

Meanwhile, using Lemma 2.1 with ν := µ−k/d and condition (VII), we conclude that

‖v‖µ−k/d ≤ c‖Env‖µ−k/d ,

where

c :=
1− µ−k/d

1− (1 + γ)µ−k/d > 0

is a constant. Hence,

‖v‖µ−k/d ≤ c max
(i,j)∈Un

|µik/d 〈�ij , v〉 |.(4.2)

On the other hand, recalling that the “support” of the functional �ij is the set

Ŝij ⊆ Sij , we use the Taylor theorem with remainder on the set Sij for v ∈W k,∞(E)
and conditions (III), (IV), and (VI) to conclude that there exists a positive constant
c such that

| 〈�ij , v〉 | ≤ cdki ‖v‖k,∞ ≤ cµ−ki/d‖v‖k,∞.

Combining this inequality with (4.2) we obtain the estimate

‖v‖µ−k/d ≤ c‖v‖k,∞.

Again, using the definition of the weighted norms, we have that

‖vi‖∞ ≤ cµ−ki/d‖v‖k,∞,

which proves the estimate of this lemma.
Lemma 4.1 ensures that for a function v ∈W k,∞(E) the coefficients of its expan-

sion in basis Wn and functionals Ln decay in order O(µ−ik/d). This is an extension of
a well-known result for orthogonal wavelets to the interpolating wavelets constructed
in this paper.

For any real numbers α and β, we make use of the notation

µ[α, β;n] :=
∑

i∈Zn+1

µαi/d
∑

i′∈Zn+1

µβi
′/d

to state the next lemma, which will play an important role in the analysis for the
order of convergence and stability of the multiscale collocation method. To prove the
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next lemma, we need to estimate the L∞(E) norm of a typical element in Fn given
by

v :=
∑

(i,j)∈Un

vijwij(4.3)

by the norm ‖v‖∞ of its coefficients v := [vij : (i, j) ∈ Un]
T . Specifically, we require

the following condition.
(VIII) There exist positive constants θ2 and θ3 such that for all n ∈ N0 and v

having form (4.3)

θ2‖v‖∞ ≤ ‖v‖∞ ≤ θ3(n + 1)‖Env‖∞.(4.4)

One way to satisfy this hypothesis is to consider the sequence of functions {ζij :
(i, j) ∈ U} defined by the equation

ζij :=
∑

(i′,j′)∈U

(E−1)i′j′,ijwi′j′ , (i, j) ∈ U.

These functions are biorthogonal relative to the set of linear functionals {�ij : j ∈
Zw(i), i ∈ N0}, that is,

〈�i′j′ , ζij〉 = δii′δjj′ , (i, j), (i′, j′) ∈ U.

If in addition for all i ∈ N0

sup
t∈E

∑
j∈Zw(i)

|ζij(t)| ≤ θ3,(4.5)

then the second inequality of (4.4) follows.
In the next lemma, we estimate the difference of operators Kn and K̃n applying to

Pnv. It is an important step for both stability analysis and the convergence estimate.
Lemma 4.2. Suppose that conditions (I)–(VIII) hold, 0 < σ′ < min{2k, d − σ},

and η := 2k−σ′. Let b and b′ be real numbers, and let the truncation parameters εni′i,
i′, i ∈ Zn+1, be chosen such that

εni′i ≥ max{aµ[−n+b(n−i)+b′(n−i′)]/d, r(di + di′)}, i, i′ ∈ Zn+1,

for some constants a > 0 and r > 1. Then there exists a positive constant c indepen-
dent of n such that for any v ∈W k,∞(E),

‖(Kn − K̃n)Pnv‖∞ ≤ cµ[2k − bη, k − b′η;n](n + 1)µ−(k+σ′)n/d‖v‖k,∞(4.6)

and for v ∈ L∞(E),

‖(Kn − K̃n)Pnv‖∞ ≤ cµ[k − bη, k − b′η;n](n + 1)µ−σ′n/d‖v‖∞.(4.7)

Proof. Since

Pnv =
∑

(i,j)∈Un

vijwij ,
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we conclude that

(Kn − K̃n)Pnv =
∑

(i,j)∈Un

hijwij ,

where

h := E−1
n (Kn − K̃n)v.

Thus, by hypothesis (VIII), we conclude that

‖(Kn − K̃n)Pnv‖∞ ≤ θ3(n + 1)‖(Kn − K̃n)v‖∞.(4.8)

We next estimate ‖(Kn − K̃n)v‖∞. To this end, we introduce the matrix

∆n := [∆i′j′,ij ]f(n)×f(n),

whose elements are given by

∆i′j′,ij := νµk(n−i)/d+σ
′n/d(Ki′j′,ij − K̃i′j′,ij), (i, j), (i′, j′) ∈ Un,

where ν = 1/µ[2k − bη, k − b′η;n] and the vector

v′ := [v′ij : (i, j) ∈ Un]

whose components are

v′ij := µki/dvij , (i, j) ∈ Un.

In this notation, we observe that

‖(Kn − K̃n)v‖∞ ≤ ν−1µ−(k+σ′)n/d‖∆n‖∞‖v′‖∞.(4.9)

By Lemma 4.1 we have that there exists a positive constant c such that for v ∈
W k,∞(E),

‖v′‖∞ ≤ c‖v‖k,∞.(4.10)

On the other hand, from Lemma 3.2, there exists a positive constant c such that∑
(i,j)∈Un

∆i′j′,ij ≤ ν
∑

i∈Zn+1

µk(n−i)/d+σ
′n/d‖Ki′i − K̃i′i‖∞

≤ cν
∑

i∈Zn+1

µk(n−i)/d+σ
′n/d−k(i+i′)/d(εni′i)

−η.

Consequently, by the choice of εi′i, we conclude that

‖∆n‖∞ := max
(i′,j′)∈Un

∑
(i,j)∈Un

∆i′j′,ij ≤ c.(4.11)

Combining (4.9)–(4.11) yields the first estimate.
To prove the second estimate, we proceed similarly and introduce the matrix

∆′
n := [∆′

i′j′,ij ]f(n)×f(n),
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whose entries are given by

∆′
i′j′,ij := ν′µσ

′n/d(Ki′j′,ij − K̃i′j′,ij), (i, j), (i′, j′) ∈ Un,

where ν′ = 1/µ[k − bη, k − b′η;n]. With these quantities, we have the estimate

‖(Kn − K̃n)v‖∞ ≤ (ν′)−1µ−σ′n/d‖∆′
n‖∞‖v‖∞.(4.12)

Condition (VIII) provides a positive constant c such that for v ∈ L∞(E),

‖v‖∞ ≤ c‖v‖∞.(4.13)

As before, Lemma 3.2 and the choice of εi′i, i, i
′ ∈ Zn+1, ensure that there exists a

positive constant c such that

‖∆′
n‖∞ ≤ c.(4.14)

Combining this inequality with (4.12)–(4.13) yields the second estimate.
We now turn our attention to the stability of the multiscale collocation method.

For this purpose, we require the next hypothesis.
(IX) The operator Pn converges pointwise to the identity operator I in L∞(E)

as n→∞. In other words, for any x ∈ L∞(E), there holds

lim
n→∞ ‖Pnx− x‖∞ = 0.

Condition (IX) follows trivially if Fn is a space of piecewise polynomials. Because
of this property and the fact that K is compact, we conclude for sufficiently large n
that the operators (I − Kn)−1 exist and are uniformly bounded in L∞(E) (see, for
example, [An, At2]). From this fact follows the stability estimate; that is, there exists
a positive constant ρ and a positive integer m such that for n ≥ m and x ∈ Fn there
holds that

‖(I − Kn)x‖∞ ≥ ρ‖x‖∞.

We shall establish a similar estimate for I − K̃n.
Theorem 4.3. Suppose that 0 < σ′ < min{2k, d − σ} and η := 2k − σ′. If the

conditions (I)–(IX) hold and εni′i, i, i
′ ∈ Zn+1, are chosen as in Lemma 4.2 with

b >
k − σ′

η
, b′ >

k − σ′

η
, b + b′ > 1,

then there exists a positive constant c and a positive integer m such that when n ≥ m
and x ∈ Fn,

‖(I − K̃n)x‖∞ ≥ c‖x‖∞.

Proof. Note that for any real numbers α, β, and e,

lim
n→∞µ[α, β;n](n + 1)µ−en/d = 0

when e > max{0, α, β, α+β}. Thus, our hypothesis ensures that there exists a positive
integer m such that when n ≥ m,

cµ[k − bη, k − b′η;n](n + 1)µ−σ′n/d < ρ/2,(4.15)
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where the constant c is the one appearing in (4.7). The stability of the collocation
scheme and the second estimate in Lemma 4.2, together with (4.15), yield for x ∈ Fn

that

‖(I − K̃n)x‖∞ ≥ ‖(I − Kn)x‖∞ − ‖(Kn − K̃n)Pnx‖∞ ≥ ρ

2
‖x‖∞.

This completes the proof.
In particular, this theorem ensures for n ≥ m that the equation

(I − K̃n)ũn = Pnf(4.16)

has a unique solution given by

ũn :=
∑

(i,j)∈Un

ũijwij .

This equation is equivalent to the matrix equation

(En − K̃n)ũn = fn,

where ũn = [ũij : (i, j) ∈ Un]
T . The next theorem provides error bounds for ‖u −

ũn‖∞. For this purpose, we introduce the next condition.
(X) There exists a positive constant c such that for u ∈W k,∞(E)

dist(u,Fn) ≤ cµ−kn/d‖u‖k,∞.

When Fn contains the piecewise polynomials of order k, the estimate in condition
(X) follows directly from (2.2) and condition (VI).

Theorem 4.4. Suppose that conditions (I)–(X) hold and that 0 < σ′ < min{2k,
d− σ} and η := 2k− σ′. Let εni′i, i, i

′ ∈ Zn+1, be chosen as in Lemma 4.2 with b and
b′ satisfying one of the following three conditions:

(i) b > 1, b′ > k−σ′
η , b + b′ > 1 + k

η .

(ii) b = 1, b′ > k−σ′
η , b + b′ ≥ 1 + k

η ; b > 1, b′ = k−σ′
η , b + b′ > 1 + k

η ; or b > 1,

b′ = k−σ′
η , b + b′ = 1 + k

η .

(iii) b = 1, b′ = k
η ; or b = 2k

η , b
′ = k−σ′

η .
Then there exists a positive constant c and positive integer m such that for all n ≥ m,

‖u− ũn‖∞ ≤ cf(n)−k/d(logf(n))τ‖u‖k,∞,

where τ = 0 in case (i), τ = 1 in case (ii), and τ = 2 in case (iii).
Proof. It follows from Theorem 4.3 that there exists a positive constant c such

that

‖u− ũn‖∞ ≤ ‖u− Pnu‖∞ + c‖(I − K̃n)(Pnu− ũn)‖∞.(4.17)

Using the equation

Pn(I − K)u = (I − K̃n)ũn,
we find that

(I − K̃n)(Pnu− ũn) = Pn(I − K)(Pnu− u) + (Kn − K̃n)Pnu.(4.18)
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From (4.17), (4.18), hypothesis (IX), and Lemma 4.2, there exist positive constants
c, p such that

‖u− ũn‖∞ ≤ (1 + p‖I − K‖)‖Pnu− u‖∞ + cµ′µ−kn/d‖u‖k,∞,

where

µ′ := µ[2k − bη, k − b′η;n](n + 1)µ−σ′n/d.

We estimate each term separately. For the first term, we note that conditions (IX)
and (X) provide a positive constant c such that

‖Pnu− u‖∞ ≤ cµ−kn/d‖u‖k,∞.

Now we turn our attention to estimating the quantity µ′. To this end, we observe
for any real numbers α, β, and e with e > 0, the asymptotic order

µ[α, β;n](n + 1)µ−en/d =




o(1) if e > max{α, β, α + β},
O(n) if α = e, β < e, α + β < e

or if α < e, β = e, α + β < e
or if α < e, β < e, α + β = e,

O(n2) if α = 0, β = e or if α = e, β = 0,

as n→∞. Using this fact with α := 2k − bη, β := k − b′η, and e := σ′, we conclude
that

µ′ =




o(1) in case (i),
O(n) in case (ii),
O(n2) in case (iii),

which establishes the result of this theorem by noting that n = log f(n).
We see from this theorem that the convergence order of the approximate solution

ũ obtained from the truncated collocation method is almost optimal.
We next estimate the condition number of the matrix Ãn := En − K̃n.
Theorem 4.5. If the conditions of Theorem 4.3 hold, then there exists a positive

constant c such that the condition number of the matrix Ãn satisfies the estimate

cond∞(Ãn) ≤ c log2(f(n)),

where cond∞(A) denotes the condition number of a matrix A in the �∞ matrix norm.
Proof. For any v := [vij : (i, j) ∈ Un]

T ∈ R
f(n), we define the vector g := [gij :

(i, j) ∈ Un]
T ∈ R

f(n) by the equation

Ãnv = g(4.19)

and the function

g :=
∑

(i,j)∈Un

gijζij .

Therefore, we have that

gij = 〈�ij , g〉 = 〈�ij ,Png〉 , (i, j) ∈ Un.
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It follows from (IV) that

‖Ãnv‖∞ ≤ θ0‖Png‖∞.(4.20)

Let

v :=
∑

(i,j)∈Un

vijwij ,

and observe the equation

(I − K̃n)v = Png.(4.21)

We conclude from (4.20) and (4.21) that there exists a positive constant c such that

‖Ãnv‖∞ ≤ θ0‖(I − K̃n)v‖∞
≤ θ0(‖(I − Kn)v‖∞ + ‖(Kn − K̃n)v‖∞)

≤ c‖v‖∞,

where the last inequality holds because of (4.7) and (4.15). Next, appealing to hy-
potheses (I) and (IV), we observe for any t ∈ E and i ∈ Zn+1 that∣∣∣∣∣∣

∑
j∈Zw(i)

vijwij(t)

∣∣∣∣∣∣ ≤ ρθ0‖v‖∞,

because there are at most ρ value of j ∈ Zw(i) such that functions wij(t) �= 0. There-
fore, we conclude that

‖v‖∞ ≤ ρθ0(n + 1)‖v‖∞.(4.22)

Consequently, there exists a positive constant c such that

‖Ãn‖∞ ≤ c(n + 1).(4.23)

Conversely, for any g ∈ R
f(n), there exists a vector v ∈ R

f(n) such that (4.19)
holds. Similar to (4.22), we argue that there exists a positive constant c such that

‖g‖∞ ≤ c(n + 1)‖g‖∞.

Hence, we obtain from condition (VIII) the inequality

‖v‖∞ ≤ c‖v‖∞ ≤ c‖(I − K̃n)v‖∞ = c‖g‖∞ ≤ c(n + 1)‖g‖∞
from which it follows that there exists a positive constant c such that

‖Ã−1
n ‖∞ ≤ c(n + 1).(4.24)

Recalling hypothesis (VI) we combine the estimates (4.23) and (4.24) to obtain the
desired result, namely

cond∞(Ãn) = O (
(n + 1)2

)
= O (

log2(f(n))
)
, n→∞.

In the remainder of this section, we will estimate the number of nonzero entries
of matrix Ãn, which shows that the truncation strategy embodied in Lemma 4.2 can
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lead to a fast numerical algorithm for solving (2.12) while preserving nearly optimal
order of convergence. For any matrix A, we denote by N (A) the number of nonzero
entries in A. The proof of the following theorem closely follows a similar result in
[MXZ].

Theorem 4.6. Suppose that hypotheses (I) and (VI) hold. Let b and b′ be real
numbers not larger than one and the truncation parameters εni′i, i

′, i ∈ Zn+1, be chosen
such that

εni′i ≤ max{aµ[−n+b(n−i)+b′(n−i′)]/d, r(di + di′)}, i, i′ ∈ Zn+1,

for some constants a > 0 and r > 1. Then

N (Ãn) = O(f(n) logτ f(n)),

where τ = 1 except for b = b′ = 1, in which case τ = 2.
Proof. We first estimate the number N (Ãi′i). For fixed i, i′, and j′, if Ãi′j′,ij �= 0,

then dist(Si′j′ , Sij) ≤ εni′i, so that

Sij ⊆ S(i, i′) := {v : v ∈ R
d, |v − v0| ≤ di + di′ + εni′i},

where v0 is an arbitrary point in the set Si′j′ . Let Ni,i′j′ be the number of such sets
which are contained in S(i, i′). Using condition (VI) we conclude that there exists a
positive constant c such that

Ni,i′j′ ≤ meas(S(i, i′))
min{meas(Sij) : Sij ⊆ S(i, i′)} ≤ cµi(di + di′ + εni′i)

d.

Next, we invoke condition (I) to conclude that the number of functions wij having
support contained in Sij is bounded by ρ, and appealing to condition (VI) we have

that w(i′) = O(µi
′
), i′ → ∞. Consequently, there exists a positive constant c such

that

N (Ãi′i) ≤ ρ
∑

j′∈Zw(i′)

Ni,i′j′ ≤ cµi+i
′
(di + di′ + εni′i)

d, i, i′ ∈ Zn+1,

from which it follows that

N (Ãn) ≤ c
∑

i,i′∈Zn+1

µi+i
′ [

(di)
d + (di′)

d + (εni′i)
d
]
.

This inequality and conditions (I) imply that if the truncation parameters have the
bound

εni′i ≤ aµ[−n+b(n−i)+b′(n−i′)]/d,

then

N (Ãn) ≤ c
∑

i′∈Zn+1

∑
i∈Zn+1

µi+i
′ (

µ−i + µ−i′ + adµ−n+b(n−i)+b′(n−i′)
)

≤ c


2(n + 1)

∑
i∈Zn+1

µi + adµn


 ∑
i∈Zn+1

µ(b−1)(n−i)





 ∑
i′∈Zn+1

µ(b′−1)(n−i′)






= O (µn(n + 1)τ ) = O (f(n) logτ f(n)) ,
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as n→∞. If εni′i ≤ r(di + di′), a similar argument leads to

N (Ãn) = O (f(n) log f(n)) , n→∞.

This completes the proof.
It follows from Theorems 4.3–4.6 that for the truncation scheme to have all the

desired properties of stability, convergence, and complexity, we have to choose the
truncation parameters to satisfy the equation

εni′i = max{aµ[−n+b(n−i)+b′(n−i′)]/d, r(di + di′)}, i, i′ ∈ Zn+1,

with b = 1, b′ > k−σ
η , b + b′ ≥ 1kη or with b = 1, b′ = k

η , σ
′ < k.

5. A concrete construction of multiscale functions and functionals.
Whenever the basis W := {wij : (i, j) ∈ U} and the collocation functionals L :=
{�ij : (i, j) ∈ U} satisfy hypotheses (I)–(IV) and (VI)–(X), the results of the last
three sections present convergence, complexity, and stability estimates for the trun-
cated collocation method. In this section, we illustrate by an example of practical
importance multiscale functions and functionals which satisfy all these hypotheses.
Our point of view here is based on the notion of iterated function systems which we
have recently investigated in the context of the numerical solutions of integral equa-
tions [MX1, MX2, CMX2, MSX2]. In our example below, the solution spaces will be
piecewise polynomials on a multiscale partition. Let us first describe the method we
use to generate a multiscale partition of an invariant set E.

We start with a positive integer µ and a family Φ := {φe : e ∈ Zµ} of contractive
affine mappings on R

d. There exists a unique compact subset E of R
d such that

Φ(E) = E,(5.1)

where

Φ(E) :=
⋃
e∈Zµ

φe(E)

(see [H]). This set E is called the invariant set associated with the family of mappings
Φ. Generally, it has a complex fractal structure. For example, there are choices of
Φ for which E is the Cantor subset of [0, 1], the Sierpinski gasket contained in an
equilateral triangle, or the twin dragons from wavelet analysis. We are interested in
the cases when E has a simple structure which include, for example, the cube and
simplex in R

d. With these cases in mind, we make the following additional restriction
on the family of mappings Φ.

(a) For every e ∈ Zµ, the mapping φe has a continuous inverse on E.
(b) The set E has nonempty interior and

meas (φe(E) ∩ φe′(E)) = 0, e, e′ ∈ Zµ, e �= e′.

We use Φ to obtain a multiscale partition {En : n ∈ N0} of the set E in the following
way. Given any e := (e0, e1, . . . , en−1) ∈ Z

n
µ := Zµ × · · · × Zµ, n times, we define the

mappings

φe := φe0 ◦ φe1 ◦ · · · ◦ φen−1

and the number

µ(e) := µn−1e0 + · · ·+ µen−2 + en−1.
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Note that every i ∈ Zµn can be uniquely written as i = µ(e) for some e ∈ Z
n
µ. From

(5.1) and conditions (a) and (b) it follows that the collection of sets

En := {En,e : En,e = φe(E), e ∈ Z
n
µ}

forms a partition of E. We require that this partition has the following property:
(c) There exist positive constants c−, c+ such that for all n ∈ N0

c−µ−n/d ≤ max{d(En,e) : e ∈ Z
n
µ} ≤ c+µ

−n/d.(5.2)

This requirement is fulfilled when the Jacobi of the contractive affine mappings φe,
e ∈ Zµ, have the property that

Jφe
∼ O(µ−1).

In fact, for any s, t ∈ φe(E), there exist ŝ, t̂ ∈ E such that s = φe(ŝ) and t = φe(t̂),
and thus we have that

|s− t| ∼ (Jφe)
1/d|ŝ− t̂|.

This with the hypothesis on the Jacobi of the mappings ensures that for any e ∈ Zµ

d(E1,e) ∼ O(µ−1/d),

and by induction we find that for any e ∈ Z
n
µ,

d(En,e) ∼ O(µ−n/d).

On the partition En, we consider piecewise polynomials. Choose a positive integer
k and let Fn be the spaces of all functions such that their restriction to any cell En,e,
e ∈ Z

n
µ, is a polynomial of total degree ≤ k − 1. Here we use the convention that for

n = 0 the set E is the only cell in the partition and so

m := dim F0 =

(
k + d− 1

d

)
.

We must generate a suitable multiscale decomposition of Fn. To this end, let

G0 = {tj : j ∈ Zm}

be a finite set of distinct points in E, which is refinable relative to the mappings Φ;
that is, G0 satisfies

G0 ⊆ Φ(G0).

Set

G1 := Φ(G0), V1 := G1 \G0 = {tm+j : j ∈ Zr}

with r := (µ − 1)m. Now, we require that there exists a basis of elements in F0,
denoted by ψ0, ψ1, . . . , ψm−1 such that

F0 := span{ψj : j ∈ Zm},



364 ZHONGYING CHEN, CHARLES A. MICCHELLI, YUESHENG XU

and they satisfy Lagrange interpolation conditions

ψi(tj) = δi,j , i, j ∈ Zm.(5.3)

A construction of refinable points {tj : j ∈ Zm} ∈ E that admits a unique d-
dimensional Lagrange interpolation is presented in [MSX1].

With this basis of F0 at hand, we will generate a multiscale basis for F0 in the
following way. For this purpose, we introduce linear operators Te : X → X, e ∈ Zµ,
defined by

(Tex)(t) := x(φ−1
e (t))χφe(E)(t),

where χS denotes the characteristic function of some set S, and observe that ‖Te‖ = 1.
Therefore, it follows that

Fn =
⊕
e∈Zµ

TeFn−1, n ∈ N,

where A⊕B denotes the direct sum of the spaces A and B. The functions ψm+j ∈ F1,
j ∈ Zr, satisfying

ψm+j(ti) = 0, i ∈ Zm, j ∈ Zr, ψm+j(tm+j′) = δjj′ , j, j′ ∈ Zr(5.4)

with ψj , j ∈ Zm, defined by (5.3), form a basis for F1.
We require another basis for F1 consisting of functions with vanishing moments.

To this end, we set

w0j := ψj , j ∈ Zm.

We set q := m + r and for j ∈ Zr find a vector [cjs : s ∈ Zq]
T ∈ R

q such that

w1j :=
∑
s∈Zq

cjsψs, j ∈ Zr,(5.5)

satisfies the equation

(w1j , ψj′) = 0, j′ ∈ Zm, j ∈ Zr.(5.6)

Since for each j ∈ Zr, (5.6) is a linear system of rank m with m equations and
q unknowns, there exist r linearly independent solutions of this system which we
denote by w1j , j ∈ Zr. These functions form a basis for the space W1.

Let us now turn our attention to a construction of collocation functionals. We
begin by defining

�0j := δtj , j ∈ Zm,

and for j′ ∈ Zr, we find the vector [c′j′s : s ∈ Zq] such that

�1j′ :=
∑
s∈Zq

c′j′sδts , j′ ∈ Zr,(5.7)

satisfies the equations

〈�1j′ , w0j〉 = 0, j ∈ Zm, j′ ∈ Zr,(5.8)
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and

〈�1j′ , w1j〉 = δjj′ , j ∈ Zr, j′ ∈ Zr.(5.9)

For j ∈ Zr, the matrix of order q for this linear system of equations is

A := [〈δti′j′ , wij〉](i,j),(i′,j′)∈U1
.

Let us prove that the matrix A is nonsingular. To this end, we assume that there are
constants aij , (i, j) ∈ U1, such that∑

(i,j)∈U1

aij〈δti′j′ , wij〉 = 0, (i′, j′) ∈ U1,

that is, 〈
δti′j′ ,

∑
(i,j)∈U1

aijwij

〉
= 0, (i′, j′) ∈ U1.

Since the set G1 is Lagrange admissible relative to (Φ,F1) (cf. [CMX2]), we conclude
that ∑

(i,j)∈U1

aijwij = 0,

and therefore aij = 0, (i, j) ∈ U1. This proves that A is nonsingular.
We find it convenient to write (5.8)–(5.9) in a matrix form. For this purpose, we

introduce matrices

B̃ := [〈δti , ψj〉]i,j∈Zq , B := [
〈
δtm+i , ψj

〉
]i∈Zr,j∈Zm ,

C1 := [cjs]j∈Zr,s∈Zm
, C2 := [cj,m+s]j∈Zr,s∈Zr

,

C′
1 = [c′js]j∈Zr,s∈Zm

, C′
2 := [c′j,m+s]j∈Zr,s∈Zr

,

and

C := [C1,C2], C′ := [C′
1,C

′
2].

The next lemma gives a relationship between the matrices C and C′.
Lemma 5.1.

C′
1 = −C′

2B, C′
2 = (CT

2 )−1.

Proof. It follows from (5.8) and (5.9) that

C′B̃[ImOm×r]T = Or×m,

and

C′B̃CT = Ir,
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where Om×r denotes the m×r zero matrix and Im denotes the m×m identity matrix.
The properties of basis {ψj : j ∈ Zq} and the functionals {δtj : j ∈ Zq} described
above in (5.3) and (5.4) imply that

B̃ =

[
Im Om×r
B Ir

]
,

C′
1 + C′

2B = Or×m,

and

(C′
1 + C′

2B)CT
1 + C′

2C
T
2 = Ir,

from which the result follows.
We next describe the construction of a basis for Wi, i ∈ N. To this end, for

e := (e0, . . . , en−1) ∈ Z
n
µ we introduce a composition operator Te by

Te := Te0 ◦ · · · ◦ Ten−1 .

For i = 2, 3, . . . , n we let

wij := Tew1l, j = µ(e)r + l, e ∈ Z
i−1
µ , l ∈ Zr,(5.10)

and

Wi := span{wij : j ∈ Zw(i)}.

Observe that the support of wij is contained in Sij := φe(E), j ∈ Zw(i).
To generate multiscale collocation functionals, we introduce for any e ∈ Zµ a

linear operator Le : X
∗ → X

∗ defined by the equation

〈Le�, v〉 = 〈�, v ◦ φe〉 , v ∈ X, � ∈ X
∗,

and observe that ‖Le‖ = 1. Moreover, for e := (e0, . . . , en−1) ∈ Z
n
µ, we define the

composition operator

Le := Le0 ◦ · · · ◦ Len−1 .

Consequently, for any e, e′ ∈ Z
i
µ, w ∈ X, and � ∈ X

∗, we have that

〈Le�, Te′w〉 = 〈�, w〉 δee′ .(5.11)

In addition, for i > 1, j = µ(e)r + l, e ∈ Z
i−1
µ , l ∈ Zr, we define

�ij := Le�1l(5.12)

and observe that

〈�ij , v〉 = 〈�1l, v ◦ φe〉 =
∑
s∈Zq

c′lsv(φe(ts)).

Note that the “support” of �ij is also contained in Sij .
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We partition the matrix En into a block matrix

En := [Ei′i]i′,i∈Zn+1 ,

where

Ei′i := [Ei′j′,ij ]j′∈Zw(i′),j∈Zw(i)
,

and in the next lemma relate the norm of the matrix Ei′i to that of E1,i−i′+1.
Lemma 5.2. If i′, i ∈ N with i > i′, then

‖Ei′i‖∞ = ‖E1,i−i′+1‖∞.(5.13)

Proof. From the definition of �i′j′ and wij , for (i′, j′), (i, j) ∈ Un with i > i′, we

obtain that there exist e ∈ Z
i−1
µ , e′ ∈ Z

i′−1
µ , l, l′ ∈ Zr, such that

〈�i′j′ , wij〉 = 〈Le′�1l′ , Tew1l〉 .
We introduce the vectors

e1 := (e0, . . . , ei′−2), e2 := (ei′−1, . . . , ei−2)

and conclude from (5.11) that

〈�i′j′ , wij〉 = 〈�1l′ , Te2
w1l〉 δe′e1

.

Let j0 := µ(e2)r + l and obtain that

〈�i′j′ , wij〉 = 〈�1l′ , wi−i′+1,j0〉 δe′e1
.

Consequently, we have that∑
j∈Zw(i)

|〈�i′j′ , wij〉| =
∑

j∈Zw(i−i′+1)

|〈�1l′ , wi−i′+1,j〉| ,

which proves the lemma.
Let us use this lemma to estimate the constant γ appearing in condition (2.11).
Lemma 5.3. The condition (2.11) is satisfied with

γ := max{‖C1‖1, ‖C′‖∞‖C1‖1}.
Proof. By Lemma 5.2, it suffices to prove for i ∈ N that

‖E0i‖∞ ≤ ‖C1‖1(5.14)

and

‖E1,i+1‖∞ ≤ ‖C′‖∞‖C1‖1.(5.15)

Recall the definition

E1,i+1 = [〈�1l′ , wi+1,j〉]l′∈Zr,j∈Zw(i+1)
.

We need to decompose this matrix. This is done by using (5.7) to write

�1l′ =
∑
s′∈Zq

c′l′s′δts′ , l′ ∈ Zr.
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Thus, it follows from (5.5) and (5.10) for any j ∈ Zw(i+1) that there exists a unique
pair ej ∈ Z

i
µ and l ∈ Zr such that

wi+1,j =
∑
s∈Zq

clsTejψs.

Since for any s′ ∈ Zq, ej ∈ Z
i
µ, i ∈ N, and s = m, . . . , q − 1,〈

δts′ , Tejψs
〉

= 0,

we conclude for l′ ∈ Zr, j = µ(ej)r + l, ej ∈ Z
i
µ, l ∈ Zr, that

〈�1l′ , wi+1,j〉 =
∑
s′∈Zq

∑
s∈Zm

c′l′s′cls
〈
δts′ , Tejψs

〉
.

We write this equation in matrix form by introducing for each e ∈ Z
i
µ matrix

De :=
[〈
δts′ , Teψs

〉]
s′∈Zq,s∈Zm

and from these matrices build the matrix

D :=
[
De0 ,De1 , . . . ,Deµi−1

]
.

This notation allows us to write

E1,i+1 = C′Ddiag{CT
1 , . . . ,C

T
1 },

where the rightmost matrix is a block diagonal matrix with µi identical blocks of CT
1 .

This formula will allow us to estimate the norm of the matrix E1,i+1.
Because the set G0 is refinable relative to the contractive affine mappings Φ, we

are assumed that for any s′ ∈ Zm there exist a unique e′′ ∈ Z
i
µ and s′′ ∈ Zm such

that ts′ = φe′′(ts′′). Thus〈
δts′ , Teψs

〉
=

〈Le′′δts′′ , Teψs
〉

=
〈
δts′′ , ψs

〉
δe′′e = δss′′δe′′e,

which implies that ‖D‖∞ = 1. Consequently, we conclude inequality (5.15). Similarly
inequality (5.14) follows from

E0i = [〈�0l′ , wij〉]l′∈Zm,j∈Zw(i)
.

This completes the proof of this lemma.
We next show that the pair (W,L) of basis functions and collocation functionals

constructed in this section satisfies hypotheses (I)–(IV) and (VI)–(X) described in the
previous sections. This will be done in three propositions.

Proposition 5.4. The pair (W,L) satisfies hypotheses (I)–(IV), (VI), (IX), and
(X).

Proof. Hypothesis (I) is satisfied because for (i, j) ∈ U, with i > 1, the support
of wij is contained in Sij = φe(E) = Ei−1,µ(e), where j = µ(e)r + l, l ∈ Zr.

We now prove that the pair (W,L) satisfies hypothesis (II). For (i, j) ∈ U, there
exists a unique pair of e ∈ Z

i−1
µ and l ∈ Zr such that j = µ(e)r + l and wij = Tew1l.

Likewise, for (i′, j′) ∈ U, there exists a unique pair of e′ ∈ Z
i′−1
µ and l′ ∈ Zr such that

j′ = µ(e′)r + l′ and �i′j′ = Le′�1l′ . When i = i′, it follows from (5.11) and (5.9) that

〈�i′j′ , wij〉 = 〈Le′�1l′ , Tew1l〉 = 〈�1l′ , w1l〉 δe′e = δl′lδe′e = δj′j .
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When i < i′, let e′
1 = (e′0, . . . , e

′
i−2), e

′
2 = (e′i−1, . . . , e

′
i′−2); then

〈�i′j′ , wij〉 =
〈Le′

2
�1l′ , w1l

〉
δe′

1e
=

〈
�1l′ , w1l ◦ φe′

2

〉
δe′

1e
.

Since φe′
2
: E → φe′

2
(E) is an affine mapping, we conclude that w1l◦φe′

2
is a polynomial

of total degree ≤ k − 1 in F0. By using (5.8), we have that

〈�i′j′ , wij〉 = 0, (i, j), (i′, j′) ∈ U, i < i′.

When i > i′, Lemma 5.3 ensures that condition (2.11) is satisfied. This proves hy-
pothesis (II).

Next, we verify that hypothesis (III) is satisfied. Again, it follows from (5.8) that

〈�i′j′ , ψj〉 = 〈�1l′ , ψj ◦ φe′〉 = 0, j ∈ Zm.

This proves the first equation of hypothesis (III). To prove the second equation, we
consider Te as an operator from L2(E) to L2(E) and denote by T ∗

e the conjugate
operator of Te, which is defined by

(Tex, y) = (x, T ∗
e y) , x, y ∈ L2(E).

It can be shown that for y ∈ L2(E)

T ∗
e y = Jφey ◦ φe,

where JΦe is the Jacobi of mapping φe. Therefore, we have that

(wij , ψj′) = (Tew1l, ψj′) = (w1l, T ∗
e ψj′) = 0.

The last equality holds because T ∗
e ψj′ is a polynomial of total degree ≤ k− 1 and w1l

satisfies condition (5.6).
From (5.12), (5.7), (5.10), and (5.5) we have that for (i, j) ∈ U, j = µ(e)r + l,

| 〈�ij , v〉 | = | 〈�1l, v ◦ φe〉 | ≤ ‖C′‖∞‖v‖∞
and

‖wij‖∞ ≤ ‖w1l ◦ φ−1
e χφe(E)‖∞ ≤ ‖C‖∞ max

j∈Zq

‖ψj‖∞,

which confirms hypothesis (IV).
By our construction, it is the case that

dim Fn = mµn

and

dim Wn = m(µ− 1)µn−1.

These equations with (5.2) imply that hypothesis (VI) is satisfied.
The pointwise convergence of the interpolating projections Pn condition (IX)

follows from a result of [AGS]. Finally, hypothesis (X) holds, since Fn are the spaces
of piecewise polynomials of total degree ≤ k − 1.

The next proposition regards hypothesis (VII).
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Proposition 5.5. For any k, d ∈ N, there exists an integer µ > 1 such that
hypothesis (VII) holds.

Proof. We must show that there exists an integer µ > 1 such that

1 + γ < µk/d,

where γ is defined in Lemma 5.3. This will be done by proving that γ is bounded
from above independent of µ. For this purpose, we consider the matrices

H1 := [(ψi, ψj)]i∈Zm,j∈Zm , H2 := [(ψi, ψm+j)]i∈Zm,j∈Zr , H := [H1,H2].

Therefore, from (5.6) it follows that

CHT = C1H
T
1 + C2H

T
2 = 0,

where C2 is an arbitrary r × r nonsingular matrix. We choose C2 := Ir, from which
we have that

C1 = −HT
2 (HT

1 )−1.(5.16)

Moreover, from Lemma 5.1, we have that

C′ = [−B, I]

and thus

‖C′‖∞ = ‖B‖∞ + 1.(5.17)

For j ∈ Zm, the functions ψj are polynomials and therefore continuous, and thus,
there exists a positive constant ρ such that

max
j∈Zm

‖ψj‖∞ ≤ ρ.

Hence, recalling the definition of matrix B and (5.17) we have that

‖C′‖∞ = 1 + max
i∈Zr

∑
j∈Zm

|ψj(tm+i)| ≤ 1 + m max
j∈Zm

‖ψj‖∞ ≤ 1 + mρ.

On the other hand, we have by (5.16) that

‖C1‖1 = ‖H−1
1 H2‖∞ ≤ ‖H−1

1 ‖∞‖H2‖∞.

Since ‖H−1
1 ‖∞ is independent of µ, it remains to estimate ‖H2‖∞ from above inde-

pendent of µ. Therefore, we recall for j ∈ Zr that

ψm+j(t) = ψl(φ
−1
e (t))χφe(E)(t), t ∈ E,

for some l ∈ Zm and e ∈ Zµ. Consequently, from (5.2) we conclude that there exists
a positive constant c such that

|(ψi, ψm+j)| ≤
∫
φe(E)

∣∣ψi(t)ψl(φ−1
e (t))

∣∣ dt ≤ ρ2meas(φe(E)) ≤ c
ρ2

µ
.
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Noting that r = (µ− 1)m, we obtain the desired estimate

‖H2‖∞ = max
i∈Zm

∑
j∈Zr

|(ψi, ψm+j)| ≤ c
ρ2

µ
(µ− 1)m ≤ cρ2m,

thereby proving the result.
We have studied hypothesis (VII) in several cases of practical importance. We

report below our finding for the cases when d = 1 and E = [0, 1], as well as d = 2
and E = ∆, where ∆ is the triangle with vertices (0, 0), (1, 0), (1, 0). When d = 1 and
E = [0, 1], hypothesis (VII) is satisfied for the following choices:

(1) k = 2, µ = 2,

φe(t) =
t + e

2
, t ∈ E, e = 0, 1,

and ti = (i + 1)/3 for i = 0, 1;
(2) k = 3, µ = 2,

φe(t) =
t + e

2
, t ∈ E, e = 0, 1,

and ti = 2i/7 for i = 0, 1, 2;
(3) k = 3, µ = 3,

φe(t) =
t + e

3
, t ∈ E, e = 0, 1, 2,

and ti = (i + 1)/4 for i = 0, 1, 2;
(4) k = 4, µ = 2,

φe(t) =
t + e

2
, t ∈ E, e = 0, 1,

and ti = (i + 1)/5 for i = 0, 1, 2, 3.
In the other case hypothesis (VII) is also satisfied when k = 2, µ = 4 for (x, y) ∈ ∆

φ0(x, y) =
(x

2
,
y

2

)
, φ1(x, y) =

(
x + 1

2
,
y

2

)
,

φ2(x, y) =

(
x

2
,
y + 1

2

)
, φ3(x, y) =

(
1− x

2
,
1− y

2

)
,

and t0 = (1/7, 4/7), t1 = (2/7, 1/7), t2 = (4/7, 2/7).
Finally, we turn our attention to hypothesis (VIII). We consider the sequence of

functions {ζij : (i, j) ∈ U}, biorthogonal to the linear functionals {�ij : (i, j) ∈ U} and
having property (4.5). Let

ζ0j := w0j , j ∈ Zm,

and observe that

〈�0j , ζ0j′〉 = δjj′ , j, j′ ∈ Zm.
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For each j ∈ Zr, we find vectors c′′j := [c′′js : s ∈ Zq] such that the function

ζ1j :=
∑
s∈Zq

c′′jsψs

satisfies the system of linear equations

〈�0j′ , ζ1j〉 = 0, j′ ∈ Zm,(5.18)

and

〈�1j′ , ζ1j〉 = δjj′ , j′ ∈ Zr.(5.19)

Let us confirm c′′j exists and is unique. The coefficient matrix for (5.18) and (5.19) is

Ã := [〈�i′j′ , ψj〉]j∈Zq,(i′,j′)∈U1
.(5.20)

Since {ψj : j ∈ Zq} is a basis for the space F1, we conclude that matrix Ã is non-
singular since A is nonsingular. Thus, there exists a unique solution c′′ for equations
(5.18) and (5.19). For i > 1, j = µ(e)r + l, e ∈ Z

i−1
µ , l ∈ Zr, we define functions

ζij := Teζ1l.
The functions constructed above will be used in the proof of the next result.

Proposition 5.6. The pair (W,L) satisfies hypothesis (VIII).
Proof. We first verify that the sequences of functionals {�ij : (i, j) ∈ U} and

functions {ζij : (i, j) ∈ U} are biorthogonal, that is, they satisfy the condition

〈�i′j′ , ζij〉 = δii′δjj′ , (i, j), (i′, j′) ∈ U,(5.21)

and, in addition, that there exists a positive constant θ3 such that for any i ∈ N0

condition (4.5) is satisfied.
The proof of (5.21) for the case i ≤ i′ is similar to that for (II) in Proposition 5.4.

Hence, we only present the proof for the case i′ < i. In this case, we have

〈�i′j′ , ζij〉 = 〈Le′�1l′ , Teζ1l〉 = 〈�1l′ , Te2
ζ1l〉 δe′e1

,

where j′ = µ(e′)r + l′, j = µ(e)r + l, e1 = (e0, . . . , ei′−2), and e2 = (ei′−1, . . . , ei−2).
From this, it follows that

〈�i′j′ , ζij〉 = 0

except for e′ = e1, in which case

〈�i′j′ , ζij〉 = 〈�1l′ , ζ1l ◦ φ−1
e2

χφe2 (E)〉.(5.22)

Since G0 is a refinable set, we have that φ−1
e (t) ∈ G0 when t ∈ G1 ∩ φe(E), e ∈ Zµ,

and thus

φ−1
e2

(ts) ∈ G0 when ts ∈ φe2
(E), s ∈ Zq.

This observation with (5.18) yields the equation

ζ1l(φ
−1
e2

(ts)) = 〈δφ−1
e2

(ts)
, ζ1l〉 = 0(5.23)
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whenever ts ∈ φe2
(E), s ∈ Zq. We appeal to (5.22) and (5.23) to conclude that

〈�i′j′ , ζij〉 = 0.
Next, we show that condition (4.5) is satisfied. Without loss of generality, we

consider only the case when i ≥ 1. In this case the definition of ζij , for i ≥ 1,
guarantees that

sup
t∈E

∑
j∈Zw(i)

|ζij(t)| = sup
t∈E

∑
e∈Z

i−1
µ

∑
l∈Zr

|Teζ1l(t)|

= sup
t∈E

∑
e∈Z

i−1
µ

∑
l∈Zr

|ζ1l(φ−1
e (t))χφe(E)(t)|

≤
∑
l∈Zr

‖ζ1l‖∞,

and therefore (4.5) holds with θ3 :=
∑
l∈Zr
‖ζ1l‖∞.

Finally, we verify the first inequality of (4.4) in condition (VIII). To this end,
we note that for v :=

∑
(i,j)∈Un

vi,jwi,j and v := [vij : (i, j) ∈ Un]
T , there exists

(i0, j0) ∈ Un with j0 = µ(e0)r + l0, e0 ∈ Z
i0−1
µ , l0 ∈ Zr, such that

‖v‖∞ = |vi0j0 |.(5.24)

For l ∈ Zr we denote ṽl := vi0j and w̃l := wi0j , where j = µ(e0)r + l and e0 ∈ Z
i0−1
µ ,

and observe that

|vi0j0 | ≤
(∑
l∈Zr

|ṽl|2
)1/2

.(5.25)

Recalling that wi0j = Tew1l, l ∈ Zr, and that φe, e ∈ Zµ, are affine, we conclude that

(w̃l′ , w̃l) = Jφe0
(w1l′ , w1l),(5.26)

where Jφe denotes the Jacobi of the mapping φe. We introduce an r × r matrix

W := [(w1l′ , w1l)]l′,l∈Zr

and note that it is the Gram matrix of the basis w1l, l ∈ Zr, and thus it is positive def-
inite. It follows that there exists a positive constant c0 such that for ṽ :=

∑
l∈Zr

ṽlw̃l
and ṽ := [ṽl : l ∈ Zr]

T ,

c0
∑
l∈Zr

|ṽl|2 ≤ ṽTWṽ.(5.27)

By formula (5.26), we have that

‖ṽ‖22 = (ṽ, ṽ) = Jφe0
ṽTWṽ.

Combining this equation with (5.27) yields

∑
l∈Zr

|ṽl|2 ≤ 1

c0Jφe0

‖ṽ‖22.(5.28)
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Since the basis {wij : (i, j) ∈ Un} that has been constructed in this section satisfies
the conditions (III), we obtain that

‖ṽ‖22 =

∫
φe(E)

ṽ(t)v(t)dt ≤ Jφe0
‖ṽ‖∞‖v‖∞ ≤ Jφe0

|vi0j0 |
∑
l∈Zr

‖w̃l‖∞‖v‖∞.

Using condition (IV), we conclude that there exists a positive constant c0 such that∑
l∈Zr

‖w̃l‖∞ ≤ c,

which implies with the last inequality that

‖ṽ‖22 ≤ cJφe0
‖v‖∞‖v‖∞.(5.29)

Combining (5.24), (5.25), (5.28), and (5.29) yields that there exists a positive constant
c such that

‖v‖∞ ≤ c‖v‖1/2∞ ‖v‖1/2∞ ,

and thus

‖v‖∞ ≤ c‖v‖∞.

We have proved the first inequality of (4.4) with θ2 := 1/c.
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Abstract. We present a formulation for accommodating defective boundary conditions for the
incompressible Navier–Stokes equations where only averaged values are prescribed on measurable
portions of the boundary. In particular we consider the case where the flow rate is imposed on several
domain sections. This methodology has an interesting application in the numerical simulation of flow
in blood vessels, when only a reduced set of boundary data are generally available for the upstream
and downstream sections.

Key words. Navier–Stokes equations, boundary conditions, finite elements, Lagrange multipli-
ers, fractional step methods, simulation of blood flow
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Introduction. A necessary condition for the existence of the solution of the in-
compressible Navier–Stokes equations on a bounded domain Ω is that an appropriate
set of boundary conditions is imposed on ∂Ω. In a classical setting, at each point
on the boundary one needs a number of conditions equal to the spatial dimension
of the problem. Typically, one can prescribe the components of the velocity (Dirich-
let boundary condition) or those of the Cauchy normal stress (Neumann boundary
condition) or an appropriate combination of velocity and normal stress.

In this work, we will consider the specific situation occurring when one has at
their disposal only averaged quantities on portions of the domain boundary, a priori
insufficient to “close” the differential problem at hand. We will refer to this incomplete
set as defective boundary conditions. An important applicative field where this situ-
ation occurs is the numerical simulation of blood flow in the human vascular system.
If we aim at computing the blood flow field in an isolated portion of an artery—
for instance, reconstructed from medical images—we immediately face the problem
of which boundary conditions to impose at the artificial upstream and downstream
sections. A possibility is to exploit data coming from measurements. Yet the most
common techniques are normally able to measure only flow rates or average pressures
and not complete fields as would be required for the numerical computations.

A similar situation occurs when one wants to simulate the cardiovascular sys-
tem by multiscale approaches such those proposed in [8] and [6]. In that case, the
boundary data for the Navier–Stokes equations do not come from measurements, but
rather come as the output of simplified models of the global cardiovascular system.
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These simple models, which are typically based on the solution of either a system of
ordinary differential equations or of one-dimensional differential problems, normally
provide the evolution of mean pressure and velocity inside the various regions of the
cardiovascular system. If we want to use them to feed boundary data into a more
detailed local model based on the solution of the Navier–Stokes equations, we need to
have a way to “translate” these mean quantities in mathematically sound boundary
conditions for the Navier–Stokes problem. This issue has been addressed in the cited
references. Another interesting application of the technique proposed in this work
is in the simulation of a free interface problem, when one wants to ensure that the
numerical approximation satisfies mass conservation within machine precision. An
example of a problem of this type is presented in the section dedicated to numeri-
cal experiments. Another applicative field is the simulation of flow in pipes, when
measuring sensors provide only flow rate information.

A viable approach to handle the case of defective boundary conditions is provided
by the so-called do-nothing boundary conditions proposed in [10].

In this paper we analyze another, somewhat more flexible, alternative based on
the use of Lagrange multipliers. In particular, we will consider the case when given
flow rates Qi are to be prescribed on several sections of the domain boundary. The
corresponding variational formulation, augmented by the Lagrange multipliers, is pre-
sented in all generality and analyzed for the case of a Stokes problem, where a well-
posedness result is given. We present several approaches for the numerical solution
of this problem in the context of fractional step schemes and compare their prop-
erties with respect to the effective fulfillment of the imposed flow rate constraint
and computational efficiency. Several numerical experiments prove the effectiveness
of this technique, which may be implemented in existing software with little efforts.
This is an advantage with respect to the do-nothing approach, whose implementation
for the prescribed flow rate problem is not straightforward, as it would require the
construction of suitable (nonstandard) test functions.

We also discuss how to impose an average pressure (or normal stresses) on mea-
surable parts of the domain. We show how the Lagrange multiplier technique may be
successfully implemented in the case of slip boundary conditions for the velocity.

The technique developed here is targeted to applications where it is important
to match the solution at the inflow and/or the outflow with known average data. In
the present form it is not directly applicable for far-field conditions in unbounded
domains and in particular for devising “nonabsorbing” boundary treatment for vor-
tex flow. The reader interested in this particular aspect may, for instance, refer to
[3, 4, 5].

In the first section of this work we address the problem in general terms and we
introduce the functional setting for the analysis. We also give an overview of the do-
nothing approach applied to problems where either the flow rate or the average normal
stress is imposed on a portion of the computational domain boundary. In section 2
we introduce the alternative formulation given by a Lagrange multiplier approach and
carry out its analysis. In section 3 we propose several algorithms that are suitable
for its implementation in the context of the solution of the Navier–Stokes equations
by algebraic fractional step techniques. Finally, section 4 presents numerical results
illustrating the effectiveness of the proposed methodology.

1. Problem formulation and defective boundary conditions. Let Ω be a
bounded domain of R

d, d = 2 or 3, whose boundary ∂Ω is decomposed into the union
of Γ and several disjoint sections S0, S1, . . . , Sn, n ≥ 1 (see Figure 1).
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Fig. 1. The partition of the boundary of the domain Ω.

We are interested in solving the Navier–Stokes equations in Ω,

∂tu+ u · ∇u+∇p− ν�u = f , t > 0,

divu = 0, t > 0,
u = u0, t = 0,

(1.1)

supplemented by homogeneous boundary conditions on Γ,

u|Γ = 0,(1.2)

while two different kinds of boundary conditions will be considered on the sections
Si, i = 0, . . . , n. Both are well suited for blood flow simulations [18, 6], where Ω would
represent the portion of an artery, Γ the vessel wall, and Si the artificial upstream
and downstream sections. Even if for this specific problem the vessel wall should be
considered moving with time because of the flexibility of the vessel wall structure,
here we will address only the case where Γ is fixed.

The first condition we consider is the so-called prescribed mean pressure problem
which requires that

1

meas(Si)

∫
Si

p ds = Pi, i = 0, . . . , n,(1.3)

where each Pi is a prescribed function of the time t, constant on Si.
The second condition we wish to address is the prescribed flow rate problem∫

Si

u · n ds = Qi for i = 0, . . . , n,(1.4)

where the flow rates Qi’s (also called velocity fluxes) are assigned functions of time.
Due to the fluid incompressibility fluid, a compatibility relation must exist among the
fluxes Qi, namely Q0 must be equal to −∑n

i=1Qi.
The initial-boundary value problem (1.1)–(1.2) with either (1.3) or (1.4) is not

well-posed from a physical point of view, since its solution is not unique. Indeed, on
every section Si, we are prescribing just one scalar condition rather than d conditions
at every point x ∈ Si, as it should be.

In [10] the do-nothing approach was advocated as a way of solving the two sit-
uations just presented. By this technique, a particular weak formulation is devised
which allows to fulfill conditions (1.3) (resp., (1.4)) at some extent, giving rise to
a well-posed problem. In fact, this formulation contains also “implicit” (Neumann-
like) boundary conditions which select one particular solution among all the physical
solutions of the original differential problem.
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We will here give a brief presentation of this approach. Let us introduce the
functional spaces

V =
{
v ∈ [H1(Ω)

]d
,v|Γ = 0

}
and M = L2(Ω).

We suppose that f ∈ V ′ and we introduce the functional φi ∈ V ′, i = 0, . . . , n,
which measures the flux of a vector function through the surface Si. Precisely,

〈φi,v〉 =

∫
Si

v · n ds ∀v ∈ V,

where n is the outward unit normal vector on ∂Ω. For this reason φi is called the flux
functional on Si.

Then, the do-nothing formulation for the mean pressure problem reads as follows:
find u ∈ V and p ∈M such that, for all v ∈ V and q ∈M ,


(∂tu+ u · ∇u,v) + ν(∇u,∇v)− (p,divv) = 〈f ,v〉−

n∑
i=0

Pi〈φi,v〉,
(q,divu) = 0,

(1.5)

for all t > 0, with u = u0 for t = 0.
It follows easily, by using the Green formula, that the solution of (1.5) satisfies(

p− ν ∂un
∂n

) ∣∣
Si

= Pi,
∂uτ
∂n

∣∣
Si

= 0 for i = 0, . . . , n,

where we have set un = u · n and uτ = u− unn.
Thus

1

meas(Si)

∫
Si

p ds = Pi +
ν

meas(Si)

∫
Si

∂un
∂n

ds.(1.6)

We conclude that the desired condition (1.3) is recovered exactly only in those cases
where the last integral in (1.6) vanishes. This occurs, for instance, when Si is a plane
section perpendicular to a cylindrical pipe. Otherwise, Pi will be the mean value of
the normal component of the normal stresses on Si.

For the prescribed flow rate problem, the do-nothing approach is formulated as
follows. Let us introduce the space

V � = {v ∈ V, 〈φi,v〉 = 0, i = 0, . . . , n}
and the vector functions bi ∈ V , i = 1, . . . , n, (called flux-carriers) that satisfy

divbi = 0,

∫
S0

bi · n ds = −1,

∫
Sj

bi · n ds = δij for i, j = 1, . . . , n.

The weak formulation of problem (1.1), (1.2), (1.4) proposed in [10] reads as follows:
Find u = w +

∑n
i=1Qibi, with w ∈ V � and p ∈ M \ R such that for all v ∈ V � and

q ∈M {
(∂tu+ u · ∇u,v) + ν(∇u,∇v)− (p,divv) = 0,

(q,divu) = 0
(1.7)

for all t > 0, with u = u0 for t = 0.
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The corresponding solution satisfies(
p− ν ∂un

∂n

)
|Si

= Pi,
∂uτ
∂n
|Si

= 0 for i = 0, . . . , n,(1.8)

where the Pi’s are a priori unknown constants (in space).
The formulation of the mean pressure problem may be easily discretized as it can

be regarded as a classical Navier–Stokes problem with Neumann boundary conditions.
On the other hand, the definition of the functional space V � makes the implementation
of the prescribed flow rate problem less straightforward.

2. A Lagrange multiplier approach for flow rate boundary conditions.
In this section, we propose a slightly different formulation of the prescribed flow rate
problem presented above. We consider (1.1) and (1.2) and we prescribe the velocity
flux on all but one section of ∂Ω. More precisely, we aim at satisfying

〈φi,u〉 =

∫
Si

u · n ds = Qi for i = 1, . . . , n,(2.1)

plus the following homogeneous Neumann boundary condition on S0:(
−pn+

∂u

∂n

) ∣∣∣
S0

= 0.(2.2)

The motivation of such an approach will be clarified in Remark 2.
Our goal is to formulate the initial-boundary value problem (1.1), (1.2), (2.1),

(2.2) in a way that its numerical approximation be as simple as possible to implement.
We look for u ∈ V , p ∈M , and λ1, . . . , λn ∈ R such that, for all v ∈ V and q ∈M ,


(∂tu+ u · ∇u,v) + ν(∇u,∇v) +

n∑
i=1

λi〈φi,v〉 − (p,divv) = 〈f ,v〉,
(q,divu) = 0,
〈φi,u〉 = Qi, i = 1, . . . , n,

(2.3)

for all t > 0, with u = u0 for t = 0.
Note that now the test functions v are taken in V , a space which is more straight-

forward to discretize than V �.
Proposition 2.1. Any smooth solution of (2.3) satisfies the additional boundary

conditions (
p− ν ∂un

∂n

)
|Si

= λi and
∂uτ
∂n
|Si

= 0, i = 1, . . . , n.(2.4)

In particular, this yields that both ∂uτ

∂n and p− ν ∂un

∂n are indeed constant over Si for
i = 1, . . . , n. Furthermore, (u, p) satisfies (1.1), (1.2), (2.1), (2.2).

Proof. Conditions (1.2) and (2.1) are obviously satisfied. Integrating by parts the
first equation of (2.3) yields for any v ∈ V

〈∂tu+ u · ∇u− ν�u+∇p,v〉+

∫
S0

(
ν
∂u

∂n
− pn

)
· v ds

+

n∑
i=1

∫
Si

(
ν
∂u

∂n
− pn+ λin

)
· v ds = 〈f ,v〉.

(2.5)
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Now taking v ∈ D(Ω), we recover the momentum equation (1.1) in the sense of D′(Ω).
Consequently, from (2.5), it follows that

∫
S0

(
ν
∂u

∂n
− pn

)
· v ds+

n∑
i=1

∫
Si

(
ν
∂u

∂n
− pn+ λin

)
· v ds = 0

for all v ∈ V . Now using the splitting of the trace of u on ∂Ω in its normal and
tangential component u|∂Ω = unn+ uτ , we deduce relations (2.2) and (2.4).

Remark 1. Among all possible solutions of (1.1), (1.2), (2.1), (2.2), problem
(2.3) selects the one that satisfies the additional boundary condition (2.4).

Remark 2. In (2.3), we could have imposed a flux Q0 on S0, instead of the
homogeneous Neumann condition (2.2). The corresponding problem would have been
as follows: find u ∈ V , p̃ ∈ M , and λ̃0, λ̃1, . . . , λ̃n ∈ R such that, for all v ∈ V and
q ∈M , 


(∂tu+ u · ∇u,v) + ν(∇u,∇v) +

n∑
i=0

λ̃i〈φi,v〉 − (p,divv) = 〈f ,v〉,
(q,divu) = 0,
〈φi,u〉 = Qi, i = 0, . . . , n,

(2.6)

for all t > 0, with u = u0 for t = 0.
Due to the incompressibility of the fluid, the value of Q0 must be equal to

−∑n
i=1Qi (otherwise the problem has no solution). If (u, p̃, λ̃0, λ̃1, . . . , λ̃n) is a solu-

tion of (2.6), then, for any constant C ∈ R, (u, p̃+ C, λ̃0 + C, λ̃1 + C, . . . , λ̃n + C) is
also a solution. The solution of (2.6) is thus defined up to an additive constant. Now,
we set this constant C equal to −λ̃0, and we denote p̃ + C and λ̃i + C by p and λi.
Then, (u, p, λ1, . . . , λn) is the solution of (2.3) and, according to the “implicit” bound-
ary condition (2.4), λ0 = 0 yields simply the Neumann boundary condition (2.2). In
other words, problem (2.3) (with the Neumann condition on S0) and (2.6) (with the
flux condition on S0) are equivalent as soon as the “free” constant of problem (2.6)
is well chosen.

Remark 3. From a theoretical viewpoint, our approach is very close to the do-
nothing formulation recalled in the previous section. Comparing (1.8) and (2.4), we
may note that the Lagrange multipliers corresponding to the constraints on the flux
are in fact equal to the “a priori unknown” constants of the do-nothing formulation
(1.8). Yet, our approach uses a standard functional space V which can be more
straightforwardly discretized than the space V ∗.

Now, for the sake of simplicity, we restrict ourselves to the analysis of the sta-
tionary Stokes problem (which embodies however all relevant difficulties of our La-
grange multiplier approach): find (u, p, λ1, . . . , λn) ∈ V ×M × R

n such that for all
(v, q) ∈ V ×M


ν(∇u,∇v) +

n∑
i=1

λi〈φi,v〉 − (p,divv) = 〈f ,v〉,
(q,divu) = 0,
〈φi,u〉 = Qi, i = 1, . . . , n.

(2.7)

The extension of the analysis to the complete time-dependent, nonlinear problem (2.3)
can then be carried out by usual techniques (see, e.g., [20, 9, 19]).
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Proposition 2.2. Problem (2.7) is well-posed.
Proof. In order to prove existence, let us denote by (ũ, p̃) ∈ V ×M the solution of{

ν(∇ũ,∇v)− (p̃,divv) = 〈f ,v〉,
(q,div ũ) = 0

(2.8)

for all (v, q) ∈ V × M . This is the weak formulation of the Stokes problem with
homogeneous Dirichlet conditions on Γ and homogeneous Neumann conditions on
∂Ω \ Γ.

Moreover, for i = 1, . . . , n, let (wi, πi) ∈ V ×M be the solution of the problem{
ν(∇wi,∇v)− (πi,divv) = −〈φi,v〉,

(q,divwi) = 0,
(2.9)

for all (v, q) ∈ V ×M .
Both systems (2.8) and (2.9) admit a unique solution. Note that the equations

satisfied by (ũ, p̃) are the unconstrained counterpart of (2.7) and that the solution
(wi, πi) of (2.9) depends only on the geometry and not on the data of the Stokes
problem. In some sense, the functions wi are related to the flux-carriers bi introduced
in the do-nothing formulation (1.7).

We set, then, u = ũ +
∑n
i=1 λiwi and p = p̃ +

∑n
i=1 λiπi. No matter how

the λi, i = 1, . . . , n, are chosen, (u, p) satisfies the first two equations of (2.7). If
we further require u to satisfy the third equation of (2.7), we obtain the following
equations:

〈φi, ũ〉+

n∑
j=1

λj〈φi,wj〉 = Qi, i = 1, . . . , n,

whose compact form reads as

BΛ = Q− Q̃,(2.10)

whereQ = (Q1, . . . , Qn) ∈ R
n, Q̃ = (〈φ1, ũ〉, . . . , 〈φn, ũ〉) ∈ R

n, Λ = (λ1, . . . , λn)∈
R
n, and B ∈ R

n×n, Bij = 〈φi,wj〉. The matrix B is nonsingular (as will be
proven in Lemma 2.3); thus, once the {λi} are computed through relation (2.10),
(u, p, λ1, . . . , λn) will provide a solution of (2.7).

To prove uniqueness, let (u1, p1, λ
(1)
1 , . . . , λ

(1)
n ) and (u2, p2, λ

(2)
1 , . . . , λ

(2)
n ) be two

solutions of (2.7). Then

ν(∇(u1 − u2),∇v) +

n∑
i=1

(λ
(1)
i − λ(2)

i )〈φi,v〉 − (p1 − p2,divv) = 0,

(q,div (u1 − u2)) = 0,

〈φi,u1 − u2〉 = 0, i = 1, . . . , n,

(2.11)

for all v ∈ V and q ∈M .
Taking v = u1 − u2 in (2.11) we obtain ν‖∇(u1 − u2)‖L2(Ω) = 0, from which

u1 = u2 a.e. in Ω. Consequently,

n∑
i=1

(λ
(1)
i − λ(2)

i )〈φi,v〉 − (p1 − p2,divv) = 0 ∀v ∈ V.(2.12)
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For all i = 1, . . . , n we can construct wi ∈ V which satisfy

divwi = 0, wi|Sj = 0, j = 1, . . . , n, j �= i, and 〈φi,wi〉 = 1.

Note that 〈φ0,wi〉 = −1 for all i = 1, . . . , n.
Taking in (2.12) v = wi we obtain

λ
(1)
i = λ

(2)
i ∀i = 1, . . . , n.

Finally, choosing z ∈ V such that

div z = p1 − p2, z|Si = 0 ∀i = 1, . . . , n,

(such a function exists; see, e.g., [9, 13]) and taking v = z in (2.12), we obtain
‖p1 − p2‖L2(Ω) = 0. Henceforth p1 = p2 a.e. in Ω.
Lemma 2.3. The matrix B introduced in (2.10) is nonsingular.
Proof. Given an arbitrary vector α ∈ R

n, for any i = 1, . . . , n we can multiply
each problem (2.9) by αi and sum from i = 1 to n. Owing to the linearity of (2.9) we
have {

ν(
∑n
i=1 αi∇wi,∇v)− (

∑n
i=1 αiπi,divv) +

∑n
i=1 αi〈φi,v〉 = 0,

(q,div
∑n
i=1 αiwi) = 0.

(2.13)

Now taking in v =
∑n
i=1 αiwi, we obtain

ν

∥∥∥∥∥∇
(

n∑
i=1

αiwi

)∥∥∥∥∥
2

L2(Ω)

+

n∑
i=1

αi

〈
φi,

n∑
j=1

αjwj

〉
= 0,

which implies, for all α ∈ R
n, α �= 0,

αTBα = −ν
∥∥∥∥∥∇
(

n∑
i=1

αiwi

)∥∥∥∥∥
2

L2(Ω)

≤ − ν

1 + Cp

∥∥∥∥∥
n∑
i=1

αiwi

∥∥∥∥∥
2

H1(Ω)

< 0.(2.14)

In the last relation we have used the Poincaré inequality∫
Ω

v2 ≤ Cp
∫

Ω

|∇v|2 ∀v ∈ V.

From (2.14) we infer that B is negative definite and then nonsingular.
Remark 4. Let us point out a difficulty that may be encountered if one wants

to impose on the sections Si a mean value P ∈ R for the pressure (or, for the normal
stresses) by following a route similar to that presented for the flow rate. The case
where one wants to impose a pointwise value for the pressure on the boundary for
the Stokes problem has been analyzed in [1]. For the sake of simplicity, we restrict
ourselves to the Stokes problem. A possible formulation is as follows: find (u, p) ∈
V ×M and λ0, . . . , λn ∈ R such that, for all (v, q) ∈ V ×M ,



ν(∇u,∇v) + (∇p,v) = 〈f ,v〉,
(∇q,u)−

n∑
i=0

λi

∫
Si

q ds = 0,∫
Si

p ds = Pi meas(Si), i = 0, . . . , n.

(2.15)
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Fig. 2. Boundary conditions for the Stokes flow around a cylinder.

This formulation is, in some sense, the dual of the flux formulation as it imposes
constraints on the dual problem (the pressure equation), whereas the flux bound-
ary conditions yields a constraint on the primal problem (the velocity equations).
Therefore, it can be regarded as the natural counterpart of our formulation for the
flux problem. Unfortunately, it may be recognized that from (2.15) it follows that
u · n|Si = λi on each Si, whereas u · n|Si

cannot be a constant different from 0
(since we assume no-slip boundary conditions on Γ). This formulation is therefore
not unsuitable for the problem we are interested in. Nevertheless, it may be adopted
in those cases where a slip boundary condition is imposed on the wall. In this case
system (2.15) will effectively impose a mean value for p, thus differing from the do-
nothing approach (1.5) which is instead equivalent to imposing the much stronger
condition (1.6).

A numerical test is given hereafter to illustrate how the mean pressure formula-
tion may be used when it is consistent with the velocity boundary conditions. We
consider a Stokes flow around a cylinder between two flat plates. We have imposed
a homogeneous Dirichlet boundary condition on the cylinder surface, a pure slip con-
dition (i.e., u · n = 0) on the plates. Moreover, we will prescribe the mean pressure
at the inlet and the outlet (see Figure 2). In Figure 3 we show the pressure profile
obtained at the inlet. It may be noted how it varies around the imposed mean value
of 1.
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Fig. 3. Inlet pressure distribution for the Stokes flow around a cylinder. It may be noted that
the pressure is not uniform but is distributed around the imposed mean value of 1.
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3. The numerical solution of the Lagrange multipliers problem. In order
to discretize formulation (2.7), we introduce a Galerkin approximation based on the
finite-dimensional spaces Vh ⊂ V and Mh ⊂ M , which we assume to satisfy the
well-known LBB condition

∀qh ∈Mh ∃vh ∈ Vh, vh �= 0 : (qh,divvh) ≥ βh‖qh‖L2‖vh‖H1 .(3.1)

Let (uh, ph, λ1h, . . . , λnh) be the solution of the discrete problem. We denote by
(ui)i=1...dN (resp., (pi)i=1...M ) the components of uh (resp., ph) with respect to a basis
{vi} of Vh (resp., {qi} of Mh). Finally, we introduce the vectors U = (u1, . . . , udN ) ∈
R
dN , P = (p1, . . . , pM ) ∈ R

M , and Λ = (λ1h, . . . , λnh) ∈ R
n.

Then the discrete counterpart of (2.7) gives rise to the following algebraic system
of equations: 


AU +DTP + ΦTΛ = F,

DU = 0,
ΦU = Q,

(3.2)

where A ∈ R
dN×dN is the stiffness matrix, D ∈ R

M×dN is the matrix associated with
the divergence operator, and Φ is the n × dN matrix whose lines are given by the
vectors φi = (

∫
Si
v1 · n ds, . . . ,

∫
Si
vdN · n ds), i = 1, . . . , n.

Proposition 3.1. System (3.2) admits a unique solution.
Proof. The proof of the existence of the discrete solution (uh, ph, λih, i = 1, . . . , n)

as well as that of the uniqueness of uh and of the λih follows the same lines of Propo-
sition 2.2 by substituting V and M by their discrete counterpart. The uniqueness of
ph is assured by condition (3.1).

If we discretize in time the Navier–Stokes system (2.3) by, for instance, a semi-
implicit Euler scheme and then in space by the finite element method, we will produce
an algebraic system analogous to (3.2), where the matrix A is now given by

A =
1

δt
M +B +K,

δt being the time step, M and B the mass and advection matrices, and K the stiffness
matrix. Here and in the following it is assumed that the matrix A is positive definite,
which is always the case if δt is chosen appropriately.

3.1. Solution algorithms. Here, we present and analyze four possible algo-
rithms which may be adopted for the solution of system (3.2) and which are compu-
tationally more efficient than solving simultaneously for U , P , and Λ.

1. Solution of additional Stokes problems. If one wishes to introduce the proposed
approach on a Navier–Stokes solver with as few modifications as possible to an existing
code for Navier–Stokes equations with “classical” boundary conditions, a possibility
is to follow the constructive proof of Proposition 2.2. As we have seen, the solution
of the constrained problem can be obtained by combining the solutions of n + 1
unconstrained Stokes problems, given by (2.8) and (2.9). In particular, for a fixed
geometry, the n solutions wi, i = 1, . . . , n, of problem (2.9) can be computed only
once, so that the additional computational cost at each time step is just that of the
solution of (2.8). The drawback is that the memory requirement to store the wi may
become prohibitive particularly in a three-dimensional computation and with a large
number of Lagrange multipliers.
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2. Schur complement + Iterative solver. An alternative algorithm is based on
using an iterative solution of a Schur complement system. We rewrite (3.2) in the
form [

S Φ̃T

Φ̃ 0

]
,

[
X
Λ

]
=

[
G
Q

]
,(3.3)

where Φ̃ = [Φ, 0] ∈ R
n×(dN+M), X = [U,P ]T , G = [F, 0]T . The matrix

S =

[
A DT

D 0

]

has a standard Stokes form and, since the two discrete spaces Vh and Mh satisfy the
LBB condition (3.1), S is nonsingular (see, e.g., [19, 2]). We can then eliminate the
unknown X from (3.3), obtaining

Φ̃S−1Φ̃TΛ = Φ̃S−1G−Q,(3.4)

which can be solved by an appropriate iterative method. Any matrix-vector multi-
plication will imply the solution of a Stokes problem with homogeneous Neumann
conditions on the sections Si.

If A is symmetric, then R = Φ̃S−1Φ̃T is symmetric and positive definite (see
Proposition 3.2 below). Consequently, the conjugate gradient (CG) algorithm may be
used, which will converge to the exact solution in n iterations, n being the number of
Lagrange multipliers (which coincides with the number of boundary sections Si minus
one). For instance, in the case of just one Lagrange multiplier, one iteration of the
CG algorithm suffices to obtain the solution. (Note that in this case the linear system
(3.4) reduces to just one scalar equation.)

Remark 5. The computational cost of the procedure depends on the number
of matrix-vector multiplications required for every iteration of the chosen iterative
solver and on the number of iterations necessary for convergence. For each matrix-
vector multiplication we need to solve a Stokes problem. In the case of the CG
algorithm, it is known that it converges to the exact solution in n steps. In addition,
two extra Stokes problems have to be solved to obtain the initial residual (required
to start up the procedure) and the final solution X. Therefore, if CG is adopted the
computational cost would be equal to the solution of n+ 2 Stokes problems (at each
time step), which is higher than that of procedure 1. On the other hand, there is no
need to store intermediate solutions.
Proposition 3.2. The matrix R = Φ̃S−1Φ̃T is positive semidefinite; moreover,

if A is symmetric, then R is symmetric and positive definite.
Proof. System (3.3) (which is equivalent to system (3.2)) admits a unique solution,

as shown in Proposition 3.1. Then, we necessarily have that ker(Φ̃T ) = {0}.
The matrix

S∗ =

[
A DT

−D 0

]

is positive semidefinite (see, e.g., [19]), thus S∗−1 and R∗ = Φ̃S∗−1Φ̃T are also positive
semidefinite.

On the other hand, S = PS∗, where

P =

[
I 0
0 −I

]
,
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is such that P−1 = P . Then

R = Φ̃S−1Φ̃T = Φ̃(PS∗)
−1

Φ̃T = Φ̃S∗−1P Φ̃T = Φ̃S∗−1Φ̃T = R∗.

We conclude that also R is positive semidefinite. Moreover, if A is symmetric, R
turns out to be symmetric, positive semidefinite, and nonsingular, so it is also positive
definite.

In the case where there is just one Lagrange multiplier (which occurs whenever
we have just one input section and one output section), the CG algorithm reads as
follows:

given λ0 ∈ R,

(i) SX1 = G− Φ̃Tλ0,

(ii) r0 = Φ̃X1 −Q,
(iii) SX2 = Φ̃T r0,

(iv) λ = λ0 +
r20

r0Φ̃X2

r0 = λ0 +
r20

Φ̃X2

,

(v) SX = G− Φ̃Tλ.

Since in this case the CG method converges in one iteration, λ and X are the
solutions of (3.3). This algorithm requires the solution of 3 Stokes problems at steps
(i), (iii), and (v).

Remark 6. By a closer inspection, it can be noted that by taking λ0 = 0, the
CG algorithm just presented effectively reduces to procedure 1.

3. Reordering + fractional step I. We recall that any Stokes system of the form

[
A DT

D 0

] [
U
P

]
=

[
F
0

]

can be solved exactly by the following three step algorithm:

(i) AU0 = F ,
(ii) DA−1DTP = DU0,
(iii) U = U0 −A−1DTP .

Let H(1) and H(2) denote two suitable approximations of A−1. We can write an
approximate factorization scheme as

(i) AU0 = F ,
(ii) DH(1)DTP = DU0,
(iii) U = U0 −H(2)DTP .

In this way we can recover many projection or quasi-compressibility methods for the
Navier–Stokes equations (see [14, 17]). In particular, we will focus on the Yosida
projection scheme [16], which consists of adopting H(1) = δtM−1 (while no approx-
imation is made in step (iii), i.e., H(2) = A−1), and on the algebraic version of the
Chorin–Temam scheme in which we have H(1) = H(2) = δtM−1 [17].

System (3.2) can be reordered in a Stokes-like form as

[
Ã D̃T

D̃ 0

] [
Ũ
P

]
=

[
F̃
0

]
,(3.5)
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where

Ã =

[
A ΦT

Φ 0

]
∈ R

(dN+n)×(dN+n), D̃ =
[
D 0

] ∈ R
M×(dN+n),

Ũ =

[
U
Λ

]
∈ R

dN+n, F̃ =

[
F
Q

]
∈ R

dN+n.

We can then write an approximate factorization scheme as follows:

(i) ÃŨ0 = F̃ . Since A is positive definite and ker(ΦT ) = ∅, Ã is nonsingular, too,
and this system admits a unique solution. In particular, we have ΦU0 = Q.

(ii) D̃H̃(1)D̃TP = D̃Ũ0,
(iii) Ũ = Ũ0 − H̃(2)D̃TP , where now H̃(1) and H̃(2) are possible approximations

of Ã−1.

We are now in the same setting of factorization schemes for the Stokes problem.
We will then use the term Yosida scheme when Ã−1 is approximated only in step (ii),
while a scheme where H̃(1) = H̃(2) �= Ã−1 will be called a Chorin–Temam scheme.

We now detail a possible way to approximate Ã−1. First, we note that if we write
H̃(1) in the block form

H̃(1) =

[
H

(1)
11 H

(1)
12

H
(1)
21 H

(1)
22

]
,

step (ii) of the algorithm is equivalent to

DH
(1)
11 D

TP = DU0,

where just the first diagonal block of H̃(1) is actually involved in the computation.

Therefore, we need only look for an approximation H
(1)
11 of the corresponding term

C11 of the following block decomposition of Ã−1:

Ã−1 =

[
C11 C12

C21 C22

]
.

The term C11 is equal to

C11 = A−1
(
I − ΦTV −1ΦA−1

)
, where V = ΦA−1ΦT .

A natural approximation of C11 is then

H
(1)
11 = δtM−1

(
I − δtΦTV −1

apprΦM
−1
)
, Vappr = δtΦM−1ΦT ,(3.6)

and in particular we have H
(1)
11 = C11 +O(δt2). The matrix Vappr is an n×n matrix.

In general, the number n of Lagrange multipliers is very small so that Vappr can be
easily inverted. Furthermore, if the lumped form of the mass matrix is used, Vappr is
diagonal. In the case of just one Lagrange multiplier, Vappr reduces to a scalar.

The Yosida scheme then becomes

(i) ÃŨ0 = F̃ ,

(ii) DH
(1)
11 D

TP = DU0, and
(iii) ÃŨ = ÃŨ0 − D̃TP .
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We observe that, in this case, we recover exactly the constraints on the fluxes.
Indeed, step (iii) implies ΦU = ΦU0 = Q in particular.

In the Chorin–Temam case, we note that step (iii) is equivalent to

U = U0 −H(1)
11 D

TP,(3.7)

Λ = Λ0 −H(1)
21 D

TP.(3.8)

Since we are interested only in the velocity field, we can neglect (3.8) and we need

only compute the block H
(1)
11 as in (3.6). The algebraic Chorin–Temam scheme then

becomes
(i) ÃŨ0 = F̃ ,

(ii) DH
(1)
11 D

TP = DU0, and

(iii) U = U0 −H(1)
11 D

TP .
We observe that, also in this case, the constraints on the fluxes are recovered

exactly. Indeed, by multiplying step (iii) by Φ we have

ΦU = ΦU0 − ΦH
(1)
11 D

TP

= ΦU0 −
(
δtΦM−1 − δtVapprV −1

apprΦM
−1
)
DTP = ΦU0 = Q.

4. Reordering + fractional step II. System (3.2) can also be reordered in a different
manner as [

A D̃T

D̃ 0

] [
U

P̃

]
=

[
F

Q̃

]
,(3.9)

where

D̃ =

[
D
Φ

]
∈ R

(M+n)×dN , P̃ =

[
P
Λ

]
∈ R

M+n, Q̃ =

[
0
Q

]
∈ R

M+n.

The three step algorithm then reads as
(i) AU0 = F , which is unperturbed with respect to the Stokes system without

constraints,
(ii) D̃H(1)D̃T P̃ = D̃U0 − Q̃,
(iii) U = U0 −H(2)D̃T P̃ .
Again, we consider the approximation H(1) = δtM−1 and either H(2) = A−1

(Yosida) or H(2) = δtM−1 (algebraic Chorin–Temam).
Remark 7. This algorithm can be easily implemented starting from an existing

Navier–Stokes solver which uses factorization methods. It suffices to add to the matrix
D the few lines of matrix Φ and apply the chosen factorization method.

Remark 8. Step (ii) is equivalent to

DH(1)(DTP + ΦTΛ) = DU0,(3.10)

ΦH(1)(DTP + ΦTΛ) = ΦU0 −Q.(3.11)

On the other hand, the third step gives

U = U0 −H(2)(DTP + ΦTΛ),

from which we can infer that

ΦU = ΦU0 − ΦH(2)(DTP + ΦTΛ)(3.12)

= ΦU0 − ΦH(1)(DTP + ΦTΛ) + Φ(H(1) −H(2))(DTP + ΦTΛ).
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By exploiting (3.11), we finally have

ΦU = Q+ Φ(H(1) −H(2))(DTP + ΦTΛ).(3.13)

Whenever H(1) = H(2), like in the algebraic Chorin–Temam scheme, we recover
the constraint on the fluxes exactly.

On the contrary, in the Yosida scheme, (3.13) becomes

ΦU = Q+ Φ(δtM−1 −A−1)(DTP + ΦTΛ) = Q+O(δt2).

4. Numerical tests and algorithm assessment.

4.1. Womersley flow. In order to assess the proposed methodology, we consider
a case where the analytical solution of the Navier–Stokes equations is known. More
precisely, we consider the Womersley solution, which describes the transient flow in
a cylindrical pipe associated to a time-periodic pressure gradient (see, e.g., [12]). As
such, it may be considered as a transient counterpart of the Poiseuille solution.

If the pressure gradient is given by

∇p =
dp

dz
(t)ez = −ρa sin(ωt)ez,

z being the pipe axial coordinate and ρ the fluid density, the velocity u reduces only to
its axial component, i.e., u = uzez, and the analytical expression for uz is as follows:

• In the two-dimensional (2D) case (flow between two infinite planes),

uz(r, t) =

∞∑
0

γ2k+1 sin

(
(2k + 1)π

2r0
r

)
,

where

γl =
4a

πl(l4σ2 + ω2)

(
l2σ sin(ωt) + ωe−l

2σt − ω cos(ωt)
)
.

Here σ = µπ2

4ρr20
, r is the transverse coordinate, 2r0 the distance between the

two planes, and µ the dynamic fluid viscosity.
• In the three-dimensional (3D) case (flow in a cylindrical pipe),

uz(r, t) = Re


−

a

ω


1−

J0

(
i3/2
√

ρω
µ r
)

J0

(
i3/2
√

ρω
µ r0

)

 eiωt


 ,

where r is the radial coordinate, r0 the cylinder radius, and J0 the Bessel
function of first kind and of order zero.

In both the 2D and 3D test cases, we have imposed homogeneous Neumann
boundary conditions at the inflow, while at the outflow we have prescribed the flow
rate associated to the Womersley solution. In Figure 4 we show the axial velocity
field for the 2D case at two different times, together with the velocity profile at the
inflow. The solution obtained agrees very well with the analytical Womersley solution.
Therefore, a single condition on the flow rate at the outflow, imposed through a
Lagrange multiplier, is sufficient to recover the Womersley flow.
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Fig. 4. 2D numerical solution obtained imposing the flux of the Womersley solution at the
outflow section.



392 L. FORMAGGIA, J.-F. GERBEAU, F. NOBILE, A. QUARTERONI

The same experiment has been carried out in 3D and the result is shown in
Figure 5. Here, the computed velocity field at three different times is illustrated,
together with the corresponding axial velocity profile on the inflow section. Again,
we outline the excellent agreement with the analytical solution.

Finally, we have carried out the same experiment in 2D using the numerical
schemes “reordering + fractional step I” and “reordering + fractional step II” pro-
posed in the previous section, both for the Yosida and the algebraic Chorin–Temam
approximations, and we have evaluated the errors introduced on the fluxes. As ex-
pected, for the first scheme the difference between the flux we wish to impose and
the one actually computed is of the order of the machine round-off error, both for the
Yosida and the Chorin–Temam approximation.

For the latter scheme, this instead is true only when adopting the Chorin–Temam
approximation. The behavior of the error on the fluxes for the Yosida approximation is
shown in Figure 6. The error is decreasing with the time step size, with a convergence
rate that appears to be even higher than quadratic.

4.2. Mass conservation in free interface simulations. We present here an
application where it may be useful to impose the mass flow rate through a surface. We
consider two immiscible and incompressible fluids, with the same viscosity, confined
in a closed tank Ω and separated by a free interface (see Figure 7). We denote by
Ωi(t) and Σ(t), for i = 1, 2, the domain occupied by the fluid i and the interface at
time t, respectively. We adopt an arbitrary Lagrangian Eulerian (ALE) formulation
[7] and we denote by w the domain velocity which satisfies w · n = u · n on Σ(t)
and w · ν = 0 on ∂Ω, where n denotes the normal to Σ(t) directed from Ω1(t) to
Ω2(t) and ν is the outward normal on ∂Ω. Because of the incompressibility and the
immiscibility of the two fluids, the volume of Ω1(t) (or equivalently Ω2(t)) must be
preserved. At the continuous level, this property is satisfied. Indeed,

meas(Ω1(t2))−meas(Ω1(t1)) =

∫ t2

t1

∫
Σ(t)

w · n dσ =

∫ t2

t1

∫
Σ(t)

u · n dσ

=

∫ t2

t1

∫
Ω1(t)

divu dx = 0,(4.1)

since divu vanishes almost everywhere in Ω1(t).
At the discrete level, the relation

∫
Ω1(t)

divuh dx = 0 is still verified if the pres-

sure is discretized using discontinuous functions (as in the Q2/P1 or Q1/P0 finite
elements) [2].

If instead the pressure is discretized using continuous functions, as in Taylor–
Hood (P2/P1 or Q2/Q1), P1-isoP2, or Q1/Q1 stabilized finite elements [2, 9], there
is no guarantee that (4.1) still holds at the discrete level. Numerical tests indeed
confirm that those discretizations fail to conserve the measure of Ω1(t). A possible
strategy for the solution of this problem is to impose the condition∫

Σ(t)

uh · nh dσ = 0

by a Lagrange multiplier, using the techniques presented in the previous section.
Let us show the results obtained on a 2D test case. In the following, all quantities

are given in International System (IS) units. The two fluids are initially at rest and
they are subjected to an oscillating body force f = (a g sin(2πν t),−g) with a = 0.05,
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3D Womersley flow
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3D Womersley flow
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Fig. 7. Two fluids separated by a free interface.

g = 10, ν = 0.0625. The kinematic viscosity of both fluids is taken to be ν = 0.005,
the density of the upper and the lower fluid is 0.91 and 1, respectively, meas(Ω1) =
meas(Ω2) = 4 at t = 0. The mesh is allowed to move only along the vertical direction
and the typical size of the mesh elements is h = 0.1. At time t = 220, if we use Q1/P0
or Q2/P1 elements, meas(Ω1) is still equal to 4 (within machine precision), whereas it
drops to approximately 3.9 when we adopt Q2/Q1 elements (see Figure 8). We have
obtained analogous results with stabilized Q1/Q1 finite elements. Clearly, this lack
of mass conservation decreases as h goes to zero, yet for many practical applications
a mass loss is not acceptable and the use of an extremely fine mesh is not economical
(or even not feasible).

Figure 8 shows that a perfect mass conservation is also obtained with Q2/Q1
elements if we impose a zero flow rate through Σ by the Lagrange multiplier technique.
Finally, Figure 9 shows the elevation of a point on the interface obtained on the same
mesh with the Q2/P1 elements and the Q2/Q1 elements with flux constraint. The
difference is barely visible. The use of a Lagrange multiplier technique thus allows to
adopt continuous pressure elements for this type of problem.

4.3. Multiscale domain decomposition. An application in which it is nec-
essary to impose defective boundary conditions to a Navier–Stokes problem arises in
the hemodynamics context when the cardiovascular system is simulated by a multi-
scale model. A multiscale technique couples detailed models, based on the solution
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of 2D or 3D fluid-structure interaction problems, with reduced models based on one-
dimensional (1D) approximations or on systems of ordinary differential equations [8].
The simpler models normally provide the evolution of mean pressure and mean veloc-
ity in various regions of the cardiovascular system. The boundary data for the detailed
model, which is based on the solution of the Navier–Stokes equations coupled with
the vessel wall dynamics, must be obtained from these averaged quantities. This is a
typical case of defective boundary conditions.

4.3.1. A 2D-1D coupling. Here we will give an illustrative example which
consists in the coupling of a 2D and a 1D model. Let us consider the domain illustrated
in Figure 10. In Ω1 we define for t > 0 the fluid-structure model as



ρ∂tu+ ρu · ∇u+∇p− µ�u = 0 in Ω1,

divu = 0 in Ω1,

ρwh
∂2η

∂t2
− kGh∂

2η

∂z2
+

Eh

1− ν2

η

R2
0

− γ ∂3η

∂z2∂t
= f(t, z) on Γ0

w,

∂tη er = u on Γw,

f(t, z) =

(
pn− µ∂u

∂n

)
· er
√

1 +

(
∂η

∂z

)2

on Γ0
w,

(4.2)

where the unknowns are the fluid velocity u, the fluid pressure p, and the wall dis-
placement η. Here, ρ is the fluid density, h the vessel wall thickness, E the Young
modulus, G the Timoshenko factor, and ρw the wall density. At t = 0 initial condi-
tions u0, η0, η̇0 are provided for the velocity, displacement, and displacement rate,
respectively. We refer to [6] for a more detailed description and analysis of this prob-
lem. In Ω2 we consider the following 1D problem for the velocity flux Q and the vessel
section area A:


∂A

∂t
+
∂Q

∂z
= 0, a < z < b, t > 0,

∂Q

∂t
+
∂

∂z

(
α
Q2

A

)
+
A

ρ

∂p̄

∂z
+KR

Q

A
= 0, a < z < b, t > 0,

(4.3)

with the algebraic relation p̄ = β(A−A0), A0 being the reference area A0 = 2R0. The
system is supplemented by initial conditions for A and Q at t = 0. This 1D reduced
model is basically derived from (4.2), integrating the Navier–Stokes equations over
each axial section S(z) and adopting a simplified version of the equation for the wall
dynamics. A is the measure of S(z), the velocity flux is given by Q(z) =

∫
S(z)

uzdr,

and p̄(z) = (
∫
S(z)

pdr)/A(z); see [8] for more details.

System (4.2) has been discretized in space using P1-isoP2 finite elements for the
fluid and P1 elements for the structure. For time discretization, we have adopted
an ALE formulation to account for the domain movement with an implicit Euler
discretization for the fluid equations and a Newmark scheme for the structure. On
the other hand, system (4.3), which is hyperbolic, has been discretized using a second-
order Taylor–Galerkin scheme with a characteristic treatment of the boundary.

At each time step tn, we look for a solution of (4.2) and (4.3) which satisfies at
Γ(a) the coupling conditions

meas(Γn(a)) = An(a),

∫
Γn(a)

unz = Qn(a),
1

meas(Γn(a))

∫
Γ(a)

pn = p̄n(a).(4.4)
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We have solved iteratively at each time step the two subproblems in Ω1 and Ω2.
Given the approximate solution un, pn, ηn, Qn, and An of the coupled problem at
time t = tn, we look for the solution un+1, pn+1, ηn+1, Qn+1, and An+1 using the
following iterative algorithm:

We set u(0) = un, p(0) = pn, and η(0) = ηn, and for k = 0, 1, . . . we do the
following:

1. We solve the 1D model (4.3) imposing at z = a

A(k+1)(a) = A0 +
1

βmeas(Γ(k)(a))

∫
Γ(a)

p(k)

and at z = b absorbing boundary conditions based on characteristic analysis.
We obtain Q(k+1) and A(k+1) in Ω2.

2. We then solve the 2D problem imposing on Γ(a) for the Navier–Stokes equa-
tions the defective condition∫

Γ(a)

u(k+1) · ez = Q(k+1)(a)

and for the structure at z = a

η(k+1)(a) =
1

2
A(k+1)(a)−R0.

We obtain u(k+1), p(k+1), η(k+1) in Ω1.

We iterate until the coupling conditions are satisfied within a fixed tolerance
and we finally set the solution at time tn+1 equal to the converged value. We may
eventually add a relaxation step on the variable A(k)(a).

We observe that in step 2 of this algorithm we have to solve Navier–Stokes equa-
tions with flux boundary conditions on Γ(a). A different algorithm for the same
coupled 2D/1D problem, which allows us to impose a mean pressure condition on
Γ(a), has been proposed and analyzed in [6].

We present here the numerical results relative to the following test case: we
have considered a fluid initially at rest and we have imposed a pressure of 15mmHg
(2·104 dynes/cm2) at the inlet (Γin) for 0.005 seconds. For the fluid we have taken µ =
0.035 poise and ρ = 1 g/cm3, while for the structure we have E = 0.75·106 dynes/cm2,
ν = 0.5, ρw = 1.1 g/cm3, and h = 0.1 cm. Figure 11 shows the fluid pressure and the
domain deformation at different times. We may note how the “pressure wave” crosses
the interface between the two models with little spurious reflections.

4.3.2. A two-dimensional–zero-dimensional coupling. This time, a by-
pass anastomosis in a coronary, modeled by the incompressible Navier–Stokes equa-
tions in a fixed domain, is coupled with a lumped parameter model for the rest of the
cardiovascular system. Lumped parameters models are well established tools [21] and
able to provide an approximation of the time evolution of average pressure and flow
rate in different compartments of the cardiovascular system. They are based on the
solution of a system of algebraic-ordinary differential equations derived by using an
analogue with an electrical circuit. In this analogy, electrical currents and voltage are
interpreted as flow rate and mean pressure, respectively. The model here adopted is
the one proposed in [11]. Its coupling with a 2D description of a coronary by-pass is
shown in Figure 12.
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Fig. 11. Coupling 2D simulation with the 1D reduced model; pressure distribution every 5ms,
starting from t = 1ms.
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The interface condition we wish to impose between the two models are the conti-
nuity of flow rate and mean pressure. The numerical scheme employs a staggered algo-
rithm where the pressure drop between inflow and outflow calculated by the Navier–
Stokes model at a generic time step t = tk is imposed to the lumped parameter model
which, in turn, is used to obtain the flow rate to advance the Navier–Stokes solution
to t = tk+1. We are therefore facing the case where we need to employ the technique
presented in section 2. Since we are using a rigid wall model for the by-pass, the
incoming and outgoing flow rates are equal, due to the incompressibility constraint.
Actually, we have prescribed to the Navier–Stokes equations only the flow rate on the
inflow section while homogeneous Neumann boundary conditions have been imposed
on the outflow section. On the other hand, the pressure drop between inflow and
outflow, needed to advance the lumped parameter model, is simply provided by the
Lagrange multiplier.

An alternative coupling algorithm, based on imposing a mean pressure to the
inflow and outflow sections of the Navier–Stokes problem while prescribing the flow
rate to the lumped model, has been described in [15].

At the top of Figure 13 we show the flow rate and the pressure drop in the by-
pass computed by the coupled system. The marks indicate the values at the times
corresponding to the four snapshots of the fluid speed found in the lower part of the
same figure.

5. Conclusions. In this work we have considered defective boundary conditions
for Navier–Stokes equations. In particular, we have addressed the case where one
wants to impose the flow rate on a measurable subset of the domain boundary. We
have proposed a formulation based on a Lagrange multiplier technique and we have
shown that it is well-posed for the Stokes and the linearized Navier–Stokes equations.
Moreover, we have considered some numerical algorithms to effectively solve the mixed
problem thus obtained. Finally, we have presented several applications in which the
technique may be advantageously used and we have shown some numerical results
illustrating its effectiveness.
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Abstract. A flux recovery technique is introduced and analyzed for the computed solution of
the primal hybrid finite element method for second-order elliptic problems. The recovery is carried
out over a single element at a time while ensuring the continuity of the flux across the interelement
edges and the validity of the discrete conservation law at the element level. Our construction is
general enough to cover all degrees of polynomials and grids of triangular or quadrilateral type.
We illustrate the principle using the Raviart–Thomas spaces, but other well-known related function
spaces such as the Brezzi–Douglas–Marini (BDM) or Brezzi–Douglas–Fortin–Marini (BDFM) space
can be used as well. An extension of the technique to the nonlinear case is given. Numerical results
are presented to confirm the theoretical results.

Key words. recovery technique, primal hybrid method, nonconforming method, conservative
method
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1. Introduction. We consider the second-order elliptic boundary value problem{
−div(K∇u) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded polygonal domain in R
2 with the boundary ∂Ω, and K = K(x) is

assumed to be symmetric and uniformly positive definite, i.e., there exist two positive
constants c1 and c2 such that

c1ξ
T ξ ≤ ξTK(x)ξ ≤ c2ξ

T ξ ∀ξ ∈ R
2, x ∈ Ω.

In many applications, it is more important to gain accurate approximation for
the vector variable σ = −K∇u (e.g., Darcy velocity) rather than the scalar variable
u (e.g., pressure). A common way of achieving that goal is to use the mixed finite
element methods, which have been a very active area of research since the late 1970s;
see, for example, [4, 5, 6, 9, 20, 22]. All mixed methods have the further advantage
of maintaining the discrete conservation law at the element level.

However, mixed methods lead to an indefinite symmetric algebraic system which
may be hard to solve iteratively. An efficient way to solve for the mixed finite element
method is to further introduce the Lagrange multipliers on the edges of the mesh to
ensure the continuity of normal components of the velocity variable. This is sometimes
called the mixed-hybrid method. In this fashion the velocity and the pressure finite
element spaces have no continuity constraints at all, and thus both variables can be
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eliminated to obtain a symmetric and positive definite matrix system which involves
only the Lagrange multipliers. It can be shown that this matrix system is equivalent
to some nonconforming finite element method for the original problem (1.1); see, for
example, [1, 2, 7]. The nonconforming method for the pressure requires fewer degrees
of freedom than the mixed finite element method, and moreover, its solution can be
computed by a fast solver such as multigrid algorithms (cf. [3, 8, 10, 11]). By using this
nonconforming solution, the vector approximation can be obtained through a simple
formula, for example, as done in [17]. The rectangular case with piecewise constant
diagonal tensor was considered in [8]. For the triangular case, see [1, 2, 7, 8, 17].

Our objective in this paper is to show that similar equivalence results can be
derived through the primal hybrid finite element methods for the problem (1.1) which
were analyzed in [21] as a general approach of constructing nonconforming finite
element approximations. We first present a technique of recovering from the primal
hybrid solution an optimal flux approximation σh based on the local Raviart–Thomas
spaces. Although the construction is carried out in a local manner (over a single ele-
ment at a time), it is ensured that σh is continuous across the interelement boundaries
and that the discrete conservation law holds locally. Also, instead of the Raviart–
Thomas spaces, other mixed finite element spaces such as the Brezzi–Douglas–Marini
(BDM) spaces or the Brezzi–Douglas–Fortin–Marini (BDFM) spaces can be used as
well.

The main advantage of our technique is that it is general enough to cover all
degrees of polynomials and all types of grids, triangular or quadrilateral. In particular,
our technique can be applied to any nonconforming finite element method which can
be viewed as a primal hybrid finite element method.

As good examples of how the technique can be applied, we will derive simple
formulas for σh in the lowest-order cases on triangular and quadrilateral grids, which
lead to the P1 and the rotated Q1 nonconforming finite element methods, respectively
(see [21] or section 4).

The rest of the paper is organized as follows. In the next section the primal finite
element methods are introduced for the problem (1.1). In section 3, we present a
technique of flux recovery from the primal hybrid finite element methods and establish
optimal error estimates for the vector approximation thus obtained, and in section 4 a
detailed description of how the technique can be applied for the lowest-order elements
is given. In section 5, our results are extended to nonlinear problems. Finally, in
section 6, some numerical results are presented to confirm the theoretical results.

2. Primal hybrid finite element methods. In this section we give a brief
description of the primal hybrid finite element method for the problem (1.1). The
reader can find much more detail on this subject in [21].

Let Th be a partition of Ω into triangles or convex quadrilaterals which satisfies
the usual regularity assumption

C1h
2
T ≤ |T | ≤ C2h

2
T ∀T ∈ Th,

where hT denotes the diameter of T , |T | is the area of T , and h = maxT∈Th
hT .

Denote by T̂ a standard reference element, i.e., the unit square or the unit tri-
angle with the vertices x̂i’s. Then there exists a unique bijective bilinear or linear
transformation FT : T̂ → T such that xi = FT (x̂i) for all i. We set

JT = Jacobian matrix of FT , JT = detJT .
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Based on the triangulation Th we define the spaces

X = {v ∈ L2(Ω) : v|T ∈ H1(T ) ∀T ∈ Th} =
∏
T∈Th

H1(T ),

M =
{
µ ∈

∏
T∈Th

H−1/2(∂T ) : there exists τ ∈ H(div,Ω) such that

τ · nT = µ on ∂T, ∀T ∈ Th
}
,

where nT is the unit outward normal along ∂T . Let | · |m,Ω and ‖ · ‖m,Ω denote the
usual seminorm and norm, respectively, on the Sobolev space Hm(Ω). We define the
mesh-dependent norms

|||v|||X =

(∑
T∈Th

|||v|||21,T
)1/2

, v ∈ X,

‖µ‖h =
(∑
T∈Th

hT ‖µ‖20,∂T
)1/2

, µ ∈
∏
T∈Th

L2(∂T ),

where

|||v|||21,T = |v|21,T + h−2
T ‖v‖20,T .

Now the primal hybrid formulation for the problem (1.1) is given as follows: find
a pair (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = (f, v) ∀v ∈ X,(2.1a)

b(u, µ) = 0 ∀µ ∈M,(2.1b)

where

a(u, v) =
∑
T∈Th

∫
T

K∇u · ∇v dx, b(v, µ) =
∑
T∈Th

∫
∂T

vµ ds,(2.2)

(f, v) =

∫
Ω

fv dx.(2.3)

It was shown in [21] that u belongs toH1
0 (Ω) and is the unique solution of the standard

weak formulation ∫
Ω

K∇u · ∇v dx =

∫
Ω

fv dx, v ∈ H1
0 (Ω),

and that

λ = −K∇u · nT on ∂T ∀T ∈ Th.(2.4)

We use the standard notation for the spaces of polynomials, i.e., Pr(T ) denotes
the space of polynomials on T of total degrees at most r, and Qr,s(T ) denotes the
space of polynomials on T of degrees at most r and s in x and y, respectively. We
also set Qr(T ) = Qr,r(T ). On any element T we define

Rr(T ) =



Pr(T ) if T is a triangle,

Qr(T̂ ) ◦ F−1
T if T is a quadrilateral
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and

Sr(∂T ) = {µ ∈ L2(∂T ) : µ|e ∈ Pr(e) ∀e edges of T}.

In order to discretize the primal hybrid formulation (2.1), we introduce a finite-
dimensional subspace X̂ of H1(T̂ ) such that Rk(T̂ ) ⊂ X̂ for some k ≥ 1. Then we
define a pair Xh ×Mh of finite element spaces on Th by

Xh = {v ∈ X : v|T ∈ Xh(T ) ∀T ∈ Th},(2.5)

Mh =

{
µ ∈

∏
T∈Th

Sk−1(∂T ) : µ|∂T1
+ µ|∂T2

= 0 on ∂T1 ∩ ∂T2(2.6)

if T1 and T2 are adjacent elements

}
,

where we set Xh(T ) = {v̂ ◦ F−1
T : v̂ ∈ X̂}.

Now the primal hybrid finite element method is defined as follows: find a pair
(uh, λh) ∈ Xh ×Mh such that

a(uh, v) + b(v, λh) = (f, v) ∀v ∈ Xh,(2.7a)

b(uh, µ) = 0 ∀µ ∈Mh.(2.7b)

Examples for the space X̂ are given in [21] for all k ≥ 1 which ensures the existence
and uniqueness of a solution (uh, λh) for the system (2.7) and satisfy the following
optimal error estimates (cf. [15, 21]).

Theorem 2.1. For u ∈ Hk+1(Ω) we have

|||u− uh|||X + ‖λ− λh‖h ≤ Chk|u|k+1.

The following observation is crucial to decouple the mixed system (2.7): uh is the
solution of the nonconforming finite element method

a(uh, v) = (f, v), v ∈ Vh,(2.8)

where

Vh = {v ∈ Xh : b(v, µ) = 0 ∀µ ∈Mh}.(2.9)

This implies that we may compute uh directly from (2.8) and then compute λh from
uh locally by (2.7a), which reduces to∫

∂T

vλh ds =

∫
T

fv dx−
∫
T

K∇uh · ∇v dx, v ∈ Xh(T ).(2.10)

Thus, the Lagrange multiplier λh may be interpreted as the (weak) local residuals of
the nonconforming approximation uh.

3. Flux recovery technique. To begin with, we define the Raviart–Thomas
space of index r ≥ 0 on Th as follows:

RTr = {τ ∈ H(div,Ω) : τ |T ∈ RTr(T )},
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where the local space RTr(T ) is defined as

RTr(T ) = {PT τ̂ : τ̂ ∈ (Rr(T̂ ))2 + (x, y)Rr(T̂ )},

and PT τ̂ = J−1
T JT τ̂ ◦ F−1

T . We also set for r ≥ 1

Ψr(T ) =

{
(Pr−1(T ))

2 if T is a triangle,

{J−t
T τ̂ ◦ F−1

T : τ̂ ∈ Qr−1,r(T̂ )×Qr,r−1(T̂ )} if T is a quadrilateral.

Let us point out that if T is a rectangle, then

Ψr(T ) = Qr−1,r(T )×Qr,r−1(T ).

Now we present a technique of recovering an optimal vector approximation. Once
the solution (uh, λh) of the system (2.7) is computed, one can construct a unique
σh ∈ RTk−1(T ) on each T ∈ Th:

σh · nT = λh on ∂T,(3.1a) ∫
T

(σh +K∇uh) · τ dx = 0, τ ∈ Ψk−1(T ) (k ≥ 2)(3.1b)

(cf. [6, 20, 22]). By construction we immediately obtain the following two proposi-
tions.

Proposition 3.1. The normal components of σh are continuous across the
interelement boundaries, i.e., we have σh ∈ RTk−1.

Proof. This is a direct consequence of (3.1a).

Proposition 3.2. We have for all v ∈ Rk−1(T )∫
T

divσh v dx =

∫
T

fv dx.

This implies that the discrete conservation law holds locally.

Proof. By using (3.1a) and Green’s theorem, (2.7a) becomes∫
T

(σh +K∇uh) · ∇v dx+

∫
T

divσh v dx =

∫
T

fv dx ∀v ∈ Xh(T ).(3.2)

There is nothing to be done for k = 1, since ∇v = 0 for v ∈ R0(T ). For k ≥ 2 we
have ∇v ∈ Ψk−1(T ) for v ∈ Rk−1(T ), which proves the desired result by (3.1b).

Remark 3.1. We could use other mixed finite elements instead of RTk−1. For
example, when one wants to use the BDMk−1(T ) space on a triangle T (k ≥ 2), (3.1)
is replaced by

σh · nT = λh on ∂T,(3.3a) ∫
T

(σh +K∇uh) · ∇v dx = 0, v ∈ Pk−2(T ),(3.3b) ∫
T

(σh +K∇uh) · curl(bT v) dx = 0, v ∈ Pk−3(T ) (k ≥ 3),(3.3c)
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where bT is the cubic bubble function on T . If the space X̂ contains only Pk(T̂ ) on a
quadrilateral T , one may use the BDFMk(T ) space, in which case (3.1) is replaced by

σh · nT = λh on ∂T,(3.4a) ∫
T

(σh +K∇uh) · τ dx = 0, τ ∈ Ψk−1(T ) (k ≥ 2),(3.4b)

where we set

Ψr(T ) = {J−t
T τ̂ ◦ F−1

T : τ̂ ∈ (Pr−1(T̂ ))
2}.

For a review of the degrees of freedom (3.3) and (3.4), we refer to [4, 5, 6].
Before going to an error estimate, we prove the following key lemma.
Lemma 3.3. Given β ∈ L2(∂T ) and q ∈ (L2(T ))2, let ξh ∈ RTr(T ) satisfy∫

∂T

ξh · nT µds =

∫
∂T

βµ ds ∀µ ∈ Sr(∂T ),∫
T

ξh · τ dx =

∫
T

q · τ dx ∀τ ∈ Ψr(T ) (r ≥ 1).

Then we obtain

‖ξh‖0,T ≤ C(‖q‖0,T + h
1/2
T ‖β‖0,∂T ).

Proof. By considering the L2 projections, we may assume that β ∈ Sr(∂T ) and
q ∈ RTr(T ). Then the proof is done by using a simple scaling argument [2, 6].

Now we derive an error estimate for the vector approximation σh constructed by
(3.1). It is well known (see, e.g., [6, 20, 22, 23]) that the Raviart–Thomas projection
Πh : (H

1(Ω))2 → RTr can be defined by∫
∂T

Πhσ · nµds =

∫
∂T

σ · nµds, µ ∈ Sr(∂T ),(3.5) ∫
T

Πhσ · τ dx =

∫
T

σ · τ dx, τ ∈ Ψr(T ),(3.6)

possessing the following approximation properties:

‖σ −Πhσ‖0 ≤ Chl ‖σ‖l, 1 ≤ l ≤ r + 1,

for all σ ∈ (H l(Ω))2, and

‖div(σ −Πhσ)‖0 ≤ Chl ‖divσ‖l, 0 ≤ l ≤ r + 1,

for all σ ∈ (H l(Ω))2 with divσ ∈ H l(Ω).
Theorem 3.4. Let σ = −K∇u. Then we have for u ∈ Hk+1(Ω)

‖σ − σh‖0 ≤ Chk(|σ|k + |u|k+1).

Proof. It suffices to prove that

‖Πhσ − σh‖0,T ≤ Chk(|σ|k + |u|k+1).
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From (3.5) and (3.6) it follows that∫
∂T

(Πhσ − σh) · nT µds =

∫
∂T

(λ− λh)µds, µ ∈ Sk−1(∂T ),∫
T

(Πhσ − σh) · τ dx = −
∫
T

K∇(u− uh) · τ dx, τ ∈ Ψk−1(T ) (k ≥ 2).

By applying Lemma 3.3 and then Theorem 2.1, we obtain

‖Πhσ − σh‖0,T ≤ C(|u− uh|1,T + h
1/2
T ‖λ− λh‖0,∂T )

≤ Chk(|σ|k + |u|k+1).

This completes the proof.

4. Examples. In this section f̄ indicates the piecewise constant average of f on
Th, i.e.,

f̄ |T =
1

|T |
∫
T

f dx.

4.1. P1 nonconforming method. Let Th be composed of triangles. We con-
sider the lowest-order element, i.e., k = 1:

Xh(T ) = P1(T ), Mh =
∏
T∈Th

S0(∂T )
⋂

M.

Then it is easy to see that Vh (defined by (2.9)) is the P1 nonconforming finite element
space.

Let T be an arbitrary element of Th with the edges e1, e2, e3 and the barycenter
xT , and let φi ∈ Xh(T ) be the basis function associated with the edge ei, namely,
1

|ei|
∫
ei
φj ds = δij . Then λh|ei is given by (see (2.10))

λh|ei =
1

|ei|
(∫

T

fφi dx−
∫
T

K∇uh · ∇φi dx

)
.

Using the formula ∇φi =
ni|ei|
|T | results in

λh|ei = −K̄∇uh · ni + 1

|ei|
∫
T

fφi dx.

By comparing the normal components σh ·ni for each i, one can show that the vector
σh constructed by (3.1) is identical to the one given in [13]:

σh = −K̄∇uh +
f̄

2
(x− xT ) +CT ,(4.1)

where CT is determined by any two of the three equations

|ei|ni ·CT =

∫
T

fφi dx− |T |
3

f̄ , i = 1, 2, 3.

In particular, when f is a constant on T , we obtain CT = 0 and

σh|T = −K̄∇uh|T +
f

2
(x− xT ),(4.2)

which is the formula obtained by Marini [17].
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Remark 4.1. It is straightforward to extend the above results to higher-order
elements of odd degrees k ≥ 3:

Xh(T ) = Pk(T ), Mh =
∏
T∈Th

Sk−1(∂T )
⋂

M.

Once uh is computed, λh can be computed at k Gauss–Legendre points on each edge
by using the basis functions associated with these points.

Now let us consider the primal hybrid finite element method with the right-hand
side f replaced by f̄ . By Proposition 3.2 we then have∫

T

divσh dx =

∫
T

f̄ dx,(4.3a)

or divσh = f̄ . This, together with (3.2), implies that∫
T

(σh +K∇uh) dx = 0.(4.3b)

The equations (4.3a)–(4.3b) form the finite volume box method introduced by Courbet
and Croisille [14]. Thus the primal hybrid finite element method along with our
technique of flux recovery provide an alternative approach to the finite volume box
method. A different approach is given in [13]; see also [12].

4.2. Rotated Q1 nonconforming method. Let Th be composed of quadri-
laterals, and

X̂ = span{1, x̂, ŷ, x̂2 − ŷ2}, Mh =
∏
T∈Th

S0(∂T )
⋂

M.

Then it is easy to see that Vh is the parametric rotated Q1 nonconforming finite
element space introduced by Rannacher and Turek [19]. One could use the nonpara-
metric version as well which, on rectangular grids, is given by

Xh(T ) = span{1, x, y, x2 − y2}, Mh =
∏
T∈Th

S0(∂T )
⋂

M.

As in the P1 nonconforming method, λh|ei is given by

λh|ei =
1

|ei|
(∫

T

fφi dx−
∫
T

∇uh · ∇φi dx

)
,

where φi ∈ Xh(T ) is the basis function associated with the edge ei.
Now we derive a simple formula for σh for the nonparametric version on rect-

angular grids. Suppose that f is piecewise constant. Then we obtain divσh = f
and ∫

T

(σh +K∇uh) · ∇v dx = 0 ∀v ∈ Xh(T ).(4.4)

Let us decompose σh|T into

σh|T = σh,0|T + aT (h
2
Ty
(x− xT ), h

2
Tx
(y − yT )),
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where σh,0|T belongs to

∇Xh(T ) = {(a+ bx, c− by) : a, b, c ∈ R},
and hTx and hTy are the width and the height of T , respectively. Since we have
divσh,0|T = 0, it follows that

aT =
f |T

h2
Tx

+ h2
Ty

.

Now, by means of the orthogonality relation∫
T

(h2
Ty
(x− xT ), h

2
Tx
(y − yT )) · ∇v dx = 0, v ∈ Xh(T ),

it is easy to see from (4.4) that

σh,0 = −P0(K∇uh),(4.5)

where P0 is the L2 projection which locally maps onto the space ∇Xh(T ). Combining
the results obtained thus far, we obtain

σh|T = −P0(K∇uh)|T +
f |T

h2
Tx

+ h2
Ty

(h2
Ty
(x− xT ), h

2
Tx
(y − yT )).(4.6)

Remark 4.2. Similar results using the lowest-order rectangular Raviart–Thomas
mixed finite element method can be found in [1, 8]. Our results show the primal
hybrid approach provides a clear way of constructing the vector approximation from
the Q1 nonconforming solution.

5. Extension to nonlinear problems. The previous results can be extended
to the nonlinear second-order elliptic boundary value problem{

−div a(u,∇u) = f in Ω,

u = 0 on ∂Ω.
(5.1)

The primal hybrid formulation is to find a pair (u, λ) ∈ X ×M such that

a(u, v) + b(v, λ) = (f, v) ∀v ∈ X,(5.2a)

b(u, v) = 0 ∀µ ∈M,(5.2b)

where

a(u, v) =
∑
T∈Th

∫
T

a(u,∇u) · ∇v dx.(5.3)

Analysis of the primal hybrid finite element methods for this nonlinear problem is
given in [18] for k ≥ 2.

The previous technique of recovering a vector approximation can be applied as
well. After computing the primal hybrid solution (uh, λh), one constructs a unique
σh ∈ RTk−1(T ) on each T ∈ Th by

σh · nT = λh on ∂T,(5.4a) ∫
T

[σh + a(uh,∇uh)] · τ dx = 0, τ ∈ Ψk−1(T ) (k ≥ 2).(5.4b)
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Setting σ = −a(u,∇u), we can derive the bound for ‖σ − σh‖0 in the same way
as before. By applying Lemma 3.3 to the error equations∫

∂T

(Πhσ − σh) · nT µds =

∫
∂T

(λ− λh)µds, µ ∈ Sk−1(∂T ),∫
T

(Πhσ − σh) · τ dx =−
∫
T

[a(u,∇u)− a(uh,∇uh)] · τ dx,

τ ∈ Ψk−1(T ) (k ≥ 2),

we obtain

‖Πhσ − σh‖0,T ≤ C(‖a(u,∇u)− a(uh,∇uh)‖0,T + h
1/2
T ‖λ− λh‖0,∂T ).

Note that if a has bounded derivatives, then there exists a constant C > 0 independent
of h such that

|a(u,∇u)− a(uh,∇uh)| ≤ C(|u− uh|+ |∇(u− uh)|),
which implies that

‖a(u,∇u)− a(uh,∇uh)‖0,T ≤ C‖u− uh‖1,T .
Thus it follows by Theorem 2.1 that

‖Πhσ − σh‖0,T ≤ Chk(|σ|k + |u|k+1).

Theorem 5.1. We have for u ∈ Hk+1(Ω)

‖σ − σh‖0 ≤ Chk(|σ|k + |u|k+1).

6. Numerical results. To confirm the theoretical results established in the
previous sections, numerical experiments are carried out on the unit square Ω = (0, 1)2

for three test problems. The first problem has a discontinuous tensor coefficient, and
the second one has a smooth coefficient, but its solution has a very weak “layer”
near the right boundary. Finally the third problem is taken from [16]. For numerical
results on triangular grids, we refer to [13].

Errors for the velocity and the pressure approximations are computed in the
discrete L2 norms

‖σ − σh‖20,h =
∑
T∈Th

∑
e∈∂T

[∫
e

(σ − σh) · n ds

]2
,(6.1)

‖u− uh‖20,h =
∑
T∈Th

∫
T

(u− uh)
2 dxdy,(6.2)

where the integrals are evaluated by the midpoint rule, i.e., if S denotes an edge e or
an area T , then we evaluate

∫
S
g by |S|×g(xS), where xS is the mass center of S. All

the results below show second-order convergence in the velocity. They are tabulated
as Tables 6.1–6.3.

Problem 1.

K =


104 0

0 1


 for 0 < x < .5,


1 0

0 2


 for .5 < x < 1,
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Table 6.1
Problem 1. Discontinuous tensor coefficients.

h ‖œ − œ h‖0,h ‖u− uh‖0,h
1/8 2.58135e-1 5.60052e-4

1/16 2.64380e-1 1.39916e-4

1/32 7.91115e-2 3.49786e-5

1/64 1.97629e-2 8.74365e-6

1/128 4.93600e-3 2.18584e-6

Table 6.2
Problem 2. Weak layer at the right boundary.

h ‖œ − œ h‖0,h ‖u− uh‖0,h
1/8 9.30579e-2 8.34233e-2

1/16 2.67894e-2 2.21723e-2

1/32 7.01984e-3 5.63162e-3

1/64 1.77762e-3 1.41354e-3

1/128 4.45865e-4 3.53740e-4

Table 6.3
Problem 3. Distorted grids, β = 60◦, θ = 45◦.

Grid size ‖œ − œ h‖0,h ‖u− uh‖0,h
8 × 8 2.0878e-1 4.1977e-2

16 × 16 5.2684e-2 1.0989e-2

32 × 32 1.3526e-2 2.7816e-3

64 × 64 3.4843e-3 6.9757e-4

128 × 128 8.9701e-4 1.7453e-4

and

u(x, y) = x(1− x)y(1− y).

The domain Ω is partition into the squares of size h. By simple calculations it is easy
to see that the velocity σ = −K∇u has continuous normal components across the line
of discontinuity x = 1/2. We use the parametric rotated Q1 nonconforming method
for this problem.

Problem 2. In this problem we let K = I, the identity matrix. The exact
solution is

u(x, y) = x(1− x)y(1− y) exp(5x),

which has a boundary layer. We use rectangular grids.
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✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂
✂✂

(0, 0) (1, 0)

(0, 1) (1, 1)

(.5, .5)

β✩

Fig. 6.1. Distorted grids for Problem 3.

Problem 3.

K =


 cos θ sin θ

− sin θ cos θ




1 0

0 0.01




cos θ − sin θ

sin θ cos θ


 ,

and u(x, y) = cos(πx) cos(2πy). The grids are obtained through successive refinements
of the initial grid shown in Figure 6.1. The refinement is done by connecting the
midpoints of opposite edges of every quadrilateral. We use the parametric rotated Q1
nonconforming method for this problem.
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Abstract. A postprocessing analysis of a previously computed bifurcation point of codim ≤ 3,
corank = 1 is proposed. Some cases with codim > 3 also are included. Our aim is to predict
quantitatively imperfect bifurcation phenomena. Our idea is to compute the differential of the
diffeomorphism that links the state and parameter variables of the actual problem with its normal
form.

Key words. bifurcation points, imperfect bifurcation diagrams, quantitative analysis
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1. Introduction. This paper deals with unusual numerical techniques for the
bifurcation analysis of steady states. The classical numerical methods for continuation
of parameter dependent solutions are presented, e.g., in [25], [20], [26]; for their up-
to-date versions, see, e.g., [12], [14], [13], [15], [27], [19], [31]. The latter in particular
yield the following types of results. The bifurcation points (u∗, λ∗) in our notation
below are detected along the solution curve, where solutions bifurcate or become
singular. The numbers of bifurcating branches, their stability properties, and often
their tangents, are determined (see, e.g., [31], [19], and here, in particular, section
7.8). The evaluation of the defining equations (see below) allows us to classify this
type of singularity. Hence, the structure of the bifurcation scenario is known; see [17,
Chap. III, Figs. 7.1, 7.2, 8.1 ff. and Chap. IV, Figs. 4.1 ff]. So, let (u∗, λ∗) for the
original problem be classified, e.g., as a pitchfork or a winged cusp; see Figure 4.3
in [17, Chap. IV]. For the classified normal form, all details of the scenario are well
known. However, it is not known where exactly in the neighborhood of the original
(u∗, λ∗), e.g., the hysteresis effects really do occur. In the case of chemical processes,
this is important information for the production process; see [28], [29].

To present this problem in more detail, we give a short outline. A unifying
approach via a generalized Liapunov–Schmidt reduction was proposed and justified
in [24]. Discretization methods for operator equations as elliptic PDEs, including
Navier–Stokes operators, are applied here to the generalized Liapunov–Schmidt re-
ductions. Their convergence was proved in [3], [10], [32], [2], [4], [5], [11]. Finally, the
link between reduction techniques and bordered matrices was considered, e.g., in [18].
For some recent developments in this direction see [33], [1], [31], [19].
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Republic (janovsky@karlin.mff.cuni.cz).

416



BIFURCATION OF CODIM ≤ 3 417

For bifurcation points we adopt the classification with one distinguished param-
eter; see [17], [24], [23], [31], [19].

The current state of the art of numerical bifurcation analysis (see, e.g., [24], [31],
[19]) could be briefly described as follows: Going down the hierarchy of bifurcation
points, find an organizing center. This is a singular point with the highest codimension
locally available. In our approach it is codim = 3; it is a higher codim in other specific
cases.

Going up the hierarchy, we start with the postprocessing of a previously discovered
organizing center: in [19, section 7.8] this consists of finding tangents to specific curves
of solutions passing through the organizing center by reducing the codim by one. In
[30], [34], and [31, Chap. 6], scaling techniques are employed to determine, even for
corank ≥ 1, the tangents of bifurcating solutions.

In our paper, we propose a much more complex postprocessing analysis based
on the bifurcation equation. The technique presented will supply a first-order ap-
proximation to the complete bifurcation scenario in a neighborhood of the organizing
center of the original problem. Hence, we (approximately) transform the scenario in
a neighborhood of, e.g., a pitchfork from the normal form to the original situation.
Golubitsky and Schaeffer in [17, pp. 146, 147; Figs. 7.1, 7.2] demonstrate the value
of this normal form analysis. Our postprocessing allows us to transform this back to
the original situation. This is important, e.g., for the chemical and pharmaceutical
industries in connection with the continuously stirred tank reactor, in particular, with
many different reactants, and also is important in other applications; see, e.g., [17],
[28], [29].

Our immediate motivation is the theory for imperfect bifurcation; see [16] and [17].
It yields qualitative information concerning the behavior of the bifurcation when the
problem is subjected to an arbitrary sufficiently small perturbation. In this context
we use the well-known unfolded normal forms of the bifurcation scenarios. They are
models of the actual bifurcation problems under perturbations. However, there exists
no quantitative link between the models, i.e., the unfolded normal form and the actual
computed bifurcation problem.

So, the main goal of our approach is to compute (or at least to approximate) a
diffeomorphism that links the unfolded normal form to the real bifurcation problem.
For the general case of codim ≤ 3, this is achieved for the first time in our Theorem
3.6. Its use, in combination with Tables 2–11 listed below, is demonstrated in Example
3.1. In the case studies [21] and [8] for simple and pitchfork bifurcations, resp., we
have verified that the idea really works numerically.

The outline of the paper is as follows. In our preliminaries (section 2), we con-
struct a kind of contact equivalence between the unfolded normal form and the actual
(reduced) bifurcation problem (Lemma 2.1). Hence, the roots of the particular un-
folded normal form are diffeomorphic to the solutions of the actual bifurcation prob-
lem. The differential of the diffeomorphism yields first-order approximations to every
kind of bifurcation point in a neighborhood of the organizing center.

In section 3, we show how to compute this differential for all organizing centers
with codim ≤ 3, corank = 1; see Theorem 3.6, Example 3.1, and Tables 2–11. For
the extremely technical proofs of the necessary lemmas and the determination of the
tables, we refer to [9]. We assume that a dimensional reduction has already been
performed.

We conclude with a brief review of the generalized Liapunov–Schmidt reduction
and computation of data for our a posteriori analysis (section 4). This is needed for
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the final transformation of the reduced-to-the-original bifurcation scenario.

2. Preliminaries. We consider a smooth parameter dependent mapping F :
R
N ×R

n → R
N , e.g., obtained by discretizing a PDE. Let F = F (u, β), β = (λ, α) ∈

R
1×R

k, n = 1 + k. In the bifurcation context [17], u is the state variable, and λ and
α are the control and unfolding parameters.

Let (u∗, λ∗, α∗) ∈ R
N × R

1+k be a bifurcation point of F with corank = 1, i.e.,

F (u∗, λ∗, α∗) = 0, dim KerFu(u
∗, λ∗, α∗) = 1.(2.1)

The point (u∗, λ∗, α∗) plays the role of an organizing center.
Note that here and in the following, subscripts of a mapping denote partial dif-

ferentials of the mapping w.r.t. the variable indicated by the subscript.
We consider a Liapunov–Schmidt reduction

g : R
1 × R

1+k → R
1 , g = g(x, y) , y = (t, z),

of F at the point (u∗, λ∗, α∗); see, e.g., [17, p. 25] and also [24], [31], [19] for a
computational version of the reduction, which we shall outline later in section 4. As
a consequence of the reduction, the solution sets F (u, λ, α) = 0 and g(x, t, z) = 0 are
locally one-to-one (isomorphic) in neighborhoods of (u∗, λ∗, α∗) and 0 ∈ R

2+k. This
isomorphism is described in section 4. It also links the singular roots of F and g; see,
e.g., [19, Prop. 6.2.7] and [31, Thm. 6.1.1].

Let h : R
2 → R

1 be defined as the restriction h(x, t) ≡ g(x, t, 0) so that h(x, t) = 0
defines the perfect bifurcation scenario. Note that for all singularities h = hx = 0 at
the origin.

The classification of g is realized by the classification of the perfect bifurcation
scenario h(x, t) = 0. This can be achieved by algebraic/geometric means, namely, by
linking the map h to a suitable normal form h∗ : R

2 → R
1. It guarantees the existence,

but does not allow the computation of the diffeomorphism. The bifurcation scenario
of the normal form is usually well understood.

The link is formally defined as a contact equivalence: there exist a smooth M :
R

2 → R
1 and a local diffeomorphism Ψ : R

2 → R
2, Ψ(x, t) = (χ(x, t), τ(t)), such that

χ = 0, M > 0, χx > 0 at 0 ∈ R
2 and τ = 0, τt > 0 at 0 ∈ R

1,(2.2)

and

h = Mh∗ ◦Ψ(2.3)

in a neighborhood of 0 ∈ R
2.

We shall abbreviate (2.2), (2.3) by saying h ∼ h∗; the relation ∼ is a well-defined
equivalence on germs of smooth functions R

2 → R
1; see [17, p. 104].

In Table 1, we list the normal forms h∗ considered in this paper: the relevant g∗

is a universal unfolding and k is the codimension; see [17, p. 196].
The role of g∗ becomes clear from the following lemma.
Lemma 2.1. Let M : R

2 → R
1 and a local diffeomorphism Ψ : R

2 → R
2 satisfy

(2.2) and (2.3) in a neighborhood of 0 ∈ R
2. Let g∗ : R

2 × R
k → R

1 be a universal
unfolding of h∗. Then there exist smooth extensions S,Φ of M,Ψ,

S : R
2+k → R

1, Φ : R
2+k → R

2+k, Φ(x, t, z) = (X(x, t, z), T (t, z), Z(z))(2.4)
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Table 1
Normal forms h∗ and universal unfoldings g∗ for codim = k ≤ 3, corank = 1. Here, |p| = |q| =

1. For details see Tables 2–11 below, indicating the following cases = 1, . . . , 10.

Case Normal form h∗ k Universal unfolding g∗ of h∗

1 px2 + qt 0 px2 + qt

2 px2 + qt2 1 px2 + qt2 + z1

3 px3 + qt 1 px3 + qt+ z1

4 px2 + qt3 2 px2 + qt3 + z1 + z2t

5 px3 + qtx 2 px3 + qtx+ z1 + z2x2

6 px4 + qt 2 px4 + qt+ z1x+ z2x2

7 px2 + qt4 3 px2 + qt4 + z1 + z2t+ z3t2

8 px3 + qt2 3 px3 + qt2 + z1 + z2x+ z3tx

9 px4 + qtx 3 px4 + qtx+ z1 + z2t+ z3x2

10 px5 + qt 3 px5 + qt+ z1x+ z2x2 + z3x3

such that

S(·, ·, 0) = M(·, ·), Φ(·, ·, 0) = Ψ(·, ·)(2.5)

satisfy (2.2) and

g = S g∗ ◦ Φ(2.6)

in a neighborhood of 0 ∈ R
2+k.

Proof. Let us extend Ψ : R
2 → R

2 as Ψ̄ : R
2+k → R

2+k, by the local bijection
Ψ̄(x, t, z) = (χ(x, t), τ(t), z); see (2.2). We define f : R

2+k → R
1 as

f(x, t, z) =
(
M ◦Ψ−1(x, t)

)−1
g ◦ Ψ̄−1(x, t, z).

Then, f(x, t, 0) = h ◦Ψ−1(x, t)/
(
M ◦Ψ−1(x, t)

)
= h∗(x, t); i.e., f = f(x, t, z) is a k-

parameter unfolding of h∗ = h∗(x, t); see [17, p. 120]. Since we assume g∗ = g∗(x, t, z)
to be a universal unfolding of h∗ = h∗(x, t), the f factors through g∗ [17, p. 120,

Def. 1.2], and hence there exist smooth S̃ : R
2+k → R

1 and Φ̃ : R
2+k → R

2+k,

Φ̃(x, t, z) = (X̃(x, t, z), T̃ (t, z), Z̃(z)) satisfying the following conditions:

Φ̃(x, t, 0) = (x, t, 0) , S̃(x, t, 0) = 1 , f = S̃g∗ ◦ Φ̃

in a neighborhood of 0 ∈ R
2+k. Then it is easy to verify that

S = M(x, t)S̃ ◦ Ψ̄(x, t, z) , Φ = Φ̃ ◦ Ψ̄

satisfy (2.5) and (2.6).
In the particular applications of Lemma 2.1 we have to assume that Φ is a diffeo-

morphism in a neighborhood of the origin; i.e., DΦ(0) ∈ L(R(2+k),R(2+k)) is regular.
In section 3 we will explicitly determine the Ψ and the Φ for the four families of
singularities of codim ≤ 3.

Remark 2.1. The assumption concerning the regularity of DΦ(0) is equivalent
to the assumption that the gradient of the defining conditions is regular at the origin;
see [9], [19]. The mentioned gradients are listed in [17, Table 3.2, p. 204]; for the
defining conditions, see [17, Table 2.3, p. 198].

Following the discussion in [17, Chap. III, section 4], the gradient of the defin-
ing conditions is regular if and only if g is a universal unfolding of h ≡ g(x, t, 0).
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In less formal language, we will assume that g depicts all quantitatively significant
perturbations of h.

Hence, assume det DΦ(0) �= 0. Due to Lemma 2.1, g(x, t, z) = 0 if and only
if g∗(X,T, Z) = 0, where Φ(x, t, z) = (X(x, t, z), T (t, z), Z(z)); the statement holds
in the obvious local sense. Recall the canonical structure of the diffeomorphism Φ,
namely, that z �→ Z(z) and (t, z) �→ (T (t, z), Z(z)) are diffeomorphisms in a neigh-
borhood of the origin.

These facts suggest the following solution of g = 0: Choose an imperfection
z ∈ R

k and a control parameter t ∈ R
1; map them as z �→ Z(z), (t, z) �→ T (t, z);

solve g∗(X,T (t, z), Z(z)) = 0 for X, which amounts to finding roots of an algebraic
equation; and define Φ−1(X,T (t, z), Z(z)) as (x, t, z). Then (x, t, z) solves g = 0.

The same applies to singular roots of g and g∗ since Φ−1 provides a one-to-one
link between stratified manifolds of singular points of g and those of g∗.

Example 2.1. Consider the classical pitchfork (case 5 in Table 1) as an example.
Note that (g =) gx = gt = gxx = 0 and gxxxgxt �= 0 are the defining equations and
nondegeneracy conditions, resp., and z ∈ R

2 the unfolding parameters. Since, e.g.,
g∗tt is none of the conditions, the g∗tt = 0 in Table 1 does not imply gtt = 0 in Table 6.

The set of all singular points of g is stratified as L = {(x, t, z) : g = gx = 0}, B
= {(x, t, z) : g = gx = gt = 0} and H = {(x, t, z) : g = gx = gxx = 0} ; these are called
limit points, simple bifurcation points, and hysteresis points. Obviously, L is the image
Φ−1(L∗), L∗ = {(x, t, z) : g∗ = g∗x = 0}. Similarly, B = Φ−1(B∗) and H = Φ−1(H∗).
The sets L∗, B∗, and H∗ can be constructed explicitly.

The diffeomorphism Φ is not available in general. The objective of this paper is
to compute DΦ(0). With Φ(0) = 0 this yields the natural first-order approximation
for Φ. We will come back to this problem in section 3.

Regarding the solution of g = 0, the following (partially) linearized approxi-
mation procedure replaces the above nonlinear approach: Choose z ∈ R

k and t ∈
R

1; map them as z �→ Zz z and (t, z) �→ Tt t + Tz z; solve the algebraic equa-
tion g∗(X,Tt t + Tz z, Zz z) = 0 for X; and invert DΦ(0) and define the action of
(DΦ(0))−1 at (X,Tt t + Tz z, Zz z) ∈ R

2+k as (x, t, z). Then (x, t, z) are first-order
approximations to the roots of g = 0. Similarly, all singular solutions of g = 0 in a
neighborhood of the origin (e.g., limit points L) can be approximated by the singular
solutions of g∗ = 0 (e.g., limit points L∗).

The analysis of singular roots of g has to be lifted from a small dimensional R
2+k

to the actual state space R
N+1+k, where the roots of F live. This will be done in

section 4.
In summary, by processing DΦ(0), we will obtain a sort of first-order predictor

for all singular points in the neighborhood of (u∗, λ∗, α∗). The implementation of this
idea was tested numerically in two case studies, where organizing centers 2 and 5 of
Table 1 were considered; see [21] and [8].

3. Computing the differential DΦ(0). The crucial step towards computing
DΦ(0) is an explicit solution of the recognition problem [17]. Note that the solution
of the recognition problem in [17] is not constructive; see Chapter II, section 11. We
need a solution based on the implicit function theorem. For motivation and discussion
see both case studies [21] and [8].

We can give only a rough idea for the procedure: To obtain an equation for
D Φ (0), we compute the partials in (2.6) w.r.t. x, t in a neighborhood of 0 ∈ R

k+2

to obtain the vector of defining conditions, e.g., (g, gx, gt, gxx) = 0, for the pitchfork.
With gxxxgtx �= 0 this characterizes the origin 0 ∈ R

k+2 as an appropriate bifurcation



BIFURCATION OF CODIM ≤ 3 421

point of g and g∗. Next, we compute the gradients w.r.t. x, t, z of these vectors,
e.g., (g, gx, gt, gxx)

T for g [24], [23] and g∗ [17]. They are collected to define B and
B∗. By [19], g and g∗ represent a universal unfolding of h and h∗ if and only if the
corresponding matrix B and B∗ is regular, respectively. Then we obtain for D Φ (0)
the following equation:

B = A B∗ D Φ (0);(3.1)

in A we collect all other terms, e.g., products and sums of S, Sx, St, X, Xx, Xt,
a.s.o., obtained in the above differentiation [9]. Note that the block structure of DΦ(0)
reflects the canonical structure of Φ:

DΦ(0) =


 Xx Xt Xz

0 Tt Tz
0 0 Zz


 ∈ L(R(2+k),R(2+k)) , Zz ∈ L(Rk,Rk) ;(3.2)

here and in (3.1) the required partial derivatives of X(x, t, z), T (t, z), and Z(z) are
evaluated at the origin. Now, the unknown terms in A, D Φ (0) have to be determined
by (3.1). For a naive approach this system usually has more unknowns than equations.
So we need additional information.

Following [19], normal forms for singularities of codim≤ 3 are organized in four
families: pitchfork family (cases 5, 9 of Table 1), hysteresis family (cases 1, 3, 6, 10),
asymmetric cusp family (cases 2, 4, 7), and a singleton winged cusp (case 8). For each
family the structure of the χ(x, t), τ(t) in (2.2) is described in detail in the following
lemmas, finally allowing us to solve (3.1). We need the following conditions for the
lemmas.

Let M = M(x, t), χ = χ(x, t), H = H(x), ω = ω(x), ψ = ψ(t), τ = τ(t),
a = a(t), b = b(t), c = c(t) be smooth real-valued functions in a neighbor-
hood of the origin and M(0, 0) > 0.

(3.3)

Lemma 3.1. Pitchfork family. Let h∗ = pxn + qxt, n ≥ 3, |p| = |q| = 1. Then
h ∼ h∗ if and only if (see (3.3))

h(x, t) = M · (pχk + q χ τ
)
, where(3.4)

τ(t) = c t , c > 0,

χ(x, t) = (x− ψ(t))H(x− ψ(t)) with ψ(0) = 0, H(0) = 1.

Lemma 3.2. Hysteresis family. Let h∗ = pxn + qt, n ≥ 2, |p| = |q| = 1. Then
h ∼ h∗ if and only if (see (3.3))

h(x, t) = M · (pχn + q τ) , where(3.5)

τ(t) = cn t , c =
1

ω(0)
> 0,

χ(x, t) = χ(x) = cxω(x) .

Lemma 3.3. Asymmetric cusp family. Let h∗ = px2 + qtn, n ≥ 2, |p| = |q| = 1.
Then h ∼ h∗ if and only if (see (3.3))

h(x, t) = M · (pχ2 + q τn
)
, where(3.6)

τ(t) = (pqb(t))
1/n

,(3.7)

χ(x, t) = x + a(t) ,(3.8)
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with a(0) = 0 and b(0) = b′(0) = 0, sgn(b′′(0)) = pq.
Lemma 3.4. Winged cusp. Let h∗ = px3 + qt2, |p| = |q| = 1. Then h ∼ h∗ if and

only if (see (3.3))

h(x, t) = M · (pχ3 + q τ2
)
, where(3.9)

τ(t) = (pqc(t))
1/2

,(3.10)

χ(x, t) =
(
(x + a(t))((x + a(t))2 + b(t))

)1/3
,(3.11)

with a(0) = 0, b(0) = b′(0) = 0 and c(0) = c′(0) = 0, sgn(c′′(0)) = pq.
Proof. Lemma 3.1 follows from Lemma 2.7 in [16]. Lemmas 3.2–3.4 can be proved

similarly; see [9].
For h ∼ h∗, these lemmas yield sufficient information to construct a pair M ,

Ψ = (χ, τ) such that (2.2), (2.3) hold. Note that the construction is certainly not
unique: M/c, cΨ would be another pair, provided that c �= 0. However, imposing
the scaling condition χx(0) = 1 makes the choice unique. Then Lemma 2.1 can be
used to determine the Φ(x, t, z) = (X(x, t, z), T (t, z), Z(z)) for the four families of
singularities of codim ≤ 3.

Definition 3.5. Let h ∼ h∗; i.e., (2.2), (2.3), and χx(0) = 1 hold. We say
that M : R

2 → R
1, Ψ(x, t) ≡ (χ(x, t), τ(t)) : R

2 → R
2 are the scaled solutions of the

recognition problem, provided that they are defined as suggested in Lemmas 3.1–3.4,
respectively.

Recall Lemma 2.1 and its assumptions. The scaled solution of the recognition
problem is a legitimate candidate for a choice of M and Ψ.

Theorem 3.6. Consider a Liapunov–Schmidt reduction g of F at a singular
point (u∗, λ∗, α∗). Let h ≡ g(x, t, 0) be equivalent to a normal form, h ∼ h∗, from
Table 1. Let g be a universal unfolding of h. Construct the diffeomorphism Φ in
Lemma 2.1, employing the scaled solution of the recognition problem.

Then for every family of singularities the DΦ(0) is uniquely defined. In order to
compute DΦ(0), the evaluation of a finite number of partial derivatives of g at the
origin is needed.

Proof. This is constructive. Tables 2–11 summarize the explicit relationship
between data (selected partial derivatives of g at the origin) and entries of DΦ(0).
Details are given in [9].

We demonstrate how to use Tables 2–11 in order to compute DΦ(0).
Example 3.1. We consider the pitchfork case 5 in Table 1 with g = gx = gt =

gxx = 0, gxxxgxt �= 0. Table 6 is the table which is relevant to this case. The data
represent 16 partial derivatives gxxx, gxt, gtt, gxtt, gxxt, gxxxx, gxxxt, ∂

5g/∂x5 ∈ R
1,

(gz)
�, (gxz)

�, (gtz)
�, and (gxxz)

� ∈ R
2. The claim is that the data define the matrix

DΦ(0) ∈ L(R4,R4); see (3.2). The entry Xx ≡ χx(0) is scaled to 1. Table 6 should
be interpreted as a set of 16 nonlinear equations for

• Xt, Xz, Tt, Tz, and Zz which are the entries of the scaled DΦ(0). Xt ∈ R
1,

(Xz)
� ∈ R

2, Tt ∈ R
1, (Tz)

� ∈ R
2, and Zz = ((Z1)z, (Z2)z) ∈ L(R2,R2);

• S, Sx, St, Sxx, Xxx, Xxxx ∈ R
1 resulting from the chain rule and necessary

to determine the above first partials;
hence, 16 equations for 16 unknowns altogether. This (and the other) system is solv-
able step by step in only linear subsystems of one or two equations with nonvanishing
determinants. This is indicated in the last column of Table 6 starting with S, Tt.
The pairs Sx, Xxx and Sxx, Xxxx are coupled linearly. To indicate that, we have
introduced the horizontal lines in Tables 6 and 10.
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Table 2
Limit point, Xt = 0.

Data ⇒
gxx = 2pS S

gt = qSTt Tt

Table 3
Simple bifurcation point and isola center, z ∈ R

1.

Data ⇒
gxx = 2pS S

gz = SZz Zz

gxt = 2pSXt Xt

gtt = 2pSX2
t + 2qST 2

t Tt

gxxx = 6pSx Sx

gxz = SxZz + 2pSXz Xz

gxxt = 4pSxXt + 2pSt St

gtz = StZz + 2pSXtXz + 2qSTtTz Tz

4. Remarks on implementation. Let us briefly review the Liapunov–Schmidt
reduction via bordered systems following [19, section 7.4].

Consider (u∗, λ∗, α∗), satisfying (2.1). Let L and M be a pair of fixed vectors
M ∈ R

N , L� ∈ R
N . Let the matrix

J (u∗, λ∗, α∗) ≡
(

Fu(u
∗, λ∗, α∗) M
L 0

)
∈ L(R(N+1),R(N+1))

be regular (which is the case for a generic choice of the bordering vectors M and L
and necessary for the approach in [21], [7]. For appropriate choices of M,L in J with
good condition numbers see [35], [34].) The nonlinear system

F (u∗ + v, λ∗ + t, α∗ + z)−M g = 0 , L v = x(4.1)

implicitly defines g = g(x, t, z) and v = v(x, t, z) as germs of smooth mappings g :
R

1 × R
1+k → R

1 and v : R
1 × R

1+k → R
N centered at the origin, i.e., satisfying

g(0) = 0 and v(0) = 0. This particular definition of g is called Liapunov–Schmidt
reduction.

Note that F (u, λ, α) = 0 if and only if g(x, t, z) = 0, where u = u∗ + v(x, t, z),
λ = λ∗ + t, and α = α∗ + z. In other words, there exists a local isomorphism between
the roots of F and g. Hence, as a consequence of Lemma 2.1, the roots of F and g∗

are in one-to-one correspondence. The same argument can be used regarding singular
roots of F , g, and g∗.

Let g(x, t, z) = 0. Consider (u, λ, α) ∈ R
N+1+k,

u = u∗ + vx x + vt t + vz z , λ = λ∗ + t , α = α∗ + z,(4.2)

where the partial differentials of v are evaluated at (0, 0, 0) ∈ R
2+k. The point (u, λ, α)

approximates a root of F . This approximation is to the first order.
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Table 4
Hysteresis, Xt = 0, z ∈ R

1.

Data ⇒
gxxx = 3!pS S

gt = qSTt Tt

gz = qSTz , z ∈ R
1 Tz

gxt = qSxTt Sx

gxz = qSxTz + SZz Zz

gxxxx = 4!pSx + 6 · 3!pSXxx Xxx

gxxt = qSxxTt Sxx

gxxz = qSxxTz + 2SxZz + 3!pSXz + SZzXxx Xz

Table 5
Asymmetric cusp, z ∈ R

2.

Data ⇒
gxx = 2pS S

gxt = 2pSXt Xt

gz = S(Z1)z (Z1)z

gxxx = 6pSx Sx

gxz = 2pSXz + Sx(Z1)z Xz

gxxt = 4pSxXt + 2pSt St

(D2(g))x = 4S2Xtt Xtt

(D2(g))t = 4S2XtXtt + 12pqS2T 3
t Tt

gtz = 2pSXtXz + St(Z1)z + STt(Z2)z (Z2)z

gxxxx = 12pSxx Sxx

gxxxt = 6pSxxXt + 6pSxt Sxt

gxxtt = 2pSxxX2
t + 8pSxtXt + 4pSxXtt + 2pStt Stt

gxttt = 6pSxtX2
t + 6pSttXt + 6pSxXtXtt + 6qSxT 3

t

+6pStXtt + 2pSXttt Xttt

gtttt = 12pSttX3
t + 24pStXtXtt + 24qStT 3

t + 6pSX2
tt

+8pSXtXttt + 30qST 2
t Ttt Ttt

(D2(g))z = 12pqS2T 2
t Tz + 2pS(Z1)z(X2

t Sxx + Stt − 2XtSxt)

+2pS(Z2)z(2TtSt − 2SxXtTt) + 4S2XzXtt Tz
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Table 6
Pitchfork, z ∈ R

2.

Data ⇒
gxxx = 6pS S �= 0

gxt = qSTt Tt �= 0

gz = S(Z1)z (Z1)z

gtt = 2qSTtXt Xt

gxxt = qSXxxTt + 2qTtSx + 6pSXt

Sx, Xxx

gxxxx = 36pSXxx + 24pSx

gxz = qSTz + Sx(Z1)z Tz

gxtt = 2qTt(SXtXxx +XtSx + St) + 6pSX2
t St

gtz = qSXzTt + qSTzXt + (Z1)zSt Xz

gxxxt = qTt(SXxxx + 3SxXxx + 3Sxx)

+18pXt(2SXxx + Sx) + 6pSt Sxx, Xxxx

∂5

∂x5 g = 30p(2SXxxx + 3SX2
xx + 6SxXxx + 2Sxx)

gxxz = qSXxxTz + 2qSxTz + 6pSXz + (Z1)zSxx

+2S(Z2)z (Z2)z

Table 7
Quartic fold, Xt = 0, z ∈ R

2.

Data ⇒
gxxxx = 4!pS S

gt = qSTt Tt

gz = qSTz Tz

gxt = qSxTt Sx

gxz = qSxTz + S(Z1)z (Z1)z

gxxt = qSxxTt Sxx

∂5

∂x5 g = 5!pSx + 2 · 5!pSXxx Xxx

gxxz = qSxxTz + 2Sx(Z1)z + S(Z1)zXxx + 2S(Z2)z (Z2)z

∂6

∂x6 g = 9 · 5!pSX2
xx + 4 · 5!pSXxxx + 3 · 5!pSxx + 2 · 6!pSxXxx Xxxx

gxxxt = qSxxxTt Sxxx

gxxxz = qSxxxTz + 3Sxx(Z1)z + 3SxXxx(Z1)z + 3!Sx(Z2)z

+4!pSXz + 3(Z1)zXxxx + 3!SXxx(Z2)z Xz
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Table 8
Asymmetric cusp, z ∈ R

3.

Data ⇒
gxx = 2pS S

gxt = 2pSXt Xt

gz = S(Z1)z (Z1)z

(D2(g))x = 4S2Xtt Xtt

gxxx = 6pSx Sx

gxz = 2pSXz + Sx(Z1)z Xz

gxxt = 4pSxXt + 2pSt St

(D3(g))x = 8pS2(SXttt + StXtt − SxXtXtt) Xttt

(D3(g))t = 96qS3T 4
t + 8pS2XtXtt(St − SxXt) + 8pS3(X2

tt +XtXttt) Tt

gtz = 2pSXtXz + St(Z1)z + STt(Z2)z (Z2)z

gxxxx = 12pSxx Sxx

gxxxt = 6pSxxXt + 6pSxt Sxt

gxxtt = 2pSxxX2
t + 8pSxtXt + 4pSxXtt + 2pStt Stt

∂5

∂x5 g = 20pSxxx Sxxx

∂5

∂x4∂t
g = 8pSxxxXt + 12pSxxt Sxxt

∂5

∂x3∂t2
g = 2pSxxxX2

t + 12pSxxtXt + 6pSxtt + 6pSxxXtt Sxtt

∂5

∂x2∂t3
g = 6pSxxtX2

t + 12pSxttXt + 6pSxxXtXtt + 12pSxtXtt

+2pSttt + 4pSxXttt Sttt

∂5

∂x∂t4
g = 8pStttXt + 12pSxttX2

t + 12pSttXtt + 24pSxtXtXtt

+8pStXttt + 6pSxX2
tt + 8pSxXtXttt + 24qSxT 4

t + 2pS ∂4

∂t4
X ∂4

∂t4
X

∂5

∂t5
g = 20pStttX2

t + 60pSttXtXtt + 30pStX2
tt + 40pStXtXttt

+20pSXttXttt + 10pSXt
∂4

∂t4
X + 120qStT 4

t + 240qST 3
t Ttt Ttt

(D2(g))z = 2pS(Z1)z(X2
t Sxx + Stt − 2XtSxt) + 4pS2T 2

t (Z3)z

+2pS(Z2)z(2TtSt − 2SxXtTt + STtt) + 4S2XzXtt (Z3)z

(D3(g))z = 96qS3T 3
t Tz + 16pSSxX2

t (SxXtXz − SxXtTz − 2StXz)

+ 8pS2(SXzXttt + StXzXtt − SxXtXzXtt)

+ 4S(Z1)z [S(Sttt − 3SxttXt + 3Sxxt +X2
t − SxxxX3

t )

+ SxxXt(3SXtt + StXt − SxX2
t ) + Stt(St − SxXt) Tz

+ Sxt(2SxX2
t − 2StXt − 3SXtt)]

+ 4S(Z2)z [3STt(SxxX2
t + Stt − 2SxtXt)

+ 2Tt(X2
t S

2
x + S2t − 2SxStXt)

+ S(4StTtt − 4SxXtTtt − 3SxXttTt) + S2Tttt]

+ 8(Z3)zS2Tt(3STtt + 4StTt − 4SxXtTt)
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Table 9
Winged cusp, z ∈ R

3.

Data ⇒
gxxx = 6pS S

gxxt = 6pSXt Xt

gtt = 2qST 2
t Tt

gxtt = 2qSxT 2
t + 6pSX2

t Sx

gz = S(Z1)z (Z1)z

gxz = Sx(Z1)z + S(Z2)z (Z2)z

gxxxt = 18pSxXt + 6pSt St

gttt = 6pSX3
t + 6qStT 2

t + 6qSTtTtt Ttt

gtz = 2qSTtTz + St(Z1)z Tz

∂5

∂x5 g = 60pSxx Sxx

gxxz = 6pSXz + (Z1)zSxx + 2Sx(Z2)z Xz

gxxtt = 2qSxxT 2
t + 12pSxX2

t + 12pStXt + 6pSXtt Xtt

gxttt = 6qSxtT 2
t + 6pSxX3

t + 18pStX2
t + 18pSXtXtt + 6qSxTtTtt Sxt

gxtz = 2qSxTtTz + 6pSXtXz + (Z1)zSxt

+(Z2)z(SxXt + St) + STt(Z3)z (Z3)z

At the end of section 2, we described a first-order approximation procedure for
(possibly singular) roots of g. Hence, whatever root of g is approximated, the trans-
formation (4.2) is adequate to lift its coordinates from R

1+1+k to the original state
space R

N+1+k.

As far as the proposed analysis is concerned, the main cost represents a com-
putation of the partial derivatives of g which are required in Tables 2–11. All these
derivatives are to be evaluated at the origin.

Note that the majority of these derivatives is contained in the gradient of the
defining equations; see Remark 2.1. This gradient is obtained as a byproduct of the
computation of (u∗, λ∗, α∗) by the Newton (or a Newton-like) method; see [19, section
7.4] and also the case study [8].

There are algorithms for a systematic computation of these partials; see [19,
section 7.4]. They are computed by solving canonical linear systems. These systems
have the same matrix, namely, J (u∗, λ∗, α∗). Moreover, the partials of g are naturally
computed with the relevant partial derivatives of v. So, by computing gx we compute
simultaneously vx (from (4.2)), etc.

Having this fact in mind, one may ask why we have not used the higher derivatives
of v (which we had computed anyway) for a higher order approximation in (4.2).
Consider, say, the quadratic approximation. Observe that in Tables 2–11 the gzz never
shows up in the data, which means that we do not need gzz for the first-order analysis
of g. Therefore, computing vzz would mean making an extra and “unsystematic”
effort.
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Table 10
Pitchfork, z ∈ R

3.

Data ⇒
∂4

∂x4 g = 4!pS S

gxt = qSTt Tt

gz = S(Z1)z (Z1)z

gtt = 2qSTtXt Xt

gxxt = qSTtXxx + 2qTtSx

Sx, Xxx

∂5

∂x5 g = 5!pSx + 2 · 5!pSXxx

gxz = qSTz + Sx(Z1)z Tz

gxtt = 2qTt(SXtXxx + SxXt + St) + 6pSX2
t St

gtz = qSTtXz + qSXtTz + St(Z1)z Xz

gxxxt = qTt(SXxxx + 3SxXxx + 3Sxx) + 24pSXt

SxxXxxx
∂6

∂x6 g = 5!p(3Sxx + 12SxXxx + 9SX2
xx + 4SXxxx)

gxxz = qSTzXxx + 2qSxTz + (Z1)zSxx + 2S(Z2)z (Z2)z

∂5

∂x4∂t
g = qTt(4Sxxx + 6SxxXxx + 4SxXxxx + SXxxxx)

+4!pSt + 2 · 4!pXt(2Sx + 5SXxx)

Sxxx,
∂4

∂x4X
∂7

∂x7 g = 7 · 5!p(Sxxx + 6SxxXxx + 9SxX2
xx + 4SxXxxx

+3SX3
xx + 6SXxxXxxx + SXxxxx)

gxxxz = qTz(3Sxx + 3SxXxx + SXxxx) + 4!pSXz

+Sxxx(Z1)z + 6(Z2)z(Sx + SXxx) + 6S(Z3)z (Z3)z

The required derivatives of g at the origin could be approximated by classical
finite differences. Nevertheless, except for the origin where g is pinned to zero, the
function (x, t, z) �→ g(x, t, z) ∈ R

1 is not known, and its values have to be computed,
as shown below.

Given (x, t, z), set v(0) = vx x+vt t+vz z to be an initial approximation of v(x, t, z);
for vx, vt, and vz, see (4.2). Consider the following iterations: Find δv ∈ R

N and
g(j+1) ∈ R

1 as the solution of the linear system

J
(
u∗ + v(j), λ∗ + t, α∗ + z

)( δv

−g(j+1)

)
=

(
−F (u∗ + v(j), λ∗ + t, α∗ + z)

0

)

and update v(j+1) := v(j) + δv.
If (x, t, z) is sufficiently close to 0 ∈ R

2+k, then the iteration process is locally
quadratically convergent. In particular, v(j) → v(x, t, z) and g(j) → g(x, t, z) as
j →∞. For details see [22], [6], [7].
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Table 11
Hysteresis Xt = 0, z ∈ R

3.

Data ⇒
∂5

∂x5 g = 5!pS S

gt = qSTt Tt

gz = qSTz Tz

gxt = qSxTt Sx

gxz = qSxTz + S(Z1)z (Z1)z

gxxt = qSxxTt Sxx

gxxxt = qSxxxTt Sxxx

∂5

∂x4∂t
g = qSxxxxTt Sxxxx

∂6

∂x6 g = 6!pSx + 15 · 5!pSXxx Xxx

gxxz = qSxxTz + 2Sx(Z1)z + S(Z1)zXxx + 2S(Z2)z (Z2)z

∂7

∂x7 g = 21 · 5!pSxx + 105 · 5!pSxXxx

+105 · 5!pSX2
xx + 35 · 5!pSXxxx Xxxx

gxxxz = qSxxxTz + 3Sxx(Z1)z + 3Sx(Z1)zXxx + 6Sx(Z2)z

+S(Z1)zXxxx + 6S(Z2)zXxx + 6S(Z3)z (Z3)z

∂8

∂x8 g = 56 · 5!pSxxx + 10 · 7!pSxxXxx + 20 · 7!pSxX2
xx

+280 · 5!pSxXxxx + 10 · 7!pSX3
xx Xxxxx

+560 · 5!pSXxxXxxx + 70 · 5!pSXxxxx

∂5

∂x4∂z
g = qSxxxxTz + 4Sxxx(Z1)z + 6Sxx(Z1)zXxx

+12Sxx(Z2)z + 4SxXxxx(Z1)z + 24SxXxx(Z2)z Xz

+4!pSx(Z3)z + 5!pSXz + S(Z1)zXxxxx

+6S(Z2)zX2
xx + 8S(Z2)zXxxx + 36(Z3)zXxx
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Abstract. We develop a general error analysis framework for the Monte Carlo simulation of
densities for functionals in Wiener space. We also study variance reduction methods with the help
of Malliavin derivatives. For this, we give some general heuristic principles which are applied to
diffusion processes. A comparison with kernel density estimates is made.
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1. Introduction. The Monte Carlo simulation method is used to estimate quan-
tities of the type E[f(X)], where f is a somewhat regular function and X is a random
variable that can be simulated.

In this article, we are interested in the case when f is a generalized function
such as the Dirac delta function δx or a discontinuous function such as an indicator
function. In the first case the expectation will become the density of the random
variable X and in the second the distribution function. If f is not regular, then the
Monte Carlo method has to be slightly modified using 1

n

∑n
i=1 fn(Xi), where fn is

a smooth function that approximates f and Xi are independent copies of X. This
approximation converges to the desired quantity but a big error is produced due to the
nonsmoothness of the general function f . In this framework it becomes important
to devise methods for reducing the variance of the Monte Carlo estimation. This
problem has been extensively studied by statisticians (although in a slightly different
situation) in the theory of kernel density estimation; see, e.g., [12].

Here we propose to analyze the above problem using Malliavin calculus for Wiener
space. More explicitly, using the integration by parts formula of Malliavin calculus
one has that E[f(X)] = E[F (X)H(X, 1)], where H(X, 1) is an appropriate random
variable and F is an antiderivative of f . In this way we gain smoothness in the function
to be evaluated but the simulation of H(X, 1) is now required. The above formula can
be explained as the integration by parts of

∫
R
f(x)p(x)dx = − ∫

R
F (x)p′(x)dx, where

p is the density of X, i.e., H(X, 1) = −p′(X)/p(X). This looks simple as long as one
knows the density of X. Here we deal with cases where p is not known explicitly. Still,
we show that there are ways to simulate H(X, 1) and that some variance reduction is
in fact achieved.

The typical example that we treat here is when X is the final value of a diffusion.
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That is, X = X1 where

Xt = x0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs, t ∈ [0, 1].(1.1)

Here x0 ∈ R and b and σ are smooth functions. If the Hörmander hypothesis is
satisfied, then the density of X1 exists and is smooth. In [1] and [2] the approximation
error for the density is studied when the random variable X1 is replaced by the Euler–
Maruyama approximation X̄.

Obviously, the density of X is explicitly known only in particular cases and there-
fore the simulation of H(X, 1) is not a trivial matter. This is exactly the merit of
Malliavin calculus. One can use this technique to develop an expression for H(X, 1)
that can be simulated. In order to simulate E[f(X)], our Monte Carlo method with
variance reduction is to calculate 1

n

∑n
i=1 F (X̄i)H(X̄i, 1), where X̄i are independent

Euler approximations of X. We concentrate on the particular case when f is the
delta function which therefore generates the density of the diffusion process, but this
methodology can be applied also when approximating the price of an option or its
Greeks in mathematical finance. In fact, this idea appeared first in [5] applied to
the calculation of Greeks called delta, vega, and gamma. Also in [6] a more careful
study of the simulation of the density is carried out. An optimal variance reduction
method is devised but it requires the knowledge of the density itself and is therefore
not amenable to direct application.

In this article, we introduce a control variate method and a tuning method, sim-
ilar to the ones used in kernel density estimation, that helps to reduce the variance
substantially. The main difference with respect to kernel density estimation methods
is that our tuning does not require that the window size goes to 0 as the sample size
increases. Furthermore, the same simulated paths give good estimates for densities
at any point. That is, one can compute the density over the whole real line with the
same number of simulated paths.

We focus in the one-dimensional case just to avoid cumbersome notation. The
results are also valid in multidimensions with appropriate modifications. The impor-
tance of these methods is obvious when the dimension is relatively large. See also [9]
on variance reduction of smooth functions of diffusions, where methods of importance
sampling and control variates are developed without the use of the integration by
parts formula.

In section 2 after some preliminaries on Malliavin calculus we explain the general
method and give a control variate method for variance reduction. In section 3 we
estimate the error of the approximating expectations. The error is estimated when
there is an Itô–Taylor expansion for the functional in the spirit of [8]. In section
4 we consider, as an application of section 3, the case of diffusion processes with a
Hörmander condition. We also define the different approximations and give bounds
on the approximation error. In section 5 we study the mean square error of the
kernel density method. In section 6 a similar study for the integration by parts
method is made and a comparison is made. In section 7 numerical implementations
are described.

Throughout, let c denote a generic constant which may differ from line to line.

2. Malliavin derivative and density by duality. Let W = {Wt}t∈[0,1] be a
standard one-dimensional Brownian motion defined on a complete probability space
(Ω,F , P ). Assume F = {Ft}t∈[0,1] is generated by W . Let S be the space of random
variables of the form F = f(Wt1 , . . . ,Wtn), where f is smooth. For F ∈ S, DtF =
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∑n
i=1

∂
∂xi
f(Wt1 , . . . ,Wtn)1[0,ti](t). For k ∈ Z+, p ≥ 1, let D

k,p be the completion of
S with respect to the norm

‖F‖k,p =


E[|F |p] + E




 k∑

j=1

∫ 1

0

. . .

∫ 1

0

|Dj
s1,... ,sjF |2ds1 . . . dsj




p/2





1/p

,

where Dj
t1,... ,tjF = Dt1 . . . DtjF . We let ‖F‖0,p = (E[F p])1/p = ‖F‖p and D

∞ =

∩k,pDk,p. For processes u = {ut}t∈[0,1] on (Ω,F , P ), D
k,p
L2([0,1]) is defined as D

k,p but

with norm ‖u‖k,p,L2([0,1]) = (E[‖u‖pL2([0,1])]+E[(
∑k

j=1

∫ 1

0
. . .
∫ 1

0
‖Dj

s1,... ,sju‖2L2([0,1])ds1

. . . dsj)
p/2])1/p. For two-parameter processes u = {us,t}s,t∈[0,1], D

k,p
L2([0,1]2) is defined

analogously. D
∞
L2([0,1]) and D

∞
L2([0,1]2) are defined similarly to D

∞.

We denote by δ(u) the Skorokhod integral, the dual operator of D. If ut is Ft

adapted, then δ(u) =
∫ 1

0
utdWt, the Itô integral of u; see, e.g., [11]. Here we write

δ(u) =
∫ 1

0
utdWt, even if ut is not Ft adapted. This integral satisfies that

∫ 1

0

FutdWt = F

∫ 1

0

utdWt −
∫ 1

0

(DtF )utdt(2.1)

for F ∈ D
1,2 and E(F 2

∫ 1

0
u2
tdt) <∞ (see, e.g., Nualart [11, (1.49), p. 40]) and

E

[∫ 1

0

(DtF )utdt

]
= E[Fδ(u)].(2.2)

For F , G in D
1,2 and h a stochastic process such that E

∫ 1

0
h2
tdt < ∞, we use the

notation

Hh(F,G) =

∫ 1

0

h̃tGdWt,(2.3)

where h̃t = ht/
∫ 1

0
hsDsFds, whenever the integrand in (2.3) is Skorokhod integrable.

The usefulness ofHh(F,G) can be seen in the integration by parts formula of Malliavin
calculus which can be expressed as

E[f ′(F )G] = E[f(F )Hh(F,G)].(2.4)

We let H(F,G) ≡ HDF (F,G) (i.e., ht = DtF in (2.3)). Arguments similar to those
in [11, pp. 78, 97] give the following theorem.

Theorem 2.1. Assume F ∈ D
1,2 and E

∫ 1

0
h2
tdt < ∞. Let ϕ be a function

on R such that ϕ, d
dxϕ ∈ L2(R), ϕ(0) = 1, and c ∈ L2(R). Let r be a positive

number and assume that h̃ϕ((F − x)/r) is Skorokhod integrable. Then the density
of F , f exists, is continuous, and f has the representation f(x) = E[ξc,r(x)], where
ξc,r(x) = (1{F>x} − c(x))Hh(F,ϕ(F−x

r )). Furthermore,

Hh

(
F,ϕ

(
F − x
r

))
= ϕ

(
F − x
r

)
Hh(F, 1)− 1

r
ϕ′
(
F − x
r

)
.(2.5)
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Proof of Theorem 2.1. We first observe that taking F = 1 and ut = ϕ((F−x)/r)h̃t
in (2.2) yields

E

[
Hh

(
F,ϕ

(
F − x
r

))]
= 0.(2.6)

We now show the existence of the density of F . For this we assume that F and u are
sufficiently smooth as well as ϕ. The general argument follows by a density argument.
Taking a < b and using (2.1), (2.2), and (2.6) we have that

∫ b

a

E

[
(1{F>x} − c(x))Hh

(
F,ϕ

(
F − x
r

))]
dx

=

∫ b

a

E

[
1{F>x}

∫ 1

0

h̃tϕ

(
F − x
r

)
dWt

]
dx

=

∫ b

a

E

[
1{F>x}

(
ϕ

(
F − x
r

)∫ 1

0

h̃tdWt −
∫ 1

0

h̃tDtϕ

(
F − x
r

)
dt

)]
dx

= E

[∫ F

−∞
1[a,b](x)ϕ

(
F − x
r

)
dx

∫ 1

0

h̃tdWt

]

−
∫ b

a

E

[∫ 1

0

1{F>x}h̃tDtϕ

(
F − x
r

)
dt

]
dx

= E

[∫ 1

0

Dt

(∫ F

−∞
1[a,b](x)ϕ

(
F − x
r

))
dxh̃tdt

]

−
∫ b

a

E

[∫ 1

0

1{F>x}h̃tDtϕ

(
F − x
r

)
dt

]
dx

= E

[∫ 1

0

1[a,b](F )ϕ(0)h̃tDtFdt

]
= E[1[a,b](F )],

which shows the absolute continuity of the law of F with respect to the Lebesgue
measure. The right continuity of the density of F , f follows from the fact that
d
dxϕ ∈ L2([0, 1]) and the right continuity of the indicator function 1{·>x}. Now f can
also be written with 1{F>x} replaced by 1{F≥x} from which the left continuity follows.

Finally, taking F = ϕ((F − x)/r) and ut = h̃t in (2.1) the claim (2.5) follows. That
is,

Hh

(
F,ϕ

(
F − x
r

))

=

∫ 1

0

ϕ

(
F − x
r

)
h̃tdWt

= ϕ

(
F − x
r

)∫ t

0

h̃tdWt −
∫ 1

0

Dt

(
ϕ

(
F − x
r

))
h̃tdt.

Taking F = ϕ((F − x)/r)/
∫ 1

0
hsDsFds and ut = ht in (2.1) and assuming enough

smoothness one obtains that

Hh(F, 1) =

∫ 1

0
htdWt∫ 1

0
hsDsFds

+

∫ 1

0

∫ 1

0
Dt(hsDsF )htdsdt

(
∫ 1

0
hsDsFds)2

.(2.7)
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Note that the variance of ξc,r(x) is finite under reasonable assumptions, while
var(δx(f)) = ∞. The issue of the variance of ξc,r(x) will be further discussed in
section 5. The representation of the density f introduced in Theorem 2.1 has the ad-
ditional benefit that it allows us to develop a control variate method for the reduction
of variance; see also [5], [6], and [7] for related results.

Remark 2.2 (control variate method). Assume the same hypotheses as in The-
orem 2.1. If f(x) > 0, then E[Hh(F,ϕ(F−x

r ))2] > 0 and, for fixed ϕ and r, the

variance of ξc,r(x) = (1{F≥x} − c(x))Hh(F,ϕ(F−x
r )) is minimized by

(2.8)

c(x) = chloc(x)

= E

[
1{F≥x}Hh

(
F,ϕ

(
F − x
r

))2
]/

E

[
Hh

(
F,ϕ

(
F − x
r

))2
]
.

The case of f(x) = 0 can also be dealt with using some extra changes. To simplify
our discussion we will focus on the case when f(x) > 0.

3. Convergence of approximative functionals. In this section we present a
general theory of approximation for random variables F on Wiener space that gives as
a result rates of convergence to the density of F . This theory is based on Itô–Taylor
expansions in the spirit of [8]. Later we consider as an application the case when F is
the terminal value of the solution of a stochastic differential equation. Other examples
that satisfy the following conditions will be treated in forthcoming publications. To
simplify we use the notation dW 1

s = dWs and dW 0
s = ds.

Condition 3.1. (i) {Fn}n≥0 and F are in D
∞ and satisfy

F − Fn =

1∑
i,j=0

∫∫
Ai,j

n

ui,jn (s1, s2)dW i
s1dW

j
s2 ,

where Ai,j
n are subsets of [0, 1]2 with mean area

∑1
i,j=0 |Ai,j

n |/4 ≤ an for a sequence

an → 0 as n → ∞, and supn sups1,s2

∑1
i,j=0 ‖ui,jn (s1,s2)‖k,p < ∞ for all k ∈ Z+,

p > 1. The processes ui,jn are measurable, not necessarily adapted but with enough
properties so that the above integrals are well defined.

(ii) For α ∈ [0, 1] there exist processes hn ≡ hn,α in D
∞(L2[0, 1]), uniformly

bounded in n, and a process h ∈ D
∞(L2([0, 1]), such that E[| ∫ 1

0
h(s)DsFds|−p] <

∞ for all p > 1 and E‖hn − h‖pL2[0,1] ≤ en(p) for a sequence en(p) ≡ en,α(p) → 0,
n→∞.

(iii) For α ∈ [0, 1] there exist positive random variables dn and positive bounded

constants bn and c such that |bn +
∫ 1

0
h(s)DsFds| > c|

∫ 1

0
h(s)DsFds| and

∣∣∣∣bn +

∫ 1

0

hn(s)(αDsFn + (1− α)DsF )ds

∣∣∣∣ ≥ dn,
where for any p > 1 there exists k(p) ≡ k(p, α) ∈ Z+ such that supn supα∈[0,1]E[d−p

n ]×
(a

k(p)/2
n + en(4k(p))1/2 + b

2k(p)
n ) <∞.

Without loss of generality we assume that all the sequences an, bn, en, and dn
are smaller than 1. Next we give the main approximation result in this section.



436 ARTURO KOHATSU-HIGA AND ROGER PETTERSSON

Theorem 3.2. Assume Condition 3.1. Then for any distribution T ,

|E[T (F )− T (Fn + Yn)]| ≤ c(an + bn),(3.1)

where Yn is an independent normal random variable with mean zero and variance bn.
Furthermore, if

sup
n≥1

sup
0<α<1

E

[∣∣∣∣
∫ 1

0

hn(s)(αDsFn + (1− α)DsF )ds

∣∣∣∣
−p
]
<∞(3.2)

for all p > 1, then

|E[T (F )− T (Fn)]| ≤ can.(3.3)

We say that the approximation problem is uniformly elliptic when (3.2) is sat-
isfied. If we instead only assume Condition 3.1, we will say that the approximation
problem is of Hörmander type. See section 4 for more explanation about this termi-
nology.

The above theorem will be usually applied to T (y) = 1{y≥x} or T (y) = δ
(k)
x (y),

the kth derivative of the Dirac delta measure. We will do the proof in the second case
for x = 0, k = 0. The general case is proved similarly. The application of Theorem
3.2 to diffusion processes and its Euler approximation will be given in section 4. At
the end of this section we also give a generalization of Theorem 3.2, where F − Fn
may be expressed as a sum of higher order stochastic multiple integrals.

We start with some technical results.
Lemma 3.3. Assume Condition 3.1(i). Then E‖D(Fn − F )‖pL2[0,1] ≤ cap/4n for

any p > 4.
The above rate is not optimal in most cases. But for our purposes it will suffice

as a rate of convergence.
Lemma 3.4. Assume Condition 3.1. Then

sup
n≥1

sup
0<α<1

E

[∣∣∣∣bn +

∫ 1

0

hn(s)(αDsFn + (1− α)DsF )ds

∣∣∣∣
−p
]
<∞ for all p > 1.

Proof of Lemma 3.3. We consider one of the terms in Condition 3.1(i) (i = 1, j =
1). By Proposition 1.4.5 of [11, p. 69], which is a consequence of Meyer’s inequality,

E

∥∥∥∥D
∫∫

A1,1
n

u1,1
n (s1, s2)dW 1

s1dW
1
s2

∥∥∥∥
p

L2([0,1])

≤ c1
∥∥∥∥
∫∫

A1,1
n

u1,1
n (s1, s2)dW 1

s1dW
1
s2

∥∥∥∥
p

1,p

≤ c2‖1A1,1
n
u1,1
n ‖p3,p

= c3

(
E[‖1A1,1

n
u1,1
n ‖pL2([0,1]2)]

+ E

[(
3∑

j=1

∫ 1

0

. . .

∫ 1

0

‖1A1,1
n
Dj

s1,... ,sju
1,1
n ‖2L2([0,1]2)ds1 . . . dsj

)p/2])
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≤ E[‖1A1,1
n
u1,1
n ‖pL2([0,1]2)]

+ E

[(
‖1A1,1

n
‖1/2L2([0,1]2)

×
(∫∫

[0,1]2

(
3∑

j=1

∫ 1

0

· · ·
∫ 1

0

(Dj
s1,... ,sju

1,1
n (t1, t2))2ds1 . . . dsj

)2

dt1dt2

)1/2)p/2]

≤ ap/4n sup
(t1,t2)∈[0,1]2

‖u1,1
n (t1, t2)‖p3,p ≤ cap/4n .

Proof of Lemma 3.4. Define the set

A ≡
{∣∣∣∣
∫ 1

0

(hn(s)DsFn − h(s)DsF )ds

∣∣∣∣ ∨
∣∣∣∣
∫ 1

0

(hn(s)− h(s))DsFds

∣∣∣∣
∨ bn < 1

4

∣∣∣∣
∫ 1

0

h(s)DsFds

∣∣∣∣
}
.

On A, | ∫ 1

0
hn(s)(αDsFn + (1− α)DsF )ds| ≥ 1

2 |
∫ 1

0
h(s)DsFds|; hence

E

[∣∣∣∣bn +

∫ 1

0

hn(s)(αDsFn + (1− α)DsF )ds

∣∣∣∣
−p

;A

]
≤ 4pE

[∣∣∣∣
∫ 1

0

h(s)DsFds

∣∣∣∣
−p
]
.

By Chebyshev’s inequality and Condition 3.1(iii), E[‖bn +
∫ 1

0
hn(s)(αDsFn + (1 −

α)DsF )ds‖−p;Ac] ≤ cp(E[d−2p
n,α ]P (Ac))1/2. For any k ∈ Z+ so that kp > 1, we have

by Condition 3.1(ii) and Lemma 3.3 that P (Ac) is less than or equal to

42kpck,pE

[ ∣∣∣∣
∫ 1

0

h(s)DsFds

∣∣∣∣
−2kp (

‖hnDFn − hDF‖2kpL1[0,1]

+ ‖ (hn − h)DF‖2kpL1[0,1] + b2kpn

)]

≤ ck,p
(
E

∣∣∣∣
∫ 1

0

h(s)DsFds

∣∣∣∣
−8kp

)1/4{(
E ‖D (Fn − F )‖4kpL2[0,1]

)1/2 (
E ‖hn‖8kpL2[0,1]

)1/4

+
(
E ‖hn − h‖4kpL2[0,1]

)1/2 (
E ‖DF‖8kpL2[0,1]

)1/4
}

+ ck,pE

(∣∣∣∣
∫ 1

0

h(s)DsFds

∣∣∣∣
−2kp

)
b2kpn

≤ ck,p
(
akp/2n + en(4kp)1/2 + b2kpn

)
.

The result follows by Condition 3.1(ii) and (iii).
Recall (2.3) and inductively define H(n) by H(n)(F,G) = Hh(F,H(n−1)(F,G))

and H(0)(F,G) = G. We then have that for any m ∈ Z+ and p > 1,

‖H(m)(F,G)‖p(3.4)

≤ c‖G‖m+1,p0(‖F‖α1
m+1,p1

+ ‖h‖α2

m,p2
)

∥∥∥∥∥
(∫ 1

0

h(s)DsFds

)−1
∥∥∥∥∥
α3

p3
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for a constant c and indices α1, α2 , α3, p0, . . . , p3 depending on m, p; see, e.g.,
[10, Proposition 3.3.2]. We consider the extended Wiener space W generated by
(W, W̃ ), where W̃ is a Brownian motion independent of W . Let Yn =

√
bnW̃1. For

G ∈ D
1,2(W) (which has as a norm the natural extension for the product space

D
1,2(W )× D

1,2(W̃ )-norm) we deduce using (2.4) that

E[g′(Yn + F )G] = E[g(Yn + F )H̄(F,G)],(3.5)

where

H̄(F,G) ≡ H̄h(F,G) =

∫ 1

0

Gh(t)∫ 1

0
h(s)DsFds+ bn

dWt +

∫ 1

0

G
√
bn∫ 1

0
h(s)DsFds+ bn

dW̃t.

Similarly, define by induction H̄(k) by H̄(k)(F,G) = H̄(F, H̄(k−1)(F,G)), where
H̄(0)(F,G) = G. Also if instead of h we use hn in the definition of H̄, then we
use the notation H̄n. Using similar arguments as to those of the proof of (3.4) the
following result is deduced.

Lemma 3.5. Assume F ∈ D
∞(W ) and G ∈ D

∞(W). Then for m ∈ Z+ and
p > 1,

‖H̄(m)(F,G)‖p ≤ c‖G‖m+1,p0(‖F‖α1
m+1,p1

+ ‖h‖α2

m,p2
+ bα3

n )

×
∥∥∥∥∥
(∫ 1

0

h(s)DsFds+ bn

)−1
∥∥∥∥∥
α4

p4

for a constant c and indices p0, p1, p2, p4, α1, . . . , α4, depending on m and p.
Proof of Lemma 3.5. We use induction. For H̄k ≡ H̄(k)(F,G),

H̄k =

∫ 1

0

H̄k−1h(t)∫ 1

0
h(s)DsFds+ bn

dWt +

∫ 1

0

H̄k−1

√
bn∫ 1

0
h(s)DsFds+ bn

dW̃t,

where H̄0 = G. Applying Meyer’s inequality (see, e.g., [11, p. 69]) and Hölder’s
inequality, for k = 0, . . . ,m, we have

‖H̄k‖m−k,p

≤ c‖H̄k−1‖m−k+1,αp(‖h‖m−k+1,βp +
√
bn)

∥∥∥∥∥
(∫ 1

0

h(s)DsFds+ bn

)−1
∥∥∥∥∥
m−k+1,γp

,

where α−1 + β−1 + γ−1 = 1. Furthermore, using the Cauchy–Schwarz inequality in

the calculation of terms of the form
∫
[0,1]i

(Dt1,... ,ti(
∫ 1

0
h(s)DsFds+ bn)−1)2dt1 . . . dti

gives ∥∥∥∥∥
(∫ 1

0

h(s)DsFds+ bn

)−1
∥∥∥∥∥
m+1,γp

≤ c(‖F‖β1

m+1,q1
+ ‖h‖β2

m,q2
+ bβ3

n )

∥∥∥∥∥
(∫ 1

0

h(s)DsFds+ bn

)−1
∥∥∥∥∥
β4

q4

for some indices q1, q2, q4, β1, . . . , β4. The result follows by induction.
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Proof of Theorem 3.2. Let fn(x) = φ√bn
(x) = exp(−x2/2bn)/

√
2πbn and Gn =∫ 1

0
f ′n(Yn+αFn+(1−α)F )dα. Using the mean value theorem and the duality between

the Skorokhod integral and the derivative operator (see, e.g., [11, equation (1.41), p.
35]) yields

(3.6)

E[fn(F + Yn)− fn(Fn + Yn)]

= E[Gn(F − Fn)] =

1∑
i,j=0

E

[
Gn

∫∫
Ai,j

n

ui,jn (s1, s2)dW i
s1dW

j
s2

]

=

∫∫
A0,0

n

E[Gnu
0,0
n (s1, s2)]ds1ds2 +

∫∫
A0,1

n

E[Ds2(Gn)u0,1
n (s1, s2)]ds1ds2

+

∫∫
A1,0

n

E[Ds1(Gn)u1,0
n (s1, s2)]ds1ds2 +

∫∫
A1,1

n

E[D2
s1,s2(Gn)u1,1

n (s1, s2)]ds1ds2.

We will compute one of these terms as they are all similar. Using (3.5) three times,
we get that |E[Ds2Gnu

0,1
n (s1, s2)]| equals∣∣∣∣

∫ 1

0

E[f ′′n (Yn + αFn + (1− α)F )(αDs2Fn + (1− α)Ds2F )u0,1
n (s1, s2)]dα

∣∣∣∣
=

∣∣∣∣
∫ 1

0

E[Φn(Yn + αFn + (1− α)F )H̄(3)(αFn + (1− α)F,

(αDs2Fn + (1− α)Ds2F )u0,1
n (s1, s2))]dα

∣∣∣∣
≤
∫ 1

0

E|H̄(3)
n (αDs2Fn + (1− α)Ds2F, (αDs2Fn + (1− α)Ds2F )u0,1

n (s1, s2))|dα,

where Φn is the distribution function associated with fn. By Lemma 3.5,

sup
n

sup
s1,s2

sup
0<α<1

E|H̄(3)
n (αFn + (1− α)F, (αDs2Fn + (1− α)Ds2F )u0,1

n (s1, s2))|

≤ c sup
n

sup
s1,s2

sup
0<α<1

‖(αDs2Fn + (1− α)Ds2F )u0,1
n (s1, s2)‖4,p0

×(‖αFn + (1− α)F‖α1
4,p1

+ ‖hn‖α2

3,p2
+ bα3

n )

×
∥∥∥∥∥
(
bn +

∫ 1

0

hn(s)(αDsFn + (1− α)DsF )ds

)−1
∥∥∥∥∥
α4

p4

,

which is finite by Condition 3.1(i), (ii) and Lemma 3.4. Similar considerations lead
to the conclusion that the other terms in (3.6) have a similar bound. In conclusion
one has that |E[fn(F + Yn)− fn(Fn + Yn)]| ≤ can.

Now consider E[δ0(F )− fn(F + Yn)]. Observe that

E[fn(F + Yn)] =

∫
R

E[fn(F + y)]fn(y)dy = E[φ√2bn
(F )]

= E

∫
R

δ0(F + z)φ√2bn
(z)dz = Eδ0(F +

√
2Yn).

By Condition 3.1(ii) and Theorem 2.1, the densities of F and F+
√

2Yn are continuous
and hence E[δ0(F )− δ0(F +

√
2Yn)] = limm→∞E[fm(F )− fm(F +

√
2Yn)]. A Taylor
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expansion of fm around F yields

E[fm(F )− fm(F +
√

2Yn)] =
√

2E[f ′m(F )Yn] + 2E

[∫ 1

0

f ′′m(F + α
√

2Yn)(1− α)Y 2
n dα

]
.

Clearly, E[f ′m(F )Yn] = 0 by the independence of F and Yn. By (2.4), (3.4), and
Condition 3.1(ii),

|E[f ′′m(F + α
√

2Yn)Y 2
n ]| =

∣∣∣∣
∫
E[f ′′m(F + α

√
2y)]y2fn(y)dy

∣∣∣∣
=

∣∣∣∣
∫

R

E[Φm(F + α
√

2y)H3(F, 1)]y2fn(y)dy

∣∣∣∣
≤ c( ‖F‖α1

4,p1
+ ‖h‖α2

3,p2

) ∥∥∥∥∥
(∫ 1

0

h(s)DsFds

)−1
∥∥∥∥∥
α3

p3

E[Y 2
n ] ≤ cbn.

Hence, |E[δ0(F ) − fn(F + Yn)]| ≤ cbn. Similarly, for an independent copy Ȳn of Yn,
we obtain by Lemma 3.5

|E[δ0(Fn + Yn)− fn(Fn + Yn)]|
= |E[δ0(Fn + Yn)− δ0(Fn + Yn +

√
2Ȳn)]|

= 2 lim
m→∞

∣∣∣∣
∫ 1

0

∫
R

E[f ′′m(α
√

2y + Fn + Yn)]y2fn(y)dy(1− α)dα

∣∣∣∣
= 2 lim

m→∞

∣∣∣∣
∫ 1

0

∫
R

E[Φm(α
√

2y + Fn + Yn)H̄(3)
n (Fn, 1)]y2fn(y)dy(1− α)dα

∣∣∣∣
≤ c(‖Fn‖α1

4,p1
+ ‖hn‖α2

3,p2
+ bα3

n )

∥∥∥∥∥
(∫ 1

0

hn(s)DsFnds+ bn

)−1
∥∥∥∥∥
α4

p4

EY 2
n ≤ cbn.

Furthermore, if (3.2) is satisfied, (3.3) follows as above but with Yn ≡ 0.
With the above technique and a further generalization of Condition 3.1(i) one can

obtain a power expansion of the error.
Theorem 3.6. Assume Condition 3.1 but with (i) replaced by

(i)′ F − Fn =

l∑
i=2

∑
j1,...,ji=0,1

∫
A

j1,... ,ji
n

uj1,... ,ji(s1, . . . , si)dW
j1
s1 . . . dW

ji
si

+
∑

j1,... ,jl+1=0,1

∫
R

j1,... ,jl+1
n

un(s1, . . . , sl+1)dW j1
s1 . . . dW

jl+1
sl+1

for l ≥ 2, where Aj1,... ,ji
n is a subset of [0, 1]i with

∑l
i=2

∑
j1,... ,ji=0,1 |Aj1,... ,ji

n |/[2(2l−
2)] ≤ an → 0 as n→∞, R

j1,... ,jl+1
n is a subset of [0, 1]l+1, and uj1,... ,ji as well as un

are two measurable stochastic processes not necessarily adapted. Assume

max
i

sup
s1,... ,si

‖uj1,... ,ji(s1, . . . , si)‖k,p + sup
n

sup
s1,... ,sl+1

‖un(s1, . . . , sl+1)‖k,p <∞

for k ∈ Z+, p > 1. Let Yn be an independent normal random variable with mean 0

and variance bn ≤
∑l

i=2

∑
j1,...,ji=0,1 |Aj1,... ,ji

n |/[2(2l − 2)]. Then for any distribution
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T , there exist deterministic functions cj1,... ,ji and a constant c such that

sup
n

∣∣∣∣∣E[T (F )− T (Fn + Yn)]

−
l∑

i=2

∑
j1,... ,ji=0,1

∫
A

j1,... ,ji
n

cj1,... ,ji(s1, . . . , si)ds1 . . . dsi

∣∣∣∣∣
≤ c

∑
j1,... ,jl+1=0,1

|Rj1,... ,jl+1
n |+ o


 l∑

i=2

∑
j1,... ,ji=0,1

|Aj1,... ,ji
n |


 .

Furthermore, if (3.2) is satisfied, then Yn can be replaced by 0.

Note that the second integral in Theorem 3.6 is interpreted as the anticipating
multiple Skorokhod integral. In this theorem we have not used the coefficients an
because this was just a bound for the sum of the areas of the sets Ai,j

n (see also
section 5).

Corollary 3.7. If condition (i) ′ in the above theorem is replaced by

(i)′′ F − Fn =

l∑
i=2

∑
j1,... ,ji=0,1

∫
A

j1,... ,ji
n

unj1,... ,ji(s1, . . . , si)dW
j1
s1 . . . dW

ji
si ,

where supn maxi sups1,... ,si ‖unj1,... ,ji(s1, . . . , si)‖k,p ≤ c(k, p), then for any distribu-

tion T , |E[T (F ) − T (Fn + Yn)]| ≤ c
∑l

i=2

∑
j1,... ,ji=0,1 |Aj1,... ,ji

n |. Furthermore, if
(3.2) is valid, then Yn can be replaced by 0.

4. Application to diffusion processes. We assume for convenience through-
out in this section that b ∈ C∞

b (R) and σ ∈ C∞
b (R). Consider the particular case

when F = X1 is given by (1.1) and Fn = X̄n
1 is given by its Euler approximation

X̄n
ti = X̄n

ti−1
+ b(X̄n

ti−1
)∆ti + σ(X̄n

ti−1
)∆Wi, where πn = {0 = t0 < t1 < · · · < tn = 1}

is a partition of [0, 1] with mesh m(πn) = max{ti+1 − ti : 0 ≤ i ≤ n − 1} and
∆Wi = Wti − Wti−1

. We interpolate X̄n between the grid points by X̄n
t = x0 +∫ t

0
b(X̄n

ηs
)ds +

∫ t

0
σ(X̄n

ηs
)dWs, where ηs = max{ti : ti < s}. We first prove that

Condition 3.1(i) is satisfied.

Lemma 4.1. Let b ∈ C∞
b (R) and σ ∈ C∞

b (R). Then Condition 3.1(i) is satisfied
for an = m(πn).

Proof.

Xt − X̄n
t =

∫ t

0

b′(ξ0s )(Xs − X̄n
s )ds+

∫ t

0

σ′(ξ1s )(Xs − X̄n
s )dWs(4.1)

+

∫ t

0

b(X̄n
s )− b(X̄n

ηs
)ds+

∫ t

0

σ(X̄n
s )− σ(X̄n

ηs
)dWs.

Here ξ0s and ξ1s are random points in the interval determined by Xs and X̄n
s . In

particular we understand the expression b′(ξ0s ) in its integral form b′(ξ0s ) =
∫ 1

0
b′(X̄n

s +
λ(Xs−X̄n

s ))dλ and similarly for σ′(ξ1s ). Note that (4.1) is linear inX−X̄n. Therefore,

if we define E as the unique solution to Et = 1 +
∫ t

0
b′(ξ0s )Esds +

∫ t

0
σ′(ξ1s )EsdWs, we



442 ARTURO KOHATSU-HIGA AND ROGER PETTERSSON

have

Xt − X̄n
t = Et

∫ t

0

E−1
s σ′(ε0s){b(X̄n

ηs
)(s− ηs) + σ(X̄n

ηs
)(Ws −Wηs

)}ds

+Et
∫ t

0

E−1
s b′(ε1s){b(X̄n

ηs
)(s− ηs) + σ(X̄n

ηs
)(Ws −Wηs

)}dWs

− Et
∫ t

0

E−1
s σ′(ξ1s )σ′(ε0s){b(X̄n

ηs
)(s− ηs) + σ(X̄n

ηs
)(Ws −Wηs

)}ds.

Here b′(ε1s) =
∫ 1

0
b′(X̄n

ηs
+ λ(X̄n

s − X̄n
ηs

))dλ, and similarly for σ′(ε0s). By using the
integration by parts formula (see, e.g., [11, equation (1.49), p. 40])

Xt − X̄n
t =

∑
i,j∈{0,1}

∫ t

0

∫ s2

ηs2

ui,jn (s1, s2)dW i
s1dW

j
s2 .

It is straightforward to show that ‖ui,jn (s1, s2)‖k,p is uniformly bounded in (s1, s2) and

n. Clearly |Ai,j
n | =

∫ 1

0

∫ s

ηs
duds ≤ m(πn). Condition 3.1(i) is satisfied.

Now we introduce sufficient conditions that ensure the smoothness of the density
of Xt. This also explains the terminology introduced for Condition 3.1 and (3.2).

Condition 4.2 (Hörmander condition). |σ(x0)| ≥ ε > 0 or |b(x0)σ(k)(x0)| ≥
ε > 0 for some k ∈ N and for some ε > 0.

Condition 4.3 (uniform ellipticity condition). |σ(x)| ≥ ε > 0 for all x ∈ R and
for some ε > 0.

Lemma 4.4. (i) If Condition 4.2 is satisfied, then Condition 3.1 is satisfied for
F = X1, Fn = X̄n

1 with hn(s) = hn,α(s) = αDsFn + (1 − α)DsF , h(s) = DsF ,

en(p) = cpa
p/4
n for some constant cp, bn = dn = an = m(πn).

(ii) If Condition 4.3 is satisfied and 1− tn−1 ≥ cm(πn) for some c > 0, then (3.2)
is satisfied with the same choices for hn and h as above.

Results similar to Lemma 4.4 for h and F are well known; see, e.g., [11, p. 111].
Proof of Lemma 4.4. First we prove Lemma 4.4(i). Condition 3.1(i) is satisfied

by Lemma 4.1. Condition 3.1(ii) is satisfied by Lemma 3.3. In fact,

E ‖hn,α − h‖L2[0,1] = (1− α)E
∥∥D(X̄n

1 −X1)
∥∥
L2[0,1]

≤ cpap/4n .

Furthermore, by Condition 4.2 and the proof of [11, Theorem 2.3.2], E[(
∫ 1

0
(DsX1)2ds)−p]

<∞ for all p > 1, and Condition 3.1(ii) follows.

To prove that Condition 3.1(iii) is satisfied we note that obviously |an+
∫ 1

0
(DsX1)2ds|

> | ∫ 1

0
(DsX1)2ds| and |an +

∫ 1

0
(αDsX̄

n
1 + (1 − α)DsX1)2ds| ≥ dn ≡ an. Clearly

supn d
−p
n (a

k(p)/2
n + en(4k(p))1/2 + b

2k(p)
n ) = 2a

k(p)/2−p
n + b

2k(p)−p
n <∞ if 2k(p) ≥ p.

Next we prove Lemma 4.4(ii). Similar to the proof of Lemma 3.4 we define the

set A ≡ {∫ 1

0

(
Ds(X̄

n
1 −X1)

)2
ds < 1

4

∫ 1

0
(DsX1)2ds}, and we have that for any p > 1,

sup
n

sup
α
E

[∣∣∣∣
∫ 1

0

(αDsX̄
n
1 + (1− α)DsX1)2ds

∣∣∣∣
−p

;A

]
≤ 4−pE

[∣∣∣∣
∫ 1

0

(DsX1)2ds

∣∣∣∣
−p
]
<∞.

Next we find a similar bound for the expectation taken over the set Ac. Note that
without loss of generality we can suppose that σ(x) ≥ ε > 0 for all x ∈ R. Then
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DsX1 > ε exp(
∫ 1

s
b
′
(Xu)du +

∫ 1

s
σ′(Xu)dWu) (see (7.1)). Also notice that DsX̄

n
1 =

σ(X̄(tnn−1)) ≥ ε > 0 for tn−1 < s ≤ 1 (see (7.3) and (7.5)). Hence for α > 1/2,∣∣∣∣
∫ 1

0

(αDsX̄
n
1 + (1− α)DsX1)2ds

∣∣∣∣ ≥ 1

4
ε2(1− tn−1).

For α ≤ 1/2 we use that∣∣∣∣
∫ 1

0

(αDsX̄
n
1 + (1− α)DsX1)2ds

∣∣∣∣
≥ 1

4
ε2
∫ 1

tn−1

exp

(
2

∫ 1

s

b
′
(Xu)du+ 2

∫ 1

s

σ′(Xu)dWu

)
ds.

In Ac the above estimates together with Chebyshev’s inequality and Lemma 3.3 com-
plete the proof as in the proof of Lemma 3.4. That is,

sup
n

sup
α
E

[∣∣∣∣
∫ 1

0

(αDsX̄
n
1 + (1− α)DsX1)2ds

∣∣∣∣
−p

;Ac

]

≤ 4pε−2p

(
(1− tn−1)−pP (Ac)

+E

[(∫ 1

tn−1

exp

(
2

∫ 1

s

b
′
(Xu)du+ 2

∫ 1

s

σ′(Xu)dWu

)
ds

)−2p]1/2

P (Ac)1/2
)

≤ cm(πn)−p(P (Ac) + P (Ac)1/2).

From here the result follows as P (Ac) ≤ ck(m(πn))k/2 for any k > 1. Taking k big
enough finishes the proof of the lemma.

Section 3 gives the rate of convergence of the Euler approximation. The same
proof gives the following stronger result.

Proposition 4.5. Assume Condition 4.2. Then

sup
x
|Eδx(X1)− Eδx(X̄n

1 + Yn)| ≤ cm(πn),

where Yn is an independent normal random variable with zero mean and variance
m(πn). Furthermore, if Condition 4.3 is valid and 1− tn−1 ≥ cm(πn) for some c > 0,
then

sup
x
|Eδx(X1)− Eδx(X̄n

1 )| ≤ cm(πn).

This stronger version follows because the antiderivative of the delta function is the
indicator function which is bounded in x. Applying Remark 2.2 to our current setting
gives the following.

Remark 4.6 (control variate method). (i) Assume Condition 4.2 with the choices
for hn and h in Lemma 4.4(i). Let ξhn

n,r(x) = (1{X̄n
1 +Yn>x} − c(x))Hhn(X̄n

1 + Yn,

ϕ(
X̄n

1 +Yn−x
r )). Then E(ξhn

n,r(x)) = Eδx(X̄n
1 + Yn) and supx,nE(ξhn

n,r(x)2) < ∞. If

Eδx(X̄n
1 +Yn) > 0, then E[Hhn(X̄n

1 +Yn, ϕ(
X̄n

1 −x
r ))2] > 0 and, for fixed ϕ and r, the

variance of ξhn,r(x) is minimized by

c(x) = chn,r(x) =
E[1{X̄n

1 +Yn>x}Hhn(X̄n
1 + Yn, ϕ(

X̄n
1 +Yn−x

r ))2]

E[Hhn(X̄n
1 + Yn, ϕ(

X̄n
1 +Yn−x

r ))2]
.
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(ii) Assume Condition 4.3 with the choices for hn and h in Lemma 4.4(ii). Then
Yn above can be replaced by 0. Furthermore Eδx(X̄n

1 ) > 0.
Results similar to Proposition 4.5 have already been obtained in [1] and [2]. The

main difference with the results here is that the method of proof is somewhat different
and that our Proposition 4.5 is the result of a general theory based on Itô–Taylor
expansions which can also be applied to other situations. In fact, under further
restrictions on the structure of the sets An, Rn, and the continuity of the processes u
and un, one can improve Theorem 3.6 to obtain Taylor expansions of the errors. For
example in the uniformly elliptic case we have

E[T (Fn)− T (F )] = c1an + c
(n)
2 a2

n

for any distribution T . In the general Hörmander case,

E[T (Fn + Yn)− T (F )] = c1an + c2bn + c
(n)
3 anbn + c

(n)
4 a2

n + c
(n)
5 b2n,

where Yn is a mean zero normal random variable with variance bn, independent of W ,

and supn |c(n)
i | <∞, i = 2, . . . , 5. This result will be proven elsewhere.

5. Kernel density estimation method. So far we have given convergence
results for the density approximation by integration by parts. In this section we
discuss heuristically the “most natural” approach by kernel density estimates and
compare the asymptotic variances.

The kernel density estimation technique is a very well known method used in
statistics. The main difference between this and our situation is that in statistics the
amount of data is limited while here the amount of simulations can be fixed by the
user. Nevertheless, the same theory gives us some insight into the optimal use of this
method for simulation of densities.

That is, let φ be a smooth positive even function with
∫

R
φ(x)dx = 1. Then

the approximation of the density is obtained by computing
∑N

i=1 φ(
F i

n−x
h )/(Nh).

The error is measured through the L2(R)-norm of the variance. Estimating this
error requires the study of various errors.

The first error is the difference between the expectations of the simulated approx-
imation and the limit random variable,

1

h
E

[
φ

(
Fn − x
h

)
− φ

(
F − x
h

)]
= c1(x)an + c

(h,n)
2 (x)a2

n,(5.1)

where supn,h |c(h,n)
2 (x)| < ∞. Here the constants obviously depend also on φ. To

obtain this result it is enough to notice that

1

h
E

[
φ

(
Fn − x
h

)
− φ

(
F − x
h

)]
= E[δx(Fn + hY )− δx(F + hY )],

where Y is a smooth random variable with density given by φ. This converts the
estimation of the error into the uniformly elliptic case. Therefore the same method
of proof as in Theorem 3.6 can be used.

The second error is the difference between the density to be approximated and
the approximation with the kernel function (see, e.g., [12]):

1

h
E

[
φ

(
F − x
h

)
− δx(F )

]
=

1

2
h2p′′(x)

∫
u2φ(u)du+O(h4)p(4)(x),
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where p is the density of F . Similarly for the mean square error,

E



(

1

Nh

N∑
i=1

φ

(
F i
n − x
h

)
− p(x)

)2



= Var

[
1

Nh

N∑
i=1

φ

(
F i
n − x
h

)]
+

(
1

h
E

[
φ

(
Fn − x
h

)
− φ

(
F − x
h

)])2

+

(
E

[
1

h
φ

(
F − x
h

)
− p(x)

])2

+2
1

h
E

[
φ

(
Fn − x
h

)
− φ

(
F − x
h

)]
E

[
1

h
φ

(
F − x
h

)
− p(x)

]

= pn(x)
1

Nh

∫
φ2(u)du+ c1(x)2a2

n +
h4

4

(
p′′(x)

∫
u2φ(u)du

)2

+ c1(x)h2anp
′′(x)

∫
u2φ(u)du+ higher order terms,

where pn is the density of Fn. If one considers as a minimization criterion the L1-
norm of the mean squared error, this gives the classical criterion of kernel density
estimation. That is,

∫
E



(

1

Nh

N∑
i=1

φ

(
F i
n − x
h

)
− p(x)

)2

 dx

≈ 1

Nh

∫
φ2(u)du+ c21a

2
n +

h4

4

∫
p′′(x)2dx

(∫
u2φ(u)du

)2

.

The optimum is therefore obtained when φ is the Epanechnikov kernel and h ∼
N−1/5 and N ∼ a−5/2

n .

6. Optimal choice for the integration by parts method. As in the previous
section we will find heuristically an optimal choice of localization function ϕ and
localization parameter r for the integration by parts method introduced in section
2. In order to do this we will find an asymptotical expression for the variance of the
simulations.

Let ϕ ∈ C1
b with ϕ(0) = 1. One criteria for optimality may be to choose ϕ and r

so that they minimize

∫
R

E

[
1(Fn + Yn ≥ x)Hh

(
Fn + Yn, ϕ

(
Fn + Yn − x

r

))2
]
dx(6.1)

under the general Hörmander condition. This criteria can be studied but is cum-
bersome as the optimal choices will depend on n. Instead one may study the limit
assuming that the error terms are small. Therefore for simplicity we consider for small
r, under convenient smoothness and boundedness conditions, the asymptotic limit of
(6.1) which, using (2.5), equals

∫
R
I(x)dx, where

I(x) = E

[
1(F ≥ x)

(
ϕ

(
F − x
r

)
Hh(F, 1)− 1

r
ϕ′
(
F − x
r

))2
]
.
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Let Hi(x) = E[Hh(F, 1)i|F = x] for i = 1, 2, and let p be the density of F . Then

I(x) =

∫ ∞

x

E

[(
ϕ

(
y − x
r

)
Hh(F, 1)− 1

r
ϕ′
(
y − x
r

))2

|F = y

]
p(y)dy

=

∫ ∞

x

(
1

r2
ϕ′
(
y − x
r

)2

− 2

r
ϕϕ′

(
y − x
r

)
H1(y) + ϕ

(
y − x
r

)2

H2(y)

)
p(y)dy

= r

∫ ∞

0

(
1

r2
ϕ′(z)2 − 2

r
ϕϕ′(z)H1(x+ rz) + ϕ(x+ rz)2H2(x+ rz)

)
p(x+ rz)dz.

Under smoothness and boundedness conditions of Hi, ϕ, and p, I(x) = I2(x) +O(r2)
for small r, where

I2(x) =
1

r
p(x)

∫ ∞

0

ϕ′(z)2dz +H1(x)p(x)

∫ ∞

0

(ϕ′(z)2zp′(x)− 2ϕϕ′(z))dz

+ rp′′(x)

∫ ∞

0

1

2
ϕ′(z)2z2dz +H2(x)p(x)

∫ ∞

0

ϕ2(z)dz

− 2(H1(x)p′(x) +H ′
1(x)p(x))

∫ ∞

0

ϕϕ′(z)zdz(6.2)

and ∫
R

I2(x)dx =
1

r

∫ ∞

0

ϕ′(z)2dz + r

∫ ∞

0

ϕ2(z)dz

∫
R

H2(x)p(x)dx,(6.3)

where
∫

R
H2(x)p(x)dx = E[Hh(F, 1)2] and

∫
R
H1(x)p(x)dx = E[Hh(F, 1)] = 0. An

optimal value for r which minimizes (6.3) is given by

r =

( ∫∞
0
ϕ′(z)2dz

E[Hh(F, 1)2]
∫∞
0
ϕ(z)2dz

)1/2

.

Replacing this r in (6.3) yields

∫
R

I2(x)dx = 2

(
E
[
Hh(F, 1)2

] ∫ ∞

0

ϕ(z)2dz

∫ ∞

0

ϕ′(z)2dz
)1/2

,

which, by variational analysis, is minimized for ϕ solving

ϕ(z)

∫ ∞

0

ϕ′(z)2dz − ϕ′′(z)
∫ ∞

0

ϕ(z)2dz = 0.(6.4)

For any λ > 0, the function ϕ(z) = e−λ|z| is symmetric, solves (6.4), and satisfies
ϕ(0) = 1. Hence we propose as a natural choice of r and ϕ

r =

( ∫∞
0
ϕ′(z)2dz

E[Hh(F, 1)2]
∫∞
0
ϕ(z)2dz

)1/2

, ϕ(x) = e−λ|x|,(6.5)

where λ > 0 may be arbitrarily chosen. Note that the main error term (6.3) with
optimal ϕ is independent of the value of λ.
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After the minimization in r and ϕ is done one can apply the control variate
method introduced in Remark 4.6. Therefore the variance error for the integration
by parts with control variates and localization is in the uniformly elliptic case

E



(

1

N

N∑
i=1

(1(F i
n ≥ x)− cn(x, r))H̄n

(
F i
n, ϕ

(
F i
n − x
r

))
− p(x)

)2



≈ C1(x)2a2
n +

Var[(1(Fn ≥ x)− cn(x, r))H̄n(Fn, ϕ(Fn−x
r ))]

N
.

The optimal choice is therefore N ∼ a−2
n . For the general Hörmander case, N ∼

(an + bn)−2.

6.1. Comparison of the kernel density estimate and the integration by
parts method: Some conclusions and remarks. A first look at both meth-
ods shows that kernel density estimation has a square bias asymptotically equal to
h4p′′(x)2

∫
u2φ(u)du due to the fact of using φ, besides the square bias c1(x)2a2

n +
c2(x)2b2n from the approximation of F . If the first type of error is much smaller
than the second one, then only the second one is important when comparing the two
methods.

In order to compare both methods, suppose that an = n−1. Then the optimal
sample size for the integration by parts method is N = n2, which is significantly less
than the optimal sample size N = n5/2 for the kernel density method. Furthermore,
the kernel density method creates bias while the integration by parts does not, at
least theoretically. Nevertheless, the amount of calculations in the integration by
parts method is higher.

The optimal parameter rn,N does not go to 0 as n, N increase. In fact, r could
remain constant throughout the calculations with little increase of the variance. It
seems that rn,N → r > 0 in most of the cases. Numerical experiments indicate that
the choice of r does not look to be sensitive. Kernel density estimation often requires
a fine tuning of the bandwidth h.

There is no clear way to apply a control variate method to kernel density estima-
tion methods.

In higher dimensions the kernel density estimate rate of convergence deteriorates

typically to N− 4
d+4 while the integration by parts keeps the same rate.

Constants in the integration by parts methods increase in value as the degree of
hypoellipticity increases.

Similar variance reductions could be studied on other environments where an
integration by parts formula is available. For example, in the Poisson case one could
use the same ideas as shown here; see, e.g., [3].

7. Numerical implementation. We consider the particular case when F = X1

is given by (1.1) and Fn is its Euler approximation. We first note that

DsXt =

{
σ(Xs)e

∫ t
s
b
′
(Xv)dv+

∫ t
s
σ′(Xv)dWv , s ≤ t,

0, s > t,
(7.1)

where b
′
(Xv) = b′(Xv)− 1

2σ
′(Xv)2; see, e.g., [11, p. 107]. Using (7.1), it follows that

(7.2)

DsDtX1 = Ds[Xt]σ
′(Xt)e

∫ 1
t
b
′
(Xv)dv+

∫ 1
t
σ′(Xv)dWv
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+

[
σ′(Xs)1{t≤s} +

∫ 1

t

b
′ ′(Xv)DsXvdv +

∫ 1

t

σ′′(Xv)DsXvdWv

]
DtX1.

Since

Dtj X̄
n
tk

= Dtj X̄
n
tk−1

+ [b′(X̄n
tk−1

)∆t+ σ′(X̄n
tk−1

)∆Wk]Dtj X̄
n
tk−1

+ σ(X̄n
tk−1

)Dtj∆Wk,

and Ds∆Wtk = 1{tk−1<s≤tk}, it follows that DtkX̄
n
tk

= σ(X̄n
tk−1

). By induction,

Dtj X̄
n
tk

=




0, j = 0,

σ(X̄n
tk−1

), 1 ≤ j = k,

σ(X̄n
tj−1

)Πk−1
l=j (1 + b′(X̄n

tl
)∆tl+1 + σ′(X̄n

tl
)∆Wl+1), 1 ≤ j ≤ k − 1,

0, j ≥ k + 1.

(7.3)

Note that (7.3) is a discrete version of (7.1) (Πj(1+εj) ≈ e
∑

j(εj−ε2j/2)). Using similar
arguments one obtains

DtiDtj X̄
n
tk

=




0, j = 0,

0, j ≥ k + 1,

b′(X̄n
tk−1

)DtiX̄
n
tk−1

, j = k,

Dti [X̄
n
tj−1

]b′(X̄n
tj−1

)Πk−1
l=j (1 + a′(X̄n

tl
)∆t+ b′(X̄n

tl
)∆Wl+1)

+
(∑k−1

l=j

[a′′(X̄n
tl

)∆t+b′′(X̄n
tl

)∆Wl+1]Dti
X̄n

tl

1+a′(X̄n
tl

)∆t+b′(X̄n
tl

)∆Wl+1

+
b′(X̄n

ti−1
)1{j≤i−1≤k−1}

1+a′(X̄n
ti−1

)∆t+b′(X̄n
ti−1

)∆Wi

)
Dtj X̄

n
tk
,

2 ≤ j ≤ k − 1

(7.4)

which is a discrete version of (7.2).
To apply the above formulas to the integration by parts method we need to use

that

DsX̄
n
tk

= Dη+
s
X̄n

tk
,(7.5)

where η+
s = min{ti : ti ≥ s}. This follows because

DsX̄
n
tk

= Ds[X̄
n
tk−1

+ b(X̄n
tk−1

)∆tk + σ(X̄n
tk−1

)∆Wk]

= [1 + b′(X̄n
tk−1

)∆tk + σ′(X̄n
tk−1

)∆Wk]DsX̄
n
tk−1

+ σ(X̄n
tk−1

)1{tk−1<s≤tk}.

We then have that for tk−1 < s < tk, DsX̄
n
tk

= σ(X̄n
tk−1

) = DtkX̄
n
tk

. By induction we

have in general that for tj−1 < s < tj , DsX̄
n
tk

= Dtj X̄
n
tk

for j = 1, . . . , k. We also
have that

DsDtX̄
n
tk

= Dη+
s
Dη+

t
X̄n

tk
.(7.6)

Using (7.5), (7.6), and (2.7) gives

H1(X̄n
1 , 1) =

W1∑n
1 DtiX̄

n
1 ∆ti

+

∑n
i,j=1DtiDtj X̄

n
1 ∆ti∆tj

(
∑n

1 DtiX̄
n
1 ∆ti)2

,
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from which H1(X̄n
t , ϕ((X̄n

t − x)/r)) can be computed by (2.5). An approximation to
the density using the integration by parts formula can now be explicitly written. For
example,

fn,N (x) =
1

N

N∑
i=1

(1{X̄n,i
1 ≥x} − ĉ1loc(x))H1

(
X̄n,i

1 , ϕ

(
X̄i

1 − x
r

))
,(7.7)

where

ĉ1loc(x) =

1
N

∑N
i=1 1{X̄n,i

1 ≥x}H
1
(
X̄n,i

1 , ϕ
(
X̄n,i

1 −x
r

))2

1
N

∑N
i=1H

1
(
X̄n,i

1 , ϕ
(
X̄n,i

1 −x
r

))2

is a natural estimate of (2.9).
We perform the simulation (7.7) with optimal ϕ and r from (6.5) with λ = 1 and

equidistant partition m(πn) = n−1 and compare with a locally optimal r (numerically
obtained optimal r for fixed x) and the kernel density estimate; see Figure 1. We also
compare the convergences in Figure 2. The computations are made in MATLAB.

(a) –6 –4 –2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) –6 –4 –2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

Fig. 1. Monte Carlo simulation of dX = dt + (sinX + 2)dW , X0 = 0, n = m(πn)−1 = 3000,
N = 1000. (a) Approximation using the integration by parts formula with control variate; local
search of optimal r - - - (optimal r for given x), and global search of optimal r - · - (minimizing
(6.1)), respectively. Gaussian kernel density estimate with optimal bandwidth [4, p. 47] . . .. The
numerical solution of the Fokker Planck equation —. (b) Corresponding sample variances of the
estimates.
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Fig. 2. Monte Carlo simulation of dX = dt + (sinX + 2)dW , X0 = 0. In (a), convergence of
approximations to the density at x = 2 for n = m(πn)−1 = 50, 51, . . . , 125, N = n2. Integration
by parts method with control variate, local search of optimal r - - - (optimal r for given x), Gaus-
sian kernel density estimate with optimal bandwidth [4, p. 47] . . .. In (b), corresponding sample
variances.
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Abstract. We prove the convergence of the transmission time marching algorithm for the
β–monoscale-multimodel methods for hydrodynamics-type problems. Our analysis is based on the
author’s transmission multiplier method we introduced in [C. R. Acad. Sci. Paris Sér. I Math., 328
(1999), pp. 637–642] and the local, global, and trace estimates we developed in [J. Math. Anal. Appl.,
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1. Introduction. In this paper we prove the convergence of the transmission
time marching algorithm (TTMA) for the β–monoscale-multimodel methods for
hydrodynamics-type problems. The α– and β–monoscale-multimodel methods were
introduced by the author [7, 8, 9] in order to separately handle local and global phe-
nomena in the modeling of physical systems. These methods offer an easy way of
supplementing and testing a large variety of boundary conditions. Moreover, in the
local domain the model can be chosen to handle phenomena such as boundary layers
and turbulence and can incorporate models of chemistry. We have already proved
the validity of these methods and their superiority to classical methods in many (im-
portant) real life applications. More details about this type of methods can be found
in [8, 9]. The TTMA [8, 9] is an algorithm that allows us to solve the multimodels
obtained by applying the α– and β–monoscale-multimodel methods. In this paper
we are interested in studying the convergence properties of the TTMA for the β–
monoscale-multimodel methods for hydrodynamics-type problems.

Because of the practical importance of this algorithm, the establishment of its
mathematical foundations is of crucial importance. The mathematical theory of such
an algorithm started in [2, 3]. The analysis of the general TTMA for hydrodynamics-
type applications remained open. We shall provide in this paper a complete analysis
of such an algorithm. Our analysis is based on a general method we have introduced in
[10]. Because of its practical importance we shall term it “the transmission multiplier
method.” We also use the local, global, and trace estimates we developed in [11, 12].

In section 2, we describe the α– and β–monoscale-multimodel methods for convec-
tion-diffusion problems and the TTMA that we propose for their solutions together
with some applications in fluid mechanics. In section 3, we state the main local,
global, and trace estimates of [11, 12] we shall need for the analysis of the TTMA. In
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section 4, we study the convergence properties of the TTMA. We conclude this paper
by some comments in section 5.

2. The α- and β-methods for convection-diffusion problems and the
TTMA.

2.1. The convection-diffusion model. Let Ω be a connected bounded domain
of R

n, such that its boundary ∂Ω is Lipschitzian and Ωl is a connected domain of R
n

with Ωl ⊂ Ω (Figure 2.1). Let

Γb = ∂Ω ∩ ∂Ωl (internal boundary),

Γi = ∂Ωl ∩ Ω (interface),

Γ∞ = ∂Ω\Γb (farfield boundary).

We denote by n the external unit normal vector to ∂Ω or ∂Ωl.

Let v ∈ (L∞(Ω))n be a given velocity field of an inviscid incompressible flow such
that

{
divv = 0 in Ω,

v.n = 0 on Γb.
(2.1)

The model problem we want to solve is the following one:

Find φ : Ω× (0, T )→ R such that




∂φ

∂t
+ div(vφ)− ν∆φ = 0 in Ω× (0, T ),

φ = φ∞ on Γ∞ × (0, T ),

φ = 0 on Γb × (0, T ),

φ(0) = φ0 in Ω,

(2.2)

where v is the velocity field given by (2.1) and ν is the diffusion coefficient. Assuming
that φ0 ∈ L2(Ω) and φ∞ ∈ L2(0, T ;H1/2(Γ∞)), problem (2.2) has a unique solution
φ ∈ L2(0, T ;H1(Ω)). The corresponding stationary problem follows:

Find ϕ, a real valued function, defined on Ω and satisfying



div(vϕ)− ν∆ϕ = 0 in Ω,

ϕ = ϕ∞ on Γ∞,

ϕ = 0 on Γb.

(2.3)
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Fig. 2.1. Description of the domain Ω and its splitting.

2.2. The α- and β-methods for the convection-diffusion model. Let Ωl
be a domain of R

n such that Ωl ⊂ Ω (see Figure 2.1) and has as an external boundary
Γi. The β–monoscale-multimodel method applied to the model problem consists in
replacing the evolution problem (2.2) by the following evolution system:

Find φ (resp., φloc) : Ω→ R (resp., Ωl → R) satisfying


∂φ

∂t
+ div(vφ)− ν∆φ = 0 in Ω× (0, T ),

φ = φ∞ on Γ∞ × (0, T ),

ν
∂φ

∂n
= ν

∂φloc
∂n

on Γb × (0, T ),

(2.4)




∂φloc
∂t

+ div(vφloc)− ν∆φloc = 0 in Ωl × (0, T ),

φloc = 0 on Γb × (0, T ),

φloc = φ on Γi × (0, T ),

(2.5)

φ(0) = φ0 in Ω φloc(0) = φ0loc in Ωl.(2.6)

The resulting coupled problem is referred to as the β–monoscale-multimodel prob-
lem for the convection-diffusion equations. We should notice here that this method-
ology yields coupled problems through transmission boundary conditions, which are
obtained at the modeling level of the physical phenomena. Therefore this method
cannot and should not be classified as a domain decomposition method.

Remark 2.1. The global problem has no no-slip boundary condition. This sup-
presses the boundary layer which appears at low viscosity and facilitates the numerical
solution of this problem. The boundary layers are modeled by the local problem (2.5),
(2.6) which are to be solved only on a small domain, with a very fine discretization
if needed. This clearly indicates that our method here is not a domain decomposition
method since the objective is to be able to handle phenomena such as boundary layers
at the local level.

Remark 2.2. The “Neumann” version of this method consists of replacing in
(2.5) the boundary condition on Γi with the corresponding Neumann condition

∂φloc
∂n

=
∂φ

∂n
on Γi.
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Remark 2.3. If in (2.4) we replace Ω with ΩE defined

ΩE = Ω\Ωl
(in this case ∂ΩE = Γ∞ ∪ Γi), we obtain the α–monoscale-multimodel problem for
convection-diffusion equations.

The asymptotic behavior of problems (2.4)–(2.6) for large time is given in the
following theorem.

Theorem 2.1. The solution of the coupled problems (2.4)–(2.6) converges towards
the solution of the stationary problem (2.3) as t goes to infinity.

For the proof of this theorem we refer to [2].
Remark 2.4. Using the same method as in [2] we can prove similar theorems for

the variant of our method mentioned in Remarks 2.2 and 2.3.

2.3. TTMA and the main result. The TTMA is an algorithm that iter-
ates back and forth between the local and global problem. For the β–monoscale-
multimodel problem (2.4)–(2.6) this corresponds to a time integration scheme which
yields the following semi-implicit algorithm:

• set φ0
loc = φ0 and φ0 = φ0;

• then, for n ≥ 0, φnloc and φn being known, solve successively




φn+1
loc − φnloc

∆t
+ div(vφn+1

loc )− ν∆φn+1
loc = 0 in Ωl,

φn+1
loc = φn on Γi,

φn+1
loc = 0 on Γb,

(2.7)




φn+1 − φn

∆t
+ div(vφn+1)− ν∆φn+1 = 0 in Ω,

φn+1 = φ∞ on Γ∞,

ν
∂φn+1

∂n
= ν

∂φn+1
loc

∂n
on Γb.

(2.8)

Remark 2.5. We have a full decoupling between (2.7) and (2.8). They can be
solved by two independent solution techniques.

Remark 2.6. The “Neumann” version of this method consists of replacing the
Dirichlet boundary condition on Γi with the corresponding Neumann condition

∂φn+1
loc

∂n
=

∂φn

∂n
on Γi.

The convergence properties of the resulting algorithm can be obtained using the same
method developed in this paper.

Remark 2.7. The fully implicit version of this method consists of replacing the
condition

φn+1
loc = φn on Γi

(resp.,
∂φn+1

loc

∂n = ∂φn

∂n on Γi) with the condition

φn+1
loc = φn+1 on Γi
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(resp.,
∂φn+1

loc

∂n = ∂φn+1

∂n on Γi). Since both coupling conditions are implicit we proposed
applying a fixed-point iteration to each time step. The resulting algorithm has been
studied in [2, 3] using the local, global, and trace estimates developed by the author
in [11]. The semi-implicit algorithm studied here leads directly to uncoupled problems
in each time step; see Remark 2.5. The analysis of the resulting algorithm is more
technical and relies on the methods we introduced in [10, 12].

Remark 2.8. If in (2.8) we replace Ω with ΩE defined as

ΩE = Ω\Ωl
(in this case ∂ΩE = Γ∞ ∪ Γi), we obtain the TTMA for the α–monoscale-multimodel
problem. The convergence properties of the resulting algorithm can be obtained using
similar methods as those developed in this paper.

We state now the main result of this paper.

Theorem 2.2. Assume that φ(0) ∈ Ln(Ω)∪L∞(Ω) and φ
(0)
l ∈ Ln(Ωl)∪L∞(Ωl).

For τ sufficiently small and for all choices of Ωl, the solution of (2.7)–(2.8) converges
linearly in H1(Ω) to the solution of the stationary problem (2.3).

Before we prove this theorem, we shall give in the next subsection some important
applications of the α- and β-methods in fluid mechanics.

2.4. Applications to fluid mechanics. We describe in this subsection some
important applications of the α- and β-methods in fluid mechanics. More details
about these applications can be found in [8, 9].

Let us consider the compressible Navier–Stokes equations which we formally write
either as

∂W

∂t
+ div[F (W )] = 0 on Ω (conservative form)

or as

∂U

∂t
+ T (U) +D(U) = 0 on Ω (nonconservative form),

withW = (ρ, ρv, ρE) and U = (ρ, v, θ) the conservative and nonconservative variables,
F = FC + FD the total flux (convective and viscous part), T and D the convective
and viscous terms in the nonconservative form of the Navier–Stokes equations. The
problem consists of computing a steady solution of these equations, with boundary
conditions

ρv, ρE given on Γ∞ (exterior limit of the domain),

ρ given on Γ∞ ∩ {x, v(x) · n ≤ 0} (inflow),
v = 0 on the body Γb (no-slip),

θ = θ0 on the body Γb.

The global numerical treatment of these equations faces the following difficulties:
(i) In a conservative calculation, the numerical viscosity of the discretization

scheme interferes with the physical viscosity and for a mesh of reasonable size leads
to an overprediction of the boundary layer. Moreover, no-slip boundary conditions
on the body are difficult to handle for many TVD schemes.

(ii) In a nonconservative calculation, the correct calculation of a shock requires
locally a very fine grid if we want to satisfy the Rankine–Hugoniot conditions.
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In this framework, our strategy is to couple a global conservative scheme, defined
on the whole domain and based, for example, on a finite volume space discretization
[1], and a local approximation, defined in the neighborhood of the body and based,
for example, on a mixed finite element approximation of the nonconservative Navier–
Stokes equations [6].

The coupling problem corresponds then to solving the following systems. In Ω,
we solve the conservative Navier–Stokes equations

∂W

∂t
+ div[F (W )] = 0 in Ω,

F (W ) · n =




0
n · σ(W ) · n
τ · σ(Uloc) · n
−q(Uloc) · n


 on the wall,

W = given imposed value on Γ∞.

In Ωl, we solve the nonconservative Navier–Stokes equations

∂U

∂t
+ T (U) +D(U) = 0 in Ω,

Uloc = 0 on Γb,

Uloc = W on Γi.

Above, n.σ.n and τ.σ.n, respectively, denote the normal and the tangential forces
exerted by the body on the flow, with n the unit normal vector to the wall oriented
towards its interior. Notice that in the global conservative problem the matching
conditions are of Neumann type as in (2.4), while for the local nonconservative prob-
lem these matching boundary conditions are of Dirichlet type as in (2.8) (but with
an explicit boundary condition on Γi). From this, we see how it is possible to gen-
eralize algorithms (2.7)–(2.8) to a more complex system, such as the Navier–Stokes
equations.

This coupling provides an efficient strategy to circumvent the difficulties men-
tioned in (i) and (ii) at the beginning of this subsection. These methods offer an easy
way of supplementing and testing a large variety of boundary conditions. Moreover,
in the local domain the model can be chosen to handle phenomena such as bound-
ary layers and turbulence and can incorporate models of chemistry. We have already
proved the validity of these methods and their superiority to classical methods in
many (important) real life applications. More details about this type of coupling can
be found in [8, 9].

3. Preliminary results. In this section we state local, global, and trace es-
timates for the solutions of elliptic equations. They are obtained by the author in
[11, 12]. They play an important role in the proof of the main result of this paper.
The first estimates are obtained for the solution of the following Dirichlet–Neumann
problem:

Lu = −ν∆u+ v · ∇u+
1

τ
u =

1

τ
f in Ω,(3.1)

u = 0 on Γ∞,(3.2)

∂u

∂n
= g on Γb,(3.3)
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where the function g is given in H−1/2(Γb), the coefficient τ is strictly positive, and
ν is the diffusion coefficient. We assume that f ∈ Ln(Ω)∩L∞(Ω) and the coefficients
ν and τ satisfy the relation

ντ ≤ 1

2
and τ ≤ 1.(3.4)

This hypothesis is neither necessary nor restrictive (see [11, 12]). Let d > 0 denote
the distance between Γb and Γi. Let β be a real number such that 0 < β < 3

√
ν/d,

and set k = β/(ν
√
τ). In the proof of Theorem 2.2 no additional restrictions on β

were required. Thus, the inequality d < 3
√
ν/β relating the local domain Ωl to the

viscosity ν shows that all choices of Ωl are possible. For small viscosity the domain
Ωl can be chosen small.

We have the following global H1 estimate of the solution u of the Dirichlet–
Neumann problem (3.1)–(3.3) in terms of the boundary data g and the data f .

Lemma 3.1. There exists a constant c0 such that

‖u‖1,Ω ≤ c0‖g‖−1/2,Γb
+

1

ντ
‖f‖0,Ω.(3.5)

We now state the trace estimate.

Theorem 3.1. The solution u of the Dirichlet–Neumann problem (3.1)–(3.3)
satisfies

‖u‖1/2,Γi
≤ C1

√
d

(
d+
‖v‖∞
ν

)1/2

exp
(−kd2/36

)
×
[
‖g‖−1/2,Γb

+
1

ντ
‖f‖0,Ω +

d

ντ
‖f‖Ln(Ω) + 2‖f‖∞,Ω

]
+

C2

τ
√
ν
‖f‖0,Ω,

where C1 and C2 are constants, with C1 depending only on n and (‖V ‖∞d/ν)2 but
not on τ .

We now consider the following Dirichlet–Dirichlet problem:

Lul = −ν∆ul + v · ∇ul + 1

τ
ul =

1

τ
fl in Ωl,(3.6)

ul = h on Γi,(3.7)

ul = 0 on Γb,(3.8)

where the function h is given in H1/2(Γi), the coefficient τ is strictly positive, and ν
is the diffusion coefficient. We assume that fl ∈ Ln(Ωl) ∩ L∞(Ωl). The velocity field
v is given by (2.1). Let ΓV be the center surface of Ωl defined as the surface whose
distance from Γb and Γi is at least d/2. Let Ωil be the subdomain of Ωl of width d/6
centered at ΓV (see Figure 3.1).

We have the following global and local estimate of the solution ul of the Dirichlet–
Dirichlet problem (3.6)–(3.8).

Lemma 3.2. The solution ul of the Dirichlet–Dirichlet problem (3.6)–(3.8) satis-
fies

‖ul‖1,Ωl
≤
[
1 +

c1
ν
‖v‖∞,Ωl

+
1

ντ

]
‖h‖1/2,Γi

+
c1
ντ
‖fl‖0,Ωl

.(3.9)
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Fig. 3.1. Description of the domain Ωl and the splitting used in the majorization of the local
solution.

Lemma 3.3. There exists a constant c2 such that

‖ul‖∞,Ωil
≤ c2‖ul‖0,Ωl

+ c2
d

ν
‖fl‖Ln(Ωl),(3.10)

where c2 depends only on n and (‖V ‖∞d/ν)2.
We now state the trace estimate.
Theorem 3.2. The solution ul of the Dirichlet–Dirichlet problem (3.6)–(3.8)

satisfies

‖∂ul/∂n‖−1/2,Γb
≤ C1α

2
1α2 exp(−kd2/36)‖h‖1/2,Γi

+ C1α1α2 exp(−kd2/36)
d

ντ
‖fl‖Ln(Ωl)

+ α1

(
C1α2 exp(−kd2/36)

1

ντ
+ C2

1

τ
√
ν

)
‖fl‖0,Ωl

+ C1α1α2 exp(−kd2/36)‖fl‖∞,Ωil
,

where C1 and C2 are constants with C1 depending only on n and (n‖v‖∞d/ν)2, α1 =

[1 + 1
ν ‖v‖∞,Ωl

+ 1
ντ ], and α2 =

√
d(d+ ‖v‖∞

ν )1/2.
For the proof of these local, global, and trace estimates we refer to [12].

4. Proof of the main result. The proof of this theorem is based in a crucial
manner on the method we have introduced in [10] and the local, global, and trace
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estimates we developed in [12]. This proof is divided into four steps. In the first
step we use the method we introduced in [10]. We then obtain a newly transformed
problem. In the second step we give estimates of the boundary terms using the local,
global, and trace estimates of the previous section. In the third step we study the
transformed problem. In the last step we conclude the proof of our theorem.

Step 1. Use of the method of [10]. Without loss of generality, we may assume
that φ∞ = 0 on Γ∞. Setting u = φn+1, ul = φn+1

loc , f = φn, fl = φnloc, flm = φn−1
loc ,

τ = ∆t, and a = 1
τ the algorithm in system (2.7)–(2.8) becomes the following:

For n ≥ 0, fl and f being known, solve


a(u− f) + div(vu)− ν∆u = 0 in Ω,

u = 0 on Γ∞,

ν
∂u

∂n
= ν

∂ul
∂n

on Γb,

(4.1)



a(ul − fl) + div(vul)− ν∆ul = 0 in Ωl,

ul = f on Γi,

ul = 0 on Γb.

(4.2)

Let ϕ1 and ϕ2 be two positive functions defined, respectively, on Ω, Ωl, to be
precisely determined later. Multiplying the first equation in (4.1) by ϕ1u and using
Green’s formula, we obtain∫

a(u− f)ϕ1u+

∫
div(vu)ϕ1u− ν

∫
∆uϕ1u = 0.(4.3)

Since the vector field v is given by (2.1), we have, using Green’s formula,∫
div(vu)ϕ1u = −1

2

∫
u2∇ϕ1 · v + 1

2

∫
Γ

v · nϕ1u
2,(4.4)

where Γ = ∂Ω. We also have, using Green’s formula,∫
∆uϕ1u = −

∫
∇u∇ϕ1u−

∫
ϕ1|∇u|2 +

∫
Γ

∂u

∂n
ϕ1u.(4.5)

Combining (4.3), (4.4), and (4.5), we obtain∫ (
aϕ1 − 1

2
∇ϕ1 · v

)
u2 + ν

∫
u∇u · ∇ϕ1 + ν

∫
ϕ1|∇u|2

+
1

2

∫
Γ

v · nϕ1u
2 − ν

∫
Γ

∂u

∂n
ϕ1u = a

∫
fϕ1u.(4.6)

Similarly, we obtain∫ (
aϕ2 − 1

2
∇ϕ2 · v

)
u2
l + ν

∫
ul∇ul · ∇ϕ2 +

∫
ϕ2|∇ul|2

+
1

2

∫
Γl

v · nϕ2u
2
l − ν

∫
Γl

∂ul
∂n

ϕ2ul = a

∫
flϕ2ul,(4.7)
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where Γl = ∂Ωl.
Combining (4.6) and (4.7), we obtain∫ (

aϕ1 − 1

2
∇ϕ1 · v

)
u2 +

∫ (
aϕ2 − 1

2
∇ϕ2 · v

)
u2
l

+ ν

∫
u∇u · ∇ϕ1 + ν

∫
ϕ1|∇u|2 + ν

∫
ul∇ul · ∇ϕ2 + ν

∫
ϕ2|∇ul|2

+
1

2

∫
Γ

v · nϕ1u
2 − ν

∫
Γ

∂u

∂n
ϕ1u+

1

2

∫
Γl

v · nϕ2u
2
l − ν

∫
Γl

∂ul
∂n

ϕ2ul

= a

∫
fϕ1u+ a

∫
flϕ2ul.(4.8)

Using the coupling boundary conditions, we obtain

1

2

∫
Γ

v · nϕ1u
2 − ν

∫
Γ

∂u

∂n
ϕ1u+

1

2

∫
Γl

v · nϕ2u
2
l − ν

∫
Γl

∂ul
∂n

ϕ2ul

=
1

2

∫
Γb

v · nϕ1u
2 − ν

∫
Γb

∂u

∂n
ϕ1u+

1

2

∫
Γi

v · nϕ2u
2
l − ν

∫
Γi

∂ul
∂n

ϕ2ul

= −ν
∫

Γb

∂ul
∂n

ϕ1u+
1

2

∫
Γi

v · nϕ2f
2 − ν

∫
Γi

∂ul
∂n

ϕ2f

= BC1 +BC2 +BC3.(4.9)

Combining (4.8) and (4.9) and using Cauchy–Schwarz inequality, we obtain∫ (
a

2
ϕ1 − 1

2
∇ϕ1 · v

)
u2 +

∫ (
a

2
ϕ2 − 1

2
∇ϕ2 · v

)
u2
l + ν

∫
u∇u · ∇ϕ1

+ ν

∫
ϕ1|∇u|2 + ν

∫
ul∇ul · ∇ϕ2 + ν

∫
ϕ2|∇ul|2 +ΣBCi

≤ a

2

∫
ϕ1f

2 +
a

2

∫
ϕ2f

2
l .(4.10)

Using Green’s formula we obtain∫
∇u · ∇ϕ1u = −1

2

∫
u2∆ϕ1 +

1

2

∫
Γ

u2 ∂ϕ1

∂n
.(4.11)

Similarly, we obtain∫
∇ul · ∇ϕ1ul = −1

2

∫
u2
l∆ϕ1 +

1

2

∫
Γ

u2
l

∂ϕ1

∂n
.(4.12)

Equation (4.10) then becomes∫ (
a

2
ϕ1 − 1

2
∇ϕ1 · v

)
u2 +

∫ (
a

2
ϕ2 − 1

2
∇ϕ2 · v

)
u2
l + ν

∫
|∇u|2ϕ1

−ν

2

∫
u2∆ϕ1 +

ν

2

∫
Γ

u2 ∂ϕ1

∂n
+ ν

∫
|∇ul|2ϕ2

−ν

2

∫
u2
l∆ϕ2 +

ν

2

∫
Γl

u2
l

∂ϕ2

∂n
+ΣBCi

≤ a

2

∫
ϕ1f

2 +
a

2

∫
ϕ2f

2
l .(4.13)



CONVERGENCE OF A TRANSMISSION ALGORITHM 461

Using the boundary conditions, (4.13) becomes

1

2

∫
(−ν∆ϕ1 − v · ∇ϕ1 + aϕ1)u

2 +
1

2

∫
(−ν∆ϕ2 − v · ∇ϕ2 + aϕ2)u

2
l

+
ν

2

∫
Γb

u2 ∂ϕ1

∂n
+

ν

2

∫
Γi

u2
l

∂ϕ2

∂n
+ ν

∫
|∇u|2ϕ1 + ν

∫
|∇ul|2ϕ2 +ΣBCi

≤ a

2

∫
ϕ1f

2 +
a

2

∫
ϕ2f

2
l .(4.14)

Step 2. Use of the local, global, and trace estimates of [11, 12]. We shall
give here estimates of the boundary terms in (4.8). These estimates are based on the
local, global, and trace estimates we obtained in [11, 12].

Estimate ofBC1. Using the coupling boundary conditions and Cauchy–Schwarz
inequality, we obtain

|BC1| = ν

∣∣∣∣
∫

Γb

∂ul
∂n

ϕ1u

∣∣∣∣
≤ ν‖ϕ1|Γb

‖∞‖u‖ 1
2 ,Γb

∥∥∥∥∂ul∂n

∥∥∥∥
− 1

2 ,Γb

≤ ν‖ϕ1|Γb
‖∞
(
‖u‖21

2 ,Γb
+

∥∥∥∥∂ul∂n

∥∥∥∥
2

− 1
2 ,Γb

)
.

Using the trace theorem and Lemma 3.1, we obtain

‖u‖1/2,Γb
≤ C(Ω)‖u‖1,Ω
≤ c0C(Ω)

(
‖g‖−1/2,Γb

+
1

ντ
‖f‖0,Ω

)
,

where g = ∂u
∂n . Using now the coupling boundary conditions in (4.1) and Theorem

3.2, we obtain

‖g‖−1/2,Γb
= ‖∂ul/∂n‖−1/2,Γb

≤ β1‖h‖1/2,Γi
+ β2‖fl‖0,Ωl

+ β3‖fl‖Ln(Ωl) + β4‖fl‖∞,Ωil
,

where

β1 = C1α
2
1α2 exp(−kd2/36),

β2 = C1α1α2 exp(−kd2/36)
1

ντ
+ C2α1

1

τ
√
ν
,

β3 = C1α1α2 exp(−kd2/36)
d

ντ
,

β4 = C1α1α2 exp(−kd2/36),

α1 = 1 +
1

ν
‖v‖∞,Ωl

+
1

ντ
,

α2 =
√
d

(
d+
‖v‖∞
ν

)1/2

.

Using now the fact that h = ul = f on Γi and the trace theorem, we obtain

‖∂ul/∂n‖−1/2,Γb
≤ β1‖f‖1/2,Γi

+ β2‖fl‖0 + β3‖fl‖Ln(Ωl) + β4‖fl‖∞,Ωi

≤ C(Ω)β1‖f‖1,Ω + β2‖fl‖0,Ωl
+ β3‖fl‖Ln(Ωl) + β4‖fl‖∞,Ωil

.
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Therefore, we have

|BC1| ≤ ν‖ϕ1|Γb
‖∞
(
‖u‖21/2,Γb

+

∥∥∥∥∂ul∂n

∥∥∥∥
2

−1/2,Γb

)

≤ C(Ω)ν‖ϕ1|Γb
‖∞
(
‖u‖21,Ω +

∥∥∥∥∂ul∂n

∥∥∥∥
2

−1/2,Γb

)

≤ c0C(Ω)ν‖ϕ1|Γb
‖∞
(
‖g‖2−1/2,Γb

+
1

(ντ)2
‖f‖20,Ω +

∥∥∥∥∂ul∂n

∥∥∥∥
2

−1/2,Γb

)

≤ Cϕ1
β2

1‖f‖21,Ω + Cϕ1β
2
2‖fl‖20,Ωl

+ Cϕ1β
2
3‖fl‖2Ln(Ωl)

+ Cϕ1β
2
4‖fl‖2∞,Ωil

+ Cϕ1

1

(ντ)2
‖f‖20,Ω,(4.15)

where

Cϕ1 = c0C(Ω)ν‖ϕ1|Γb
‖∞.(4.16)

Estimate of BC2. For the term BC2 we have, using the fact that ul = f on Γi
and the trace theorem,

|BC2| = 1

2

∣∣∣∣
∫

Γi

v · nϕ2f
2

∣∣∣∣
≤ 1

2
‖v‖∞‖ϕ2|Γi‖∞‖f‖21

2 ,Γi

≤ C(Ω)‖v‖∞‖ϕ2|Γi‖∞‖f‖21,Ω
≤ Cv‖f‖21,Ω,(4.17)

where

Cv = C(Ω)‖v‖∞‖ϕ2|Γi
‖∞.

Estimate of BC3. Finally to get an estimate of BC3 we proceed as follows:

|BC3| = ν

∣∣∣∣
∫

Γi

∂ul
∂n

ϕ2f

∣∣∣∣
≤ ν‖ϕ2|Γi

‖∞‖f‖ 1
2 ,Γi

∥∥∥∥∂ul∂n

∥∥∥∥
− 1

2 ,Γi

.

The term ‖∂ul/∂n‖−1/2,Γi
is estimated as follows. Using the weak formulation of

problem (4.2), (2.1), and the boundary conditions in (4.2), we obtain∫
Γi

∂ul
∂n

w =

∫
Ωl

∇ul∇w +
1

ν

∫
Ωl

wv · ∇ul − 1

ντ

∫
Ωl

flw +
1

ντ

∫
Ωl

ulw,

where w ∈ H1(Ωl) with w = 0 on Γb. Using the trace theorem and (2.1), we obtain∣∣∣∣
∫

Γi

∂ul
∂n

w

∣∣∣∣ ≤
((

1 +
1

ν
‖v‖∞,Ωl

)
‖∇ul‖0,Ωl

+
1

ντ
‖fl‖0,Ωl

+
1

ντ
‖ul‖0,Ωl

)
‖w‖1,Ωl

.
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Therefore, we have

∥∥∥∥∂ul∂n

∥∥∥∥
−1/2,Γi

≤
(
1 +

1

ν
‖v‖∞,Ωl

)
‖∇ul‖0,Ωl

+
1

ντ
‖ul‖0,Ωl

+
1

ντ
‖fl‖0,Ωl

≤ α1‖ul‖1,Ωl
+

1

ντ
‖fl‖0,Ωl

.(4.18)

Moreover, using Lemma 3.2 and the trace theorem, we obtain

‖ul‖1,Ωl
≤ c1α1‖h‖1/2,Γi

+
c1
ντ
‖fl‖0,Ωl

≤ c1α1‖f‖1/2,Γi
+

c1
ντ
‖fl‖0,Ωl

≤ C(Ω)c1α1‖f‖1,Ω +
c1
ντ
‖fl‖0,Ωl

.

Hence we obtain

|BC3| ≤ C(Ω)ν‖ϕ2|Γi‖∞α1(‖ul‖1,Ωl
+ ‖fl‖0,Ωl

)‖f‖1,Ω
≤ C(Ω)ν‖ϕ2|Γi‖∞α2

1c1(‖f‖21,Ω + ‖fl‖20,Ωl
)

≤ α3(‖f‖21,Ω + ‖fl‖20,Ωl
),(4.19)

where

α3 = C(Ω)ν‖ϕ2|Γi
‖∞α2

1c1.

Estimate of Σ|BCi|. Combining (4.15), (4.17), and (4.19), we obtain

Σ|BCi| ≤ (Cϕ1
β2

1 + Cv + α3)‖f‖21,Ω + (Cϕ1
β2

2 + α3)‖fl‖20,Ωl
+ Cϕ1

β2
3‖fl‖2Ln(Ωl)

+ Cϕ1β
2
4‖fl‖2∞,Ωil

+ Cϕ1

1

(ντ)2
‖f‖20,Ω.(4.20)

To proceed further we need to give an estimate of ‖fl‖Ln(Ωl) and ‖fl‖∞,Ωil
. We use

the Gagliardo–Nirenberg interpolation inequality (see, for example, [4] and references
therein); we obtain for n ≥ 2

‖fl‖Ln(Ωl) ≤ ε1‖fl‖1,Ωl
+ Cε1‖fl‖0,Ωl

.(4.21)

Using now Lemma 3.3 and (4.21), we obtain

‖fl‖∞,Ωil
≤ c2‖fl‖0,Ωl

+ c2
d

ντ
‖flm‖Ln(Ωl)

≤ c2‖fl‖0,Ωl
+ c2

d

ντ
(ε1‖flm‖1,Ωl

+ Cε1‖flm‖0,Ωl
).(4.22)

Combining (4.20), (4.21), and (4.22) we obtain
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Σ|BCi| ≤ (Cϕ1
β2

1 + Cv + α3)‖f‖21,Ω + (Cϕ1
β2

2 + α3)‖fl‖20,Ωl

+ Cϕ1β
2
3(ε1

2‖fl‖21,Ωl
+ Cε1‖fl‖20,Ωl

)

+ c2Cϕ1β
2
4

(
‖fl‖20,Ωl

+

(
d

ντ

)2

(ε1
2‖flm‖21,Ωl

+ Cε1‖flm‖20,Ωl
)

)

+ Cϕ1

1

(ντ)2
‖f‖20,Ω

≤ (Cϕ1β
2
1 + Cv + α3)‖∇f‖20,Ω +

[
(Cϕ1β

2
1 + Cv + α3) + Cϕ1

1

(ντ)2

]
‖f‖20,Ω

+ Cϕ1β
2
3ε1

2‖∇fl‖20,Ωl
+ [Cϕ1β

2
3(ε1

2 + Cε1) + (Cϕ1β
2
2 + α3) + α2Cϕ1β

2
4 ]‖fl‖20,Ωl

+ c2Cϕ1β
2
4

(
d

ντ

)2

ε1
2‖∇flm‖20,Ωl

+ c2Cϕ1
β2

4

(
d

ντ

)2

(ε21 + Cε1)‖flm‖20,Ωl

≤ δ1‖∇f‖20,Ω + δ′1‖f‖20,Ω + δ2‖∇fl‖20,Ωl
+ δ3‖fl‖20,Ωl

+ δ4‖flm‖20,Ωl

+ δ5‖∇flm‖20,Ωl
,(4.23)

where

δ1 = Cϕ1
β2

1 + Cv + α3,

δ′1 = (Cϕ1β
2
1 + Cv + α3) + Cϕ1

1

(ντ)2
,

δ2 = Cϕ1
β2

3ε1
2,

δ3 = Cϕ1β
2
3(ε1

2 + Cε1) + (Cϕ1β
2
2 + α3) + α2Cϕ1β

2
4 ,

δ4 = c2Cϕ1
β2

4

(
d

ντ

)2

(ε21 + Cε1),

δ5 = c2Cϕ1β
2
4

(
d

ντ

)2

ε1
2.(4.24)

Step 3. Study of the transformed problem and use of the method of
[10]. Using (4.14) we obtain

1

2

∫
(−ν∆ϕ1 − v · ∇ϕ1 + aϕ1)u

2 +
1

2

∫
(−ν∆ϕ2 − v · ∇ϕ2 + aϕ2)u

2
l

+
ν

2

∫
Γb

u2 ∂ϕ1

∂n
+

ν

2

∫
Γi

u2
l

∂ϕ2

∂n
+ ν

∫
|∇u|2ϕ1 + ν

∫
|∇ul|2ϕ2

≤ a

2

∫
ϕ1f

2 +
a

2

∫
ϕ2f

2
l +Σ|BCi|.(4.25)

Combining (4.23) and (4.25), we obtain

1

2

∫
(−ν∆ϕ1 − v · ∇ϕ1 + aϕ1)u

2 +
1

2

∫
(−ν∆ϕ2 − v · ∇ϕ2 + aϕ2)u

2
l

+
ν

2

∫
Γb

u2 ∂ϕ1

∂n
+

ν

2

∫
Γi

u2
l

∂ϕ2

∂n
+ ν

∫
|∇u|2ϕ1 + ν

∫
|∇ul|2ϕ2

≤
∫

Ω

(a
2
ϕ1 + δ′1

)
f2 +

∫
Ωl

(a
2
ϕ2 + δ3

)
f2
l +

∫
Ω

δ1|∇f |2

+

∫
Ωl

δ2|∇fl|2 +
∫

Ωl

δ4f
2
lm +

∫
Ωl

δ5|∇flm|2.(4.26)
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We shall now construct ϕ1 and ϕ2 positive bounded below and above by positive
constants such that we have

1

2
(−ν∆ϕ1 − v · ∇ϕ1 + aϕ1) =

(a
2
ϕ1 + δ′1

)
(1 + ε2) + δ′′1 ,

1

2
(−ν∆ϕ2 − v · ∇ϕ2 + aϕ2) =

(a
2
ϕ2 + δ3

)
(1 + ε2) + δ′′3 ,(4.27)

where ε2, δ
′′
1 , and δ′′3 are positive constants. This corresponds to

−ν∆ϕ1 − v · ∇ϕ1 − aε2ϕ1 = 2δ′1(1 + ε2) + 2δ′′1 ,(4.28)

−ν∆ϕ2 − v · ∇ϕ2 − aε2ϕ2 = 2δ3(1 + ε2) + 2δ′′3 .(4.29)

For ε2 small, we can use the generalized maximum principle [5]. We then can
choose (see the appendix) ϕ1|Γb

> 0, ϕ2|Γi
> 0, δ′′1 > 0, and δ′′3 > 0, such that

ϕ1 > 0,
∂ϕ1

∂n |Γb

> 0, νϕ1 > (1 + ε2)δ1,(4.30)

ϕ2 > 0,
∂ϕ2

∂n |Γi

> 0, νϕ2 > (1 + ε2)δ2.(4.31)

We then obtain

∫ ((a
2
ϕ1 + δ′1

)
(1 + ε2) + δ′′1

)
u2 +

∫ ((a
2
ϕ2 + δ3

)
(1 + ε2) + δ′′3

)
u2
l

+
ν

2

∫
Γb

u2 ∂ϕ1

∂n
+

ν

2

∫
Γi

u2
l

∂ϕ2

∂n
+

∫
(1 + ε2)δ1|∇u|2 +

∫
(1 + ε2)δ2|∇ul|2

≤
∫

Ω

(a
2
ϕ1 + δ′1

)
f2 +

∫
Ωl

(a
2
ϕ2 + δ3

)
f2
l +

∫
Ω

δ1|∇f |2 +
∫

Ωl

δ2|∇fl|2

+

∫
Ωl

δ4f
2
lm +

∫
Ωl

δ5|∇flm|2.(4.32)

Step 4. Conclusions. From (4.32) we deduce

∫ ((a
2
ϕ1 + δ′1

)
+

1

1 + ε2
δ′′1

)
u2 +

∫ ((a
2
ϕ2 + δ3

)
+

1

1 + ε2
δ′′3

)
u2
l

+
1

1 + ε2

ν

2

∫
Γb

u2 ∂ϕ1

∂n
+

1

1 + ε2

ν

2

∫
Γi

u2
l

∂ϕ2

∂n
+

∫
δ1|∇u|2 +

∫
δ2|∇ul|2

≤
∫

Ω

1

1 + ε2

(a
2
ϕ1 + δ′1

)
f2 +

∫
Ωl

1

1 + ε2

(a
2
ϕ2 + δ3

)
f2
l +

∫
Ω

1

1 + ε2
δ1|∇f |2

+

∫
Ωl

1

1 + ε2
δ2|∇fl|2 +

∫
Ωl

1

1 + ε2
δ4f

2
lm +

∫
Ωl

1

1 + ε2
δ5|∇flm|2.(4.33)

Because of our special construction of the functions ϕ1 and ϕ2, we obtain
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∫ ((a
2
ϕ1 + δ′1

)
+

1

1 + ε2
δ′′1

)
u2 +

∫ ((a
2
ϕ2 + δ3

)
+

1

1 + ε2
δ′′3

)
u2
l

+

∫
δ1|∇u|2 +

∫
δ2|∇ul|2

≤
∫

Ω

1

1 + ε2

(a
2
ϕ1 + δ′1

)
f2 +

∫
Ωl

1

1 + ε2

(a
2
ϕ2 + δ3

)
f2
l

+

∫
Ω

1

1 + ε2
δ1|∇f |2 +

∫
Ωl

1

1 + ε2
δ2|∇fl|2

+

∫
Ωl

1

1 + ε2
δ4f

2
lm +

∫
Ωl

1

1 + ε2
δ5|∇flm|2.(4.34)

Setting

an+1 =

∫ ((a
2
ϕ1 + δ′1

)
+

1

1 + ε2
δ′′1

)
u2 +

∫
δ1|∇u|2

+

∫ ((a
2
ϕ2 + δ3

)
+

1

1 + ε2
δ′′3

)
u2
l +

∫
δ2|∇ul|2,

equation (4.34) then becomes

an+1 ≤ s1an + s2an−1,

s1 =
1

1 + ε2
,

s2 =
1

1 + ε2
max(δ4, δ5).(4.35)

Setting

bn =

(
an

an−1

)

and

A =

(
s1 s2

1 0

)
,

we then obtain, using the Euclidean norm ‖.‖2,

‖bn‖2 ≤ ‖Abn−1‖2 =
√
(s1an−1 + s2an−2)2 + a2

n−1

≤ ‖A‖2‖bn−1‖2
≤ ‖A‖n−1

2 ‖b1‖2.

Then the sequence an converges if the spectral radius of the matrix A is less than 1.
This is true if

s2 ≤ 1− 1

1 + ε2
=

ε2
1 + ε2

.

This last inequality is true if τ is taken to be sufficiently small. (See the definition of
δ4 and δ5.) This concludes the proof of the theorem.
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5. Conclusions. In this paper we proved the convergence of the TTMA for
the case of transmission problems of hydrodynamics type. The proof is based in an
essential way on the method we introduced in [10], and termed here “the transmission
multiplier method,” and the local, global, and trace estimates we developed in [11,
12]. We have described some applications of the TTMA to solving problems in fluid
mechanics resulting from the applications of the α– and β–monoscale-multimodel
methods. Our proof is obtained under a smallness condition on the time step only.

Appendix. Equation (4.28) can be written in the form

(L+ h)ϕ1 = f,(A.1)

where

Lϕ1 = ν∆ϕ1 + v · ∇ϕ1,

h = aε2, f = −2δ′1(1 + ε2)− 2δ′′1 .

Since Ωl is bounded we can find a1 and a2, two real numbers such that Ωl is
contained in the slab a1 < x1 < a2, where x1 is the first coordinate of x = (x1, . . . , xn).
Let

w(x) = 1− η2e
η1(x1−a1).(A.2)

The numbers η1 and η2 are to be selected so that

w(x) > 0 on Ωl ∪ ∂Ωl,(A.3)

(L+ h)w ≤ 0 in Ωl.(A.4)

The operator L+ h applied to w yields

(L+ h)w = −η2(η
2
1ν + η1v1 + aε2)e

η1(x1−a1) + aε2.(A.5)

Let m > 0 be such that v1(x) ≥ −m ∀x ∈ Ωl. We may choose m = ‖v‖∞,Ω. We then
choose η1 and η2 such that

η2
1ν − η1m+ aε2 > 0,

η2 =
aε2

η2
1ν − η1m+ aε2

.

This choice of η1 and η2 yields

(L+ h)w ≤ 0 in Ωl.(A.6)

Since we also want w to be positive on Ωl ∪∂Ωl, we must have η2e
η1(a2−a1) < 1. That

is the inequality

aε2
η2
1ν − η1m+ aε2

< e−η1(a2−a1).(A.7)

This is satisfied if

ε2 <
1

a
η1e

−η1(a2−a1)
(η1ν −m)

1− e−η1(a2−a1)

< τη1e
−η1(a2−a1)

(η1ν −m)

1− e−η1(a2−a1)
,(A.8)
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where we have used the definition of a. For ε2 satisfying (A.8), the function w satisfies
(A.3) and (A.4). Therefore [5] the solution of

(L+ h)ϕ = −1 in Ωl,(A.9)

∂ϕ

∂n
+ ηϕ = 1 on Γi,(A.10)

ϕ = 1 on Γb(A.11)

with η > 0 satisfies ϕ ≥ w > 0. By appropriate choice of f = −2δ′1(1 + ε2)− 2δ′′1 ≤ 0,
g1 > 0, and g2 > 0, the solution of

(L+ h)ϕ = f in Ωl,(A.12)

∂ϕ

∂n
+ ηϕ = g1 on Γi,(A.13)

ϕ = g2 on Γb(A.14)

satisfies ϕ > 0 in Ωl ∪ Γi ∪ Γb and
∂ϕ
∂n > 0 on Γb. Thus a3ϕ1 with appropriate choice

of a3 > 0 satisfies the requirements in (4.30). Similar construction can be used to find
ϕ2 satisfying (4.31)
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HIGH-ORDER STRONG-STABILITY-PRESERVING
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Abstract. Strong-stability-preserving (SSP) time discretization methods have a nonlinear sta-
bility property that makes them particularly suitable for the integration of hyperbolic conservation
laws where discontinuous behavior is present. Optimal SSP schemes have been previously found
for methods of order 1, 2, and 3, where the number of stages s equals the order p. An optimal
low-storage SSP scheme with s = p = 3 is also known. In this paper, we present a new class of
optimal high-order SSP and low-storage SSP Runge–Kutta schemes with s > p. We find that these
schemes are ultimately more efficient than the known schemes with s = p because the increase in the
allowable time step more than offsets the added computational expense per step. We demonstrate
these efficiencies on a set of scalar conservation laws.

Key words. strong stability preserving, total variation diminishing, Runge–Kutta methods,
high-order accuracy, time discretization
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1. Introduction. The method of lines is a popular semidiscretization method
for the solution of time-dependent partial differential equations (PDEs). The idea
behind it is to first suitably discretize the spatial variables (e.g., by finite differences,
finite volumes, finite elements, or spectral methods) to yield a set of ordinary dif-
ferential equations (ODEs) in time. Then, this set of ODEs can be integrated using
standard time-stepping techniques such as linear multistep or Runge–Kutta methods.

Standard stability analysis for the solvers of such systems generally focuses on
linear stability. Indeed, such analysis is often adequate when the desired solutions
are smooth. However, solutions to hyperbolic PDEs may not be smooth: shock
waves or other discontinuous behavior can develop even from smooth initial data. In
such cases, standard discretizations based on linear stability analysis suffer from poor
performance due to the presence of spurious oscillations, overshoots, and progressive
smearing. The numerical solutions obtained from these discretizations often exhibit a
weak form of instability (called nonlinear instability) resulting in unphysical behavior.
Accordingly, numerical methods based on a nonlinear stability requirement are very
desirable. Such methods were originally referred to as total variation diminishing
(TVD) [17]; see also the subsequent articles [18, 6]. However, following the more
recent article [7], we refer to them in this paper as strong-stability-preserving (SSP)
methods.

We are interested in the development, implementation, and analysis of a new
class of optimal SSP Runge–Kutta (SSPRK) time-stepping schemes for the system of
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ODEs

U̇ = L(U)

subject to suitable initial conditions, obtained from applying the method of lines to
the hyperbolic conservation law

ut + f(u)x = 0.(1.1)

Here, we assume that (1.1) has been suitably discretized in its spatial variables (e.g.,
using essentially nonoscillatory (ENO) schemes [10], TVD schemes [9], or monotonic
upstream-centered schemes for conservation laws (MUSCL) methods [19]) and U =
U(t) is a vector of discretized variables; i.e., [U(t)]j = Uj(t) = u(xj , t). In particular,
if unj is the numerical approximation to u(xj , tn), then TVD discretizations have the
property that the total variation

TV (Un) =
∑
j

|unj − unj−1|(1.2)

of the numerical solution does not increase with time; i.e.,

TV (Un+1) ≤ TV (Un).

When combined with a suitable SSP time-stepping scheme, the numerical solution
obtained typically does not exhibit nonlinear instabilities. However, nonlinear in-
stabilities can occur in a numerical solution obtained with, e.g., a TVD or MUSCL
spatial discretization scheme, but with a standard (i.e., linearly stable) time-stepping
scheme [6]. Hence, SSP time-stepping schemes are a critical part of the overall solution
strategy to (1.1).

It has been known for some time from a result of Goodman and LeVeque [5] that
any method that is TVD in two dimensions is at most first-order accurate. However,
if we relax the strict requirement of TVD schemes, higher-order methods can be
constructed that preserve stability in another suitable norm, such as the maximum
norm. These schemes are what we call SSP, and their favorable properties are derived
only from convexity arguments. In particular, if the forward Euler method is strongly
stable with a certain CFL number, higher-order SSPRK methods with a modified
CFL number can be constructed as convex combinations of forward Euler steps with
various step sizes [18].

Optimal SSP schemes based on Runge–Kutta methods have been found for accu-
racy orders 1, 2, and 3, where the number of stages s is assumed to be equal to the
order p. Gottlieb and Shu [6] recently proved that, unfortunately, no such four-stage,
fourth-order SSPRK method exists involving just evaluations of L(·). Fourth-order
accuracy has only been obtained at the additional expense of introducing two addi-
tional evaluations of a related operator L̃(·), leading to suboptimal efficiency both
in terms of time-step restriction and memory usage (see section 2). This appears
to be where the search for higher-order SSPRK methods has stopped, thus leaving
researchers to focus on third-order accurate SSPRK methods.

In this paper, we derive a new class of optimal high-order SSPRK schemes where
the restriction s = p is lifted. For s-stage methods of orders 1 and 2, we provide
proofs of optimality. The SSPRK scheme (4,3) is also proven to be optimal. The
remaining schemes of order 3 and higher and the low-storage schemes are the results
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of numerical optimization. We investigate the performance of our new schemes on a
few test problems designed to capture solution features that pose particular difficul-
ties to numerical methods. These features include contact discontinuities, expansion
fans, compressive shocks, and sonic points. The results from these investigations
indicate that both the standard and low-storage versions of our schemes offer signif-
icant advantages over methods currently available. In particular, our new schemes
have significantly better stability restrictions than the best SSPRK schemes currently
known. Thus, step-size selection can be based more on accuracy requirements rather
than stability requirements, ultimately leading to more efficient integrators. Indeed,
the results based on three important test cases indicate that our new fourth-order
SSPRK scheme offers between 40% and 80% improvement in the effective time-step
restriction over the most popular fourth-order schemes currently in use.

The remainder of this paper unfolds as follows. In section 2, we describe SSP
schemes and motivate their use. In section 3, we determine optimal families of SSPRK
schemes up to 5 stages and order 4. We also give optimal low-storage versions of these
schemes. In section 4, we investigate the performance of our new SSPRK schemes
on a set of scalar conservation laws having solutions that commonly cause numerical
problems. The success of the new methods is measured relative to the most popular
schemes currently in use. Finally, in section 5, we summarize our findings and offer
plans for future work.

2. SSP schemes. The concept of strong stability is central to our discussion,
so we begin with its definition.

Definition 2.1. A sequence {Un} is said to be strongly stable in a given norm
|| · || provided that ||Un+1|| ≤ ||Un|| for all n ≥ 0.

We tacitly assume that Un represents a vector of solution values on a mesh ob-
tained from a method-of-lines approach to solving a PDE. The choice of norm is
arbitrary,1 with the TV-norm (1.2) and the infinity norm being two natural possi-
bilities. Clearly, strong stability may not be relevant to the solution of an arbitrary
PDE. However, the class of PDEs (1.1) forms a notable exception. Exact solutions for
this class of problems have a range-diminishing property that forbids existing max-
ima from increasing, existing minima from decreasing, and new maxima or minima
from forming. Although not precisely a discrete analogue to the range-diminishing
property, the strong-stability property is a useful property to require of a numerical
solution to (1.1): by imposing such a condition on the numerical solution, we can sup-
press the formation of spurious oscillations under a suitable restriction on the time
step. Such oscillations are termed nonlinear instabilities and are often a precursor for
the numerical solution itself to become completely unstable.

The authors in [7] prove the somewhat surprising result that, under rather general
assumptions, high-order SSP methods must in fact be explicit. Fortunately, many
researchers in fact prefer explicit time discretization methods in order to avoid the
expense2 of solving systems of nonlinear equations at each step. Accordingly, in this
paper we will focus on the development of explicit Runge–Kutta methods. Consider
an s-stage, explicit Runge–Kutta method written in the form

1Indeed, the results of this paper still apply if we replace the norm || · || by any convex function
that maps into the nonnegative real line.

2Both in terms of computation time and software development.
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U (0) = Un,(2.1a)

U (i) =

i−1∑
k=0

(αikU
(k) +∆tβikL(U

(k))), i = 1, 2, . . . , s,(2.1b)

Un+1 = U (s),(2.1c)

where all αik ≥ 0 and αik = 0 only if βik = 0 [17]. This representation of a Runge–
Kutta method can be converted to the standard Butcher array form (see, e.g., [8])
in a straightforward manner; see also [6]. However, the conversion from the Butcher
array form to (2.1) is not unique. For example, the modified Euler scheme

0 0 0

1 1 0
1
2

1
2

has a one-parameter family of representations of the form (2.1):

α10 = 1, α20 = 1− λ, α21 = λ, β10 = 1, β20 =
1

2
− λ, β21 =

1

2
,

where λ ∈ [0, 1]. All of these representations are algebraically equivalent [18]; i.e.,
the only differences noticeable between stable implementations of any scheme would
be due to round-off errors. However, different choices of λ may lend themselves
more easily to implementation, memory management, or determination of stability
restrictions. Throughout this article, we give representations that naturally allow
stability restrictions to be read from the coefficients of the scheme. Standard Butcher
array forms of the schemes presented are given in Appendix B.

For consistency, we must have that
∑i−1
k=0 αik = 1, i = 1, 2, . . . , s. Hence, if both

sets of coefficients αik, βik are positive, then (2.1) is a convex combination of forward
Euler steps with various step sizes βik

αik
∆t. The Runge–Kutta scheme written in this

form is particularly convenient to make use of the following result [18, 7].
Theorem 2.2. If the forward Euler method is strongly stable under the CFL

restriction ∆t ≤ ∆tFE, then the Runge–Kutta method (2.1) with βik ≥ 0 is SSP,
provided

∆t ≤ c∆tFE ,

where c is the CFL coefficient

c ≡ min
i,k

αik
βik
.

Thus, we can use the result of this theorem to provide a theoretical criterion
according to which we can optimize a given SSPRK method.

SSPRK schemes with negative coefficients βik are also possible with the appropri-
ate interpretation. Following the procedure first suggested in [17], whenever βik < 0,
the operator L(·) is replaced with the related operator L̃(·), where L̃(·) is assumed to
be strongly stable for Euler’s method solved backward in time for a suitable time-step
restriction. This allows the following generalization of Theorem 2.2.

Theorem 2.3. Let Euler’s method solved forward in time combined with the
spatial discretization L(·) be strongly stable under the CFL restriction ∆t ≤ ∆tFE.
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Let Euler’s method solved backward in time combined with the spatial discretization
˜L(·) also be strongly stable under the same CFL restriction ∆t ≤ ∆tFE. Then the
Runge–Kutta method (2.1) is SSP, provided

∆t ≤ c∆tFE ,

where c is the CFL coefficient

c ≡ min
i,k

αik
|βik| ,

where βikL(·) is replaced by βikL̃(·) whenever βik is negative.
Note. If both L(U (i)) and L̃(U (i)) are required, then the computational cost and

storage requirements for that stage are typically doubled. Moreover, there is the
added inconvenience of having to code the spatial discretization represented by L̃(·).
These reasons provide the incentive for us to want to avoid negative βik as much as
possible when searching for the most efficient SSPRK methods.

We also note that the quantity

min
i,k

αik
|βik|(2.2)

obviously depends on the particular representation (2.1) of a given Runge–Kutta
scheme. Accordingly, the CFL restriction is determined by the choice of coefficients
αij , βij that maximizes (2.2); other choices render bounds that are not as sharp.

We will be comparing a new class of SSPRK methods with s stages and order p
with s > p to methods known in the literature where s = p or some βik < 0. We
note that if a method requires n− extra evaluations of L̃(·), then the effective number
of stages of that method is m = s + n−. We find that the new SSPRK methods
can have a significantly greater CFL coefficient (as given in Theorem 2.2) than the
methods currently used in practice. However, we must make a fair comparison as to
the computational cost of a step. This motivates the following definition.

Definition 2.4. The effective CFL coefficient of an SSPRK method of order p
is cs∗/s, where c is the CFL coefficient of the method, s∗ is the minimum number of
stages to theoretically achieve order p, and s is the number of stages required for one
step of the method.

It is well known (see, e.g., [8]) that a Runge–Kutta method having s stages can
achieve order p for s = p ≤ 4. For p > 4, it is required that s > p. Because the cases
we consider in this paper involve only p ≤ 4, we always take s∗ = p here.

As conjectured in Shu and Osher [18] and subsequently proven in Gottlieb and
Shu [6], the optimal two-stage, order-2 SSPRK scheme is the modified Euler scheme

U (1) = Un +∆tL(Un),

Un+1 =
1

2
Un +

1

2
U (1) +

1

2
∆tL(U (1)).

It has a CFL restriction ∆t ≤ ∆tFE , which implies a CFL coefficient of 1. Henceforth,
we will refer to this scheme as SSP(2,2). In general, we adopt the convention of
referring to an s-stage, order-p SSPRK scheme as SSP(s,p).

Shu and Osher [18] also conjectured that the optimal three-stage, order-3 SSPRK
scheme is



474 RAYMOND J. SPITERI AND STEVEN J. RUUTH

U (1) = Un +∆tL(Un),

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1)),

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)),

which has a CFL coefficient of 1 as well. The optimality of this scheme was later
proved by Gottlieb and Shu [6]. This scheme is commonly called the third-order TVD
Runge–Kutta scheme, but we will simply refer to it as SSP(3,3).

To achieve fourth order, Shu and Osher provide a four-stage method that contains
two negative coefficients βik [18]. A slightly improved scheme (but also containing
two negative coefficients βik) was proposed by Gottlieb and Shu [6]:

U (1) = Un +
1

2
∆tL(Un),

U (2) =
649

1600
Un − 10890423

25193600
∆tL̃(Un) +

951

1600
U (1) +

5000

7873
∆tL(U (1)),

U (3) =
53989

2500000
Un − 102261

5000000
∆tL̃(Un) +

4806213

20000000
U (1)

− 5121

20000
∆tL̃(U (1)) +

23619

32000
U (2) +

7873

10000
∆tL(U (2)),

Un+1 =
1

5
Un +

1

10
∆tL(Un) +

6127

30000
U (1) +

1

6
∆tL(U (1))

+
7873

30000
U (2) +

1

3
U (3) +

1

6
∆tL(U (3)).

This scheme has a CFL coefficient of 0.936 and an effective CFL coefficient of 0.936×
4/6 = 0.624 because 6 function evaluations are required per step. Because this
seems to be the best four-stage, order-4 SSPRK scheme known, we will refer to it
as SSP(4∗∗,4), with the two asterisks meant to convey two negative coefficients βik.
Gottlieb and Shu [6] subsequently proved that no four-stage, order-4 SSPRK scheme
exists with positive coefficients.

Gottlieb and Shu [6] have also carried out an investigation of SSP time discretiza-
tion methods for generalized Runge–Kutta methods (also known as pseudo-Runge–
Kutta methods or hybrid methods [8]).3 They report that they were unable to find
effective SSP methods in this wider class of methods. It is from this point that we
start our derivations of improved SSPRK schemes where generally s > p. The details
of these derivations are provided in the next section.

3. Optimal SSP schemes. We now turn to the task of finding optimal SSPRK
schemes. To begin, we seek to optimize an s-stage, order-p SSPRK scheme by max-
imizing its CFL coefficient according to Theorem 2.2. That is, we seek the global
maximum of the nonlinear programming problem,

max
(αik,βik)

min
αik
βik
,(3.1)

where αik, βik, k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s, are real and nonnegative. The case
αik = βik = 0 is defined as NaN in the sense that it is not included in the minimization

3All of these methods also are special cases of methods known as general linear methods.
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process if it occurs. Besides the nonnegativity constraints on the variables αik, βik,
the objective function (3.1) is subject to the constraints

i−1∑
k=0

αik = 1, i = 1, 2, . . . , s,(3.2)

s∑
j=1

bjΦj(t) =
1

γ(t)
, t ∈ Tq, q = 1, 2, . . . , p.(3.3)

Here, the functions Φj(t) are nonlinear constraints that are polynomial in αik, βik
and that correspond to the order conditions for a Runge–Kutta method to be of order
p (see, e.g., [8]); i.e., Tq stands for the set of all rooted trees of order equal to q. The
number of constraints represented by the Runge–Kutta order conditions is equal to

p∑
q=1

card(Tq),

where card(Tq) is the cardinality of Tq. Also, we use the notation bj in the usual sense
of the Butcher array representation of a Runge–Kutta method; again this would be
a polynomial function of the coefficients αik and βik. It can be expected that the
particular choice of coefficients αik, βik that maximizes the quantity (2.2) for a given
Runge–Kutta method will be naturally produced by the solution to this nonlinear
programming problem; hence, the result will be a sharp estimate of the CFL coeffi-
cient.

In this form, the optimization problem does not lend itself easily to numerical
solution. The difficulty due to the high degree of nonlinearity in the constraints is
compounded by the following two considerations. First, the objective function (3.1) is
nonsmooth and so an optimization strategy that uses gradient information will have
difficulty obtaining reliable numerical estimates of the derivatives. Second, the min(·)
function can be quite insensitive to its arguments. This also contributes to the poor
performance of optimization software on this problem. We found that even optimizers
that do not rely on gradient information were unable to consistently converge to the
same optimum with this formulation.

The performance of optimization software on this problem is greatly enhanced
through the following standard reformulation. By introducing a dummy variable z,
the nonlinear programming problem can be reformulated as

max
(αik,βik)

z(3.4a)

subject to

αik ≥ 0,(3.4b)

βik ≥ 0,(3.4c)
i−1∑
k=0

αik = 1, i = 1, 2, . . . , s,(3.4d)

s∑
j=1

bjΦj(t) =
1

γ(t)
, t ∈ Tq, q = 1, 2, . . . , p,(3.4e)

αik − zβik ≥ 0, k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.(3.4f)
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It is easy to see that the dummy variable z corresponds to the CFL coefficient. This
reformulation is a standard technique that is widely used in the context of linear
programming problems with objective functions of the form max(·) or min(·) (see,
e.g., [2]). It is also a common reformulation of the so-called feasibility problem, where
any feasible solution to a set of equality or inequality constraints is desired (e.g., as
in the first phase of a two-phase simplex algorithm for linear programming [3]).

The reformulated problem (3.4) was solved directly using the fmincon function
from Matlab’s Optimization Toolbox for s = 1, 2, 3, 4, 5 and p = 1, 2, 3, 4, and the
results are shown below. Table 3.1 shows the optimal values for the CFL coefficients
for given pairs (s, p). The * in the (4, 4) position denotes the fact that no such SSPRK
method exists with all coefficients αik, βik positive.

Table 3.1
Optimal CFL coefficients for s-stage, order-p SSPRK methods.

s = 1 s = 2 s = 3 s = 4 s = 5

p = 1 1 2 3 4 5

p = 2 1 2 3 4

p = 3 1 2 2.65

p = 4 * 1.51

Table 3.2 gives the theoretical efficiencies of these new schemes relative to the
ones where s = p. We note that there is no efficiency gain for the first-order methods.
For example, although the CFL coefficient of the (2,1) method is twice that of that
(1,1) method (forward Euler), it also requires twice as much work. The percentages
quoted refer to the theoretical increases in allowable step size of the new methods
relative to the methods with s = p. For example, the (3,2) method has twice the
allowable step size compared to the (2,2) method (the modified Euler method), but it
requires 3/2 times more work. We thus report that the net effect is a relative increase
in step size of ((2/1)/(3/2) − 1) × 100% = 33%. Equivalently, assuming the CFL
coefficient is the exact bound on the time step, the new (3, 2) scheme can produce a
comparable second-order accurate answer with only 75% of the computational effort
as the (2, 2) scheme.

Table 3.2
Theoretical efficiency improvement over standard pth order SSPRK schemes.

s = 2 s = 3 s = 4 s = 5

p = 2 33% 50% 60%

p = 3 50% 59%

p = 4 94%

We draw particular attention to the efficiency of the (5, 4) scheme in Table 3.2.
As mentioned earlier, a (4, 4) SSPRK scheme does not exist for any positive CFL
coefficient. The figure of 94% is measured relative to the (4∗∗, 4) scheme reported in
[6] as the best scheme of order 4 that could be found. Recall that this scheme had a
CFL coefficient of 0.936 and effectively used 6 stages because it involved 2 coefficients
βik that are negative (hence leading to a 50% increase of the storage requirement per
step and the overhead of coding L̃(·)). The new (5, 4) scheme thus compares very
favorably.

The first few optimal SSPRK schemes of orders 1 and 2 are given in Tables 3.3
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Table 3.3
The first few optimal SSPRK schemes of order 1.

Stages αik βik CFL coefficient

1 1 1 1

2
1

0 1

1
2

0 1
2

2

3

1

0 1

0 0 1

1
3

0 1
3

0 0 1
3

3

Table 3.4
The first few optimal SSPRK schemes of order 2.

Stages αik βik CFL coefficient

2
1
1
2

1
2

1

0 1
2

1

3

1

0 1
1
3

0 2
3

1
2

0 1
2

0 0 1
3

2

4

1

0 1

0 0 1
1
4

0 0 3
4

1
3

0 1
3

0 0 1
3

0 0 0 1
4

3

and 3.4. Here we give the schemes in terms of the coefficients αik, βik; the Butcher
form of these schemes is given in Appendix B. It is interesting to note that Gerisch
and Weiner have independently proposed the SSP(3,2) scheme; see [4] for details.

From Tables 3.1, 3.3, and 3.4, we can conjecture the form of the optimal SSPRK
methods with s stages and orders 1 and 2; namely, the optimal SSPRK method with
s stages and order 1 has CFL coefficient s; and the optimal SSPRK method with
s stages and order 2 has CFL coefficient s − 1. Shu [17] has given a proof of the
first-order result, and Gottlieb and Shu [6] have given a proof of the second-order
result for s = 2. We provide a new proof of the first-order result below as well as a
proof of the second-order result for arbitrary s. These low-order methods with large
CFL coefficients are useful when seeking a time-independent (steady-state) solution
of (1.1), given that in such problems the accuracy considerations in time are typically
less critical than those in space [17].

Theorem 3.1. For s = 1, 2, 3, . . ., the optimal s-stage SSPRK method of order
1 with βik ≥ 0 has CFL coefficient s and can be represented in the form

αik =

{
1 k = i− 1,

0 otherwise.
βik =

{
1
s k = i− 1,

0 otherwise.
i = 1, 2, . . . , s.

Before giving the proof of Theorem 3.1, we introduce the following notation and
give a useful lemma. We find it convenient to write the general s-stage explicit Runge–
Kutta method in the following form (cf. [6]):

U (0) = Un,(3.5a)

U (i) = U (0) +∆t

i−1∑
k=0

cikL(U
(k)), i = 1, 2, . . . , s,(3.5b)

Un+1 = U (s).(3.5c)
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The coefficients cik are related to the coefficients αik, βik recursively by

cik =

i−1∑
j=k+1

αijcjk + βik.(3.6)

It is also easy to see that the coefficients cik are related to the Butcher array quantities
aik, bk by

aik = ci−1,k−1, k = 1, 2, . . . , i− 1, i = 1, 2, . . . , s− 1,

bk = cs,k−1, k = 1, 2, . . . , s.

Lemma 3.2. If a method of the form (2.1) with αik, βik ≥ 0 has a CFL coefficient
c > m > 0, then 0 ≤ cik < 1

m for all k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.
Proof. From Theorem 2.2, if c > m > 0, then αik > mβik, or equivalently

βik <
1
m αik, for all i, k such that αik �= 0.

Now,

αik ≥ 0,

i−1∑
k=0

αik = 1, i = 1, 2, . . . , s, ⇒ αik ≤ 1

for all i, k. Hence, βik <
1
m for all i, k. In particular, c10 = β10 <

1
m for any valid

SSPRK method.
We now proceed by induction on stage � of an s-stage method. Assume cij <

1
m

for j = 0, 1, . . . , � − 1; i = 1, 2, . . . , �. (We have just shown that this result holds for
� = 1.) Now consider stage (�+1) of a valid SSPRK method; i.e., consider coefficients
c�+1,k for k = 0, 1, . . . , � with

�∑
k=0

α�+1,k = 1.

Then using (3.6),

c�+1,0 =

�∑
k=1

α�+1,kck0 + β�+1,0

<
1

m

�∑
k=1

α�+1,k +
1

m
α�+1,0

=
1

m
.

Similar arguments can be used to show c�+1,j <
1
m for j = 1, 2, . . . , �. The lemma

now follows by induction.
Proof of Theorem 3.1. By contradiction, suppose there exists an s-stage, order-1

SSPRK method with CFL coefficient c > s. Because the method is order 1, we have

s−1∑
k=0

csk = 1.(3.7)

But from Lemma 3.2, we have

cik <
1

s
, k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.
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Thus,

s−1∑
k=0

csk <

s−1∑
k=0

1

s
= 1,

contradicting (3.7). Thus, no s-stage, order-1 SSPRK method can exist with CFL
coefficient c > s. Because the SSPRK methods proposed in Theorem 3.1 have c = s,
they must be optimal representations.

Theorem 3.3. For s = 2, 3, 4, . . ., the optimal s-stage SSPRK method of order
2 with βik ≥ 0 has CFL coefficient s− 1 and can be represented in the form

αik =

{
1 k = i− 1,

0 otherwise.
βik =

{
1
s−1 k = i− 1,

0 otherwise.
i = 1, 2, . . . , s− 1.

αik =




1
s k = 0,
s−1
s k = s− 1,

0 otherwise.

βik =

{
1
s k = s− 1,

0 otherwise.
i = s.

Proof. By contradiction, suppose there exists an s-stage, order-2 SSPRK method
with CFL coefficient c > s − 1. Because it is order 2, the coefficients of the method
must satisfy (3.7) and

s−1∑
i=1

csi

i−1∑
k=0

cik =
1

2
.(3.8)

Also, using Lemma 3.2 with c > s− 1 implies that

cik <
1

s− 1
, k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s.(3.9)

Using (3.9) in (3.8) for k = 0, 1, . . . , i− 1, i = 1, 2, . . . , s− 1, leads to

s−1∑
i=1

i

s− 1
csi >

1

2
,

and using this result in (3.7) yields

s−2∑
k=0

s− k − 1

s− 1
csk <

1

2
.

Thus,

1

2
>

s−2∑
k=0

s− k − 1

s− 1
csk

=

s−2∑
k=0

s− k − 1

s− 1


 s−1∑
j=k+1

αsjcjk + βsk


 .
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Now we substitute recursively for cjk using (3.6) in the right-hand side of the above
equation and (3.8), and recalling that αik > (s−1)βik and αik ≥ 0 for k = 0, 1, . . . , i−
1, i = 1, 2, . . . , s, we can use (3.8) to write

1

2
>

1

2
+
s−2∑
j=1

j

s−1∑
l=s−j−1

βslβl,s−2−j +
s−2∑
j=0

s− j − 1

s− 1
βsj .

This now contradicts the fact that βik ≥ 0 for all k = 0, 1, . . . , i − 1, i = 1, 2, . . . , s.
Thus, no s-stage, order-2 SSPRK method can have CFL coefficient c > s − 1. The
proof is now completed by noting that because the schemes proposed have c = s− 1,
they must be optimal representations.

In Tables A.1–A.2 in Appendix A, we give results for the coefficients of the optimal
schemes of order p = 3, 4 in terms of their numerical values up to double precision.

A proof of optimality for the SSP(4,3) scheme follows easily from a result in [16],
where it is proved that the optimal CFL coefficient of an s-stage SSPRK method of
order p applied to a linear, constant-coefficient problem U̇ = LU is s− p+1. Thus if
a nonlinear scheme can attain this optimal bound, then it must also be optimal. It is
easy to see that SSP(4,3) is such a scheme.

We do not offer formal proofs of optimality in the remaining cases; however, these
are the results of extensive numerical searches.

Finally, we describe our results for optimal low-storage SSPRK schemes. There
are computational problems for which memory management considerations are at least
as important as stability considerations when choosing a numerical time discretization
method, e.g., direct numerical simulation of Navier–Stokes equations requiring high
spatial resolution in three dimensions. In such cases, s-stage explicit Runge–Kutta
methods that use less than the usual s units of storage are very desirable (see, e.g.,
[20]). We focus our discussion on SSPRK schemes that require only two units of
storage per step,4 although more general methods requiring more storage per step are
possible. These schemes take the form

dU (i) = AidU
(i−1) +∆tL(U (i−1)),(3.10a)

U (i) = U (i−1) +BidU
(i−1), i = 1, 2, . . . , s,(3.10b)

where U (0) = Un, Un+1 = U (s), and A1 ≡ 0. Again, we note that there is a relation
between the coefficients Ai, Bi and the coefficients αik, βik or, equivalently, the usual
quantities in the Butcher array. We denote the general s-stage, order-p low-storage
SSPRK scheme simply by LS(s,p).

We have solved the corresponding nonlinear programming problems to optimize
the CFL coefficient for the low-storage schemes defined by (3.10). The results for the
coefficients Ai, Bi are given in Tables 3.5–3.7 for up to 5 stages and order 3. Again,
only numerical values of the coefficients are given to double precision. The Butcher
array form of these schemes is given in Appendix C. Of course, a traditional imple-
mentation of any 2-stage scheme must be low-storage in the sense we are considering,
so the optimal low-storage method with s = p = 2 corresponds to the optimal SSPRK
scheme in Table 3.4. We note that the optimal 3-stage, order-3 low-storage method
reported in Table 3.7 agrees with that reported in [6]. We also note that we were not
successful in finding a 5-stage, order-4 scheme in this family, and we strongly suspect
that such a method does not exist.

4We note that if some form of error control is envisaged, perhaps using an embedded [8] SSPRK
scheme, then additional storage for the current solution vector is also required.
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Table 3.5
The coefficients of the first few optimal low-storage schemes of order 1.

Stages Ai Bi CFL coefficient

1 0 1 1

2 0 0.25471543653218 1

0.66323286721269 0.44809394647120

3 0 0.26237801705341 1

0.42645094785793 0.20169056000013

0.45339958582027 0.27321697994061

4 0 0.14142439246204

0.42623204099143 0.35397016495696 1

0.38851833123083 0

0.01694135866933 0.34465757966021

5 0 0.03368800719745 1

0.61573074220688 0.13960527476637

0.24191712486786 0.22864919232774

0.16549924932085 0.26079330982391

-0.04239297405834 0.10750824432183

Table 3.6
The coefficients of the first few optimal low-storage schemes of order 2.

Stages Ai Bi CFL coefficient

2 0 1 1

-1 1
2

3 0 0.79609964254616 1

-0.86514937424574 0.47921739051941

-0.01459406292961 0.13955204452449

4 0 0.08820909208788

0.34143758512319 0.62773790223092 1

-0.80189834090053 0.43908735985479

-0.26868602239001 0.10090483677631

5 0 0.24064789292000 1

-0.35363900948812 0.28813102587031

0.23144682054640 0.15490366543216

0.30287923513739 0.33623843526263

-0.90122396243589 0.27101878032131

Table 3.7
The coefficients of the first few optimal low-storage schemes of order 3.

Stages Ai Bi CFL coefficient

3 0 0.92457411523577 0.32234930738853

-2.91549398859489 0.28771294148749

0.00000000151682 0.62653829645172

4 0 1.03216665875130 0.52841816101829

-4.94661981618529 0.18793881263711

0.00000000050902 0.15215751854315

-0.15127914578976 0.65675174856653

5 0 0.67892607116139 1

-2.60810978953486 0.20654657933371

-0.08977353434746 0.27959340290485

-0.60081019321053 0.31738259840613

-0.72939715170280 0.30319904778284
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4. Numerical studies. In this section, we study the numerical behavior of our
schemes and Shu–Osher SSP schemes for a few test problems designed to capture
solution features that pose particular difficulties to numerical methods. Experiments
for the classical fourth-order explicit Runge–Kutta method are also included because
this method is commonly used in method-of-lines discretizations of hyperbolic con-
servation laws but is not SSP.

4.1. Test problems. There are a variety of solution features in computational
fluid dynamics that commonly cause numerical problems. For example, many numer-
ical methods produce significant errors near sonic points (points where the wavespeed
equals zero). Upwind methods in particular are forced to give sonic points special
consideration since the upwind direction changes at sonic points. Shock waves, con-
tact discontinuities, and expansion fans may also lead to a variety of serious problems
including oscillations, overshoots, and smearing that can spread discontinuities over
several cells. In particular, contact discontinuities do not have any physical compres-
sion and thus smearing increases progressively with the number of time steps. Even
when approximating smooth solutions, most numerical methods exhibit obvious flaws.
For example, many stable numerical methods continuously erode the solution, leading
to amplitude and dissipation errors [13].

To investigate the behavior of our time-stepping schemes, we consider three of
Laney’s five test problems [13]. These three problems involve all of the important
flow features identified above: shocks, contacts, expansion fans, sonic points, and
smooth solutions. Similar to Laney, we focus on the behavior of the numerical scheme
for interior regions rather than boundaries and impose periodic boundary conditions
on the domain [−1, 1]. It is known that sometimes a conventional (and intuitive!)
treatment of the boundary data (especially in the case of inflow boundary conditions)
within the stages of a Runge–Kutta method can lead to deterioration in the overall
accuracy of the integration. We refer to [1] and references therein for a discussion
of this problem and a method for its resolution. The spatial discretization and the
results of the three test cases follow.

4.2. Spatial discretization. SSPRK schemes are natural candidates for any
method-of-lines discretization involving nonsmooth solutions. Similar to the original
paper on SSPRK methods [18], we choose finite-difference Shu–Osher methods (ENO)
to spatially discretize the equations. These methods are derived using flux reconstruc-
tion and have a variety of desirable properties. For example, they naturally extend
to an arbitrary order of accuracy in space, and they are independent of the time dis-
cretization, thus allowing experimentation with different time discretization methods.
Moreover, educational codes are also freely available [13, 12], an attribute which is
desirable for standardizing numerical studies. Our simulations are carried out with a
discretization that has the same order of accuracy in ∆x as the time discretization
accuracy p. We further note that flux splitting is carried out according to

f+(U) =
1

2
(f(U) + αni+1/2U),

f−(U) =
1

2
(f(U)− αni+1/2U),

where αni+1/2 = max{|f ′(Uni+1)|, |f ′(Uni )|}. For full details on the discretization as

well as code, see [13, 12].
It is noteworthy that high-order, fully TVD spatial discretization schemes are

also available; see Osher and Chakravarthy [15]. In these numerical studies, we
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choose Shu–Osher spatial discretization schemes rather than TVD schemes since TVD
schemes obtain only between first- and second-order accuracy at extrema and they
have “been largely superseded by Shu and Osher’s class of high-order ENO methods”
[13].

It is also noteworthy that recent variations on Shu–Osher methods such as meth-
ods based on weighted essentially nonoscillatory (WENO) reconstructions (e.g., [14,
11]) also naturally combine with SSPRK schemes. See [13] for detailed discussions on
these and other spatial discretizations appropriate for hyperbolic conservation laws.

4.3. Test Case 1: Linear advection of a sinusoid. In this test case, the
smooth initial conditions

u(x, 0) = − sin(πx)

are evolved to time t = 30 according to the linear advection equation

∂u

∂t
+
∂u

∂x
= 0

using a constant grid spacing of ∆x = 1/320. Since this evolution causes the initial
conditions to travel around the periodic domain [−1, 1] exactly 15 times, it is clear
that the exact solution is just u(x, 30) = − sin(πx). Test Case 1 effectively illustrates
the evolution of a smooth solution with no sonic points and is useful for verifying
convergence rates for high-order schemes. Moreover, even on completely smooth so-
lutions most numerical methods designed for hyperbolic conservation laws exhibit
obvious flaws [13]. This test case is quite helpful for understanding phase and ampli-
tude errors but should not be used to study dispersion because only one frequency
is present in the exact solution. It is also informative to contrast these results with
those derived for problems involving shocks and other discontinuities.

To quantify the accuracy of the computed solution, we use the logarithm of the
l1 errors, i.e.,

log10

(
1

N

N∑
i=1

|Ui − u(xi, 30)|
)
,

where N is the number of grid points and xi is the ith grid node. A plot of the error is
given in Figure 4.1. To ensure a fair comparison for methods with a different number
of stages, the error is plotted as a function of the effective CFL number5 rather than
the CFL number itself. This implies that for a particular plot, the total number of
function evaluations at a particular abscissa value will be the same for each scheme.
We start calculating errors for an effective CFL number of 0.6 and continue until the
numerical method is so unstable that a value of NaN is returned; i.e., the scheme has
become completely unstable.

In this smooth test example, the new second-order schemes give improved stability
and accuracy over the original SSP(2,2). Also, SSP(5,3) gives improved stability
over SSP(3,3) and SSP(4,3). Calculations for low-storage schemes show that LS(5,3)
outperforms both LS(4,3) and LS(3,3). (For clarity, we use arrows to indicate the
exact points at which SSP(3,3) and LS(3,3) go completely unstable.)

5Similar to the definition of an effective CFL coefficient, the effective CFL number of an SSPRK

method of order p is ∆t
∆x

s∗
s
, where s∗ is the minimum number of stages to theoretically achieve order

p, and s is the number of stages required for one step of the method.
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Fig. 4.1. l1 errors as a function of the effective CFL number. (a) Second-order schemes; (b)
third-order schemes; (c) fourth-order schemes; (d) low-storage schemes.

Based on these plots, we see that the second-order, third-order, and low-storage
schemes all give stability restrictions that are within 20% of one another. This con-
trasts sharply with the results for fourth-order schemes (plot (c)). Here the new
SSP(5,4) scheme gives more than a 40% improvement in the stability time-step re-
striction over the original SSP(4**,4). Moreover, it produces a marked reduction in
the error, signifying a smaller error constant for this problem. It is noteworthy that in
this case the classical fourth-order Runge-Kutta scheme outperforms even SSP(5,4):
on smooth problems, schemes based purely on a linear stability analysis are expected
to perform well. SSP schemes are designed to outperform on problems involving dis-
continuities in the solution or its derivatives, so in this case there is no reason to
expect that schemes derived using nonlinear stability analysis will necessarily outper-
form classical schemes based on linear stability analysis.

4.4. Test Case 2: Linear advection of a square wave. In this test case, the
discontinuous initial conditions

u(x, 0) =

{
1 for |x| < 1/3,

0 for 1/3 < |x| ≤ 1

are evolved to time t = 4 according to the linear advection equation

∂u

∂t
+
∂u

∂x
= 0
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Fig. 4.2. l1 errors as a function of the effective CFL number. (a) Second-order schemes; (b)
third-order schemes; (c) fourth-order schemes; (d) low-storage schemes.

using a constant grid spacing of ∆x = 1/320. Since this evolution causes the initial
conditions to travel around the periodic domain [−1, 1] exactly 2 times, it is clear that
the exact solution at the final time is just u(x, 4) = u(x, 0). Test Case 2 exhibits two
jump discontinuities in the solution that correspond to contact discontinuities. This
test case nicely illustrates progressive contact smearing and dispersion.

The log of the l1 errors as a function of the effective CFL number is plotted in
Figure 4.2. Based on these plots, it is immediately clear that a material improvement
in both stability and accuracy is obtained using our new schemes.

For example, plot (a) shows that SSP(3,2) and SSP(4,2) allow about a 20–30%
improvement in the time-step restriction over the original SSP(2,2). It is also clear
that the new schemes also give a substantial improvement in stability and accuracy in
the third-order case (b). Here we find that the optimal SSP(5,3) scheme gives about
a 40% improvement in the stability time-step restriction over the usual SSP(3,3).

In the fourth-order case (c), even greater improvements are observed. SSP(5,4)
gives more than a 60% improvement in the stability time-step restriction and requires
only half the number of function evaluations to achieve an error of 10−1.5. Moreover,
SSP(5,4) is clearly superior to the classical fourth-order Runge–Kutta scheme, with
more than a 40% improvement in the observed time-step restriction. As conjectured,
the best SSP schemes outperform classical (but generally non-SSP) schemes when
discontinuities in the solution arise.

Out of the low-storage schemes (plot (d)), the new LS(4,3) gives the best
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performance. It is interesting that the best-performing scheme LS(4,3) requires one-
third less storage and is more CPU-efficient than the standard SSP(3,3) in this test
example.

4.5. Test Case 3: Evolution of a square wave by Burgers’s equation. In
this test case, the discontinuous initial conditions

u(x, 0) =

{
1 for |x| < 1/3,

−1 for 1/3 < |x| ≤ 1

are evolved to time t = 0.3 according to Burgers’s equation

∂u

∂t
+
∂

∂x

(
1

2
u2
)

= 0

using a constant grid spacing of ∆x = 1/320. In this example, the jump at x = −1/3
creates a simple centered expansion fan and the jump at x = 1/3 creates a steady
shock. Until the shock and expansion fan intersect (at time t = 2/3), the exact
solution is

u(x, t) =




−1 for −∞ < x < b1,

−1 + 2 x−b1b2−b1 for b1 < x < b2,

1 for b2 < x < bshock,

−1 for bshock < x <∞,

where b1 = −1/3 − t, b2 = −1/3 + t, and bshock = 1/3 [13]. Test Case 3 is partic-
ularly interesting because it illustrates the behaviors near sonic points (u = 0) that
correspond to an expansion fan and a compressive shock.

The log of the l1 errors as a function of the effective CFL number is plotted in
Figure 4.3. Based on these plots, it is clear that a marked improvement in both
stability and accuracy is obtained in the second-, third-, and fourth-order cases using
our new schemes.

Once again, plot (a) shows that SSP(3,2) and SSP(4,2) show about a 20–30%
improvement in the time-step restriction over the original SSP(2,2). It is also clear
that the new schemes also give a substantial improvement in stability and accuracy in
the third-order case (b). Here we find that the optimal SSP(5,3) scheme gives about
a 20% improvement in the stability time-step restriction over the usual SSP(3,3).

In the fourth-order case (c), even greater improvements are observed than in
Test Case 2. SSP(5,4) gives an 80% improvement in the stability time-step restric-
tion and requires only one-third the number of function evaluations to achieve an
error of 10−2.6. Moreover, SSP(5,4) is clearly superior to the classical fourth-order
Runge–Kutta scheme, with more than a 60% improvement in the observed time-step
restriction. Similar to the previous example, SSP(5,4) outperforms classical (but
generally non-SSP) schemes when discontinuities in the solution arise.

Out of the low-storage schemes (plot (d)), LS(3,3) and the new LS(4,3) give the
best performance. In this test case, the best low-storage schemes are nearly as CPU-
efficient as SSP(3,3) but require one-third less storage.
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Fig. 4.3. l1 errors as a function of the effective CFL number. (a) Second-order schemes; (b)
third-order schemes; (c) fourth-order schemes; (d) low-storage schemes.

5. Summary and future work. We have presented new optimal SSPRK time
discretization methods of orders 1 through 4 and stages 1 through 5. We find that, by
allowing the number of stages to differ from the order of the method, it is possible to
derive schemes with better, more effective CFL coefficients than those that are most
commonly used. We have also performed a comparison of the new methods with
Runge–Kutta methods (both SSP and non-SSP) most commonly used in practice
on three problems involving scalar conservation laws. Our new methods compare
favorably in terms of computational efficiency per time step, especially when the
solution exhibits discontinuous behavior. The improvements are the greatest for the
new fourth-order scheme with 5 stages (SSP(5,4)), where the allowable time step is
significantly greater than the Shu–Osher fourth-order scheme and the classical fourth-
order explicit Runge–Kutta scheme.

We also give results of a similar treatment of low-storage SSPRK schemes, where
again we find significant improvements over the schemes most commonly used. The
results are for orders 1 through 3 and stages 1 through 5. We were unable to find a
low-storage scheme of order 4 having only 5 stages.

We have already examined the possibility of finding even more efficient SSPRK
schemes by lifting the positivity constraint on the coefficients βij . Not surprisingly,
improvements in the raw CFL coefficient are possible; however, the reduction in the
effective CFL coefficient necessitated by the introduction of L̃(·) whenever βij < 0
causes these methods to be uncompetitive.

We are currently extending our investigation of optimal SSPRK methods to
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methods having more than 5 stages and to orders 4 and 5. This work includes the
study of low-storage SSPRK methods of order 4. We have also derived families of
embedded SSPRK schemes for local error estimation and step-size control. We report
on these findings elsewhere.

Appendix A. Optimal (αik, βik) for p = 3, 4. Tables A.1 and A.2, respec-
tively, give the optimal SSPRK methods of orders 3 and 4 and up to 5 stages in the
representation (2.1).

Table A.1
The first few optimal SSPRK schemes of order 3.

Stages αik βik CFL coefficient

3

1
3
4

1
4

1
3

0 2
3

1

0 1
4

0 0 2
3

1

4

1

0 1
2
3

0 1
3

0 0 0 1

1
2

0 1
2

0 0 1
6

0 0 0 1
2

2

Stages 5

αik

1

0 1

0.56656131914033 0 0.43343868085967

0.09299483444413 0.00002090369620 0 0.90698426185967

0.00736132260920 0.20127980325145 0.00182955389682 0 0.78952932024253

βik

0.37726891511710

0 0.37726891511710

0 0 0.16352294089771

0.00071997378654 0 0 0.34217696850008

0.00277719819460 0.00001567934613 0 0 0.29786487010104

CFL coefficient 2.65062919294483

Table A.2
The coefficients of the optimal SSPRK (5,4) scheme.

Stages 5

αik

1

0.44437049406734 0.55562950593266

0.62010185138540 0 0.37989814861460

0.17807995410773 0 0 0.82192004589227

0.00683325884039 0 0.51723167208978 0.12759831133288 0.34833675773694

βik

0.39175222700392

0 0.36841059262959

0 0 0.25189177424738

0 0 0 0.54497475021237

0 0 0 0.08460416338212 0.22600748319395

CFL coefficient 1.50818004975927
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Appendix B. Butcher array forms of SSPRK schemes. The following are
the Butcher array representations of the optimal SSPRK schemes given in this paper.

Order 1:

0 0

1

0 0 0
1
2

1
2 0
1
2

1
2

0 0 0 0
1
3

1
3 0 0

2
3

1
3

1
3 0

1
3

1
3

1
3

Order 2:

0 0 0

1 1 0
1
2

1
2

0 0 0 0
1
2

1
2 0 0

1 1
2

1
2 0

1
3

1
3

1
3

0 0 0 0 0
1
3

1
3 0 0 0

2
3

1
3

1
3 0 0

1 1
3

1
3

1
3 0

1
4

1
4

1
4

1
4

Order 3:

0 0 0 0

1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3

0 0 0 0 0
1
2

1
2 0 0 0

1 1
2

1
2 0 0

1
2

1
6

1
6

1
6 0

1
6

1
6

1
6

1
2

0 0 0 0 0 0

0.37726891511710 0.37726891511710 0 0 0 0

0.75453783023419 0.37726891511710 0.37726891511710 0 0 0

0.49056882269314 0.16352294089771 0.16352294089771 0.16352294089771 0 0

0.78784303014311 0.14904059394856 0.14831273384724 0.14831273384724 0.34217696850008 0

0.19707596384481 0.11780316509765 0.11709725193772 0.27015874934251 0.29786487010104

Order 4:

0 0 0 0 0 0

0.39175222700392 0.39175222700392 0 0 0 0

0.58607968896779 0.21766909633821 0.36841059262959 0 0 0

0.47454236302687 0.08269208670950 0.13995850206999 0.25189177424738 0 0

0.93501063100924 0.06796628370320 0.11503469844438 0.20703489864929 0.54497475021237 0

0.14681187618661 0.24848290924556 0.10425883036650 0.27443890091960 0.22600748319395
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Appendix C. Butcher array forms of low-storage schemes. The optimal
low-storage SSPRK schemes of order 1 and order 2 occur when s = p and have already
been given both in terms of representation (2.1) and Butcher arrays. Here we provide
the Butcher array representation of the third-order schemes presented in Table 3.7.

Order 3:

0 0 0 0

0.92457411523577 0.92457411523577 0 0

0.37346170537554 0.08574876388805 0.28771294148749 0

0.08574876111733 0.28771294243783 0.62653829645172

0 0 0 0 0

1.03216665875130 1.03216665875130 0 0 0

0.29044361656735 0.10250480393024 0.18793881263711 0 0

0.44260113480482 0.10250480354712 0.18793881271456 0.15215751854315 0

0.10250480379728 0.18793881266399 0.05280467502407 0.65675174856653

0 0 0 0 0 0

0.67892607116139 0.67892607116139 0 0 0 0

0.34677649493991 0.14022991560621 0.20654657933371 0 0 0

0.66673359500982 0.20569370073026 0.18144649137471 0.27959340290485 0 0

0.76590087429032 0.16104646283838 0.19856511041100 0.08890670263481 0.31738259840613 0

0.19215670424132 0.18663683901393 0.22177739201759 0.09623007655432 0.30319904778284
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Abstract. Error estimates for Galerkin proper orthogonal decomposition (POD) methods for
nonlinear parabolic systems arising in fluid dynamics are proved. For the time integration the
backward Euler scheme is considered. The asymptotic estimates involve the singular values of the
POD snapshot set and the grid-structure of the time discretization as well as the snapshot locations.
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1. Introduction. Proper orthogonal decomposition (POD) provides a method
for deriving low order models of dynamical systems. It can be thought of as a Galerkin
approximation in the spatial variable, built from functions corresponding to the solu-
tion of the physical system at prespecified time instances. These are called the snap-
shots. Due to possible linear dependence or almost linear dependence, the snapshots
themselves are not appropriate as a basis. Instead, a singular value decomposition is
carried out and the leading generalized eigenfunctions are chosen as a basis, referred
to as the POD basis.

POD was successfully used in a variety of fields including signal analysis and
pattern recognition (see, e.g., [10]), fluid dynamics and coherent structures (see, e.g.,
[7, 22, 23, 24]), and more recently in control theory (see, e.g., [1, 3, 6, 15, 17, 18, 21])
and inverse problems (see [5]). Good approximation properties are reported for POD
based schemes in several articles; see [8, 9, 14, 19], for example. Symmetry preserving
properties of POD approximations are analyzed in [4].

As soon as one uses POD, questions concerning the quality of the approximation
properties, convergence, and rate of convergence become relevant. It appears that,
except for the work in [16], these issues have not been addressed. This may be
due, in part, to the fact that for POD based approximation of partial differential
equations one cannot rely on results clarifying the approximation properties of the
POD-subspaces to elements in function spaces as, e.g., Lp or C. Such results are an
essential building block for, e.g., finite element approximations to partial differential
equations. In our work we propose a strategy to describe and analyze convergence
and rate of convergence approximations based on POD approximation in space and
backwards Euler discretization in time for a class of nonlinear evolutionary partial
differential equations including the Navier–Stokes equation in two dimensions. Due
to the lack of typical function space approximation results described above, these
results are not a priori in the format that one is familiar with from finite difference,
finite element, or spectral approximations, for example. While we believe that the
estimates that we propose reflect well the properties of POD based approximations,
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they are certainly up for discussion and future improvement. Roughly, it will be shown
that the approximation error can be decomposed in a contribution that arises due to
the POD approximation in space, which is measured in terms of spectral properties
specifying the POD basis, and in the usual approximation error due to the backwards
Euler scheme with respect to time integration.

Concerning the availability of snapshots, two situations can be considered: in the
first one the snapshots are obtained by an independent numerical method and then
used within a POD approach for the sake of system reduction. In the second situation
the snapshots could be obtained and digitalized from actual physical phenomena.

In this article we analyze the case in which snapshots are assumed to be available
for the same system as that for which the approximation properties are analyzed.
The value of this analysis is to understand and justify analytically the observed high
approximation quality of POD schemes. Certainly the problem of quantifying the
approximation properties of POD based schemes where the snapshots are taken from
processes which are possibly “nearby,” but different from the system under consider-
ation, is of considerable interest. This situation can occur, for example, in the case of
control and optimal control of systems: snapshots are taken from a system at a nom-
inal control value, and a POD model reduction and subsequent optimal control step
are performed. The dynamics of the optimally controlled system then differ from the
original system. The analysis of these problems can be the focus of future research.

As already mentioned, the present work is a continuation of our efforts to approx-
imation properties of POD based schemes. We extend our earlier results of [16] in
three directions. First, the results of the present paper are asymptotic results in the
sense that the constants appearing in the estimates do not depend on the snapshot
set. Second, we now utilize two time discretizations, one for the set of snapshots
and a second one for the numerical integration. The effect of the two grids on the
convergence rate is kept separate in the estimates. Third, we focus in this paper on
a different class of nonlinearities, including the Navier–Stokes equations in dimension
two, which were not included in [16].

The paper is organized as follows. In section 2 the nonlinear evolution problem
is introduced and necessary prerequisites are given. The POD method is reviewed in
section 3. Convergence of the backward Euler scheme is studied in section 4. Technical
proofs are deferred to appendices.

2. General equations in fluid dynamics. In this section we specify the ab-
stract nonlinear evolution problem that will be considered in this paper and present
an existence and uniqueness result.

Let V and H be real separable Hilbert spaces and suppose that V is dense in H
with compact embedding. By 〈· , ·〉H we denote the inner product in H. The inner
product in V is given by a symmetric bounded, coercive, bilinear form a : V ×V → R:

〈ϕ,ψ〉V = a(ϕ,ψ) for all ϕ,ψ ∈ V(2.1)

with an associated norm given by ‖ · ‖V =
√
a(· , ·). Since V is continuously injected

into H, there exists a constant cV > 0 such that

‖ϕ‖H ≤ cV ‖ϕ‖V for all ϕ ∈ V.(2.2)

We associate with a the linear operator A:

〈Aϕ,ψ〉V ′,V = a(ϕ,ψ) for all ϕ,ψ ∈ V,
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where 〈· , ·〉V ′,V denotes the duality pairing between V and its dual. Then A is an iso-
morphism from V onto V ′. Alternatively, A can be considered as a linear unbounded
self-adjoint operator in H with domain

D(A) = {ϕ ∈ V : Aϕ ∈ H}.
By identifying H and its dual H ′ it follows that

D(A) ↪→ V ↪→ H = H ′ ↪→ V ′,

each embedding being continuous and dense, when D(A) is endowed with the graph
norm of A.

We introduce the continuous operator R : V → V ′, which maps D(A) into H and
satisfies

‖Rϕ‖H ≤ cR ‖ϕ‖1−δ1V ‖Aϕ‖δ1H for all ϕ ∈ D(A),

|〈Rϕ,ϕ〉V ′,V | ≤ cR ‖ϕ‖1+δ2V ‖ϕ‖1−δ2H for all ϕ ∈ V
(2.3)

for a constant cR > 0 and for δ1, δ2 ∈ [0, 1). We also assume that A + R is coercive
on V ; i.e., there exists a constant η > 0 such that

a(ϕ,ϕ) + 〈Rϕ,ϕ〉V ′,V ≥ η ‖ϕ‖2V for all ϕ ∈ V.(2.4)

Moreover, let B : V ×V → V ′ be a bilinear continuous operator mapping D(A)×
D(A) into H such that there exist constants cB > 0 and δ3, δ4, δ5 ∈ [0, 1) satisfying

〈B(ϕ,ψ), ψ〉V ′,V = 0,∣∣〈B(ϕ,ψ), φ〉V ′,V

∣∣ ≤ cB ‖ϕ‖δ3H‖ϕ‖1−δ3V ‖ψ‖V ‖φ‖δ3V ‖φ‖1−δ3H ,

‖B(ϕ, χ)‖H + ‖B(χ, ϕ)‖H ≤ cB ‖ϕ‖V ‖χ‖1−δ4V ‖Aχ‖δ4H ,
‖B(ϕ, χ)‖H ≤ cB ‖ϕ‖δ5H‖ϕ‖1−δ5V ‖χ‖1−δ5V ‖Aχ‖δ5H

(2.5)

for all ϕ,ψ, φ ∈ V , for all χ ∈ D(A). To simplify the notation we set B(ϕ) = B(ϕ,ϕ)
for ϕ ∈ V .

For given f ∈ L2(0, T ;H) and y0 ∈ V we consider the nonlinear evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) +

〈
B(y(t)) + Ry(t), ϕ

〉
V ′,V = 〈f(t), ϕ〉H(2.6a)

for all ϕ ∈ V and t ∈ (0, T ] a.e. and

y(0) = y0 in H.(2.6b)

The following theorem guarantees the existence of a unique solution to (2.6).
Theorem 2.1. Assume that (2.3) and (2.5) hold. Then for every f ∈ L2(0, T ;H)

and y0 ∈ V there exists a unique solution of (2.6) satisfying

y ∈ C([0, T ];V ) ∩ L2(0, T ;D(A)) ∩H1(0, T ;H).(2.7)

Proof. The proof is analogous to that of Theorem 2.1 in [25, p. 111], where the
case with time-independent f was treated.

Condition (2.4) will not be needed before section 4. Let us present an example
for the nonlinear evolution system (2.6).
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Example 2.2. Let Ω denote a bounded domain in R
2 with boundary Γ and let

T > 0. The two-dimensional Navier–Stokes equations are given by

�
(
ut + (u · ∇)u

)− ν∆u +∇p = f in Q = (0, T )× Ω,(2.8a)

div u = 0 in Q,(2.8b)

where � > 0 is the density of the fluid, ν > 0 is the kinematic viscosity, f represents
volume forces, and

(u · ∇)u =
(
u1
∂u1

∂x1
+ u2

∂u1

∂x2
, u1

∂u2

∂x1
+ u2

∂u2

∂x2

)T

.

The unknowns are the velocity field u = (u1, u2) and the pressure p. Together with
(2.8) we consider nonslip boundary conditions

u = ud on Σ = (0, T )× Γ(2.8c)

and the initial condition

u(0, ·) = u0 in Ω.(2.8d)

In [25, pp. 104–107, 116–117] it was proved that (2.8) can be written in the form
(2.6).

Next we recall Young’s inequality, which will frequently be used in our work. For
a proof we refer to [2, p. 28], for instance.

Lemma 2.3 (Young’s inequality). For all a, b, ε > 0 and for all p ∈ (1,∞) we
have

ab ≤ εap

p
+

bq

qεq/p
,

where q = p/(p− 1).

3. The POD method. This section is devoted to a discussion of the POD
method for the nonlinear evolution problem (2.6). Throughout we denote by y the
unique solution to (2.6) satisfying (2.7). Moreover, we suppose that f ∈ C([0, T ];H).

3.1. Computation of the POD basis. For given n ∈ N let

0 = t0 < t2 < · · · < tn ≤ T

denote a grid in the interval [0, T ] and set δtj = tj − tj−1, j = 1, . . . , n. Define

∆t = max (δt1, . . . , δtn) and δt = min (δt1, . . . , δtn).

Suppose that the snapshots y(tj) of (2.6) at the given time instances tj , j = 0, . . . , n,
are known. We set

V = span {y(t0), . . . , y(tn)}

and refer to V as the ensemble consisting of the snapshots {y(tj)}nj=0, at least one of
which is assumed to be nonzero. Notice that V ⊂ V by construction. Throughout the
remainder of this section we let X denote either the space V or H.
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Let {ψi}di=1 denote an orthonormal basis for V with d = dimV. Then each
member of the ensemble can be expressed as

y(tj) =

d∑
i=1

〈y(tj), ψi〉Xψi for j = 0, . . . , n.(3.1)

The method of POD consists of choosing an orthonormal basis such that for every
) ∈ {1, . . . , d} the mean square error between the elements y(tj), 0 ≤ j ≤ n, and the
corresponding )th partial sum of (3.1) is minimized on average:

min
{ψi}�

i=1

n∑
j=0

αj

∥∥∥∥∥y(tj)−
�∑
i=1

〈y(tj), ψi〉Xψi
∥∥∥∥∥

2

X

subject to 〈ψi, ψj〉X = δij for 1 ≤ i ≤ ), 1 ≤ j ≤ i.

(3.2)

Here {αj}nj=0 are positive weights, which for our purposes are chosen to be

α0 =
δt1
2
, αj =

δtj + δtj+1

2
for j = 1, . . . , n− 1, and αn =

δtn
2
.

A solution {ψi}�i=1 to (3.2) is called a POD basis of rank ). The subspace spanned by
the first ) POD basis functions is denoted by V �.

Remark 3.1. Note that

In(y) =

n∑
j=0

αj

∥∥∥∥∥y(tj)−
�∑
i=1

〈y(tj), ψi〉Xψi
∥∥∥∥∥

2

X

is the trapezoidal approximation for the integral

I(y) =

∫ T

0

∥∥∥∥∥y(t)−
�∑
i=1

〈y(t), ψi〉Xψi
∥∥∥∥∥

2

X

dt.

For all y ∈ C([0, T ];X) it follows that limn→∞ In(y) = I(y).
The solution of (3.2) is characterized by the necessary optimality condition. For

that purpose we endow R
n+1 with the weighted inner product

〈v, w〉
Rn+1 =

n∑
j=0

αjvjwj for v = (v0, . . . , vn)T, w = (w0, . . . , wn)T ∈ R
n+1.

Let us introduce the bounded linear operator Yn : R
n+1 → X by

Ynv =

n∑
j=0

αjvjy(tj) for v ∈ R
n+1.

Then the adjoint Y∗
n : X → R

n+1 is given by

Y∗
nz = (〈z, y(t0)〉X , . . . , 〈z, y(tn)〉X)

T
for z ∈ X.

It follows that Rn = YnY∗
n ∈ L(X) and Kn = Y∗

nYn ∈ R
(n+1)×(n+1) are given by

Rnz =

n∑
j=0

αj〈z, y(tj)〉Xy(tj) for z ∈ X and
(Kn)ij = 〈y(tj), y(ti)〉X ,
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respectively. Here L(X) denotes the Banach space of all bounded linear operators on
X.

Using a Lagrangian framework we derive the following optimality conditions for
the optimization problem (3.2):

Rnψ = λψ;(3.3)

compare, e.g., [7, 26]. Note that Rn is a bounded, self-adjoint and nonnegative
operator. Moreover, since the image of Rn has finite dimensions, Rn is also compact.
By Hilbert–Schmidt theory (see, e.g., [20, p. 203]) there exist an orthonormal basis
{ψi}i∈N for X and a sequence {λi}i∈N of nonnegative real numbers so that

Rnψi = λiψi, λ1 ≥ · · · ≥ λd > 0, and λi = 0 for i > d.(3.4)

Moreover, V = span {ψi}di=1.
Note that {λi}i∈N as well as {ψi}i∈N depend on n. Contents permitting the

notation of this dependence are dropped.
Remark 3.2. Setting

vi =
1√
λi
Y∗
nψi for i = 1, . . . , d

we find Knvi = λivi and 〈vi, vj〉Rn+1 = δij for 1 ≤ i, j ≤ d. Thus, {vi}di=1 is an
orthonormal basis of eigenvectors of Kn for the image of Kn. Conversely, if {vi}di=1

is a given orthonormal basis for the image of Kn, then it follows that the first d
eigenfunctions of Rn can be determined by

ψi =
1√
λi
Ynvi for i = 1, . . . , d.

The sequence {ψi}�i=1 solves the optimization problem (3.2). This fact as well as
the error formula below were proved in [7, 26], for example.

Proposition 3.3. Let λ1 ≥ · · · ≥ λd > 0 denote the positive eigenvalues of Rn
with the associated eigenvectors ψ1, . . . , ψd ∈ X. Then, {ψni }�i=1 is a POD basis of
rank ) ≤ d, and we have the error formula

n∑
j=0

αj

∥∥∥∥∥y(tj)−
�∑
i=1

〈y(tj), ψi〉Xψi
∥∥∥∥∥

2

X

=

d∑
i=�+1

λi.(3.5)

3.2. Perturbation analysis for
∑d

i=�+1 λi. The eigenvalues {λi}i∈N depend

on the time instances {tj}nj=0. Next we investigate
∑d
i=�+1 λi as ∆t tends to zero,

i.e., n→∞. Let us define the bounded linear operator Y : L2(0, T ; R)→ X by

Yϕ =

∫ T

0

ϕ(t)y(t) dt for ϕ ∈ L2(0, T ; R).

The adjoint Y∗ : X → L2(0, T ; R) is given by(Y∗z
)
(t) = 〈z, y(t)〉X for z ∈ X.

For R = YY∗ ∈ L(X) we find

Rz =

∫ T

0

〈z , y(t)〉Xy(t) dt for z ∈ X.(3.6)
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Notice that Rnϕ is the trapezoidal approximation for the integral Rϕ. If yt ∈
L2(0, T ;X), then we obtain

lim
∆t→∞

‖Rn −R‖L(X) = 0.(3.7)

Let us mention that as far as the following analysis is concerned any other choice of
positive weights αj is possible provided that (3.7) holds.

We proceed to investigate the relationship between Rn and R. Notice that R
is self-adjoint and nonnegative. Since y ∈ C([0, T ];V ), the Kolmogorov compactness
criterion in L2(0, T ; R) implies that Y∗ : X → L2(0, T ;X) is compact. Boundedness of
Y implies that R is a compact operator as well. From the Hilbert–Schmidt theorem it
follows that there exists a complete orthonormal basis {ψ∞

i }i∈N for X and a sequence
{λ∞

i }i∈N of nonnegative real numbers so that

Rψ∞
i = λ∞

i ψ
∞
i , λ∞

1 ≥ λ∞
2 ≥ · · · , and λ∞

i → 0 as i→∞.(3.8)

Remark 3.4. Analogous to Remark 3.2 we set

v∞i =
1√
λ∞
i

Y∗ψ∞
i =

1√
λ∞
i

〈ψ∞
i , y(t)〉X dt for i ∈ {j ∈ N : λ∞

j > 0}.

Let K = Y∗Y ∈ L(L2(0, T ; R)) be given by

Kϕ =

∫ T

0

〈y(s), y(t)〉Xϕ(s) ds for ϕ ∈ L2(0, T ; R).

It follows that

(Kv∞i )(t) =

∫ T

0

〈y(s), y(t)〉Xv∞i (s) ds

=
1√
λ∞
i

〈∫ T

0

〈ψ∞
i , y(s)〉Xy(s) ds, y(t)

〉
X

=
1√
λ∞
i

〈Rψ∞
i , y(t)〉X

=
1√
λ∞
i

〈Rψ∞
i , y(t)〉X = λ∞

i v
∞
i (t)

and, consequently, the v∞i ’s are the eigenfunctions of K for i ∈ N with λ∞
i > 0.

The spectra of R and Rn are pure point spectra except for possibly 0. Each non-
zero eigenvalue of R has finite multiplicity and 0 is the only possible accumulation
point of the spectrum of R; see [13, p. 185]. These facts together with (3.7) will allow

us to draw important conclusions on the term
∑d
i=�+1 λ

n
i in our estimates below.

Henceforth we denote by {λni }d(n)
i=1 the positive eigenvalues of Rn with associated

eigenfunctions {ψni }d(n)
i=1 . Similarly {λ∞

i }i∈N denotes the positive eigenvalues of R
with associated eigenfunctions {ψ∞

i }i∈N. In each case the eigenvalues are considered
according to their multiplicity. Let us note that∫ T

0

‖y(t)‖2X dt =

∞∑
i=1

λ∞
i .(3.9)

In fact,

Rψ∞
i =

∫ T

0

〈ψ∞
i , y(t)〉Xy(t) dt for every i ∈ N.
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Taking the inner product with ψ∞
i and summing over i we arrive at

∞∑
i=1

∫ T

0

∣∣〈ψ∞
i , y(t)〉X

∣∣2 dt =

∞∑
i=1

〈Rψ∞
i , ψ∞

i 〉X =

∞∑
i=1

λ∞
i .

Expanding y(t) ∈ X in terms of {ψ∞
i }i∈N we have

y(t) =

∞∑
i=1

〈ψ∞
i , y(t)〉Xψ∞

i

and hence ∫ T

0

‖y(t)‖2X dt =

∞∑
i=1

∫ T

0

∣∣〈ψ∞
i , y(t)〉X

∣∣2 dt =

∞∑
i=1

λ∞
i ,

which is (3.9). From Proposition 3.3 and (3.4) we obtain

n∑
j=0

αj ‖y(tj)‖2X =

∞∑
i=1

λni for every n ∈ N.(3.10)

For convenience we do not indicate the dependence of αj on n. Note that for y ∈
C([0, T ], X)

n∑
j=0

αj ‖y(tj)‖2X →
∫ T

0

‖y(t)‖2X dt as ∆t→ 0.

Combining this fact with (3.9) and (3.10) we find

∞∑
i=1

λni →
∞∑
i=1

λ∞
i as ∆t→ 0.(3.11)

Now choose and fix

) such that λ∞
� �= λ∞

�+1.(3.12)

Then by spectral analysis of compact operators [13, pp. 212–214] and (3.7) it follows
that

λni → λ∞
i for 1 ≤ i ≤ ) as ∆t→ 0.(3.13)

Combining (3.11) and (3.13) there exists ∆t > 0 such that

∞∑
i=�+1

λni ≤ 2

∞∑
i=�+1

λ∞
i for all ∆t ≤ ∆t(3.14)

if
∑∞
i=�+1 λ

∞
i �= 0. Moreover, for ) as above, ∆t can also be chosen such that

d(n)∑
i=�+1

∣∣〈ψni , y0〉X
∣∣2 ≤ 2

∞∑
i=�+1

∣∣〈ψ∞
i , y0〉X

∣∣2 for all ∆ ≤ ∆t,(3.15)
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provided that
∑∞
i=�+1 |〈y0, ψ

∞
i 〉X |2 �= 0. To verify (3.15) let us first note that y0 =

y(0) ∈ range R = (ker R)⊥. In fact, if v ∈ ker R, then t �→ 〈v, y(t)〉X is the
zero function in L2(0, T ;X). Since by assumption y ∈ C([0, T ];X) it follows that
〈v, y(0)〉X = 0. But v ∈ ker R was chosen arbitrarily and hence y0 ∈ (ker R)⊥. As a
consequence we have

‖y0‖2X =

∞∑
i=1

∣∣〈y0, ψ
∞
i 〉X

∣∣2.(3.16)

Since t0 = 0 holds, we have y0 ∈ V(n) for every n and

‖y0‖2X =

d(n)∑
i=1

∣∣〈y0, ψ
n
i 〉X

∣∣2.(3.17)

Therefore, for ) < d(n) by (3.16) and (3.17)

d(n)∑
i=�+1

∣∣〈y0, ψ
n
i 〉X

∣∣2 =

d(n)∑
i=1

∣∣〈y0, ψ
n
i 〉X

∣∣2 − �∑
i=1

∣∣〈y0, ψ
n
i 〉X

∣∣2 +

�∑
i=1

∣∣〈y0, ψ
∞
i 〉X

∣∣2

+

∞∑
i=�+1

∣∣〈y0, ψ
∞
i 〉X

∣∣2 − ∞∑
i=1

∣∣〈y0, ψ
∞
i 〉X

∣∣2

=

�∑
i=1

(∣∣〈y0, ψ
∞
i 〉X

∣∣2 − ∣∣〈y0, ψ
n
i 〉X

∣∣2)+

∞∑
i=�+1

∣∣〈y0, ψ
∞
i 〉X

∣∣2.
As a consequence of (3.7) and (3.12) we have lim∆t→0 ψ

n
i = ψ∞

i for i = 1, . . . , ) and
hence (3.15) follows.

4. Backward Euler Galerkin method. This section is devoted to error esti-
mates for the Galerkin POD method applied to (2.6) combined with the backward
Euler method for the time integration. Throughout, (2.3)–(2.5) are assumed to hold.

4.1. Case X = V . Let us choose X = V in the context of section 3. To study
the backward Euler Galerkin POD method for (2.6), we introduce the Ritz projection
P � : V → V �, 1 ≤ ) ≤ d, by

a(P �ϕ,ψ) = a(ϕ,ψ) for all ψ ∈ V �,(4.1)

where ϕ ∈ V . Since the Hilbert space V is endowed with the inner product (2.1), P �

is the orthogonal projection of V on V �. In particular, this implies that P � has norm
one.

Lemma 4.1. For every ) ∈ {1, . . . , d} the projection operators P � satisfy

n∑
j=0

αj ‖y(tj)− P �y(tj)‖2V ≤
d∑

i=�+1

λi,(4.2)

where λi denote the eigenvalues introduced in (3.4).
Proof. For arbitrary ϕ ∈ V we deduce from (2.1) and (4.1) that

‖ϕ− P �ϕ‖2V = a(ϕ− P �ϕ,ϕ− P �ϕ) = a(ϕ− P �ϕ,ϕ− ψ) ≤ ‖ϕ− P �ϕ‖V ‖ϕ− ψ‖V
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for all ψ ∈ V � so that

‖ϕ− P �ϕ‖V ≤ ‖ϕ− ψ‖V for all ψ ∈ V �.(4.3)

Using (4.3) and (3.5) we obtain

n∑
j=0

αj ‖y(tj)− P �y(tj)‖2V ≤
n∑
j=0

αj

∥∥∥∥∥y(tj)−
�∑
i=1

a(y(tj), ψi)ψi

∥∥∥∥∥
2

V

=

d∑
i=�+1

λi,

which is estimate (4.2).
The Galerkin POD method for (2.6) is described next. For m ∈ N we introduce

the time grid

0 = τ0 < τ1 < · · · < τm = T, δτj = τj − τj−1 for j = 1, . . . ,m

and set

δτ = min{δτj : 1 ≤ j ≤ m} and ∆τ = max{δτj : 1 ≤ j ≤ m}.

Throughout we assume that ∆τ/δτ is bounded uniformly with respect to m. To relate
the two time discretizations {tj}nj=0 and {τj}mj=0 we set for every τk, 0 ≤ k ≤ m, an

associated index k̄ = argmin {|τk − tj | : 0 ≤ j ≤ n} and define σn ∈ {1, . . . , n} as the
maximum of the occurrence of the same value tk̄ as k ranges over 0 ≤ k ≤ m.

The problem consists of finding a sequence {Yk}mk=0 in V � satisfying

〈Y0, ψ〉H = 〈y0, ψ〉H for all ψ ∈ V �(4.4a)

and

〈∂τYk, ψ〉H + a(Yk, ψ) + 〈B(Yk) + RYk, ψ〉V ′,V = 〈f(τk), ψ〉H(4.4b)

for all ψ ∈ V � and k = 1, . . . ,m, where we have set

∂τYk =
Yk − Yk−1

δτk
.

In the following theorem, existence and a priori estimates for the solution {Yk}mk=0

are established. For the proof we refer to Appendix A.
Theorem 4.2. For every k = 1, . . . ,m there exists at least one solution Yk

of (4.4b). If ∆τ is sufficiently small, the sequence {Yk}mk=1 is uniquely determined.
Moreover, the following estimates are satisfied:

‖Yk‖2H ≤ (1 + γδτ)e−γkδτ ‖y0‖2H +
1− e−γk∆τ

γ
‖f‖2C([0,T ];H)(4.5a)

for k = 0, . . . ,m, where γ = η/c2V , cV , η were introduced in (2.2) and (2.4), respec-
tively, and

m∑
k=1

‖Yk − Yk−1‖2H + η

m∑
k=1

δτk ‖Yk‖2V ≤ ‖y0‖2H +
T

γ
‖f‖2C([0,T ];H).(4.5b)
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Our next goal is to derive an error estimate for the expression

m∑
k=0

βk ‖Yk − y(τk)‖2H ,

where y(τk) is the solution of (2.6) at the time instances t = τk, k = 1, . . . ,m, and
the positive weights βj are given by

β0 =
δτ1
2
, βj =

δτj + δτj+1

2
for j = 1, . . . ,m− 1, and βm =

δτm
2

.(4.6)

We make use of the following assumptions:
(A1) yt ∈ L2(0, T ;V ) and ytt ∈ L2(0, T ;H).
(A2) There exists a normed linear space W continuously embedded in V and a

constant ca > 0 such that y ∈ C([0, T ];W ) and

a(ϕ,ψ) ≤ ca ‖ϕ‖H‖ψ‖W for all ϕ ∈ V and ψ ∈W.(4.7)

(A3) y ∈W 2,2(0, T ;V ).
Example 4.3. For V = H1

0 (Ω), H = L2(Ω), with Ω a bounded domain in R
l and

a(ϕ,ψ) =

∫
Ω

∇ϕ · ∇ψ dx for all ϕ,ψ ∈ H1
0 (Ω),

choosing W = H2(Ω) ∩H1
0 (Ω) implies a(ϕ,ψ) ≤ ‖ϕ‖W ‖ψ‖H for all ϕ ∈ W , ψ ∈ V ,

and (4.7) holds with ca = 1.
Remark 4.4. Note that (A2) implies the existence of a constant cP > 0 depending

on ) and λ� such that

‖P �‖L(H) ≤ cP for all 1 ≤ ) ≤ d.(4.8)

In fact, using (2.2) and (4.7) we find

‖P �ϕ‖H ≤
�∑
i=1

|a(ψi, ϕ)| ‖ψi‖H ≤ cacV ‖ϕ‖H
�∑
i=1

‖ψi‖W .

Now we estimate the term ‖ψi‖W for i = 1, . . . , ). Using
∑n
j=0 αj = T and (3.4) we

have

‖ψi‖W =
1

λi
‖Rnψi‖W ≤

1

λ�

n∑
j=0

αj
∣∣a(ψi, y(tj))

∣∣‖y(tj)‖W

≤ 1

λ�
‖y‖C([0,T ];W )

n∑
j=0

αj‖y(tj)‖V ≤
T

λ�
‖y‖C([0,T ];W )‖y‖C([0,T ];V ).

This bound implies

‖P �ϕ‖H ≤
c)

λ�
‖ϕ‖H(4.9)

with c = cacV T ‖y‖C([0,T ];W )‖y‖C([0,T ];V ).



GALERKIN POD METHODS 503

Throughout we shall use the decomposition

Yk − y(τk) = Yk − P �y(τk) + P �y(τk)− y(τk) = ϑk + �k,(4.10)

where ϑk = Yk −P �y(τk) and �k = P �y(τk)− y(τk). The following lemma establishes
an error estimate for ϑk. For the proof we refer to Appendix B.

Lemma 4.5. Assume that ∆τ is sufficiently small and that (A1), (A2) hold. Then
there exist constants C1, C2 > 0 independent of the grids {tj}nj=0 and {τj}mj=0 such
that

‖ϑk‖2H ≤ C1e
C2kδτ

(
‖y0 − P �y0‖2H +

σn
δt

( 1

δτ
+ ∆τ

) d∑
i=�+1

λi

+ σn∆τ
(
1 + c2P

)
(∆τ + ∆t)‖ytt‖2L2(0,tk̄+1;H)

+ σn∆τ∆t ‖yt‖2L2(0,tk̄+1;V )

)(4.11)

for each 1 ≤ k ≤ m.
Remark 4.6. Since y0 ∈ V we infer from (2.2) that

‖y0 − P �y0‖2H ≤ c2V

d∑
i=�+1

∣∣〈ψi, y0〉V
∣∣2.

We turn to the term ‖�k‖2H . Observe that

‖�k‖2H = ‖P �y(τk)− y(τk)‖2H
≤ 3

(
‖P �y(τk)− P �y(tk̄)‖2H + ‖P �y(tk̄)− y(tk̄)‖2H + ‖y(tk̄)− y(τk)‖2H

)
≤ 3
(
1 + c2P

) ‖y(tk̄)− y(τk)‖2H + 3 ‖P �y(tk̄)− y(tk̄)‖2H
(4.12)

and

‖y(tk̄)− y(τk)‖2H ≤
(∫ tk̄+1

tk̄−1

‖yt(s)‖H ds

)2

≤ (δtk̄ + δtk̄+1) ‖yt‖2L2(tk̄−1,tk̄+1;H),

(4.13)

where we set tm+1 = T whenever k̄ = m. Using (4.13) and βk ≤ ∆τ we obtain

m∑
k=0

βk ‖y(tk̄)− y(τk)‖2H ≤ 2σn∆τ∆t ‖yt‖2L2(0,T ;H).

From (2.2), βk ≤ ∆τ , αj ≥ δt/2, and Lemma 4.1 we infer that

m∑
k=0

βk ‖P �y(tk̄)− y(tk̄)‖2H ≤ 2c2V σn∆τ

δt

n∑
j=0

αj ‖P �y(tj)− y(tj)‖2V

≤ 2c2V σn∆τ

δt

d∑
i=�+1

λi.

(4.14)
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Combining the last two bounds and (4.12) it follows that

m∑
k=0

βk ‖�k‖2H ≤ 6σn(1 + c2P )∆τ∆t ‖yt‖2L2(0,T ;H) +
6c2V σn∆τ

δt

d∑
i=�+1

λi.(4.15)

Note that
∑m
k=0 βk = T holds. By Lemma 4.5 we have

m∑
k=0

βk ‖ϑk‖2H ≤ C3

(
‖ϑ0‖2H +

σn
δt

( 1

δτ
+ ∆τ

) d∑
i=�+1

λi

)

+ C3∆τ(1 + c2P )(∆τ + σn∆t)‖ytt‖2L2(0,T ;H)

+ C3σn∆τ∆t ‖yt‖2L2(0,T ;V ),

(4.16)

where C3 = C1Te
C2T . From (4.10), (4.15), (4.16), and Remark 4.4 we obtain the first

part of the following theorem.
Theorem 4.7.
(a) Assume that (A1), (A2) hold and that ∆τ is sufficiently small. Then there

exists a constant C depending on T , but independent of the grids {tj}nj=0 and
{τj}mj=0, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H

≤ C

d∑
i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

σn
δt

( 1

δτ
+ ∆τ

)
λi

)
+ Cσn∆τ∆t ‖yt‖2L2(0,T ;V )

+ Cσn(1 + c2P )∆τ
(

∆t‖yt‖2L2(0,T ;H) + (∆τ + ∆t)‖ytt‖2L2(0,T ;H)

)
.

(4.17)

(b) If (A3) is satisfied and ∆τ sufficiently small, then there exists a constant C
depending on T , but independent of the grids {tj}nj=0 and {τj}mj=0, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ Cσn∆τ(∆τ + ∆t)‖ytt‖2L2(0,T ;V )

+ C

(
d∑

i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

σn
δt

( 1

δτ
+ ∆τ

)
λi

)
+ σn∆τ∆t‖yt‖2L2(0,T ;V )

)
.

(4.18)

Proof. The proof of part (b) is obtained from that for (a) by utilizing (2.2)
and ‖P �‖L(V ) = 1 and by simple modifications of the estimates for the two terms∑m
k=0 βk‖ϑk‖2H and

∑k
j=1 δτj‖zj‖2H in (B.16) of Appendix B.

Compared to standard finite difference, finite element, or spectral element approx-
imation results in the basic Galerkin POD backward Euler convergence, the result of
Theorem 4.7 has an unusual format. This is due, in part, to the fact that one cannot
rely on function space rate of convergence results, which are typically the basis for
approximation theory of partial differential equations. The terms in the second line
of (4.17) depend (through ψi, λi, d) on the way in which the snapshots are taken, on
the number ) of basis elements, and on the relative locations of the snapshots and the
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time discretization (through σn). In the remainder of this section we shall analyze
these terms and show how they can be simplified if further assumptions are admitted.

Remark 4.8. In (4.17) and (4.18) the eigenvalues and eigenfunctions depend
on n, i.e., λi = λni and ψi = ψni . As proved in section 3, if ) satisfies (3.12) and∑∞
i=�+1 λ

∞
i �= 0 or

∑∞
i=�+1 |〈ψi, y0〉V |2 �= 0, then by (3.14), (3.15) we have

d∑
i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

σn
δt

( 1

δτ
+ ∆τ

)
λi

)

≤ 2
∞∑

i=�+1

(∣∣〈ψ∞
i , y0〉V

∣∣2 +
σn
δt

( 1

δτ
+ ∆τ

)
λ∞
i

)
for all ∆t ≤ ∆t,

and the dependence of the estimates of eigenvalues and eigenfunctions on n in (4.17)
and (4.18) is thus eliminated.

Let us next derive some corollaries to the proof of Theorem 4.7. At first we
consider the case in which the two grids coincide so that n = m and τj = tj for
j = 0, . . . ,m.

Corollary 4.9. Suppose that the assumptions of Theorem 4.7(a) hold. If the
two time discretizations coincide, then there exists a constant C > 0 depending on T ,
but independent of the grid {τj}mj=0, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ C(1 + c2P )∆τ2 ‖ytt‖2L2(0,T ;H)

+ C

(
d∑

i=�+1

(∣∣〈ψi, y0〉V
∣∣2 +

( 1

δτ2
+ 1
)
λi

)
+ ∆τ2 ‖yt‖L2(0,T ;V )

)
.

(4.19)

Proof. We proceed as in the proof of Theorem 4.2. Since the two time discretiza-
tions coincide, we obtain n = m, σn = 1, δt = δτ , and αj = βj for j = 0, . . . , n. In
place of the estimate (4.15) we now have

m∑
k=0

βk ‖�k‖2H ≤ c2V

d∑
i=�+1

λi,

which gives the claim.

Remark 4.10. Again, as in Theorem 4.7(b) compared to (a), the factor 1 + c2P
can be avoided in (4.19) if in place of (A1), (A2) we assume (A3) and replace the
term ‖ytt‖L2(0,T ;H) with ‖ytt‖L2(0,T ;V ).

Let us briefly reflect on the behavior of the right-hand side of (4.17) and (4.18).
First we note that if the number of POD elements for the Galerkin scheme coincides
with the dimension of V, then the first additive term on the right-hand side disap-
pears. Second, if the number of snapshots is refined so that ∆t → 0, then the factor
multiplying

∑d
i=�+1 λi blows up. As noted above, the term

∑d
i=�+1 λi itself changes

as the snapshots are refined. While computations for many concrete situations show
that

∑d
i=�+1 λi is small compared to ∆τ , the question nevertheless arises of whether

the term 1/(δτδt) can be avoided in the estimates. For this purpose we choose

V = span {y(t0), . . . , y(tn), ∂ty(t1), . . . , ∂ty(tn)},(4.20)
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where

∂ty(tj) =
y(tj)− y(tj−1)

δtj
for j = 1, . . . , n.

Equation (3.5) must be replaced by

n∑
j=0

αj

∥∥∥∥∥y(tj)−
�∑
i=1

〈y(tj), ψ̂i〉V ψ̂i
∥∥∥∥∥

2

V

+

n∑
j=1

αj

∥∥∥∥∥∂ty(tj)−
�∑
i=1

〈∂ty(tj), ψ̂i〉V ψ̂i
∥∥∥∥∥

2

V

=

d∑
i=�+1

λ̂i,

where {λ̂i}i∈N, {ψ̂i}i∈N are the eigenvalues and eigenfunctions of R̂n ∈ L(V ) given by

R̂nz =

n∑
j=0

αj
(〈z, y(tj)〉V y(tj) + 〈z, ∂ty(tj)〉V ∂ty(tj)

)

and satisfying

R̂nψ̂i = λ̂iψ̂i, λ̂1 ≥ · · · ≥ λ̂d(n) > 0, and λi = 0 for i > d(n).

As a consequence, estimate (B.16) in Appendix B can be replaced by

k∑
j=1

δτj ‖zj‖2H ≤ 14σn(1 + c2P )(∆τ2 + ∆τ∆t)‖ytt‖2L2(0,tk̄+1;H) +
14σnc

2
V ∆τ

δt

d∑
i=�+1

λ̂i

in the case of (A1), (A2) holding, and by

k∑
j=1

δτj ‖zj‖2H ≤ 28σn(∆τ2 + ∆τ∆t)‖ytt‖2L2(0,tk̄+1;V ) +
28σnc

2
V ∆τ

δt

d∑
i=�+1

λ̂i

in the case of (A3). We obtain the following corollary.
Corollary 4.11. If in addition to the assumptions of Theorem 4.7(a) the snap-

shots set is taken as in (4.20), then

m∑
k=0

βk ‖Yk − y(τk)‖2H

≤ C

d∑
i=�+1

(∣∣〈ψ̂i, y0〉V
∣∣2 +

σn∆τ

δt
λ̂i

)
+ Cσn∆τ∆t ‖yt‖2L2(0,T ;V )

+ C(1 + c2P )∆τ
(
(∆τ + σn∆t)‖ytt‖2L2(0,T ;H) + σn∆t‖yt‖2L2(0,T ;H)

)
,

(4.21)

where C has the same properties as in Theorem 4.7.
Remark 4.12. In [12] a laser surface hardening problem was considered. The

numerical experiments show that the inclusion of the difference quotients into the
snapshot set leads to better results.

In estimate (4.21) the term 1 + c2P can be avoided if (A3) in place of (A1), (A2)

holds and ‖ytt‖L2(0,T ;H) is replaced by ‖ytt‖L2(0,T ;V ). Note that the terms {λ̂i}i∈N,
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{ψ̂i}i∈N, and σn depend on the time discretization of [0, T ] for the snapshots as well
as the numerical integration. We address this dependence next.

If we suppose that

∆t = O(δτ) and ∆τ = O(δt),(4.22)

then there exists a constant c1 > 0 independent of {tj}nj=0 and {τj}mj=0 such that

max
(
σn,

σn∆τ

δt

)
≤ c1.(4.23)

To obtain an estimate that is independent of the spectral values of a specific snapshot
set {y(tj)}nj=0 we follow the analysis of section 3.2. We assume that y ∈W 2,2(0, T ;V ),

so that in particular (A3) holds, and introduce the operator R̂ ∈ L(V ) corresponding
to R by

R̂z =

∫ T

0

〈z, y(t)〉V y(t) + 〈z, yt(t)〉V yt(t) dt for z ∈ V.

Note that R̂ = ŶŶ∗, where Ŷ∗ : V →W 1,2(0, T ; R) is given by

(Ŷ∗z)(t) = 〈z, y(t)〉V .

Since y ∈ W 2,2(0, T ;V ) it is simple to argue that Ŷ∗ is compact and hence R̂ is
compact. Let us denote the positive eigenvalues and corresponding eigenfunctions
of R̂ by {λ̂∞

i }i∈N and {ψ̂∞
i }i∈N. Since t0 = 0, we proceed as in section 3.2, that

y0 ∈ range R̂n for all n and y0 ∈ range R̂. The assumption y ∈ W 2,2(0, T ;V ) allows
us to argue that the analogue of (3.7), i.e.,

lim
∆t→0

‖R̂n − R̂‖L(V ) = 0,

holds. Let us choose and fix ) such that

λ̂∞
� �= λ̂∞

�+1.(4.24)

We can now proceed precisely as in section 3.2 to assert that there exists ∆t > 0 such
that

d(n)∑
i=�+1

λ̂ni ≤ 2

∞∑
i=�+1

λ̂∞
i and

d(n)∑
i=�+1

∣∣〈y0, ψ̂
n
i 〉V

∣∣2 ≤ 2

∞∑
i=�+1

∣∣〈y0, ψ̂
∞
i 〉V

∣∣2(4.25)

for all ∆t ≤ ∆t, provided, of course, that the terms on the right-hand side of (4.25)
are different from zero. We summarize the above discussion in the following corollary.

Corollary 4.13. Assume that y ∈W 2,2(0, T ;V ) and let the snapshots be chosen
as in (4.20). If (4.22) holds and ) satisfies (4.24), then there exists a constant C > 0,
independent of ) and the grids {tj}nj=0 and {τj}mj=0, and a ∆t > 0, depending on ),
such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ C

∞∑
i=�+1

(∣∣〈y0, ψ̂
∞
i 〉V

∣∣2 + λ̂∞
i

)
+ C

(
∆τ∆t ‖yt‖2L2(0,T ;V ) + ∆τ(∆τ + ∆t) ‖ytt‖2L2(0,T ;V )

)(4.26)
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for all ∆t ≤ ∆t.
Remark 4.14. In (4.26) the first term on the right-hand side of the inequality

reflects the spatial approximation error of the Galerkin POD scheme and the second
reflects the approximation error due to the temporal backward Euler scheme. If
the latter is replaced by the Crank–Nicolson method, then, assuming ∆τ = ∆t and
appropriate regularity on y, it can be shown with the techniques of this section that
an estimate analogous to (4.26) holds with the first additive term on the right-hand
side unchanged and the second one of fourth order in ∆τ .

4.2. Case X = H. Here we consider the case in which the POD basis is con-
structed with respect to the H-norm. Differently from the situation where the POD
basis was constructed in V , the right-hand side of the estimate will involve the stiffness
matrix

S = ((Sij)) ∈ R
d×d with Sij = a(ψj , ψi).

We shall require the following lemma.
Lemma 4.15. For every ) ∈ {1, . . . , d} the projection operator P � : V → V �

satisfies

n∑
j=0

αj ‖y(tj)− P �y(tj)‖2V ≤ ‖S‖2
d∑

i=�+1

λi,(4.27)

where λi denote the eigenvalues introduced in (3.4) and ‖ · ‖2 stands for the spectral
norm for symmetric matrices.

Proof. Using the fact that ‖ϕ‖2V ≤ ‖S‖2 ‖ϕ‖2H for all ϕ ∈ V (see [16, Lemma 2]),
we can proceed as in the proof of Lemma 4.1 and, utilizing (3.5) with X = H, we
obtain the desired result.

Theorem 4.16. Suppose that (A3) holds and that ∆τ is sufficiently small. Then
there exists a constant C > 0 depending on T , but independent of the grids {tj}nj=0

and {τj}mj=0, such that

m∑
k=0

βk ‖Yk − y(τk)‖2H ≤ C

d∑
i=�+1

‖S‖2
(∣∣〈ψi, y0〉H

∣∣2 +
σn
δt

( 1

δτ
+ ∆τ

)
λi

)
+ Cσn∆τ

(
(∆τ + ∆t)‖ytt‖2L2(0,T ;V ) + ∆t ‖yt‖2L2(0,T ;V )

)
.

(4.28)

Proof. We proceed as in the proofs of Lemma 4.5 and Theorem 4.7 and indicate
only the necessary changes. Estimate (B.15) requires no change. For (B.16) we utilize
‖P �ϕ‖ ≤ cV ‖ϕ‖V for ϕ ∈ V and obtain, by applying Lemma 4.15,

k∑
j=1

δτj ‖zj‖2H ≤ 14σn(1 + c2V )(∆τ2 + ∆τ∆t)‖ytt‖2L2(0,tk̄+1;V )

+
56σnc

2
V ‖S‖2

δtδτ

d∑
i=�+1

λi.

(4.29)

The analogue of (B.17) is again obtained by Lemma 4.15. Summarizing the ϑk-terms
we have

k∑
j=1

δτj ‖ϑk‖2H ≤ C

(
‖ϑ0‖2H +

σn‖S‖2
δt

( 1

δτ
+ ∆τ

) d∑
i=�+1

λi

)

+ Cσn(1 + c2V )∆τ
(
(∆τ + ∆t)‖ytt‖2L2(0,T ;V ) + ∆t ‖yt‖2L2(0,T ;V )

)
.

(4.30)
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Turning to the �k-terms we find, following the estimates after (4.12),

m∑
k=0

βk ‖�k‖2H

≤ 6σn(1 + c2V )∆τ∆t ‖yt‖2L2(0,T ;V ) + 3

m∑
k=0

βk‖P �y(tk̄)− y(tk̄)‖2H

≤ 6σn(1 + c2V )∆τ∆t ‖yt‖2L2(0,T ;V ) +
6c2V σn∆τ

δt

n∑
j=0

αj ‖P �y(tj)− y(tj)‖2V .

Thus by Lemma 4.15

m∑
k=0

βk ‖�k‖2H ≤ 6σn(1 + c2V )∆τ∆t ‖yt‖2L2(0,T ;V ) +
6c2V σn∆τ‖S‖2

δt

d∑
i=�+1

λi.(4.31)

Finally ϑ0 = y0 − P �y0 can be estimated as follows:

‖y0 − P �y0‖H ≤ cV ‖y0 − P �y0‖V ≤ cV

∥∥∥∥∥y0 −
�∑
i=1

〈y0, ψi〉Hψi
∥∥∥∥∥
V

= cV

(
‖S‖2

d∑
i=�+1

∣∣〈y0, ψ〉H
∣∣2)1/2

.

Combining the last estimate with (4.30)–(4.31) we obtain (4.28).
Remark 4.17. Let us briefly discuss the asymptotic properties of the expression

on the right-hand side of (4.28), which are restricted due to the appearance of δtδτ
in the denominator and the terms σn and ‖S‖2. As in section 4.1 the factor 1/δτ can
be eliminated by adding the set {∂y(tj)}nj=1 to the set of snapshots. Assuming that
∆t = O(δτ) and ∆τ = O(δt) implies (4.23), and consequently, σn and σn∆τ/δt are
uniformly bounded with respect to refinement of the t- and τ -grids. The factor ‖S‖2,
which tends to infinity as m→∞, appears to be unavoidable in case the POD basis
is computed in H.

Appendix A. Proof of Theorem 4.2.

A.1. Existence. Existence of a solution {Yk}mk=1 can be proved by using the
Schauder fixed point theorem; see [11, p. 222], for instance. For that purpose we
define z = Tkw via the mappings Tk : V � → V �, k = 1, . . . ,m, as follows: z ∈ V � is
the solution to

〈z, ψ〉H + δτk
(
a(z, ψ) + 〈B(w, z) + Rz, ψ〉V ′,V

)
= 〈δτkf(τk) + Yk−1, ψ〉H(A.1)

for all ψ ∈ V �. The bilinear form

〈· , ·〉H + δτk
(
a(· , ·) + 〈B(w, ·) + R(·), ·〉V ′,V

)
is continuous and coercive in V � × V � by (2.3)–(2.5). The existence and uniqueness
of a solution to (A.1) can thus be shown by the Lax–Milgram theorem. The fixed
points of Tk are the solutions of (4.4b). Taking ψ = z in (A.1) above and using (2.2)
and (2.4) we derive

‖z‖V ≤
cV
η

(
‖f(τk)‖H +

1

δτk
‖Yk−1‖H

)
.(A.2)
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Let us introduce the set

Mk =
{
w ∈ V � : ‖w‖V ≤

cV
η

(
‖f(τk)‖H +

1

δτk
‖Yk−1‖H

)}
⊂ V �.

From (A.2) we infer that Tk maps Mk into itself. Since Mk is a closed ball in V �, the
set Mk is bounded, closed, and convex. Since the image of Tk is finite dimensional, Tk
is compact. Thus, the existence of a fixed point Yk follows from the Schauder fixed
point theorem.

A.2. Uniqueness. To prove the uniqueness we assume that the two sequences
{Y 1

k }mk=0, {Y 2
k }mk=0 in V � are solutions of (4.4b). Then δYk = Y 1

k − Y 2
k ∈ V � solves

〈δYk, ψ〉H + δτk
(
a(δYk, ψ) + 〈RδYk, ψ〉V ′,V

)
= δτk 〈B(Y 2

k )−B(Y 1
k ), ψ〉V ′,V

for all ψ ∈ V �. Setting ψ = δYk and using (2.4), (2.5), and Young’s inequality we
obtain

‖δYk‖2H + ηδτk ‖δYk‖2V ≤ δτk 〈B(Y 2
k )−B(Y 1

k ), δYk〉V ′,V

= −δτk 〈B(δYk, Y
2
k ) + B(Y 1

k , δYk), δYk〉V ′,V

= −δτk 〈B(δYk, Y
2
k ), δYk〉V ′,V

≤ cBδτk ‖Y 2
k ‖V ‖δYk‖H‖δYk‖V

≤ ‖δYk‖2H +
c2Bδτ

2
k

4
‖Y 2

k ‖2V ‖δYk‖2V .

It follows that (
1− c2Bδτk

4η
‖Y 2

k ‖2V
)
‖δYk‖2V ≤ 0.

Let c = max{‖Y 2
k ‖V : k = 1, . . . ,m}. Then δYk = 0 and hence Y 1

k = Y 2
k , provided

that ∆τ ≤ 4η/(c2c2B).

A.3. A priori estimates. To prove the estimates (4.5) we take ψ = Yk in
(4.4b). Due to (2.3)–(2.5) and the identity

2 〈ϕ− ψ,ϕ〉H = ‖ϕ‖2H − ‖ψ‖2H + ‖ϕ− ψ‖2H for all ϕ,ψ ∈ H(A.3)

we obtain

‖Yk‖2H − ‖Yk−1‖2H + ‖Yk − Yk−1‖2H + 2ηδτk ‖Yk‖2V ≤ 2δτk ‖f(τk)‖H‖Yk‖H .
Using (2.2) and Young’s inequality it follows that

‖Yk‖2H + ‖Yk − Yk−1‖2H + ηδτk ‖Yk‖2V ≤ ‖Yk−1‖2H +
c2V δτk
η
‖f(τk)‖2H .(A.4)

From (A.4) and (2.2) we infer that

(1 + γδτk) ‖Yk‖2H ≤ ‖Yk−1‖2H +
δτk
γ
‖f(τk)‖2H ,

where γ = η/c2V , which yields

‖Yk‖2H ≤
1

1 + γδτ
‖Yk−1‖2H +

δτk
γ(1 + γδτk)

‖f(τk)‖2H .(A.5)
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From

δτk
1 + γδτk

=
1

γ

(
1− 1

1 + γδτk

)
≤ 1

γ

(
1− 1

1 + γ∆τ

)
=

∆τ

1 + γ∆τ

and (A.5) we infer upon summation that

‖Yk‖2H ≤
( 1

1 + γδτ

)k
‖Y0‖2H +

∆τ

γ
‖f‖2C([0,T ];H)

k∑
j=1

( 1

1 + γ∆τ

)j
.(A.6)

Recall that( 1

1 + γδτ

)k
≤ (1 + γδτ)e−γkδτ and

( 1

1 + γ∆τ

)k
≥ e−γk∆τ .(A.7)

Moreover, setting ζ = 1/(1 + γ∆τ) we find

∆τ

k∑
j=1

( 1

1 + γ∆τ

)j
= ∆τ

1− ζk

ζ−1 − 1
=

1− ζk

γ
≤ 1− e−γk∆τ

γ
.

Inserting this estimate and (A.7) in (A.6) and utilizing the fact that ‖Y0‖H ≤ ‖y0‖H
yield (4.5a). Summing (A.4) over k we find

‖Ym‖2H +

m∑
k=1

‖Yk − Yk−1‖2H + η

m∑
k=1

δτk‖Yk‖2V ≤ ‖Y0‖2H +
cV T

γ
‖f‖2C([0,T ];H),

which is estimate (4.5b).

Appendix B. Proof of Lemma 4.5. Using the notation ∂τϑk = (ϑk −
ϑk−1)/δτk, k = 1, . . . ,m, we obtain

〈∂τϑk, ψ〉H + a(ϑk, ψ) + 〈Rϑk, ψ〉V ′,V

= 〈vk, ψ〉H + 〈B(y(τk))−B(Yk) + R(y(τk)− P �y(τk)), ψ〉V ′,V ,
(B.1)

where

vk = yt(τk)− ∂τP
�y(τk) = yt(τk)− ∂τy(τk) + ∂τy(τk)− ∂τP

�y(τk).

We put wk = yt(τk)− ∂τy(τk) and zk = ∂τy(τk)− ∂τP �y(τk). Choosing ψ = ϑk ∈ V �

in (B.1), using (2.4) and (A.3) we infer that

‖ϑk‖2H − ‖ϑk−1‖2H + ‖ϑk − ϑk−1‖2H + 2ηδτk ‖ϑk‖2V
≤ 2δτk

(‖vk‖H‖ϑk‖H +
∣∣〈B(y(τk))−B(Yk), ϑk〉V ′,V

∣∣+ ‖R�k‖V ′‖ϑk‖V
)
.

(B.2)

Applying Young’s inequality it follows that

‖R�k‖V ′‖ϑk‖V ≤ ‖R‖L(V,V ′)‖�k‖V ‖ϑk‖V ≤
η

4
‖ϑk‖2V + c0 ‖�k‖2V(B.3)

for a constant c0 > 0 depending on ‖R‖L(V,V ′) and η. We proceed by estimating the
nonlinear terms on the right-hand side of (B.2). Note that

B(y(τk))−B(Yk)

= −B(y(τk), Yk − y(τk))−B(Yk − y(τk))−B(Yk − y(τk), y(τk)).
(B.4)
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Applying (2.5), (2.2), and Young’s inequality we obtain the existence of two constants
c1, c2 > 0 satisfying∣∣〈B(y(τk), Yk − y(τk)), ϑk〉V ′,V

∣∣
=
∣∣〈B(y(τk), �k), ϑk〉V ′,V

∣∣ ≤ cBc
δ3
V ‖y‖C([0,T ];V )‖�k‖V ‖ϑk‖1−δ3H ‖ϑk‖δ3V

≤ η

4
‖ϑk‖2V + c1 ‖ϑk‖2H + c2 ‖�k‖2V .

(B.5)

Again utilizing (2.5), Young’s inequality, and (2.2) we find that there exist constants
c3, c4 > 0 such that∣∣〈B(Yk − y(τk), y(τk)), ϑk〉V ′,V

∣∣
=
∣∣〈B(ϑk, y(τk)) + B(�k, y(τk)), ϑk〉V ′,V

∣∣
≤ cB ‖y‖C([0,T ];V )

(
‖ϑk‖H‖ϑk‖V + cδ3V ‖�k‖V ‖ϑk‖1−δ3H ‖ϑk‖δ3V

)
≤ η

4
‖ϑk‖2V + c3 ‖ϑk‖2H + c4 ‖�k‖2V .

(B.6)

From y ∈ C([0, T ];V ) it follows that there exists a constant c5 > 0 such that

max
1≤k≤m

(
‖�k‖δ3H‖�k‖1−δ3V , ‖�k‖V

)
≤ c5.(B.7)

Using (2.5) and (4.10) we conclude that

〈B(Yk − y(τk)), ϑk〉V ′,V = 〈B(ϑk, �k) + B(�k, �k), ϑk〉V ′,V .(B.8)

Applying (2.5), (B.7), (B.8), and Young’s inequality we find that∣∣〈B(Yk − y(τk)), ϑk〉V ′,V

∣∣
≤ cBc5

(
‖ϑk‖H‖ϑk‖V + ‖�k‖V ‖ϑk‖1−δ3H ‖ϑk‖δ3V

)
≤ η

4
‖ϑk‖2V + c6 ‖ϑk‖2H + c7 ‖�k‖2V

(B.9)

for two constants c6, c7 > 0. From (B.2)–(B.9), Young’s inequality, and vk = wk + zk
we obtain

‖ϑk‖2H ≤ ‖ϑk−1‖2H + δτk
(‖wk‖2H + ‖zk‖2H + c8 ‖ϑk‖2H + c9 ‖�k‖2V

)
,(B.10)

where c8 = 2 + c1 + c3 + c6 and c9 = c0 + c2 + c4 + c7. Suppose that

∆τ ≤ 1

2c8
.(B.11)

With (B.11) holding we have 0 < 1− c8δτk ≤ 1/2 and

1

1− c8δτk
≤ 1

1− c8∆τ
≤ 1 + 2c8∆τ.(B.12)

From (B.10) and (B.12) we find that

‖ϑk‖2H ≤ (1 + 2c8∆τ)
(‖ϑk−1‖2H + δτk

(‖wk‖2H + ‖zk‖2H + c9 ‖�k‖2V
))

(B.13)
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holds. By summation on k we obtain

‖ϑk‖2H ≤
(

1 +
2c8∆τ

δτ

kδτ

k

)k

·

‖ϑ0‖2H +

k∑
j=1

δτj

(
‖wj‖2H + ‖zj‖2H + c9 ‖�j‖2V

)

≤ ec10kδτ


‖ϑ0‖2H +

k∑
j=1

δτj

(
‖wj‖2H + ‖zj‖2H + c9 ‖�k‖2V

) ,

(B.14)

where c10 = 2c8∆τ/δτ . Recall that by assumption, ∆τ/δτ is bounded uniformly with
respect to m. We next estimate the terms involving wj and zj :

k∑
j=1

δτj‖wj‖2H =

k∑
j=1

δτj ‖yt(τj)− ∂τy(τj)‖2H

=

k∑
j=1

1

δτj
‖δτjyt(τj)− (y(τj)− y(τj−1))‖2H

=

k∑
j=1

1

δτj

∥∥∥∥∥
∫ τj

τj−1

(s− τj−1)ytt(s) ds

∥∥∥∥∥
2

H

≤
k∑
j=1

1

δτj

∫ τj

τj−1

(s− τj−1)2 ds

∫ τj

τj−1

‖ytt(s)‖2H ds

=

k∑
j=1

δτ2
j

3
‖ytt‖2L2(τj−1,τj ;H) ≤

∆τ2

3
‖ytt‖2L2(0,τk;H).

(B.15)

The term ‖zj‖2H can be estimated as follows:

‖zj‖2H = ‖∂τy(τj)− ∂τP
�y(τj)‖2H

=
∥∥∂τy(τj)− yt(τj) + yt(τj)− yt(tj̄) + yt(tj̄)− ∂τy(tj̄)

+ ∂τy(tj̄)− ∂τP
�y(tj̄) + ∂τP

�y(tj̄)− P �yt(tj̄)

+ P �yt(tj̄)− P �yt(τj) + P �yt(τj)− ∂τP
�y(τj)

∥∥2

H

≤ 7
(
1 + ‖P �‖2L(H)

) ‖∂τy(τj)− yt(τj)‖2H
+ 7

(
1 + ‖P �‖2L(H)

) ‖yt(tj̄)− ∂τy(tj̄)‖2H
+ 7
(
1 + ‖P �‖2L(H)

) ‖yt(τj)− yt(tj̄)‖2H
+ 7 ‖∂τy(tj̄)− ∂τP

�y(tj̄)‖
2

H
.

Note that

‖∂τy(τj)− yt(τj)‖2H =
1

δτ2
j

∥∥∥∥∥
∫ τj

τj−1

(t− τj−1)ytt(t) dt

∥∥∥∥∥
2

H

≤ δτj
3
‖ytt‖2L2(τj−1,τj ;H).

Analogously, we find

‖yt(tj̄)− ∂τy(tj̄)‖2H ≤
δτj
3
‖ytt‖2L2(tj̄−1,tj̄ ;H).
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From

‖yt(τj)− yt(tj̄)‖2H ≤
(∫ tj̄+1

tj̄−1

‖ytt(s)‖H ds

)2

≤ (δtj̄ + δtj̄+1

)‖ytt‖2L2(tj̄−1,tj̄+1;H)

≤ 2∆t ‖ytt‖2L2(tj̄−1,tj̄+1;H),

where we set tm+1 = T whenever j = m, we find

‖zj‖2H ≤
7

3

(
1 + c2P

)
δτj
(‖ytt‖2L2(τj−1,τj ;H) + ‖ytt‖2L2(tj̄−1,tj̄ ;H)

)
+ 14

(
1 + c2P

)
∆t ‖ytt‖2L2(tj̄−1,tj̄+1;H)

+
14

δτ2
j

(‖y(tj̄)− P �y(tj̄)‖
2

H
+ ‖y(tj̄−1)− P �y(tj̄−1)‖2

H

)
,

where we set tn+1 = T . Note that αj ≥ δt/2. Using (2.2) and Lemma 4.1 we estimate

k∑
j=1

1

δτj
‖y(tj̄)− P �y(tj̄)‖

2

H
≤ 2σn

δτδt

n∑
j=0

αj‖y(tj)− P �y(tj)‖2H ≤
2σnc

2
V

δτδt

d∑
i=�+1

λi

and, analogously,

k∑
j=1

1

δτj
‖y(tj̄−1)− P �y(tj̄−1)‖2

H
≤ 2σnc

2
V

δτδt

d∑
i=�+1

λi.

Hence,

k∑
j=1

δτj ‖zj‖2H ≤ 14σn(1 + c2P )(∆τ2 + ∆τ∆t)‖ytt‖2L2(0,tk̄+1;H)

+
56σnc

2
V

δtδτ

d∑
i=�+1

λi.

(B.16)

Using αj ≥ 2/δt and ‖P �‖L(V ) = 1 we obtain for the terms ‖�k‖2V

‖�j‖2V = ‖P �y(τj)− y(τj)‖2V
= ‖P �y(τj)− P �y(tj̄) + P �y(tj̄)− y(tj̄) + y(tj̄)− y(τj)‖2V
≤ 4 ‖y(tj̄)− y(τj)‖2V + 2 ‖P �y(tj̄)− y(tj̄)‖

2

V

≤ 8∆t ‖yt‖2L2(tj̄−1,tj̄+1;V ) +
4αj̄
δt
‖P �y(tj̄)− y(tj̄)‖

2

V
.

Thus, we get

k∑
j=1

δτj ‖�j‖2V ≤ 4σn∆τ∆t ‖yt‖2L2(0,tk̄+1;V ) +
4σn∆τ

δt

d∑
i=�+1

λi.(B.17)

Combining (B.14)–(B.17) the claim follows.
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Abstract. Different definitions of spectra have been proposed over the years to characterize
the asymptotic behavior of nonautonomous linear systems. Here, we consider the spectrum based
on exponential dichotomy of Sacker and Sell [J. Differential Equations, 7 (1978), pp. 320–358] and
the spectrum defined in terms of upper and lower Lyapunov exponents. A main goal of ours is to
understand to what extent these spectra are computable. By using an orthogonal change of variables
transforming the system to upper triangular form, and the assumption of integral separation for the
diagonal of the new triangular system, we justify how popular numerical methods, the so-called
continuous QR and SVD approaches, can be used to approximate these spectra. We further discuss
how to verify the property of integral separation, and hence how to a posteriori infer stability of the
attained spectral information. Finally, we discuss the algorithms we have used to approximate the
Lyapunov and Sacker–Sell spectra and present some numerical results.

Key words. Lyapunov exponents, Sacker–Sell spectrum, integral separation, numerical compu-
tation
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1. Introduction. Lyapunov exponents, or Lyapunov characteristic numbers,
characterize growth rates of time dependent linear differential equations and, by lin-
earizing about trajectories, measure rates of convergence or divergence of nearby tra-
jectories for nonlinear differential equations. For an n-dimensional problem, there are
n Lyapunov exponents: these are the natural generalization to time dependent lin-
ear differential equations of the eigenvalues for autonomous linear systems. Although
Lyapunov exponents are a set of n points, it is perhaps more natural to think of the
spectrum of a linear nonautonomous system as possibly being a continuum. For ex-
ample, consider the linear scalar differential equation ẋ = (sin(ln(t))+cos(ln(t)))x for
t ≥ t0 > 0: the solution is x(t) = exp(t sin(ln(t)))κ0, κ0 = x(t0) exp(−t0 sin(ln(t0))),
so that all growth rates in the interval [−1,+1] are attained.

This work is an attempt to blend the numerical techniques developed to approx-
imate Lyapunov exponents with stability theory for Lyapunov exponents developed
over 30 years ago. Characteristic exponents were developed by Lyapunov in his the-
sis [22] that was first published in 1892. Many of the ideas from Lyapunov’s thesis
and further developments on Lyapunov exponents are contained in the monograph
of Adrianova [1] which serves as an excellent accessible introduction to the use of
Lyapunov exponents in stability theory. Important results on stability of Lyapunov
exponents that we use are due to Bylov [6], Bylov et al. [5], Bylov and Izobov [7], and
Millionshchikov [24, 25]. An alternative to the spectrum of Lyapunov is based upon
defining a spectrum in terms of exponential dichotomy. Important works are the book
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of Coppel [9] on exponential dichotomy in stability theory, the work of Sacker and
Sell [30] which defines a spectrum in terms of exponential dichotomy, and the work
of Palmer [28] who showed that the structurally stable linear systems on the half-line
are those with exponential dichotomy.

A contribution of this paper is to show, under certain natural conditions, the
relationship between three definitions of spectra. The first spectrum is commonly
referred to as the Sacker–Sell spectrum and its origin may be traced back to [30]. The
second spectrum generalizes the original definition of Lyapunov [22] so that it may be
viewed as a continuous spectrum. The third spectrum is motivated by computational
considerations, since its definition is based upon the information one may be able to
retrieve when using the so-called QR method to approximate Lyapunov exponents.

The assumption under which we are able to show the relationship between these
three spectra is integral separation. It has been well known in the theoretical com-
munity (see the results summarized in [1]) that, for systems with distinct Lyapunov
exponents, integral separation is a necessary and sufficient condition for stability of
the exponents, i.e., for continuity of the exponents with respect to changes in the
coefficient matrix. Thus, it is natural to assume such a condition if we are interested
in numerical approximation of the Lyapunov exponents.

We will emphasize how integral separation can be characterized for the numerical
techniques that have been proposed to approximate Lyapunov exponents.

1. The continuous QR method is based upon finding an orthogonal change of
variables transforming the system to upper triangular form. Then, the Lya-
punov exponents are determined from the diagonal elements of the new sys-
tem. The approach can be made legitimate under the assumption of regularity
of the system. However, in spite of being a strong assumption, regularity does
not ensure stability of the exponents. This motivated us to consider integral
separation of the diagonal of the upper triangular coefficient matrix: we prove
that this is sufficient for stability of the Lyapunov exponents.

2. We also consider a method for finding Lyapunov exponents based upon de-
composing a fundamental matrix solution via a smooth singular value de-
composition, the SVD approach. If such decomposition is feasible,1 then the
system is transformed to diagonal form, and the Lyapunov exponents are
extracted from time averages of the diagonal system. Again, this can be jus-
tified under the assumption of regularity. But, rather, we show that if the
new diagonal system has an integrally separated diagonal, then the Lyapunov
exponents can be found from the diagonal system and are stable.

In spite of their importance in the physical sciences, Lyapunov exponents have
received little attention from the numerical community. This is certainly due to the
inherent difficulties (and uncertainties) present in the task, but we believe that it is
also due to the fact that stability theory for Lyapunov exponents is not as well known
as it should be. For this reason, and also to make the present work self-contained, the
first two sections of this paper present background information. Sections 2 and 3 sum-
marize results from [1] on Lyapunov exponents and on equivalence between stability of
distinct Lyapunov exponents and integral separation. Section 4 summarizes the three
spectra we consider. Sections 5, 6, and 7 contain our main results: under assumptions
of integral separation, we show some relationships between the three spectra. Further,
we validate the QR and SVD techniques to find the Lyapunov spectra. In section 8,
we detail numerical techniques based on the continuous QR method to approximate

1E.g., it is feasible if the singular values stay distinct for all times t.
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the spectra, and we also discuss how we can attempt to verify integral separation of a
system. Finally, we give some new results on the relation between integral separation
and the Sacker–Sell spectrum and outline a computational procedure to approximate
such a spectrum. In Section 9 we present numerical experiments. Section 10 contains
conclusions.

2. Lyapunov exponents theory. The characteristic exponent of a (nonvan-
ishing) function f(t) is defined as

χ(f) = lim sup
t→∞

1

t
ln |f(t)|.(2.1)

The following equalities relate the upper and lower characteristic exponents of f and
1/f and will be useful when relating the exponents of a linear system and of its
adjoint:

lim supt→∞
1
t ln |f(t)| = − lim inft→∞ 1

t ln |1/f(t)|,
lim inft→∞ 1

t ln |f(t)| = − lim supt→∞
1
t ln |1/f(t)|.(2.2)

We now summarize some results on properties of characteristic exponents.
Theorem 2.1 ([1, Thms. 2.1.2 and 2.1.4]). The characteristic exponent of a

product does not exceed the sum of the characteristic exponents, i.e., χ(fg) ≤ χ(f) +
χ(g). Moreover, if χ(f) + χ(1/f) = 0, then χ(fg) = χ(f) + χ(g).

Definition 2.2. The Lyapunov exponent of a vector valued function x : t ∈ R→
R
n is defined as the Lyapunov exponent of the norm: χ(x) = χ(||x||).

In this work, we restrict our consideration to the 2-norm, ‖x(t)‖2, and similarly for
matrix valued functions. The advantage is that these are invariant under orthogonal
transformations, but similar results would hold for different norms.

Consider now an n-dimensional linear system

ẋ = A(t)x ,(2.3)

where A is continuous and bounded: supt ‖A(t)‖ < ∞. Given a fundamental matrix
solution X of (2.3), consider the quantities

λi = lim sup
t→∞

1

t
ln ||X(t)ei||, i = 1, . . . , n,(2.4)

where ei denotes the ith standard unit vector. When
∑n
i=1 λi is minimized with re-

spect to all possible fundamental matrix solutions, then the λi are called the Lyapunov
exponents, or Lyapunov characteristic numbers, and the corresponding fundamental
matrix solution is called a normal basis. In general, the Lyapunov exponents satisfy

n∑
i=1

λi ≥ lim sup
t→∞

1

t

∫ t

0

Tr(A(s))ds,(2.5)

where Tr(A(s)) is the trace of the matrix A(s).
Remark 2.1. The Lyapunov exponents are unaffected by what happens to X on a

finite interval. For this reason, in (2.5) and elsewhere in this paper, one may replace
0 with any other (finite) value of t. With this in mind, we will continue using 0 as
the lower limit of integration.



COMPUTING SPECTRAL INTERVALS 519

Along with (2.3), we will also need to consider the associated adjoint equation

ẏ(t) = −AT (t)y(t).(2.6)

Similarly to (2.4), one can define the Lyapunov exponents for (2.6); call them {−µi}ni=1.
We will henceforth restrict our consideration to the system (2.3) and the λi exponents
only, but of course everything can be formulated also in terms of the adjoint system
(2.6) and the µi’s.

Given any fundamental matrix solution, Lyapunov showed how to construct a
normal fundamental matrix solution.

Theorem 2.3 (see Lyapunov’s construction of a normal basis [22]). Consider a
matrix solution Z(·) = [Z1, . . . , Zn] such that the Lyapunov exponents of the columns
of Z are ordered as χ(Z1) ≥ · · · ≥ χ(Zn). Then, there exists a unit upper triangular
matrix C such that X(·) = Z(·)C is normal. Similarly, if the Lyapunov exponents of
the columns of Z are ordered as χ(Z1) ≤ · · · ≤ χ(Zn), then there exists a unit lower
triangular matrix C such that X(·) = Z(·)C is normal.

Remark 2.2. The assumption of ordered characteristic exponents for the columns
of Z is not stringent, since it can be trivially achieved via column permutation of any
matrix solution. In the original work of Lyapunov (see also [1]), the matrix C was
taken as a unit lower triangular with the corresponding assumption that the growth
rates of the columns of Z are ordered as χ(Z1) ≤ · · · ≤ χ(Zn). However, the ordering
in which C is taken to be unit upper triangular is more natural for us, since often
we end up working with upper triangular systems, and we should expect that the
growth rates will be ordered from largest down to smallest. On the other hand, when
working with the adjoint, it is the reverse ordering which is more natural; hence the
use of a unit lower triangular C is more appropriate in this case. Indeed (see [1,
Cor. 3.6.2]), if the basis X is normal for (2.3), then the basis X−T is normal for
the adjoint system; here and elsewhere in this work, X−T is shorthand notation for
(X−1)T . Conceptually, then, we can always work with a normal basis and assume to
have ordered Lyapunov exponents for a system and its adjoint:

λ1 ≥ λ2 ≥ · · · ≥ λn and − µn ≥ · · · ≥ −µ2 ≥ −µ1 .

Indeed, we will henceforth assume that we are working with a normal matrix solution
X.

A fundamental property of Lyapunov exponents is that they (and their stability
properties) are preserved under Lyapunov transformations.

Definition 2.4. A smooth invertible change of variables y ← T−1x is called a
Lyapunov transformation if T , T−1, and Ṫ are bounded.

Clearly, under a Lyapunov transformation, (2.3) is transformed into

ẏ = B(t)y, B = T−1AT − Ṫ T−1 .(2.7)

For example, it has been known since Perron [29] and Diliberto [17] that there exists a
Lyapunov, and orthogonal, change of variables for which B is upper triangular. To see
this, write a fundamental matrix solution X(t) as Q(t)R(t), where Q is an orthogonal
matrix valued function and R is an upper triangular matrix valued function with
positive diagonal entries. Upon differentiating we have

AQR = QṘ+ Q̇R or Q̇ = AQ−QB.(2.8)

Since Ṙ = BR, then B is upper triangular. Since Q is orthogonal, if we let S(Q) :=
QT Q̇ = QTAQ − B, then the strict lower triangular piece of the skew symmetric
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function S can be defined as the corresponding piece of QTAQ, and the rest of S is
given by skew-symmetry.

Remark 2.3. In what follows, when considering upper triangular systems Ṙ = BR,
we will always assume that the diagonal entries of R are positive.

Linear systems for which the Lyapunov exponents exist as limits were called
regular by Lyapunov.

Definition 2.5. A system is regular (Lyapunov) if the time average of the trace
has a finite limit and equality holds in (2.5).

Example 2.1. A simple example of a linear system where a strict inequality holds
in (2.5) is

ẋ = (sin(ln t) + cos(ln t))y,

ẏ = (sin(ln t) + cos(ln t))x

which has Lyapunov exponents λ1 = λ2 = 1, but lim supt→∞
1
t

∫ t
0

trace(A(s))ds = 0.
It was shown by Lyapunov that regularity is maintained under Lyapunov transfor-

mations and, in particular, for a regular triangular system Ṙ = B(t)R the Lyapunov
exponents may be obtained as time averages of the diagonal elements of B:

λj = lim
t→∞

1

t

∫ t

0

Bjj(s)ds, j = 1, . . . , n.(2.9)

Further, in this regular case, the µi exponents of the adjoint system equal the λi
exponents.

3. Stability of Lyapunov exponents and integral separation. In this sec-
tion we summarize results on the relation between stability of the exponents and the
property of integral separation.

Definition 3.1. The characteristic exponents λ1 ≥ · · · ≥ λn of system (2.3) are
said to be stable if for any ε > 0 there exists δ > 0 such that supt∈R+ ||E(t)|| < δ
implies

|λi − γi| < ε, i = 1, . . . , n,(3.1)

where the γi’s are the (ordered) Lyapunov exponents of the perturbed system ẋ =
[A(t) + E(t)]x.

Naturally, since Lyapunov transformations preserve the exponents and the small-
ness of perturbations, stability of the characteristic exponents is invariant under Lya-
punov transformations.

Theorem 3.2 (see [1, Thm. 5.2.1]). If the λi exponents of (2.3) are stable, and
E → 0 as t → ∞, then the exponents of the perturbed system are also given by the
λi’s.

Definition 3.3 (see [1, Def. 5.3.2] and [6]). Write a fundamental matrix solution
columnwise X(t) = [X1(t), . . . , Xn(t)]. Then, X is integrally separated if for i =
1, . . . , n− 1 there exist a > 0 and d > 0 such that

||Xi(t)||
||Xi(s)|| ·

||Xi+1(s)||
||Xi+1(t)|| ≥ de

a(t−s)(3.2)

for all t, s : t ≥ s.
Again, if a matrix solution X is integrally separated, and T is a Lyapunov trans-

formation, then the matrix solution Y ← T−1X associated with (2.7) is also integrally
separated; i.e., integral separation is kept under Lyapunov transformations.
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Theorem 3.4 (see [1, Props. 5.3.1 and 5.3.3]). Integrally separated systems have
distinct Lyapunov exponents.

Definition 3.5. The functions gi, i = 1, . . . , n, are said to be integrally separated
if for i = 1, . . . , n− 1,

∫ t

s

(gi(τ)− gi+1(τ))dτ ≥ a(t− s)− d, t ≥ s, a > 0, d ∈ R.(3.3)

Theorem 3.6 (see [1, Thm. 5.4.7] and [7]). If the system (2.3) has distinct
characteristic exponents λ1 > · · · > λn, then they are stable if and only if there exists
a Lyapunov transformation z ← T−1x transforming (2.3) to the diagonal form

ż = diag[p1(t), . . . , pn(t)]z,(3.4)

where the diagonal elements, the pi, are integrally separated functions.
Theorem 3.7 (see [1, Thm. 5.4.8] and [7]). If the system (2.3) has distinct

characteristic exponents λ1 > · · · > λn, then they are stable if and only if there exists
a fundamental matrix solution with integrally separated columns, as in Definition 3.3.

Given the implications of integral separation, it is a comforting fact that it is a
natural condition to have. This is because of a result of Palmer [28, p. 21]. Palmer
considered the Banach space B, of continuous bounded matrix valued functions A,
with norm ||A|| = supt≥0 ||A(t)||, and—using results from [24] and [5]—he showed that
the systems with integral separation form an open and dense subset of B. Therefore,
integral separation is a generic property in B.

Regularity (see Definition 2.5), however, is not enough to ensure stability and
hence integral separation, as the following example from [1, p. 171] shows. Consider
the regular system

ẋ1 =
(

1 +
π

2
sin(π

√
t)
)
x1,(3.5)

ẋ2 = 0,

which has distinct Lyapunov exponents λ1 = 1 and λ2 = 0. Since for any n ∈ N,

∫ (2n)2

(2n−1)2

(
1 +

π

2
sin(π

√
t)
)
dτ = 0,(3.6)

then the system (3.5) is not integrally separated and hence the Lyapunov exponents
are not stable.

Remark 3.1. In all numerical works on approximation of Lyapunov exponents of
which we are aware, it is assumed that system (2.3) is regular; e.g., see [2, 3, 12, 13,
18, 19, 20, 21]. This is justified on the grounds that regularity is a prevalent condition
in a measure theoretic sense; see [27]. However, from the numerical point of view, we
need to insist that the Lyapunov exponents be stable, and for this to be true we need
integral separation, not regularity.

We now show that the adjoint system (2.6) has an integrally separated funda-
mental matrix solution if the original system (2.3) does.

Lemma 3.8. If (2.3) has a fundamental matrix solution with integrally separated
columns, then the adjoint (2.6) has a fundamental matrix solution with integrally
separated columns.
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Proof. Because of (2.7) and (2.8), we may consider, without loss of generality, an
upper triangular system Ṙ = BR with an integrally separated fundamental matrix
solution R. Then S = R−T satisfies Ṡ = −BTS. Since R has integrally separated
columns, by Theorems 3.6 and 3.7, there exists a Lyapunov transformation L such that
D = diag(pi) = L−1BL− L−1L̇ and the pi are integrally separated, i.e., they satisfy

(3.3). Let Y = L−1R; then Y is integrally separated and Y = diag(exp(
∫ t
0
pi(s)ds)).

Let Z = (L−T )−1S so that Z = Y −T and Z satisfies Ż = −DTZ = −DZ. Then

Zii(t) = exp(− ∫ t
0
pi(s)ds) for i = 1, . . . , n, and so

Zi,i(t)

Zi,i(s)
· Zi+1,i+1(s)

Zi+1,i+1(t)
=
Yi+1,i+1(t)

Yi+1,i+1(s)
· Yi,i(s)
Yi,i(t)

≥ d exp(a(t− s)),

a > 0, t ≥ s, i = 1, . . . , n− 1.

Thus, by Theorems 3.6 and 3.7 the adjoint equation has an integrally separated fun-
damental matrix solution.

4. Three definitions of spectra. Consider (2.3). It is well known that if A(·)
is constant, then the asymptotic stability properties of the zero solution of (2.3) are
determined by the real parts of the eigenvalues of A and the corresponding eigenvec-
tors. In the case in which A is periodic in t, the Floquet theory effectively reduces the
question of stability to the constant coefficient case. For the general case, we recall
the next two classical concepts of stability, and we introduce a third related one.

4.1. Sacker–Sell spectrum. In [30], Sacker and Sell introduced a spectrum for
(2.3) based upon exponential dichotomy: the Sacker–Sell spectrum is given by those
values λ ∈ R such that the shifted system ẋ = [A(t)−λI]x does not have exponential
dichotomy. We will indicate the Sacker–Sell spectrum with ΣED. Recall that the
system (2.3) has exponential dichotomy if for a fundamental matrix solution X there
exists a projection P and constants α, β > 0 and K,L ≥ 1, such that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s,
‖X(t)(I − P )X−1(s)‖ ≤ Leβ(t−s), t ≤ s.(4.1)

It is shown in [30] that ΣED is given by the union of at most n closed intervals. Thus,
it can be written, for some k: 1 ≤ k ≤ n, as

ΣED := [a1, b1] ∪ · · · ∪ [ak, bk].(4.2)

4.2. Lyapunov spectrum. Another characterization of spectrum is based on
the characteristic exponents of (2.3) and (2.6), the λi’s and −µi’s which we can
consider as being ordered: λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn. We define
the Lyapunov spectrum, written ΣL, as

ΣL :=

n⋃
j=1

[λij , λ
s
j ],(4.3)

where λij = µj and λsj = λj and, in fact, λj ≥ µj for j = 1, . . . , n. The last statement

is a consequence of the fact that the normal bases for (2.3) and (2.6) are X and X−T ,
so, if λj = χ(Xej), then −µj = χ(X−T ej). But obviously, (X−T ej)T (Xej) = 1 for
all t so that Theorem 2.1 gives λj ≥ µj .
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Remark 4.1. Our definition of Lyapunov spectrum is strictly related to the co-
efficient of irregularity of Perron, who proved that a system is regular if and only if
λj = µj .

Remark 4.2. It must be appreciated that ΣL and ΣED provide information on
related, but different, questions. In particular, λ /∈ ΣL implies the existence of a
bounded solution to the homogeneous problem ẋ = (A(t) − λI)x, for some initial
condition x(0). Instead, λ /∈ ΣED implies both the existence of a bounded solution
to the homogeneous problem ẋ = (A(t) − λI)x for some x(0) and the existence of
a bounded solution to the nonhomogeneous problem ẋ = (A(t) − λI)x + f(t) for
any (continuous and bounded) function f(t), a condition which is not guaranteed
by λ /∈ ΣL. Obviously, both properties are quite important, and it depends on the
particular application in which we are interested whether we need to know ΣED or
whether knowledge of ΣL is sufficient.

4.3. Computed Lyapunov spectrum. The third spectrum we consider is
what we will call the computed Lyapunov spectrum, since it is close to what tradi-
tionally has been approximated. Its definition rests on the transformation of (2.3)
to upper triangular form via an orthogonal change of variables; see (2.7) and (2.8).
Consider the upper triangular system Ṙ = BR. We define the computed Lyapunov
spectrum, written ΣCL, as

ΣCL :=

n⋃
j=1

[λijj , λ
s
jj ], λijj = lim inf

t→∞
1

t

∫ t

0

Bjj(s)ds, λsjj = lim sup
t→∞

1

t

∫ t

0

Bjj(s)ds.

(4.4)

5. The Lyapunov and computed Lyapunov spectra. In this section we
prove that for upper triangular systems, integral separation of the diagonal elements
implies that the Lyapunov spectrum, ΣL, and the computed Lyapunov spectrum, ΣCL,
coincide. We prove this by constructing a bounded Lyapunov transformation that
transforms the upper triangular system to a diagonal system given by the diagonal of
the upper triangular system.

Theorem 5.1. For an upper triangular system Ṙ = BR with B smooth and
bounded, integral separation of the diagonal of B implies ΣL = ΣCL.

Proof. The proof is by induction. Write B in block form and define a transfor-
mation T1 using the same blocking:

B =


 b11 b12 B13

0 b22 B23

0 0 B33


 and T1 =


 1 x 0

0 1 0
0 0 I


 .(5.1)

We want to take x such that

T−1
1 BT1 − T−1

1 Ṫ1 =


 b11 0 B13 − xB23

0 b22 B23

0 0 B33


 .(5.2)

To obtain this, we take x satisfying{
ẋ = b11x− xb22 + b12,
lim
T→∞

x(T ) = 0;(5.3)
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that is,

x(t) = − lim
T→∞

∫ T

t

exp

(
−
∫ s

t

(b11(τ)− b22(τ))dτ

)
b12(s)ds.(5.4)

Since the diagonal elements of B are integrally separated (see (3.3)), we have

−
∫ s

t

(b11(τ)− b22(τ))dτ ≤ −a(s− t) + d, a > 0, s ≥ t,(5.5)

which implies that x is bounded and the transformed coefficient matrix is bounded.
Now we assume that the matrix function B has been progressively diagonalized

in its first p columns so that the transformed coefficient matrix has the form

B =


B11 B12 B13

0 bp+1,p+1 B23

0 0 B33


 ,(5.6)

where B11 : t → R
p×p is diagonal, and B12 : t → R

p×1, B13 : t → R
p×(n−p−1),

B23 : t → R
1×(n−p−1) are all continuous and bounded. Consider the transformation

Tp and transformed coefficient matrix of the form

Tp =


 Ip x 0

0 1 0
0 0 In−p−1


 , T−1

p BTp−T−1
p Ṫp =


B11 0 B13 − xB23

0 bp+1,p+1 B23

0 0 B33


 ,

(5.7)
where we require that x satisfies

ẋ = B11x− xbp+1,p+1 +B12 = (B11 − bp+1,p+1I)x+B12(5.8)

and limT→∞ x(T ) = 0. Then, since B11 is diagonal,

x(t) = − lim
T→∞

∫ T

t

exp

(
−
∫ s

t

(B11(τ)− I · bp+1,p+1(τ))dτ

)
B12(s)ds .

Since B12 is bounded and the diagonal of B is integrally separated, we have that x is
bounded and Tp is Lyapunov. Since Lyapunov transformations preserve the Lyapunov
spectrum, the result follows.

The following corollary is an immediate consequence of the above proof and The-
orems 3.6 and 3.7.

Corollary 5.1. Given an upper triangular system Ṙ = BR with B smooth,
bounded, and with integrally separated diagonal, then there exists an integrally sepa-
rated fundamental matrix solution.

As a partial converse to Theorem 5.1 we have the following.
Theorem 5.2. Suppose the system Ṙ = BR, with B bounded, continuous and

upper triangular, has an integrally separated fundamental matrix solution R. Then for
all ε > 0 there exists a permutation π such that |λsπ(i)−lim supt→∞

1
t

∫ t
0
Bii(s)ds| < ε.

Proof. Consider the system Ḋ = diag(B)D and let λi(D) = lim supt→∞
1
t

∫ t
0
Bii(s)ds.

Let L be the Lyapunov transformation defined by L = diag(ηi−1, i = 1, . . . , n) for
η ≥ η0 > 0. Then L−1B(t)L− L−1L̇ = diag(B(t)) + E(t), where E(t) is the strictly
upper triangular function of entries Eij(t) = ηj−iBij(t), for i = 1, . . . , n − 1 and
j = i + 1, . . . , n. Since L is Lyapunov, and stability of the exponents is preserved
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under Lyapunov transformations, then, for ε > 0 as given in the statement of the
theorem, there exists δ = δ(ε) such that supt |E(t)| < δ implies |λsi − λ′i| < ε, where
{λ′i}ni=1 denote the Lyapunov exponents of Ḋ = diag(B)D.

We claim that there exists a permutation π such that λ′i = λπ(i)(D). Let Π denote

a permutation matrix such that D̂ = ΠDΠT defines an ordering such that χ(D̂11) ≥
χ(D̂22) ≥ · · · ≥ χ(D̂nn). Notice that D̂ satisfies

˙̂
D = B̂DD̂, where B̂D = Π diag(B)ΠT

and χ(D̂ii) = χ(D̂ei) = χ(Π diag(B)ΠT ei) = χ(diag(B)eπ(i)). To complete the claim,

we need to show that the diagonal fundamental matrix solution D̂ is normal. By the
Lyapunov construction of a normal basis, there exists a unit upper triangular matrix
C such that D̂ · C is normal, but since setting C = I minimizes the sum of the
characteristic exponents of the columns, we have that D̂ is normal.

Remark 5.1. The Lyapunov exponents of Ḋ = diag(B)D are not necessarily
stable. The ordering of the Lyapunov exponents is not necessarily preserved; hence
the need for the permutation π.

6. Sacker–Sell spectrum and Lyapunov spectral intervals. In this section
we state and prove results relating the Sacker–Sell spectrum, ΣED, the Lyapunov
spectrum, ΣL, and the computed Lyapunov spectrum, ΣCL. The following lemma
shows that if a system has exponential dichotomy, then the principal matrix solution
and an orthogonal projection may be assumed.

Lemma 6.1. Suppose the linear system (2.3) admits an exponential dichotomy
for some fundamental matrix solution. Then it also admits an exponential dichotomy
for the principal matrix solution. Moreover, the projection P may be taken to be an
orthogonal matrix.

Proof. Assume that (2.3) admits an exponential dichotomy for a fundamental
matrix solution X(t) ≡ X(t;X0) with X(0) = X0. Then X(t;X0) = X(t, I)X0 and

X(t;X0)PX−1(s;X0) = X(t; I)(X0PX
−1
0 )X−1(s; I),

X(t;X0)(I − P )X−1(s;X0) = X(t; I)(X0(I − P )X−1
0 )X−1(s; I).

(6.1)

Let P̃ = X0PX
−1
0 and observe that P̃ 2 = P̃ , so P̃ is a projection and hence we have

that the principal matrix solution admits an exponential dichotomy.

Let S = range(P̃ ) and let V denote an orthonormal basis for S so that P1 = V V T

is the unique orthogonal projection onto S. From [9, pp. 16–17], it follows that the
principal matrix solution admits an exponential dichotomy with orthogonal projection
P1.

The following is essentially in [30], but we give a different proof.

Theorem 6.2. The computed Lyapunov spectrum is contained within the Sacker–
Sell spectrum.

Proof. Consider Ẋ = A(t)X with principal matrix solution X and the shifted
system Ẋλ = [A(t) − λI]Xλ with fundamental matrix solution Xλ. Fix λ such that
Xλ has exponential dichotomy. Then there exists a projection P , constants α, β > 0
and K,L ≥ 1 such that

‖Xλ(t)PX−1
λ (s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Xλ(t)(I − P )X−1
λ (s)‖ ≤ Leβ(t−s), t ≤ s.(6.2)

By Lemma 6.1, the projection P can be chosen orthogonal and there exists an or-
thogonal matrix U such that UTPU = P1, where P1 is a diagonal matrix with entries
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either 0 or 1. Thus,

‖Xλ(t)UP1U
TX−1

λ (s)‖ ≤ Ke−α(t−s), t ≥ s,
‖Xλ(t)U(I − P1)UTX−1

λ (s)‖ ≤ Leβ(t−s), t ≤ s,(6.3)

or equivalently,

e−λ(t−s)‖W (t)P1W
−1(s)‖ ≤ Ke−α(t−s), t ≥ s,

e−λ(t−s)‖W (t)(I − P1)W−1(s)‖ ≤ Leβ(t−s), t ≤ s,(6.4)

where W (t) = X(t)U satisfies Ẇ = A(t)W . Let Π denote a column permutation
such that Z = WΠ implies χ(Z1) ≥ · · · ≥ χ(Zn), where Zi denotes the ith column of
Z. Decompose Z as Z(t) = Q(t)R(t), where Q(0) = Z(0) = UΠ and R(0) = I, and
notice that χ(R1) ≥ · · · ≥ χ(Rn). For this ordering of growth rates of the columns
of R the Lyapunov construction of a normal basis (see Theorem 2.3) takes the form
R(t) C, where C is a unit upper triangular matrix so the Lyapunov construction does
not change the diagonal elements of R.

In terms of R, the exponential dichotomy relationship for the shifted system is

‖Rλ(t)P2R
−1
λ (s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Rλ(t)(I − P2)R−1
λ (s)‖ ≤ Leβ(t−s), t ≤ s,(6.5)

where P2 = ΠTP1Π. Recall that the computed Lyapunov spectrum is defined as⋃
j [λ

i
jj , λ

s
jj ], where

λsjj = lim sup
t→∞

1

t
ln(Rjj(t)) and λijj = lim inf

t→∞
1

t
ln(Rjj(t)).(6.6)

Assume that rank of P , hence of P1 and P2, is m. In (6.5) set s = 0 so we have
|Rλ(t)P2| ≤ Ke−αt. Since P2 is a permutation matrix (plus rows and columns of 0’s),
Rλ(t)P2 is a matrix containing m columns of Rλ(t) and n −m zero columns. Thus,
there must be m columns of R for which λsjj − λ = χ(Rjj)− λ ≤ χ(R•,j)− λ ≤ −α,

while for n −m rows of R−1 we have −λikk + λ = χ(R−1
kk ) + λ ≤ χ(R−1

k,•) + λ ≤ −β.

Thus, for m indices j we have λijj ≤ λsjj ≤ λ−α < λ and for n−m indices k we have

λ < λ+ β ≤ λikk ≤ λskk. Hence, λ /∈ ⋃j [λijj , λsjj ].
Theorem 6.3. Assume that for a linear homogeneous n-dimensional system the

Sacker–Sell spectrum is given by n disjoint intervals. Then there exists a fundamental
matrix solution with integrally separated columns.

Proof. Write the Sacker–Sell spectrum as
⋃n
i=1[ai, bi], and for i = 1, . . . , n − 1

choose λi = (ai+1+bi)/2. Obviously λi /∈ ΣED, and there exists a fundamental matrix
solution Xλi that has exponential dichotomy. Using the argument from Theorem 6.2,
there exists a projection Pi of the form Pi = ( 0 0

0 I ) and Ki, Li, αi, βi > 0 such that

Kie
−αi(t−s) ≥ ||Xλi

(t)PX−1
λi

(s)|| ≥ |Xλi(t)PX
−1
λi

(s)Xλi(s)Pc|
|Xλi(s)Pc|

=
‖Xλi(t)Pc‖
‖Xλi(s)Pc‖

=
‖Xj(t)‖
‖Xj(s)‖ · e

−λi(t−s)
(6.7)

for t ≥ s, and c = ej , j = i+ 1, . . . , n, and

Lie
βi(t−s) ≥ ||Xλi(t)(I − P )X−1

λi
(s)|| ≥ ‖Xλi(t)(I − P )X−1

λi
(s)Xλi(s)(I − P )c‖

‖Xλi(s)(I − P )c‖
=
‖Xλi(t)(I − P )c‖
‖Xλi(s)(I − P )c‖ =

‖Xj(t)‖
‖Xj(s)‖ · e

−λi(t−s)

(6.8)
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for t ≤ s, and c = ej , j = 1, . . . , i. Then

‖Xi(t)‖
‖Xi(s)‖ ·

‖Xi+1(s)‖
‖Xi+1(t)‖ ≥

1

Li
eβi(t−s) · 1

Ki
eαi(t−s) =

1

LiKi
e(αi+βi)(t−s) .(6.9)

Repeating for all i = 1, . . . , n− 1, and taking a = mini{αi +βi} and d = mini{ 1
LiKi
},

completes the proof.
Example 6.1. As a counterexample to a converse of Theorem 6.3, consider the

diagonal system with ẋ1 = (cos(ln t)+sin(ln t))x1 and ẋ2 = (−1+cos(ln t)+sin(ln t))x2

so that ΣCL = ΣL = [−1, 1] ∪ [0, 2]. Then, because of Theorem 6.2, the Sacker–Sell
intervals overlap, but

|x1(t)|
|x1(s)| ·

|x2(s)|
|x2(t)| = et−s, t ≥ s,(6.10)

so that x1 and x2 are integrally separated.
Even in the case of stable Lyapunov exponents, in general, the Lyapunov and

computed Lyapunov spectra are contained in the Sacker–Sell spectrum (see [30]).
The following example modeled after one of Perron (see [1, Ex. 4.4.1]) clarifies this
fact and it will be important in order to understand how we may approximate ΣED.

Example 6.2. Consider the linear differential equation ẋ = c(t)x, c(t) = sin(ln(t))+
cos(ln(t)), for t ≥ t0 > 0. The exact solution is x(t) = exp(t sin(ln(t)))κ0, κ0 =
x(t0) exp(−t0 sin(ln(t0))), and it is easily seen that the Lyapunov and computed Lya-
punov spectra coincide and are given by the interval [−1,+1]. Since the problem is
scalar, this Lyapunov spectrum is necessarily stable.

We will show that [−1, 1] ⊂ ΣED, that is, that there are values of λ > 1, and
λ < −1, for which the shifted system does not have exponential dichotomy. Consider
λ > 1; the case λ < −1 is similar. Then, to have exponential dichotomy in the shifted
system means that there exist constants α > 0 and K ≥ 1 such that

e−λ(t−s)e
∫ t

s
c(r)dr

= xλ(t)x−1
λ (s) ≤ Ke−α(t−s), t ≥ s ≥ t0, λ > 1 .(6.11)

We rewrite this in the equivalent form

eλt

eλs
e

∫ s

t0
cdτ

e

∫ t

t0
cdτ
≥ 1

K
eα(t−s)(6.12)

and consider the diagonal system

Ẋ =

(
λ 0
0 c(t)

)
X .(6.13)

Thus, to have exponential dichotomy is the same as asking that the principal matrix
solution of this system be integrally separated with constants 1

K < 1 and α > 0. This
is equivalent to the requirement that∫ t

s

(λ− c(τ))dτ ≥ a(t− s)− d, t ≥ s, a > 0 , d ≥ 0 ,(6.14)

which, in general, is not true. Let λM = eπ/2+e−π/2

eπ/2−e−π/2 = coth(π/2). If the functions λ
and c were integrally separated, then we should have∫ t

s

(λ− sin(ln(τ))− cos(ln(τ)))dτ ≥ a(t− s)− d ,
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or

λ(t− s)− (t sin(ln(t))− s sin(ln(s))) ≥ a(t− s)− d .
Now, consider the following sequences for t and s:

tk = exp(2kπ + π/2), sk = exp(2kπ − π/2).(6.15)

Then, along these sequences we would need to have

λe2kπ(eπ/2 − e−π/2)− e2kπ(eπ/2 + e−π/2) ≥ ae2kπ(eπ/2 − e−π/2)− d
or

a(eπ/2 − e−π/2) ≤ λ(eπ/2 − e−π/2)− (eπ/2 + e−π/2) + de−2kπ.

Thus, for 1 < λ < λM and k sufficiently large, λ(eπ/2 − e−π/2) − (eπ/2 + e−π/2) +
de−2kπ < 0, and so no positive a exists and the system cannot have exponential
dichotomy for 1 < λ < λM , where λM ≥ 1.09. A similar argument for λ < −1 leads
us to consider the diagonal system

Ẋ =

(
c(t) 0
0 λ

)
X ,(6.16)

so that having exponential dichotomy is equivalent to integral separation of the prin-
cipal matrix solution of (6.16) or (which is the same) to∫ t

s

(c(τ)− λ)dτ ≥ a(t− s)− d, t ≥ s , a > 0 , d ≥ 0 .(6.17)

Similarly to the above, we now obtain that we cannot have exponential dichotomy
for −1.09 ≤ λ < −1. Therefore, [−1.09, 1.09] ⊆ ΣED. This argument can be easily
improved by replacing π/2 in the definition of tk and sk in (6.15) with ω ≈ 1.25 (find ω
to maximize coth(ω)·sin(ω) so that ω is the positive root of cos(ω)·sinh(ω)−2 sin(ω) =
0). This shows that [−1.1187, 1.1187] ⊆ ΣED.

For the sake of completeness, we point out that in [16] we actually prove that—for
this example—ΣED = [−√2,

√
2]. We will use this fact in Example 9.1.

7. The SVD. To approximate Lyapunov exponents, an alternative to QR-based
techniques is based on the SVD of a fundamental matrix solution. This approach
has been used in [19, 20, 23]. Here we explore the feasibility of this approach, in
particular, the role of integral separation in this case. So, we will assume that we
have an integrally separated fundamental matrix solution X with ordered growth
rates: χ(X1) > · · · > χ(Xn).

Techniques based on the SVD need to assume that X admits a smooth SVD for all
t ≥ t0: X(t) = U(t)Σ(t)V T (t), where UTU = I, V TV = I,Σ = diag(σi, i = 1, . . . , n)
and U, V,Σ are all Cp functions, p ≥ 1. Unlike the QR factorization ofX, the existence
of such a smooth SVD is not obvious except in the case where the singular values stay
distinct. Still, some results are known: (i) If X is analytic, then the factors U, V,Σ
exist and are analytic (see [4]); (ii) if X ∈ Cp, p ≥ 1, then there exist smooth U, V, Σ
as long as the singular values do not coalesce with too high a degree of contact (in
general, U and V lose some degree of differentiability, while Σ stays Cp; see [11]
for a precise statement); (iii) generically (i.e., for a generic one-parameter family of
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nonsingular Cp functions X), then U, V,Σ are Cp, and in fact the σi singular values
are distinct for all t (see [11]).

To make some progress, let us henceforth assume that a smooth (at least C1)
SVD of X exists. Let G = UTAU for all t. We notice that since X = UΣV T for all
t, and all factors are smooth, then we must also have

Ẋ = AUΣV T = U̇ΣV T + U Σ̇V T + UΣV̇ T ,

so that by letting H = UT U̇ and K = V T V̇ , and noticing that H and K must be
skew-symmetric, one must have

Σ̇ = GΣ−HΣ + ΣK ,

and so we must have

σ̇i = Giiσi → σi(t) = σi(s)e

∫ t

s
Gii(τ)dτ , i = 1, . . . , n .(7.1)

In [19, 20] under the assumption of distinct singular values, the authors derived
differential equations for U and Σ, integrated these numerically, and then set2

λi = lim sup
t→∞

1

t
ln(|σi(t)|) , i = 1, . . . , n .(7.2)

Under the assumption of distinct singular values, the differential equations describing
the evolution of U, V,Σ have been derived many times before (e.g., see [32]) and are

U̇ = UH, V̇ T = −KV T , Σ̇ = DΣ,(7.3)

where D = diag(G), HT = −H, KT = −K and, for i �= j,

Hij =
Gijσ

2
j +Gjiσ

2
i

σ2
j − σ2

i

, Kij =
(Gij +Gji)σiσj

σ2
j − σ2

i

.(7.4)

On the other hand, from the SVD of X the Lyapunov exponents may be obtained
as

χ(Xi) = lim sup
t→∞

1

t
ln ||Σ(t)V T (t)ei|| .(7.5)

Here, we explore the “equivalence” between (7.2) and (7.5) and at the same time
validate the methods based upon differential equations for the U, V , and Σ factors. We
will do this under the assumption that D, the diagonal of G, is integrally separated:∫ t

s

(Gkk(τ)−Gk+1,k+1(τ))dτ ≥ a(t− s)− d,(7.6)

a > 0, d ∈ R, t ≥ s, k = 1, 2, . . . , n− 1.

For some of the results here, we can assume also the following condition (simply (7.6)
with s = 0) that is weaker and easier to verify than (7.6):

2In fact, in [19, 20], it was assumed that the λi’s existed as limits.
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∫ t

0

(Gk,k(τ)−Gk+1,k+1(τ))dτ ≥ at− d,(7.7)

a > 0, d ∈ R, t ≥ 0, k = 1, . . . , n− 1.

Lemma 7.1. For all t, let X = UΣV T be a Cp SVD of X, p ≥ 1. Let G = UTAU
satisfy (7.7). Then, for t sufficiently large, we eventually have

σk(t) > σk+1(t), k = 1, . . . , n− 1.(7.8)

Proof. Take k = 1, . . . , n− 1. From (7.1) and (7.7), we have

σk(t) =
σk(0)

σk+1(0)
σk+1(0)e

∫ t

0
Gkk(τ)dτ

≥ σk(0)

σk+1(0)
σk+1(0)e

∫ t

0
Gk+1,k+1(τ)dτ eate−d .

That is,

σk(t) ≥
[
σk(0)

σk+1(0)
eate−d

]
σk+1(t), t ≥ 0 .

Now, let tk be sufficiently large so that the term in brackets is greater than 1. Re-
peating the argument for all k = 1, . . . , n− 1 gives the result.

Based upon Lemma 7.1, as long as (7.7) holds, we may as well assume that
all singular values are distinct, and ordered, for all times t ≥ 0. In particular, the
differential equations (7.3) with H and K defined by (7.4) hold. Having done this,
we now show the equivalence between (7.2) and (7.5).

Theorem 7.2. Under the assumption (7.6), we have χ(Xi) = lim supt→∞
1
t ln(|σi(t)|).

Proof. Let X = UΣV T be rewritten as X = UP , P = ΣV T , so that

Ṗ = (UTAU − UT U̇)P,(7.9)

and since U is a Lyapunov transformation χ(Pi) = χ(Xi). Consider also the system for
Σ given in (7.3). We want to show that χ(Σii) = χ(Pi). If we rewrite the differential
equations for P using the differential equations for Σ and V , then Ṗ = (D−ΣKΣ−1)P.

Let E = ΣKΣ−1, so for i > j, Eij = Kij
σi

σj
and thus

Eij = (Gij +Gji)
1

σ2
j

σ2
i

− 1
.(7.10)

We have

σ2
j

σ2
i

=
σ2
j (0)

σ2
i (0)

exp

(
2

∫ t

0

(Gjj(τ)−Gii(τ))

)
dτ ,(7.11)

and since (7.6) holds, then
σ2
j

σ2
i

→∞ and thus Eij → 0 as t→∞ for i > j. Obviously,

we also have Eii = 0 for all i. Finally, for j < i, Eji = Kji
σj

σi
= −Kij

σj

σi
. But

Kij
σj
σi

=
(Gij +Gji)

1− σ2
i

σ2
j

,
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and now 1− σ2
i

σ2
j

does not go to ∞, and hence in general Eji does not approach 0 as t

approaches infinity. So, we write

E = low(E) + upp(E),

where upp(E) is the strictly upper triangular part of E and low(E) is the strictly
lower triangular part of E, and consider the system

Ṗ = (D − upp(E))P .(7.12)

Since low(E) → 0 as t → ∞, and the exponents of the P system (7.9) are stable,
then the Lyapunov exponents of the P system and of the P system (7.12) are the
same by Theorem 3.2. In other words, χ(Pi) = χ(P i) for i = 1, . . . , n. Finally, with
assumption (7.6) we can apply Theorem 5.1 to obtain

χ(P i) = χ(P ii) = χ(Σii), i = 1, . . . , n.(7.13)

Remark 7.1. From the proof of Theorem 7.2, it is apparent that for the Lyapunov
exponents of the systems (7.9) and (7.12) to coincide it suffices to assume (7.7).
However, the stronger condition (7.6) was needed to prove χ(P i) = χ(P ii).

When (7.7) holds, and a fortiori when (7.6) holds, we have the following result.
Lemma 7.3. Let (7.7) hold. Then, the orthogonal matrix function V (t)→ V , as

t→∞, where V is a constant orthogonal matrix.
Proof. Recall that V satisfies V̇ T = −KV T , where K is defined in (7.4), Kij =

(Gij + Gji)
σiσj

σ2
j
−σ2

i

for i �= j, and Kii = 0 for all i. We claim that, under assumption

(7.7), Kij → 0 exponentially fast as t→∞. For i > j, we have

Kij = (Gij +Gji)
σi(0)

σj(0)

exp(
∫ t
0
(Gjj(τ)−Gii(τ))dτ)

exp(2
∫ t
0
(Gjj(τ)−Gii(τ))dτ)− σ2

i
(0)

σ2
j
(0)

= (Gij +Gji)
σi(0)

σj(0)

[
1

exp(
∫ t
0
(Gjj(τ)−Gii(τ))dτ) + σi(0)

σj(0)

(7.14)

+
σi(0)

σj(0)

1

exp(2
∫ t
0
(Gjj(τ)−Gii(τ))dτ)− σ2

i
(0)

σ2
j
(0)

]
,

and so by (7.7) we have that for i > j, Kij → 0 exponentially fast, as t → ∞. By
skew-symmetry, the same holds true also for i < j. The result now follows from [10,
Thm. 2, p. 90].3

Remark 7.2. Lemma 7.3 may be used indirectly to determine if (7.7) holds, a fact
which was apparently used in [19].

The condition (7.6) is very similar to the condition (3.3) on the diagonal of the
upper triangular coefficient matrix B obtained when finding the QR factorization of a

3Theorem 2 of [10] is concerned with the system Ẋ = (A + B(t))X when A is constant
with simple eigenvalues λi and associated eigenvectors ξi, i = 1, . . . , n, and B is continuous
such that

∫∞
t0

‖B(t)‖dt < ∞. In such a case, the cited theorem states that X converges to

diag(eλ1t, . . . , eλnt)[ξ1, . . . , ξn]C, where C is a constant invertible matrix. However, the result and
the proof in [10] hold true by just requiring that A is diagonalizable (not necessarily with distinct
eigenvalues). We have used this fact with A = 0.
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fundamental matrix solution. In fact, these two conditions lead to similar outcomes.
The following is the QR analogue of Lemma 7.3.

Lemma 7.4. Consider the upper triangular system Ṙ = BR, where B is bounded
and continuous, and assume that the diagonal of B is integrally separated, as in (3.5).
Then, R→ diag(R)Z as t→∞, where Z is a constant upper triangular matrix with
1’s on the diagonal.

Proof. Write R = DZ, where Z = D−1R, and D = diag(R). Then D satisfies
Ḋ = diag(B)D and Z satisfies Ż = EZ, where E = D−1(B − diag(B))D. Then,

Eij = Bij · Rjj

Rii
for i < j and Eij = 0 for i ≥ j. Now,

Rjj
Rii

=
Rjj
Rii

(0) e

∫ t

0
(Bjj−Bii)dτ .

Let j = i+k for some k = 1, . . .. The diagonal of B is integrally separated (see (3.5)),
and so ∫ t

0

(Bjj −Bii)dτ ≤ −k(at− d) ,

from which Eij → 0 exponentially fast as t→∞, and the result follows.
Remark 7.3. We notice that the assumption of integral separation (7.7) (or (7.6))

does not preclude singular values from coinciding at some (early) time t, in which
case the computation of the factors U, V,Σ remains by and large unexplored territory.
Indeed, if one chooses to use the SVD technique for approximating the Lyapunov
exponents, even if (7.7) (or (7.6)) is satisfied, it is probably advisable to integrate for
X for awhile prior to writing down and integrating the differential equations for the
factors U , Σ, and V .

8. Numerical techniques. We only outline the continuous QR technique (see
[8, 12, 13, 14, 21]), which is the one we used for the experiments in the next section.

Consider the linear homogeneous problem

ẋ(t) = A(t)x(t).(8.1)

The key task is to find Q which transforms the upper left p× p (p ≤ n) corner of A,
B = QTAQ − QT Q̇, to upper triangular form. From B, one can then approximate
p Lyapunov exponents using (2.9) if the system is regular or the spectral intervals in
the case where the system is not regular.

To find Q, one writes p columns of a fundamental matrix solution of (8.1) as
X = QR, whereQ is an n×p orthonormal function (i.e., for all t ≥ 0: QT (t)Q(t) = Ip),
and R is a p×p upper triangular function with positive entries on the diagonal. Upon
differentiating X = QR, we have

AQR = Ẋ = Q̇R+QṘ or AQ = Q̇+QṘR−1.(8.2)

Let B denote the upper triangular function ṘR−1 and set S(Q) = QT Q̇, which is
skew symmetric. Then

QTAQ = S(Q) +B ,(8.3)

and since S(Q) is skew symmetric and B is upper triangular, we have

S(Q)ij =




(QTAQ)ij , i > j,
0, i = j,

−(QTAQ)ji, i < j.
(8.4)
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Then, from (8.2), the equation for Q is

Q̇ = AQ−QB = AQ−Q(QTAQ− S(Q)) = (I −QQT )AQ+QS(Q).(8.5)

Initial conditions for Q are obtained from a QR factorization of the initial conditions
for X (and the most typical choice is to take X(0) = ( Ip0 )).

To repeat this reasoning relative to a trajectory of a nonlinear problem, one must
integrate

ẋ = f(x), x(0) = x0 ,(8.6)

and then use A(t) = Df(x(t)) in (8.2).
Once we have the triangular function B, we can compute the p Lyapunov ex-

ponents from (2.9) if the system is regular. Alternatively, one may (in principle)
compute λsjj (and λijj) in ΣCL, j = 1, . . . , p, from

lim sup
t→∞

1

t

∫ t

0

Bjj(s)ds and lim inf
t→∞

1

t

∫ t

0

Bjj(s)ds , j = 1, . . . , p .(8.7)

Regardless of whether the B-system is regular, we found it convenient to work with
the variables νj(t) =

∫ t
0
Bjj(s)ds so that we end up with the differential equations

ν̇j = Bjj , νj(0) = 0, j = 1, . . . , p,(8.8)

from which the exponents may be approximated as limits (or lim sups and lim infs)
of

1

t
νj(t), j = 1, . . . , p .

At this point, the skeleton of the method is clear: for nonlinear problems, integrate
(8.6), (8.5), and (8.8); for linear problems, integrate just (8.5) and (8.8).

8.1. Numerical implementation. When approximating (8.5) numerically it
is important to maintain Q orthonormal. Several choices are possible to achieve this;
e.g., in [13, 3] techniques are discussed to directly integrate (8.5), whereas in [8, 21]
a continuous Gram–Schmidt procedure is proposed. We have used the technique de-
scribed in [14, 15]. The idea of this technique is to locally decompose Q in a way
analogous to the numerical linear algebra context using elementary Givens rotations
or Householder reflectors. Integration for these elementary factors can be done adap-
tively, and we refer to [15] for details.

So, in the end, the differential equations (8.6), (8.5), and (8.8) are all integrated
with adaptive time stepping, controlled by the tolerance values TOLX, TOLQ, TOLL,
respectively. The basic integrator in all cases is our implementation of the Dormand–
Prince 4/5 embedded Runge–Kutta pair modeled after the pattern adopted in [15],
to which we again refer for details.

8.2. Testing integral separation. It is clearly desirable to infer whether the
system has integral separation. This is needed to gain some confidence in the answers
one obtains (since it implies stable exponents), and also (see below) to obtain a com-
putational procedure to approximate ΣED. We have used the following construction
which is motivated by Steklov function considerations. Recall that, given a continuous
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bounded function f , the Steklov function or Steklov average of f with step H > 0 is
defined as (see [1, Def. 5.4.1] and [5])

fH(t) =
1

H

∫ t+H

t

f(τ)dτ.(8.9)

Now, consider two bounded functions f1 and f2 (presently, think of them as
diagonal elements of the upper triangular coefficient matrix B), and suppose we want
to know if they are integrally separated:∫ t

s

(f1(τ)− f2(τ))dτ ≥ a(t− s)− d, a > 0, d ∈ R, t ≥ s.(8.10)

The importance of Steklov functions resides in the fact that (8.10) can be inferred
from the Steklov average of the difference f1− f2. This is the content of Lemma 5.4.1
in [1].

Lemma 8.1. Let f1 and f2 be two bounded functions. Then, f1 and f2 are
integrally separated, i.e., (8.10) holds if and only if for sufficiently large H their Steklov
functions are separated, i.e.,

fH1 (t)− fH2 (t) =
1

H

∫ t+H

t

(f1(τ)− f2(τ))dτ ≥ a > 0, t ≥ 0 .(8.11)

In practice, to check (8.11) will require a careful choice ofH. We refer to Examples
9.1 and 9.2 for practical considerations.

8.3. Numerical computation of spectral intervals. In the case in which the
system is not regular, it would be clearly desirable to approximate ΣCL and/or ΣL.
Furthermore, it is clearly of interest to be able to approximate ΣED in the case in which
the system does not have point spectrum (i.e., the Sacker–Sell intervals reduce to single
points, the Lyapunov exponents of the system). As far as we know, the computational
task of approximating spectral intervals has not been previously undertaken. This is
most likely because in many problems the Lyapunov exponents appear to exist as
limits (see Remark 3.1) and also because the numerical approximation of spectral
intervals is an even more delicate task than approximation of Lyapunov exponents of
regular systems. Naturally, this is due to the asymptotic nature of the quantities being
computed. Further, for ΣCL, there is the added difficulty that lim sups and lim infs
must be approximated, which is more complicated than approximating limits. And,
for ΣED, it is the uniformity (i.e., for all t ≥ s) in the definition of exponential
dichotomy which causes additional difficulties. These difficulties notwithstanding,
below we present the strategies we have adopted to approximate spectral intervals. In
what follows, we will restrict our attention to triangular systems: Ṙ = B(t)R, where
B is an upper triangular continuous and bounded function. As previously remarked,
this restriction is no loss of generality. In order to further validate the results of the
procedures to approximate the spectral intervals, we need to restrict our attention to
triangular functions B whose diagonal is integrally separated.

8.3.1. Approximating ΣCL. To approximate the lim inf and lim sup in the
definition of ΣCL, we reason as follows. Let b(t) be a given diagonal element of the

upper triangular transformed coefficient matrix B. Let λ(t) = 1
t

∫ t
0
b(s)ds. Recall

that

λ+ = lim
τ→∞ sup

t≥τ
λ(t) and λ− = lim

τ→∞ inf
t≥τ

λ(t) .
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So, if we let

g(τ) = sup
t≥τ

1

t

∫ t

0

b(s)ds and h(τ) = inf
t≥τ

1

t

∫ t

0

b(s)ds ,

then for every ε > 0 there exists τ(ε) such that τ ≥ τ(ε) implies |g(τ)− λ+| < ε and
|h(τ)−λ−| < ε. In our experiments, we mimic this definition on a finite interval. For
given T > 0, we specify a value τ0, T > τ0 > 0, and compute

gf (T, τ0) = sup
T≥t≥τ0

1

t

∫ t

0

b(s)ds and hf (T, τ0) = inf
T≥t≥τ0

1

t

∫ t

0

b(s)ds ,(8.12)

which will provide approximations to λ+ and λ−.

8.3.2. Approximating ΣED. Our approach to approximation of ΣED is moti-
vated by the relationship between exponential dichotomy and integral separation as
was seen in Example 6.2. We develop a procedure for approximating ΣED for diagonal
systems, or for any system that is reducible to a diagonal system through a Lyapunov
transformation. For example (see the proof of Theorem 5.1), our procedure applies
to triangular systems whose diagonal is integrally separated.

So, consider ẋ = D(t)x, where D = diag(Bjj , j = 1, . . . , n) and where we may
think of the Bjj ’s as the diagonal entries of the upper triangular function B. For each
j = 1, . . . , n, we consider the diagonal planar systems (cf. (6.13) and (6.16))

ẏj =

(
λ 0
0 Bjj(t)

)
yj and ẏj =

(
Bjj(t) 0

0 λ

)
yj .(8.13)

Following the argument relating exponential dichotomy and integral separation in
Example 6.2 (see (6.14) and (6.17)), we obtain the following result.

Lemma 8.2. Consider the diagonal system ẋ = D(t)x, D = diag(Bjj , j =
1, . . . , n). Then, for each j = 1, . . . , n, the Sacker–Sell spectrum corresponding to
the jth diagonal element is given by the interval

Λj = {λ ∈ R : (8.13) are not integrally separated} .(8.14)

As a consequence of Lemma 8.2, we have (cf. [16]) the following theorem.
Theorem 8.3. The Sacker–Sell spectrum of the diagonal system ẋ = D(t)x,

D = diag(Bjj , j = 1, . . . , n), is given by

ΣED =

n⋃
j=1

Λj ,(8.15)

where Λj is defined in (8.14), j = 1, . . . , n.
To obtain a computational procedure for ΣED out of Theorem 8.3, we rely on

Steklov functions. Indeed (recall Lemma 8.1), the systems in (8.13) are integrally
separated if and only if for H > 0 sufficiently large the Steklov differences of λ and
Bjj , respectively, Bjj and λ, are positive for all t.

Now, given any H > 0, for j = 1, . . . , n, consider

αHj = inf
t

1

H

∫ t+H

t

Bjj(s)ds and βHj = sup
t

1

H

∫ t+H

t

Bjj(s)ds.(8.16)
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We will use [αHj , β
H
j ] to approximate the jth spectral interval of ΣED, j = 1, . . . , n.

The following result justifies our approach on an infinite time interval.
Theorem 8.4. Consider ẋ = D(t)x, where D = diag(Bjj , j = 1, . . . , n). For

j = 1, . . . , n, let αHj and βHj be given as in (8.16). Let H > 0 be given. Then, for each

j = 1, . . . , n, Λj ⊆ [αHj , β
H
j ]. Moreover, for H > 0 sufficiently large, [αHj , β

H
j ] ⊆ Λj

and hence [αHj , β
H
j ] = Λj, j = 1, . . . , n.

Proof. First, assume that H > 0 is arbitrary and that λ > βHj for some j =
1, . . . , n. Then, there exists aj > 0 such that

∫ t+H

t

(λ−Bjj(τ))dτ ≥ ajH ∀t .(8.17)

We want to show that λ and Bjj are integrally separated functions. That is, we need
to show that for all t, s, t ≥ s, there exists a > 0 and d ∈ R such that

∫ t

s

(λ−Bjj(τ))dτ ≥ a(t− s)− d.(8.18)

We will verify (8.18) with a = aj and d = dj := 2H(|λ| + maxt |Bjj(t)|). Because
of (8.17), (8.18) holds for all t and s with t = s +H. Consider the case of t, s, with
t < s+H. Then, rewrite

∫ t

s

(λ−Bjj(τ))dτ =

∫ s+H

s

(λ−Bjj(τ))dτ −
∫ s+H

t

(λ−Bjj(τ))dτ ,

and thus
∫ s+H
t

(λ−Bjj(τ))dτ ≤ (|λ|+ maxt |Bjj(t)|)(s+H − t) ≤ dj , so that

∫ t

s

(λ−Bjj(τ))dτ ≥ ajH − dj ≥ aj(t− s)− dj .

Next, let t, s, with t > s+H. Then, for some integer k > 1, we have t = s+ kH + σ,
σ ∈ [0, H). Therefore,

∫ t

s

(λ−Bjj(τ))dτ =

k∑
j=0

∫ s+(j+1)H

s+jH

(λ−Bjj(τ))dτ −
∫ s+(k+1)H

s+kH+σ

(λ−Bjj(τ))dτ ,

and thus (using (8.17) and the previous argument used when t < s+H) we get

∫ t

s

(λ−Bjj(τ))dτ ≥ aj(k + 1)H − dj ≥ aj(t− s)− dj ,

and (8.18) follows. Therefore, λ and Bjj(t) are integrally separated, and so λ /∈ Λj .
A similar proof for λ < αHj establishes that Λj ⊆ [αHj , β

H
j ] for any given H > 0.

Assume now that λ /∈ Λj . Then λ and Bjj(t) and/or Bjj(t) and λ are integrally
separated. Suppose that λ and Bjj(t) are integrally separated; the argument for
Bjj(t) and λ integrally separated is similar. Then there exists a > 0 and d ∈ R such
that for all t, s, with t ≥ s, we have

∫ t

s

(λ−Bjj(τ))dτ ≥ a(t− s)− d.(8.19)
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Choose H > 0 large enough so that a− d/H > a/2. Thus, for all t,

1

H

∫ t+H

t

(λ−Bjj(s))ds ≥ a− d/H > a/2,(8.20)

and so λ > βHj . A similar proof for Bjj(t) and λ integrally separated implies that

λ < αHj , and thus λ /∈ [αHj , β
H
j ]. Therefore, for H > 0 sufficiently large, [αHj , β

H
j ] =

Λj .
On a finite time interval, our computational procedure to approximate ΣED mim-

ics Theorem 8.4. Given H > 0, and T > t0 > 0, we let b(t) be a diagonal element
Bjj(t), for some j = 1, . . . , n, of the triangular coefficient matrix B, defined on the
time interval [0, T ]. We compute the Steklov averages of b with respect to the given

H: bH(t) := 1
H

∫ t+H
t

b(τ)dτ , for T −H ≥ t ≥ t0. Next, we compute

bH = sup
T−H≥t≥t0

bH(t) and bH = inf
T−H≥t≥t0

bH(t)(8.21)

and use these as approximations to [αHj , β
H
j ] in (8.16).

9. Examples and numerical results. We first consider a linear example for
which the Lyapunov exponents do not exist as limits; in this case, we approximate the
spectral intervals. Then, we approximate the Lyapunov exponents for two nonlinear
systems, i.e., the exponents associated with linearization about computed trajectories;
in both cases considered, the Lyapunov exponents appear to exist as limits. Thus,
we attempt verifying integral separation of the diagonal of the transformed triangular
problem in order to infer stability of the Lyapunov exponents: in one case we are
successful, in another we are not.

In all examples below, integration for Q is carried out with QRINT (see [15]) using
Jacobi rotations (the so-called θ-method in QRINT).

Example 9.1. Consider a planar linear problem ẋ = A(t)x with continuous spec-
trum, where A(t) is defined by

A11(t) = (2 sin(τ(t)) + α) cos2(θ(t)) + cos(τ(t))− sin(τ(t))− α− β cos(θ(t)) sin(θ(t)),

A12(t) = (2 sin(τ(t)) + α) cos(θ(t)) sin(θ(t))− θ̇(t) + β cos2(θ(t)),

A21(t) = (2 sin(τ(t)) + α) cos(θ(t)) sin(θ(t)) + θ̇(t)− β sin2(θ(t)),

A22(t) = −(2 sin(τ(t)) + α) cos2(θ(t)) + cos(τ(t)) + sin(τ(t)) + β cos(θ(t)) sin(θ(t)),

and τ(t) = ln(t + 1). This problem is designed so that the orthogonal change of
variables Q and the upper triangular coefficient matrix function B are

Q(t) =

(
cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)
and B(t) =

(
B11(t) β

0 B22(t)

)
,

where B11(t) = cos(τ(t)) + sin(τ(t)) and B22(t) = cos(τ(t))− sin(τ(t))− α. It is not
hard to explicitly obtain the spectral intervals (recall the result for Example 6.2): we
have ΣL = [−1, 1] ∪ [−α − 1,−α + 1] and ΣED = [−√2,

√
2] ∪ [−α − √2,−α +

√
2].

For our experiments we choose β = 1, θ(t) = ωt, and α = 4. Integration for Q was
done with local error tolerance 10−5.

In Table 9.1, we report on results of experiments to approximate ΣL. We approx-
imate all integrals in (8.12) with the composite trapezoidal rule on data sampled at
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Table 9.1
Example 1. Approximation of ΣL.

T τ0 [λ−1 , λ
+
1 ] [λ−2 , λ

+
2 ]

1.E4 1.E2 [-1.0191, 1.0004] [-4.9774, -2.9998]
1.E6 1.E2 [-1.0191,1.0004] [-5.0002,-2.9998]
1.E6 1.E4 [-1,0.94871] [-5.0002,-3]
1.E7 1.E4 [-1,1] [-5.0002,-3]

Table 9.2
Example 1. Approximation of ΣED (t0 = 0).

T H [αH
1 , β

H
1 ] [αH

2 , β
H
2 ]

1.E7 1.E4 [−1.4063, 1.4142] [−5.4142,−2.5861]
1.E7 1.E5 [−1.2576, 1.4127] [−5.4141,−2.6191]
1.E8 1.E4 [−1.4142, 1.4142] [−5.4142,−2.5858]
1.E8 1.E5 [−1.4142, 1.4127] [−5.4141,−2.5858]

integer times. In the table we specify the values T , τ0, and report on the approx-
imations (at 5 digits) for the two spectral intervals making up ΣL. In spite of the
crudeness of the quadrature rule, quite clearly ΣL is approximated very well.

In Table 9.2 we report on calculations to approximate ΣED. In the table, we
vary quantities in the procedure outlined in section 8.3; see (8.21). In particular,
we vary the final time, T , and the length of the Steklov averages, H. The initial
time for which the Steklov averages are maximized/minimized is fixed at t0 = 0, and
the approximations we obtain to [αHj , β

H
j ] for j = 1, 2 are recorded to 5 digits. Our

calculations are based upon data from the diagonal of B that we have sampled using a
large step size of h = 10. The Steklov averages are approximated with the composite
trapezoidal rule. The results point out the difficulty in finding an appropriate value
for H: simultaneously, one would need H large enough so that the endpoints of the
intervals in ΣED are approximated accurately, yet not so large with respect to the
final time T that little data are sampled.

Example 9.2 (Lorenz equation). Our next example is the Lorenz equation
 ẋẏ
ż


 =


 σ(y − x)
ρx− xz − y
xy − βz


 .

We consider the parameter values σ = 16, β = 4.0, and ρ = 45.92 and the initial
condition (x(0), y(0), z(0)) = (0, 1, 0). In Table 9.3, we summarize some results which
are typical. Error control is done on the trajectory x, on Q, and on ν (see (8.8)).
Apparently, the Lyapunov exponents exist as limits: the linearized problem appears
to be regular.

Based upon the results in Table 9.3, we observe that (1) there is an obvious
relation between the number of steps taken and the length of integration (recall that
we are integrating with variable step size). This suggests that we are tracing “alike
trajectories” on the Lorenz attractor; (2) with all the imperfections of finite precision
arithmetic, the Lyapunov exponents are clearly converging towards λ1 ≈ 1.5, λ2 = 0,
and λ3 ≈ −22.5.

In order to infer stability of the exponents, we have verified if the linearized system
enjoys integral separation. As far as we know, this is the first attempt of this type,
on the Lorenz system or otherwise. We use the construction outlined in section 8.2
on the transformed, triangular problem. So, we have to check if the three functions
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Table 9.3
Example 2. TOLX=TOLQ=TOLL=1.E-6.

tend Steps λ1 λ2 λ3
1.E2 8.6E3 1.415 3.E-2 −22.466
1.E3 8.6E4 1.4892 4.64E-3 −22.494
1.E4 8.6E5 1.499 4.64E-4 −22.499
1.E5 8.6E6 1.5027 4.07.E-5 −22.5027
1.E6 8.6E7 1.5024 7.6E-6 −22.5024
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Fig. 9.1. b11 − b22.

b11, b22, b33 are integrally separated. As it turns out, the first two functions are the
hard ones (the third is more clearly integrally separated): Figure 9.1 shows (b11−b22)
on [0, 100], and clearly b11 and b22 are not separated. So, we check if (8.11) holds forH
sufficiently large. In practice, to form bH11 and bH22, we approximate the integral by the
composite trapezoidal rule. We look for H in the range [1, 20] and, for t ∈ [0, 10000],
the value H = 20 gave sufficient separation; see Figure 9.2. We conclude that, on
the given interval, and subject to the limitations of finite precision computation, the
diagonal of the transformed triangular system is integrally separated, and thus so is
the linearized system, and the Lyapunov exponents are stable.

The next example highlights the difficulties in inferring integral separation of the
diagonal of B for problems with close exponents, even when the Lyapunov exponents
appear to exist as limits and to be stable.

Example 9.3. This example is adapted from one in [18] (used also in [13] and then
[3]). We have a ring of oscillators with an external force proportional to the position
component of the limit cycle of the van der Pol oscillator:

ÿ + α(y2 − 1)ẏ + ω2y = 0,
ẍi + diẋi + γ[Φ′(xi − xi−1)− Φ′(xi+1 − xi)] = σyδi1 , i = 1, . . . , n .

(9.1)

Above, Φ(x) = (x2/2)+(x4/4) is the single well Duffing potential, α, ω, γ, σ are scalar
parameters, xi is the displacement of the ith particle, di is the damping coefficient, and
we have periodic boundary conditions to be used in the expressions for Φ′ (x0 = xn
and xn+1 = x1). For our experiments, we set n = 5 and set α = 1, ω = 1.82, γ = 1,
and σ = 4. We set di = 0.25 for i odd and di = 0.15 for i even. Initial conditions
are taken as y(0) = 0, ẏ(0) = −2, xi(0) = ẋi(0) = 1, i = 1, . . . , n. Error control is
performed on x, Q, and ν.

From the results summarized in Table 9.4, we observe good convergence for the
four exponents on which we report. However, inferring integral separation, although
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Fig. 9.2. bH11 − bH22.

Table 9.4
Example 3. TOLX=TOLQ=TOLL=TOL.

tend TOL Steps λ1 λ2 λ3 λ4
1000 1.E-4 15214 1.8E-3 8.3E-4 -9.72E-2 -9.99E-2
5000 1.E-4 78599 4.9E-4 1.5E-4 -9.80E-2 -9.86E-2
10000 1.E-4 157372 2.1E-4 4.5E-5 -9.82E-2 -9.83E-2
1000 1.E-6 34911 1.7E-3 8.7E-4 -9.74E-2 -9.99E-2
5000 1.E-6 115135 4.2E-4 1.7E-4 -9.81E-2 -9.86E-2
10000 1.E-6 364206 1.4E-4 8.4E-5 -9.82E-2 -9.84E-2
1000 1.E-8 84584 1.7E-3 8.7E-4 -9.74E-2 -9.99E-2
5000 1.E-8 222556 4.2E-4 1.7E-4 -9.81E-2 -9.86E-2
10000 1.E-8 883292 1.4E-4 8.4E-5 -9.82E-2 -9.84E-2

perhaps possible, is quite difficult because of the clustering of the exponents. To
illustrate, with tend = 1000 and TOL = 1.E − 6, at 2 digits the 12 approximate
exponents are

1.7E− 3, 8.7E− 4, −9.7E− 2, −1.0E− 1, −1.0E− 1, −1.0E− 1,
−1.1E− 1, −1.1E− 1, −1.1E− 1, −1.2E− 1, −2.1E− 1, −1.0E0.

(9.2)

We attempted to verify if the linearized problem was integrally separated, but failed.
To be precise, on the interval [0, 1000], the value of H = 100 was sufficient to establish
positivity of the Steklov differences bH22 − bH33, bH10,10 − bH11,11, and bH11,11 − bH12,12, and
hence integral separation of the respective diagonal entries of B, but all other Steklov
differences were oscillating about 0 (even for larger values of H), therefore precluding
us from inferring integral separation of the linearized problem. This highlights that,
for a problem with close (or identical) exponents, it will be necessary to develop block
analogues of QR techniques and associated criteria to infer integral separation (in a
block sense).

10. Conclusions. In this paper we have blended theoretical studies on stability
of Lyapunov exponents with computational techniques which target the Lyapunov
exponents. Stability of the exponents is equivalent (in the case of distinct exponents)
to having an integrally separated fundamental matrix solution. We have assumed that
the system was integrally separated and further explored what conditions are needed
to validate popular numerical methods, in particular those based on the QR and
SVD of fundamental matrix solutions. We also explored the implications of integral
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separation on approximation of three different spectra of linear systems: first, ΣED,
of Sacker and Sell based upon exponential dichotomy; second, ΣL, that naturally
generalizes Lyapunov’s upper and lower exponents to a spectrum; and third, ΣCL,
based on the diagonal elements of the upper triangular coefficient matrix B that
is obtained through an orthogonal change of variables. In general, the Sacker–Sell
spectrum is larger than the other two spectra, while under the assumption of integral
separation of the diagonal of B we have that ΣL = ΣCL. We also showed how to
approximate ΣED when the diagonal of B is integrally separated.

Future work will need to address several issues which we did not resolve in the
present paper. In no particular order, we believe the following will be worthwhile
investments:

1. Careful implementation and analysis of continuous SVD techniques.
2. Block analogues of QR and SVD techniques for the case of nondistinct expo-

nents.
3. Refined implementation and study of techniques to approximate ΣED along

the lines of the approach we laid down in section 8.3 and used in Example
9.1.

4. More thorough study of techniques to approximate Steklov averages, and
further exploitation of the power of this tool.
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Abstract. The multiscale asymptotic analysis and numerical simulation for the second order
Helmholtz equations with rapidly oscillating coefficients over general convex domains are discussed in
this paper. A multiscale asymptotic analysis formulation for this problem is presented by constructing
properly the boundary layer. A multiscale numerical algorithm and a postprocessing technique are
given. Finally, numerical results show that the method presented in this paper is effective and
reliable.
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1. Introduction. In this paper, we analyze the spectral properties of a sec-
ond order elliptic operator corresponding to a composite medium with a periodic
microstructure. More precisely, we consider the following Helmholtz problem:


Lεuε(x) ≡ − ∂

∂xi

(
aij
(x
ε
) ∂uε(x)

∂xj

)
+ b
(x
ε
)
uε(x) = λερ

(x
ε
)
uε(x) in Ω,

Bε(uε) = 0 on ∂Ω,

(1.1)

where Ω is an arbitrary bounded convex Lipschitz domain, Bε is a boundary operator,
i.e., it is either Dirichlet’s or Neumann’s one.

Let us make assumptions as follows:
(A1) Let ξ = ε−1x, aij(ξ), b(ξ), and ρ(ξ) are 1-periodic in ξ;
(A2)

γ0

n∑
i=1

η2
i ≤

n∑
i,j=1

aij

(x
ε

)
ηiηj ≤ γ1

n∑
i=1

η2
i(1.2)

∃γ0 > 0, γ1 > 0, ∀(η1, . . . ηn) ∈ Rn;
(A3) aij(

x
ε ) = aji(

x
ε ), ρ(

x
ε ) ≥ ρ0 = const > 0, b(

x
ε ) ≥ 0;

(A4) aij(
x
ε ), ρ(

x
ε ), b(

x
ε ) ∈ L∞(Ω).

It is well known that spectral theories have extensive applications in physics,
chemistry, mechanics, and vibration engineering. For example, we analyze the stabil-
ity of a structure through calculating the natural frequencies and natural vibration
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modes. Also, in quantum physics, we investigate the electronic and magnetic proper-
ties of materials by computing eigenvalues and eigenfunctions of state Schrödinger
equations associated with atomic structures. With the continuous emergence of
some new materials such as composite materials, semiconductor superlattice, nano-
materials, and so forth, it is very necessary and pressing that the spectral properties
of strongly heterogeneous materials are studied.

In mathematics, the above physical and mechanical problems can be represented
as the Helmholtz equation of second order elliptic operator with rapidly oscillating
coefficients in many cases. One of the main difficulties for analyzing these kinds of
problems is that the computing amounts are too large to solve them numerically.
For this purpose, a homogenization method was previously provided and analyzed;
see [11, 13, 14, 16, 18]. The principal idea is to obtain the average field equation
associated with the original problem by constructing a local smoothing operator and
to discuss its convergence the on the basis of the compensated compactness theorem
presented by L. Tartar (cf. [11]). Clearly, using classical numerical methods, we can
numerically solve the homogenized Helmholtz equation in coarse meshes. Both theo-
retical analysis and numerical experiments show that the homogenization method is
suitable for computing some macroscopic physical variables such as effective medium,
natural frequencies, and so on. However, it is unable to accurately describe the local
fluctuation of some physical variables such as natural vibration modes, stresses and
strains, and temperature field, and so forth.

The crucial point of analyzing precisely the above problem is to find out the mul-
tiscale asymptotic expansion for the solution of considered problem (cf. [3, 4, 6]).
Jikov, Zozlov, and Oleinik [11] and Oleinik, Shamaev, and Yosifian [18], investigated
the Sturm–Liouville equation with oscillating coefficients in one dimension and ob-
tained the complete asymptotic expansion of eigenvalues and eigenfunctions on the
basis of analytic formulas of eigenvalues and eigenfunctions associated with the one-
dimensional (1-D) Helmholtz problem with constant coefficients. Clearly, this method
is not suitable for discussing the Helmholtz problems in higher-dimensional cases
(n ≥ 2). In [20], F. Santosa and M. Vogelius studied the first order corrections for a
kind of eigenvalue problem associated with the vibration of periodic composite and
analyzed the set of associated weak limit points in the case when Ω is a convex poly-
gon, the sides of which all have a normal integer entries (the slopes are all rational or
infinite).

S. Moskow and M. Vogelius (see [17]) gave a presentation formula for the set of
first order corrections to a simple eigenvalue when the eigenvector is only in H2+ω(Ω)
for some ω > 0. In particular, this regularity assumption is sufficiently weak that it
makes the representation formula valid when Ω is a convex, classical polygon. This is
an important and excellent result.

T.Y. Hou, X.H. Wu, and Z. Cai [7] and T.Y. Hou and X.H. Wu [8] provided an in-
teresting multiscale finite element method (FEM) based on the first order asymptotic
expansion—the crucial idea is to find new finite element space; i.e., the set of basis
functions consists of two parts, the first part being the set of piecewise polynomials
and the second part the set of some oscillatory functions obtained by simultaneously
solving locally partial differential equations in some subdomains.

Does there exist the multiscale asymptotic expansions of eigenvalues and eigen-
functions for second order Helmholtz equation with rapidly oscillating coefficients over
general convex domains Ω in higher-dimensional cases (n ≥ 2)? This is an interesting
and difficult problem; refer to section 16 of [16]. One of the main results of this paper
is that we answer the above problems in a sense and derive their rigorous verification.
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The remainder of this paper is outlined as follows. In section 2 we introduce two
examples associated with the themes of the paper derived from classical mechanics
and Maxwell’s equations. In section 3 the multiscale asymptotic analysis formulas
of eigenvalues and eigenfunctions for the second order Helmholtz problem (1.1) with
highly oscillatory coefficients over general convex domains are obtained, and the re-
lated regularity and error estimates are given. In section 4 the variation of eigenvalues
and eigenfunctions is precisely analyzed due to the perturbation of the coefficients aris-
ing from numerically computing periodic solutions Nα1(ξ), α1 = 1, 2, . . . n. Section 5
is devoted to the finite element computations of the homogenized Helmholtz equation
in the whole domain Ω and a boundary layer in a smaller computing scale. In sec-
tion 6 the multiscale finite element algorithm and the postprocessing technique are
presented, and the total error estimates are shown. Finally, some numerical results
are reported, which provide a strong support for the effectiveness of the methods
presented in this paper.

For convenience, we use throughout the paper the convention of summation upon
repeated indices; C (with and without a subscript) denotes a generic positive constant,
which is independent of ε.

2. The background of classical mechanics and Maxwell’s equations. In
this section, we concisely introduce some physical models of classical mechanics and
Maxwell’s equations associated with the themes of the paper.

2.1. Vibrations of the membrane with a periodic microstructure. As we
know, the vibration of the membrane can be read as the following initial-boundary
problem: 


∂2V ε(x, t)

∂t2
− ∂
∂xi

(
aij
(x
ε
) ∂V ε(x, t)

∂xj

)
= f(x, t) in Ω

subject to appropriate initial and boundary conditions,
(2.1)

where (aij(
x
ε )) is a symmetric, positive-definite matrix, and its elements are highly

oscillatory coefficients with a small periodic parameter ε, and f(x, t) is a given non-
periodic perturbation. Domain Ω and its basic configuration are shown in Figures 1
and 2.

By virtue of Fourier’s transform, we know that

V ε(x, t) =
1

(2π)1/2

∫ +∞

−∞
F (x, ω)χε(x, ω)e−iωtdω,(2.2)

$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$
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Ω

Fig. 1. Periodic structure. Fig. 2. Basic configuration
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where

F (x, ω) =
1

(2π)1/2

∫ +∞

−∞
f(x, t)eiωtdt,(2.3)

f(x, t) =
1

(2π)1/2

∫ +∞

−∞
F (x, ω)e−iωtdω,(2.4)

and the admittance function

χε(x, ω) = Uε(x, ω)/F (x, ω),(2.5)

where Uε(x, ω) satisfies the following Helmholtz equation:


−

∂

∂xi

(
aij

(x
ε

) Uε(x, ω)

∂xj

)
= ω2Uε(x, ω)

subject to appropriate boundary condition.
(2.6)

2.2. Propagation in a waveguide partially filled with anisotropic dielec-
tric material. Consider Maxwell’s equation without sources:




∇× E + ∂B
∂t

= 0,

∇×H − ∂D
∂t

= 0,

∇ ·D = 0,
∇ ·B = 0,
D = εE,

B = µH,

(2.7)

where E = (Ex, Ey, Ez)
T , D = (Dx, Dy, Dz)

T , H = (Hx, Hy, Hz)
T , B = (Bx, By, Bz)

T

are electric field intensity, electric flux density, magnetic field strength, and magnetic
flux density, respectively. ε, µ are the dielectric constant tensor and the magnetic
permeability tensor of anisotropic media.

Suppose that the propagation of a wave is in the z-axis; then

E(t, x, y, z) = E(x, y)ei(ωt−kzz),(2.8a)

H(t, x, y, z) = H(x, y)ei(ωt−kzz),(2.8b)

where
√−1 = i and ω, kz are the angular frequency and the propagation constant,

respectively.

If ε = (εij)3×3 is a symmetric tensor, then we can always change it into a diagonal
tensor by using an orthogonal transformation. Therefore assume here that ε is a di-
agonal tensor without loss of generality, i.e., ε = diag(εx, εy, εz), µ = diag(µx, µy, µz).
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Substituting (2.8a) and (2.8b) into (2.7), one can obtain


∂Ez
∂y

= −ikzEy − iωµxHx,

∂Ez
∂x

= −ikzEx + iωµyHy,

∂Ey

∂x
− ∂Ex

∂y
= −iωµzHz,

∂Hz
∂y

= −ikzHy + iωεxEx,

∂Hz
∂x

= −ikzHx − iωεyEy,

∂Hy

∂x
− ∂Hx

∂y
= iωεzEz.

(2.9)

From (2.9), we can easily see that, once Ez, Hz are determined, other variables
can be calculated.

One can directly verify that Φ = (Ez, Hz) satisfies the following governed equa-
tion:

TΦ = k2
0MΦ,(2.10)

where

(2.11)

T =



− ∂
∂x

(
εx
κ2
x

∂
∂x

)
− ∂
∂y

(
εy
κ2
y

∂
∂y

)
kz
ω

[
∂
∂y

(
1
κ2
y

∂
∂x

)
− ∂
∂x

(
1
κ2
x

∂
∂y

)]

kz
ω

[
∂
∂x

(
1
κ2
y

∂
∂y

)
− ∂
∂y

(
1
κ2
x

∂
∂x

)]
− ∂
∂x

(
µx
κ2
x

∂
∂x

)
− ∂
∂y

(
µy
κ2
y

∂
∂y

)

 ,

M =

(
εz 0
0 µz

)
.(2.12)

3. Multiscale asymptotic analysis for the second order Helmholtz equa-
tion on general convex domains. As one of the main results of this section, we
will obtain multiscale asymptotic analysis formulas of eigenvalues and eigenfunctions
of the Helmholtz problem (1.1).

Formally, set

uε(x) ∼=
+∞∑
l=0

εl
n∑

α1,···,αl=1

Nα1···αl
(ξ)Dαu0(x),(3.1)

λε ∼=
+∞∑
i=0

εiλ(i)(ε).(3.2)

In contrast to the usual expression, for the sake of convenience, we use here the
following notation:

Dαv =
∂lv

∂xα1 · · · ∂xαl

, α = {α1, · · ·αl}, 〈α〉 = l,(3.3)
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αi takes the values 1, 2, . . . n.

Substituting (3.1), (3.2) into (1.1), and taking into account that ∂
∂xi
→ ∂

∂xi
+ 1

ε
∂
∂ξi
,

one can write

(3.4)

0 = Lεuε(x)− λερ(xε )uε(x)

= −
+∞∑
l=0

εl−2
n∑

α1,...,αl=1

Hα1···αl
(ξ)Dαu0(x) +

+∞∑
l=0

εl
n∑

α1,...,αl=1

b(ξ)Nα1···αl
(ξ)Dαu0(x)

−
+∞∑
s=0

εs
s∑

i=0

λ(i)
n∑

α1,...,αs−i=1

ρ(ξ)Nα1···αs−i(ξ)D
αu0(x),

where

H0(ξ) =
∂

∂ξi

(
aij(ξ)

∂N0(ξ)

∂ξj

)
,(3.5)

Hα1(ξ) =
∂

∂ξi

(
aij(ξ)

∂Nα1(ξ)

∂ξj

)
+

∂

∂ξi
(aiα1(ξ)N0(ξ)) + aα1j(ξ)

∂N0(ξ)

∂ξj
.(3.6)

For 〈α〉 = l ≥ 2

Hα1···αl
(ξ) =

∂

∂ξi

(
aij(ξ)

∂Nα1···αl
(ξ)

∂ξj

)
+

∂

∂ξi
(aiα1(ξ)Nα2···αl

(ξ))

+ aα1j(ξ)
∂Nα2···αl

(ξ)

∂ξj
+ aα1α2(ξ)Nα3···αl

(ξ).

(3.7)

In order to compare the coefficients of powers ε−2, ε−1, ε0, ε1, . . . on both sides of
(3.4) and to ensure that (3.4) is an identity equation, we assume that



H0(ξ) = 0,
Hα1

(ξ) = 0,
Hα1α2(ξ) = âα1α2 ,
Hα1α2α3(ξ) = Nα1(ξ)âα2α3 ,
· · ·
Hα1α2···αl

(ξ) = Nα1···αl−2
(ξ)âαl−1αl

, l ≥ 4.

(3.8)

Notice that âα1α2
, Nα1···αj

(ξ), αj = 1, 2, . . . n, j = 0, 1, 2, . . . , will be defined below.

Substituting (3.8) into (3.4), one obtains

(3.9)

0 =
+∞∑
l=0

εl




n∑
α1,···αl=1

Nα1,...,αl
(ξ)

∂l

∂xα1 · · · ∂xαl


− n∑

αl+1,αl+2=1

âαl+1αl+2

∂2u0(x)

∂xαl+1
∂xαl+2

+ b(ξ)u0(x)


− l∑

i=0

λ(i)
n∑

α1,···,αl−i=1

ρ(ξ)Nα1···αl−i
(ξ)Dαu0(x)


 .
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To begin with, consider the first equation of (3.8), and conclude that


∂
∂ξi

(
aij(ξ)

∂N0(ξ)
∂ξj

)
= 0 in Rn,

N0(ξ) is 1-periodic in ξ.

(3.10)

Let us remark that the equation

L1φ(ξ) ≡ ∂

∂ξi

(
aij(ξ)

∂φ(ξ)

∂ξj

)
= F (ξ) in Q,

φ(ξ) is 1-periodic in ξ

(3.11)

admits a unique solution (up to an additive constant) iff∫
Q

F (ξ)dξ = 0,

where the unit cube Q = {ξ ∈ Rn, 0 < ξj < 1, j = 1, . . . n}.
Combining (3.10) with (3.11), it is easy to see that N0(ξ) ≡ C; here set C = 1

without loss of generality.
From the second equation of (3.8), we define Nα1(ξ) in the following way:


∂
∂ξi

(
aij(ξ)

∂Nα1(ξ)
∂ξj

)
= − ∂

∂ξi
(aiα1

(ξ)) in Q,

Nα1
(ξ) = 0 on ∂Q.

(3.12)

Integrating on both sides of the third equation of (3.8) in ξ over the unit cell Q,
and taking into account that Nα1(ξ), Nα1α2(ξ) are 1-periodic functions in ξ, one can
conclude that

âα1α2 =

∫
Q

(
aα1α2

(ξ) + aα1j(ξ)
∂Nα2(ξ)

∂ξj

)
dξ.(3.13)

From (3.8), we next define Nα1α2
(ξ), . . . Nα1···αl

(ξ) in the following ways:


∂

∂ξi

(
aij(ξ)

∂Nα1α2
(ξ)

∂ξj

)
= − ∂

∂ξi
(aiα1(ξ)Nα2(ξ))

− aα1j(ξ)
∂Nα2

(ξ)

∂ξj
− aα1α2(ξ) + âα1α2 in Q,

Nα1α2(ξ) = 0 on ∂Q.

(3.14)

For 〈α〉 = l ≥ 3

(3.15)


∂

∂ξi

(
aij(ξ)

∂Nα1···αl
(ξ)

∂ξj

)
= − ∂

∂ξi
(aiα1(ξ)Nα2···αl

(ξ)) − aα1j(ξ)
∂Nα2···αl

(ξ)

∂ξj

− aα1α2(ξ)Nα3···αl
(ξ) +Nα1···αl−2

(ξ)âαl−1αl
in Q,

Nα1···αl
(ξ) = 0 on ∂Q.
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Remark 3.1. Existence and uniqueness of the solutions Nα1
(ξ), . . . , Nα1···αl

(ξ) for
problems (3.12), (3.14), and (3.15), respectively, can be easily established by induction
with respect to l due to the uniform elliptic condition (A2)–(A4), Poincaré–Friedrichs’
inequality, and Lax–Milgram’s lemma. Then they are extended to the whole Rn by
the 1-periodicity.

Remark 3.2. It is worthwhile to notice that the periodic solutions Nα1(ξ), α1 =
1, . . . n, defined in this paper, generally speaking, are different from Ñα1

(ξ) defined
in classical homogenization books (see [2, 11, 16, 18]) due to the different boundary
conditions on ∂Q. But we can prove that their homogenized matrices are the same;
see Appendix A.

Next, let us identify the coefficients of powers ε0, ε1, ε2, . . . on the both sides of
(3.9) for l = 0:

− ∂

∂xα1

(
âα1α2

∂u0(x)

∂xα2

)
+ b(ξ)u0(x) = λ(0)ρ(ξ)u0(x), a.e. ξ ∈ Rn.(3.16)

For l = 1

(3.17)

Nα1(ξ)
∂

∂xα1

{
− ∂

∂xα2

(
âα2α3

∂u0(x)

∂xα3

)
+ b(ξ)u0(x)− λ(0)ρ(ξ)u0(x)

}
− λ(1)ρ(ξ)u0(x) = 0.

From (3.16), we know

λ(1)〈ρ〉u0(x) = 0,

where 〈f〉 = 1
|Q|
∫
Q
f(ξ)dξ, |Q| denotes the Lebesgue measure of the unit cube Q.

Since 〈ρ〉 �= 0, ‖u0‖L2(Ω) = 1, then λ
(1) = 0 holds. For l = 2

(3.18)

Nα1α2(ξ)
∂2

∂xα1
∂xα2

{
− ∂
∂xα3

(
âα3α4

∂u0(x)
∂xα4

)
+ b(ξ)u0(x)− λ(0)ρ(ξ)u0(x)

}

−λ(1)ρ(ξ)Nα1(ξ)
∂u0(x)
∂xα1

− λ(2)ρ(ξ)u0(x) = 0.

Analogously, we can infer that λ(2) = 0.
The remainder shall similarly be proven, i.e., λ(i) = 0, i ≥ 3.
On the other hand, from (3.16), we know

− ∂

∂xα1

(
âα1α2

∂u0(x)

∂xα2

)
= (λ(0)ρ(ξ)− b(ξ))u0(x).

Since u0(x) �≡ 0, x ∈ Ω, then there are some points x ∈ Ω such that u0(x) �= 0, and

− 1

u0(x)

∂

∂xα1

(
âα1α2

∂u0(x)

∂xα2

)
= λ(0)ρ(ξ)− b(ξ) ≡ C.(3.19)

Integrating on the both sides of (3.19) in Q, we have

C = λ(0)〈ρ〉 − 〈b〉.(3.20)
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Therefore we can prove that (3.16) and B̂(u0) = 0 on ∂Ω are equivalent to the
following homogenized Helmholtz equation associated with problem (1.1):



L̂u0(x) ≡ − ∂

∂xi

(
âij
∂u0(x)
∂xj

)
+ 〈b〉u0(x) = λ(0)〈ρ〉u0(x) in Ω,

B̂(u0) = 0 on ∂Ω,

(3.21)

where âij is as shown in (3.13), and

B̂(v) =



v for Dirichlet’s boundary condition,

νiâij
∂v

∂xj
for Neumann’s boundary condition.

Remark 3.3. One can check that L̂ is a linear symmetric positive-definite opera-
tor; see [2, 11, 16, 18].

For an integer M ≥ 2, set

uε,Mk (x) =

M∑
l=0

εl
n∑

α1,···,αl=1

Nα1···αl
(ξ)Dαu0

k(x),(3.22)

λε,Mk ≡ λ(0)
k , k = 1, 2, . . . ,(3.23)

Lεuε,Mk (x)− λε,Mk ρ
(x
ε

)
uε,Mk (x) =

M∑
l=0

εl−2
n∑

α1,...,αl=1

Hα1···αl
(ξ)Dαu0

k(x)

+
M−2∑
l=0

εl
n∑

α1,...,αl=1

b(ξ)Nα1···αl
(ξ)Dαu0

k(x)

−
M−2∑
l=0

εl
n∑

α1,...,αl=1

λ
(0)
k ρ(ξ)Nα1···αl

(ξ)Dαu0
k(x) + ε

M−1F0(x, ε)

=
M−2∑
l=0

εl
n∑

α1···αl=1

Nα1···αl
(ξ)

∂l

∂xα1
· · · ∂xαl

[
âαl+1αl+2

∂2u0
k(x)

∂xαl+1
∂xαl+2

+ b(ξ)u0
k(x)− λ(0)

k ρ(ξ)u0
k(x)

]
+ εM−1F0(x, ε)

= εM−1F0(x, ε),

(3.24)

where F0(x, ε) is a sum of terms having the form εiψ(ξ)Dlu0
k(x), 2 ≤M , i ≥ 0, ψ(ξ)

is a bounded function, and ‖F0(x, ε)‖L2(Ω) ≤ C, C is a constant independent of ε, x.
Let Ω0 =

⋃
z∈T̂ε

ε(z + Q) ⊂ Ω as shown in Figure 3, where the index set T̂ε =
{z = (z1, . . . , zn) ∈ Zn, ε(z +Q) ⊂ Ω}, and the unit cube Q = {ξ ∈ Rn : 0 < ξj < 1,
j = 1, 2, . . . , n}.

For simplicity, we assume that ε/2 ≤ dist(∂Ω0, ∂Ω) ≤ 2ε, Ω1 = Ω \ Ω̄0,Γ
∗ =

∂Ω0 ∩ ∂Ω1 as shown in Figure 4.
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Ω 0

Fig. 3. Subdomain Ω0.

Ω 0

Ω 1
Ω

Fig. 4. Boundary layer Ω1.

Now let us define the boundary layer in the following way:


− ∂

∂xi

(
aij

(x
ε

) ∂W ε
k (x)

∂xj

)
+
(
b
(x
ε

)
− λ(0)

k ρ
(x
ε

))
W ε

k (x) = 0, x ∈ Ω1,

W ε
k (x) = u0

k(x), x ∈ ∂Ω0,

Bε(W ε
k ) = 0, x ∈ ∂Ω,

(3.25)

where (λ
(0)
k , u0

k(x)), is the kth eigenpair of the homogenized Helmholtz problem (3.21),
k = 1, 2, . . . .

Remark 3.4. It is worthwhile to notice that W ε
k (x) is independent of ε along

∂Ω0 ∩ ∂Ω1. We will prove that it is correct in some cases later.
To begin with, let us discuss the corresponding homogeneous boundary value

problem as follows:


− ∂
∂xi

(
aij(

x
ε )
∂V ε

k (x)
∂xj

)
+
(
b
(x
ε
)− λ(0)

k ρ
(x
ε
))
V ε
k (x) = 0, x ∈ Ω1,

V ε
k (x) = 0, x ∈ ∂Ω0,

Bε(V ε
k ) = 0, x ∈ ∂Ω.

(3.26)

Now we define the operator Kε : L
2(Ω1) → L2(Ω1), set Kεf

ε = vε, where vε is the
solution of the following problem:


Qε(v

ε) ≡ − ∂

∂xi

(
aij

(x
ε

) ∂vε
∂xj

)
+ b
(x
ε

)
vε = ρ

(x
ε

)
fε in Ω1,

vε(x) = 0 on ∂Ω0,

Bε(vε) = 0 on ∂Ω.

(3.27)

By virtue of conditions (A2)–(A3), we know that Qε : H
1(Ω1, ∂Ω0) → L2(Ω1) is a

symmetric and positive-definite operator; therefore the inverse operator Kε = Q−1
ε :

L2(Ω1) → L2(Ω1) is a bounded self-adjoint compact operator due to the compact
imbedding H1(Ω1)→ L2(Ω1). σd(Kε) denotes the set of discrete spectra of operator
Kε.

For simplicity, in this section we assume that

(λ
(0)
k )−1 �∈ σd(Kε).(3.28)
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Remark 3.5. We can prove that the first eigenvalue (λ
(0)
1 )−1 �∈ σd(Kε); see

Appendix B.
It follows from Fredholm’s alternative theorem that (3.26) admits a unique solu-

tion V ε
k (x) = 0. Therefore (3.25) has one and only one solution.

For M ≥ 2, set
(3.29)

Uε,M
k (x) =



uε,Mk (x) = u0

k(x) +

M∑
l=1

εl
n∑

α1,...,αl=1

Nα1···αl
(ξ)Dαu0

k(x), x ∈ Ω0,

W ε
k (x), x ∈ Ω1 = Ω \ Ω0,

where Nα1···αl
(ξ) is as defined in (3.12), (3.14), and (3.15).

Since uε,Mk (x)|∂Ω0∩∂Ω1 = u0
k(x)|∂Ω0∩∂Ω1

=W ε
k (x)|∂Ω0∩∂Ω1

, then Uε,M
k (x) ∈ H1(Ω)

holds. But, generally speaking, [
∂Uε,M

k

∂n ]|∂Ω0∩∂Ω1 �= 0. To this end, we have to do it
through some well-known regularizations.

At first, let us introduce a set of open covering {Vl}3l=1 of the bounded closed set
Ω ⊂ Rn:

V1 =

{
x ∈ Ω0 : dist(x, ∂Ω0) >

δ

2

}
,

V2 =

{
x ∈ (Rn \ Ω0) : dist(x, ∂Ω0) >

δ

2
, dist(x, ∂Ω) < δ

}
,

V3 = {x ∈ Ω : dist(x, ∂Ω0) < δ} ,

(3.30)

Ω ⊂ ∪3
l=1Vl.

Using the partition of unity theorem, there exists a set of functions {ψl(x)}3l=1

such that
(1) ψl(x) ∈ C∞

0 (Vl);
(2)

∑3
l=1 ψl(x) ≡ 1, ∀x ∈ Ω.

Set Ω′′
0 = Ω0 \ V3, Ω

′′
1 = Ω1 \ V3, and choose a sufficiently small δ > 0 such that

δ ≤ C · εM , M ≥ 2.
Define

Ũε,M
k (x) = ψ1(x) · Uε,M

k (x) + ψ2(x) · Uε,M
k (x) + Jδ ∗ (ψ3(x) · Uε,M

k (x)),(3.31)

where the regularization Jδ ∗ u is defined in section 2.17 of [1].
One can directly verify that Ũε,M

k (x) ∈ H1(Ω) and [
∂Ũε,M

k

∂n ]|∂Ω0∩∂Ω1 = 0.
Lemma 3.1 (see [11, 18]). Let A: H → H be a linear self-adjoint compact operator

in a Hilbert space H. Let µ ∈ R1, and let u ∈ H be such that ‖u‖H = 1 and

‖Au− µu‖H ≤ β, β = const > 0.(3.32)

Then there exists an eigenvalue µi of operator A such that

|µi − µ| ≤ β.(3.33)

Moreover, for any d > β there exists a vector ū ∈ H such that

‖u− ū‖H ≤ 2βd−1, ‖ū‖H = 1,(3.34)
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and ū(x) is a linear combination of the eigenvectors of operator A corresponding to
the eigenvalues within the interval [µ− d, µ+ d].

Theorem 3.1. Let (λεk, u
ε
k) be the kth eigenpair of the original Helmholtz problem

(1.1), set λε0 = 0, and let Uε,M
k , Ũε,M

k , λε,Mk be defined in the formulas (3.29), (3.31),
and (3.23), respectively. If aij(

x
ε ) ∈ C(Ω), ∇ξaij(ξ) ∈ L∞(Ω), then it holds that

|λεk − λε,Mk | ≤ C1(k)ε
M−1, k = 1, 2, . . . .(3.35)

Moreover, if the multiplicity of the eigenvalues λ
(0)
k is equal to t, i.e.,

λ
(0)
k−1 < λ

(0)
k = · · · = λ

(0)
k+t−1 < λ

(0)
k+t, λ

(0)
0 = 0,

then

‖Uε,M
k − ūεk‖L2(Ω) ≤ C2(k)ε

M−1, M ≥ 2,(3.36)

where ūεk is a linear combination of the eigenfunctions of problem (1.1) corresponding
to the eigenvalues λεk · · ·λεk+t−1.

In particular, if λ
(0)
k is a simple eigenvalue, then

‖Uε,M
k − uεk‖L2(Ω) ≤ C2(k)ε

M−1.(3.37)

Proof. To begin, consider the auxiliary problem as follows:{Lεwε(x) = fε(x) in Ω,
wε(x) = 0 on ∂Ω.

(3.38)

If fε(x) ∈ L2(Ω), it follows from (A2)–(A4), Poincaré–Friedrichs’ inequality, and Lax–
Milgram’s lemma that there exists a unique weak solution of problem (3.38). In other
words, Lε : H1

0 (Ω)→ L2(Ω) is a homeomorphism mapping.
Set Nε = L−1

ε , one can check that Nε : L
2(Ω) → L2(Ω) is a uniform bounded

linear operator in ε, i.e., ‖Nε‖L2(Ω)→L2(Ω) ≤ C, where C is a positive constant inde-
pendent of ε.

If x ∈ Ω0, from (3.24), then it holds in the sense of distributions that

Lεuε,Mk (x)− λ(0)
k ρ

(x
ε

)
uε,Mk (x) = εM−1F0(x, ε).(3.39)

If x ∈ Ω1, from (3.25), we have

LεW ε
k (x)− λ(0)

k ρ
(x
ε

)
W ε

k (x) = 0.(3.40)

From (3.39), (3.40), and (3.31), we obtain the following equation which holds in
the sense of distributions:


LεŨε,M

k (x)− λε,Mk ρ
(x
ε
)
Ũε,M
k (x) = F̃0(x, ε), x ∈ Ω,

BεŨε,M
k (x) = 0, x ∈ ∂Ω.

(3.41)

For any v(x) ∈ L2(Ω), we obtain

(3.42)

(F̃0, v)Ω =
(
LεŨε,M

k − λε,Mk ρ
(x
ε

)
Ũε,M
k , v

)
Ω

=
(
Lεuε,Mk − λε,Mk ρ

(x
ε

)
uε,Mk , v

)
Ω′′

0

+
(
LεW ε

k − λε,Mk ρ
(x
ε

)
W ε

k , v
)

Ω′′
1

+
(
LεŨε,M

k − λε,Mk ρ
(x
ε
)
Ũε,M
k , v

)
V3∩Ω0

+
(
LεŨε,M

k − λε,Mk ρ
(x
ε
)
Ũε,M
k , v

)
V3∩Ω1

.
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On the other hand, we know that

(3.43a)(
LεŨε,M

k − λε,Mk ρ
(x
ε

)
Ũε,M
k , v

)
V3∩Ω0

=
(
Lεuε,Mk − λε,Mk ρ

(x
ε
)
uε,Mk , v

)
V3∩Ω0

+
(
LεΛ(x)− λε,Mk ρ

(x
ε
)
Λ(x), v

)
V3∩Ω0

,

where Λ(x) = ψ3(x)u
ε,M
k (x)− Jδ ∗ (ψ3(x)u

ε,M
k (x)).

Similarly, we have

(3.43b)(
LεŨε,M

k − λε,Mk ρ
(x
ε
)
Ũε,M
k , v

)
V3∩Ω1

=
(
LεW ε

k − λε,Mk ρ
(x
ε
)
W ε

k , v
)
V3∩Ω1

+
(
LεΘ(x)− λε,Mk ρ

(x
ε
)
Θ(x), v

)
V3∩Ω1

,

where Θ(x) = ψ3(x)W
ε
k (x)− Jδ ∗ (ψ3(x)W

ε
k (x)).

Assume that Ω is a bounded convex Lipschitz domain and aij(
x
ε ) ∈ C(Ω),

∇ξaij(ξ) ∈ L∞(Ω). By virtue of a priori estimates of PDEs (see [9, 10, 12]), we can
prove that uεk(x) ∈ H2(Ω), uε,Mk (x) ∈ H2(Ω0), W

ε(x) ∈W 2,p(Ω1), 1 < p ≤ p0 < +∞;
also see Appendix C.

Using Theorem 3.16 of [1], we know that

‖Λ‖2,V3∩Ω0
≤ δ, ‖Θ‖2,p,V3∩Ω1

≤ δ.(3.44)

From (3.42), (3.43a), (3.43b), (3.44), (3.39), and (3.40), one can obtain

(3.45a)

‖F̃0‖20,Ω = (F̃0, F̃0)Ω

≤ C
{
εM−1‖F̃0‖0,Ω0

+ ε−1 · ‖Λ‖2,V3∩Ω0
· ‖F̃0‖0,V3∩Ω0

+ ε−1 · ‖Θ‖2,p,V3∩Ω1
· ‖F̃0‖0,p′,V3∩Ω1

}

≤ C
{
εM−1‖F̃0‖0,Ω0

+ ε−1 · δ · ‖F̃0‖0,Ω0
+ ε−1 · δ · ‖F̃0‖0,p′,Ω1

}

≤ C
{
εM−1‖F̃0‖0,Ω0 + ε

M−1‖F̃0‖0,p′,Ω1

}
,

where p′ = p
p−1 > 2. Let p

′ = 2(1− θ) + θp̃, 2 < p̃ < +∞, 0 ≤ θ ≤ 1.
Using the interpolation theorem (see Theorem 1.3.7 of [19]) we know that

‖F̃0‖0,p′,Ω1 ≤ C‖F̃0‖1−θ
0,Ω1
· ‖F̃0‖θ0,p̃,Ω1

.(3.45b)

If we assume F̃0 ∈ Lp̃(Ω1), p̃ >> 2, then we have 1− θ ≈ 1. For convenience, we
say that

‖F̃0‖0,p′,Ω1 ≤ C · ‖F̃0‖0,Ω1 .(3.45c)

Combining (3.45c) with (3.45a), one obtains

‖F̃0‖0,Ω ≤ C · εM−1.(3.46)
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From (3.41), we have

Ũε,M
k (x)− λε,Mk ρ

(x
ε

)
Nε(Ũ

ε,M
k ) = Nε(F̃0(x, ε)).

Set u = (‖Ũε,M
k ‖0,Ω)−1Ũε,M

k , A = Nε, λ = λε,Mk ≡ λ(0)
k , β = −‖Nε(F̃0)‖0,Ω(‖Ũε,M

k ‖0,Ω)−1,
H = L2(Ω).

It follows from Lemma 3.1 that there exists an eigenvalue (λεn(k))
−1 of operator

Nε such that

|(λε,Mk )−1 − (λεn(k))
−1| = |(λ(0)

k )−1 − (λεn(k))
−1| ≤ CεM−1, M ≥ 2.

In accordance with the proof procedure of Theorem 2.1 in section 2.1, Chapter III of

[18] (also see [11]), we know that λεk → λ
(0)
k , ε → 0. Hence, we can conclude that

there is a small neighborhood of the point λ
(0)
k which contains a eigenvalue λεk such

that λεn(k) = λεk. Therefore

|λεk − λε,Mk | ≤ C1(k)ε
M−1.

Using Lemma 3.1 again, one obtains

‖Ũε,M
k − ūεk‖0,Ω ≤ C2(k)ε

M−1.

Especially if the eigenvalue λ
(0)
k of problem (3.21) is simple, then one can choose

ūεk = c0u
ε
k, c0 = const, such that

‖Ũε,M
k − uεk‖0,Ω ≤ C2(k)ε

M−1.

By using Theorem 3.16 of [1] again, it is easy to prove that

‖Ũε,M
k − Uε,M

k ‖0,Ω ≤ δ ≤ C · εM .
The proof of Theorem 3.1 is complete.

Remark 3.6. One can directly verify that ‖Uε,M
k −ūεk‖1,Ω ≤ C ·ε

(M−1)
2 . Therefore,

if λ
(0)
k is simple, then ‖uεk −W ε

k‖0,Ω1
≤ C|uεk − u0

k|1/2,∂Ω0∩∂Ω1
≤ C‖Uε,M

k − uεk‖1,Ω ≤
C · ε (M−1)

2 on the basis of the trace theorem.
Next let us give some regularity results about W ε

k (x), which is of great use for
error estimates of numerical computation.

Theorem 3.2. Let W ε
k (x) be the weak solution of problem (3.25). If aij(

x
ε ), b(

x
ε ),

ρ(xε ) satisfy conditions (A2)–(A4), (λ
(0)
k )−1 �∈ σd(Kε), then it holds that

‖W ε
k‖1,Ω1 ≤ C‖u0

k‖1,Ω, k = 1, 2, . . . ,(3.47)

where C is independent of ε,W ε
k , u

0
k.

The proof of Theorem 3.2 refers to section 3, Chapter I of [2].
Theorem 3.3. Let Ω1 = Ω \ Ω0 ⊂ R2, and let W ε(x) be the weak solution of

problem (3.25). For the sake of convenience, we do omit the subscript k. Under the
hypotheses of Theorem 3.2, if aij(

x
ε ) ∈ C(Ω), ∇ξaij(ξ) ∈ L∞(Ω), then there exists

1 < p0 < +∞ such that

W ε(x) ∈W 2,p(Ω1), 1 < p ≤ p0,(3.48)

‖W ε‖2,p,Ω1 ≤ Cε−2‖u0‖2,p,Ω.(3.49)

The proof of Theorem 3.3 refers to Appendix C.
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4. Finite element computations of periodic solutions Nα(ξ) and their
related problems.

4.1. Finite element computations of periodic solutions Nα(ξ). For sim-
plicity, we discuss only two-dimensional (2-D) problems without loss of generality.

Let J h0 = {K} be a family of regular triangulations of the square Q, h0 =
maxK{hK}. Define a piecewise linear finite element space

Vh0 = {v ∈ C(Q̄) : v|K ∈ P1(K), v|∂Q = 0} ⊂ H1
0 (Q).(4.1)

Proposition 4.1. Let Nα1···αl
(ξ), αj = 1, 2, . . . , n, j = 1, . . . , l, be the weak

solutions of problems (3.12), (3.14), and (3.15), respectively, and Nh0
α1···αl

(ξ) be the
corresponding finite element solutions. If Nα1···αj

(ξ) ∈ H2(Q), j = 1, 2, . . . , l, then it
holds that

‖Nα1···αl
−Nh0

α1···αl
‖1,Q ≤ Ch0


 l∑

j=1

‖Nα1···αj
‖2,Q


 ,(4.2)

where C > 0 is independent of h0, ε,Nα1···αj
, j = 1, . . . , l.

4.2. Perturbation bounds for eigenvalues and eigenfunctions of the
modified homogenized Helmholtz equation. In practice, we need to solve the
following modified homogenized Helmholtz equation associated with (3.21):


L̂h0 ũ

0(x)
def≡ − ∂

∂xi

(
âh0
ij

∂ũ0(x)

∂xj

)
+ 〈b〉ũ0(x) = λ̃(0)〈ρ〉ũ0(x) in Ω,

B̂h0
(ũ0) = 0 on ∂Ω,

(4.3)

where

âh0
ij =

∫
Q

(
aij(ξ) + aik(ξ)

∂Nh0
j (ξ)

∂ξk

)
dξ.(4.4)

Nh0
j (ξ) are the finite element approximate solution of Nj(ξ) defined in (3.12).

B̂h0
(v) =



v for Dirichlet’s boundary condition,

νiâ
h0
ij
∂v
∂xj

for Neumann’s boundary condition.
(4.5)

One can verify the following.
Proposition 4.2. The partial differential operator L̂h0

defined by (4.3) satisfies
the following properties:

(1) âh0
ij = âh0

ji ,(4.6)

(2) µ̄1ηiηi ≤ âh0
ij ηiηj ≤ µ̄2ηiηi ∀(η1 · · · ηn) ∈ Rn,(4.7)

where µ̄1, µ̄2 > 0 are constants independent of the mesh size h0.
Next we will precisely analyze the influence on the eigenvalues and the eigenfunc-

tions because of the perturbation of the coefficients arising from computing numeri-
cally Nα1(ξ), α1 = 1, 2, . . . , n.
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Theorem 4.1. Suppose that (λ
(0)
k , u0

k) and (λ̃
(0)
k , ũ0

k) are the kth eigenpairs of
problems (3.21) and (4.3), respectively. Then it holds that

|λ̃(0)
k − λ(0)

k | ≤ Ckh
2
0‖Ni‖22,Q.(4.8)

Moreover, if the multiplicity of the eigenvalue λ
(0)
k is equal to t, i.e.,

λ
(0)
k−1 < λ

(0)
k = · · · = λ

(0)
k+t−1 < λ

(0)
k+t, λ

(0)
0 = 0,

then

‖u0
k − ū0

k‖L2(Ω) ≤ Ckh
2
0‖Ni‖22,Q,(4.9)

where ū0
k is a linear combination of eigenfunctions of problem (4.3) corresponding to

the eigenvalues λ̃
(0)
k , . . . , λ̃

(0)
k+t−1.

For the proof of Theorem 4.1, please refer to Appendix D.
Corollary 4.1. Under the assumptions of Theorem 4.1, it then holds that

‖u0
k − ū0

k‖1,Ω ≤ Ckh0‖Nj‖2,Q.(4.10)

By virtue of interior regularity estimates of PDEs, one can directly prove the
following.

Theorem 4.2. Suppose that (λ
(0)
k , u

(0)
k (x)), (λ̃

(0)
k , ũ

(0)
k (x)) are the kth eigenpairs

of (3.21) and (4.3), respectively, k = 1, 2, . . . , ‖u0
k‖0,Ω = 1, ‖ũ0

k‖0,Ω = 1, Ω0 as shown
in Figure 3, and Ω0 ⊂⊂ Ω′ ⊂⊂ Ω. If u0(x) ∈ HM+2(Ω′), then it holds that

‖u0
k(x)− ũ0

k(x)‖s,Ω0
≤ Ch2

0‖Ni‖22,Q‖u0‖M+2,Ω′ ,(4.11)

where s = 0, 1, . . . ,M , k = 1, 2, . . . .

5. Solve approximately the homogenized Helmholtz equation and the
boundary layer.

5.1. Finite element computation of the homogenized Helmholtz equa-
tion. For the sake of convenience, here we numerically solve the homogenized Helm-
holtz equation with the Dirichlet’s boundary conditions over the whole domain Ω in
a coarse mesh, and we assume that 〈b〉 ≡ 0, 〈ρ〉 ≡ 1.

For simplicity, suppose that Ω ⊂ R2 is a bounded smooth domain. Let Jh = {e}
be a family of regular subdivisions of Ω, h = maxe he, and satisfying the following
properties:

(F1) The elements are uniform rectangles in the interior domain Ω0 ⊂⊂ Ω.
(F2) The elements are regular triangles in region Ω1 = Ω \ Ω0, and the elements

are (curved) triangles near the boundary ∂Ω.
(F3) Any face of any element e1 is either a subset of the boundary ∂Ω or a face

of another element e2 in the subdivision.
Define a finite element space, r ≥ 1,

Sh
0 (Ω) = {v ∈ C(Ω) : v|e ∈ P r(e), v|∂Ω = 0} ⊂ H1

0 (Ω),(5.1)

where

P r =

{
Qr, e is a rectangle,
Pr, e is a triangle.
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For simplicity, we give only the error estimates for the first eigenvalue problem
without loss of generality.

The discrete variational form for the modified Helmholtz equation (4.3) is

A(ũ0
1,h, vh) = λ̃

(0)
1,h(ũ

0
1,h, vh) ∀vh ∈ Sh

0 (Ω),(5.2)

where the bilinear form

A(u, v) =

∫
Ω

âh0
ij

∂u

∂xj

∂v

∂xi
dx.(5.3)

At first, let us introduce some notation. Set ‖w‖2A = A(w,w), where A(·, ·) is
as stated in (5.3). Define a Ritz–Galerkin projection operator Rh : H

1
0 (Ω) → Sh

0 (Ω)
such that

A(u−Rhu, vh) = 0, u ∈ H1
0 (Ω), ∀vh ∈ Sh

0 (Ω).(5.4)

Theorem 5.1. Suppose that (λ̃
(0)
1 , ũ0

1) and (λ̃
(0)
1,h, ũ

0
1,h) are the first eigenpairs of

problems (4.3), (5.2), respectively; it then holds that

0 ≤ A(w,w)

(w,w)
− λ̃0

1 ≤
‖w − ũ0

1‖2A
(w,w)

∀w ∈ H1
0 (Ω),(5.5)

0 < λ̃
(0)
1 ≤ A(ũ0

1,h, ũ
0
1,h)

(ũ0
1,h, ũ

0
1,h)

= λ̃
(0)
1,h ≤

A(v, v)

(v, v)
∀v ∈ Sh

0 (Ω),(5.6)

and

0 ≤ λ̃(0)
1,h − λ̃(0)

1 ≤ A(Rhũ
0
1, Rhũ

0
1)

(Rhũ0
1, Rhũ0

1)
− λ̃(0)

1 ≤ ‖Rhũ
0
1 − ũ0

1‖2A
(Rhũ

0
1, Rhũ

0
1)
.(5.7)

Proof. It is easy to see that (5.6) is true, so let us turn to the proof of (5.5). One
can directly check that

‖w‖2A = λ̃
(0)
1 (w, ũ0

1)
2 + ‖w − (w, ũ0

1)ũ
0
1‖2A.(5.8)

It follows from (5.8) that

λ̃
(0)
1 = min

w∈H1
0 (Ω), w =0

‖w‖2A
‖w‖20

≤ ‖w‖
2
A

‖w‖20
≤ λ̃(0)

1 +
‖w − (w, ũ0

1)ũ
0
1‖2A

‖w‖20
.(5.9)

On the other hand, one can show that

A(w − (w, ũ0
1)ũ

0
1, αũ

0
1) = 0 ∀α ∈ R.

Hence

‖w − ũ0
1‖2A = ‖w − (w, ũ0

1)ũ
0
1‖2A + ‖(w, ũ0

1)ũ
0
1 − ũ0

1‖2A
≥ ‖w − (w, ũ0

1)ũ
0
1‖2A.

From (5.9), we have

0 ≤ A(w,w)

(w,w)
− λ̃(0)

1 ≤ ‖w − (w, ũ
0
1)ũ

0
1‖2A

‖w‖20
≤ ‖w − ũ

0
1‖2A

‖w‖20
.
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Setting w = Rhũ
0
1 in (5.5) and using (5.6), one can obtain

0 ≤ λ̃(0)
1,h − λ̃(0)

1 ≤ ‖Rhũ
0
1 − ũ0

1‖2A
(Rhũ

0
1, Rhũ

0
1)
.

The proof of Theorem 5.1 is complete.

Theorem 5.2. Let (λ̃
(0)
1 , ũ0

1) and (λ̃
(0)
1,h, ũ

0
1,h) be the first eigenpairs of problems

(4.3) and (5.2), respectively. If ũ0
1 ∈ Hr+1(Ω), Sh

0 (Ω) as indicated in (5.1), then it
holds that

0 ≤ λ̃(0)
1,h − λ̃(0)

1 ≤ Ch2r.(5.10)

Proof. It is well known that

‖Rhũ
0
1 − ũ0

1‖0 ≤ Ch2‖ũ0
1‖2,

‖Rhũ
0
1 − ũ0

1‖2A ≤ Ch2r‖ũ0
1‖2r+1.

Choosing a sufficiently small h > 0 such that

‖Rhũ
0
1‖0 ≥ ‖ũ0

1‖0 − Ch2‖ũ0
1‖2 ≥

1

2
,

it follows from (5.7) that

0 ≤ λ̃(0)
1,h − λ̃(0)

1 ≤ C · h2r‖ũ0
1‖2r+1.

Now let us give some superconvergence estimates for the first eigenfunctions. For

simplicity, set λ = λ̃
(0)
1 , λh = λ̃

(0)
1,h, uh = ũ0

1,h; Hλ is the eigenspace of the operator L̂h0

with respect to eigenvalue λ = λ̃
(0)
1 . Define a projection operator P : L2(Ω) → Hλ

such that

Pu =
l∑

i=1

(u, ui)ui,(5.11)

where ui, i = 1, . . . , l, form a set of orthonormal basis of Hλ.
Let K be the inverse operator of L̂h0 ; then K is a bounded self-adjoint compact

operator due to Proposition 4.2.
Lemma 5.1 (see [15]). Let Rh : H

1
0 (Ω)→ Sh

0 (Ω) be the Ritz–Galerkin projection
operator, for q0 > 2, 1 < q < q0; then it holds that

‖λhRhK − λK‖∞ → 0 as h→ 0,(5.12)

‖RhK‖∞ ≤ C.(5.13)

Lemma 5.2 (see [15]). Let u = Puh ∈ Hλ ⊂W r+1,q(Ω), q > 2; then it holds that

‖u‖r+1,q ≤ C,(5.14)

‖RhK(I −Rh)u‖∞ ≤ Chr+2 (r ≥ 2).(5.15)
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Theorem 5.3. Let (λ,Hλ) be the solution of problem (4.3) and let (λh, Vλ) be
the solution of problem (5.2), Vλ ⊂ Sh

0 (Ω); if Hλ ⊂ W r+1,q ∩H1
0 (Ω), q > 2, for any

given uh ∈ Vλ, then there exists u ∈ Hλ such that

‖Rhu− uh‖0,∞ ≤ Chr+2 (r ≥ 2).(5.16)

Proof. Set u = Puh =
∑l

j=1(uh, ui)ui, ū = Rhu−uh−P (Rhu−uh). It is obvious
that (ū, u) = 0 for any u ∈ Hλ, thus ū ∈ H⊥

λ .
It follows from Fredholm’s alternative theorem that the operator (I − λK) has a

bounded inverse operator. Thus there exists a constant δ0 > 0 such that

δ0‖ū‖0,∞ ≤ ‖(I − λK)ū‖0,∞ = ‖(I − λK)(Rhu− uh)‖0,∞
= ‖λRhK(I −Rh)u+ (λhRhK − λK)(Rhu− uh)

+ (λ− λh)RhKRhu‖0,∞ (since uh = λhRhKuh, u = λKu)

≤ λ‖RhK(I −Rh)u‖0,∞
+ ‖λhRhK − λK‖∞‖Rhu− uh‖0,∞ + Ch2r.

(5.17)

Since Pu− Puh = 0,

‖P (Rhu− uh)‖0,∞ = ‖P (Rhu− u)‖0,∞ =

∥∥∥∥∥
l∑

j=1

(Rhu− u, uj)uj
∥∥∥∥∥

0,∞

≤
l∑

j=1

|(Rhu− u, uj)|‖uj‖0,∞ =

l∑
j=1

1

λ
|A(Rhu− u, uj − uIj )|‖uj‖0,∞

≤ Ch2r
l∑

j=1

‖u‖r+1‖uj‖r+1‖uj‖0,∞ ≤ Ch2r‖u‖r+1.

Using the triangle inequality, we have

‖Rhu− uh‖0,∞ ≤ ‖ū‖0,∞ + ‖P (Rhu− uh)‖0,∞ ≤ ‖ū‖0,∞ + Ch2r.(5.18)

Substituting (5.17) into (5.18), one obtains

(1− 1
δ0
‖λhRhK − λK‖∞)‖Rhu− uh‖0,∞

≤ 1
δ0
‖RhK(I −Rh)u‖0,∞ + Ch2r‖u‖r+1.

Using Lemmas 5.1 and 5.2 and choosing a sufficiently small h > 0, we have

1

2
‖Rhu− uh‖0,∞ ≤ Chr+2‖u‖r+1,q.

Now we apply the above superconvergence results to implement the postprocess-
ing technique of Dαũ0

k(x), where ũ
0
k is the kth eigenfunction associated with problem

(4.3), k = 1, 2, . . . .
Using the nodal values of the bi-r-th finite element solution, we construct a bi-

2r-th interpolation function at a new larger element with respect to a coarse mesh,
which is called as the interpolated FEM refer to [15], as shown in Figures 5 and 6.

Denote by I(2r)
2h the bi-2r-th order interpolation operator.
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Fig. 5. Triangular mesh.
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Fig. 6. Rectangular mesh.

Lemma 5.3 (see [15]). Let Ih : H1(Ω)→ Sh
0 (Ω) be a usual Lagrange interpolation

operator; then the interpolation operators Ih and I(2r)
2h satisfy the following properties:

‖I(2r)
2h u‖m,p ≤ C‖u‖m,p, 1 ≤ p ≤ ∞, m = 0, 1, ∀u ∈ Sh(Ω0),(5.19)

where C > 0 does depend on r, p but does not depend on u, h;

(I(2r)
2h )2 = I(2r)

2h , I(2r)
2h Ih = I(2r)

2h , IhI(2r)
2h = Ih,(5.20)

∀Pi ∈ Th
0 , I(2r)

2h u(Pi) = Ihu(Pi) = u(Pi), u ∈ C(Ω̄0),(5.21)

where Th
0 is the set of nodal points of Jh restricted to Ω0;

‖u− I(2r)
2h u‖m,p,E ≤ Ch2r+1−m‖u‖2r+1,p,E(5.22)

∀u ∈W 2r+1,p(E), m = 0, 1, 1 ≤ p ≤ +∞, ∀E ∈ J2h|Ω0 .

Theorem 5.4. Assume that (λ̃
(0)
k , ũ0

k(x)) is the kth eigenpair of problem (4.3)

and (λ̃
(0)
k,h, ũ

0
k,h(x)) is its finite element approximate solution in Sh

0 (Ω), and let Ω0 ⊂⊂
Ω′ ⊂⊂ Ω and let Ω′ be covered by uniform rectangular meshes; then it holds that

‖ũ0
k(x)− I(2r)

2h ũ0
k,h(x)‖0,Ω0 + h‖ũ0

k(x)− I(2r)
2h ũ0

k,h(x)‖1,Ω0 ≤ Chr+2,(5.23)

where C > 0 is independent of h, h0, r ≥ 2, k = 1, 2, . . . .
Proof. It follows from Lemma 5.3 that

‖I(2r)
2h ũ0

k − I(2r)
2h ũ0

k,h‖1,Ω0 = ‖I(2r)
2h (Ihũ0

k − ũ0
k,h)‖1,Ω0

≤ C‖Ihũ0
k − ũ0

k,h‖1,Ω0
≤ Chr+1‖ũ0

k‖r+2,Ω0

+C‖ũ0
k − ũ0

k,h‖−s,Ω′ ≤ Chr+1‖ũ0
k‖r+2,Ω′ .

Thus

‖ũ0
k−I(2r)

2h ũ0
k,h‖1,Ω0 ≤ ‖ũ0

k−I(2r)
2h ũ0

k‖1,Ω0+‖I(2r)
2h ũ0

k−I(2r)
2h ũ0

k,h‖1,Ω0 ≤ Chr+1‖ũ0
k‖r+2,Ω′ .

The remainder can similarly be proved.
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5.2. Finite element computation of the boundary layer. In practice, we
need to solve the modified boundary layer as follows:

(5.24)

LεW̃ ε

k (x) ≡ −
∂

∂xi

(
aij

(x
ε

) ∂W̃ ε
k

∂xj

)
+
(
b
(x
ε

)
− λ̃(0)

k,hρ
(x
ε

))
W̃ ε

k (x) = 0, x ∈ Ω1,

BεW̃ ε
k (x) = 0, x ∈ ∂Ω,

W̃ ε
k (x) = ũ0

k,h(x), x ∈ ∂Ω0,

where (λ̃
(0)
k,h, ũ

0
k,h(x)) is the finite element solution associated with (λ̃

(0)
k , ũ0

k(x)) in

Sh
0 (Ω).
For the sake of simplicity, here assume that Bε ≡ I is a Dirichlet boundary

operator.
Let Fh1 = {e} be a family of regular triangulations of subdomain Ω1 = Ω \Ω0 as

shown in Figure 4. Let h1 = maxe∈Fh1{he}, h1

ε2 << 1.
Define a piecewise linear finite element space as

Sε
h1
(Ω1) = {v ∈ C(Ω1) : v|e ∈ P1(e), v|∂Ω∪∂Ω0 = 0}.(5.25)

From (3.25) and (5.24), one can easily check that


− ∂

∂xi

(
aij

(x
ε

) ∂(W ε
k − W̃ ε

k )

∂xj

)
+
(
b
(x
ε

)
− λ̃(0)

k ρ
(x
ε

))
(W ε

k − W̃ ε
k )(x)

= ρ
(x
ε

)(
λ

(0)
k − λ̃(0)

k,h

)
W̃ ε

k , x ∈ Ω1,

W ε
k − W̃ ε

k (x) = 0, x ∈ ∂Ω,

W ε
k − W̃ ε

k (x) = u0
k(x)− ũ0

k,h(x), x ∈ ∂Ω0.

(5.26)

Theorem 5.5. Let W ε
k (x), W̃

ε
k (x) be the weak solutions of problems (3.25)

and (5.24), respectively, and let W̃ ε
k,h1

(x) be the finite element solution of W̃ ε
k (x)

in Sε
h1
(Ω1); then it holds that

‖W ε
k (x)− W̃ ε

k,h1
(x)‖1,p,Ω1 ≤ C

{(
h1

ε2

)
+ h0 + h

r

}
,(5.27)

where C is a constant independent of ε, h0, h, h1, 1 < p ≤ p0 < +∞, and h0, h, h1

are the mesh sizes associated with Q, Ω, Ω1, respectively.
Proof. It follows from Theorem 3.3 and Theorem 5.2 that

‖W̃ ε
k (x)− W̃ ε

k,h1
(x)‖1,p,Ω1 ≤ Ch1‖W̃ ε

k‖2,p,Ω1

≤ C · h1

ε2
‖ũ0

k,h‖2,p,Ω ≤ C · h1

ε2
‖ũ0

k‖2,p,Ω1
.

(5.28)

On the other hand, it follows from (5.26), Theorem 4.1, Corollary 4.1, Theorem 5.2,
and Theorem 5.3 that

‖W ε
k (x)− W̃ ε

k (x)‖1,p,Ω1
≤ C{‖u0

k(x)− ũ0
k,h(x)‖1,p,Ω1

+|λ(0)
k − λ̃(0)

k,h|‖W̃ ε
k (x)‖0,p,Ω1} ≤ C{hr + h0}.

(5.29)

Combining (5.28) with (5.29) and using the triangle inequality, one can easily
obtain (5.27).
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6. Multiscale finite element algorithm and the postprocessing tech-
nique. To begin with, let us introduce the first order difference quotient as follows:

δxi
ũ0
k,h(Np) =

1

τ(Np)

∑
e∈σ(Np)

[
∂ũ0

k,h

∂xi

]
e

(Np),(6.1)

where σ(Np) is the set of elements with node Np, τ(Np) is the number of elements

of σ(Np), ũ
0
k,h(x) is the finite element solution of ũ

0
k(x) in S

h
0 (Ω), and [

∂ũ0
k,h

∂xi
]e(Np) is

the value of the derivative
∂ũ0

k,h

∂xi
at node Np relative to element e.

Analogously, define any higher order difference quotients as follows:

δlxα1 ···xαl
ũ0
k,h(Np) =

1

τ(Np)

∑
e∈σ(Np)


 d∑
j=1

δl−1
xα1

···xαl−1
ũ0
k,h(Pj)

∂ψj

∂xαl



e

(Np),(6.2)

where d is the number of nodes in e, Pj are the nodes of e, ψj(x) are Lagrange’s shape
functions, j = 1, 2, . . . , d.

Now let us give the multiscale finite element computing scheme:

(6.3)

Uε,h0,h
k,M,h1

(Np) =



ũ0
k,h(Np) +

M∑
l=1

εl
∑
〈α〉=l

Nh0
α (ξ(Np))δ

l
xα1

···xαl
ũ0
k,h(Np), Np ∈ Ω0,

W ε
k,h1

(Np), Np ∈ Ω1,

where the integer M ≥ 2 and h0, h, h1 are the mesh parameters of Q, Ω, Ω1, respec-
tively.

The postprocessing computing scheme is presented for obtaining high accuracy:

(6.4)

PUε,h0,h
k,M,h1

(x) =



I(2r)

2h ũ0
k,h(x) +

M∑
l=1

εl
∑
〈α〉=l

Nh0
α1···αl

(ξ)δlxα1 ···xαl
I(2r)

2h ũ0
k,h(x), x ∈ Ω0,

W̃ ε
k,h1

(x), x ∈ Ω1.

Finally, we will give the total error estimations.

Theorem 6.1. Let Ω be either a bounded smooth or a convex polygonal domain.
With all assumptions as indicated above, it then holds that

‖uεk(x)− PUε,h0,h
k,M,h1

(x)‖0,Ω0 ≤ C(εM−1 + h2
0 + h

2r−M ),(6.5)

‖uεk(x)− W̃ ε
k,h1

(x)‖0,p,Ω1
≤ C

{
εM−1 + h2

0 + h+

(
h1

ε2

)}
,(6.6)

where C > 0 is a constant independent of ε, h0, h, h1; Ω0 ⊂⊂ Ω is the union of
periodic cells, Ω1 = Ω \ Ω0; r denotes the degree of piecewise polynomials in Sh

0 (Ω);
h0, h, h1 are the mesh parameters of Q, Ω, Ω1, respectively; and M ≥ 2, 2r ≥M +1,
0 < h1 << ε2, 1 < p ≤ p0 < +∞.
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Fig. 7. Domain Ω.
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Fig. 8. Unit cell Q = [0, 1]2.

Proof. For x ∈ Ω0, from (5.27), (3.25), (3.21), and (4.3), we obtain

uεk(x)− PUε,h0,h
k,M,h1

(x) = uεk(x)− uε,Mk (x) + uε,Mk (x)− PUε,h0,h
k,M,h1

(x)

= uεk(x)− uε,Mk (x) + u0
k(x)− ũ0

k(x) + ũ
0
k(x)− I(2r)

2h ũ0
k,h(x)

+
M∑
l=1

εl
∑
|α|=l

(Nα(ξ)−Nh0
α (ξ))D

αu0
k(x)

+
M∑
l=1

εl
∑
|α|=l

Nh0
α (ξ)D

α(u0
k(x)− ũ0

k(x))

+
∑M

l=1 ε
l
∑

|α|=lN
h0
α (ξ)(D

αũ0
k(x)− δlxα1

···xαl
I(2r)

2h ũ0
k,h(x)).

(6.7)

It follows from Theorem 3.1, Theorem 4.1, Theorem 5.4, Proposition 4.1, and
Theorem 4.2 that

‖uεk(x)− PUε,h0,h
k,M,h1

(x)‖0,Ω0
≤ C(εM−1 + h2

0 + h
2r−M ).

On the other hand, for x ∈ Ω1, we have

uεk(x)− W̃ ε
k,h1

(x) = uεk(x)−W ε
k (x) +W

ε
k (x)− W̃ ε

k,h1
(x).(6.8)

It follows from Theorem 3.1 and Theorem 5.5 that

‖uεk(x)− W̃ ε
k,h1

(x)‖0,p,Ω1 ≤ C
{
εM−1 + h2

0 + h
r +

(
h1

ε2

)}
,

where 1 < p ≤ p0 < +∞, Ω1 = Ω \ Ω0.

7. Numerical results. In this section, we only consider the first eigenvalue and
eigenfunction.

Example 7.1. We consider the following Helmholtz equation:

Lεuε ≡ − ∂

∂xi

(
aij

(x
ε

) ∂uε
∂xj

)
+ b
(x
ε

)
uε(x) = λερ

(x
ε

)
uε(x) in Ω,

uε(x) = 0 on ∂Ω,

(7.1)

where Ω is as shown in Figure 7—note that Ω is not entire periodic domain. The unit
cell Q is shown in Figure 8, ε = 1

8 .
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Case 1. aij0 = δij , aij1 = 10.0δij , b(
x
ε ) = 30, ρ(

x
ε ) = 1.

Case 2. aij0 = δij , aij1 =
1

1000.0δij , b(
x
ε ) = 30, ρ(

x
ε ) = 1.

Case 3. aij0 = δij , aij1 =
1

200.0δij , b(
x
ε ) = 30, ρ(

x
ε ) = 1.

Case 4. aij0 = δij , aij1 = 200.0δij , b(
x
ε ) = 30, ρ(

x
ε ) = 1.

Tables 1–3 show some numerical results. Where e0 = uε − u0, e1 = uε − Uε
1 ,

e2 = uε − Uε
2 , u

0(x) is the finite element solution of the first eigenfunction for the
homogenized Helmholtz equation, and Uε

1 (x), U
ε
2 (x) are the first order and the sec-

ond order multiscale finite element solutions calculated by multiscale finite element
formulation (6.3), respectively. uε(x), Uε

2 (x), U
ε
1 (x), e2(x) are shown in Figure 9 and

Figure 10.

Table 1
Compare with computational amount.

Original equation Unit cell Homogenized equation Boundary layer
Elements 17856 1296 4464 1872
Nodes 9097 1369 2317 1092

Table 2
Comparison of computation results, I. Eigenvalues.

Original equation Homogenized equation λε − λ0

λε

Case 1 54.3032 54.1539 2.749 × 10−3

Case 2 41.6690 45.6433 −9.5378 × 10−2

Case 3 45.5082 45.6782 −3.7356 × 10−3

Case 4 55.6577 55.3892 4.824 × 10−3

Table 3
Comparison of computation results, II. Eigenfunctions.

‖e0‖L2

‖u0‖
L2

‖e1‖L2

‖Uε
1
‖
L2

‖e2‖L2

‖Uε
2
‖
L2

‖e0‖H1

‖u0‖
H1

‖e1‖H1

‖Uε
1
‖
H1

‖e2‖H1

‖Uε
2
‖
H1

Case 1 0.024956 0.009094 0.022298 0.074006 0.067905 0.173193
Case 2 0.871181 0.870530 0.175682 0.972558 2.892918 0.181331
Case 3 0.292920 0.296389 0.030354 0.334210 1.052346 0.132701
Case 4 0.032661 0.004042 0.809928 0.097027 0.061860 0.988662
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Fig. 9A. Case 2. solution uε.
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Fig. 9B. Case 2. MFEM Uε
2 .
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Fig. 9C. Case 2. MFEM Uε
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Fig. 9D. Case 2. e2(x) = uε(x) − Uε
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Fig. 10A. Case 3. solution uε.
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Fig. 10D. Case 3. e2(x) = uε(x) − Uε
2 (x).

Remark 7.1. It is worthwhile to notice that, in Case 1 and Case 4, errors e2
for the second order method are larger than the error e1 for the first order method,
respectively. As we can judge, from the viewpoint of numerical computation, the
reason is that if e1 have had the better accuracy, then e2 might become worse due to
adding other items.

Concluding remarks. First of all, in this paper the main objectives are to
obtain the multiscale asymptotic analysis formulas of eigenvalues and eigenfunctions
of second order Helmholtz equation with rapidly oscillating coefficients over general
bounded Lipschitz convex domains and to propose the multiscale finite element com-
puting schemes and the postprocessing technique. Meanwhile, we derive their rigorous
verifications.

Second, in solving the Helmholtz problems of composite media with a periodic
structure by using multiscale numerical method, our work consists of the following
parts:
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(1) Compute the periodic solutions Nα1···αl
(ξ), l ≥ 1, in the unit cell Q.

(2) Solve the homogenized Helmholtz equation with constant coefficients over the
whole domain Ω.

(3) Solve the boundary layer.
(4) Compute the higher order partial derivatives for eigenfunctions u0

k(x).
Third, from the viewpoint of mechanics, the work of this paper tell us some

important facts:
(a) In the sense of given accuracy, the natural frequencies of the homogenized

problem and the original linear problem are the same.
(b) According to the superposition priciple, the natural vibration modes consist

of two parts: the natural vibration modes of the homogenized problem reflect the
macroscopic behavior, and the periodic solutions Nα1···αl

(ξ), l ≥ 1, αj = 1, . . . , n
describe the mesoscopic fluctuations of the natural vibration modes.

Finally, we would like to say that the method proposed in this paper can easily be
extended into the elastic structures of composite materials with a small period. In the
viewpoint of numerical computation, it is suitable for subdivided periodic structures
and some random structures. We will discuss these problems in other papers.

Appendix A. The equivalence of two kinds of homogenization methods.
In [2], we know that Ñα1(ξ) is defined in the following way:



∂

∂ξk

(
akj(ξ)

∂Ñα1
(ξ)

∂ξj

)
= − ∂

∂ξk
(akα1

(ξ)) in Rn,

Ñα1
(ξ) is 1-periodic in ξ,∫

Q

Ñα1(ξ)dξ = 0.

(A.1)

Define

Vper = {v ∈ H1(Rn) : v(ξ) is 1-periodic in ξ}.

The variational form is the following:

∫
Q

akj(ξ)
∂Ñα1

(ξ)

∂ξj

∂ṽ(ξ)

∂ξk
dξ = −

∫
Q

akα1
(ξ)

∂ṽ(ξ)

∂ξk
dξ,

i.e.,

∫
Q

(
akα1

(ξ) + akj(ξ)
∂Ñα1

(ξ)

∂ξj

)
∂ṽ(ξ)

∂ξk
dξ = 0 ∀ ṽ(ξ) ∈ Vper.(A.2)

On the other hand, from (3.12) we know that∫
Q

(
akα1(ξ) + akj(ξ)

∂Nα1(ξ)

∂ξj

)
∂v(ξ)

∂ξk
dξ = 0 ∀ v(ξ) ∈ H1

0 (Q).(A.3)

For the sake of simplicity, let ṽ(ξ) = ei2πm·ξ (in practice, we should choose ṽ(ξ) =
cos 2πm·ξ, sin 2πm·ξ), v(k)(ξ) = ei2πm·ξ−ei2πm·ξ̃(k)

, wherem = (m1, . . . ,mk, . . . ,mn)
∈ Zn, ξ = (ξ1, . . . , ξk, . . . , ξn)

T , ξ̃(k) = (ξ1, . . . , ξk−1, 0, ξk+1, . . . , ξn)
T . One can di-

rectly check that ṽ(ξ) ∈ Vper, v(k)(ξ) ∈ H1
0 (Q).
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Set Λ̃kα1(ξ) = (akα1(ξ) +
∑n

j=1 akj(ξ)
∂Ñα1

(ξ)

∂ξj
), Λkα1(ξ) = (akα1(ξ) +∑n

j=1 akj(ξ)
∂Nα1 (ξ)

∂ξj
),Θkα1

(ξ) = Λ̃kα1
(ξ)− Λkα1

(ξ).

Substituting ṽ(ξ), v(k)(ξ) into (A.2), (A.3), respectively, one can obtain∫
Q

Λ̃kα1
(ξ)ei2πm·ξdξ = 0,(A.4)

∫
Q

Λkα1
(ξ)ei2πm·ξdξ = 0,(A.5)

i.e., ∫
Q

Θkα1(ξ)e
i2πm·ξdξ = 0 ∀m ∈ Zn.(A.6)

Let

Θkα1
(ξ) =

+∞∑
q1···qn=−∞

Θ̂kα1(q) · e−i2πq·ξ.(A.7)

Substituting (A.7) into (A.6), we obtain

+∞∑
q1,···qn=−∞

Θ̂kα1
(q)

∫
Q

e−i2π(q−m)·ξdξ = 0.(A.8)

Hence

Θ̂kα1(m) = 0 ∀m ∈ Zn.

This implies that

Θkα1
(ξ) = 0.

Therefore

âkα1 =

∫
Q


akα1(ξ) +

n∑
j=1

akj(ξ)
∂Nα1

(ξ)

∂ξj


 dξ

=

∫
Q


akα1(ξ) +

n∑
j=1

akj(ξ)
∂Ñα1(ξ)

∂ξj


 dξ = ˆ̃akα1 , k, α1 = 1, 2, . . . , n.

(A.9)

Appendix B. Two useful properties of the first eigenvalue and eigen-
function for the homogenized Helmholtz equation in some cases.

Lemma B.1 (see [5]). Assume that Ω is a bounded smooth domain, and let

(λ
(0)
1 , u0

1(x)) be the first eigenpair of the homogenized Helmholtz problem (3.21); then
it holds that u0

1(x) is a smooth function in Ω such that u0
1(x) �= 0 in Ω and |∇u0

1(x)| �= 0
in a neighborhood of ∂Ω.

Proposition B.1. Under the assumptions of Lemma B.1, one can prove that the

first eigenvalue λ
(0)
1 of problem (3.21) is simple, and the corresponding eigenfunction

u0
1(x) has a constant sign in Ω and is unique up to a constant factor.
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Proof. Set

V =

{
u ∈ H1(Ω), 〈ρ〉

∫
Ω

|u(x)|2dx = 1
}
,

D(u) =

∫
Ω

(
âij

∂u

∂xi

∂u

∂xj
+ 〈b〉u2

)
dx.(B.1)

Let λ
(0)
1 = infu∈V D(u), u0

1(x) be a function giving the minimal value. Since |u(0)
1 (x)|

∈ V, if u0
1(x) ∈ V , and D(|u0

1|) = D(u0
1), then the function |u0

1(x)| is an eigenfunction
corresponding to the eigenvalue λ = λ

(0)
1 . It follows from Lemma B.1 that |u0

1(x)|
does not vanish anywhere in Ω.

Next let ū0
1(x) be another eigenfunction corresponding to λ

(0)
1 . Using Schmidt’s

technique and substituting ū0
1(x) by the function û

0
1(x) = ū0

1(x) + τ · u0
1(x), we can

have that the function û0
1(x) is orthogonal to u

0
1(x); i.e.,

∫
Ω
û0

1(x) · u0
1(x)dx = 0 and

〈ρ〉 ∫
Ω
|û0

1(x)|2dx = 1. Since u0
1(x) > 0 in Ω, the function û

0
1(x) changes its sign in Ω.

However, |û0
1(x)| is an eigenfunction with respect to λ(0)

1 , and |û0
1(x)| vanishes at an

inner point of Ω; it follows from Lemma B.1 that û0
1(x) ≡ 0.

The proof of Proposition B.1 is complete.
Proposition B.2. Under the assumptions of Proposition B.1, if we consider the

first eigenvalue λ
(0)
1 of (3.21), then it holds that

(
λ

(0)
1

)−1

�∈ σd(Kε).(B.2)

Proof. Given Ω1 ⊂⊂ Ω and meas(Ω \ Ω1) = meas(Ω0) > 0, denote by λ
(0)
1 (Ω),

λ̃ε1(Ω1) the first eigenvalues associated with problem (3.21) and operator Qε of (3.27),

respectively. The variational principle implies that λ
(0)
1 (Ω) ≤ λ̃ε1(Ω1). Suppose that

λ0
1(Ω) = λ̃ε1(Ω1) = λ. Then the eigenfunction corresponding to Qε with eigenvalue λ
expanded by zero values on Ω \ Ω1 is an eigenfunction in Ω. However, it vanishes at
some points of Ω, contrary to the result of Lemma B.1.

The proof of Proposition B.2 is complete.

Appendix C. Regularity results of the solution for the boundary layer.
For the sake of simplicity, now we consider only 2-D problems; for the detailed dis-
cussion of three-dimensional problems, we refer to [10].

To begin with, consider the following boundary value problems over concave do-
main Ω1 ⊂ R2, as shown in Figure 2:{−&u = f(x) in Ω1,

u(x) = 0 on ∂Ω1.
(C.1a)

Let {σj}Nj=1 denote the angular points of Ω1 and βjπ, j = 1, . . . , N , are the corre-
sponding internal angles, i.e.,

β1 ≤ β2 ≤ · · · ≤ βN , γj =
1

βj
.

It is obvious that 1 < βN ≤ 2, 1
2 ≤ γN < 1. Suppose that

Vj = {x ∈ Ω1 : |x− σj | < rj}, j = 1, . . . , N,(C.1b)
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satisfy

Vi ∩ Vj = ∅, V0 = Ω1 \ ∪Nj=1V j .(C.1c)

Lemma C.1 (see [10]). Suppose that u is the unique solution of problem (C.1a);
if f ∈ L2(Ω), then it holds that

u(x) =
N∑
j=1

cj(f)uj + U(x),(C.2)

where U(x) ∈ H2(Ω1) ∩ H1
0 (Ω1), ‖U‖2 ≤ C‖f‖0, and the constants cj(f) satisfy

|cj(f)| ≤ C‖f‖0.
Note that uj are some functions independent of f , u that satisfy the following

conditions:
(B1) If γj > 1, then uj(x) ≡ 0. In addition, uj(x) ≡ 0 outside of Vj.
(B2) If 1

2 < γj < 1, then there exists the following formula in a neighborhood
of σj:

uj = ργj sin γjθ if (ρ, θ) ∈ Vj ,(C.3)

where Vj = {(ρ, θ) : 0 < ρ < rj , 0 < θ < βjπ}.
Remark C.1. By virtue of (C.3), one can easily show that

|Dku| ≤ Cργj−|k|(C.4)

in a neighborhood of σj.
Let us turn to the proof of Theorem 3.3. It follows from the finite covering

theorem that there exist finite points P1, . . . , Ps and the corresponding neighborhoods
Ol, l = 1, . . . , s, such that

(i) ∪sl=1Ol ⊃ Ω1;
(ii) diam(Ol) ≤ εR0, R0 will be chosen later;
(iii) Ii = {j : Oj ∩ Oi �= ∅, }, σ(Ii) ≤ s0, where σ(Ii) denote the number of

elements in Ii, i = 1, . . . , t and s0 is a constant.
From the partition of unity theorem, there exist φl ∈ C∞

0 (R
n), l = 1, . . . , s, such

that 0 ≤ φl ≤ 1, suppφl ⊂ Ol, and

s∑
l=1

φl ≡ 1 in Ω1.

Let Aε· = − ∂
∂xi
(aij(

x
ε )

∂
∂xj
)·, W ε =

∑s
l=1W

ε
l , W

ε
l = φl ·W ε,

AεW
ε
l = φl · AεW

ε + ηl,(C.5)

where

ηl = − ∂φl
∂xj

[
∂

∂xi

(
aij

(x
ε

))
W ε + aij

(x
ε

) ∂W ε

∂xj

]

−aij
(x
ε

)[∂φl
∂xi

∂W ε

∂xj
+W ε ∂2φl

∂xi∂xj

](C.6)
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and

‖ηl‖0,p,Ol∩Ω1
≤ C 1

ε2
‖W ε‖1,p,Ol∩Ω1

.(C.7)

∀R > 0, let

ωε(R) = max
i,j

max
|x−x′|<εR

∣∣∣∣aij (xε
)
− aij

(
x′

ε

)∣∣∣∣ , x, x′ ∈ Ω1.

For any fixed x0 ∈ Ol ∩Ω1, set A
ε = (aij(

x0
ε )); it follows from (A3) that there exists

a orthogonal matrix T such that

TAεT ′ =
(
λ1 0
0 λ2

)
= D,

where T ′ denotes the transpose of matrix T .
From (A2), we know λi ≥ σ > 0, i = 1, 2, and let B = D−1/2T ; then BAεB′ = I

and ‖B‖ ≤√‖D−1‖ ≤
√

1
σ ,

‖B−1‖ = ‖D1/2‖ ≤
2∑

i=1

λi =
∑
i

aii

(x0

ε

)
≤M0,

where M0 is a positive constant independent of ε.
If we let Ôl = B(Ol∩Ω1), then v̂(y) = v(B−1y) ∈W 2,p(Ôl) for any v ∈W 2,p(Ol∩

Ω1), where p will be stated below. We have that

C‖v‖2,p,Ol∩Ω1 ≤ ‖v̂‖2,p,Ôl
≤ C ′‖v‖2,p,Ol∩Ω1 .(C.8)

Let

g(x) = −aij
(x0

ε

) ∂2W ε
l

∂xi∂xj
= −

(
aij

(x0

ε

)
− aij

(x
ε

)) ∂2W ε
l

∂xi∂xj
− aij

(x
ε

) ∂2W ε
l

∂xi∂xj

= −
(
aij

(x0

ε

)
− aij

(x
ε

)) ∂2W ε
l

∂xi∂xj
+ φl(x)

(
λ0ρ

(x
ε

)
− b
(x
ε

))
·W ε(x)

+ηl(x) +
∂

∂xi

(
aij

(x
ε

)) ∂W ε
l

∂xj
.

From (C.7), we obtain

‖g‖0,p,Ol∩Ω1 ≤ ωε(R)‖W ε
l ‖2,p,Ol∩Ω1 + C

1

ε2
‖W ε‖1,p,Ol∩Ω1 .(C.9)

On the other hand, set Ŵ ε
l (y) =W ε

l (B
−1y), ĝ(y) = g(B−1y); then

aij

(x0

ε

) ∂2W ε
l

∂xi∂xj
= &Ŵ ε

l (y), y = Bx.

Thus

&Ŵ ε
l (y) = ĝ(y).
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It follows from Lemma C.1 that

‖Ŵ ε
l ‖2,p,Ôl

≤ C(p)‖&Ŵ ε
l ‖0,p,Ôl

≤ C(p)‖ĝ‖0,p,Ôl
,(C.10)

where 1 < p ≤ p0 = 2βN

2βN−1 < +∞ and βN is the maximum internal angle of BΩ1.

From (C.8), (C.9), and (C.10), one obtains

‖W ε
l ‖2,p,Ol∩Ω1

≤ C(p)
{
ωε(R)‖W ε

l ‖2,p,Ol∩Ω1
+
1

ε2
‖W ε‖1,p,Ol∩Ω1

}
.

Since aij(
x
ε ) ∈ C(Ω), ∇ξaij(ξ) ∈ L∞(Ω); then there exists a constant R0 > 0 such

that

ωε(R) <
1

3C(p)
for 0 < R < R0.

Hence,

‖W ε
l ‖2,p,Ol∩Ω1

≤ C(p)ε−2{‖W ε
l ‖1,p,Ol∩Ω1

+ ‖u0‖2,p,Ol∩Ω1
}

≤ C(p)ε−2‖u0‖2,p,Ol∩Ω1
.

Therefore

‖W ε‖2,p,Ω1 =

∥∥∥∥∥
s∑

l=1

W ε
l

∥∥∥∥∥
2,p,Ω1

≤
s∑

l=1

‖W ε
l ‖2,p,Ol∩Ω1

≤ C(p)ε−2‖u0‖2,p,Ω.

Appendix D. The difference between the eigenvalues and eigenfunc-
tions of the homogenized Helmholtz equation (3.21) and those of the mod-
ified homogenized Helmholtz equation (4.3). Here we formulate some results
in the spectral theory of linear abstract operators, which are useful for applications
considered below.

Let Hτ , 0 < τ ≤ 1, be a family of Hilbert spaces with scalar products (u, v)Hτ ,
and let H0 be a Hilbert space with a scalar product (u, v)H0 . Consider bounded
linear operators Aτ : Hτ → Hτ , A0 : H0 → H0. We assume that spaces Hτ , H0 and
operators Aτ , A0 are subject to the following conditions:

(I) There exist continuous linear operators Rτ : H0 → Hτ such that

‖Rτu‖Hτ ≤ c0‖u‖H0 ∀u ∈ H0,(D.1)

where the constant c0 is independent of τ ; moreover,

lim
τ→0

(uτ , vτ )Hτ
= (u0, v0)H0

(D.2)

provided that

lim
τ→0
‖uτ −Rτu

0‖Hτ = 0, lim
τ→0
‖vτ −Rτv

0‖Hτ = 0,

uτ , vτ ∈ Hτ , u0, v0 ∈ H0.

(II) The operators Aτ , A0 are positive, compact, and self-adjoint, and the norms
‖Aτ‖ = ‖Aτ‖L(Hτ ) are bounded by a constant independent of τ .
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(III) If fτ ∈ Hτ , f
0 ∈ H0, and

lim
τ→0
‖fτ −Rτf

0‖Hτ = 0,(D.3)

then

lim
τ→0
‖Aτf

ε −RτA0f
0‖Hτ = 0.(D.4)

(IV) For any sequence fτ ∈ Hτ such that supτ ‖fτ‖Hτ < ∞, there exists a
subsequence fτ

′
and a vector w0 ∈ H0 such that

‖Aτ ′fτ
′ −Rτ ′w0‖Hτ′ → 0 as τ ′ → 0.(D.5)

Consider the spectral problems for the operators Aτ :

ukτ ∈ Hτ , Aτu
k
τ = µkτu

k
τ , k = 1, 2, . . . ,

µ1
τ ≥ µ2

τ ≥ · · · ≥ µkτ , µkτ > 0,

(ulτ , u
m
τ ) = δlm,

(D.6)

and consider the spectral problem for A0:

uk0 ∈ H0, A0u
k
0 = µk0u

k
0 , k = 1, 2, . . . ,

µ1
0 ≥ µ2

0 ≥ · · · ≥ µk0 , µk0 > 0,

(ul0, u
m
0 ) = δlm,

(D.7)

where δlm is the Kronecker symbol.
Lemma D.1 (see [11, 18]). Let the space Hτ ,H0 and operators Aτ ,A0 satisfy

conditions (I)–(IV); then for sufficiently small τ

|µkτ − µk0 | ≤ 2 sup
u∈N(µk

0 ,A0), ‖u‖H0
=1

‖AτRτu−RτA0u‖Hτ , k = 1, 2, . . . ,(D.8)

where µkτ , µ
k
0 are eigenvalues of problems (D.6) and (D.7), respectively. N(µk0 ,A0) =

{u ∈ H0, A0u = µk0u} is the eigenspace of operator A0 corresponding to the eigenvalue
µk0 .

Lemma D.2 (see [11, 18]). Assume that k ≥ 1, t ≥ 1 are integers, and

µk−1
0 > µk0 = · · · = µk+t−1

0 > µk+t
0 ,(D.9)

i.e., the multiplicity of the eigenvalue µk0 is equal to t (here µ0
0 = ∞). Then for

any w ∈ N(µk0 ,A0), ‖w‖H0 = 1, there exists a linear combination ūτ of eigenvectors
ukτ · · ·uk+t−1

τ of problem (D.6) such that

‖ūτ −Rτw‖Hτ
≤Mk‖AτRτw −RτA0w‖Hτ

,(D.10)

where the constant Mk does not depend on τ .
Next let us turn to the proof of Theorem 4.1.
Proof. In Lemmas D.1 and D.2, choose 0 < τ = h0 << 1, Hh0 = H0 = L2(Ω);

Rh0 ≡ I is an identity operator.
For the sake of convenience, we prove that (4.8), (4.9) are valid for Dirichlet’s

boundary conditions, i.e., Bh0 ≡ I.
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Define the operators Ah0
: Hh0

→ Hh0
setting Ah0

fh0 = wh0 , where wh0 is the
weak solution of the following problem:{L̂h0

wh0 = fh0 in Ω,
wh0 = 0 on ∂Ω,

(D.11)

where wh0 ∈ H1(Ω), fh0 ∈ L2(Ω).
It follows from Proposition 4.2 that the norm ‖Ah0‖ is bounded. The compactness

of the operator Ah0 : Hh0 → Hh0 is due to the compact imbedding H
1
0 (Ω) ⊂ L2(Ω).

The fact that L̂h0 is symmetric guarantees that Ah0 is a self-adjoint operator in Hh0 ,
since

(Ah0f
h0 , gh0)Hh0

= (Ah0f
h0 , gh0)L2(Ω) = (w

h0 , gh0)L2(Ω)

= (wh0 , L̂h0
vh0)L2(Ω) = (L̂h0w

h0 , vh0)L2(Ω) = (f
h0 ,Ahog

h0)L2(Ω),
(D.12)

where wh0 = Ah0f
h0 , vh0 = Ah0g

h0 .
Below we need to verify that conditions (I)–(IV) are valid on purpose to use

Lemmas D.1 and D.2.
It is easy to see that condition (I) is valid due to Rh0

≡ I.
In a similar way, we define the operator A0 : H0 → H0 by A0f = w, where w is

the solution of the following Dirichlet problem:{
L̂w = f in Ω,
w = 0 on ∂Ω,

(D.13)

where w ∈ H1
0 (Ω), f ∈ L2(Ω).

Thus condition (II) has also been verified.
From (D.11) and (D.13), one obtains

(D.14)

− ∂

∂xi

(
âh0
ij

∂(wh0 − w)
∂xj

)
= − ∂

∂xi

(
r̂ij

∂w

∂xj

)
− 〈b〉(wh0 − w) + fh0(x)− f(x),

where r̂ij = âh0
ij − âij .

Since wh0(x)− w(x) ∈ H1
0 (Ω), it follows from Proposition 4.2 and the Poincaré–

Friedrichs inequality that

‖wh0 − w‖21,Ω ≤ Ca(wh0 − w,wh0 − w)

≤ C
∫

Ω

r̂ij
∂w

∂xj
· ∂(w

h0 − w)
∂xi

dx+ C

∫
Ω

(fh0 − f) · (wh0 − w)dx

≤ Ch2
0‖Ni‖2,Q‖Nj‖2,Q‖w‖1,Ω‖wh0 − w‖1,Ω

+ C‖fh0 − f‖0,Ω‖wh0 − w‖0,Ω.

(D.15)

Thus

‖wh0 − w‖1,Ω ≤ Ch2
0‖Ni‖22,Q‖w‖1,Ω + C‖fh0 − f‖0,Ω.(D.16)

If fh0 → f in L2(Ω) as h0 → 0, by using (D.16) we have

wh0 → w in H1
0 (Ω) as h0 → 0(D.17)
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Therefore condition (III) holds, too.
Returning to condition (IV), for any sequence fh0 ∈ L2(Ω)

sup
h0

‖fh0‖L2(Ω) <∞.

Since L2(Ω) is a reflexive Hilbert space, it follows from Eberlein’s theorem that there

exists a subsequence fh
′
0 ∈ L2(Ω) such that fh

′
0

w
⇀ f ∈ L2(Ω). Similarly to (D.15),

one can obtain

‖wh′
0 − w‖21,Ω ≤ Ca(wh′

0 − w,wh′
0 − w)

≤ C
∫

Ω

r̂ij
∂w

∂xj

∂(wh′
0 − w)
∂xj

dx+ C

∫
Ω

(fh
′
0 − f) · (wh′

0 − w)dx

= J1 + J2.

(D.18)

J1 → 0 as h0 → 0 is due to the fact ‖r̂ij‖F ≤ Ch2
0‖Ni‖2,Q‖Nj‖2,Q. Since fh′

0
w
⇀ f ∈

L2(Ω) as h′0 → 0, then J2 → 0 as h′0 → 0. Thus wh′
0 → w in H1(Ω) as h′0 → 0.

Therefore condition (IV) is verified.

Setting µkh0
= (λ̃

(0)
k )−1, µk0 = (λ

(0)
k )−1, it follows from Lemma D.2 that

|(λ̃(0)
k )−1 − (λ(0)

k )−1| ≤ 2 sup
w∈N((λ

(0)

k
)−1,A0), ‖w‖H0

=1

‖Ah0
w −A0w‖Hh0

,(D.19)

where N((λ
(0)
k )−1,A0) as indicated in Lemma D.2.

For any w ∈ N((λ(0)
k )−1,A0), ‖w‖H0 = 1, define{L̂h0

vh0 = w in Ω,
vh0 = 0 on ∂Ω,

(D.20)

{
L̂v = w in Ω,
v = 0 on ∂Ω.

(D.21)

From the proof of Proposition 4.2, similarly, we can conclude that

‖vh0 − v‖1,Ω ≤ Ch2
0‖Ni‖22,Q.(D.22)

Thus

|(λ̃(0)
k )−1 − (λ(0)

k )−1| ≤ 2 sup
w∈N((λ

(0)

k
)−1,A0), ‖w‖H0

=1

‖Ah0w −A0w‖Hh0

≤ C‖vh0 − v‖1,Ω ≤ Ch2
0‖Ni‖22,Q,

i.e.,

|λ̃(0)
k − λ(0)

k | ≤ Ckh
2
0‖Ni‖22,Q.

It follows from Lemma D.2 that

‖u0
k − ū0

k‖0,Ω ≤ Ckh
2
0‖Ni‖22,Q.
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Abstract. Based on Pieri’s formula on Schubert varieties, the Pieri homotopy algorithm was
first proposed by Huber, Sottile, and Sturmfels [J. Symbolic Comput., 26 (1998), pp. 767–788] for
numerical Schubert calculus to enumerate all p-planes in C

m+p that meet n given planes in general
position. The algorithm has been improved by Huber and Verschelde [SIAM J. Control Optim., 38
(2000), pp. 1265–1287] to be more intuitive and more suitable for computer implementations.

A different approach of employing the Pieri homotopy algorithm for numerical Schubert calculus
is presented in this paper. A major advantage of our method is that the polynomial equations in the
process are all square systems admitting the same number of equations and unknowns. Moreover,
the degree of each polynomial equation is always 2, which warrants much better numerical stability
when the solutions are being solved. Numerical results for a big variety of examples illustrate that
a considerable advance in speed as well as much smaller storage requirements have been achieved by
the resulting algorithm.

Key words. enumerative geometry, Schubert variety, Pieri formula, Pieri homotopy algorithm,
Pieri poset

AMS subject classifications. 14N10, 14M15, 65H10, 68Q40

PII. S003614290139175X

1. Introduction. With “l-planes” representing l dimensional linear subspaces,
a general problem in enumerative geometry is

(�)
Enumerate all p-planes in C

m+p that meet n given planes L1, . . . , Ln in
general position of dimension m+1− ki for i = 1, . . . , n, with k1+ · · ·+
kn = mp.

The condition that k1+ · · ·+kn = mp guarantees a finite number of p-planes meeting
those given planes.

Based on Pieri’s formula, and following the new geometric proof of Pieri’s for-
mula established by Sottile [9], Huber, Sottile, and Sturmfels [3] proposed the Pieri
homotopy algorithm to deal with this problem numerically. The homotopies in the
algorithm have then been simplified by Huber and Verschelde [4] via the poset of
localization patterns, making the algorithm more suitable for computer implementa-
tions.

In both of those works, each given plane Li for i = 1, . . . , n with dimension
di = m+ 1− ki is represented, as they were traditionally, by an (m+ p)× di matrix
consisting of di linearly independent vectors in C

m+p. Let X be a p-plane that
intersects all those given planes. Without loss, one may represent X by the (m+p)×p
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matrix 


1 0
x11

. . .
...

. . . 1
xm1 x1p

. . .
...

0 xmp



.

For i = 1, . . . , n, let [α]i(x), where x = (x11, . . . , xmp), denote the maximal minor of
the (m+ p)× (p+ di) matrix [X|Li] with row indices α = (α1, . . . , αp+di). Then the
intersection conditions in problem (�) become, for each i = 1, . . . , n,

X meets Li ⇐⇒ [α]i(x) = 0 ∀ possible row indices α = (α1, . . . , αp+di).

The backbone of the Pieri homotopy algorithm [3, 4] is to solve ki more variables in
x = (x11, . . . , xmp) one at a time for i = 1, . . . , n successively to satisfy the intersection
conditions with L1, . . . , Li:

[α]l(x) = 0 ∀ possible row indices α = (α1, . . . , αp+dl), for l = 1, . . . , i.(1)

To solve the above systems successively for i = 1, . . . , n, different homotopies
based on Pieri’s formula on Schubert varieties are constructed at each stage where
the solutions of the system at the current stage taken as the solutions of the target
system of the current homotopy are the solutions of the start system of the homotopy
at the next stage. In the process, if ki = 1, then di = m + 1 − 1 = m, making
[X|Li] a square matrix and resulting in the increment of one more equation in one
more unknown in (1) from (i − 1)th stage to ith stage. However, when ki > 1, then
di = m+1− ki < m, and consequently the number of all possible maximal minors in
the (m+ p)× (p+ di) matrix [X|Li] equals(

p+m

p+ di

)
=

(
p+m

p+m+ 1− ki

)
=

(
p+m

ki − 1
)

> ki

since ki = m+1−di < m. When this occurs, the system in (1) admits more equations
than unknowns and constitutes an overdetermined system.

Solving an overdetermined system by the homotopy continuation method as pro-
posed in [8], a square system is constructed by using random linear combinations of all
equations in (1). This reduction to a square system destroys the geometric structure
and creates many excess solution paths to follow, which may lead to a considerable
inefficiency of the algorithm since the solution sets of the new square system may
properly contain the original ones.

In this paper, we present a different approach. Most importantly, we will represent
each given plane Li, i = 1, . . . , n, in general position by a set of m+p−di = p+ki−1
linear equations which defines Li. The collection of the normals of those equations
forms a (p+ ki − 1)× (m+ p) matrix, denoted by Ki, and X meets Li if and only if

KiXΛi = 0 for some Λi ∈ P
p−1.

Employing the same strategy as in [3, 4], we will solve ki more variables in x =
(x11, . . . , xmp) one at a time from i = 1 to i = n by solving for each i the system

KlXΛl = 0 Λl ∈ P
p−1 for l = 1, . . . , i.(2)
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And different homotopies are constructed, also based on Pieri’s formula, at different
stages to connect the solutions of the systems in (2) for consecutive i’s. For each fixed
i, the system in (2) has (p + k1 − 1) + · · · + (p + ki − 1) = (p − 1)i + k1 + · · · + ki
equations. On the other hand, since Λl ∈ P

p−1, it admits only p − 1 variables for
each l; together with k1 + · · · + ki variables in x = (x11, . . . , xmp), the system has
(p + k1 − 1) + · · · + (p + ki − 1) = (p − 1)i + k1 + · · · + ki variables. We therefore
deal with square systems throughout the process even when ki > 1 occurs and never
have to undertake the disadvantages of solving overdetermined systems. Moreover,
another important advantage of our approach is that the degree of each polynomial
equation in (2) is always 2 while polynomial equations in the previous approaches in
[3, 4] may reach quite higher degrees in many situations, which may severely affect
the numerical stability when solutions of the systems are being solved.

The computational experiences of the resulting algorithm are listed at the end of
the paper to illustrate the remarkable speed up of our method has achieved over the
existing algorithm in [4] for a big variety of examples, and our algorithm is particularly
valuable for general cases when ki > 1 appears.

While, in this paper, we only deal with given planes in general position, the
input data of planes for applications may not be so general. An approach common
to practitioners of homotopies to solve a given problem is to deform the solutions of
the general problem to those of the special problem by applying cheater’s homotopy
[5] or coefficient-parameter polynomial continuation [6, 7].

In [4], new homotopies were presented to compute p-plane producing curves in-
tersecting m-planes at prescribed interpolation points. A future project would be to
investigate whether the improvements proposed in this paper also apply to those new
homotopies developed in [4].

2. Preliminaries.
Definition 1. Let A1 � A2 � · · · � Ap be a set of planes in C

m+p with
dim(Ai) = ai. The set

Ω(A1, . . . , Ap) := { p-planes X in C
m+p|dim(X⋂Ai) ≥ i, i = 1, . . . , p }

is called a Schubert variety.
For planes A1 � · · · � Ap and B1 � · · · � Bp with dim(Bi) = dim(Ai) = ai,

for i = 1, . . . , p, a nonsingular linear transformation in C
m+p can be constructed

to transform Ai to Bi for i = 1, . . . , p, and the induced transformation transforms
Ω(A1, . . . , Ap) onto Ω(B1, . . . , Bp). For this reason, the notation Ω(a1, . . . , ap) is fre-
quently used without specifying the planes Ai where dim(Ai) = ai, i = 1, . . . , p.

Now consider planes A1 � A2 � · · · � Ap and B1 � · · · � Bp with dim(Ai) = ai
and dim(Bi) = bi, i = 1, . . . , p. When they are all in general position, we may assume

Ai = 〈e1, . . . , eai〉 and Bi = 〈em+p+1−bi , . . . , em+p〉, i = 1, . . . , p,

where ej is the unit vector in C
m+p with unit at the jth entry. Here, and from

here on, 〈v1, . . . , vl〉 denotes the plane spanned by v1, . . . , vl. If X ∈ Ω(A1, . . . , Ap)⋂
Ω(B1, . . . , Bp), then dim(X

⋂
Ap+1−i) ≥ p + 1 − i and dim(X

⋂
Bi) ≥ i. Thus,

since dim(X) = p and both X
⋂

Ap+1−i and X
⋂

Bi are planes in X,

dim(Ap+1−i
⋂

Bi) ≥ dim((X
⋂

Ap+1−i)
⋂
(X
⋂

Bi))
≥ dim(X

⋂
Ap+1−i) + dim(X

⋂
Bi)− dim(X)

≥ p+ 1− i+ i− p = 1.
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So, ap+1−i + bi ≥ m + p + 1. Conversely, if ap+1−i + bi ≥ m + p + 1, then ap+1−i ≥
m+ p+ 1− bi. Thus em+p+1−bi ∈ Bi

⋂
Ap+1−i. Let X = 〈em+p+1−bp , em+p+1−bp−1 ,

. . . , em+p+1−b1〉. Obviously, X
⋂

Bi = 〈em+p+1−b1 , em+p+1−b2 , . . . , em+p+1−bi〉 and
dim(X

⋂
Bi) = i. Furthermore, X

⋂
Ap+1−i ⊇ 〈em+p+1−bp , . . . , em+p+1−bi〉 and

hence dim(X
⋂

Ap+1−i) ≥ p + 1 − i. Thus X ∈ Ω(A1, . . . , Ap)
⋂
Ω(B1, . . . , Bp).

Therefore, we have the following proposition.
Proposition 1 (Theorem I, p. 327 [1]). When A1 � A2 � · · · � Ap and

B1 � · · · � Bp are planes in general position in C
m+p with dim(Ai) = ai and

dim(Bi) = bi for i = 1, . . . , p, then Ω(a1, . . . , ap) and Ω(b1, . . . , bp) intersect if and
only if

ap+1−i + bi ≥ m+ p+ 1 for i = 1, . . . , p.

As a corollary, we have the following proposition.
Proposition 2 (Corollary, p. 328 [1]). Ω(a1, . . . , ap)

⋂
Ω(m+p+1−ap, . . . ,m+

p+ 1− a1) consists of a unique p-plane for given 1 ≤ a1 < · · · < ap ≤ m+ p.
Example 1. Let m = p = 2, A1 = 〈e1, e2〉, A2 = 〈e1, e2, e3〉, B1 = 〈e3, e4〉, and

B2 = 〈e2, e3, e4〉. Then Ω(A1, A2)
⋂
Ω(B1, B2) = 〈e2, e3〉.

In the rest of the paper, when we write a = (a1, . . . , ap), those coordinates will
satisfy 1 ≤ a1 < · · · < ap ≤ m + p. Because of the importance of Proposition 2,
a∗ = (m+ p+ 1− ap, . . . ,m+ p+ 1− a1) is called the dual of a = (a1, · · · , ap).

For 0 ≤ h ≤ m, let σh := Ω(m+1− h,m+2, . . . ,m+ p), the set of p-planes that
meet a given (m+ 1− h)-plane. Since every p-plane will meet any (m+ 1)-plane, σ0

is the collection of all p-planes.
For (a1, . . . , ap) and (b1, . . . , bp) with ap+1−i ≥ m + p + 1 − bi, for i = 1, . . . , p,

let A1 � A2 � · · · � Ap and B1 � · · · � Bp be planes in C
m+p with dim(Ai) = ai

and dim(Bi) = bi. If X ∈ Ω(a1, . . . , ap)
⋂
Ω(b1, . . . , bp), then X meets Ap+1−i

⋂
Bi

for i = 1, . . . , p. Let D be the smallest plane containing Ap
⋂

B1, . . . , A1

⋂
Bp. Then

X ⊂ D and

dim(D) ≤ dim(Ap
⋂

B1) + · · ·+ dim(A1

⋂
Bp)

= ap + b1 − (m+ p) + · · ·+ a+ 1 + bp − (m+ p)
=

∑p
i=1(ai + bi)− (m+ p)p.

Let h =
∑

ai +
∑

bi − (m+ p+ 1)p. Clearly,

dim(D) = h+ p⇐⇒ ap−i < m+ p+ 1− bi ≤ ap−i+1 ∀i = 1, . . . , p.
When dim(D) = h+p, letGh be a generic (m+1−h)-plane. RepresentingD andGh by
matrices consisting of independent vectors in C

m+p, the rank of the (m+p)×(m+p+1)
matrix [D|Gh] is m+ p. Thus, up to a scalar factor, there is a unique nonzero vector
g ∈ Gh, where g = v1 + · · · + vp with vi ∈ Ap+1−i

⋂
Bi for i = 1, . . . , p. Let

X = 〈v1, . . . , vp〉; then X ∈ Ω(A1, . . . , Ap)
⋂
Ω(B1, . . . , Bp) and meets Gh.

Proposition 3 (Theorem III, p. 333 [1]). Let 1 ≤ h ≤ m. For (a1, . . . , ap) and
(b1, . . . , bp) satisfying

ap−i < m+ p+ 1− bi ≤ ap+1−i, h =
∑

ai +
∑

bi − (m+ p+ 1)p,(3)

the intersection Ω(a1, . . . , ap)
⋂
Ω(b1, . . . , bp)

⋂
σh consists of a unique p-plane.

Example 2. Let m = p = 2, A1 = 〈e1, e2〉, A2 = 〈e1, e2, e3〉, B1 = 〈e3, e4〉,
B2 = 〈e1, e2, e3, e4〉, and σ1 = Ω(D1, D2), where D1 is a generic 2-plane and D2 = C

4.
Then A1

⋂
B2 = A1 and A2

⋂
B1 = 〈e3〉. Denote the 1-plane D1

⋂〈A1, e3〉 by D′
1.
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Let u = (u1, u2, u3, u4) ∈ D′
1 and f1 = (u1, u2, 0, 0). Then Ω(2, 3)

⋂
Ω(2, 4)

⋂
σ1 =

〈f1, e3〉.
For Ω(a1, . . . , ap) and Ω(b1, . . . , bp), Ω(a1, . . . , ap)+Ω(b1, . . . , bp) denotes the class

of p-planes X, where for planes A1 � A2 � · · · � Ap and B1 � · · · � Bp with
dim(Ai) = ai and dim(Bi) = bi for i = 1, . . . , p, dim(X

⋂
Ai) ≥ i (or dim(X

⋂
Bi) ≥

i) for all i = 1, . . . , p. We abbreviate Ω(a1, . . . , ap) + Ω(a1, . . . , ap) by 2Ω(a1, . . . , ap)
and in general

d∑
i=1

Ω(a1, . . . , ap) := dΩ(a1, . . . , ap).

Furthermore, Ω(a1, . . . , ap) • Ω(b1, . . . , bp) represents the class of p-planes X, where
dim(X

⋂
Ai) ≥ i and dim(X

⋂
Bi) ≥ i for all i = 1, . . . , p.

For sets of p-planes A and B, we write A • B for A
⋂

B. We say A is equivalent
to B, denoted by A ∼ B, if whenever

A • Ω(c) = kΩ(1, . . . , p)

for some c = (c1, . . . , cp), we also have

B • Ω(c) = kΩ(1, . . . , p).

Note that Ω(1, . . . , p) represents a general p-plane. The following property [1, 2, 3]
will be used repeatedly for the establishment of our algorithm:

A ∼ B =⇒ A • σh ∼ B • σh.

Following Proposition 3, for fixed a1, . . . , ap and h, any b = (b1, . . . , bp) satisfying (3)
yields

Ω(a1, . . . , ap) • σh • Ω(b1, . . . , bp) = Ω(1, . . . , p).

On the other hand, for the dual b∗ = (b∗1, . . . , b
∗
p) = (m+p+1−bp, . . . ,m+p+1−b1)

of b, by Proposition 2,

Ω(b∗1, . . . , b
∗
p) • Ω(b1, . . . , bp) = Ω(1, . . . , p).

Moreover, for b̄ = (b̄1, . . . , b̄p) satisfying (3), but b̄ �= b∗,

Ω(b̄1, . . . , b̄p) • Ω(b1, . . . , bp) = ∅.

These observations lead to the following important formula.
Proposition 4 (Pieri’s formula, p. 354 [1]).

Ω(a1, . . . , ap) • σh ∼
∑

b=(b1,...,bp)

Ω(b1, . . . , bp), where

0 < b1 ≤ a1 < b2 ≤ a2 < · · · ≤ ap−1 < bp ≤ ap with
∑

bj =
∑

aj − h.(4)

When we fix a = (a1, . . . , ap) and h, those b = (b1, . . . , bp) satisfying (4) together
with a are called the Pieri nodes; the nodes b are induced Pieri nodes of node a.
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From here on, we will use [a1, . . . , ap] to denote a Pieri node or its dual. Recall that
for i = 1, . . . , n, p-planes that meet plane Li with dim(Li) = m + 1 − ki belong to
Ω(m+1− ki,m+2, . . . ,m+ p) = σki , and the condition k1+ · · ·+ kn = mp warrants

σk1 • σk2 • · · · • σkn = dΩ(1, . . . , p).(5)

Thus problem (�) introduced in section 1 can now be interpreted as follows: finding
all d specific p-planes in σk1 • σk2 • · · · • σkn for given planes L1, . . . , Ln in general
position. To calculate σk1 • σk2 • · · · • σkn in (5), Pieri’s formula in Proposition 4 will
be used as a main tool. The Pieri nodes derived in the process constitute a Pieri
poset , and the number d is called the Pieri root count.

Example 3. For m=2, p=2 and given planes L1, L2, L3, L4 in general position
with dim(Li) = 2 and ki = m+ 1− di = 1 for all i = 1, . . . , 4,

σk1 • σk2 • σk3 • σk4
= Ω(2, 4) • σk2 • σk3 • σk4
∼ (Ω(1, 4) + Ω(2, 3)) • σk3 • σk4
∼ 2Ω(1, 3) • σk4
∼ 2Ω(1, 2).

The Pieri poset of all the Pieri nodes and the poset that consists of their duals are
shown in Figure 1.

1[2 4]

❅
❅❅❘

�
��✠

1[1 4]

❅
❅❅❘

1[2 3]

�
��✠

2[1 3]

❄
2[1 2]

Pieri poset

1[1 3]

❅
❅❅❘

�
��✠

1[1 4]

❅
❅❅❘

1[2 3]

�
��✠

2[2 4]

❄
2[3 4]

Dual Pieri poset

Fig. 1.

Now, any 2-plane X that meets L1 must be in Ω(3, 4) • σ1 ∼ Ω(2, 4). Since
[2, 4]∗ = [1, 3], there is a unique 2-plane in Ω(2, 4) • Ω(1, 3). So, if we let A1 = 〈e1〉
and A2 = 〈e1, e2, e3〉, there is a unique 2-plane in Ω(A1, A2) consisting of 2-planes of
the form 


1 0
0 1
0 u
0 0


 := X[1,3]

that meet L1. We may determine this unique X[1,3] by finding u via its intersection
condition with L1.

Similarly, any 2-plane X that meets both L1 and L2 must lie in Ω(3, 4)•σ1 •σ1 ∼
Ω(1, 4) + Ω(2, 3) by Proposition 4. Since [1, 4]∗ = [1, 4] and Ω(2, 3) • Ω(1, 4) = ∅, by
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letting A1 = 〈e1〉 and A2 = 〈e1, e2, e3, e4〉, there is a unique 2-plane in Ω(A1, A2)
consisting of 2-planes of the form


1 0
0 1
0 v1

0 v2


 := X[1,4]

that meet both L1 and L2. We may determine this unique X[1,4] by finding v1 and
v2 via the intersection conditions of meeting L1 and L2. On the other hand, since
[2, 3]∗ = [2, 3] and Ω(1, 4) • Ω(2, 3) = ∅, there is a unique 2-plane in Ω(A1, A2) with
A1 = 〈e1, e2〉 and A2 = 〈e1, e2, e3〉 consisting of 2-planes of the form


1 0
v′1 1
0 v′2
0 0


 := X[2,3]

that meet L1 and L2. This X[2,3] is decided when v′1 and v′2 are found.
Continuing the same pattern, since Ω(3, 4) • σ1 • σ1 • σ1 ∼ 2Ω(1, 3) and [1, 3]∗ =

[2, 4], there are two 2-planes in Ω(A1, A2), with A1 = 〈e1, e2〉 and A2 = 〈e1, e2, e3, e4〉,
consisting of 2-planes of the form


1 0
w1 1
0 w2

0 w3


 := X[2,4]

that meet L1, L2, and L3. And, Ω(3, 4) • σ1 • σ1 • σ1 • σ1 ∼ 2Ω(1, 2) as well as
[1, 2]∗ = [3, 4] imply that the two 2-planes that meet all L1, . . . , L4 can be found by
solving two set of y’s of 


1 0
y1 1
y3 y2

0 y4


 := X[3,4]

in Ω(A1, A2) with A1 = 〈e1, e2, e3〉 and 〈e1, e2, e3, e4〉.
The theme of the so-called Pieri homotopy algorithm is as follows:
1. Finding u in X[1,3] by the criteria of meeting L1.
2. (a) Solving {v1, v2} in X[1,4] by a homotopy with a starting point containing

{v1 = u, v2 = 0}.
(b) Solving {v1, v2} in X[2,3] by a different homotopy with a starting point

containing {v′1 = 0, v′2 = u}.
3. Solving two sets of {w1, w2, w3} in X[2,4] by a homotopy with two starting
points containing {w1 = 0, w2 = v1, w3 = v2} and {w1 = v′1, w2 = v′2w3 = 0},
respectively.

4. Solving two sets of {y1, y2, y3, y4} in X[3,4] by a homotopy with two starting
points containing {y1 = w1, y2 = w2, y3 = w3, y4 = 0} with two sets of values
of {w1, w2, w3} obtained at the last step.

The details of those homotopies of our approach will be elaborated in the next
section.
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From the process in the above example, we solve the ultimate solutions in X[3,4]

by following the cascade of solving

X[1 3]

��✠ ❅❅❘
X[1 4]

��✠

X[2 3]

❅❅❘

2X[2 4]

❄
2X[3 4].

(6)

For a = [a1, . . . , ap], write

Xa = X[a1,...,ap] :=




1 0
x1,1

. . .
...

. . . 1
x(a1−1),1 x1,p

. . .
...

x(ap−p),p
0

0 ...
0




.

Those a’s in (6) actually follow the duals of the Pieri poset in Figure 1. For nodes a
and b,

a→ · · · → · · · → b

is called a chain joining a and b. A chain joining a = [m+ 1,m+ 2, . . . ,m+ p] and
b = [1, . . . , p] is called a complete chain. The Pieri homotopy algorithms in general
are constructed based on the duals of the Pieri poset consisting of all the derived Pieri
nodes.

3. Algorithms. For given planes L1, . . . , Ln in C
m+p in general position with

dim(Li) = m+ 1− ki for i = 1, . . . , n, all derived Pieri nodes in

σk1 • σk2 • · · · • σkn

form a poset. Unless otherwise indicated, we shall use the term “Pieri poset” for the
poset of duals of all those Pieri nodes. As mentioned in the introduction, we shall
represent each Li by a (p+ ki − 1)× (m+ p) matrix Ki whose rows consist of all the
normals of the linear equations that define Li.
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(a) Hypersurface intersection conditions, where ki = 1 for all i =
1, . . . , n. Letting a0 = [1, 2, . . . , p] sit on top of the Pieri poset, we may write

a0 → a1 → · · · → an(7)

for a complete chain in the poset, and it is obvious that the coordinates of consecutive
nodes aj and aj+1 in the chain can differ by 1 on only one component. We shall use

aj
µj+1−→ aj+1

to denote that the µj+1th component of a
j is increased by 1 to reach aj+1. We may

therefore write

a0 µ1−→ a1 µ2−→ · · · µn−→ an

for a complete chain. Recall that for a = [a1, . . . , ap]

Xa =




1 0
x1,1

. . .
...

. . . 1
x(a1−1),1 x1,p

. . .
...

x(ap−p),p
0

0 ...
0




.

For a0 µ1−→ a1, the only unknown in Xa1 can be determined by

K1Xa1Λ1
1 = 0,

where Λ1
1 = eµ1

∈ C
p. Now, suppose we have proceeded up to

a0 µ1−→ a1 µ2−→ · · · µj−→ aj

in the chain. This means that we have solved all the variables in Xaj and found
Λj1, . . . ,Λ

j
j ∈ P

p−1 such that

KlXajΛjl = 0 for l = 1, . . . , j.

Namely, a p-plane in the form Xaj that meets planes L1, . . . , Lj has been determined.
To proceed one step further in the chain, for

aj
µj+1−→ aj+1, where aj+1 = [a

(j+1)
1 , . . . , a

(j+1)
p ],

consider the homotopy

H(t,Xaj+1 ,Λj+1) =




K1Xaj+1Λj+1
1 = 0,

...

KjXaj+1Λj+1
j = 0,

[(1− t)K̂aj+1 + tKj+1]Xaj+1Λj+1
j+1 = 0,

(8)
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where the µlth component of Λ
j+1
l is 1 for l = 1, . . . , j + 1, and K̂aj+1 is the matrix

[e
a
(j+1)
1

, . . . , e
a
(j+1)
p

]T . For each t ∈ [0, 1], the system admits p − 1 variables in Λj+1
l

for each l = 1, . . . , j + 1 and j + 1 variables in Xaj+1 ; it admits, in total, (p− 1)(j +
1)+ (j +1) = p(j +1) variables. It is clear that the total number of equations is also
p(j + 1), making the system a square system. When t = 0,

Xaj+1 = Xaj ,

Λj+1
l = Λjl , l = 1, . . . , j,

Λj+1
j+1 = eµj+1(∈ C

p)

is a solution of the system H(0, Xaj+1 ,Λj+1) = 0 in (8). Following the homotopy path
of H(t,Xaj+1 ,Λj+1) = 0 emanating from this solution, we obtain a solution of Xaj+1

and Λj+1
l for l = 1, . . . , j + 1 at t = 1 that satisfies

KlXaj+1Λj+1
l = 0 for l = 1, . . . , j + 1.

A p-plane that meets L1, . . . , Lj+1 in the form of Xaj+1 is then found and the chain
has been extended one step further; namely, we have proceeded along the chain up to

a0 µ1−→ a1 µ2−→ · · · µj+1−→ aj+1.

When we proceed further along the chain and arrive at an, a p-plane that meets all
Li, i = 1, . . . , n, becomes available.

Example 4. In Example 3, there are two chains in the dual poset:

chain 1: [1 2]
2−→ [1 3] 2−→ [1 4] 1−→ [2 4] 1−→ [3 4],

chain 2: [1 2]
2−→ [1 3] 1−→ [2 3] 2−→ [2 4] 1−→ [3 4],

and the corresponding homotopies are

[1 2]
↓

[1 3]:

[
K1X[1 3]Λ

1
1 = 0,Λ1

1 =

[
0
1

]
↓

[1 4]
:

[
K1X[1 4]Λ

2
1 = 0

{(1 − t)[e1, e4]T + tK2}X[1 4]Λ
2
2 = 0

↓
[2 4]

:

[
K1X[2 4]Λ

3
1 = 0

K2X[2 4]Λ
3
2 = 0

{(1 − t)[e2, e4]T + tK3}X[2 4]Λ
3
3 = 0

↓
[3 4]

:




K1X[3 4]Λ
4
1 = 0

K2X[3 4]Λ
4
2 = 0

K3X[3 4]Λ
4
3 = 0

{(1 − t)[e3, e4]T + tK4}X[3 4]Λ
4
4 = 0

[1 2]
↓

[1 3]:

[
K1X[1 3]Λ

1
1 = 0,Λ1

1 =

[
0
1

]
↓

[2 3]
:

[
K1X[2 3]Λ

2
1 = 0

{(1 − t)[e2, e3]T + tK2}X[2 3]Λ
2
2 = 0

↓
[2 4]

:

[
K1X[2 4]Λ

3
1 = 0

K2X[2 4]Λ
3
2 = 0

{(1 − t)[e2, e4]T + tK3}X[2 4]Λ
3
3 = 0

↓
[3 4]

:




K1X[3 4]Λ
4
1 = 0

K2X[3 4]Λ
4
2 = 0

K3X[3 4]Λ
4
3 = 0

{(1 − t)[e3, e4]T + tK4}X[3 4]Λ
4
4 = 0.

For chain 1, Λlk =
[∗

1

]
, k = 1, 2, l = 1, . . . , k, Λlk =

[
1
∗
]
, k = 3, 4, l = 1, . . . , k;

for chain 2, Λlk =
[∗

1

]
, k = 1, 3, l = 1, . . . , k, Λlk =

[
1
∗
]
, k = 2, 4, l = 1, . . . , k.

Between chain 1 and 2, the only distinct homotopies are [1 3]
2−→ [1 4] in chain 1 and

[1 3]
1−→ [2 3] in chain 2.

Example 5. For m = 3, p = 2, let L1, . . . , L6 be planes with dim(Li) = 3 for
i = 1, . . . , 6. The Pieri poset is shown in Figure 2. For the complete chain

[1 2]
2−→ [1 3] 2−→ [1 4] 1−→ [2 4] 2−→ [2 5] 1−→ [3 5] 1−→ [4 5],
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1[1 2]

❄
1[1 3]

❅
❅❅❘

�
��✠

1[1 4]

�
��✠

❅
❅❅❘

1[2 3]

�
��✠

1[1 5]

❅
❅❅❘

2[2 4]

�
��✠

❅
❅❅❘

3[2 5]

❅
❅❅❘

2[3 4]

�
��✠

5[3 5]

❄
5[4 5]

Fig. 2.

the homotopies are

[1 2]
↓
[1 3] :

[
K1X[1 3]Λ

1
1,= 0,Λ

1
1 =

[
0
1

]
↓
[1 4]

:

[
K1X[1 4]Λ

2
1 = 0,{

(1− t)[e1, e4]
T + tK2

}
X[1 4]Λ

2
2 = 0,

↓
[2 4]

:

[
KlX[2 4]Λ

3
l = 0, l = 1, 2,{

(1− t)[e2, e4]
T + tK3

}
X[2 4]Λ

3
3 = 0,

↓
[2 5]

:

[
KlX[2 5]Λ

4
l = 0, l = 1, 2, 3,{

(1− t)[e2, e5]
T + tK4

}
X[2 5]Λ

4
4 = 0,

↓
[3 5]

:

[
KlX[3 5]Λ

5
l = 0, l = 1, 2, 3, 4,{

(1− t)[e3, e5]
T + tK5

}
X[3 5]Λ

5
5 = 0,

↓
[4 5]

:

[
KlX[4 5]Λ

6
l = 0, l = 1, 2, 3, 4, 5,{

(1− t)[e4, e5]
T + tK6

}
X[4 5]Λ

6
6 = 0,

where Λl1 =
[∗

1

]
, Λl2 =

[∗
1

]
, Λl3 =

[
1
∗
]
, Λl4 =

[∗
1

]
, Λl5 =

[
1
∗
]
, and Λl6 =

[
1
∗
]
.

Remark 1. Let a be a node shared by k different complete chains

a0
l

µ1l−→ a1
l
µ2l−→ · · · µnl−→ anl , l = 1, . . . , k.

Say aj+1
l = a, for l = 1, . . . , k. This means σk1 • σk2 • · · · • σkj •Ω(a) = kΩ(1, . . . , p),

where ki = 1 for i = 1, . . . , j. In this situation, the homotopies for the extensions

ajl
µ(j+1)l−→ aj+1

l = a in (8) are the same for all l. It is critically important that those
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k paths that emanate from k different starting points

Xa = Xaj
l
, Λj+1

il = Λjil for i = 1, . . . , j, Λj+1
(j+1)l =




0
...
1
...
0



← µ(j+1)lth

will reach different solutions at t = 1. This assertion is warranted by the following
observations. Since for each t ∈ [0, 1], (1 − t)K̂a + tKj+1 represents an m-plane
Lj+1(t), and those m-planes Lj+1(t) are in general position for 0 < t ≤ 1, it follows
that for each t ∈ (0, 1] the system

K1XaΛ
j+1
1 = 0,

...

KjXaΛ
j+1
j = 0,

[(1− t)K̂a + tKj+1]XaΛ
j+1
j+1 = 0

has k solutions and all of them are nonsingular. Since at t = 0 those k solutions are
also nonsingular, those k different paths of the same homotopy will lead to k different
solutions at t = 1.

(b) General intersection conditions, where ki > 1 for certain 1 ≤ i ≤ n.
The Pieri poset in this case is somewhat more complicated. For ki > 1, let ai be a
derived node of ai−1. The coordinates of nodes ai−1 and ai may have several different
components and their differences may not simply differ by just 1. Moreover, as the
following example shows, not all the nodes can be proceeded to reach final node an

to be part of a complete chain.
Example 6. For m = 5, p = 3, and given planes L1, . . . , L5 in general position

with dim(Li) = 3, for all i = 1, . . . , 5,
∑5
i=1 ki = 15 = mp. Furthermore,

σ0 • σ3 • σ3 • σ3 • σ3 • σ3

∼ [Ω(6, 7, 8) • σ3] • σ3 • σ3 • σ3 • σ3

∼ [Ω(3, 7, 8) • σ3] • σ3 • σ3 • σ3

∼ [Ω(1, 6, 8) + Ω(2, 5, 8) + Ω(3, 4, 8)] • σ3 • σ3 • σ3

∼ [2Ω(1, 3, 8) + 3Ω(1, 4, 7) + 2Ω(2, 4, 6) + Ω(1, 5, 6) + Ω(3, 4, 5)] • σ3 • σ3

∼ [7Ω(1, 3, 5) + 6Ω(1, 2, 6)] • σ3

∼ 6Ω(1, 2, 3).

The Pieri poset in this case is shown in Figure 3, and the poset consisting of
complete chains is shown in Figure 4.

Of course, only complete chains in the Pieri poset are meaningful in computing
our solutions. For a0 = (1, . . . , p), let

a0−→a1−→· · ·−→an

be a complete chain, where aj+1 is derived from aj via σkj+1 for j = 1, . . . , n − 1.
Namely, Ω(aj) ⊂ σ0 •σk1 • · · ·σkj and Ω(aj+1) ⊂ σ0 •σk1 • · · ·σkj+1 . When ki > 1 for
certain i ∈ {1, . . . , n}, we will insert artificial intermediate nodes between nodes ai−1

and ai for our algorithm as follows:
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Fig. 3.

Writing

ai−1 = [a
(i−1)
1 , . . . , a(i−1)

p ] and ai = [a
(i)
1 , . . . , a(i)

p ],

we let l1 = min{j | a(i−1)
j < a

(i)
j } and b1 = (b

(1)
1 , . . . , b

(1)
p ), where

b
(1)
j =




a
(i−1)
j for j = 1, . . . , l1 − 1,

a
(i−1)
l1

+ 1 for j = l1

a
(i)
j for j = l1 + 1, . . . , p.

Inductively, when bs = (b
(s)
1 , . . . , b

(s)
p ) is defined for s < ki − 1, let ls+1 =

min{j | b(s)j < a
(i)
j } and bs+1 = (b

(s+1)
1 , . . . , b

(s+1)
p ), where

b
(s+1)
j =




b
(s)
j for j = 1, . . . , ls+1 − 1,

b
(s)
ls+1

+ 1 for j = ls+1

a
(i)
j for j = ls+1 + 1, . . . , p.
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Fig. 4.

We insert those nodes b1, . . . ,bki−1 defined above between ai−1 and ai. Obviously,
the coordinates of any two consecutive nodes among them can differ by 1 on only one
coordinate. Therefore, we may write

ai−1 := b0 µ1−→b1 µ2−→· · · µki−1−→ bki := ai,

where µj in bj−1 µj−→bj represents the coordinate where bj−1 and bj differ.
Example 7. For instance, the node insertion between [1 4 7] and [1 6 8] on

Figure 4 of Example 6 is

[1 4 7]
2−→(1 5 7) 2−→(1 6 7) 3−→ [1 6 8],

and when all intermediate nodes are inserted the poset with complete chains is shown
in Figure 5.

For consecutive nodes ai−1 and ai with ki > 1 and the chain joining the interme-
diate nodes between them,

ai−1 = b0 µ1−→ b1 µ2−→ · · · µki−1−→ bki = ai,(9)

suppose we have solved all the variables in Xai−1 as well as Λi−1
l ∈ P

p−1 for l =
1, . . . , i− 1 for which

KlXai−1Λi−1
l = 0 for l = 1, . . . , i− 1.(10)
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Fig. 5.

Recall that the (p+ kj − 1)× (m+ p) matrix Kl is a representation of the plane Ll.
Let Ki = [v1, . . . , vp+ki−1]

T , where vs for s = 1, . . . , p+ki−1 are linearly independent
vectors in C

m+p. For

ai−1 = b0 µ1−→ b1

consider the homotopy

K1Xb1Λi+ki−1
1 = 0,
...

Ki−1Xb1Λi+ki−1
i−1 = 0,

[(1− t)K̂0
1 + tK̂1

1 ]Xb1Λi+ki−1
i+ki−1 = 0,

(11)

where for b1 = (b
(1)
1 , . . . , b

(1)
p )

K̂0
1 := [eb(1)1

, . . . , e
b
(1)
p
]T

and K̂1
1 := [eb(1)1

, . . . , e
b
(1)
µ1−1

, v1, eb(1)
µ1+1

, . . . , e
b
(1)
p
]T .
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Moreover, the µ1th coordinate of Λ
i+ki−1
i+ki−1 ∈ P

p−1 is set to be 1, and for l = 1, . . . , i−1
the coordinate of Λi+ki−1

l ∈ P
p−1 is set to be 1 if the same coordinate of Λi−1

l ∈ P
p−1

is 1.
This homotopy is a deformation of square systems of size

p+

i−1∑
l=1

(p+ kl − 1).

Clearly, when t = 0 any solution Xai−1 , Λi+ki−1
l for l = 1, . . . , i − 1 of (10) coupled

with Λi+ki−1
i+ki−1 = eµ1 is a solution of (11). The solutions we obtain at t = 1 by following

the paths of the homotopy in (11) emanating from those solutions will be established
as solutions of the start system of the homotopy constructed for the next step.

Inductively, write bl = (b
(l)
1 , . . . , b

(l)
p ) for l = 0, . . . , ki and suppose for 2 ≤ j ≤ ki

the system

K1Xbj−1Λ
i+ki−(j−1)
1 = 0,
...

Ki−1Xbj−1Λ
i+ki−(j−1)
i−1 = 0,

K̂1
j−1Xbj−1Λ

i+ki−(j−1)
i+ki−(j−1) = 0,

(12)

where

K̂1
j−1 := [eb(j−1)

1

, . . . , e
b
(j−1)
µj−1−1

, vj−1, eb(j−1)
µj−1+1

, . . . , e
b
(j−1)
p

, v1, . . . , vj−2]
T

has been solved. For

bj−1 µj−→ bj

consider the homotopy

K1XbjΛi+ki−j1 = 0,
...

Ki−1XbjΛi+ki−ji−1 = 0,

[(1− t)K̂0
j + tK̂1

j ]XbjΛi+ki−ji+ki−j = 0,

(13)

where

K̂0
1 = [eb(j)1

, . . . , e
b
(j)
p

, v1, . . . , vj−1]
T

and K̂1
j = [eb(j)1

, . . . , e
b
(j)
µj−1

, vj , eb(j)
µj+1

, . . . , e
b
(j)
p

, v1, . . . , vj−1]
T .

And, as in (11), the µjth coordinate of Λ
i+ki−j
i+ki−j ∈ P

p−1 is set to be 1, and for l =

1, . . . , i−1, the coordinate of Λi+ki−jl is set to be 1 if the same coordinate of Λ
i+ki−(j−1)
l

is 1.
This homotopy is a deformation of square system of size

p+ j − 1 +
i−1∑
l=1

(p+ kl − 1),
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and it is straightforward that any solution of the system in (12) induces a solution of
(13) when t = 0. Those paths of the homotopy in (13) emanating from those solutions
lead to, at t = 1, a set of solutions of

K1XbjΛi+ki−j1 = 0,
...

Ki−1XbjΛi+ki−ji−1 = 0,

K̂1
jXbjΛi+ki−ji+ki−j = 0.

(14)

Continuing those steps successively from j = 2, when we reach j = ki, the
solutions at t = 1 provide a set of p-planes in the form Xai that meet L1, . . . , Li.

Example 8. In Example 7, the homotopies of the chain

[1 2 3]
3−→ (1 2 4)

3−→ (1 2 5)
3−→ [1 2 6]︸ ︷︷ ︸

level 1

2−→ (1 3 6)
2−→ (1 4 6)

3−→ [1 4 7]︸ ︷︷ ︸
level 2

1−→ (2 4 7)
2−→ (2 5 7)

3−→ [2 5 8]︸ ︷︷ ︸
level 3

−→· · ·

at the third level with K3 := [v1, v2, v3, v4, v5]
T are

[1 4 7]
↓

(2 4 7)

:


 K1X(2,4,7)Λ

5
1 = 0,

K2X(2,4,7)Λ
5
2 = 0,

{(1− t)[e2, e4, e7]
T + t[e2, v5, e7]

T }X(2,4,7)Λ
5
5 = 0,

↓
(2 5 7)

:


 K1X(2,5,7)Λ

4
1 = 0,

K2X(2,5,7)Λ
4
2 = 0,

{(1− t)[e2, e5, e7, v5]
T + t[e2, e5, v4, v5]

T }X(2,5,7)Λ
4
4 = 0,

↓
[2 5 8]

:


 K1X[2,5,8]Λ

3
1 = 0,

K2X[2,5,8]Λ
3
2 = 0,

{(1− t)[e2, e5, e8, v4, v5] + t[v1, v2, v3, v4, v5]}X[2,5,8]Λ
3
3 = 0,

where

Λ5
1,Λ

4
1,Λ

3
1 =


 ∗∗

1


, Λ5

2,Λ
4
2,Λ

3
2 =


 ∗∗

1


,

and Λ5
5 =


 1

∗
∗


, Λ4

4 =


 ∗1
∗


, Λ3

3 =


 ∗∗

1


.
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Write K̂t
1 = (1− t)[e2, e4, e7]

T + t[e2, v5, e7]
T . Then,

K̂t
1X(247)Λ

5
5 =


 0 1 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 1 0







1 0 0
x1 1 0

x2 1
x3 x4

x5

0 x6

x7

0





 λ1

λ2

λ3




=


 x1 1 0

� � �
0 0 x7




 λ1

λ2

λ3


 =


 0
0
0


.

Obviously, λ3 = 0 for all t ∈ [0, 1], and, as assigned, λ1 = 1 for all t ∈ [0, 1].
Let x

(1)
1 , . . . , x

(1)
7 , λ

(1)
1 (= 1), λ

(1)
2 , λ

(1)
3 (= 0) be a solution of K̂1

1X(247)Λ
5
5 = 0. Now, for

K̂t
2 := (1− t)[e2, e5, e7, v5]

T + t[e2, e5, v4, v5] at t = 0,

K̂0
2X(257)Λ

4
4 =



0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







1 0 0
x1 1 0

x2 1
x3 x4

y x5

0 x6

x7

0





 λ1

λ2

λ3




=




x1 1 0
0 y x5

0 0 x7

� � �




 λ1

λ2

λ3


 =



0
0
0
0


 .

As assigned, λ2 = 1 and obviously λ3 = 0, and the new variable y must be zero.
And, since

x1λ1 + 1 = 0,

xl = x
(1)
l for l = 1, . . . , 7, along with λ1 = − 1

x
(1)
1

, λ2 = 1, λ3 = 0, is a solution

of K̂0
2X(257)Λ

4
4 = 0. Similarly, with K̂1

2 = [e2, e5, v4, v5]
T , let x

(2)
1 , . . . , x

(2)
7 , y(2), λ

(2)
1 ,
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λ
(2)
2 (= 1), λ

(2)
3 be a solution of

K̂1
2X(257)Λ

4
4 =



0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







1 0 0
x1 1 0

x2 1
x3 x4

y x5

0 x6

x7

0





 λ1

λ2

λ3




=




x1 1 0
0 y x5

� � �
� � �




 λ1

λ2

λ3


 =



0
0
0
0


.

Then for K̂t
3 := (1− t)[e2, e5, e8, v4, v5]

T + t[v1, v2, v3, v4, v5] at t = 0,

K̂0
3X[258]Λ

3
3 =



0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







1 0 0
x1 1 0

x2 1
x3 x4

y x5

0 x6

x7

z





 λ1

λ2

λ3




=




x1 1 0
0 y x5

0 0 z
� � �
� � �




 λ1

λ2

λ3


 =



0
0
0
0
0


.

Then λ3 = 1, as assigned, implies z = 0. On the other hand, since

yλ2 + x5 = 0 and x1λ1 + λ2 = 0,

xl = x
(2)
l for l = 1, . . . , 7, y = y(2), λ2 = −x

(2)
5

y(2) , and λ1 = − λ2

x
(2)
1

is a solution of

K̂0
3X[258]Λ

3
3 = 0.

Remark 2. In Example 8, K̂1
1 defines a 5-plane L1

3 containing L3, K̂
1
2 defines a

4-plane L2
3 containing L3, and K̂1

3 = K3 represents L3. So the strategy behind the
homotopies we construct between intermediate nodes is the following. To find the
3-planes in the form of X[258] which meet L1, L2, L3 (those X[258] are in σ3 • σ3 • σ3 •
Ω(2, 5, 8)), we first find the 3-planes X(247) which meet L1, L2, L

1
3 (those X(247) are in

σ3 •σ3 •σ1 •Ω(2, 4, 7)). Then we find the 3-planes X(257) which meet L1, L2, L
2
3 (those

X’s are in σ3 •σ3 •σ2 •Ω(2, 5, 7)). Ultimately, we find the 3-planes X[258] which meet
L1, L2, L3.
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4. Numerical results. An implementation of a previous version of the Pieri
homotopy algorithm for numerical Schubert calculus [4] exists in the module of the
extended version of PHCpack in [10] that also provides the SAGBI homotopy proposed
in [3] for solving general problems in enumerative geometry numerically. In general,
as reported in [4], the Pieri homotopy algorithms are much superior in speed as well
as the range of applications than the SAGBI homotopies. We therefore compare only
the results of the implementation of our algorithm with those of the code in PHCpack.
All computations were carried out on a 400 MHz Intel Pentium II CPU with 256 MB
of RAM, running on SunOS 5.6. In all the tables below #hty represents the total
number of homotopies we followed in the corresponding cases, andWu is the symbol
representing our code.

1. ki = 1 for all i, as shown in Table 1.

Table 1

m p #soln #hty Wu PHC
3 2 5 21 220ms 720ms
4 2 14 63 1s270ms 5s50ms
3 3 42 183 13s420ms 41s480ms
5 2 42 195 8s870ms 39s870ms
6 2 132 360 13s330ms 1m13s
7 2 429 1196 1m16s 8m14s
4 3 462 1110 1m58s 8m59s
8 2 1,430 4,056 7m44s 53m2s
9 2 4,862 13,988 38m11s 6h29m1s
5 3 6,006 14,683 57m59s 7h53m28s
6 3 87,516 217,276 28h44m13s -

The code in PHCpack requires a much bigger RAM than our code in all of the
cases. For instance, for (m, p) = (4, 3) above, PHC needs more than 7,044KB
whereas Wu only needs 996KB.

2. ki > 1 for certain i’s, as shown in Tables 2–10. The first column of
each table shows the numbers of all those ki’s.

Table 2
(m, p) = (3, 2)

[k1, . . . , kn] #soln #hty Wu PHC

321 1 6 40ms 470ms
222 1 6 60ms 550ms
2211 2 9 80ms 1s30ms
21111 3 13 130ms 2s290ms

Table 3
(m, p) = (3, 3)

[k1, . . . , kn] #soln #hty Wu PHC

333 1 9 160ms 2s250ms
3222 1 9 250ms 5s70ms
33111 1 9 200ms 4s420ms
32211 2 13 490ms 8s120ms
22221 3 21 870ms 10s480ms
222111 6 32 1s160ms 20s670ms
2211111 11 50 3s310ms 42s190ms
21111111 21 92 7s80ms 1m10s830ms
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Table 4
(m, p) = (4, 2)

[k1, . . . , kn] #soln #hty Wu PHC

2222 3 20 220ms 6s750ms
3311 2 12 150ms 4s730ms
4211 1 8 60ms 3s70ms
32111 3 16 240ms 6s850ms
41111 1 8 80ms 2m510ms
221111 6 30 680ms 14s240ms
311111 4 20 380ms 8s970ms
2111111 9 41 910ms 16s460ms

Table 5
(m, p) = (4, 3)

[k1, . . . , kn] #soln #hty Wu PHC

44211 1 12 330ms 25s550ms
43311 2 16 750ms 53s700ms
43221 2 17 730ms 1m9s320ms
33222 4 29 1s730ms 1m39s800ms
222222 16 120 7s340ms 3m57s880ms
2222211 26 166 15s510ms 9m26s530ms
22221111 45 226 25s300ms 15m20s820ms
222111111 79 360 49s840ms 25m8s680ms
2211111111 140 622 1m35s740ms 41m42s700ms
21111111111 252 1,112 3m34s200ms 1h16m48s270ms

Table 6
(m, p) = (5, 3)

[k1, . . . , kn] #soln #hty Wu PHC

54321 2 20 1s240ms 6m0s660ms
44421 3 30 2s50ms 8m12s730ms
44322 4 37 3s340ms 9m23s770ms
43332 5 49 4s230ms 11m30s110ms
33333 6 65 5s80ms 10m21s130ms
543111 3 23 1s660ms 6m46s850ms
5421111 4 28 1s970ms 9m55s900ms
333321 14 118 12s540ms 24m29s30ms
3222222 60 451 1m2s180ms 1h14m22s370ms

Table 7
(m, p) = (5, 2)

[k1, . . . , kn] #soln #hty Wu PHC

4222 2 16 270ms 24s560ms
5311 1 10 210ms 10s280ms
3322 3 23 360ms 35s40ms
22222 6 44 1s20ms 1m14s520ms
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Table 8
(m, p) = (5, 4)

[k1, . . . , kn] #soln #hty Wu PHC

44444 1 20 2s490ms 49m2s760ms
553322 3 33 6s480ms 1h48m10s470ms
443333 9 102 22s170ms 2h50m18s640ms
544322 4 42 7s950ms 2h14m59s90ms
4443221 18 145 45s710ms -
4433222 32 261 1m25s430ms -

2222222222 3,396 25,938 5h4m39s444ms -

Table 9
(m, p) = (6, 3)

[k1, . . . , kn] #soln #hty Wu PHC

333333 40 413 1m6s560ms 3h22m45s430ms
443322 24 208 30s920ms -
433332 30 286 40s650ms -
3333222 104 830 2m20s260ms -

222222222 876 6,547 30m22s470ms -

Table 10
(m, p) = (6, 4)

[k1, . . . , kn] #soln #hty Wu PHC

664422 3 37 10s0ms -
654333 6 70 22s850ms -
554433 10 123 45s870ms -
444444 15 220 1m10s440ms 22h58m54s70ms

33333333 790 8,413 1h15m45s778ms >148.5h

As we can see from the results above, our novel approach of employing the Pieri
homotopy algorithm for the numerical Schubert calculus has made a considerable
advance in speed. And, in all the cases we have tried, the storage requirement for our
code is much smaller than that of the existing code. The algorithm is particularly
valuable when ki > 1 appears.
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Abstract. In this paper, we discuss an extension of the mortar element method to overlapping
subdomains and nonmatching grids in the overlapped zones. We discuss in particular the case
where more than two subdomains overlap. The method is described and analyzed, as are some
preconditioned iterative methods for solving the linear systems arising from this discretization.
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1. Introduction. Mortar element methods were introduced in [4] for nonover-
lapping domain decompositions in order to couple different variational approximations
in different subdomains. In the finite element context, one important advantage of the
mortar element methods is that they allow for using structured grids in subdomains
and thus are fast solvers [1]. The resulting methods are nonconforming but still yield
optimal approximations. The literature on the mortar element methods is growing
numerous; see [2] and references therein.

In this paper, we shall discuss the case of overlapping subdomains, with meshes
constructed in an independent manner in each subdomain. As pointed out by F.
Hecht, J. L. Lions, and O. Pironneau [12] and J.-L. Lions and O. Pironneau [15],
such a situation can occur if the domain of computation is a scene constructed by
constructive solid geometry in image synthesis and virtual reality: each object of
the scene is described by set operations on primitive shapes like cubes, cylinders,
spheres, and cones. With VRML (the language of virtual reality), the objects may
be described as unions of more elementary objects with primitive shapes, which are
never intersected, so it is not possible to construct a global mesh. Each simple object
must have its individual mesh. In [12, 15], many algorithms (including algorithms
from control theory) for this situation are proposed and cover cases more general
than overlapping subdomains (domain with holes, for example).

We also note that independent of the development of the mortar methods, overlap-
ping domain decomposition with nonmatching grids has been used for finite difference
discretizations in the engineering community: these methods are often referred to as
the chimera methods; see [6, 18]. We refer to [16] and the references therein for the
numerical analysis of these methods.

To our knowledge, mortar methods with overlapping subdomains have been pro-
posed first by Y. Kuznetsov [13], who focused on iterative solvers with Lagrange
multipliers. For two overlapping subdomains, the mortar method has been analyzed
by X. C. Cai, M. Dryja, and M. Sarkis [5] in two dimensions. They have considered
two subdomains, with nonmatching grids and piecewise linear Lagrange finite ele-
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ments. In particular, they have considered the case when the overlapping parameter
is 0 (two rectangular subdomains for an L shaped domain). They have also proposed
iterative solvers and preconditioners for the linear systems arising from the mortar
discretization.

In this paper, we generalize their method in two dimensions, with more than two
subdomains. We shall see that technical difficulties arise when the boundaries of two
subdomains cross each other. For simplicity, we consider the Laplace equation and
rule out the case when the overlap may vanish. For such situations, one should mix
the method described in [5] and the one below. Also, we deal with first order Lagrange
elements, but, with some effort, the ideas below may be generalized to higher order
finite elements.

The paper is organized as follows. In section 2, we propose some mortar discretiza-
tions, and we study the ellipticity of the discrete problems. Section 3 is devoted to
an error analysis following the lines of [4]. In section 4, we propose an alternative
matching condition. In section 5, we study additive Schwarz preconditioners (see
[14, 17] for reviews) for the linear system arising from the mortar discretizations: we
generalize one of the preconditioners proposed in [5] which is not optimal but fairly
easy to implement, and we propose another optimal preconditioner.

2. The discretization.

2.1. First definitions. In all of what follows, c or C will stand for various
positive constants, independent of the geometric parameters.

We consider a polygonal domain Ω of R
2 and the model boundary value problem

in Ω:

−∆u = f in Ω,

u = 0 on ∂Ω.
(2.1)

We consider first a family of overlapping subdomains (Ωk)k∈{1,...,K} with polygonal
shapes covering Ω:

Ω =

K⋃
k=1

Ωk.(2.2)

We denote by (Γlk)1≤l≤Ek
the sides of the polygonal boundary ∂Ωk.

We denote by Hk the diameter of Ωk and by H the maximal diameter H =
max1≤k≤K Hk. We assume that there exists a constant c such that for any k, 1 ≤
k ≤ K, cH ≤ Hk ≤ H. We also suppose that there exists a positive constant τ such
that any subdomain Ωk contains a ball of diameter greater than τH.

For any subdomain Ωk, we denote by δk the minimum distance of overlap between
Ωk and ∪i �=kΩi:

δk = inf
x∈Ωk\∪i�=kΩi

inf
y∈∪i�=kΩi\Ωk

|x− y|.

We also define δ ≡ mink δk.
Assumption 1. We assume that the intersection of two subdomains’ boundaries

can only be isolated points, called crosspoints. We assume that there exists a con-
stant α, 0 < α ≤ π

2 , such that the angles (taken not greater than π
2 ) between two

subdomains’ boundaries crossing each other are all greater than α. For simplicity,
we assume also that a given crosspoint is neither the intersection of more than two
subdomains’ boundaries nor the vertex of a subdomain.
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Assumption 2. We assume that there exists a constant N1 such that, for any ball
B of diameter H, B ∩ Ω is covered by at most N1 subdomains.

This assumption yields two important consequences.
Property 1. We denote by ωk the union of the subdomains intersecting Ωk and

by Ik the set of the integers i such that Ωi ⊂ ωk. There exists a constant n1(N1) such
that, for any k, 1 ≤ k ≤ K, cardinal(Ik) ≤ n1(N1).

Property 2. There exists a constant n2(N1) such that the number of subdomains
containing a given point in Ω is bounded by n2(N1).

We also make the following assumption.
Assumption 3. There exists a constant N2 such that the number of sides Ek of a

given subdomain Ωk is smaller than N2.
As a consequence, we have the following property.
Property 3. The number of crosspoints lying on ∂Ωk is bounded by a constant.
On each subdomain Ωk, we have a family of triangular meshes Tk,hk

whose tri-
angles have maximal diameters hk. The meshes are constructed in an independent
manner. The mesh nodes on ∂Ωk need not match with the mesh nodes in the adja-
cent subdomains. We assume that the families (Tk,hk

)hk
are shape regular and quasi

uniform; see [7]. We agree to simplify the notations by replacing Tk,hk
with Tk.

Assumption 4. We call h = maxkhk, and we assume that, for a positive con-
stant C,

h < Cδ.(2.3)

Associated with the mesh Tk, we consider the spaces Zk and Xk of piecewise
linear Lagrange finite elements:

Zk ≡
{

uk is continuous in Ωk,

∀t ∈ Tk, uk|t is linear

}
, Xk ≡ {uk ∈ Zk, uk = 0 on ∂Ω ∩ ∂Ωk} .

Each space Xk and Zk is supplied with its usual nodal basis functions. We define
X = ΠK

k=0 Xk. The vectors u = (uk)k∈{1,...,K} of X are collections of functions
defined in the subdomains, but no continuity constraint is imposed at the subdomains
boundaries. The nodal basis of X can be found by taking the K-tuple of the nodal
bases of the spaces Xk.

For a side Γlk of ∂Ωk, we denote by Z
l
k the space of functions obtained by taking

the trace on Γlk of the functions of Zk and by T l
k the trace of the mesh Tk on Γlk.

Thus T l
k is composed of elementary segments that are the sides of some triangles of

Tk. The space Zl
k is the space of piecewise linear Lagrange finite elements on T l

k .
Remark 1. All the assumptions on the domain decomposition are not too strin-

gent. Indeed, in the cases of interest described in the introduction, the decomposition
is done a priori before constructing the mesh and therefore not through an automatic
mesh partitioner. In addition, two other assumptions on the meshes will be made
below.

2.2. The matching condition. In order to discretize (2.1), we need to de-
fine a subspace Y of X by imposing weak continuity constraints at the subdomain
boundaries ∂Ωk, 1 ≤ k ≤ K.

For a side Γlk of ∂Ωk\∂Ω, we denote by W̃ l
k the subspace of Zl

k of the functions
whose restrictions to the extreme elementary segments (the first and the last) of T l

k

are constant; see Figure 2.1. Such spaces are used as mortar spaces for the nonover-
lapping case (see [4]). Here, we will have to additionally modify them locally, near
the crosspoints.
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Fig. 2.1. The nodal bases of the spaces Zl
k and W̃ l

k; here, the dimension of Zl
k is five.

Let (ji)i∈{1,...,nl
k} be the family of the indices such that |Γlk ∩Ωji | > 0 and ji �= k.

The number nlk is the number of subdomains covering Γlk. Note that, from Property

1, nlk is bounded by n1(N1). For i ∈ {1, . . . , nlk}, we define Γl,ik = Γlk∩Ωji . From (2.2),
we have the following overlapping decomposition:

Γlk =

nl
k⋃

i=1

Γl,ik .

Call plk(x) the piecewise constant counting function defined on Γlk by

plk(x) =

nl
k∑

i=1

1Γl,i
k
(x),(2.4)

which represents the number of subdomains covering x. Here, 1Γl,i
k

is the characteristic

function of Γl,ik (and is equal to one if x ∈ Γl,ik and is zero otherwise). From (2.2) and

Property 2, plk is greater than or equal to one and bounded from above by a constant.

Given W l
k, a space of test functions defined on Γlk, the first possible matching

condition on Γlk is of the form

∀w ∈ W l
k,

∫
Γl
k

1

plk(x) + 1


uk(x)− 1

plk(x)

nl
k∑

i=1

1Γl,i
k
(x)uji(x)


w(x)dx = 0.(2.5)

Basically, the space W l
k will be a subspace of W̃ l

k, and the spaces will differ essentially
due to the presence of crosspoints.

It now remains to define the space W l
k. Suppose that for i ∈ {1, . . . , nlk}, Γlk ∩

∂Ωji �= ∅.1 Then, from Assumption 1, we know that the intersections do not take

place at a vertex of ∂Ωji and let Γl
′
ji
be the side of ∂Ωji such that Γlk ∩ Γl

′
ji
is a point

denoted by x∗. If no special care is taken for the choices of W l
k and W l′

ji
, then the

matching condition (2.5) on Γlk and Γl
′
ji

will strongly couple the degrees of freedom
(d.o.f.) of uk and uji near the crosspoint x∗, and there might be cases when these
conditions are too restrictive; i.e., the functions uk and uji must be constant—even
zero—near x∗. To avoid such a situation, and also in order to get a solver with good
parallel properties (see section 5), we have to relax the weak continuity condition
near x∗.

We call (xm)m∈{1,...,M l
k} the nodes of T l

k different from the endpoints of Γlk and

(φm)m∈{1,...,M l
k} (resp., (ψm)m∈{0,...,M l

k+1}) the nodal basis functions of W̃ l
k (resp.,

of Zl
k). Note that φm = ψm for 2 ≤ m ≤ M l

k − 1 and φ1 = ψ0 + ψ1 and φM l
k
=

ψM l
k
+ ψM l

k+1 .

1The situation Γl
k ∩ ∂Ωji = ∅ corresponds to Γl

k ⊂ Ωji .
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1
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X

Fig. 2.2. The nodal bases of the spaces W l,x∗
k and Xl,x∗

k . (Only two subdomains have been
represented.)

We select the nodes of T l
k for which the support of the associated basis function of

Xk does not intersect Γl
′
ji
: we obtain the set of nodes (xm)m∈{1,...,m1}∪{m2,...,M l

k}. We

call φ̃m1
the continuous function vanishing outside (xm1−1, xm2

), linear on (xm1−1, xm1
)

and on (xm1 , xm2
), such that φ̃m1

(xm1
) = 1. Likewise, φ̃m2

is the continuous function
vanishing outside (xm1 , xm2+1), linear on (xm1 , xm2) and on (xm2 , xm2+1), such that

φ̃m2(xm2) = 1. The space W l,x∗
k is defined by

W l,x∗
k ≡ span(φ1, . . . , φm1−1, φ̃m1 , φ̃m2 , φm2+1, . . . , φM l

k
).(2.6)

The space W l,x∗
k is displayed in Figure 2.2. For what follows, we also define the space

X l,x∗
k ≡ {u ∈ Zl

k, u = 0 at the endpoints of Γlk and xm1+1, . . . , xm2−1}
= span(ψ1, . . . , ψm1

, ψm2
, . . . , ψM l

k
).

(2.7)

Definition 2.1. For the crosspoint x∗, we define the zone of influence of x∗ on
Γlk as the interval (xm1−1, xm2+1). We also define the zone of influence of a vertex x∗

of Ωk on Γlk as the union of the two elements of T l
k next to x∗. From Assumption 1,

the zone of influence of a crosspoint has a size smaller than Ch.
Assumption 5. The zones of influence of two crosspoints on Γlk are disjoint.

Moreover, the zones of influence on Γlk of a crosspoint and a vertex of Ωk are disjoint.
Finally, we define X l

k as the set of crosspoints on Γlk, and we set

W l
k ≡

⋂
x∗∈X l

k

W l,x∗
k(2.8)

and, likewise,

X l
k ≡

⋂
x∗∈X l

k

X l,x∗
k ,(2.9)

and Y is the subspace of X defined by

Y ≡ {u ∈ X; ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , Ek}, u satisfies (2.5)}(2.10)
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for W l
k defined by (2.8) and (2.6).

Remark 2. The functions in W l
k will resemble those of W̃ l

k except at a few nodes
near crosspoints. Furthermore, from Assumption 5, these exceptional regions around
crosspoints are disjoint.

Remark 3. The spaces W l
k and X l

k have the same dimension.
Let Vk be the set of the nodes containing
1. the vertices of ∂Ωk,
2. all the other nodes of Tk on ∂Ωk such that the support of the associated nodal

basis function of Xk intersects another subdomain’s boundary.
Let u be a function in L2(Γlk). Under a technical but reasonable assumption on the
mesh, the following problem is well posed: find ulk ∈ Zl

k such that

ulk is given at the nodes of Γlk ∩ Vk,

∀wl
k ∈ W l

k,

∫
Γl
k

1

plk(x) + 1
ulk(x)w

l
k(x)dx =

∫
Γl
k

1

plk(x) + 1
u(x)wl

k(x)dx.
(2.11)

This is a corollary of the following lemma.
Lemma 2.2. For a given crosspoint x∗ on Γlk, let (xm)m∈{1,...,m1}∪{m2,...,M l

k} be

the nodes of T l
k involved in the above construction of W l,x∗

k . Let δ−−, δ−, δ+, and δ++

be defined by δ−− =
xm1−xm1−1

xm2−xm1
, δ− =

xm1+1−xm1

xm2−xm1
< 1, δ+ =

xm2−xm2−1

xm2−xm1
< 1, and

δ++ =
xm2+1−xm2

xm2
−xm1

. Assume that there exists a constant c such that for all crosspoints

x∗,

3
2δ

− + δ−− − (δ+)2 ≥ c,

3
2δ

+ + δ++ − (δ−)2 ≥ c,
(2.12)

and there exists a constant C independent of h such that

inf
u∈Xl

k

sup
w∈Wl

k
w �=0

∫
Γl
k

1
plk(x)+1

u(x)w(x)dx

‖w‖L2(Γl
k)

≥ C‖u‖L2(Γl
k).(2.13)

Proof. If there is no crosspoint on Γlk, then the result can be found in [2, Lemma 1]
and its proof. In the opposite case, consider the tridiagonal matrix M of the bilinear
form in the nodal bases of X l

k ×W l
k. We wish to prove that there exists a constant

C such that the symmetrized matrix 1
2 (M +MT ) has all its eigenvalues not smaller

than Ch. This will be a consequence of the stronger property: for any i,

Mi,i − 1

2
(Mi,i+1 +Mi+1,i +Mi,i−1 +Mi−1,i) ≥ Ch.(2.14)

The estimate (2.14) is true if the node corresponding to the ith nodal basis func-
tion of X l

k and W l
k is not contained in the region of influence of a crosspoint; see

the proof of [2, Lemma 1]. In the opposite case, there is exactly one crosspoint
x∗ in the support of the ith nodal basis function of W l

k; assume with no restric-
tions that in the neighborhood of x∗, plk(s) = r + 1 for s < x∗, and plk(s) = r

for s > x∗. We have W l,x∗
k = span(φ1, . . . , φm1−1, φ̃m1 , φ̃m2 , φm2+1, . . . , φM l

k
) and

X l,x∗
k = span(ψ1, . . . , ψm1

, ψm2
, . . . , ψM l

k
). Without restriction, we can assume that
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the ith (resp., (i+ 1)th) nodal basis function of W l
k is φ̃m1

(resp., φ̃m2
). We have

Mi,i−1 = Mi−1,i =
xm1

−xm1−1

6(r+1) ,

Mi,i =
xm1

−xm1−1

3(r+1) + (xm1+1 − xm1)(
1

2(r+1) −
xm1+1−xm1

6(r+1)(xm2
−xm1

) ),

Mi,i+1 =
1
6r

(xm2−xm2−1)
2

xm2
−xm1

and

Mi+1,i+2 = Mi+2,i+1 =
xm2+1−xm2

6r ,

Mi+1,i+1 =
xm2+1−xm2

3r + (xm2
− xm2−1)(

1
2r −

xm2−xm2−1

6r(xm2−xm1 ) ),

Mi+1,i =
1

6(r+1)

(xm1+1−xm1
)2

xm2−xm1
.

Then (2.14) for i and i+ 1 is equivalent to

xm1 − xm1−1

6(r + 1)
+
xm1+1 − xm1

2(r + 1)

(
1− 1

2

xm1+1 − xm1

(xm2 − xm1)

)
− 1

12r

(xm2 − xm2−1)
2

xm2 − xm1

≥ Ch

(2.15)

and

xm2+1 − xm2

6r
+
xm2 − xm2−1

2r

(
1− 1

2

xm2 − xm2−1

(xm2 − xm1
)

)
− 1

12(r + 1)

(xm1+1 − xm1)
2

xm2 − xm1

≥ Ch.

(2.16)

From the quasi-uniformity assumption, and from Assumption 5, this is equivalent to

δ−−
3 + δ−(1− 1

2δ
−)− r+1

6r (δ+)2 ≥ C,

δ++

3 + δ+(1− 1
2δ

+)− r
6(r+1) (δ

−)2 ≥ C.
(2.17)

But (2.17) is a consequence of

3
2δ

− + δ−− − (δ+)2 ≥ C,

3
2δ

+ + δ++ − 1
2 (δ

−)2 ≥ C,
(2.18)

because r ≥ 1. Suppose now that assumption (2.12) is satisfied. Then, if (2.15)
and (2.16) are satisfied and the matrix 1

2 (M + MT ) is positive definite with its
eigenvalues not less than Ch, for any vector U , (MU,U) ≥ Ch(U,U), which yields
(2.13).

Remark 4. From the proof of Lemma 2.2, (2.11) is a linear system with a square
matrix M of size dim(W l

k), nonsymmetric, but such that (MU,U) ≥ ch(U,U). In
other words, the matrix M resembles a mass matrix.

From the previous lemma, we deduce the following.
Corollary 2.3. Under assumption (2.12), the problem (2.11) has a unique

solution. Furthermore, if we impose that ulk = 0 at the nodes in Γlk∩Vk, then we have∥∥ulk∥∥L2(Γl
k)

≤ C‖u‖L2(Γl
k).(2.19)
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Likewise, let xi be a given node in Γlk ∩ Vk. Under assumptions (2.12), the solution

of the problem, find ψ̃i ∈ Zl
k such that

ψ̃i(xi) = 1,

ψ̃i = 0 at the other nodes of Γlk ∩ Vk,

∀wl
k ∈ W l

k,

∫
Γl
k

1

plk(x) + 1
ψ̃i(x)w

l
k(x)dx = 0,

(2.20)

satisfies ∥∥∥ψ̃i

∥∥∥
L2(Γl

k)
≤ Ch

1
2 .(2.21)

Remark 5. Consider u = (uk)k ∈ Y . Then it is clear from (2.5) that all the
nodal values of uk located on Γlk\Vk can be found from the d.o.f. in the adjacent
subdomains and from the d.o.f. on Vk by solving a system with a one-dimensional
mass matrix. The nodal values of uk located on ∂Ωk\Vk can thus be seen as slave
nodal values.

2.3. The discrete problem. From now on, we shall assume that the conditions
(2.12) are satisfied.

Let σ be the counting function σ(x) =
∑K

k=1 1Ωk
(x). The quantity σ(x) represents

the number of subdomains covering x. From Property 2, σ is bounded from above by
a constant, and σ ≥ 1. Consider the discrete problem: find u ∈ Y such that for all
v ∈ Y ,

K∑
k=1

∫
Ωk

1

σ
∇uk · ∇vk =

K∑
k=1

∫
Ωk

1

σ
fvk.(2.22)

Call a the symmetric bilinear form on Y :

a(u, v) =

K∑
k=1

∫
Ωk

1

σ
∇uk · ∇vk.(2.23)

The following lemma allows us to state that problem (2.22) has a unique solution
for Y defined by (2.10).

Lemma 2.4. The symmetric bilinear form a is positive definite.
Proof. The bilinear form a is clearly positive semidefinite.
Let u ∈ Y satisfy a(u, u) = 0. Then uk is a constant ξk for 1 ≤ k ≤ K. Let

Ξ = (ξ1, . . . , ξK)T . Taking w = 1 in (2.5) and summing up over all the sides of ∂Ωk,
we obtain for each subdomain a linear equation for ξ. The system writes SΞ = 0,
where S is an irreducible K ×K matrix such that

• for all k ∈ {1, . . . ,K}, Skk > 0,
• for all k ∈ {1, . . . ,K}, for all l �= k, Skl ≤ 0,

• for all k ∈ {1, . . . ,K}, ∑K
l=1 Skl = 0.

From these properties, it is clear that there exists ξ such that all the ξk equal ξ. Now
taking a subdomain Ωk such that meas(∂Ωk ∩ ∂Ω) > 0, we have that uk = 0, which
yields ξ = 0.

Now, we wish to obtain an estimate on the ellipticity constant under typical but
not necessarily optimal assumptions. For that, we recall that we have denoted by ωk
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the union of the subdomains intersecting Ωk and by Ik the set of the integers i such
that Ωi ⊂ ωk. Let us make the following assumption.

Assumption 6. Let Ωk be a subdomain. We assume that for a positive constant
C, for each i �= k ∈ Ik, there exists a side Γei and a subinterval γi of Γ

e
i such that

• γi ⊂ Ωk,
• |γi| > CH,
• γi is the union of elements of T e

i .
Lemma 2.5. Suppose that Assumptions 1 to 6 are satisfied. Then for h

H small
enough, there exists a constant C independent of h, H, and the overlap such that for
any u in Y ,

∑
l∈Ik

(〈uk〉 − 〈ul〉)2 ≤ C
∑
l∈Ik

∫
Ωl

|∇ul|2,(2.24)

where

〈uk〉 = 1

|Ωk|
∫

Ωk

uk.

Proof. For i ∈ Ik and Γei as in Assumption 6, the subdomains intersecting Γei are
(Ωjm), jm = 1, . . . , nei . We wish to bound

∣∣∣∣∣∣
∫
γi

1

pei (x) + 1


〈ui〉 − 1

pei (x)

ne
i∑

m=1

1Γe,m
i

(x)〈ujm〉

 dx

∣∣∣∣∣∣
by using (2.5). The characteristic function 1γi does not belong to W e

i , so it is not a
test function for (2.5). We thus take the test function in W e

i supported in γi, equal
to one at all the slave nodes of Ωi whose related shape function is supported in γi.

We call it wi. We call
◦
γi the region where wi = 1. Clearly, from Property 3 and

Assumption 1, the measure meas(γi\ ◦
γi) is bounded by ch. From a scaled Poincaré–

Wiertinger inequality, we have

∣∣∣∣∣∣
∫
γi

wi(x)

pei (x) + 1


(〈ui〉 − ui(x))− 1

pei (x)

ne
i∑

m=1

1Γe,m
i

(x)(〈ujm〉 − ujm(x))


 dx

∣∣∣∣∣∣
≤ CH

( ∑
m∈Ik

∫
Ωm

|∇um|2
) 1

2

,

which yields, thanks to (2.5),

∣∣∣∣∣∣
∫
γi

1

pei (x) + 1


〈ui〉 − 1

pei (x)

ne
i∑

m=1

1Γe,m
i

(x)〈ujm〉

wi(x)dx

∣∣∣∣∣∣
≤ CH

( ∑
m∈Ik

∫
Ωm

|∇um|2
) 1

2

.
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Therefore,∣∣∣∣∣∣
∫
γi

1

pei (x) + 1


〈ui〉 − 〈uk〉 − 1

pei (x)

ne
i∑

m=1

1Γe,m
i

(x)(〈ujm〉 − 〈uk〉)

 dx

∣∣∣∣∣∣
−
∣∣∣∣∣∣
∫
γi

1− wi(x)

pei (x) + 1


〈ui〉 − 〈uk〉 − 1

pei (x)

ne
i∑

m=1

1Γe,m
i

(x)(〈ujm〉 − 〈uk〉)


∣∣∣∣∣∣

≤ CH

( ∑
m∈Ik

∫
Ωm

|∇um|2
) 1

2

.

This yields the estimate

∣∣∣∣∣
∑
l∈Ik

ali(〈ul〉 − 〈uk〉)
∣∣∣∣∣− hi

H

∣∣∣∣∣
∑
l∈Ik

bli(〈ul〉 − 〈uk〉)
∣∣∣∣∣ ≤ C

(∑
i∈Ik

∫
Ωi

|∇ui|2
) 1

2

,(2.25)

where it can be checked, thanks to Assumption 6, that
• aii > C, |aki| > C,
• ali ≤ 0 if l �= i,
• ∑

l∈Ik
ali = 0,

• |bli| < C.
Thus, the matrix (aij)i �=k,j �=k is a square M -matrix (in particular,

∑
k �=l∈Ik

ali >
C). Therefore it is invertible and its inverse has a l∞-norm bounded independently
on h and H, and, thanks to Property 1, we have the desired result for h small
enough.

Remark 6. If Assumption 6 is not satisfied, then, thanks to the quasi-uniformity
assumption on the grids inside the subdomains, we would obtain instead of (2.24) the
estimate

∑
l∈Ik

(〈uk〉 − 〈ul〉)2 ≤ Cmax
l∈Ik

(
1 + log

H

hl

)∑
l∈Ik

∫
Ωl

|∇ul|2.(2.26)

To prove this estimate, one has to take for each i �= k an index e such that Γei ∩ Ωk

contains at least the support of a nodal basis function wi of W e
i . We have from the

quasi-uniformity assumption the well-known estimate

‖um − 〈um〉‖L∞(Ωm) ≤ C

(
1 + log

H

hm

) 1
2

‖∇um‖L2(Ωm).

Thus ∣∣∣∣∣∣
∫

Γe
i

wi(x)

pei (x) + 1


(〈ui〉 − ui(x))− 1

pei (x)

ne
i∑

m=1

1Γe,m
i

(x)(〈ujm〉 − ujm(x))


 dx

∣∣∣∣∣∣
≤ Chi

( ∑
m∈Ik

(
1 + log

H

hm

)∫
Ωm

|∇um|2
) 1

2

,
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which yields, thanks to (2.5),

∣∣∣∣∣∣
∫

Γe
i

1

pei (x) + 1


〈ui〉 − 1

pei (x)

ne
i∑

m=1

1Γe,m
i

(x)〈ujm〉

wi(x)dx

∣∣∣∣∣∣
≤ Chi

( ∑
m∈Ik

(
1 + log

H

hm

)∫
Ωm

|∇um|2
) 1

2

.

This yields the estimate

∣∣∣∣∣
∑
l∈Ik

ali(〈ul〉 − 〈uk〉)
∣∣∣∣∣ ≤ C

(∑
i∈Ik

(
1 + log

H

hm

)∫
Ωi

|∇ui|2
) 1

2

,

where aii > C, |aki| > C, ali ≤ 0 if l �= i,
∑

l∈Ik
ali = 0, and therefore (2.26).

Remark 7. Lemma 2.5 (or Remark 6) will be used both for the ellipticity analysis
and for the consistency error analysis.

Lemma 2.6. Under Assumptions 1 to 6 and (2.12), there exists a constant C
such that for all u ∈ Y ,

K∑
k=0

H2〈uk〉2 ≤ C

K∑
k=0

∫
Ωk

|∇uk|2,(2.27)

and there exists a constant C independent of h and H such that for all u ∈ Y ,

K∑
k=0

||uk||2H1(Ωk) ≤ C

K∑
k=0

∫
Ωk

|∇uk|2.(2.28)

Proof. Choose the coordinates so that Ω is contained in the square (0, diam(Ω))2.
From the quasi-uniformity assumption on the subdomains, there exists a constant δ
independent of h and H, 0 < δ ≤ 1, such that the straight lines ∆j of equations

x2 = jδH, 1 ≤ j ≤ J = diam(Ω)
δH , cross each subdomain Ωk at least once. For a

subdomain Ωk, we denote by ζk,j

ζk,j = sup
x∈Ωk∩∆j

x1 if meas(Ωk ∩∆j) > 0, ζk,j = −∞ if meas(Ωk ∩∆j) = 0.

Let (kji )1≤i≤Ij be the indices such that the line ∆j crosses Ωkj
i
, numbered in such a

way that ζkj
i ,j

is an increasing sequence. Necessarily, we have meas(Ωkj
i
∩Ωkj

i+1
) > 0.

From Assumption 2, we know that there exists a constant C such that Ij ≤ C
H . We
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have

Ij∑
i=1

〈ukj
i
〉2 ≤

Ij∑
i=1


〈ukj

1
〉+

∑
1≤l≤i−1

〈ukj
l+1

〉 − 〈ukj
l
〉



2

≤
Ij∑
i=1


2〈ukj

1
〉2 + C(i− 1)

∑
1≤l≤i−1

∑
m∈I

k
j
l

∫
Ωm

|∇um|2



≤ C

H

∫
Ω

k
j
1

|∇ukj
1
|2 + C

H2

Ij−1∑
i=1

∑
m∈I

k
j
i

∫
Ωm

|∇um|2

≤ C

H2

Ij−1∑
i=0

∑
m∈I

k
j
i

∫
Ωm

|∇um|2.

Finally, we obtain

K∑
k=1

〈uk〉2 ≤ C

H2

J∑
j=1

Ij−1∑
i=1

∑
m∈I

k
j
i

∫
Ωm

|∇um|2

≤ C

H2

K∑
k=1

∫
Ωk

|∇uk|2,

since each subdomain appears a finite number of times in the triple sum above.
Then (2.28) is a direct application of the Poincaré–Wiertinger inequality.
Remark 8. In fact, for nonconforming methods, the ellipticity analysis can

be postponed after the consistency analysis and simplified by using a clever duality
argument [9]. However, this would not lead to an optimal result as in Lemma 2.6
because the consistency estimate would not be completely optimal. (There are, in any
case, logarithmic factors in h/H.) Furthermore, we have seen in Remark 7 that the
consistency error analysis uses (2.26) and Lemma 2.5.

Finally, we obtain the following.
Corollary 2.7. Under Assumptions 1 to 6 and (2.12), there exists a constant

Ce independent on the mesh parameters such that

∀u ∈ Y, a(u, u) ≥ Ce

K∑
k=1

∫
Ωk

(|∇uk|2 + u2
k

)
.(2.29)

If only Assumptions 1 to 5 and (2.12) are satisfied, we have (2.29), but we know only
that there exists a constant C independent on the mesh parameters such that

Ce ≤ C
1

maxl(1 + log H
hl
)
.(2.30)

3. Error analysis. Let us introduce the broken seminorm and norm on∏K
k=1 H

1(Ωk):

∀u ∈
K∏
k=1

H1(Ωk), |u|2∗ ≡
K∑
k=1

∫
Ωk

|∇uk|2, ‖u‖2
∗ ≡

K∑
k=1

∫
Ωk

(|∇uk|2 + u2
k

)
.(3.1)
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Let u∗ be the solution of the continuous problem (2.1). With an abuse of notations,

we still call u∗ the vector of
∏K

k=1 H
1(Ωk), defined by u∗k = u∗|Ωk

. By the Berger–
Scott–Strang lemma (see [3, 19]), we know that the error of the method is the sum of
a consistency error and of a best approximation error:

‖u− u∗‖∗ ≤ 1

Ce

(
inf
v∈Y

|u∗ − v|∗ + sup
0 �=v∈Y

|a(u∗, v)−∑K
k=1

∫
Ωk

1
σfvk|

|v|∗

)
,(3.2)

where Ce is the ellipticity constant. We have seen above that under Assumptions
1 to 6, Ce is bounded independently of the mesh parameters and the subdomains
diameters.

3.1. Consistency error. For the consistency error, we first need to study a
weighted L2 projection operator: call π̃lk the projection operator on W l

k defined by

∀wl
k ∈ W l

k,

∫
Γl
k

1

plk(x) + 1
(π̃lku)(x)w

l
k(x)dx =

∫
Γl
k

1

plk(x) + 1
u(x)wl

k(x)dx.(3.3)

It can be checked that the functional

|||u||| ≡ sup
0 �=v∈H 1

2 (Γl
k)

∣∣∣∫Γl
k

1
plk(x)+1

u(x)v(x)dx
∣∣∣

‖v‖
H

1
2 (Γl

k)

defines a norm on C∞(Γlk). This is due in particular to the fact that 1
plk(x)+1

is

a positive weight function in L∞ bounded away from 0. We call (H
1
2 )′(Γlk) the

completion of C∞(Γlk) for this norm. For u ∈ (H
1
2 )′(Γlk), we define ‖u‖

(H
1
2 )′(Γl

k)
=

|||u|||.
The properties of the operator π̃lk are given by the following lemma.
Lemma 3.1. For any real number r, 0 ≤ r ≤ 1, we have the following estimate

for any function u ∈ Hr(Γlk):

‖u− π̃lku‖L2(Γl
k) + h

− 1
2

k ‖u− π̃lku‖(H
1
2 )′(Γl

k)
≤ Chrk|u|Hr(Γl

k).(3.4)

Proof. The proof is analogous to the one in [4].
Lemma 3.2. Assume that the solution u∗ of (2.1) is such that u∗|Ωk

belongs to
Hσk(Ωk) with σk >

3
2 . Then the consistency error is bounded by

C

(
1 + max

k
log

H

hk

)
 K∑

k=1

max
i∈Ik

(
1 +

√
hi
hk

)2

h
2(σk−1)
k |u∗|2Hσk (Ωk)




1
2

.

Proof. We apply Green’s formula in each subdomain and obtain that

a(u∗, v)−
K∑
k=1

∫
Ωk

1

σ
fvk

=

K∑
k=1

∫
Ωk

1

σ
(−∆u∗ − f)vk +

K∑
k=1

∫
∂Ωk

1

σ−
∂u∗

∂nk
vk −

K∑
k=1

Ek∑
l=1

nl
k∑

i=1

∫
Γl,i
k

[
1

σ

]
∂u∗

∂nk
vji ,

(3.5)
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where nk is the unit vector normal to ∂Ωk outgoing from Ωk and σ− is the trace of
σ|Ωk

on ∂Ωk. We denote by σ+ the trace of σ|Ω\Ωk
on ∂Ωk. Note that σ

+ = σ− − 1.

The function [ 1σ ] is the jump 1
σ+ − 1

σ− = 1
σ−(σ−−1) .

Thus

a(u∗, v)−
K∑
k=1

∫
Ωk

1

σ
fvk =

K∑
k=1

Ek∑
l=1

∫
Γl
k

1

σ−
∂u∗

∂nk


vk −

nl
k∑

i=1

1Γl,i
k

1

σ− − 1
vji


 ,(3.6)

but on Γlk we have that plk = σ− − 1, so by using (2.5),

a(u∗, v)−
K∑
k=1

∫
Ωk

1

σ
fvk =

K∑
k=1

Ek∑
l=1

∫
Γl
k

1

plk + 1

∂u∗

∂nk


vk −

nl
k∑

i=1

1Γl,i
k

1

plk
vji




=
K∑
k=1

Ek∑
l=1

∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− wl

k

)
vk −

nl
k∑

i=1

1Γl,i
k

1

plk
vji


 ∀wl

k ∈ W l
k.

(3.7)

Therefore

a(u∗, v)−
K∑
k=1

∫
Ωk

1

σ
fvk

=

K∑
k=1

Ek∑
l=1

∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− wl

k

)
vk − 〈vk〉 −

nl
k∑

i=1

1Γl,i
k

1

plk
(vji − 〈vk〉)




=

K∑
k=1

Ek∑
l=1

∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− wl

k

)



vk − 〈vk〉 −
nl
k∑

i=1

1Γl,i
k

1

plk
(vji − 〈vji〉)

+

nl
k∑

i=1

1Γl,i
k

1

plk
(〈vk〉 − 〈vji〉)


 .

(3.8)

Let us introduce some useful tools before choosing wl
k. Call ṽji and vji the piecewise

linear and continuous functions on Ωji , respectively, obtained from vji − 〈vji〉 and
〈vk〉 − 〈vji〉 in the following way: ṽji = vji − 〈vji〉, vji = 〈vk〉 − 〈vji〉 at all the nodes
of Tji , except those on ∂Ωji or in the balls of radius h centered at the crosspoints,
where ṽji = vji = 0; see Figure 3.1. Then it is possible to extend ṽji |Γl,i

k
and vji by 0

on Γlk. We still call these extensions ṽji and vji : these functions belong to H
1
2 (Γlk).

We have

|ṽji |2
H

1
2 (Γl

k)
≤ C

(
1 + log

H

hji

)
|vji |2H1(Ωji

),

‖ṽji‖2
L∞(Γl

k) ≤ ‖vji − 〈vji〉‖2
L∞(Ωji

) ≤ C

(
1 + log

H

hji

)
|vji |2H1(Ωji

),

and

‖ṽji − vji + 〈vji〉‖2
L2(Γl,i

k )
≤ Chji

(
1 + log

H

hji

)
|vji |2H1(Ωji

).
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Ωj
i

Ωk

Fig. 3.1. In black are the nodes where the functions ṽji and vji are set to 0.

We also have that

|vji |2
H

1
2 (Γl

k)
≤ C|〈vji〉 − 〈vk〉|2

and

‖vji − (〈vji〉 − 〈vk〉)‖2
L2(Γl,i

k )
≤ Chji |〈vji〉 − 〈vk〉|2.

Let us go back to the analysis of (3.8); we choose wl
k = π̃lk(

∂u∗
∂nk

). We decompose
the integral

I lk =

∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− π̃lk

(
∂u∗

∂nk

))(
1Γl,i

k

1

plk
(vji − 〈vji〉)

)

into the sum∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− π̃lk

(
∂u∗

∂nk

))(
1Γl,i

k

1

plk
ṽji

)

+

∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− π̃lk

(
∂u∗

∂nk

))(
1Γl,i

k

1

plk
(vji − 〈vji〉 − ṽji)

)
.

The function 1Γl,i
k

1
plk
ṽji = 1

plk
ṽji belongs to H

1
2 (Γlk) because ṽji vanishes near the

points where plk jumps, and its H
1
2 -norm is bounded by

C

((
1 + log

H

hji

) 1
2

‖ṽji‖L∞(Γl
k) + ‖ṽji‖H 1

2 (Γl
k)

)
.

From (3.4), we have

|I lk| ≤ Ch
σk− 3

2

k |u∗|Hσk (Ωk)


 h

1
2

k

((
1 + log H

hji

) 1
2 ‖ṽji‖L∞(Γl

k) + |ṽji |H 1
2 (Γl

k)

)

+ ‖ṽji − vji‖L2(Γl,i
k )




≤ Chσk−1
k |u∗|Hσk (Ωk)

(
1 + log

H

hji

)(
1 +

√
hji
hk

)
|vji |H1(Ωji

).
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We decompose the integral

J l
k =

∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− π̃lk

(
∂u∗

∂nk

))(
1Γl,i

k

1

plk
(〈vk〉 − 〈vji〉)

)

into the sum∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− π̃lk

(
∂u∗

∂nk

))(
1Γl,i

k

1

plk
vji

)

+

∫
Γl
k

1

plk + 1

(
∂u∗

∂nk
− π̃lk

(
∂u∗

∂nk

))(
1Γl,i

k

1

plk
(〈vk〉 − 〈vji〉 − vji)

)
.

The function 1Γl,i
k

1
plk
vji belongs to H

1
2 (Γlk), and its H

1
2 -norm is bounded by

C

(
1 + log

H

hji

) 1
2

|〈vk〉 − 〈vji〉|.

Exactly as above, we obtain that

|J l
k| ≤ Chσk−1

k |u∗|Hσk (Ωk)

(
1 + log

H

hji

) 1
2

(
1 +

√
hji
hk

)
|〈vji〉 − 〈vk〉|.

We have seen in Remark 6 that, at worst,

|〈vji〉 − 〈vk〉|2 ≤ C

(
1 + max

j∈Ik

log
H

hj

) ∑
j∈Ik

∫
Ωj

|∇vj |2.

We conclude by summing up all the contributions. We get

sup
0 �=v∈Y

|a(u∗, v)−∑K
k=1

∫
Ωk

1
σfvk|

|v|∗

≤ C

(
1 + max

k
log

H

hk

)
 K∑

k=1

max
i∈Ik

(
1 +

√
hi
hk

)2

h
2(σk−1)
k |u∗|2Hσk (Ωk)




1
2

.

Remark 9. It may be possible to prove a better result than Lemma 3.2. This
question will be addressed in a forthcoming work.

3.2. Best approximation error. Call ik the interpolation operator onto Xk;
we have for u∗k ∈ H1+σk(Ωk), with σk > 0,

K∑
k=1

h2
k|u∗k − iku

∗
k|2H1(Ωk) + ‖u∗k − iku

∗
k‖2

L2(Ωk) ≤ C

K∑
k=1

h2+2σk

k |u∗k|2H1+σk (Ωk).

However, the vector (iku
∗
k)k=1,...,K does not belong to Y , so we have to modify it in

such a way that the matching conditions are satisfied at the subdomains’ boundaries.
The function iku

∗
k will first be corrected on ∂Ωk; then the correction will be

extended in the whole domain Ωk by means of the trivial lifting operator Lk, which
consists of setting the values at the nodes contained in Ωk to 0. The properties of this
standard lifting operator are given by the following lemma.
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Lemma 3.3. There exists a constant C > 0 such that for any u ∈ H
1
2 (∂Ωk), such

that for all l ∈ {1, . . . , Ek}, u|Γl
k
∈ X l

k, we have

|Lku|H1(Ωk) ≤ Ch
− 1

2

k ‖u‖L2(∂Ωk)(3.9)

and

‖Lku‖L2(Ωk) ≤ Ch
1
2

k ‖u‖L2(∂Ωk).(3.10)

Proof. It is classical that

‖Lku‖L2(Ωk) ≤ Ch
1
2

k ‖u‖L2(∂Ωk).

Then (3.9) is obtained by an inverse inequality.

Consider the side Γlk, and let π∗ be the operator from
∏nl

k
i=1 L

2(Γl,ik ) into X l
k

defined by

∀wl
k ∈ W l

k,

∫
Γl
k

1

plk(x) + 1
(π∗(uji)i=1,...,nl

k
)(x)wl

k(x)dx

=

∫
Γl
k

1

plk(x) + 1

nl
k∑

i=1

1

plk(x)
1Γl,i

k
(x)uji(x)w

l
k(x)dx;

(3.11)

then we have the following lemma.
Lemma 3.4. There exists a constant C > 0 such that for any (uji)i=1,...,nl

k
∈∏nl

k
i=1 L

2(Γl,ik ),

‖π∗(uji)i=1,...,nl
k
‖L2(Γl

k) ≤ C

nl
k∑

i=1

‖uji‖L2(Γl,i
k ).(3.12)

Proof. Consider first the operator π̃ from
∏nl

k
i=1 L

2(Γl,ik ) into W l
k defined by

∀wl
k ∈ W l

k,

∫
Γl
k

1

plk(x) + 1
(π̃(uji)i=1,...,nl

k
)(x)wl

k(x)dx

=

∫
Γl
k

1

plk(x) + 1

nl
k∑

i=1

1

plk(x)
1Γl,i

k
(x)uji(x)w

l
k(x)dx.

(3.13)

Then it is clear that

‖π̃(uji)i=1,...,nl
k
‖L2(Γl

k) ≤ C

nl
k∑

i=1

‖uji‖L2(Γl,i
k ).(3.14)

Now π∗(ui)i=1,...,nl
k
is obtained by correcting π̃(ui)i=1,...,nl

k
as in [4, Lemma 4.3] by

using the functions defined in (2.20), and we obtain the desired estimate (3.12) from
(2.21).

We are now ready to establish a best approximation estimate.
We correct ik(u

∗
k) in subdomain Ωk in order to satisfy the matching condition on

∂Ωk. To do so, we add to ik(u
∗
k) the function

ek ≡
Ek∑
l=1

Lk

(
π∗(iji(u

∗
ji)− ik(u

∗
k))i=1,...,nl

k

)
.
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The vector (ik(u
∗
k)+ek)1≤k≤K belongs to Y . Indeed, Lk(π

∗(iji(u
∗
ji
)−ik(u

∗
k))i=1,...,nl

k
)

vanishes in the triangles strictly embedded in Ωk, so it does not play any role in the
matching conditions on other subdomains’ boundaries. The matching conditions have
been designed for that.

We wish to estimate |u∗k − ik(u
∗
k)− ek|H1(Ωk) ≤ |u∗k − ik(u

∗
k)|H1(Ωk) + |ek|H1(Ωk).

From Lemma 3.3, we need to give a bound on ‖π∗(iji(u
∗
ji
) − ik(u

∗
k))i=1,...,nl

k
‖L2(Γl

k).

The bound is obtained from the stability of the operator π∗ (see (3.12)) and from the
estimate

‖iji(u∗ji)− ik(u
∗
k)‖L2(Γl,i

k ) ≤ C(hσk− 1
2 |u∗|Hσk (Ωk) + hσji

− 1
2 |u∗|Hσji (Ωji

)).(3.15)

In the same manner, we can bound ‖u∗k − ik(u
∗
k)− ek‖L2(Ωk) so we obtain the best fit

estimate.
Lemma 3.5. Let u∗ ∈ H1(Ω) be such that for 1 ≤ k ≤ K, u∗|Ωk

∈ Hσk(Ωk) with
2 ≥ σk > 1. Then there exists u ∈ Y such that

K∑
k=1

1

hk
‖u∗k − uk‖L2(Ωk) + |u∗k − uk|H1(Ωk) ≤ C

K∑
k=1

hσk−1
k |u∗k|Hσk (Ωk).(3.16)

Then the error estimate is given by the following theorem.
Theorem 3.6. Assume that the solution u∗ of (2.1) is such that for 1 ≤ k ≤ K,

u∗|Ωk
∈ Hσk(Ωk) with 2 ≥ σk >

3
2 . Then there exists a constant C such that, if u ∈ Y

is the solution of (2.22),

K∑
k=1

‖u∗k − uk‖H1(Ωk)

≤ C

Ce

(
1 + max

k
log

H

hk

)
 K∑

k=1

max
i∈Ik

(
1 +

√
hi
hk

)2

h
2(σk−1)
k |u∗|2Hσk (Ωk)




1
2

,

(3.17)

where Ce is the ellipticity constant.

4. A strengthened matching condition. We give below an example of stronger
matching conditions in the neighborhood of crosspoints.

4.1. An example of a strengthened matching condition. With the no-
tations introduced in section 2.2, it is possible to strengthen the previous match-
ing condition by supplementing the previous test function space W l,0

k ≡ W l
k with

Q supplementary spaces (W l,q
k )1≤q≤Q (to be defined below) such that dim(W l

k) +∑Q
q=1 dim(W l,q

k ) ≤ dim(W̃ l
k). Typically, each new space will correspond to a cross-

point on Γlk. We define the direct sum asW l
k =

⊕Q
q=0 W

l,q
k , and we introduce a family

of coefficients λ0i = 1 for 1 ≤ i ≤ nlk and λqi ∈ {0, 1} for 1 ≤ q ≤ Q and 1 ≤ i ≤ nlk
(these coefficients will be defined below), and we call pq the function defined on Γlk
by

pq(x) =

nl
k∑

i=1

λqi1Γl,i
k
(x).(4.1)
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xq

Ωk

Ωj
r

l,0

kW

kW
l,q

m
1

m
2

m
1

m
2

Fig. 4.1. The spaces W l,0
k and W l,q

k . (Only two subdomains have been represented.) In the

case presented here, the dimension of W l,q
k is two.

Then the strengthened matching condition reads as

∀w ∈ W l,0
k ,

∫
Γl
k

1

plk(x) + 1


uk(x)− 1

p0(x)

nl
k∑

i=1

1Γl,i
k
(x)uji(x)


w(x)dx = 0,(4.2)

∀q ∈ {1, . . . , Q}, ∀w ∈ W l,q
k ,

∫
Γl
k


uk(x)− 1

pq(x)

nl
k∑

i=1

λqi1Γl,i
k
(x)uji(x)


w(x)dx = 0.

(4.3)

Remark 10. Conditions (4.2), (4.3) are stronger than (2.5), since W l,0
k = W l

k.

We have to specify the spaces W l,q
k for q ≥ 1. Call (xq)1≤q≤Q the crosspoints

xq ∈ X l
k. For a crosspoint xq (assume that {xq} = Γlk ∩ Γl

′
jr
) (see Figure 4.1), we

call {xm1+1, . . . , xm2−1} the nodes of T l
k for which the support of the corresponding

basis function of Xk intersects the side Γl
′
jr
. We call φ̃m1+1 the piecewise linear and

continuous (except at xm1+1 ) function, vanishing outside [xm1+1, xm1+2), linear on

[xm1+1, xm1+2), and equal to 1 at xm1+1 and 0 at xm1+2. Likewise, we call φ̃m2−1

the piecewise linear and continuous (except at xm2−1) function, vanishing outside
(xm2−2, xm2−1], linear on (xm2−2, xm2−1], and equal to 1 at xm2−1 and 0 at xm2−2.

We define W l,q
k ≡ span(φ̃m1+1, φm1+2, . . . , φm2−2, φ̃m2−1). The spaces W l,0

k and

W l,q
k are displayed on Figure 4.1. Note that with this choice of W l,q

k , the supports of

the functions in W l,q
k do not intersect the supports of the functions of X

l,xq

k .
Obviously we have

dim(W̃ l
k) = dim

(
Q⊕
q=0

W l,q
k

)
.

Now we need to define the coefficients λqi. We set λ0i = 1 for all 1 ≤ i ≤ nlk. For

k ≥ 1, assume that {xq} = Γlk ∩ Γl
′
jr
. Then we set λqr = 0 and λqi = 1 for all

1 ≤ i ≤ nlk, i �= r.
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Then Y is the subspace of X defined by

Y ≡ {u ∈ X; ∀k ∈ {1, . . . ,K}, ∀l ∈ {1, . . . , Ek}, u satisfies (4.2), (4.3)}(4.4)

for W l,q
k and λqi defined as above.

Remark 11. Let u = (uk) ∈ Y . Then it is very clear from (4.2), (4.3) that all
the nodal values of uk located on ∂Ωk, except at the vertices of ∂Ωk, can be found
from the d.o.f. in the adjacent subdomains and from the d.o.f. located at the vertices
of ∂Ωk. With this matching condition, all the nodal values located on ∂Ωk, except at
the vertices of ∂Ωk, are slave nodal values.

Remark 12. Finding the slave nodal values can be achieved in two steps:
1. Find the unknown located at the black nodes on Figure 4.1 by taking the test

functions in the spaces W l,q
k , q > 0. This corresponds to solving a small linear

system with a mass matrix for each crosspoint on Γlk.
2. Find the remaining nodal values (located on Γlk\Vk) by solving a problem of

the type (2.11). We have seen above that this problem has a unique solution
under conditions (2.12).

4.2. Error estimate. Since the space W l
k contains the space W l

k, and (2.5) is
equivalent to (4.2), the consistency error is bounded from above by the consistency
error studied in section 3.1. Therefore we have the following result.

Lemma 4.1. Assume that u∗|Ωk
belongs to Hσk(Ωk), with σk > 3

2 . Then the
consistency error is bounded by

C

(
1 + max

k
log

H

hk

)
 K∑

k=1

max
i∈Ik

(
1 +

√
hi
hk

)2

h
2(σk−1)
k |u|2Hσk (Ωk)




1
2

.

For the best fit error, we proceed as above. We correct ik(u
∗
k) in subdomain Ωk

in order to satisfy the matching conditions. The correction is done first on ∂Ωk; then
the same lifting operator Lk as above is used to correct uk in Ωk. To correct the trace
of uk on ∂Ωk, we proceed in two steps.

First step. Let us focus on the side Γlk and keep the notations used for the

definition of the space W l,q
k in section 4.1. We call Zl,q

k the space spanned by

(ψ̃m1+1, . . . , ψ̃m2−1), where ψ̃i have been defined by (2.20).

Remark 13. From the geometric assumptions, the dimensions of W l,q
k and Zl,q

k

are equal (q ≥ 1) and bounded by a constant independent of h.

For q ≥ 1, call Il,qk the set of indices i, such that λqi = 1 (see section 4.1), and

γl,qk the support of the functions in W l,q
k . (γl,qk is the interval located between the two

black nodes in Figure 4.1.) Consider the projector πl,qk from
∏

i∈Il,q
k
L2(Γl,ik ) into Zl,q

k

defined by

∀w ∈ W l,q
k ,

∫
Γl
k

πl,qk (ui)i=1,...,nl
k
(x)w(x)dx =

∫
Γl
k

1

pq(x)

nl
k∑

i=1

λqi1Γl,i
k
(x)uji(x)w(x)dx.

(4.5)

This projector has exactly the same matrix as the L2(γl,qk ) projector on W l,q
k . So we

have the estimate

‖πl,qk (ui)i=1,...,nl
k
‖L2(γl,q

k ) ≤ C
∑
i∈Il,q

k

‖uji‖L2(Γl,i
k ).(4.6)
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However, from (2.21) and from Remark 13, if z ∈ Zl,q
k , then

‖z‖L2(Γl
k) ≤ Ch

1
2 ‖z‖L∞(γl,q

k ) ≤ C‖z‖L2(γl,q
k ).(4.7)

Thus we deduce from (4.6) and (4.7) that

‖πl,qk (ui)i=1,...,nl
k
‖L2(Γl

k) ≤ C
∑
i∈Il,q

k

‖uji‖L2(Γl,i
k ).(4.8)

Consider the function defined on Γlk by zlk =
∑Q

q=1 π
l,q
k (iji(u

∗
ji
) − ik(u

∗
k)) and the

function zk defined on ∂Ωk by assembling the functions zlk. Now we have to correct
zk in order to satisfy (4.2).

Second step. The second correction consists of taking the function zk+ ek, where
ek is obtained by assembling elk ≡ (π∗(iji(u

∗
ji
)− ik(u

∗
k))i=1,...,nl

k
). Finally we set

uk ≡ ik(u
∗
k) + Lk(zk + ek).

The vector (uk)k=1,...,K belongs to Y .
It is possible to check the following estimate.
Lemma 4.2. Let u∗ ∈ H1(Ω) such that for 1 ≤ k ≤ K, u∗|Ωk

∈ Hσk(Ωk) with
2 ≥ σk > 1. Then the vector u ∈ Y constructed above satisfies

K∑
k=1

1

hk
|u∗k − uk|L2(Ωk) + |u∗k − uk|H1(Ωk) ≤ C

K∑
k=1

hσk−1
k |u∗k|Hσk (Ωk).(4.9)

Finally, the conclusions of Theorem 3.6 hold for the strengthened matching con-
dition.

5. Additive Schwarz preconditioners. The linear system corresponding to
the solution of (2.22) is sparse, symmetric positive definite, and usually ill-conditioned.
It is often mandatory to use a preconditioned iterative method to solve it. We propose
hereafter two additive Schwarz preconditioners. These methods are based on finding
a decomposition

Y =
K∑
k=0

Yk,

where for k = 1, . . . ,K the subspace Yk will contain multivalued functions localized,
roughly speaking, around the subdomain Ωk, and the subspace Y0 (called coarse space)
will contain slowly varying functions, the latter space being chosen for the speed of
convergence to be independent of K.

5.1. A coarse space Y0. We assume that we can find a quasi-uniform triangular
mesh TH of Ω, whose elements have diameters of order H, and we define NH as the
set of the nodes of TH lying inside Ω. We call Ŷ0 the space of the continuous functions
on Ω vanishing on ∂Ω and whose restriction to any element of TH is linear. For each
node x in NH , let ζx be the nodal shape function corresponding to the node x.

The space Ŷ0 is not a subspace of Y . However, for a given function û0 ∈ Ŷ0, it is
possible to obtain an element of Y by applying the same process to û0 as that used
for the best approximation estimate, i.e.,

1. interpolate û0 in the subdomains,
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2. correct on the boundary of subdomains by mortar projections,
3. add the trivial lifting of these corrections to the interpolated functions.

We call I0û0 the element of Y obtained in this way. We have the following easy
lemma.

Lemma 5.1. There exists a positive constant C independent of h and H, such
that for û0 ∈ Y0,

|I0û0|∗ ≤ C|û0|H1(Ω).(5.1)

Proof. The result follows from (3.16) and from the inverse inequality

∀σ, 1 < σ <
3

2
, |û0|Hσ(Ω) ≤ CH−σ+1|û0|H1(Ω).

We define

Y0 = I0Ŷ0.(5.2)

We also define the bilinear form b0 on Ŷ0 by

b0(û0, v̂0) =

∫
Ω

∇û0 · ∇v̂0(5.3)

and the projection operator T̂0 from Y into Ŷ0 by

∀u ∈ Y, T̂0u ∈ Ŷ0, and b0(T̂0u, v̂0) = a(u, I0v̂0) ∀v̂0 ∈ Ŷ0.(5.4)

The operator T̂0 is clearly continuous from Y into Ŷ0. We also define the operator
T0 = I0 ◦ T̂0 from Y into Y0.

For the following, we need to find a Clément-like interpolation operator (see [8])
from Y to Ŷ0. For that, we associate with each node x in NH a subdomain Ωk(x) such
that x ∈ Ωk(x). For u ∈ Y , we define Ξu by

Ξu =
∑

x∈NH

〈uk(x)〉ζx.(5.5)

Lemma 5.2. Under Assumptions 1 to 6, there exists a constant C such that, for
u ∈ Y ,

b0(Ξu,Ξu) ≤ Ca(u, u).(5.6)

Proof. From the quasi uniformity of the mesh TH , there exists a constant C such
that

b0(Ξu,Ξu) ≤ C
∑
t∈TH

∑
x,y∈NH ,x,y∈∂t

(Ξu(x)− Ξu(y))2

= C
∑
t∈TH

∑
x,y∈NH ,x,y∈∂t

(〈uk(x)〉 − 〈uk(y)〉)2.

The desired estimate is a consequence of Lemma 2.5.
Lemma 5.3. Under Assumptions 1 to 6, there exists a constant C such that for

all u ∈ Y ,

K∑
k=1

|(I0Ξu)k|2H1(Ωk) +
1

H2

K∑
k=1

‖uk − (I0Ξu)k‖2
L2(Ωk) ≤ Ca(u, u).(5.7)
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Proof. We have∫
Ωk

|uk − (I0Ξu)k|2

≤ 3

∫
Ωk

|uk − 〈uk〉|2 + 3

∫
Ωk

|〈uk〉 − Ξu|2 + 3

∫
Ωk

|(Ξu− (I0Ξu)k|2.

We have from the Poincaré–Wiertinger inequality that∫
Ωk

|uk − 〈uk〉|2 ≤ CH2

∫
Ωk

|∇uk|2.

We also have that∫
Ωk

|〈uk〉 − Ξu|2 ≤ CH2
∑

t∈TH ,|t∩Ωk|>0

∑
x vertex of t

(〈uk(x)〉 − 〈uk〉)2

≤ CH2
∑

t∈TH ,|t∩Ωk|>0

∑
l:|Ωl∩t|>0

∫
Ωl

|∇ul|2,

as in the proof of Lemma 2.5. Finally, as in Lemma 3.5 and from the quasi uniformity
of the coarse mesh TH , we have that∫

Ωk

|Ξu− (I0Ξu)k|2 ≤ CH2

∫
ωk

|∇Ξu|2.

Thanks to Lemma 5.2, summing over k yields the desired estimate on
∑K

k=1 ‖uk −
(I0Ξu)k‖2

L2(Ωk). The estimate on
∑K

k=1 |(I0Ξu)k|2H1(Ωk) comes from Lemma 5.2 and
from the stability of I0.

5.2. A nonoptimal Schwarz preconditioner. The first Schwarz precondi-
tioner is very much inspired from that proposed in [5] for the case of two subdomains.
The idea is to define the spaces Yk by means of the trivial lifting operators introduced
above.

We call Rk the operator in Xk defined by the following: for any v ∈ Xk, the
master d.o.f. of Rkv are those of v and

∀w ∈ W l
k,

∫
Γl
k

1

plk(x) + 1
Rkv(x)w(x)dx = 0.

We have a similar result to Lemma 3.3.
Lemma 5.4. There exists a positive constant C such that, for any u ∈ Xk,

‖u−Rku‖L2(Ωk) + hk|u−Rku|H1(Ωk) ≤ Ch
1
2

k ‖u‖L2(∂Ωk).(5.8)

The range of Rk is called Ŷk. It is an easy matter to map any element of Ŷk
to an element of Y by setting all the extra master d.o.f. to zero. We call Ik this
trivial extension operator and Yk the range of Ik. We clearly have that Y =

⊕K
k=1 Yk

because u =
∑K

k=1 IkRkuk.

We also define the bilinear form bk on Ŷk by

bk(ûk, v̂k) =

(
1 + max

k �=l∈Ik

hk
hl

)∫
Ωk

∇ûk · ∇v̂k +
∑
l∈Ik

∑
x∈Ml

k

hk
hl
ûk(x)v̂k(x),(5.9)
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where Ml
k is the set of the nodes of Tk for which the related d.o.f. influence some

slave nodal values at the nodes of Tl, and the projection operator T̂k from Y into Ŷk
by

∀u ∈ Y, T̂ku ∈ Ŷk and bk(T̂ku, v̂) = a(u, Ikv̂) ∀v̂ ∈ Ŷk.(5.10)

We are now ready to construct the preconditioned operator: we define the operator
T : Y → Y by

T =
K∑
k=0

Tk =

K∑
k=0

IkT̂k.(5.11)

The condition number of T is analyzed in a now classical way by following the abstract
additive Schwarz method theory of [17, 14, 10, 11].

Lemma 5.5. Let us define three relevant parameters:
1. Let C0(H,h) be the minimum real number such that for all u ∈ Y there exists

a sum u =
∑K

k=0 Ikûk with ûk ∈ Ŷk, and

K∑
k=0

bk(ûk, ûk) ≤ C2
0 (H,h)a(u, u).

2. For k, l ∈ {1, . . . ,K}, let Ekl be the best constants such that for ûk ∈ Ŷk and
ûl ∈ Ŷl,

a(Ikûk, Ilûl) ≤ Ekla(Ikûk, Ikûk) 1
2 a(Ilûl, Ilûl)

1
2 .

This estimate is called the strengthened Cauchy–Schwarz inequality. Let ρ(E)
be the spectral radius of E = (Ekl)1≤k,l≤K .

3. Let ω be the minimum number such that for k ∈ {0, . . . ,K}, for ûk ∈ Ŷk,

a(Ikûk, Ikûk) ≤ ωbk(ûk, ûk).

Then T is invertible and symmetric with respect to the scalar product a(·, ·), and, for
u ∈ Y ,

1

C2
0

a(u, u) ≤ a(Tu, u) ≤ ω(1 + ρ(E))a(u, u).(5.12)

In the following lemma, we prove that C0 can be chosen as Cmax1≤k≤K
H
hk
.

Lemma 5.6. Under Assumptions 1 to 6 there exists a constant C such that for
u ∈ Y there exists (ûk)k∈{0,...,K} such that u =

∑K
k=0 Ikûk and

K∑
k=0

bk(ûk, ûk) ≤ C max
1≤k≤K

H

hk
a(u, u).(5.13)

Proof. We take û0 = Ξu and ûk = (Rk)((u − I0û0)|k). From Lemma 5.2, we
already have (5.6). Let us focus on bk(ûk, ûk) for k > 0. We have bk(ûk, ûk) = (1 +
maxl∈Ik

hk

hl
)Ak +Bk, where Ak =

∫
Ωk

|∇ûk|2 and Bk =
∑

l∈Ik\{l}
∑

x∈Ml
k

hk

hl
û2
k(x).

Ak =

∫
Ωk

|∇(u− I0û0)|k −∇(I −Rk)(u− I0û0)|k|2

≤ C

(∫
Ωk

|∇(u− I0û0)|k|2 + 1

hk

∫
∂Ωk

|(u− I0û0)|k|2
)
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by Lemma 5.4. But a very crude argument and Lemmas 5.1 and 5.2 lead to

K∑
k=1

(
1 + max

l∈Ik

hk
hl

)∫
Ωk

|∇(I0û0)|k|2 ≤ Cmax
k

H

hk

∫
Ω

|∇û0|2 ≤ Cmax
k

H

hk
a(u, u).

It remains for us to study 1
hk

∫
∂Ωk

|(u − I0û0)|k|2, which can be bounded exactly as
in the proof of Lemma 2.6. We have∫

∂Ωk

|u− I0û0|k|2

≤ 3

∫
∂Ωk

|uk − 〈uk〉|2 + 3

∫
∂Ωk

|〈uk〉 − û0|2 + 3

∫
∂Ωk

|(û0 − I0û0)|k|2.

The estimate
∫
∂Ωk

|uk − 〈uk〉|2 ≤ CH
∫
Ωk

|∇uk|2 is just a trace inequality. We have
that ∫

∂Ωk

|〈uk〉 − û0|2 ≤ CH
∑

t∈TH ,|t∩Ωk|>0

∑
x vertex of t

(〈uk(x)〉 − 〈uk〉)2

≤ CH
∑

t∈TH ,|t∩Ωk|>0

∑
l:|Ωl∩t|>0

∫
Ωl

|∇ul|2,

as for the proof of Lemma 2.5. From the best-fit estimate (3.16) and the quasi
uniformity of the coarse mesh, we obtain that

K∑
k=1

(
1 + max

l∈Ik

hk
hl

)
1

hk

∫
∂Ωk

|(û0 − I0û0)|k|2

≤ C

K∑
k=1

(
1 + max

l∈Ik

hk
hl

)(
H

hk

∫
Ωk

|∇(û0 − I0û0)|k|2 + 1

Hhk

∫
Ωk

|(û0 − I0û0)|k|2
)

≤ Cmax
k

H

hk

∫
Ω

|∇û0|2 ≤ Cmax
k

H

hk
a(u, u).

Thus we have proved that

K∑
k=1

(
1 + max

l∈Ik

hk
hl

)
Ak ≤ Cmax

k

H

hk
a(u, u).(5.14)

It remains for us to study
∑K

k=1 Bk. We have that

∑
x∈Ml

k

hk
hl

|(uk − I0û0)|k(x)|2 ≤ C
1

hl

(
H

∫
Ωk

|∇(uk − I0û0)|k|2 + 1

H

∫
Ωk

(uk − I0û0)|2k
)
,

and we conclude the proof exactly as above.
The constant ω in Lemma 5.5 can be chosen independently of the mesh and

domain decomposition parameters, as stated in the following lemma.
Lemma 5.7. There exists a constant ω independent on the mesh parameters such

that, for k ∈ {0, . . . ,K} for ûk ∈ Ŷk,

a(Ikûk, Ikûk) ≤ ωbk(ûk, ûk).(5.15)
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Proof. For k = 0, (5.15) is obtained by using Lemma 5.1. For k > 0, we have

a(Ikûk, Ikûk) =
∑
l∈Ik

∫
Ωl

|∇(Ikûk)l|2

=

∫
Ωk

|∇ûk|2 +
∑

k �=l∈Ik

∫
Ωl

|∇(Ikûk)l|2

≤
∫

Ωk

|∇ûk|2 + C
∑

k �=l∈Ik

1

hl

∫
∂Ωl

(Ikûk)l|2∂Ωl

≤
∫

Ωk

|∇ûk|2 + C
∑

k �=l∈Ik

1

hl

∫
∂Ωl

ûk|2∂Ωl

≤
∫

Ωk

|∇ûk|2 + C
∑

k �=l∈Ik

hk
hl

∑
x∈Ml

k

ûk(x)
2

≤ ωbk(ûk, ûk).

The strengthened Cauchy–Schwarz inequality comes from the fact that if Il∩Ik =
∅, then a(Ikûk, Ilûl) = 0, from the Cauchy–Schwarz inequality and from Property 1.
From the geometric assumptions, we have the following lemma.

Lemma 5.8. There exists a constant C such that ρ(E) ≤ C.
Finally, we have the following result.
Theorem 5.9. Under Assumptions 1 to 6, there exists a constant C such that

conda(T ) ≤ Cmax
k

H

hk
.(5.16)

Remark 14. Remember that the condition number of the original problem scales
like
maxk

1
h2
k
.

Remark 15. It is also possible to generalize the first preconditioner proposed
in [5] which is based on some harmonic lifting operator rather than trivial lifting
operators. However, this preconditioner seems to be too difficult to implement and too
costly. For that reason, we shall not discuss this method.

5.3. An optimal Schwarz preconditioner. We introduce new spaces for an
additive decomposition of Y . Let Ỹk be the subspace of Y defined by

Ỹk =




u ∈ Y ;
the d.o.f. of u
associated with nodes not located in Ωk are zero


 .(5.17)

Remark 16. Note that if |Ωk ∩ Ωl| > 0, then an element of Ỹk has d.o.f. corre-
sponding to some mesh nodes of Tl, which is not the case for the elements of Ŷk.

Remark 17. An element of Ỹk is not necessarily made of functions supported
in Ωk because the slave nodal values depend nonlocally on the d.o.f. However, the
elements of Ỹk are made of functions supported in ωk.

Now the mapping Ik is the canonical injection from Ỹk into Y , and we define
bk(ũk, ṽk) = a(Ikũk, Ikṽk). The projection operator T̃k from Y onto Ỹk is defined by

∀u ∈ Y, T̃ku ∈ Ỹk, bk(T̃ku, v) = a(u, Ikv) ∀v ∈ Ỹk,(5.18)
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and the preconditioned operator T : Y → Y is given by

T =

K∑
k=0

Tk =

K∑
k=0

IkT̃k,(5.19)

where T̃0 ≡ T̂0 has been introduced in (5.4) and I0 has been defined in section 5.1.
Again, this preconditioner is analyzed thanks to Lemma 5.5. The only noticeable

difference from the previous preconditioner is the following lemma.
Lemma 5.10. Under Assumptions 1 to 6, there exists a constant C such that for

u ∈ Y there exists a sum u =
∑K

k=0 Ikũk, ũk ∈ Ỹk, such that

K∑
k=0

bk(ũk, ũk) ≤ C

(
1 +

H

δ

)
a(u, u).(5.20)

Proof. For the sake of brevity, we just give a sketch of the proof.
We take ũ0 = Ξu, where Ξu is defined in (5.5). For constructing ũk, we introduce a

smooth partition of unity (θk)k∈{1,...,K} such that θk(x) = 0 if x �∈ Ωk and ‖∇θk‖∞ ≤
C 1

δ . For k ∈ {1, . . . ,K} and u ∈ Y , let vk ∈ X be given by vkl = il(θkul) and ṽk ∈ Y
be obtained by local correction of vk on the boundary of the subdomains by mortar
projections, as in the proof of the best approximation estimate. In fact, we have
ṽk ∈ Ỹk, and it is possible to prove exactly as in [17, 14] that

∑
l∈Ik

|ṽkl |2H1(Ωl)
≤ C

∑
l∈Ik

(
|ul|2H1(Ωk) +

1

δ2
‖ul‖2

L2(Ωk)

)
.(5.21)

We call R̃k the mapping from Y onto Ỹk: R̃k(u) = ṽk.

For u ∈ Y , we can check that u =
∑K

k=1 R̃k(u), and therefore

u = I0Ξu+

K∑
k=1

R̃k(u− I0Ξu).(5.22)

Thanks to (5.21) and Lemmas 5.2 and 5.3, we obtain the desired result.
Finally, we have the following result.
Theorem 5.11. Under Assumptions 1 to 6, there exists a constant C such that

conda(T ) ≤ C

(
1 +

H

δ

)
.(5.23)
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ON STABILITY OF LMS METHODS AND CHARACTERISTIC
ROOTS OF DELAY DIFFERENTIAL EQUATIONS∗
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Abstract. We investigate the use of linear multistep (LMS) methods for computing charac-
teristic roots of systems of (linear) delay differential equations (DDEs) with multiple fixed discrete
delays. These roots are important in the context of stability and bifurcation analysis. We prove
convergence orders for the characteristic root approximations and analyze under what condition for
the steplength the discrete integration scheme retains certain delay-independent stability properties
of the original equations. Unlike existing results, we concentrate on the recovery of both stability
and instability. We illustrate our findings with a number of numerical test results.

Key words. delay differential equations, stability analysis, LMS methods

AMS subject classifications. 65L06, 65L07, 65Q05
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1. Introduction. In this paper we study the (asymptotic) stability of the zero
solution of a system of linear (or linearized) delay differential equations (DDEs),

ẋ(t) = A0x(t) +

m∑
i=1

Aix(t− τi), where Ai ∈ R
n×n, i = 0, . . . ,m.(1.1)

Using ∆(λ):=λI −A0 −
∑m
i=1 Aie

−λτi , the characteristic equation for (1.1) reads

det(∆(λ)) = 0.(1.2)

The zero solution of (1.1) is (asymptotically) stable provided all the roots λ ∈ C of
(1.2) have (strict) negative real parts. In correspondence with the infinite-dimensional
nature of the DDE, there exists an infinite number of characteristic roots λ of (1.2).
However, only a finite number have real parts greater than a given constant, �(λ) > γ,
γ ∈ R [9, Lem. I.4.1]. Hence, a numerical method that automatically computes the
rightmost roots of (1.2) would be of interest.

Equation (1.2) expresses a nonstandard, nonlinear eigenvalue problem, as the
matrix ∆ depends nonlinearly on λ. Individual roots can be computed efficiently
using a Newton–Raphson iteration with a suitable starting value. However, even if
a fine grid of starting values is used, there is no guarantee of finding all roots with
a given property. For the purpose of bifurcation analysis, the rightmost roots, with
leading real parts, are of interest in the determination of stability properties and in
the detection of bifurcations.

In [4] a method is proposed to compute the rightmost characteristic roots based on
an approximation of the time integration operator associated with the DDE. Indeed,
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the characteristic roots of, e.g., a linear multistep (LMS) or Runge–Kutta approxi-
mation to (1.1), can be computed from a large (but standard) eigenvalue problem.
Established and efficient numerical algorithms exist to compute selected (e.g., domi-
nant or rightmost) eigenvalues of possibly very large matrices; see [23, 21].

Computational issues of this approach are discussed in [4]. In this paper we inves-
tigate the effect of the discretization on the stability. In particular, we investigate the
correspondence between the characteristic roots of (1.1) and of the related discrete
map obtained from an LMS method applied to (1.1). We prove convergence and in-
vestigate under what conditions the approximation retains certain delay-independent
stability properties of the original equations. From these results we obtain a steplength
heuristic that is used in the package DDE-BIFTOOL [3].

Part of our results were already obtained in the literature on time integration
of DDEs; see, e.g., [27, 28, 10, 11]. All of these results concentrate on recovery of
delay-independent stability. In the context of bifurcation analysis, the recovery of
delay-independent instability, as we analyze here, is likewise important. Furthermore,
we prove convergence orders for the characteristic root approximations and comment
on the issue of stiffness in DDEs. A number of similar results were also proven for
Runge–Kutta methods applied to DDEs using different types of interpolation for the
past terms; see, e.g., [19, 14, 11, 12]. For a special type of delay equation (scalar pure-
delay DDE with one delay), convergence of the roots of the characteristic equation of
the forward Euler method to simple roots of the characteristic equation of the DDE is
proven in [30]. Related results were also proven for Hopf bifurcations in the numerical
approximation of DDEs; cf. [5, 29, 6].

The paper is structured as follows. First, we discuss stability properties of DDEs
in section 3. Then we compare and extend this analysis to LMS methods applied
to DDEs in section 4. We illustrate our findings with numerical results in section 5,
comment on the issue of stiffness for DDEs in section 6, and conclude in section 7.

2. Illustrative example. Consider the scalar one-delay equation,

ẋ(t) = ax(t) + bx(t− τ),(2.1)

and its corresponding characteristic equation

λ = a+ be−λτ .(2.2)

The right half-plane (RHP), �(λ) ≥ 0, is mapped under the right-hand side of (2.2)
onto a circle centered at a with radius |b|. If this circle lies completely in the open
left half-plane (LHP), it is clear that (2.2) can have no solutions in the RHP, as the
latter is mapped onto disjunct regions by the left- and right-hand sides of (2.2). This
occurs whenever

�(a) + |b| < 0.(2.3)

Hence (2.3) is a sufficient condition for stability of the zero solution of (2.1) which we
could term RHP-stability of (2.1). In fact, this stability is independent of the delay
τ (through (2.3)) and can be shown to be nearly equivalent to delay-independent
stability (i.e., stability for all values of τ ≥ 0) [16].

When applying an LMS method to (2.1) it can similarly be proven that if the same
circle, scaled with the steplength h of the LMS method (that is, the circle centered at
ha with radius |hb|) is part of the stability region of the LMS method, then the zero
solution of the difference equation defined by applying the LMS method to (2.1) is
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stable. In other words, if h is small enough, the LMS method will capture the RHP-
stability of the original DDE (2.1). As such, this condition is a direct generalization of
the well-known result for ordinary differential equations (where b = 0 and ha should
lie in the stability region of the LMS method).

The purpose of this paper is to generalize these properties to systems of equations
with multiple delays. In this more general case, the RHP is mapped to more com-
plicated regions than the circle considered above. We also consider RHP-instability.
Namely, when the above circle lies completely in the RHP, this can be proven to be
a sufficient condition for instability. Based on these results, our analysis leads to a
steplength heuristic used to compute the correct stability and bifurcations of a given
DDE system.

3. Sufficient conditions for DDE stability. Rewrite the characteristic equa-
tion (1.2) as

λ ∈ σ
(
A0 +

m∑
i=1

Aie
−λτi

)
,(3.1)

where σ(B) denotes the spectrum of a given matrix B. The key idea is to study the
mapping of the RHP under the left- and right-hand sides of (3.1). If the right-hand
side of (3.1) maps the closed RHP into the open LHP, then it is clear that there can
be no solutions λ in the closed RHP, and hence there can be no unstable characteristic
roots.

First we introduce some necessary notation. Let C
+
0 , C

+ denote the open, re-
spectively, closed, RHP,

C
+
0 = {λ ∈ C | �(λ) > 0} and C

+ = {λ ∈ C | �(λ) ≥ 0},
and corresponding definitions for the open, respectively, closed, LHP, C

−
0 , respectively,

C
−. When studying the mapping of the right-hand side of (3.1) it is necessary, for

reasons that will be clear later on, to avoid dependency on the delays. Therefore, we
define the following set-valued function Σ(·) as

Σ(C) =
⋃

(λ1,...,λm)∈C×C×···×C
σ

(
A0 +

m∑
i=1

Aie
−λi

)
,(3.2)

where C ⊂ C. Note that we have replaced each λτi in (3.1) by a separate λi in (3.2).
The mapping of the RHP under the right-hand side of (3.1) is included in the

mapping of the RHP under Σ, that is,

⋃
λ∈C+

σ

(
A0 +

m∑
i=1

Aie
−λτi

)
⊆ Σ(C+),(3.3)

where the equality holds when there is only one nonzero delay. Note σ(A0+
∑m
i=1 Aie

−λi);
also note that the region (or regions) defined by Σ(C+) form a bounded subset of C

because

λ ∈ Σ(C+) ⇒ |λ| ≤ ‖A0 +
∑m
i=1 Aie

−λi‖ with �(λi) ≥ 0,
⇒ |λ| ≤ ‖A0‖+

∑m
i=1 ‖Ai‖|e−λi | with �(λi) ≥ 0,

⇒ |λ| ≤∑m
i=0 ‖Ai‖.

(3.4)

We distinguish three different cases, depending on the location of Σ(C+).
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Fig. 3.1. The mapping of the RHP under Σ (gray areas), the mapping of the imaginary axis
under Σ (solid lines), and the eigenvalues of A0 (∗) for the one-delay case with system matrices
given by (3.5).

Definition 3.1. Definition of stability of Σ.
• If Σ(C+) ⊂ C

−
0 , then we call Σ stable.

• If Σ(C+) ⊂ C
+
0 , then we call Σ unstable.

• If ∃ξ0 ∈ R0 = R \ {0} : iξ0 ∈ Σ({iξ | ξ ∈ R0}), then we call Σ Hopf-like.
An illustration of this is given in Figure 3.1 using the matrices

A0 =



−1 2 0 0
−2 −1 0 0
0 0 2 0
0 0 0 −6


 and A1 =




2 2 2 0
−2 1 0 0
0 0 − 1

2 0
1 1 1 1


 .(3.5)

To check for stability of Σ it would be convenient if we could look only at the
closed curve(s) described by Σ({iξ | ξ ∈ R}) (cf., the lines in Figure 3.1). Because
of the periodicity of e−iξ, it suffices to examine the latter only for ξ ∈ [0, 2π], i.e.,
Σ({iξ | ξ ∈ R}) = Σ({iξ | ξ ∈ [0, 2π]}). For general matrices Ai, i = 0, . . . ,m, it is,
however, not immediately clear whether these curves really form the boundary of
Σ(C+) in the complex plane. We now prove two theorems in this regard.

Theorem 3.2. The following statements hold:

σ(A0 +A1e
−iξ) ⊂ C

−
0 ∀ ξ ∈ [0, 2π],

�
σ(A0 +A1e

−λ) ⊂ C
−
0 ∀λ ∈ C

+,
(3.6)

and

σ(A0 +A1e
−iξ) ⊂ C

+
0 ∀ ξ ∈ [0, 2π],

�
σ(A0 +A1e

−λ) ⊂ C
+
0 ∀λ ∈ C

+.
(3.7)

Proof. We prove only (3.6). The proof of (3.7) is analogous. It is clear that we
need to prove only the downward implication.
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We first treat the case of nonsingular A1. We start from

σ(A0 +A1e
−iξ) ⊂ C

−
0 , ξ ∈ [0, 2π],(3.8)

which we rewrite as

det(λI −A0 −A1e
−iξ) �= 0, ξ ∈ [0, 2π], �(λ) ≥ 0,

which, in turn, is equivalent to

(a) det(I − (λI −A0)
−1A1e

−iξ) �= 0, ξ ∈ [0, 2π], �(λ) ≥ 0, λ �∈ σ(A0),
(b) det(λI −A0 −A1e

−iξ) �= 0, ξ ∈ [0, 2π], �(λ) ≥ 0, λ ∈ σ(A0).
(3.9)

Part (a) of (3.9) is equivalent to saying that (λI−A0)
−1A1 should have no eigenvalues

on the unit circle,

|σ((λI −A0)
−1A1)| �= 1, �(λ) ≥ 0, λ �∈ σ(A0),

(where the inequality holds over all elements of σ(·)) and, because
lim

�(λ)→+∞
‖(λI −A0)

−1A1‖ = 0,

it is equivalent to

|σ((λI −A0)
−1A1)| < 1, �(λ) ≥ 0, λ �∈ σ(A0).(3.10)

Suppose λ0 ∈ σ(A0) with �(λ0) ≥ 0. For λ /∈ σ(A0), we have that the matrix
A−1

1 (λI − A0) is regular and becomes singular in the limit λ → λ0, �(λ) ≥ 0. By
continuity of the eigenvalues, A−1

1 (λI − A0) has an eigenvalue converging to zero
and, correspondingly, (λI − A0)

−1A1 has an eigenvalue converging to infinity (in
modulus). The latter contradicts (3.10). Hence, from (3.9) it follows that σ(A0) ⊂ C

−
0 .

Therefore, we can conclude that (3.9), and thus also (3.8), is equivalent to

σ(A0) ⊂ C
−
0 , |σ((λI −A0)

−1A1)| < 1, �(λ) ≥ 0.

Note that the above equivalence still holds if A1 is replaced by A1e
−r for some

fixed r ∈ R
+. Using this, we conclude that

σ(A0 +A1e
−iξ) ⊂ C

−
0 , ξ ∈ [0, 2π],

�
σ(A0) ⊂ C

−
0 , |σ((λI −A0)

−1A1)| < 1, �(λ) ≥ 0,
⇓

σ(A0) ⊂ C
−
0 , |σ((λI −A0)

−1A1e
−r)| < 1, �(λ) ≥ 0, r ≥ 0,

�
σ(A0 +A1e

−(r+iξ)) ⊂ C
−
0 , ξ ∈ [0, 2π], r ≥ 0,
�

σ(A0 +A1e
−λ) ⊂ C

−
0 , λ ∈ C

+.

If A1 is singular, then there exists an arbitrary small perturbation to a regular
matrix. By continuity of the eigenvalues and the above statement, it follows that, in
this case,

σ(A0 +A1e
−iξ) ⊂ C

−
0 , ξ ∈ [0, 2π],
⇓

σ(A0 +A1e
−λ) ⊂ C

−, λ ∈ C
+.
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However, since σ(A0 + A1e
−iξ), ξ ∈ [0, 2π], forms a set of bounded and continuous

curves, there exists an s > 0 such that the following holds:

σ(A0 +A1e
−iξ) ⊂ C

−
0 , ξ ∈ [0, 2π],

⇓
∃s > 0, σ(A0 + sI +A1e

−iξ) ⊂ C
−
0 , ξ ∈ [0, 2π],

⇓
∃s > 0, σ(A0 + sI +A1e

−λ) ⊂ C
−, λ ∈ C

+,
⇓

σ(A0 +A1e
−λ) ⊂ C

−
0 , λ ∈ C

+,

which ends the proof.
With the above proof for the one-delay case, it is rather straightforward to extend

this result to the multiple delay situation. We will use the vector notation �τ =
(τ1, . . . , τm), where inequalities hold componentwise, e.g., �τ ≥ 0, and we will use the
notation Cm for C × C × · · · × C, where C ⊂ C.

Theorem 3.3. The following statements hold:

σ

(
A0 +

m∑
i=1

Aie
−iξi

)
⊂ C

−
0 ∀ �ξ ∈ [0, 2π]m,

�
σ

(
A0 +

m∑
i=1

Aie
−λi

)
⊂ C

−
0 ∀�λ ∈ (C+)m,

(3.11)

and

σ

(
A0 +

m∑
i=1

Aie
−iξi

)
⊂ C

+
0 ∀ �ξ ∈ [0, 2π]m,

�
σ

(
A0 +

m∑
i=1

Aie
−λi

)
⊂ C

+
0 ∀�λ ∈ (C+)m.

(3.12)

Proof. We prove the first statement. Applying Theorem 3.2, it follows that

σ

(
A0 +

m∑
i=1

Aie
−iξi

)
⊂ C

−
0 ∀ ξ1 ∈ [0, 2π]

is equivalent to

σ

(
A0 +A1e

−λ1 +

m∑
i=2

Aie
−iξi

)
⊂ C

−
0 ∀λ1 ∈ C

+

for fixed values of ξ2, . . . , ξm (consider A0 +
∑m
i=2 Aie

−iξi as a new and fixed A0

in Theorem 3.2). Applying Theorem 3.2 recursively on ξ2 until ξm proves the above
statement.

Hence, for analyzing the stability of Σ, it suffices to examine the mapping of the
imaginary axis under Σ. Note that the proof of Theorem 3.3 relies on the independent
variation of the λi as introduced in the definition of Σ (3.2).

We are now ready to state the following theorem.
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Theorem 3.4 (relation of the stability of Σ to the stability of the zero solution
of (1.1)).

(i) If Σ is stable, then the zero solution of (1.1) is stable for all �τ ≥ 0.
(ii) If Σ is unstable, then the zero solution of (1.1) is unstable for all �τ ≥ 0.
(iii) The characteristic equation of (1.1) has a purely imaginary root λ = iξ0 �= 0

for some �τ ≥ 0 if and only if Σ’s stability is Hopf-like.
Proof.
(i) Since the mapping of the closed RHP under the right-hand side of the char-

acteristic equation (3.1) is part of Σ(C+) (cf., (3.3)), and the latter is, by
assumption, mapped into the open LHP, then there can be no characteristic
roots with �(λ) ≥ 0. Since there exists only a finite number of roots with
real part greater than any γ < 0, it follows that

sup
det(∆(λ))=0

�(λ) < 0.

Because the stability of Σ does not depend on the values of �τ , it follows that
the zero solution of (1.1) is asymptotically stable for all �τ ≥ 0.

(ii) By continuity of the eigenvalues of A0 +
∑m
i=1 Aie

−λτi as a function of λ, it
is possible to decompose σ(A0 +

∑m
i=1 Aie

−λτi) into n continuous functions
σl(λ), l = 1, . . . , n, such that

σ

(
A0 +

m∑
i=1

Aie
−λτi

)
≡ {σ1(λ), . . . , σn(λ)},

with correct multiplicity. Note that this decomposition may not be unique.
Let G denote the closed convex hull of Σ(C+). By assumption we have
G ⊂ C

+
0 and thus also⋃

λ∈G
σl(λ) ⊂

⋃
λ∈C+

σl(λ) ⊂ Σ(C+) ⊂ G.

By Brouwer’s fixed point theorem [13, Thm. VIII.1.1], this implies that σl(·)
has a fixed point λ in G. This point is a solution of (3.1) with positive real
part. Hence, since the stability of Σ does not depend on �τ , the zero solution
of (1.1) is unstable for all �τ ≥ 0.

(iii) From

det

(
iξ0I −A0 −

m∑
i=1

Aie
−iξ0τi

)
= 0

with ξ0 �= 0 it follows that iξ0 ∈ Σ({iξ | ξ ∈ R0}) by taking λi = iξ0τi if τi > 0
and λi = i2π otherwise. On the other hand, if iξ0 ∈ Σ({iξ | ξ ∈ R0}), then
there exist λi = iξi, ξi �= 0, such that iξ0 ∈ σ(A0 +

∑m
i=1 e

−λi). Hence iξ0
is a characteristic root for delays chosen such that τi = (ξi + 2πk)/ξ0, where
k ∈ Z is chosen such that τi ≥ 0.

As a result of this theorem we conclude that the stability of Σ is almost equivalent
to delay-independent stability of the DDE (1.1). The “almost” refers to the fact that
some cases are excluded from the definition of stability of Σ. Namely, as Σ(C+) is not
necessarily a connected region (rather, it consists of at most n connected components),
it can map in both the RHP and the LHP without mapping onto the imaginary
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axis. In this case, part (ii) of Theorem 3.4 still holds because one of the σl, 1 ≤
l ≤ n then maps into the open RHP (giving rise to a fixed point, and hence, to
an unstable characteristic root). Thus, from all cases, only one degenerate case is
excluded, namely, when Σ(C+) maps onto the imaginary axis but only at the origin.
This is in correspondence with the theorem on delay-independent stability given in
[16] for the one-delay case.

In the next section we will see when an LMS method applied to (1.1) captures
the stability properties of Σ.

4. LMS methods applied to DDEs. Consider the linear k-step formula [7]

k∑
j=0

αjys+j = h

k∑
j=0

βjfs+j(4.1)

applied to (1.1). Here, h is a (fixed) step size, αk = 1, and yj and fj present numerical
approximations of y(t), respectively, A0y(t) +

∑m
i=1 Aiy(t − τi), at the mesh point

tj = jh. During time integration, (4.1) is solved for ys+k (for successive values of s)
based on the previously computed mesh points ys+j , j < k, and the initial condition.

The right-hand side approximation is chosen as

fj :=A0yj +

m∑
i=1

Aiỹ(tj − τi),(4.2)

where ỹ(tj − τi) presents an approximation for y(tj − τi) obtained from the previ-
ously computed mesh points yl, l < j. In particular, the use of so-called Nordsieck
interpolation leads to

ỹ(ti + εh) =

s+∑
l=−s−

ψl(ε)yi+l, ε ∈ [0, 1),(4.3)

where the ψl are the Lagrange interpolation polynomials,

ψl(ε):=

s+∏
o=−s−, o 
=l

ε− o

l − o
.

Applying (4.3) to (4.2) for the linear multiple delay DDE (1.1) we get

k∑
j=0

αjys+j = h

k∑
j=0

βj


A0ys+j +

m∑
i=1

Ai

s+∑
l=−s−

ψl(εi)ys+l+j−Li


 ,(4.4)

where Li:=�τi/h�, εi:=Li − τi/h ∈ [0, 1) (and �r� is the smallest integer greater than
or equal to r ∈ R). In order to avoid the use of future mesh points while evaluating
the past terms, we require that Li ≥ s+ or, that,

τi ≥ (s+ − εi)h, i = 1, . . . ,m.(4.5)

When there is only one delay or, more generally, when the delays are commensu-
rable, that is, when all delays are an integer multiple of a single delay,

τi = niτ0, ni ∈ N, i = 1, . . . ,m,(4.6)
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then, by choosing h = τ0/L, L ∈ N0, delayed mesh points are mapped onto mesh
points in the past,

tj − τi = tj − niLh = tj−niL.(4.7)

In this situation the mesh is called constrained and interpolation is no longer needed,

fj = A0yj +

m∑
i=1

Aiyj−niL.

The LMS method is explicit whenever βk = 0, and ys+k can be directly computed
from (4.1) by evaluating

ys+k = −
k−1∑
j=0

αjys+j + h

k−1∑
j=0

βjfs+j ,

whose right-hand side depends only on ys+j , j < k. Otherwise, the method is called
implicit. Note that, if the (present) point ys+k occurs due to a small delay, τi ≤ s+h,
1 ≤ i ≤ n, an explicit LMS method (βk = 0) becomes implicit. The LMS method is
of order p if

k∑
j=0

αj = 0 and

k∑
j=0

jqαj = q

k∑
j=0

jq−1βj for q = 1, . . . , p.(4.8)

The method is called consistent if it is at least of order 1.

4.1. Stability of the LMS difference scheme. The stability of the difference
scheme (4.4) can be obtained from a large but standard eigenvalue problem. In
particular, the characteristic equation for the difference scheme (4.4) looks like

det




 k∑
j=0

αjµ
s+j


 I − h


 k∑
j=0

βjµ
s+j




A0 +

m∑
i=1

Ai

s+∑
l=−s−

ψl(εi)µ
l−Li




 = 0.

(4.9)
To avoid spurious solutions µ (not influenced by the system matrices A0, A1) we
require that the polynomials in ζ,

k∑
j=0

αjζ
j and

k∑
j=0

βjζ
j ,(4.10)

have no roots in common. The corresponding LMS method is then called irreducible
[7, section III.2.4]. To compare the roots µ with the solutions of the characteristic
equation, we substitute µ for λ, using the relation

µ = exp(λh).(4.11)

Then, after dividing (4.9) by h
∑k
j=0 βjµ

s+j , we obtain

det


 1

h

(∑k
j=0 αje

λjh∑k
j=0 βje

λjh

)
I −


A0 +

m∑
i=1

Ai

s+∑
l=−s−

ψl(εi)e
−λ(Li−l)h




 = 0.(4.12)
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Fig. 4.1. Boundaries of the stability regions for the Adams–Moulton (AM) (left), respectively,
backwards-differentiation (BDF) (right) LMS methods of orders k = 2, 3, 4, 5. For the AM methods,
the bounded stability region is the interior of curves depicted (left). For the BDF methods, the
unbounded stability region is the exterior of the curves depicted (right).

By the requirement of irreducibility and the fact that solutions µ = 0 do not influence
stability, it follows that the stability of the LMS method is now determined by the
real parts of the (finite) solutions λ of (4.12) just as for the characteristic roots of
(1.2).

To analyze the characteristic equation (4.12), set

LMS(λ):=

∑k
j=0 αje

λj∑k
j=0 βje

λj
.

We will call the region C \ LMS(C+) the stability region of the corresponding LMS
method (for a more precise definition see [8, section V.1.1]). It is the region into which
LMS(·) does not map any unstable λ, �(λ) ≥ 0. We further require that the boundary
locus curve (which is the mapping of the imaginary axis under LMS(·)) describes
the boundary of this region (this property is sometimes referred to as property C
[8, section V.4.5]). A number of such regions are depicted in Figure 4.1.

The characteristic equation (4.12) is equivalent to

1

h
LMS(λh) ∈ σ


A0 +

m∑
i=1

Aie
−λτi

s+∑
l=−s−

ψl(εi)e
λ(l−εi)h


 .(4.13)

First we prove that the mapping of the RHP under the right-hand side of (4.13)
is a subset of Σ(C+). For this we need the following lemma.

Lemma 4.1. The polynomial in z,

s+∑
l=−s−

ψl(ε)z
s+−l,

maps the (closed) unit circle into itself whenever ε ∈ [0, 1] and s− ≤ s+ ≤ s− + 2.
That is,

|z| ≤ 1⇒
∣∣∣∣∣∣

s+∑
l=−s−

ψl(ε)z
s+−l

∣∣∣∣∣∣ ≤ 1.
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Proof. The proof of this lemma can be found in [17] and [26].
Under the conditions of this lemma, we obtain the following result.
Lemma 4.2. The mapping of the closed RHP under the right-hand side of (4.13)

is a subset of Σ(C+).
Proof. For λ ∈ C

+ we have

e−λτi
s+∑

l=−s−
ψl(εi)e

λ(l−εi)h = eλ(−τi−εih+s+h)
s+∑

l=−s−
ψl(εi)e

−λ(s+−l)h

= z1

s+∑
l=−s−

ψl(εi)z
s+−l
2

= z1z3,

where |z1| ≤ 1 because �(λ) ≥ 0 and due to (4.5), and where |z2| ≤ 1 because
�(λ) ≥ 0. Hence, by Lemma 4.1, |z3| ≤ 1. As a consequence, the above term can be
replaced by an e−λi with λi ∈ C

+ which proves the lemma.
The stability of the LMS method is related to the stability of Σ in the following

way.
Theorem 4.3 (dependence of the stability of the LMS-approximation on h and

�τ). Suppose the LMS method is irreducible, consistent, LMS(C+) ∩ LMS(C−
0 ) = ∅,

and Nordsieck interpolation is used with s− ≤ s+ ≤ s− + 2. Then the following
statements hold:

(i) If hΣ(C+) ⊂ LMS(C−
0 ) for h ∈ (0, h∗], then the zero solution of (4.4) is

delay-independently stable (stable for all �τ ≥ 0) for h ∈ (0, h∗].
(ii) If hΣ(C+) ⊂ LMS(C+

0 ) for h ∈ (0, h∗], then the zero solution of (4.4) is
delay-independently unstable (unstable for all �τ ≥ 0) for h ∈ (0, h∗].

(iii) If the characteristic equation of (1.1) has a root λ ∈ C for some (fixed) �τ ≥ 0
with multiplicity ν, then there exists an h∗ > 0 such that (4.12) has exactly ν
roots λh,i, i = 1, . . . , ν (taking into account multiplicities) with max1≤i≤ν |λ−
λh,i| = O(h 1

ν min{p,s−+s++1}) for h ∈ (0, h∗] and with p the order of the LMS
method.

Proof.
(i) By Lemma 4.2 we know that the mapping of the closed RHP under the right-

hand side of the characteristic equation (4.13) maps into Σ(C+), which, by
assumption, maps into 1

hLMS(C−
0 ). Hence, (4.13) can have no unstable roots

because these are mapped into disjunct regions under the left- and right-hand
sides of (4.13). This implies the asymptotic stability of the zero solution of
the LMS method for h ∈ (0, h∗] and for all �τ ≥ 0.

(ii) Formally rewrite (4.13) as

λ =
1

h
LMS−1


hσh,l


A0 +

m∑
i=1

Aie
−λτi

s+∑
q=−s−

ψq(εi)e
λ(q−εi)h




 ,

where σh,l is similarly defined as in Theorem 3.4, part (ii). Now choose

0 < h < ĥ < h∗ small enough such that the inverse LMS−1 uniquely exists for
all arguments mapped onto by hσh,l(·) from λ ∈ C

+
0 . By the same reasoning

as in the proof of Theorem 3.4, part (ii), this mapping has a fixed point
λ ∈ C

+
0 which is an unstable solution of (4.13). This root moves continuously

in the function of h. For h ∈ (0, h∗], (4.13) can have no pure imaginary



640 K. ENGELBORGHS AND D. ROOSE

solutions λ (because Σ({iξ | ξ ∈ R}) ⊂ 1
hLMS(C+

0 )). Hence for h ∈ (0, h∗]
this root cannot change sign and the zero solution of the LMS method is
unstable for h ∈ (0, h∗].

(iii) Denote the characteristic equation (4.9) after the substitution (4.11) by
Ph(λ) = 0.

First, observe that

s+∑
l=−s−

ψl(ε)e
λlh = eλεh +O(hs−+s++1)

uniformly in ε ∈ [0, 1]. We fix �τ and expand exp(λh) into a Taylor series to
obtain that

Ph(λ) = det

(
λ

(
α0 +

p∑
q=0

k∑
j=1

αj
(λjh)q

q!

)
I

− h


β0 +

p−1∑
q=0

k∑
j=1

βj(λjh)
q




·
(
A0 +

m∑
i=1

Aie
−λτi +O(hs−+s++1)

)
+O(hp+1)

)
.

Using the order conditions (4.8), the latter simplifies to

Ph(λ) = det

(
h

(
λI −

(
A0 +

∑
i=1

Aie
−λτi +O(hs−+s++1)

))

·
(
β0 +

p−1∑
q=0

(hλ)q

q!

k∑
j=1

βjj
q

)
+O(hp+1)

)
.

From this it follows that

1

h
Ph(λ) = P (λ)Qh(λ) +O(hmin{p,s−+s++1}),(4.14)

where P (λ) denotes the characteristic equation (1.2) and

lim
h→0

Qh(λ) =


 k∑
j=0

βj



n

�= 0,(4.15)

where the latter inequality follows from the irreducibility (4.10) and the con-
sistency (4.8). Moreover, it is clear that (4.14) holds uniform on bounded
regions of λ in the complex plane.

The following statements follow the lines of proof of Hurwitz’s theorem
[2, section VII.2.5]. First, note that P (λ) is an analytic function and that
Ph(λ) and Qh(λ) are analytic in bounded regions of the complex plane when
h is small enough. Since λ∗ is an isolated zero of P (λ) of multiplicity ν, there
exists an R > 0 and a K0 > 0 such that

inf
θ∈[0,2π]

∣∣∣∣∣∣

 k∑
j=0

βj



n

P (λ∗ + reiθ)

∣∣∣∣∣∣ > K0r
ν for r ∈ (0, R].
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From (4.15), there exists an h∗0 > 0 and 0 < K1 < 1 such that

inf
|λ−λ∗|≤R

|Qh(λ)| > K1

∣∣∣∣∣∣
k∑
j=0

βj

∣∣∣∣∣∣
n

for h ∈ (0, h∗0].

Hence,

inf
θ∈[0,2π]

∣∣Qh(λ∗ + reiθ)P (λ∗ + reiθ)
∣∣ > K0K1r

ν for r ∈ (0, R], h ∈ (0, h∗0].

From (4.14), there exists a 0 < h∗1 < h∗0 and a K2 > 0 such that (using
p∗ = min{p, s− + s+ + 1})

sup
|λ−λ∗|≤R

∣∣∣∣ 1hPh(λ)−Qh(λ)P (λ)

∣∣∣∣ < K2h
p∗ for h ∈ (0, h∗1].

Set κ:=(2 K2

K0K1
)1/ν ; then, for each fixed h < h∗:=min{h∗1, (R/κ)ν/p

∗} and

corresponding r = κhp
∗/ν , we obtain∣∣∣∣∣ 1hPh(λ∗ + reiθ)−Qh(λ

∗ + reiθ)P (λ∗ + reiθ)

∣∣∣∣∣
< K2h

p∗ = K2

( r
κ

)ν
=

1

2
K0K1r

ν

<
∣∣Qh(λ∗ + reiθ)P (λ∗ + reiθ)

∣∣
for θ ∈ [0, 2π]. Hence, by Rouché’s theorem [2, section V.3.8], Qh(λ)P (λ)
and Ph(λ), or, equivalently, P (λ) and 1

hPh(λ), have the same number of

roots (counting multiplicities) in a circle of radius r = κhp
∗/ν around λ∗ for

all h ∈ (0, h∗].
The above theorem provides conditions under which a given LMS method captures

the stability properties of Σ, which, in turn, are related to the stability properties of
the DDE. In the next section we exploit these results to obtain a steplength heuristic
for h.

4.2. An LMS steplength heuristic. By comparing the first two parts of The-
orems 3.4 and 4.3, it is clear that the stability region of the LMS method scaled with
1/h should mimic the LHP when compared to the regions Σ(C+) in order to obtain a
good correspondence between the stability of the LMS scheme and the original DDE
(see also Figure 4.2 (right)).

For this reason we define a safety radius ρLMS,ε of the LMS stability region as
follows:

ρLMS,ε:=min{ρ−LMS,ε, ρ
+
LMS,ε}

with

ρ−LMS,ε:= sup{ρ > ε | |LMS(λ)| < ρ and �(LMS(λ)) < −ε ⇒ �(λ) < 0}(4.16)

and

ρ+
LMS,ε:= sup{ρ > ε | |LMS(λ)| < ρ and �(LMS(λ)) > ε ⇒ �(λ) > 0},(4.17)
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Fig. 4.2. Left: Circle with radius ρLMS,0.1 for the stability region (—) of the second order BDF
method. Right: Illustration of Heuristic 4.2 using ρLMS,0.1 shown left, r = 0, and the matrices (3.5).
The Σ(C+) regions of (3.5) are inside a circle with radius ‖A0‖ + ‖A1‖ (−−). The stability region
of the LMS method (−) is scaled with 1/h, h obtained from (4.21).

where we assume ε small enough such that the sets used in (4.16) and (4.17) are
nonempty. In other words, the safety radius is the size of the circle in which the
stability region of the LMS method mimics the LHP up to some accuracy ε (i.e.,
it has the correct stability except for a region of size 2ε around the imaginary axis;
cf. Figure 4.2 (left)).

We can now use the safety radius ρLMS,ε and the bound on Σ(C+) (see (3.4)) to
obtain the following heuristic.

Heuristic 4.1. The steplength h chosen as

h = 0.9
ρLMS,ε∑m
i=0 ‖Ai‖

(4.18)

can be used to obtain an LMS scheme which approximates the (delay-independent)
stability of the DDE up to some accuracy ε.

Indeed, if Σ(C+) maps into �(λ) < −ε/h, then there is delay-independent stability
for the DDE, and this property is recovered by the LMS method (we assume ε is small
enough such that ε/h � 1). Similarly, if Σ(C+) maps into �(λ) > ε/h, then there
is delay-independent instability for the DDE, and this property is recovered by the
LMS method.

By virtue of the third parts of Theorems 3.4 and 4.3, we know that Hopf bifurca-
tions as a function of the delay(s) (and hence delay-dependent stability) are associated
with the crossings of the boundary of Σ(C+) with the imaginary axis. These cross-
ings are captured well when the boundary of the stability region of the LMS method
mimics the imaginary axis when compared to Σ(C+). This is the heuristic reason why
the above steplength choice works well to capture the (more important) property of
delay-dependent stability.

The previous analysis concentrates on recovering stability and hence on roots of
the characteristic equations in their relation to the imaginary axis. The characteristic
equation of (1.1) has a root λ = r + iξ if and only if the system of DDEs,

ẋ(t) = (A0 − rI)x(t) +

m∑
i=1

(Aie
−rτi)x(t− τi),(4.19)
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has a root λ = iξ. Hence Σr(C
+) can be defined as before, in terms of the system

matrices,

Ar0 = A0 − rI and Ari = Aie
−rτi , i = 1, . . . ,m,(4.20)

to study the r-stability of the continuous problem and its dependency on the delay(s).
This leads to the following adaptation of Heuristic 4.1.

Heuristic 4.2. The heuristic choice of the steplength h,

h = 0.9
ρLMS,ε

‖A0‖+ |r|+
∑m
i=1 ‖Ai‖e−rτi

,(4.21)

can be used to approximate the roots with real parts greater than r < 0, �(λ) ≥ r.
This heuristic choice of h is implemented in the package DDE-BIFTOOL [3],

where it is applied to the original matrices A0, . . . , Am without the shift (4.20). The
latter is done to avoid deterioration in the approximation to the most interesting part
of the spectrum (near the imaginary axis).

Numerical results (see further) indicate that Heuristics 4.1 and 4.2 are quite
effective.

5. Numerical results. In this section we illustrate our findings with numerical
results.

In order to compute the characteristic roots of the LMS method (4.12) we com-
pute the eigenvalues µ of the matrix M that maps [ys−L ys−L+1 · · · ys+k−1] onto
[ys−L+1 ys−L+2 · · · ys+k] using the LMS method for ys+k and a shift for all other
values (and where L = maxi Li + s−). Then, we use the relation (4.11) to obtain

�(λ) = 1

h
log(|µ|)

and

�(λ) = 1

h
arcsin

(�(µ)
|µ|

)
mod

π

h
.

In our tests we use the explicit Adams–Bashforth (AB), implicit AM, and implicit
BDF LMS methods with different number of steps k (see, e.g., [7, section III.1.1-2,6]).

Consider the well-known delayed logistic equation,

ẋ(t) = (α− x(t− 1))x(t),(5.1)

cf., e.g., [18, section I.5.1] and [15]. The rightmost roots of the characteristic equation
of the steady state solution x∗ = α of (5.1) for α = 2 are depicted in Figure 5.1
(left). The convergence towards the rightmost root by the corresponding root of the
LMS method is shown in Figure 5.1 (right) for varying h. Here, the steplength h was
chosen as an integer fraction of the delay, h = 1/L. Table 5.1 gives the numerical
approximation of the orders of convergence based on a least squares approximation of
the results for L = 10, . . . , 100 using the AB, AM, and BDF methods with k = 2, 3, 4, 5
steps. The results for the AM method are shown in Figure 5.1 (right). The O(hp)
convergence, p = k + 1 for AM, p = k for AB and BDF methods [7, Table III.2.1], is
clearly apparent.

The following system of DDEs, taken from [24], models two coupled neurons with
time delayed connections:{

ẋ1(t) = −κx1(t) + β tanh(x1(t− τs)) + a12 tanh(x2(t− τ2)),
ẋ2(t) = −κx2(t) + β tanh(x2(t− τs)) + a21 tanh(x1(t− τ1)).

(5.2)
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We set κ = 0.5, β = −1, a12 = 1, a21 = 2.34, τ1 = τ2 = 0.2, and τs = 1.57 and
investigate the steady state solution (x∗1, x

∗
2) = (0, 0). The convergence towards a

rightmost root by the corresponding root of the LMS method is shown in Figure 5.2
(right) for varying h. Here, the steplength h is allowed to vary continuously, and
appropriate interpolation is used for the past terms.
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Fig. 5.1. Left: The rightmost roots of the characteristic equation (5.1) for α = 2. Right:
Convergence of the corresponding LMS root to the rightmost root of (5.1) for α = 2, for varying
h = 1/L, L = 10, . . . , 100. Here, AM methods were used with k = 2 (�), k = 3 (×), k = 4 (◦), and
k = 5 (+).

Table 5.1
Numerically observed orders of convergence while approximating the rightmost root of the steady

state x∗ = α of (5.1) at α = 2 using LMS methods with k = 2, 3, 4, 5 steps.

k AB AM BDF
2 1.994 2.998 1.994
3 2.993 3.995 2.993
4 3.990 4.993 3.990
5 4.987 6.022 4.987
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Fig. 5.2. Left: The rightmost roots of the characteristic equation of the zero steady state
solution of (5.2) for (κ, β, a12, a21, τ1, τ2, τs) = (0.5,−1, 1, 2.34, 0.2, 0.2, 1.57). Right: Convergence of
the corresponding LMS root to the third rightmost root shown left for varying h, h/τ ∈ [0.01, 0.1].
Here, BDF methods were used with k = 2, 3, 4, 5 from top to bottom and corresponding Nordsieck
interpolation with s− = � k−1

2
	 and s+ = 
 k−1

2
�.
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Fig. 5.3. Illustration of Heuristic 4.2 for the zero steady state solution of (5.2) with
(κ, β, a12, a21, τ1, τ2, τs) = (0.5,−1, 1, 2.34, 0.2, 0.2, 1.57) and varying r. Approximations (+) of roots
obtained from the BDF method with k = 4, s− = 1, s+ = 2, and h from Table 5.3 versus their cor-
rections (×). Approximations and corrections start to differ drastically only for �(λ) < r (indicated
by the dotted line).

The scalar DDE,

ẋ(t) = 2x(t)− ex(t− 1),(5.3)

with e = exp(1) has a double characteristic root at λ = 1. Table 5.2 gives the
numerical approximation of the orders of convergence towards this root based on a
least squares approximation of the results for h = 1/L, L = 10, . . . , 100 using the AB,
AM, and BDF methods with k = 2, 3, 4, 5 steps. The O(|h|p/ν) convergence, ν = 2,
is clearly apparent.

Finally, Table 5.3 and Figure 5.3 illustrate the results, respectively, the effective-
ness, of Heuristic 4.2 for different values of r.

Table 5.2
Numerically observed orders of convergence while approximating the double characteristic root

λ = 1 of (5.3) using LMS methods with k = 2, 3, 4, 5 steps.

k AB AM BDF
2 0.99 1.50 1.03
3 1.48 1.99 1.49
4 1.98 2.48 1.98
5 2.47 2.94 2.47

Table 5.3
Values h of the steplength Heuristic 4.2 for system (5.2) and varying r using the BDF method

with k = 4 and ρLMS, 0.01 ≈ 0.57. Roots of the resulting LMS-approximations are shown in 5.3.

r 0 -1 -2 -3
h 7.5e-02 3.8e-02 1.4e-02 3.8e-03
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6. On stiffness in DDEs. Stiffness in the numerical solution of initial-value
problems has been used with quite different meanings by a number of authors. For
an overview in the context of ordinary differential equations, see [25]. The situation
for DDEs is even less clear. In [1] Dahlquist is quoted as follows:

A “stiff” problem is characterized by the property that there are
processes in the physical system, described by a system of ordinary
differential equations, with significantly different time scales . . . .

When applying this definition to DDEs one might conclude, observing the exis-
tence of sequences of characteristic roots with decreasing real parts (see Figure 5.3),
that all DDEs are stiff. This is contradicted by the fact that almost all existing soft-
ware for simulation of DDEs is based on explicit Runge–Kutta methods. The latter
gives rise to a more practical observation of stiffness. We quote from Hairer and
Wanner [8] as follows:

Stiff equations are problems for which explicit methods don’t work.

We now illustrate how visualization of the regions Σ(C+) allows us to distinguish
between stiff and nonstiff problems in the latter sense.

In [22] a model is introduced to describe the flow of a viscoelastic fluid (i.e., a
fluid with a fading memory). This models consists of a partial differential equation
with an infinite, distributed delay term. The classical method used to study this
integrodifferential equation is the conversion into a pair of coupled partial differential
equations. In [20], however, the distributed delay is replaced by two point delays.
Here, we study a one-delay version,

∂u

∂t
=

1− δ

ν
(uxx(x, t) + uxx(x, t− τ)) + δuxx(x, t) +Ru(x, t)− u3(x, t),(6.1)

on x ∈ [0, π] with boundary conditions u(0, t) = u(π, t) = 0. u(x, t) is the velocity of
the fluid and ν, δ, τ , and R are parameters of the problem.

We use a classical second order central difference scheme in space to approximate
(6.1) by a system of n DDEs,

(6.2)

dui
dt

=

(
1− δ

ν
+ δ

)(
ui−1(t)− 2ui(t) + ui+1(t)

∆x2

)

+
1− δ

ν

(
ui−1(t− τ)− 2ui(t− τ) + ui+1(t− τ)

∆x2

)
+Rui(t)− u3

i (t),

i = 1, . . . , n,

where u0(t) ≡ un+1(t) ≡ 0, ∆x = π/(n + 1). We fix ν = 2, δ = 0.1, R = 0.08, and
τ = 3.

The regions Σ(C+) of the linearization of (6.2) around its zero steady state solu-
tion are shown in Figure 6.1 (left) for n = 8. The figure indicates that this example is
in fact mildly stiff. Indeed, the regions Σ(C+) are such that an implicit method with
unbounded stability region can capture the stability for a smaller h more efficiently
than an explicit method can. This is illustrated in Figure 6.2 using the scaled stability
regions of the BDF, respectively, AM, methods using, for both methods, k = 2 and
h = 0.3. Both methods capture the stability of the regions Σ(C+) near the origin, but
the AM method fails to capture the “tail” of the regions Σ(C+) at its leftmost end.
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Fig. 6.1. Stability regions of the zero steady state solution of (6.2) using n = 8 (left) and n = 20
(right). Full view (top) and a blow up near the origin (bottom).
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Fig. 6.2. Stability regions of the zero steady state solution of (6.2) using n = 8 and stability
regions of the BDF and AM methods for k = 2 scaled with 1/h using h = 0.3.

The stability of the AM method for our case, τ0 = 3, is indeed wrong; see Figure 6.3
(upper right).

If system (6.2) is considered for a larger value of n, then stiffness increases and the
situation is even more clear. Figure 6.1 shows the regions Σ(C+) for a system of size
n = 20. Taking a finer discretization enlarges the stability regions to the left, while
the situation near the origin remains approximately the same. Hence, this effect is
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Fig. 6.3. LMS approximations of the rightmost characteristic roots of the stable zero solution
of (6.2) using h = 0.3. Left: BDF method, k = 2. Right: AM method, k = 2. Top: n = 8. Bottom:
n = 20. Note that only some rightmost roots of the BDF method are close to actual correct roots of
the system (not shown).

not felt by the BDF method which produces (in contrast to the AM method) similar
results for n = 20 using the same steplength h = 0.3; see Figure 6.3 (lower left).

As a last remark, we note that the above characterization of stiffness does not
depend on the size of the delay. Hence one could say that a problem with the same
system matrices but a larger delay is relatively more difficult (because the discretized
state space grows with the size of the delay for fixed h) but is not more stiff.

7. Conclusion. DDEs are used to model systems with some form of memory or
delayed feedback and arise in a growing number of applications.

The stability of a steady state solution of a DDE is governed by the roots of a
characteristic equation which expresses a nonlinear, nonstandard eigenvalue problem.
For stability and bifurcation analysis it is of interest to compute the stability de-
termining, i.e., the rightmost characteristic, roots. Established numerical algorithms
exist to compute selected eigenvalues of possibly very large matrices. Therefore,
selected characteristic roots can be approximated by computing the eigenvalues of
the map defined by a discrete numerical time integration approximation to the given
DDE [4].

In this paper we investigate the correspondence between the characteristic roots
of a DDE and the eigenvalues obtained from an LMS method approximation. In
particular, we investigate under what conditions for the steplength the approxima-
tion retains certain delay-independent stability properties of the original system. We
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concentrate on the recovery of both stability and instability and prove convergence
orders of the approximate characteristic roots. This analysis allows us to obtain a
steplength heuristic for the computation of the characteristic roots with real parts
greater than a given constant, as used in the package DDE-BIFTOOL [3].

We illustrate the results using numerical experiments. In particular, the analysis
of an example system of DDEs arising from a partial differential equation with delay
discretized in space shows how the investigated stability issues allow us to interpret
stiffness for DDEs.

Acknowledgment. The authors thank Professor J. Quaegebeur for helpful
comments concerning Theorems 3.2 and 3.3.
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VARIATIONAL BARRIER METHOD OF ADAPTIVE GRID
GENERATION IN HYPERBOLIC PROBLEMS OF GAS DYNAMICS∗

BORIS N. AZARENOK†

SIAM J. NUMER. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 2, pp. 651–682

Abstract. Application of the harmonic mapping using a variational approach to generate
moving adaptive grids in the hyperbolic problems of gas dynamics is considered. Using the example
of a three-point model of adaptation, the possibility to generate an unfolded mesh with strong grid
lines condensing in the vicinity of discontinuities of the control/(monitor) function is demonstrated.
The algorithm of redistributing the boundary nodes is suggested and consists of using constrained
minimization of the discrete harmonic functional when constraints define the boundary of the domain.
In real computations due to mesh adaptation it is possible to reduce the errors, caused by shock waves
smearing over the cells, by many factors of ten. Modeling of the two-dimensional (2-D) supersonic gas
flow in the channel has shown that the same accuracy on the adaptive grid with the same structure
as the quasi-uniform mesh can be acheived while requiring less CPU memory by a factor of 25 and
less running time by a factor of 50 to 60. Computational tests of the steady transonic and supersonic
flow over an airfoil demonstrate the ability of the method to control mesh sizes across shocks.

Key words. moving adaptive grids, harmonic mapping, shock waves, constrained optimization
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1. Introduction. Moving adaptive grid technology has important applications
in the problems of fluid dynamics. The essence of such an approach, referred to
as r-refinement, is in adjusting redistribution of the grid nodes in such a manner
to catch particularities in the solution of interest with fixed computer cost. The
constructive way is that we try to position more grid nodes in the domains of sharp
change in the solution being the regions of high gradients while the mesh retains the
regular structure that makes the course of computation more simple. Examples of
some r-refinement based methods can be found in Carey [10], Charakhch’yan and
Ivanenko [12], Hawken, Gottlieb, and Hansen [21], Ivanenko [24], Jacquotte [26], Li,
Tang, and Zhang [28], Tang and Tang [38], Thompson [39], and Zegeling [41]. In Liu,
Ji, and Liao [30] the deformation method is suggested, where the grid velocities are
determined by solving a scalar Poisson equation. An approach based on the moving
mesh partial differential equations method has been considered in Cao, Huang, and
Russell [8, 9] and Huang [22]. Here the Euler–Lagrange equations, both stationary and
with the time dependent left part, to the variational functional are solved and mesh
adaptation is performed using a class of monitor functions that are the symmetric
positive definite matrices.

When constructing an adaptive moving grid the main difficulty is in maintaining
its nondegeneracy. Probably, an approach should consist of extending the equidis-
tribution principle, providing a one-to-one mapping of logic space onto the physical
domain in a discrete approach, from the widely used one-dimensional (1-D) case to
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the two-dimensional (2-D) one. Some ways to define equidistribution-like methods
in 2 dimensions can be found in Baines [6], Cao, Huang, and Russell [8, 9], Dwyer,
Sanders, and Raiszadek [14], Huang [22], and Zegeling [41]. In Ivanenko [25] it was
suggested to use a variational functional depending on derivatives of the functions
sought and on variable coefficients, which are the elements of some symmetric posi-
tive defined matrix, and in a discrete approach the following variational principle is
proved: a mapping, minimizing that functional, is one-to-one.

One of the mesh generation techniques is in using a harmonic mapping, first
applied in Winslow [40], and in particular a variational approach. Here, when mini-
mizing the Dirichlet (or harmonic) functional of smoothness, we ensure the grid lines
are as smooth as possible; see Brackbill and Saltzman [7]. To include adaptivity in
this process it has been suggested to write the Dirichlet functional on the surface of
the graph of the control/(monitor) function, which is the solution of the basic problem
or somehow connected with it, and to perform an adaptation by solving the Euler–
Lagrange equations to the harmonic functional; see Liseikin [31, 32]. Application of
such monitor surfaces has also been considered in Dwyer, Sanders, and Raiszadek [14],
Eisman [15], and Spekreijse [36]. Note that Dvinsky [13] was the first to use the har-
monic mapping for mesh adaptation where the gradient of the monitor function is
utilized to perform grid lines clustering.

Numerical solution of the discrete Euler–Lagrange equations cannot always pro-
vide generation of the unfolded mesh even in domains without adaptation; see exam-
ples of grids to the backstep in Knupp and Steinberg [27] and Ivanenko [24]. It means,
though, in a continuous approach that there exists a unique harmonic mapping, being
one-to-one, and when discretizing the one-to-one property of the mapping can be lost.
The discrete mapping can also be nonunique; see Garanzha and Kaporin [18].

To provide a one-to-one harmonic mapping at a discrete level Charakhch’yan and
Ivanenko [11] have suggested a variational barrier method of grid generation in a
physical domain without adaptation when the mapping is constructed by minimizing
the harmonic functional. The functional is approximated in such a manner that
there is an infinite barrier ensuring all grid cells to be convex quadrilaterals. This
approach has been extended to adaptive grid generation when the harmonic functional
is written on the surface of the control function; see Ivanenko [23, 24], Charakhch’yan
and Ivanenko [12]. In Azarenok [2] and Azarenok and Ivanenko [4, 5] this approach
has been applied in 2-D unsteady problems of gas dynamics when as a control function
it used one of the flow parameters or the superposition of several parameters.

The purpose of the present work is to show some theoretical aspects and prac-
tical possibilities of using the variational barrier method of constructing structured
adaptive grids in hyperbolic problems of gas dynamics with discontinuous solutions.
In the 1-D case based on solving the nonlinear advection equation it is shown that the
regularized discrete functional is convex and its minimum is attained on the mesh,
which can be strongly condensed in the vicinity of discontinuities of the control func-
tion; meanwhile, this functional keeps the infinite barrier preventing the grid cells
from collapsing. In the 2-D case it is shown that at strong grid lines condensing the
infinite barrier disappears; nevertheless, when using the iterative procedure of mesh
generation, we can guarantee the grid to be unfolded. The algorithm of redistributing
the boundary nodes, consisting of using constrained minimization of the functional
when constraints define the boundary of the domain, is suggested. Such an approach
allows us to perform consistent redistribution of grid nodes inside the domain and
on its boundary that increases the reliability of grid generation and the modeling of
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the flow problem. Modeling of the 2-D supersonic gas flow in the channel has shown
that the same accuracy on the adaptive grid with the same structure as on the quasi-
uniform mesh can be achieved while requiring less CPU memory by a factor of 25 and
less running time by a factor of 50 to 60. Computational tests of the steady transonic
and supersonic flow over an airfoil demonstrate the possibility to control mesh sizes
across shocks.

2. Problem formulation. The theory of harmonic mappings is useful for for-
mulating a well-posed variational grid generation problem. The energy of a mapping
φ : (M, g)→ (N,h) between two n-dimensional Riemannian manifoldsM and N with
metric tensors gij and hij is the function e(φ) : M → R(≥ 0), defined in some local
coordinates ξi, µi as

e(φ) =
1

2
gij(ξ)

∂µk

∂ξi
∂µl

∂ξj
hkl(µ),

where gij is the inverse metric. The energy functional (or total energy) of the mapping
φ is defined as (see Eells and Lemaire [16] and Dvinsky [13])

E(φ) =

∫
M

e(φ)dξ,

(2.1)
where dξ =

√
det(g)dξ1 · · · ξn.

A smooth mapping φ : (M, g) → (N,h) is harmonic if it is a critical point of the
energy functional E.

Sampson [34] and Schoen and Yau [35] have shown that the harmonic mapping
M → N when dimN = 2 is always a homeomorphism (one-to-one) provided that the
curvature of N is nonpositive and the boundary ∂N is convex (with respect to the
metric hij). But it is sometimes not true when dimN > 2 [17].

Now we turn to the problem formulation of the surface grid generation utilized
for constructing the adapted mesh [12, 24, 32]. Let a simply connected domain
Ω⊂�2 with a smooth boundary in plane x-y be given. Consider the surface Sr2

of the graph of the control/(monitor) function z = f(x, y); see Figure 1. The sur-
face Sr2 can be presented in Euclidean space R3 by a parametrization r(ξ, η) =
(x(ξ, η), y(ξ, η), f [x(ξ, η), y(ξ, η)]), where ξ, η are the local coordinates on Sr2. We
seek a mapping of the unit square in parametric plane ξ-η onto the domain Ω, when
a mapping of the boundary of a square onto the boundary of Ω is given, so that the
mapping of the surface Sr2 onto the parametric square is harmonic. The conditions of
the above Sampson, Shoen and Yau’s statement are obviously satisfied for the map-
ping of the physical domain Ω onto the parametric domain Ωp with Euclidean metric
hij = δij (here δij is the Kronecker symbol), which is the square in the parametric
plane ξ-η. Hence, the nondegenerate harmonic coordinates ξ, η may be constructed on
the surface Sr2. The coordinate lines ξ, η are then projected on the physical domain
Ω and the result is an adaptive-harmonic grid.

To construct the harmonic mapping we use the variational formulation of the
Dirichlet functional, which is the measure of closeness of the mapping to conformal.
The task at hand is to minimize the Dirichlet functional written on the surface Sr2.
This functional of smoothness can be expressed through the invariants I1, I2 of the
orthogonal transforms of the covariant metric tensor gij [31, 32], namely,

I =

∫
Sr2

I1
I2 dS

r2.
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Fig. 1. Adaptive grid generation.

The invariant I2 = det(gij) = g11g22−(g12)
2 and it equals the area squared of the cell

on the surface Sr2; the invariant I1 = g11 + g22 means the sum of the length squared
of the cell sides. Noting that dSr2 =

√
g11g22 − (g12)2dξdη we get

I =

∫ 1

0

∫ 1

0

g11 + g22√
g11g22 − (g12)2

dξdη.(2.2)

The components of the tensor gij are defined on the surface S
r2 with the local

coordinates ξ, η in Euclidean space R3 as follows:

g11 = r
2
ξ = x2

ξ + y2
ξ + f2

ξ = x2
ξ + y2

ξ + (fxxξ + fyyξ)
2,

g12 = (rξ · rη) = xξxη + yξyη + fξfη = xξxη + yξyη + (fxxξ + fyyξ)(fxxη + fyyη),

g22 = r
2
η = x2

η + y2
η + f2

η = x2
η + y2

η + (fxxη + fyyη)
2.

Substituting them in (2.2) we get the following form of the functional:

I =

∫ 1

0

∫ 1

0

(x2
ξ + x2

η)(1 + f2
x) + (y

2
ξ + y2

η)(1 + f2
y ) + 2fxfy(xξyξ + xηyη)

(xξyη − xηyξ)
√
1 + f2

x + f2
y

dξdη.(2.3)

This form of the harmonic functional has been derived in [12, 24] from the energy
functional (2.1) (if multiplied by 2) written for the surface Sr2

E =

∫ 1

0

∫ 1

0

Tr(g−1
ij )
√
det(gij)dξdη,

where Tr(g−1
ij ) = gii.

With the purpose of controlling the degree of coordinate lines condensing in the
domains of high gradients, it is convenient to use caf instead of the control function
f , where ca is a coefficient of adaptation [24] which can depend on variables x, y.
Thus, we work with the control function multiplied by some coefficient ca in order to
increase or decrease adaptation.

In the 1-D case, to generate the inverse harmonic mapping of the graph of f
onto the unit segment in parametric space ξ requires us to minimize the following
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functional (see [31, 32]):

I =

∫ 1

0

1

xξ
√
1 + c2af

2
x

dξ.(2.4)

Here at once we use caf instead of f , and it means we seek the grid points arc-length
equidistribution in the metric of the curve caf .

For the direct mapping of the unit segment in parametric space ξ to the curve
caf , the Dirichlet functional has the form

I =

∫ 1

0

x2
ξ(1 + c2af

2
x)dξ.(2.5)

The Euler–Lagrange equations to the functionals (2.4) and (2.5) are similar, and

xξ
√
1 + c2af

2
x = const.(2.6)

3. Approximation of a functional. We consider a piecewise bilinear map-
ping of the unit square i ≤ ξ ≤ i + 1, j ≤ η ≤ j + 1 in the parametric plane ξ-η
onto a quadrilateral grid cell in plane x-y formed by nodes with coordinates (x, y)i,j ,
(x, y)i+1,j , (x, y)i+1,j+1, (x, y)i,j+1 numbered from 1 to 4 in an anticlockwise manner,
where i, j are positive integers. The functional (2.3) is approximated in such a way
that its minimum is attained on a grid of convex quadrilaterals, referred to as a convex
grid [12, 24],

Ih =

imax∑
i=1

4∑
k=1

1

4
[Fk]i ,(3.1)

where Fk is the integrand evaluated in the kth corner of the ith cell. If the set of
convex meshes is not empty, the system of algebraic equations written to every interior
node (here i is a global node number)

Rx =
∂Ih

∂xi
= 0, Ry =

∂Ih

∂yi
= 0,(3.2)

has at least one solution that is a convex mesh. To find it one should have an initial
convex mesh and then use a method of unconstrained minimization [4, 12, 24]. It has
been shown [11, 12, 24] when generating a curvilinear mesh without adaptation in an
arbitrary simply connected domain Ω in plane x-y that the discrete functional (3.1)
(if no adaptation, then in (2.3) we define fx = fy = 0) has an infinite barrier on the
boundary of the set of convex grids; see Figure 2. This is caused by the condition
of positiveness to the Jacobian of the mapping J = xξyη − xηyξ in (2.3). Should
the vertexes of some cell be displaced so that the cell becomes nearly nonconvex (see
Figure 2(b)), then one of four triangles, into which the cell is divided by its two
diagonals, degenerates; its area, equal to 0.5J , tends to zero and, therefore, Ih →∞.
The infinite barrier holds in the case of adaptive grid generation as well as when the
control function f ∈ C1(Ω) since the values fx, fy under the square root in (2.3) are
bounded everywhere in Ω. When starting from an initial convex mesh, due to the
infinite barrier every step of the minimization procedure can be chosen so that the
mesh always remains convex. However, if f is of the class of discontinuous functions,
what we generally have in hyperbolic problems of gas dynamics, in the vicinity of a
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(b)

Fig. 2. When minimizing the discrete functional Ih there is an infinite barrier preventing the
cells from folding. The mesh shown consists of four cells. At minimization only the node (2, 2)
moves. Dashed lines indicate the domain inside which the node (2, 2) shall be placed so that all four
cells are convex (a). If this node approaches the dashed line (b), one (right) of two triangles, into
which cell 1 is divided by the diagonal, degenerates, its area tends to zero, and, therefore, Ih → ∞.

discontinuity the derivatives fx, fy become unbounded, is that the the infinite barrier
disappears and this causes some grid cells to fold and the modeling to break. In
order to prevent grid lines overlapping, we use the procedure of regularization to the
discrete functional described in section 5.

We make use of the rectangular rule to compute the 1-D functional (2.4)

Ih =

imax∑
i=1

�ξ
(xξ)i+1/2

√
1 + c2a(fx)

2
i+1/2

,(3.3)

where imax is the number of spacings and the derivatives are computed via

(xξ)i+1/2 = (xi+1 − xi)/�ξ, (fx)i+1/2 = (fi+1 − fi)/(xi+1 − xi).(3.4)

4. Three-point model of adaptation. In this section we demonstrate that
when solving the Cauchy problem for the nonlinear advection equation under some
conditions the values of the discrete function in the cells of the moving mesh remain
invariable. Then the problem of constructing an adaptive mesh can be considered
separately from the basic problem as if using an analytical control function. This
allows us to analyze some properties of the discrete functional which also hold in the
general case of computing a real flow with discontinuities.

Consider a 1-D adaptive mesh generation when solving the IVP to the nonlinear
advection equation with discontinuous initial data when the shock moves from the
left to the right:

∂u

∂t
+ u

∂u

∂x
= 0, u(x, 0) =

{
ul if x < 0,
ur if x ≥ 0, ul > ur > 0.(4.1)

We use the integral equation∮
C

u dx− 1

2
u2dt = 0,(4.2)

which in case of a smooth solution is equivalent to the above differential equation, and
a discontinuous solution is governed by it as well. Here the contour C is the boundary
of an arbitrary domain in plane x-t.
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Fig. 3. Moving grid (a); ic is a center of the shock smeared. If the mesh moves with the speed
of shock w = 0.5(ur + ul) and the number of intervals imax is even, then the updated value ui+1/2

does not change. Three-point model of adaptation (b); in the coordinate system moving with the
speed of shock w, x1 = 0 and x3 = L are the coordinates of the fixed boundary nodes, x2 = x is a
moving node.

In plane x-t we introduce the moving grid (see Figure 3(a)) with spacings at the
nth time level hi+1/2 = xni+1 − xni and at the n+ 1st level h

i+1/2 = xn+1
i+1 − xn+1

i and
time step �t = tn+1 − tn, where n, i are integers. Let at tn the cell-average values of
the discrete function ui+1/2 be defined in the center of intervals. To update the values

ui+1/2 at time tn+1 we use the Godunov scheme on the moving grid [20, 19]. This
scheme can be obtained if we integrate (4.2) along the contour C being the boundary
of the computing cell

ui+1/2hi+1/2 − ui+1/2hi+1/2 − ui+1hi+1 + hiui +
�t
2

[
(ui+1)

2 − (ui)2
]
= 0,(4.3)

where hi = xn+1
i − xni . In order to determine a flux through the intercell boundary

[xni , x
n+1
i ] we need the value ui on it, which is defined via the condition across the

discontinuity

ui =

{
ui−1/2 if hi/�t < 0.5(ui−1/2 + ui+1/2),
ui+1/2 otherwise.

The above condition takes into account the inclinations of the straight-line character-
istic dx/dt = 0.5(ui−1/2 + ui+1/2) at the point x

n
i and the slanted boundary of the

cell [xni , x
n+1
i ] defined as hi/�t. If the ith node moves faster than perturbations from

this node, then we set ui = ui+1/2, and if vice versa, then ui = ui−1/2.
From (4.3) we get the values at tn+1

ui+1/2 =
1

hi+1/2

{
ui+1/2hi+1/2 − �t

2

[
(ui+1)

2 − (ui)2
]
− uihi + ui+1hi+1

}
.(4.4)

Theorem 4.1. Let, without adaptation, the grid nodes move with the speed of
shock w = 0.5(ur + ul). Suppose at time tn the values ui+1/2 = ul if i < ic and
ui+1/2 = ur if i ≥ ic, where ic is a node that is the center of the shock smeared and
the midmesh node, i.e., ic = 0.5imax + 1, where imax is an even number of intervals.
Then the updated values ui+1/2 do not change.

Proof. First, note that the problem is symmetrical about the icth node. This
node moves with the velocity w. Consider the interval (ic − 1, ic); see Figure 3(a).
Let at time tn+1 the ic − 1st node shift by δ from the position

xn+1
ic−1 = xnic−1 + w�t,
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where it would be if there were no adaptation. Denote hic−1/2 = h; then hic−1/2 =
h − δ. Observing that projections of the cell lateral edges onto x are hic = w�t,
hic−1 = w�t + δ, and defining the intercell values from the condition across the
discontinuity as uic−1 = ul and uic = ur, we get from (4.4) that

uic−1/2 =
1

h− δ

[
ulh− �t

2

(
u2
r − u2

l

)− (w�t+ δ)ul + urw�t
]

=
1

h− δ

[
ulh− �t

2
(ur + ul) (ur − ul) + w�t (ur − ul)− δul

]
= ul.

A similar result holds if uic = ul.
Consequently, when constructing the adaptive mesh we need not solve the IVP

(4.1) and can merely set the values equal ul in the cells to the left of the icth point
and ur to the right.

We shall construct the adaptive mesh minimizing the functional (3.3) and using u
as a control function. We can simplify the model considering the left half of the mesh
consisting of three points, i.e., when ic = 3. Such an assumption does not change the
mesh structure. The general case can be easily obtained from this three-point model.
We pass into the new coordinate system moving with the velocity w so that x1 = 0;
see Figure 3(b). Then, when adapting, 1 and 3 are the fixed boundary nodes and
x3 = L, where L = 2h, h is a spacing of the initial uniform mesh, and coordinate x2

is variable, referred to further as x. We also have u1 = u2 = ul, u3 = (ul + ur)/2.

5. Properties of the discrete functional. In this section we consider prop-
erties of the discrete functional in the 1-D and 2-D cases within the framework of the
three-point model of adaptation. It will be shown that if the coefficient ca is larger
than some critical value, minimization of the functional leads the right cell of the
two-cell grid to collapse. In order to get a convex functional in the 1-D case, i.e., to
provide the unique solution of the minimization problem, we use a regularized func-
tional. The improved functional holds an infinite barrier preventing the right cell from
collapsing to any extent of grid nodes condensation. In the 2-D case, the meaning of
the minimization procedure to the functional can be lost due to absence of a solution
in the minimization problem. Nevertheless, we shall demonstrate the iterative proce-
dure allows us to condense significantly the grid lines towards the discontinuity and
guarantee the grid is unfolded.

First, consider the 1-D case. In assumptions of section 4 the approximation (3.3)
to the functional on the two-cell grid reads (we set �ξ = 1) as

Ih =
1

x
+

1

(L− x)
√
1 + c2a�u2/(L− x)2

,(5.1)

where �u = |u3− u2|/2 = |ur − ul|/2. To minimize the one-parametric functional Ih
we apply the Newton method

xp+1 = xp − τ
∂Ih

∂x

[
∂2Ih

∂x2

]−1

,(5.2)

where the iterative parameter τ ≤ 1, the first derivatives is
∂Ih

∂x
= − 1

x2
+

1

(L− x)2
[
1 + c2a�u2/(L− x)2

]3/2 ,
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Ih ∂Ih/∂x

(a) (b)

Fig. 4. Dependence of distribution for the functional Ih (a) and ∂Ih/∂x (b) on ca within the
interval (0, L), where L = 2h = 0.2. Here the part of the interval (0, 0.05) is cut off since it is out
of interest. At ca > 0.185 there is no minimum of the functional (see the curve ca = 0.2), and
minimization of Ih causes the right cell to collapse.

and the second derivative is derived from the first one.
In Figure 4 the distributions of Ih and ∂Ih/∂x are presented for several values

of ca at ul = 2, ur = 1, and initial uniform spacing h = 0.1. One can see at ca = 0
the functional Ih has the minimum at x = 0.1 which corresponds to the point’s
equidistribution or a uniform mesh. When ca > 0 the functional Ih loses convexity
in the interval (0, L) and besides the minimum there appears a maximum to the left
of point 3. Therefore, the solution of the problem on finding its extremum becomes
nonunique. When increasing ca on one hand the value xmin, where I

h reaches the
minimum in (0, L), shifts to the right corresponding to point 2 moving towards point
3 or grid clustering (see Figure 4(b)). On the other hand, xmax, where I

h reaches the
maximum in (0, L), shifts to the left from point 3 causing grid rarefaction. In 2-D
problems it can cause harsh displacements of the mesh nodes due to jumps of the
solution from the minimum to maximum and vice versa during iterations, i.e., grid
lines overlap and instability in the solution of the flow problem. Furthermore, for some
critical value ccrta , both extrema merge at the point xcrt. To find ccrta it is required
that we solve the system of two equations ∂Ih/∂x = 0 and ∂2Ih/∂x2 = 0 about ccrta
and xcrt. For the above parameters ccrta �0.185, xcrt�0.159. When ca > ccrta there is
no extremum and minimization of Ih causes the right cell to collapse; see the curve
ca =0.2 in Figure 4(b). Consequently, significant mesh clustering is impossible.

Let us write the discrete functional to the left half of the mesh including 0.5imax

intervals

Ih =
(0.5imax − 1)2

x
+

1

(L− x)
√
1 + c2a�u2/(L− x)2

;(5.3)

here L = 0.5imaxh. The functional (5.3) is also one-parametric since all intervals
except that on the right have the same length. Note the larger imax is the smaller c

crt
a

is. For example, at imax = 100 the value ccrta = 0.126, which reduces the possibility
of condensing the mesh towards discontinuity.
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Ih ∂Ih/∂x

(a) (b)

Fig. 5. Dependence of distribution for Ih1 (a) and ∂I
h
1 /∂x (b) on ca. Functional I

h
1 is convex

within the interval (0, L) for any ca that guarantees existence of a unique solution of the minimization
problem. The infinite barrier prevents the right cell from collapsing.

In order to preserve convexity of the discrete functional we assume, when varying
x, the derivative of the control function fx in (3.3) (i.e., ux in our case) remains fixed
(invariable metric) as it was used in [24]. Assuming in (5.1) the derivative (ux)i+1/2

does not depend on x, we obtain the derivative of a new functional Ih1 :

∂Ih1
∂x

= − 1

x2
+

1

(L− x)2
√
1 + c2a�u2/(L− x)2

.(5.4)

To obtain an explicit expression for Ih1 , referred to as the regularized functional,
we integrate (5.4) and get

Ih1 =
1

x
+

1

ca�u ln
[
ca�u
L− x

+

√
1 +

c2a�u2

(L− x)2

]
.(5.5)

Distributions of Ih1 and ∂I
h
1 /∂x, presented in Figure 5, illustrate three important

properties of this new class of functionals:
1. The functional Ih1 is convex within the interval (0, L) for any ca.
2. When ca →∞ the position of xmin for Ih1 tends to L from the left.
3. There is an infinite barrier preventing the right cell from collapsing.

The first property guarantees existence and uniqueness of the solution of the
minimization problem within the interval (0, L). According to the second one, point
2 can approach point 3 to within any small distance. The third one states that
the infinite barrier keeps the mesh nondegenerate. The infinite barrier allows the
clustering of the mesh in the vicinity of the discontinuity up to any small size. When
modeling a flow with shock waves it allows the accuracy to increase significantly,
since the error caused by shock wave smearing, in the integral norms L1 or L2, is
proportional to the shock thickness. A corollary is that two adjacent cells, one located
in the shock zone and the other in the domain of smooth flow, with sizes differing by
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orders of magnitude, do not degrade the accuracy of the solution. Thus, the mesh
can be sharply clustered within one cell towards discontinuity. Those properties hold
in the case of a mesh with any number of intervals imax as well.

Note, when adapting with using the regularized functional (5.5), the velocity of
grid nodes condensing, defined by dependence of the node 2 position on ca at fixed
L and �u, is reduced in comparison with the case of the functional (5.1). It can be
shown that at small ca the ratio of the velocities to the functionals (5.1) and (5.5)
equal 3. It leads one to have to perform a greater number of mesh iterations to obtain
necessary degree of nodes condensing. We can increase the velocity of condensing by
raising the expression under the square root in (5.4) to the power of 1− 1/2m (here
substitution m = 1 gives (5.4)), and such a functional will be referred to as Ihm. In
practice m = 2 can be used as well.

Now we turn to a special case of constructing the 2-D adaptive mesh when the
discrete functional can be reduced to be one-parametric. Suppose the control function
f in (2.3) depends only on the variable x. Therefore, when seeking the mapping of
the parametric square onto the domain Ω we have x = x(ξ), y = aη (a = const), and
fy = xη = yξ = 0. Then the harmonic functional (2.3) reads (we set a = 1) as

I =

∫ 1

0

∫ 1

0

x2
ξ(1 + c2af

2
x) + 1

xξ
√
1 + c2af

2
x

dξdη =

∫ 1

0

x2
ξ(1 + c2af

2
x) + 1

xξ
√
1 + c2af

2
x

dξ.(5.6)

The functional (5.6) differs from (2.4) by the additional term
∫
xξ
√
1 + c2af

2
xdξ ex-

pressing the curve caf length in a cross-section y = const. This term defines the
difference in properties of the 1-D and 2-D regularized discrete functionals.

We follow assumptions of section 4 when approximating (5.6) on the two-cell grid

Ih= x+
1

x
+ (L− x)

√
1 + c2a�u2/(L− x)2 +

1

(L− x)
√
1 + c2a�u2/(L− x)2

.

This discrete functional possesses properties similar to (5.1). Within the interval (0, L)
at ca < ccrta there are a maximum and minimum of Ih which disappear at ca > ccrta .
Here the value of ccrta differs a bit from the one in the 1-D case.

To regularize Ih we again fix the metric when deriving the first derivative. Deriva-
tive of a new functional reads as

∂Ih1
∂x

= 1− 1

x2
−
√
1 + c2a�u2/(L− x)2 +

1

(L− x)2
√
1 + c2a�u2/(L− x)2

.

Integrating it we get the regularized functional

Ih1 =
1

x
+ x+

√
(L− x)2 + c2a�u2 +

1

ca�u (1− c2a�u2) ln

[
ca�u
L− x

+

√
1 +

c2a�u2

(L− x)2

]
.

Distributions of Ih1 and ∂Ih1 /∂x are presented in Figure 6. We see as soon as
the term 1 − c2a�u2 becomes negative, in the above case at ca > 1/�u = 2, that
the functional loses convexity. First, it seems to lead the right cell to collapse when
finding the minimum of Ih1 via the iterative procedure (5.2). In practice it does not
happen for the following reason. Derive the second derivative of Ih1 :

∂2Ih1
∂x2

=
1

x3
+

2(L− x)2 + c2a�u2

(L− x)2
√
(L− x)2 + c2a�u2

[
1

(L− x)2 + c2a�u2 + 1

]
.



662 BORIS N. AZARENOK

Ih1 ∂Ih1 /∂x

(a) (b)

Fig. 6. 1-D approach to 2-D functional (2.3). Dependence of distribution for Ih1 (a) and

∂Ih1 /∂x (b) on ca. At ca > 2 the functional loses convexity.

When point 2 tends to point 3, i.e., x to L, and consequently we have L−x� ca�u,
the ratio of the derivatives in (5.2) gives

∂Ih1
∂x

:
∂2Ih1
∂x2

≈ (L− xp)
1− c2a�u2

1 + c2a�u2 .

Since 1 − c2a�u2 < 0 at every iteration xp gets an increment being smaller than the
distance to the right node 3. The length of the right cell remains greater than zero
within the truncation error or prescribed accuracy of calculation at any ca. Thus,
although it can turn out beginning from some value of ca that the regularized func-
tional will not have a minimum, nevertheless the iterative procedure (5.2) allows us
to condense significantly the grid lines towards the discontinuity and to guarantee the
grid to be unfolded.

The approach of the three-point model can also be applied in the general case of
computing real 2-D flows with shocks. In the neighborhood of any point of disconti-
nuity we introduce a local Cartesian system of coordinates with axis y directed along
the tangent line towards the discontinuity at the point considered. Then, to a first
approximation, we assume x = x(ξ), y = aη, neglect the small terms in (2.3), i.e., fx,
xη, yξ, and get (5.6). On the other hand, the presence of these small terms in the
functional causes the nodes “to wander” permanently along some trajectory about an
average position keeping strong grid lines condensing in the vicinity of shocks. Fur-
ther, for the sake of simplicity, we shall refer the iterative procedure (quasi-Newton
method in a real 2-D case, see section 7.2) as a minimization of the discrete functional
independent of whether there is a solution of the minimization problem or not.

Performed analysis of the properties to the 1-D and 2-D functionals shows that
these functionals are inconsistent, i.e., nodes clustering towards the discontinuity are
performed in a different manner inside the domain Ω via minimization of the 2-D
functional and on the boundary ∂Ω via the 1-D functional. The necessity arises in
consistent redistribution of the grid nodes in Ω and on ∂Ω. This matter will be
considered in section 8.
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6. Another method of adaptation. Let us see what the use of the functional
(2.5) to the direct mapping or Euler–Lagrange equation (2.6) gives to constructing
the adaptive mesh.

Consider the problem of minimizing the Dirichlet functional to the direct mapping
of the domain Ω(x) onto ξ. Approximation of (2.5) on the two-cell mesh gives the
discrete functional

Ih = x2 + (L− x)2 + c2a�u2.

Its derivative

∂Ih

∂x
= 4x− 2L

vanishes at x = L/2. Thus, independently on ca the minimum of Ih reaches on the
set of uniform meshes and grid clustering is not performed towards discontinuity.

Approximation of the Euler–Lagrange equation (2.6) is given

x = (L− x)

√
1 + c2a�u2/(L− x)2

and from it we obtain

xmin =
L

2
+

c2a�u2

2L
.

Consequently, at ca�u = L the right cell collapses. In this case there is no barrier
and in multidimensional problems, when grid lines are strongly bent near the shock
wave, the derivative of a control function f towards the normal of the shock changes
from one cell to another. In some cells we will not get enough condensation of grid
lines and the other cells will have already been folded.

7. Optimization method and coupled algorithm.

7.1. 1-D case. We use the approximation (3.3) of the functional (2.4) and
seek the minimum of Ihm (m = 1, 2) applying the Newton method (5.2) when x =
(x1, . . . , ximax+1). Using the approximations (3.4) to (xξ)i+1/2 and (fx)i+1/2, fixing
(fx)i+1/2 and setting �ξ = 1 we get the first derivative

∂Ihm
∂xi

=
−1

(xi − xi−1)2
[
1 + c2a(fx)

2
i−1/2

]1−2−m +
1

(xi+1 − xi)2
[
1 + c2a(fx)

2
i+1/2

]1−2−m .

The Hessian is a diagonal matrix with components Hii = ∂2Ihm/∂x
2
i . As above we fix

(fx)i+1/2 while deriving the second derivative

∂2Ihm
∂x2

i

=
2

(xi − xi−1)3
[
1 + c2a(fx)

2
i−1/2

]1−2−m +
2

(xi+1 − xi)3
[
1 + c2a(fx)

2
i+1/2

]1−2−m .

Here the case m = 2 is used to increase the velocity of grid nodes condensing.
If we need to perform adaptation along the curve, e.g., boundary ∂Ω of the domain

Ω, the 1-D functional (2.4) can be written in the parametric form [31, 32]

I =

∫ 1

0

1

tξ
√
1 + c2af

2
t

dξ,(7.1)

where the control function f = f(t), parameter t defines the length of the boundary
∂Ω. Then the Newton method (5.2) of minimization can be applied.
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7.2. 2-D case. We use the optimization algorithm suggested in [12, 24]. Ap-
proximation of the functional (2.3) is performed on the mesh of quadrilaterals and
is given by (3.1). If the set of convex grids is not empty, the system of algebraic
equations (3.2) has at least one solution which is the convex mesh. Assuming the grid
to be convex at the pth step of the iterative procedure we find the coordinates of the
ith node at the p + 1st step using the quasi-Newton method in the sense that the
Hessian is a diagonal matrix (see [4, 12, 24] for details):

xp+1
i = xpi − τ

(
Rx

∂Ry
∂yi
−Ry

∂Rx
∂yi

)(
∂Rx
∂xi

∂Ry
∂yi
− ∂Ry

∂xi

∂Rx
∂yi

)−1

,

(7.2)

yp+1
i = ypi − τ

(
Ry

∂Rx
∂xi

−Rx
∂Ry
∂xi

)(
∂Rx
∂xi

∂Ry
∂yi
− ∂Ry

∂xi

∂Rx
∂yi

)−1

;

here τ is the iterative parameter.
Note when finding the first and second derivatives of the functional (3.1) we fix

the metric (derivatives fx and fy in (2.3)) and it is referred to as I
h
1 .

To increase the velocity of grid nodes condensing in the discrete functional instead

of
√
1 + f2

x + f2
y we use the term

[
1 + (fx)

2 + (fy)
2
]1−2−m

,

where m = 1, 2, and as in the 1-D case such a discrete functional will be referred
to as Ihm.

If a flow solver gives the values of the control function in the cell’s center, it is
required that we update them to the nodes. It can be done by interpolation and it
is sufficient to use a first-order interpolation formula, e.g., to the ith node (except
boundary nodes) which is surrounded by four cells; we have

fi = ca

4∑
l=1

fcl Al

/
4∑
l=1

Al,

where fcl is the value in the lth cell center, Al is the area of the triangle, one vertex
of which is the ith node and two others are adjacent vertexes of the lth cell.

The coefficient of adaptation can depend on the node position, i.e., ca = ca(x, y).

7.3. Coupled algorithm. One time step to solve the 1-D or 2-D equations of
gas dynamics with grid adaptation contains the following steps:

1. Generate the mesh at the next time level n+ 1.
2. Compute the gas dynamics values at time tn+1.
3. Make one iteration step and compute the new values of (x, y)i at t

n+1 by
formulas (5.2) or (7.2).

4. Repeat starting with step 2 to convergence or within given number of itera-
tions piter.

5. Compute the final gas dynamics values at tn+1.
The matter of preparing an initial quasi-uniform mesh, including the procedure

of untangling the initial prepared folded mesh, is considered in [12, 24].
We now consider how to select ca. As shown in section 5 the present method

generates an unfolded mesh at any ca and L1- or L2-errors depend on the shock
thickness. Besides, used here the Godunov-type solver smears the shocks within 2 to
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3 cells. Theoretically the thinner the discontinuity (i.e., the larger ca) is, the higher
is the accuracy we get. Therefore, there are no grounds for an automatic choice of
ca in contrast to, for instance, [37], where a smoothing of the solution and variation
of the number of grid points in the shock zone are used. In practical computations,
however, definition of ca should satisfy some reasonable requirements. On the one
hand ca must not be too large, otherwise the mesh begins “to feel” weak compression
and rarefaction waves that leads to undesirable and useless distortion of the cells.
Besides, the larger the value of ca, the less iterative the parameter τ needs to be in
order not to leave the admissible set of convex grids (see Tables 10.1 and 10.2), and
the more number of iterations piter we have to perform. On the other hand, if ca is too
small, then the mesh cannot be condensed in the vicinity of shocks of interest. Thus,
we should choose ca so that we avoid these lacks in mesh adaptation. Further, as it
will be shown in section 10, on the one hand to get a substantial win in accuracy we
need to have very strong grid lines condensing near the shocks. On the other hand,
in gas dynamics calculations at strong grid lines clustering the admissible time step
�t becomes rather small. It is not burdensome to steady flows. But when computing
unsteady flows too small a �t will cause the overall time of modeling to increase
significantly. To avoid a too large running time in [4, 5] the basic calculation of the
2-D unsteady flow was performed with not very large ca when �t≈0.1�tu, where
�tu is the step on the quasi-uniform mesh. At some time before the control time ca
is increased so that �t≈0.01�tu. And such a technique gave very high resolution of
the shocks and contact discontinuity. One more reason not to set ca too large is that
by controlling cell sizes we can eliminate only the errors caused by shock smearing;
see sections 10.3 and 10.4. There also exist the errors gained throughout the domains
of smooth flow. And it is useless to try to reduce the first type of error to zero.

Numerical experiments have shown that to get a suitable mesh it is sufficient to
define ca to be a constant, linear, or piecewise linear function along some distinctive
direction in Ω, and its values are within the interval 0.05 ≤ ca ≤ 0.5.

The above discussion shows that both in theory and in practice the parameter ca is
free and the user should find an optimal solution taking into account the particularity
of the concrete problem.

As it was shown in section 5 in the 2-D case, it may happen that the iteration
procedure (7.2) will not converge, and we define the number of iterations piter at every
time step. In real 2-D flow computations one should set piter = 8 to 10 for the rapidly
developing unsteady flows and piter = 1 to 2 for the nearly steady flows [5].

8. Redistribution of nodes along the boundary curve. There are several
ways to redistribute the grid nodes along the boundary ∂Ω during adaptation. The
simplest one is a fixed position of every point on ∂Ω, referred to as “fixed position.”
When moving the interior nodes towards a discontinuity, some instability in mesh
generation and, consequently, in the flow near the points where the discontinuity joins
∂Ω can arise. In the next method the boundary nodes are treated as interior and the
vectors of shift are projected onto ∂Ω [26]; we call it “unconstrained minimization.”
This way can be used only if the discontinuity is nearly orthogonal to ∂Ω. If not,
then, when condensing, the boundary nodes overlap, adjacent cells degenerate, and
modeling breaks. The next method consists of using the 1-D functional (7.1) [12]
referred to as “1-D minimization.” It is more robust than the two methods discussed
above and can usually be used at adaptation. However, as it has been shown in
section 5, the 1-D and 2-D functionals are inconsistent. By this reason the parameters
of adaptation ca and τ should be selected separately. It requires additional work
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and is particularly cumbersome when modeling unsteady flows. Sometimes we get
undesirable displacement of the boundary nodes up to their overlap.

It is required that we perform redistribution of the interior and boundary nodes
consistently. In the suggested method we perform constrained minimization of the
discrete functional (3.1) under constraints defining ∂Ω, referred to as “constrained
minimization.” Constrained minimization on ∂Ω has been also applied in [29]. We
minimize the functional [3]

Ĩh1 =

imax∑
i=1

4∑
k=1

1

4
[Fk]i +

∑
l∈L

λlGl = Ih1 +
∑
l∈L

λlGl,(8.1)

where the constraints Gl = G(xl, yl) = 0 define ∂Ω, λl are the Lagrange multipliers,
and L is the set of the boundary nodes. Since the functionG(x, y) is assumed piecewise
differentiable, the functional Ĩh1 holds the infinite barrier on the boundary of the set
of convex grids as Ih1 does if f ∈ C1. If f is of the class of discontinuous functions,
then the analysis from section 5 can be applied here.

If the set of convex grids is not empty, the system of algebraic equations has at
least one solution that is the convex mesh

Rx =
∂Ih1
∂xi

+ λi
∂Gi
∂xi

= 0, Ry =
∂Ih1
∂yi

+ λi
∂Gi
∂yi

= 0; Gi = 0;(8.2)

here λi = 0 if i /∈ L and constraints are defined for the boundary nodes i ∈ L.
Consider the method of minimizing the functional (8.1) assuming the grid to be

convex at the pth step of the iterative procedure. We use the quasi-Newton procedure
to find the coordinates xp+1

i , yp+1
i of the ith node from the system (8.2)

τRx +
∂Rx
∂xi

(xp+1
i − xpi ) +

∂Rx
∂yi

(yp+1
i − ypi ) +

∂Rx
∂λi

(λp+1
i − λpi ) = 0,

τRy +
∂Ry
∂xi

(xp+1
i − xpi ) +

∂Ry
∂yi

(yp+1
i − ypi ) +

∂Ry
∂λi

(λp+1
i − λpi ) = 0,(8.3)

τGi +
∂Gi
∂xi

(xp+1
i − xpi ) +

∂Gi
∂yi

(yp+1
i − ypi ) = 0,

where

∂Rx
∂xi

=
∂2Ih1
∂x2

i

+ λi
∂2Gi
∂x2

i

,
∂Rx
∂yi

=
∂2Ih1
∂xi∂yi

+ λi
∂2Gi
∂xi∂yi

,
∂Rx
∂λi

=
∂Gi
∂xi

,

∂Ry
∂xi

=
∂2Ih1
∂xi∂yi

+ λi
∂2Gi
∂xi∂yi

,
∂Ry
∂yi

=
∂2Ih1
∂y2

i

+ λi
∂2Gi
∂y2

i

,
∂Ry
∂λi

=
∂Gi
∂yi

.

Resolving the last equation of (8.3) about yp+1
i − ypi and substituting it in the

two remaining equations, we get the system(
a11 a12

a21 a22

)(
xp+1
i − xpi

λp+1
i − λpi

)
=

(
a13

a23

)
,

where

a11 =
∂Rx
∂xi

− ∂Rx
∂yi

∂Gi
∂xi

/
∂Gi
∂yi

, a12 =
∂Gi
∂xi

, a13 = τ

[
∂Rx
∂yi

Gi

/
∂Gi
∂yi
−Rx

]
,

a21 =
∂Ry
∂xi

− ∂Ry
∂yi

∂Gi
∂xi

/
∂Gi
∂yi

, a22 =
∂Gi
∂yi

, a23 = τ

[
∂Ry
∂yi

Gi

/
∂Gi
∂yi
−Ry

]
.
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Denoting

� = a11a22 − a12a21, �1 = a13a22 − a23a12, �2 = a11a23 − a21a13,

we obtain

xp+1
i = xpi +�1/�, λp+1

i = λpi +�2/�,(8.4)

and yp+1
i is determined from the third equation of (8.3). If the constraints are resolved

about y in the form G(x, y) = y − g(x) = 0, then

∂Gi
∂xi

= − ∂gi
∂xi

,
∂Gi
∂yi

= 1,

and above formulas are simplified. Constraints can be resolved about x in the form
G(x, y) = x − g̃(y) = 0 and then (here it is better to resolve the third equation of
(8.3) about xp+1

i − xpi )

∂Gi
∂xi

= 1,
∂Gi
∂yi

= −∂g̃i
∂yi

.

These two forms of G(x, y) can substitute for each other. For example, on the part
of ∂Ω that is nearly parallel to the axis x the boundary should be defined in the
form y = g(x), and where ∂Ω is nearly parallel to the axis y it should be defined as
x = g̃(y).

If ∂Ω is given by parametric functions x = x(t), y = y(t) or tabular values
(x, y)i, the following algorithm can be used. When calculating the coordinates of the
ith node, in the interval (xi−1, xi+1) we construct an interpolating parabola t = t(x)
using the values in three nodes i− 1, i, i+1. From (8.4) we compute an intermediate
value x̃p+1

i , further from the interpolation formula we determine ti = t(x̃p+1
i ) and

final values xp+1
i , yp+1

i from the parametric formulas.
Another way of redistributing the nodes along ∂Ω, given as parametric functions

or by tabular values, employs an unconstrained minimization of the functional in
parametric form and is based on solving the following system of algebraic equations
[3], referred to as “parametric minimization,”

Rt = Rx
∂xi
∂ti

+Ry
∂yi
∂ti

= 0,

via the quasi-Newton procedure

τRt +
∂Rt
∂ti

(tp+1
i − tpi ) = 0.(8.5)

Here

∂Rt
∂ti

=
∂Rx
∂xi

(
∂xi
∂ti

)2

+
∂Ry
∂yi

(
∂yi
∂ti

)2

+

(
∂Rx
∂yi

+
∂Ry
∂xi

)
∂xi
∂ti

∂yi
∂ti

+Rx
∂2xi
∂t2i

+Ry
∂2yi
∂t2i

, Rx =
∂Ih1
∂xi

, Ry =
∂Ih1
∂yi

.

To the analytical control functions constrained and parametric minimization give
similar results. Real-world 2-D flow computations have shown it is better to perform
adaptation along the boundary using constrained minimization (8.3), (8.4) since the
procedure (8.5) does not always ensure consistent redistribution of the nodes in Ω and
on ∂Ω.
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9. Flow solver. In this section we briefly describe the Godunov linear flux cor-
rection (GLFC) scheme [2] to compute the 2-D gas flow in the Euler approach.

Equations of gas dynamics are written in the integral form which can be derived
by transformation of the volume integrals in the space x-y-t to the surface integrals
by virtue of Gauss’s theorem as shown below for the law of conservation of mass:∫ ∫ ∫

V

[
∂ρ

∂t
+ div(ρV )

]
dV =

∫∫
∂V

© ρdxdy + ρudydt+ ρvdtdx = 0;

here V is an arbitrary control volume, homeomorphic sphere in space x-y-t, ∂V is the
boundary of V .

Hence, the laws of conservation of mass, momentum, and total energy, can be
written in the integral form, or generalized formulation [20], as follows:∫∫

∂V

© σdxdy + adydt+ bdtdx = 0,(9.1)

where

σ =




ρ
ρu
ρv
E


 , a =




ρu
ρu2 + p
ρuv
u(E + p)


 , b =




ρv
ρuv
ρv2 + p
v(E + p)


 .

Here u and v are the velocity components, p and ρ are the pressure and density. The
total energy E = ρ[e+0.5(u2+ v2)]; e is the specific internal energy. The equation of
state is p = (γ− 1)ρe, where γ is the ratio of specific heats. Denote the vector-valued
unknown functions as f = (u, v, p, ρ)T . The conservation laws (9.1) hold for any
parameters f , both smooth and discontinuous, governing a real gas flow.

We introduce the curvilinear moving grid in space x-y-t and consider the hexahe-
dral computing cell; see Figure 7. The bottom face of the cell (or control volume) is
taken at time level n and the top face at level n+ 1; four lateral faces generally form
ruled surfaces rather than simple planes.

✡
✡✡✢

✲

✻

x

y

t

✄
✄
✄
✄
✄
✄
✄

1
i, j

4
i, j+1

3

i+1, j+1

2

i+1, j

2’
3’

1’ 4’

Fig. 7. Computing cell.

Integrating (9.1) over the oriented surface, being the boundary ∂V of the com-
puting cell, we obtain a cell-centered finite-volume discretization of the governing
equations

σn+1An+1 − σnAn +Q411′4′ +Q233′2′ +Q122′1′ +Q344′3′ = 0,(9.2)
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where σn+1 and σn are the average values at time tn+1 and tn in the center of the
top and bottom faces, An+1 and An are the areas of these faces. Each of four vector
values Q411′4′ , Q233′2′ , Q122′1′ , and Q344′3′ is an average flux of mass, momentum,
and energy through the corresponding intercell surface in the direction of the outward
normal vector. Unlike the original Godunov scheme [20] where the fluxes in (9.2) are
taken at time tn, in the present scheme those values are computed at tn+1/2 that
provides it with the second-order accuracy in time.

For example, at the face 122′1′ the value Q122′1′ has the following structure:

Q122′1′ = σn+1/2Axy + an+1/2Ayt + bn+1/2Atx,(9.3)

where Axy, Ayt, Atx are the areas of projections of the face 122′1′ onto the coordinate
planes x-y, y-t, and t-x, respectively, given by

Axy =

∫ ∫
122′1′

dxdy =
1

2
[(x2′ − x1)(y1′ − y2)− (x1′ − x2)(y2′ − y1)],

Ayt =

∫ ∫
122′1′

dydt =
1

2
�t(y2′ + y2 − y1 − y1′),

Atx =

∫ ∫
122′1′

dtdx = −1
2
�t(x2′ + x2 − x1 − x1′),

which are obtained from the formula for the quadrangle 1234

A1234 = A(x1, y1;x2, y2;x3, y3;x4, y4) =
1

2
[(x3 − x1)(y4 − y2)− (x4 − x2)(y3 − y1)]

when running along its contour in an anticlockwise manner, time step �t = tn+1− tn.
The values fn+1 are updated by two stages using time splitting. In the first

stage, predictor, via (9.2) we compute the intermediate values f̃
n+1

. Here we apply
the piecewise linear interpolation along each curvilinear coordinate line ξ, passing
through the center of cells j + 1/2 = const, and η, passing through the center of
cells i+1/2 = const; i.e., determine the derivatives f ξ and fη in every cell to get the
fluxes via (9.3) on the lateral faces with the second-order accuracy in space but still at
tn. To suppress spurious oscillations in the vicinity of discontinuities a monotonicity

algorithm is applied [2]. At the second stage, corrector, using fn, f̃
n+1

and derivatives
f ξ, fη at t

n, we get prewave values on both sides of each of four lateral faces of the

cell at tn+1/2. After solving the Riemann problem we obtain fn+1/2, the values at
each of four lateral faces, and again calculate the fluxes from (9.3). Then, via (9.2),
we compute the final values fn+1.

In the (i + 1/2, j + 1/2)th cell the admissible time step �ti+1/2,j+1/2 is defined
via [20] as

�ti+1/2,j+1/2 =
�t′ �t′′
�t′ +�t′′ ,

where

�t′ = h
′

max(dII41 − w41;−dI23 − w23)
, �t′′ = h

′′

max(dII12 − w12;−dI34 − w34)
,

h
′
=

A1234

0.5
√
(x4 + x3 − x1 − x2)2 + (y4 + y3 − y1 − y2)2

,

h
′′
=

A1234

0.5
√
(x3 + x2 − x4 − x1)2 + (y3 + y2 − y4 − y1)2

.
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Here �t′ and �t′′ are the admissible time steps to the 1-D schemes in the ξ and η
directions, respectively, h

′
, h

′′
are the “average heights” of the bottom face A1234, w

is the velocity of the corresponding cell edge, e.g., w12 is the velocity of the edge 12
which defines inclination of the face 122′1′; see Figure 7. Next, dII12 and dII41 are the
“extreme right wave” speeds defined from solving the Riemann problem to the faces
122′1′ and 11′4′4, respectively; dI23 and dI34 are the “extreme left wave” speeds to the
faces 233′2′ and 344′3′, respectively.

As an admissible time step we take the minimal of all cells

�t = νmin
i,j
�ti+1/2,j+1/2.

The coefficient ν is less than 1 (usually 0.5 ≤ ν ≤ 0.9) and it is introduced as a
correction to the nonlinearity of the problem. Note that the time step depends on
both postwave values and the velocity of every intercell face. In computations the
value of �t, obtained at the preceding time step, is used for the next time step. By
this reason, in the case of essentially nonstationary processes, the coefficient ν should
be greatly decreased.

The GLFC scheme is of second-order accuracy in time and space in the domains
of smooth flow. We get the values fn+1 directly on the moving mesh and need not
perform interpolation at tn+1 from one mesh to the other.

10. Examples of modeling.

10.1. Analytical control function. First we demonstrate a simple test illus-
trating the inconsistency of redistributing the boundary and interior nodes when using
various methods from section 8 and vice versa, i.e., their consistency when using an-
other.

The 50× 50 adaptive mesh is generated in the unit square 0 < x, y < 1 when the
control function is defined to be

f(x, y) =

{
1 if y < 0.5,
0 if y ≥ 0.5.

Fragments of the adapted meshes in the vicinity of the discontinuity are presented
in Figure 8. In the first case the coefficient ca = 0.1; see Figure 8(a)–(c). When we
apply fixed position and 1-D minimization methods of redistributing the boundary
nodes (see Figure 8(a)–(b)), the horizontal grid lines are not parallel and in the case
of the other 3 methods they are parallel. In the next case the coefficient ca = 0.15; see
Figure 8(d)–(f). To the fixed position method the coordinate lines become more bent;
see Figure 8(d). Using 1-D minimization leads the boundary nodes to overlap (see
Figure 8(e)), i.e., the mesh to fold. This happens due to the inconsistency of the nodes’
redistribution in Ω and on ∂Ω despite the fact that 1-D and 2-D algorithms separately
provide unfolded grid generation. In this test unconstrained minimization gives the
same result as constrained and parametric minimization due to the discontinuity is
orthogonal to ∂Ω and here the horizontal lines almost merge near the discontinuity
and remain parallel, keeping the mesh unfolded; see Figure 8(f).

In the next example the discontinuity is not orthogonal to ∂Ω. The control
function is defined as

f(x, y) =

{
1 if y > 5x− 2,
0 if y ≤ 5x− 2.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Fragment of the adapted mesh. The boundary nodes are redistributed using fixed position
(a), (d), 1-D minimization (b), (e), and unconstrained or constrained or parametric minimization
(c), (f). Coefficient ca = 0.1 in the cases (a)–(c) and ca = 0.15 in the cases (d)–(f); iterative
parameter τ = 0.15.

(a) (b) (c)

Fig. 9. Fragment of the adapted mesh. The boundary nodes are redistributed using uncon-
strained (a), 1-D (b), and constrained or parametric minimization (c) methods. Coefficient ca = 0.3;
iterative parameter τ = 0.1.

Fragments of the adapted meshes near the top boundary are presented in Figure 9.
Here using unconstrained and 1-D minimization leads the boundary nodes to overlap
in several tenths of mesh iterations (see Figure 9(a)–(b)), respectively. Constrained
and parametric minimization maintain an unfolded mesh; see Figure 9(c). To the
analytical control functions constrained and parametric minimization give similar re-
sults.

10.2. Contact discontinuity. To observe how the adaptive procedure handles
the contact discontinuities the Cauchy problem for the 1-D linear advection equation
has been computed with the Godunov scheme; see Godunov and Ryaben’kii [19].
Adaptation is executed via (5.2). It appears that once the grid points have been
condensed towards the contact discontinuity the thickness of discontinuity smeared
increases with time proportionally to

√
t as the theoretical estimation gives on the
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Table 10.1
IVP to the inviscid Burger’s equation (4.1). Adaptation is performed by minimization of Ih1 .

Here hmin is the smallest interval, n is the number of time steps, τ is the iterative parameter,
||Er||L1

is the error.

Godunov’s scheme GLFC scheme
ca hmin n τ ||Er||L1 hmin n τ ||Er||L1

0 0.1 21 - 0.078046 0.1 21 - 0.023551
0.1 0.056821 30 0.95 0.039784 0.049486 35 0.95 0.016755
0.25 0.022115 77 0.95 0.011285 0.020587 86 0.95 0.005337
0.5 0.010712 179 0.8 0.004249 0.010979 191 0.8 0.003395
1 0.004683 406 0.5 0.000540 0.004637 419 0.4 0.000204
2 0.002382 897 0.3 0.000297 0.001924 903 0.2 0.000043
4 0.001116 2065 0.15 0.000187 0.000918 1835 0.1 0.000049
8 0.000526 4438 0.07 0.000057 0.000624 3733 0.07 0.000068
16 0.000209 9355 0.05 0.000018 0.000246 7612 0.05 0.000065

uniform fixed mesh.

10.3. Inviscid Burger’s equation. Consider the IVP (4.1) with initial values
ul = 2, ul = 1. The initial uniform mesh has spacing h = 0.1 and zones number
imax = 50. The boundary nodes are fixed. Calculations are performed up to t = 1
using the first-order Godunov scheme (4.4) and second-order GLFC scheme [2]. In
this case the mesh structure differs a bit from the one in section 4. The shock smears
over 3 cells with approximately similar length hmin. To the left and right of those 3
cells there is a cell with intermediate length and the remaining 45 cells are similar (if
a sufficient number of mesh iterations are provided). In computations, presented in
Table 10.1, every time step includes piter = 100 mesh iterations.

The data of Table 10.1 show that increasing the coefficient of adaptation ca from
0 to 16 decreases the thickness of smearing, equal approximately to 3hmin, by 478
times for the Godunov scheme and by 369 times for the GLFC scheme; that leads the
accuracy to increase by factors of 4335 and 362 for those schemes, respectively. We
see if on the uniform mesh the second-order scheme delivers a higher accuracy than
the first-order one, on the strongly compressed mesh the situation changes. Moreover,
to the GLFC scheme the accuracy is not increased at ca > 2. This can be explained
by the presence of spurious oscillations near the discontinuity to the second-order
scheme.

10.4. Shock tube problem. Consider the 1-D flow of ideal gas with initial pa-
rameters (u, p, ρ)l = (2.253928, 2.296074, 1.7811378) in the left 3 cells and (u, p, ρ)r =
(1.5, 1, 1) selected in such a way that at t > 0 these two domains are divided by the
shock wave, moving from the left to the right. The ratio of specific heats γ = 1.4.
Initial uniform mesh is as in section 10.3 and calculations are performed up to t = 1
with the same schemes. Every time step includes piter = 100 mesh iterations.

The data of Table 10.2 show that increasing the coefficient of adaptation ca from
0 to 4 decreases thickness of the shock smeared, equal approximately 3hmin, by 80
times and accuracy increases by the factor of 194 and 138 for the Godunov and
GLFC schemes, respectively. The second-order scheme gives the lesser error ||Er||L1

estimated by the density. Further increase of ca does not deliver a higher accuracy
since the error, caused by shock smearing, becomes much less than the error gained
throughout the other cells. If on the uniform mesh ca = 0 the second-order scheme
provides a higher accuracy than the first-order one by a factor of 3.1, at ca = 4 the
ratio of errors falls to 2.2. The last column shows �ρ, the amplitude of spurious
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Table 10.2
Shock tube problem. Adaptation is performed by minimization of Ih1 except the last row where

Ih2 is used. Here hmin is the smallest interval, n is the number of time steps, τ is the iterative
parameter, ||Er||L1

is the error estimated by ρ, �ρ is the amplitude of spurious oscillations.

Godunov’s scheme GLFC scheme
ca hmin n τ ||Er||L1

hmin n τ ||Er||L1
�ρ,%

0 0.1 37 - 0.075736 0.1 38 - 0.024554 1.10
0.1 0.07469 46 0.9 0.088294 0.05827 54 0.8 0.028529 0.51
0.25 0.04080 87 0.9 0.088695 0.02784 113 0.5 0.017749 0.23
0.5 0.01583 211 0.7 0.025053 0.01307 248 0.5 0.011859 0.08
1 0.00702 486 0.7 0.005929 0.00604 584 0.5 0.001864 0.03
2 0.00259 1307 0.5 0.000581 0.00242 1396 0.4 0.000317 0.04
4 0.00126 3086 0.2 0.000391 0.00124 3245 0.2 0.000178 0.01

functional Ih2
0.25 0.00103 4891 0.13 0.003058 0.00103 5196 0.13 0.000897 0.06

Table 10.3
Shock tube problem. Parameters τ = 0.5, ca = 1.

piter = 10, ||Er||L1
= 0.006681

i hi+1/2 ρi+1/2 ρexact
i+1/2

37 0.10264 1.78201 1.78114
38 0.10547 1.78128 1.78114
39 0.10980 1.78037 1.78114
40 0.11837 1.77947 1.78114
41 0.09642 1.77808 1.78114
42 0.01553 1.70929 1.78114
43 0.01635 1.17676 1.00000
44 0.02131 1.00001 1.00000
45 0.04872 1.00000 1.00000
46 0.25688 1.00000 1.00000
47 0.27041 1.00000 1.00000
48 0.28275 1.00000 1.00000
49 0.29084 1.00000 1.00000

piter = 100, ||Er||L1
= 0.002563

i hi+1/2 ρi+1/2 ρexact
i+1/2

30 0.10704 1.78127 1.78114
31 0.10727 1.78120 1.78114
32 0.10751 1.78093 1.78114
33 0.10692 1.77965 1.78114
34 0.01884 1.77406 1.78114
35 0.00666 1.61892 1.78114
36 0.00604 1.00487 1.00000
37 0.00822 1.00000 1.00000
38 0.07492 1.00000 1.00000
39 0.11228 1.00000 1.00000
40 0.11305 1.00000 1.00000
41 0.11383 1.00000 1.00000
42 0.11459 1.00000 1.00000

oscillations to the density in the vicinity of the shock computed with the GLFC
scheme. We see adaptation allows us to reduce significantly �ρ from 1.1% down to
0.01%. Using the functional Ih2 causes strong grid nodes clustering at rather small ca
and, consequently, ||Er||L1 to reduce.

Note in the two examples above piter at every time step was equal to 100 to get
similar cell spacings in the shock zone and domains of constant flow parameters to see
what adaptation provides in the limit at the extreme large values of ca. In Table 10.3
we present two computations of this problem with the GLFC scheme when piter = 10
and 100 with parameters τ = 0.5, ca = 1. The spacings hi+1/2, values of ρi+1/2, and
exact values of ρexact

i+1/2 in the segments center are shown in the vicinity of the shock.
It can be seen that in the first case the value of piter is insufficient and nodes did not
manage to come to their “final” positions judging by the values of hi+1/2. Spacings
before and behind the shock differ by a factor of 3. By this reason hmin is larger by
a factor of ≈ 2.7 than the one in the second case, and therefore the L1-error is too
large. Thus, in the second case, by winning in accuracy we lose in the number of
iterations piter.

10.5. Flow in a channel. The following test demonstrates the capability of the
grid adaptation technique to reduce computer costs while obtaining the same accuracy
as on the fixed quasi-uniform mesh. Into the channel, shown in Figure 10, from the
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Fig. 10. Supersonic flow in the channel. ρ is used as a control function. Density contours
(from 1 to 2.7 with �ρ = 0.05) computed on the quasi-uniform (a) and adapted (b) meshes 264×64;
adapted mesh 264× 64 (c).

left is introduced an ideal gas with M∞ = 2.5. There are two edges in the top and
bottom with inclination of 5◦. The steady flow has the following structure: two shock
waves attached to the top of wedges intersect each other, reflect from the walls, again
intersect, etc., dividing the domain into a set of subdomains which contain constant
flow parameters.

The problem is calculated with the GLFC scheme on the successively refined
grids with 64× 16, 128× 32, 256× 64, and 512× 128 zones number. At the first stage
the calculation on the quasi-uniform mesh is performed until the solution achieves
its steady state. Then, at the second stage, we switch to the adaptive procedure.
ρ is used as a control function. At every time step we perform one mesh iteration,
i.e., piter = 1. To provide the best accuracy of computations ca is selected so to get
similar grid clustering towards the shocks within the whole flow and this is achieved
by defining a linear/(piecewise linear) dependence of ca on the x-coordinate.
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(a) (b)

Fig. 11. Fragments of adapted mesh in 200 time steps (a) and final mesh (b). Two diagonal
straight-lines indicate position of shocks for the exact solution.

Table 10.4
Dependence of error, estimated by ρ, on zones number computed to quasi-uniform and adaptive

meshes.

Error ||Er||L1

Zones number Quasi-uniform mesh Adaptive mesh
64× 16 1.5598 0.4070
128× 32 0.8274 0.1666
256× 64 0.4290 0.0846
512× 128 0.2207 0.0444

Figure 10 shows the density contours, when modeling on the quasi-uniform and
adapted meshes 256×64 and adapted mesh. Here the first stage, to get a steady state
on the quasi-uniform mesh by t = 15, takes 1739 time steps. Applying adaptation we
get strong grid lines condensing in 200 time steps and a gain in accuracy by a factor
of 2. The coefficient of adaptation is defined to be ca = 0.2−0.15(15−x)/15; iterative
parameter τ = 0.3. But condensed grid lines are still far from the shock location in the
exact solution; see Figure 11(a). We have to perform 2000 time steps more to obtain
maximal accuracy. After this rather long shocks “capturing” by the grid lines we get
an additional gain in accuracy by a factor of 2.5; see the final mesh in Figure 11(b).
To increase the grid velocity we use the functional Ih2 , and this reduces the time of
shocks capturing by a factor of 1.7. Nevertheless, during the last 300 steps we use the
functional Ih1 , since I

h
2 does not provide very strong grid nodes condensing. Note that

using Ih2 on the rough mesh 64× 16 does not provide an increase of the grid velocity.
In real computing the steady problems, when the exact solution is not known, the
user shall watch whether the location of a shock changes with time; if yes, using the
functional Ih2 can increase the grid velocity; if no, one should at once apply Ih1 . In
Figure 11(a)–(b) it can be seen that the shock waves are smeared over three cells as
in the 1-D case. Near the shocks the cells are very narrow and the maximal aspect
ratio reaches 40. As for the 1-D case, due to adaptation, the amplitude of oscillations
in the solution is reduced by many factors of ten.

Knowing the exact solution, one can estimate the error; see Table 10.4. We see
adaptation allows us to increase the accuracy by a factor of 4 to 5. Keeping in mind
that doubling the points in each space direction on the quasi-uniform mesh causes
the accuracy to increase by a factor of 2, we can estimate that adaptation in the last
three variants is equivalent to the mesh refinement by a factor of 5. Thus, adaptation
allows us to gain in CPU memory by a factor of 25 and running time by a factor of
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(a)

(b)

Fig. 12. Transonic flow around NACA0012 airfoil. Quasi-uniform mesh (a) and Mach number
contours (b).

50 to 60 taking into account the additional time steps required at adaptation.

10.6. Flow over an airfoil. The GLFC scheme with an adaptive procedure is
applied to calculating transonic and supersonic Euler flow over an NACA0012 airfoil.
The first test is a transonic case withM∞ = 0.85 and angle of attack α = 1◦. Figure 12
presents the quasi-uniform O-mesh 140 × 80 and plots the Mach number contours.
We see that shock waves, one (stronger) on the upper side of the airfoil and the other
(weaker) on the low side, are rather thick. Figure 13 presents the adapted mesh and
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(a)

(b)

Fig. 13. Transonic flow around NACA0012 airfoil. Adapted mesh (a) and Mach number
contours (b).

Mach number contours calculated on this grid. As a control function we use ρ. The
coefficient of adaptation ca is defined to be

ca =

{
cmin + (cmax − cmin)|y|/0.8 if |y| ≤ 0.8,
cmax if |y| > 0.8,

cmin = 0.1, cmax =

{
0.2 if y < 0,
0.15 if y > 0.

A linear dependence of ca on y is used to strengthen adaptation in the domains
where the shocks grow weaker. Around the leading edge where there are rarefaction
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waves we switch off adaptation by setting ca = 0 to exclude cells distortion. Iterative
parameter τ = 0.3; the number of iterations at every time step piter = 1. Constrained
minimization is applied to redistribute the boundary nodes along the airfoil contour
and along the line y = 0 passing from the trailing edge which the boundaries of the
parametric square ξ = 0, 1 correspond to. Using 1-D or parametric minimization with
the same parameters ca, τ on ∂Ω as in Ω leads the boundary nodes to overlap in the
vicinity of the shocks. Thickness of the shocks is reduced by 50 times in comparison
with the nonadapted mesh that provides us with capturing the discontinuities very
accurately. The first stage takes 7345 time steps to compute by t = 20; adaptation
does 150 steps that is about 4% of the first stage time.

Another test is a supersonic flow over the same airfoil with M∞ = 1.3 and α =
0◦. Figure 14 plots the Mach number contours computed on the quasi-uniform and
adapted O-meshs 120× 50. As can be seen in Figure 14(a), a strong bow shock wave
appears in front of the airfoil leading edge and two weak shocks emanate from the
trailing edge. Using adaptation provides us with a very strong reduction in the bow
shock thickness and a rather strong reduction in the trailing edge shocks thickness
that is demonstrated by the both Mach number contours in Figure 14(b) and adapted
grid in Figure 15. The coefficient of adaptation ca is defined to be

ca =

{
cmin + (cmax − cmin)|y|/1.5 if |y| ≤ 1.5,
cmax if |y| > 1.5,

cmin =

{
0.05 if x ≤ 0.6,
0.1 if x > 0.6,

cmax = 0.15,

and as above we set ca = 0 near the airfoil leading edge. Parameters τ = 0.3, piter = 1.
Grid points clustering allows us to hope that we nearly eliminated the errors

caused by shock waves smearing and increased significantly the accuracy of computa-
tions. The first stage takes 5882 time steps to compute by t = 5; adaptation does 200
steps, which is about 7% of the first stage time. In both tests we use only minimization
of the functional Ih1 .

11. Concluding remarks. Results of computations presented show adaptive-
harmonic grid generation significantly increases the accuracy of calculations in com-
parison with modeling on quasi-uniform meshes due to reducing the thickness of
smearing to the shock waves, while keeping the same simple grid structure and re-
quiring less computer costs.

Theoretical analysis based on the three-point model of adaptation has shown
minimization of the regularized discrete functional in the 1-D and 2-D cases delivers
strong grid lines compression towards the discontinuities, while keeping the mesh
unfolded. The errors of computations can be conditionally divided into two kinds.
The first kind of errors are gained in the vicinity of the shock waves and the second
throughout the subdomains of smooth flow. The value of the first in the integral norms
L1 or L2 is proportional to the thickness of the shocks smeared and, consequently,
grid clustering enables us to eliminate those errors or, at least, provides that their
magnitude is insignificant in comparison with the second type errors, the value of
which depends on the numerical scheme accuracy.

Constrained minimization leads to consistent redistribution of the boundary and
interior mesh nodes that increases the reliability of the adaptive procedure and mod-
eling.

In 2-D tests, presented in sections 10.5 and 10.6, the mesh with strong grid lines
compression looks like a set of subdomains into which the flow is smooth and the



VARIATIONAL BARRIER METHOD IN HYPERBOLIC PROBLEMS 679

(a)

(b)

Fig. 14. Supersonic flow around NACA0012 airfoil. Mach number contours computed on
quasi-uniform (a) and adapted (b) grids.

mesh is quasi-uniform. Boundaries of those subdomains coincide with the shocks and
are built automatically by the condensed grid lines. If we draw a closed contour
along the shock, one side to the left of the discontinuity and another to the right, and
direct the contour width to zero, from the system of conservation laws, written in the
integral form (9.1), we get in the limit the Rankine–Hugoniot conditions across the
shock [33]. The line passing through the centers of narrow cells, stretched along the
shocks, looks like that contour. To draw such a limiting contour we need two adjacent
narrow cells in the shock zone as the three-point model of adaptation provides. In
real computations (see sections 10.5 and 10.6) the shocks are smeared over 2 to 3
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Fig. 15. Mesh around NACA0012 airfoil after adaptation for supersonic flow calculations.

cells and this is nearly the same as what we would like to have in the ideal case,
when the shocks are treated using the Rankine–Hugoniot conditions with a special
“shock-fitting” procedure and the subdomains of smooth flow are computed using the
numerical scheme. The adaptive procedure, changing the cells width in the shock
zone, adjusts automatically the flow solver to those two kinds of computations that
increases significantly accuracy of modeling.

Performed in section 5, theoretical analysis shows, in contrast to the boundary
layers or shocks smeared in viscous flows, that in the vicinity of the shocks in the
hyperbolic problems that the adjacent cells, one located in the shock zone and the
other in the domain of smooth solution, with sizes in the direction of normal towards
the shock differing by orders of magnitude, do not deteriorate the accuracy of the
solution. Therefore, it is not necessary to change the cells’ size gradually when passing
across the shock. If to apply a numerical scheme using an artificial viscosity, the
shock is smeared over several cells and we get a mesh clustered gradually towards the
shock. But when decreasing the artificial viscosity and tending the smooth solution
to discontinuous, the mesh will come to the above described structure when cell size
changes sharply while approaching the shock. From this point of view when computing
on the adaptive grids the flow solvers, using piecewise polynomial approximation of
the functions, especially Godunov-type schemes, have some advantages over the others
based on continuous distribution of the flow parameters.

From the above we can state, probably, that the adapted meshes to the Euler
and Navier–Stokes flows must have a different structure and be generated in a differ-
ent way.

Acknowledgments. The author thanks Dr. Sergey Ivanenko for his attention
to the work and fruitful discussions.

REFERENCES

[1] B. N. Azarenok, Adaptive moving grids in supersonic flow simulation, in Proceedings of
the 7th International Conference on Numerical Grid Generation in Computational Field



VARIATIONAL BARRIER METHOD IN HYPERBOLIC PROBLEMS 681

Simulations, B. K. Soni, J. Haeuser, J. F. Thompson, and P. Eiseman, eds., Whistler, BC,
Canada, 2000, pp. 629–638.

[2] B. N. Azarenok, Realization of a second-order Godunov’s scheme, Comput. Methods Appl.
Mech. Engrg., 189 (2000), pp. 1031–1052.

[3] B. N. Azarenok, Adaptive moving grids in problems of gas dynamics, in Proceedings of the
International Conferernce on Optimization of Finite-Element Approximations, Splines and
Wavelets, S. A. Ivanenko and V. A. Garanzha, eds., St. Petersburg State University, St. Pe-
tersburg, Russia, 2001, pp. 30–44; also available online from http://www.ccas.ru/gridgen/.

[4] B. N. Azarenok and S. A. Ivanenko, Application of adaptive grids in numerical analysis
of time-dependent problems in gas dynamics, Comput. Math. Math. Phys., 40 (2000),
pp. 1330–1349.

[5] B. N. Azarenok and S. A. Ivanenko, Application of moving adaptive grids for numerical
solution of nonstationary problems in gas dynamics, Internat. J. Numer. Methods Fluids,
39 (2002), pp. 1–22; also available online from http://www.math.ntnu.no/conservation/
2001/043.html/.

[6] M. J. Baines, Moving Finite Elements, Clarendon Press, Oxford, 1994.
[7] J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimen-

sions, J. Comput. Phys., 46 (1982), pp. 342–368.
[8] W. Cao, W. Huang, and R. D. Russell, A study of monitor functions for two-dimensional

adaptive mesh generation, SIAM J. Sci. Comput., 20 (1999), pp. 1978–1994.
[9] W. M. Cao, W. Z. Huang, and R. D. Russell, An r-adaptive finite element method based

upon moving mesh PDEs, J. Comput. Phys., 149 (1999), pp. 221–244.
[10] G. Carey, Computational Grids: Generation, Adaptation, and Solution Strategies, Taylor and

Francis, Washington, DC, 1997.
[11] A. A. Charakhch’yan and S. A. Ivanenko, Curvilinear grids of convex quadrilaterals, Com-

put. Math. Math. Phys. 28 (1988), pp. 126–133.
[12] A. A. Charakhch’yan and S. A. Ivanenko, A variational form of the Winslow grid generator,

J. Comput. Phys., 136 (1997), pp. 385–398.
[13] A. S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds,

J. Comput. Phys., 95 (1991), pp. 450–476.
[14] H. A. Dwyer, B. R. Sanders, and F. Raiszadek, Ignition and flame propagation studies

with adaptive numerical grids, Combustion and Flame, 52 (1984), pp. 11–23.
[15] P. S. Eisman, Adaptive grid generation, Comput. Methods Appl. Mech. Engrg., 64 (1987),

pp. 321–376.
[16] J. E. Eells and L. Lemaire, Another report on harmonic mapps, Bull. London Math. Soc.,

20 (1988), p. 387.
[17] F. T. Farrell and L. E. Jones, Some non-homeomorphic harmonic homotopy equivalences,

Bull. London Math. Soc., 28 (1996), pp. 177–182.
[18] V. A. Garanzha and I. E. Kaporin, Regularization of the barrier variational grid generation

method, Comput. Math. Math. Phys., 39 (1999), pp. 1489–1503.
[19] S. K. Godunov and V. S. Ryabenkii, Difference Schemes: An Introduction to the University

Theory, North-Holland, Amsterdam, 1987.
[20] S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Nu-

merical Solution of Multi-Dimensional Problems in Gas Dynamics, Izdat, Nauka, Moscow,
1976 (in Russian); S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and
G. P. Prokopov, Résolution Numérique des Problémes Multidimensionnels de la Dy-
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1. Introduction. We discuss numerical Liapunov–Schmidt spectral methods for
a symmetric bifurcation problem G(x) = G(u, λ) = 0 of the form

G : D(G) ⊂ X = E ×Rq → Ê , E ⊆ Ê are Hilbert spaces,(1.1)

Ê w.r.t. 〈·, ·〉, and E w.r.t. a usually stronger norm 〈·, ·〉E . G transforms equivari-
antly w.r.t. an (infinite) dimensional representation γ of a symmetry group Γ, i.e.,
γG(u, λ) = G(γu, λ), and 〈·, ·〉 is invariant w.r.t. Γ, i.e., 〈γu, γv〉 = 〈u, v〉 ∀ γ ∈ Γ,
∀ u, v ∈ Ê . We study G near a bifurcation point x0 = (u0, λ0) with rank-deficient
Jacobian G′:

G(x0) = 0, G′
0 = G′(x0) = (G0

u, G
0
λ), dim N (G′

0) = µ+ q > q.(1.2)

HereN (G′
0) denotes the kernel ofG′

0. Let x0 be a fully symmetric solution of (1.2), i.e.,
γx0 = (γu0, λ0) = x0 ∀γ ∈ Γ. We assume G′

0 to be a Fredholm operator and 〈·.·〉 to
be Γ-invariant; see [27]. For most realistic applications analytical approaches become
intractable and discretization methods must be used. However, near the singularity
conventional discretization methods fail for several reasons, loss of stability being the
most important. Also, consistency inappropriately relates only the original operator
to its discretization but not to its derivatives. Finally, discretization methods act
as a perturbation and will therefore destroy all generic and nongeneric symmetric
bifurcation scenarios; see, e.g., [34, 7, 16, 17, 35, 30, 36, 44, 33, 18]. Comprehensive
discussions of general discretization methods in bifurcation theory, using difference
methods and finite element methods for both asymmetric and discrete symmetric
cases, have been recently provided in [8, 13, 1, 2, 9, 4]. In the presence of continuous
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symmetries a symmetry preserving discretization can only be obtained with spectral
methods. Another attractive feature of spectral methods is their high accuracy. Nice
presentations of spectral methods are given in [29, 19, 5].

History of numerical bifurcation. The earlier results on numerical bifurcation the-
ory do not include spectral methods in general. Specifically, de-aliasing techniques,
as well as many important operators, are not discussed. The two most advanced ap-
proaches are given in [16, 17] and [30]; see [18] as well. In both papers very restrictive
conditions have been used: Assuming an application of inverse operators they require
G : Ê ×Rq → Ê , G(u, λ) = u+ T (u, λ) with compact T. This is problematic, since
analytically equivalent numerical methods may behave very differently. Then, using
convergent approximation operators PN : Ê → ÊN ⊂ Ê , they study discretizations of
the form

GN (u, λ) = u+ PNT (u, λ) = 0 with PNT = TPN .(1.3)

These assumptions allow very elegant convergence proofs of discrete bifurcation sce-
narios. However, the condition (1.3) excludes many important discretization methods
as well as many physically relevant operators, e.g., Navier–Stokes equations.

To cover all these problems and to allow a direct discretization of (1.1), (1.2),
the numerical Liapunov–Schmidt method has been introduced in [8, 13, 4, 15, 9, 10].
Since the bifurcation effects are determined by an interplay of kernels, ranges, and
complements of linear operators and nonlinear terms, we have to make sure that the
discrete version of the original nonlinear problem indeed reproduces these effects. To
achieve this goal we need the concepts of consistent differentiability and the stability
of the bordered systems. Consistent differentiability requires consistency for G and
its derivatives as well. In [8] stability for bordered systems was proved by referring to
[40, 41]. [14] presents an independent proof, which is valid for spectral methods and
for Navier–Stokes equations as well.

The purpose of this paper is to show that the numerical Liapunov–Schmidt spec-
tral method reproduces, under physically appropriate conditions, the bifurcation, sta-
bility, and symmetry properties of the original problem. For general discretization
methods only convergence of the scenarios exists [15]. In section 2 we show that the
concepts of consistent differentiability and stability for the bordered systems hold for
a numerical Liapunov–Schmidt spectral method based on spectral approximations.
We introduce an efficient algorithm for the numerical reduction of bifurcation prob-
lems. Explicit expressions for the calculation of n-determined bifurcation equations
are given. In section 3 we introduce a three dimensional reaction-diffusion equation
posed on a spherical domain which arises in biological pattern formation. This exam-
ple is very instructive since it models all possible complications: The symmetry group
of the model, O(3), is continuous and non-Abelian. It also requires the splitting of the
domain into a periodic and a bounded nonperiodic part. Due to the importance of the
O(3)-symmetry group, the bifurcation structure of a number of instabilities has been
previously investigated [21, 26, 25, 24, 28]. Using these results we can completely clas-
sify the bifurcation structure in our examples once the bifurcation equations have been
derived by the numerical Liapunov–Schmidt algorithm. This demonstrates another
strength of combining symmetry preserving reduction, numerical Liapunov–Schmidt
methods, and equivariant local bifurcation theory. If a classification for a bifurcation
problem with a given symmetry has been obtained once, the results are universal and
can be applied to any physical problem with this specific symmetry. We then apply
the numerical Liapunov–Schmidt spectral method to the l = 3 instability of the model
equations in section 4.
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2. Numerical Liapunov–Schmidt methods.

2.1. Definitions and notations. Even a brief introduction into spectral meth-
ods would be beyond the scope of this paper. Therefore, we refer the reader to the
competent presentations of spectral methods given in [29, 19, 5, 23, 42]. An extended
version of this section can be found in [11]. We start with the introduction of spectral
approximating spaces and projection operators. Let E ⊂ Hn

w(Ω), Ê ⊂ L2
w(Ω),Ω ⊂ Rd;

Hn
w(Ω) are Sobolev spaces w.r.t. a weight function w. We assume a fixed weight

function w and, hence, do not indicate it any more. Let

{ϕk}k∈Zd
0⊂Zd be a complete orthogonal basis for E , Ê(2.1)

for Ê w.r.t. 〈·, ·〉, and for E w.r.t. 〈·, ·〉E . The ϕk(x) are real- or complex-valued
functions. We define finite dimensional approximating spaces

EN = span{ϕk}k∈KN ⊂ E ⊆ Ê with uN ∈ EN ,(2.2)

where k = (k1, . . . , kd) ∈ KN is a d dimensional multi-index in a finite subset
KN ⊂ Zd0, and k ∈ KN with |ki| ≤ Ni and N = (N1, . . . , Nd) ∈ Nd

0, N̂ :=
|KN |, Ñ := min{N1, . . . , Nd}. The usage of multi-index notation is important since it
appropriately reflects the structure of the basis functions ϕk(x). This structure is cer-
tainly a consequence of the symmetry of (1.1). The structure of ϕk(x) and the values
of N can be determined using the theory of symmetric spaces. For a very instructive
introduction to this theory see [6]. In section 3 we give the explicit form of ϕk(x) for
O(3)-symmetric spaces. Now, every u ∈ E (or Ê) is, alternatively, approximated by
truncation TNu as

TNu = TN


∑

k∈Zd

0

âkϕk


 :=

∑
k∈KN

âkϕk ∈ EN

or by (unique) interpolation in distinct points yj ∈ Ω, j are multi-indices, with

IN : E → EN unique by (INu− u)|yj = 0, j ∈ JN ⊂ Zd, |JN | = N̂ = |KN |.
Sometimes, we use the notations TN = T (EN ) and IN = I(EN ). Now, 〈·, ·〉 is approx-
imated by the (Gaussian) quadrature rule defined as

〈u, v〉N :=
∑
j∈JN

u(yj)v̄(yj)wj , (‖u‖N0 )2 := 〈u, u〉N .(2.3)

〈u, v〉, 〈u, v〉N are Γ-invariant, and the operators TN , IN : E , Ê → EN are Γ-equivariant
and are orthogonal projectors w.r.t. 〈·, ·〉 and 〈·, ·〉N ; hence the corresponding error
functions TNu− u and INu− u satisfy

TNu− u ⊥ EN and INu− u ⊥N EN .(2.4)

In general, different symmetry preserving boundary conditions B1(u) = 0, B2(z) =
0 are imposed on (1.1), (1.2). Therefore, we must replace E and Ê by spaces of
appropriate ansatz- and test-functions

VN
1 := {u ∈ EN : B1(u) = 0} and VN

2 := {z ∈ ÊN : B2(z) = 0}
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with dimVN
1 = dimVN

2 . Now we define Γ-equivariant orthogonal projectors PN
i , P̃

N
i :

E → VN
i such that

〈PN
i u− u, vN 〉, 〈P̃N

i u− u, vN 〉N = 0 ∀ vN ∈ VN
i , i = 1, 2,(2.5)

where P̃N
i , i = 1, 2 , are well defined whenever u(yj), v

N (yj) are known. Obviously, for

EN1 = VN
1 , EN2 = VN

2 it follows that PN
i = T (ENi ), P̃N

i = I(ENi ), i = 1, 2. Applying
the projections to our bifurcation problem (1.2) we get the following two discrete
problems: With xN0 = (uN0 , λ0) ∈ VN

1 ×Rq

determine xN0 such that PN
2 G(xN0 ) = 0 or G(xN0 ) ⊥ VN

2 ,(2.6)

determine xN0 such that P̃N
2 G(xN0 ) = 0 or G(xN0 ) ⊥N VN

2 .(2.7)

Remark. Often G(uN ) is replaced by an approximate operator G̃N (uN ) (in par-
ticular, if the nonlinear parts of G are evaluated in pseudospectral and collocation
methods or with de-aliasing techniques; see, e.g., (2.11), (2.16)). In fact, collocation
methods are perturbed Galerkin methods: They are obtained by choosing in (2.5),
(2.7) the vN for P̃N

2 as the Lagrange basis vNi (yj) = δi,j , i, j ∈ JN .
The equivariant interpolation, truncation, and projection operators have the fol-

lowing properties. They hold for smooth u ∈ Hm
w (Ω), 0 ≤ n ≤ m, with ! = 0 and n

corresponding to the norms in Ê and E , respectively,

‖TNu− u‖� ≤ ‖INu− u‖�, ‖PN
i u− u‖�, ‖P̃N

i u− u‖� = O(Ñ−m+ιK(�)‖u‖�),
(2.8)

and K = F,C,L indicate Fourier (or exponential), Chebyshev-, and Legendre-approx-
imations in (2.2), with ιF (n) = n, ιC(n) = 2n, ιL(n) = 2n+ d/2. If different variables
for multivariate u require different approximations, we replace ιK(n) by the maximal
value. For quadrature approximations with Gauss–Lobatto points we use the equi-
boundedness of ‖TN−νu − u‖�/‖TNu − u‖� for fixed ν, usually ν = 1. Therefore,
only the interpolation errors in (2.8) have to be considered.

2.2. Consistent differentiability. To avoid too many technicalities, we assume
(1.1) in the form

G(x) = G(u, λ) = L0u+ λR(u) = L0u+ λRe

(
u,∇u,

∫
Ω0

u

)
(2.9)

= L0u+ λ

(
u2 +∇u

(
u+

∫
Ω0

u

)
+ g

)

with u0 = 0 and a bounded linear operator L0 = Gu(x0) and a nonlinear operator
R. For the general case see [11]. Now we evaluate (2.9) for spectral and collocation
methods indicated by an indices s and c, respectively. In the spectral approach
xN0 ∈ VN

1 ×R are determined as

G̃N
s (xN0 ) : = PN

2 G̃
N (xN0 ) = PN

2 T
NG(xN0 ) = 0, or

G̃N
s (xN0 ) = TNG(xN0 ) ⊥ VN

2 .(2.10)

For collocation methods we need point evaluations in (2.9) (see (2.13)):

GN (uN , λ)(yj) := (LN0 u
N )(yj) + λRN (uN )(yj),

LN0 u
N := TN (L0)uN = L0(uN ),(2.11)

RN (uN )(yj) := ((uN )2(yj) + (∇uN )(yj))

×(uN (yj) +QNuN + g(yj)), j ∈ JN .(2.12)
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In spectral approach terms like (L0(uN ))(yj), (∇uN )(yj) and integrals are not evalu-
ated directly but via some linear approximation operators, e.g., the Fourier collocation
derivative (see [19]) or quadrature formulas, QNuN ; see (2.13). We denote these ap-
proximate linear operators and functionals (evaluated in yj) as

(LN0 u
N )(yj) ≈ (L0u

N )(yj),

(LN1 u
N )(yj) ≈ (∇uN )(yj), and QNuN =

∑
i∈JN

uN (yi)wi,(2.13)

the quadrature approximation. We introduce the restriction operator

ρN : C(Ω) → RN̂ , (ρN (u))(yj) := u(yj), j ∈ JN ,(2.14)

where C(Ω) denotes continuous scalar functions on Ω. Then we re-interpret the
approximated GN (xN ) in (2.11) (see (2.9)) as

GN
c (xN ) := ρN G̃N

c (xN ) := ρNLN0 (uN ) + λρNRN (uN )(2.15)

:= ρNLN0 (uN ) + λρNRN
e (uN , LN1 u

N , QNuN ).

We insert the LNi u
N , i = 0, 1, in (2.13) into Re. To reveal the structure of RN (uN ),

note that

ρNRN (uN ) := Re(ρ
NuN , ρN (L1u

N ), QNuN )(2.16)

= ρNRe(u
N , LN1 u

N , QNuN ) +O(‖INR(uN )−R(uN )‖0)

= ρNR(uN ) +O(‖INR(uN )−R(uN )‖0),

and there may possibly be other approximations such as Fourier collocation derivatives
or de-aliasing techniques into R to obtain an Re or even an approximation Ra ≈ Re.
Corresponding relations hold for the partial derivatives of R, RN . It is possible
to include de-aliasing techniques into this formalism (see [11]) as well. With the
equivalent definition of P̃N

z u for smooth u via functions and point evaluations (see
(2.5)) we formulate the collocation equations as follows: Determine xN0 ∈ VN

1 × R
such that

P̃N
2 G

N
c (xN0 ) = P̃N

2 ρ
N G̃N

c (xN0 ) = 0 or GN
c (xN0 ) ⊥N VN

2 .(2.17)

Theorem 2.1. Let, for the nonlinear operator G ∈ Cr(D(G)), G(x0) = 0,
‖x0 − x‖n be small. Let its spectral approximation GN = GN

s or GN
c , with or without

de-aliasing (see (2.11)), satisfy (2.16). Then the spectral operator GN is consistent
and r-times consistently differentiable with G, that is, for j = 1, . . . , r, 0 ≤ n ≤ m,

‖GN (PN
1 x)− PN

2 Gx‖0 = O(Ñ−m+ιK(n)‖x‖m),

‖(GN )
(j)

(PN
1 x)PN

1 x1 · · · · · PN
1 xj − PN

2 G
(j)(x)x1 · · · · · xj‖0(2.18)

= O(Ñ−m+ιK(n)‖x1‖m · · · · · ‖xj‖m(1 + ‖x‖m))

for x = (u, λ), xj = (uj , µj) ∈ X = E ×Rq, and u, u1, . . . , uj ∈ Hm
w (Ω)∩E . Analogous

results hold for the P̃N
1 , P̃

N
2 and G,GN combinations. All these operators, derivatives,

and O-terms are Σ-equivariant for uj ∈ Fix(EΣ) (see (2.30)) for Σ = Γ or a subgroup
Σ ⊆ Γ.
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Proof. The estimates (2.8) imply for u ∈ Hm
w (Ω) ∩ E , similarly in Ê ,

‖INx− x‖n + ‖PN
1 x− x‖n + ‖P̃N

1 x− x‖n = O(Ñ−m+ιK(n)‖x‖m).(2.19)

With G(u, λ) ∈ Hm−n
w (Ω) and (2.9), (2.16), we obtain for both cases

‖GN
s (PN

1 x)− PN
2 G(x)‖0, ‖GN

c (P̃N
1 x)− P̃N

2 G(x)‖0
= O(Ñ−m+ιK(n)‖x‖m),(2.20)

with all terms Σ-equivariant. The P̃N
1 , P̃

N
2 , and G̃N results are obtained here and

below in a full analogy.
We prove (2.18)(ii) only for the more complicated case of GN

c . We have vi = xi =
(ui, λi) or vi = ui:

(Liv1)(j)(v2) = δ1jLiv2, (LNi v
N
1 )(j)(vN2 ) = δ1jL

N
i v

N
2(2.21)

for i = 0, 1 and for j ≥ 1. (2.9), (2.16) for the partials imply with the partials ∂iR
that(
GN
c

)′(
P̃N

1 x
)
P̃N

1 x1 = ρN (TNL0)P̃N
1 x1

+λρN (∂1R
N (P̃N

1 x), ∂2R
N (P̃N

1 x), ∂3R
N (P̃N

1 x))

· (P̃N
1 x1, L

N
1 P̃

N
1 x1, Q

N P̃N
1 x1)T

= ρN (L0, (∂1R(x), ∂2R(x), ∂3R(x))(1 +O(Ñ−m+ιK(n)‖x‖m)))

·((x1, L1x1, lx1) + O(Ñ−m+ιK(n)‖x1‖m))T

= ρN (G′(x)(1 +O(Ñ−m+ιK(n)‖x‖m)))

·(x1 +O(Ñ−m+ιK(n)‖x1‖m))

= P̃N
2 (G′(x)(1 +O(Ñ−m+ιK(n)‖x‖m)))

·(x1 +O(Ñ−m+ιK(n)‖x1‖m)).

So, we have proved (2.18)(ii) for j = 1. This holds for GN
s and the higher derivatives

as well.
Consistent differentiability and stability for bordered systems imply convergent

bifurcation scenarios for numerical Liapunov–Schmidt methods [15]. In [14] we have
proved this stability for a large class of discretization methods and operator equations,
including spectral methods for elliptic and Navier–Stokes operators.

2.3. Bifurcation equations and truncated Liapunov–Schmidt methods.
Without loss of generality we have distinguished one specific parameter λ as a bifur-
cation parameter. So, for the remainder of the paper we assume λ ∈ R1. We want to
identify the bifurcation scenario for the bifurcation equation from its truncated dis-
cretizations. First we review an iterative Liapunov–Schmidt method that generates
the jets (truncated Taylor series) of the bifurcation equation up to the required order.
Let Eν

m,1 denote the module of germs [27, 28] at (0, 0) of C∞ vector or matrix-valued
functions Rm × R → Rν , over the ring E1

m,1. We study Γ-equivariant bifurcation
problems

FΓ := {f ∈ Em
m,1 : f(0, 0) = 0, Df(0, 0) = 0, γf(u, λ)=f(γu, λ) ∀ γ ∈ Γ}.

We identify elements in f, g ∈ FΓ that are merely deformations of each other

and denote them to be Γ-equivalent (we write f
Γ∼ g); see [28]. We write jkg for the

truncated Taylor expansion of g w.r.t. all its arguments up to order k (the so called
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k-jet). If jkg ∼ g, for minimal k ∈ N, then g is said to be k-determined. We define a
pseudonorm

‖g‖0k =
∑

|i|+j≤k

∣∣∣∣ ∂|i|+jg

∂ui∂λj
(0, 0)

∣∣∣∣ .(2.22)

Here we consider g ∈ FΓ to be structurally stable, i.e., there exists ε > 0 such that
all perturbations f ∈ FΓ with ‖f − g‖0k < ε satisfy f ∼ g. As a consequence Γ
must be absolutely irreducibly represented on Rm; see [28]. Structural stability of
g guarantees that qualitative results of bifurcation theory can be observed in the
underlying physical model.

We consider the 1-parameter Γ-equivariant operator equation (2.9) with the sin-
gularity in x0 = (0, 0):

G(0, 0) = 0, G′
0 := ∂G(0, 0) = (∂uG(0, 0), ∂λG(0, 0)) =: L =: (∂uG0, ∂λG0),

G′
0 is a Γ-equivariant Fredholm operator of index 1 with a kernel of dimension m+ 1,
m ≥ 1. Note that by the definitions R(x) = O(‖x‖2). FΓ excludes turning point bi-
furcations, i.e., we assume the existence of a trivial solution from which the nontrivial
branches bifurcate. Using the Fredholm condition we split into Γ-invariant orthogonal
subspaces

X = E ×R = N (G′
0)⊕ im(G′

0
∗), Ê = N (G′

0
∗)⊕ im(G′

0), im(G′
0
∗) ⊂ E × {0},

with ∗ always indicating the adjoint operator. We define Γ-equivariant projections
(see, e.g., [43, 27])

Q : E ×R→ im(G′
0
∗), N (Q) = N (G′

0) = N (∂uG0)×R;

Q̂ : Ê → im(G′
0), N (Q̂) = N (G′

0
∗), e.g., Q̂û := û−∑µ

i=1〈ψ̂i, û〉ψ̂i.
(2.23)

Let x = xN + w with xN ∈ N (G′
0), w ∈ im(G′

0
∗), and note that G(x) = 0 if and

only if

Q̂G(xN + w) = G′
0w + Q̂R(xN + w)= 0 and(2.24)

(I − Q̂)G(xN + w) = (I − Q̂)R(xN + w) = 0.(2.25)

The bordered system (2.24) is uniquely solvable (for small xN ) yielding w(xN ) = w ∈
im(G′

0
∗). This is substituted into (2.25) to give the Γ-equivariant bifurcation equation:

B(xN ) := (I − Q̂)G(xN + w(xN )) = (I − Q̂)R(xN + w(xN )) = 0.(2.26)

For the following iteration method, theorem, and modification, see [28] and [3].
Algorithm 1 (truncated Liapunov–Schmidt method). Let w1(xN ) = 0.
Iteration. For k = 2, 3, . . . until determinacy do
Define the truncated bifurcation equation of order k,

Bk : N (G′
0) → N (G′

0
∗), Bk(xN ) := (I − Q̂)jkR(xN + wk−1(xN )).(2.27)

We usually identify xN ∈ N (G′
0) with (α, λ) ∈ Rm+1,N (G′

0
∗) withRm, and maintain

the equivariance for α. Generate the next wk by

G′
0wk(xN ) := Q̂jkR(xN + wk−1(xN )), wk ∈ im(G′

0
∗).(2.28)
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Theorem 2.2. For the iteration defined in (2.28), we have

wk(xN ) = jkw(xN ), and Bk(xN ) = jkB(xN ).

The truncated bifurcation equations (2.27) will transform equivariantly under a
finite dimensional representation of the symmetry group of (2.26).

2.4. Equivariant numerical Liapunov–Schmidt methods. To guarantee
that the discretization of (1.1) and of all introduced projection operators inherit the
Γ-equivariance, we need to reflect this in the discretization method and in 〈·, ·〉N . In
particular, EN , ÊN and VN

1 ,VN
2 need to be closed under the action of Γ, and GN , G̃N ,

and all the above discrete operators, e.g., TN , have to be Γ-equivariant, and

GN (γuN , λ) = γGN (uN , λ) and, e.g., TNγuN = γTNuN , and

〈uN , vN 〉N = 〈γuN , γvN 〉N ∀γ ∈ Γ and uN , vN ∈ EN .
(2.29)

In particular, Γ-invariant approximating subspaces have to be chosen such that (2.29)
is satisfied. For spectral methods this is achieved by the finite dimensional bases
which provide a representation of, e.g., the spherical symmetries. We assume that
the symmetry group acts only in the periodic direction; hence the radial dependence
of the functions has no symmetry properties. Therefore, the full problem will be
discretized by a product-ansatz with a harmonic basis in the periodic directions and a
basis of orthogonal polynomials in the inhomogeneous directions. For other methods,
the so-called symmetry respecting bases are studied in [22, 2]. Fixed point spaces
within EN and ÊN are defined for subgroups Σ ⊆ Γ in the usual way:

EN,Σ := FixΣ(EN ) := {uN ∈ EN : uN = σuN ∀ σ ∈ Σ},
XN,Σ := EN,Σ

0 ×R.(2.30)

For the discrete problem GN (xN ) on fixed point spaces (2.30) we have

GN,Σ := GN |XN,Σ : XN,Σ → ÊN,Σ,

GN and its derivatives (and remainder terms) evaluated at xN are ΣxN -equivariant;
ΣxN = {γ ∈ Γ, γxN = xN} is the isotropy subgroup of xN . If GN is stable or r-times
consistently differentiable, the same is true for GN,Σ.

Throughout we have assumed that we study the singularity of the original problem
at (0, 0) = x0, i.e., G(0, 0) = G(x0) = 0 with

∂λG(0, 0) = 0, N (G′
0
∗) = span {ψ̂1, . . . , ψ̂µ} and

N (G′
0) = N (∂uG(0, 0))×R = span {ψ1, . . . , ψµ} ×R.

(2.31)

Let

GN (xN0 ) = 0, xN0 ≈ (0, 0) and xN0 ∈ FixΓ(EN ) = EN,Γ.(2.32)

For a simple bifurcation point of G (µ = 1 in (2.31)) and for bifurcation from a
trivial solution it has been shown in [17] that GN has a bifurcation point in xN0 =
(0, 0) +O(hp). The general problem is studied in [8, 13, 15]. We introduce

ĜN (xN ) := GN (xN0 + xN ), (ĜN )(j)(xN ) = (GN )(j)(xN ), j ≥ 1,(2.33)
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and drop the ˆ below without violating Theorem 2.1. Thus, without loss of generality,
(0, 0) is also a singular point of GN . For higher singularities of G it has been shown

in [1] and [8] that for ∂λG
N (0, 0) = 0 there exist ψi ≈ ψNi and ψ̂i ≈ ψ̂Ni such that

ψNi �∈ N (G′
0), ψ̂Ni �∈ N (G′

0
∗). These approximations for the kernels of ∂uG0 and

(∂uG0)∗ allow the application of the generalized Liapunov–Schmidt methods. Using
the equivariance of the bifurcation problem and its discretization we can assume the
following generic form:

∂λG
N (0, 0) = 0,

N (GN
0

′) = N (∂uNGN (0, 0))×R = span {ψN1 , . . . , ψNµ } ×R =: NN ,

N (GN
0

′∗) = span {ψ̂N1 , . . . , ψ̂Nµ } =: N̂N with again(2.34)

‖ψNi − TNψi‖n = O(Ñ−m+ιK(n)‖ψi‖m),

‖ψ̂Ni − T̂N ψ̂i‖n = O(Ñ−m+ιK(n)‖ψ̂i‖m), i = 1, . . . , µ = dimN (G′
0
∗).

We assume Γ-invariant pairings and

〈TNu, TNv〉N = 〈u, v〉+O(N−m+ιK(n)‖u‖m‖v‖m).(2.35)

With the systematic replacement of the original operators, bilinear forms, projectors,
spaces, and functions by their respective discrete version (labeled by N), we translate
Algorithm 1 and Theorem 2.2 into their discrete counterparts.

Algorithm 2 (numerical truncated Liapunov–Schmidt spectral method).
Iteration. For k = 2, 3, . . . until determinacy perform the two steps:

BN
k : N (GN

0
′) → N (G′

0
∗), BN

k (xNN ) := (I − Q̂N )jkR
N (xNN + wN

k−1(xNN )),(2.36)

GN
0

′wN
k (xNN ) := Q̂N jkR

N (xNN + wN
k−1(xNN )), wN

k ∈ im(G′
0
∗).(2.37)

Theorem 2.3. Let G and its discretization GN satisfy the following (natural)
conditions:

1. G and GN are r-times continuously and consistently differentiable (see (2.18)),
r ≥ k, the determinacy of the problem.

2. The original and discrete kernels are related via (2.31) and (2.34).
3. The original problem is a Γ-equivariant bifurcation problem (see (1.1) and

(1.2)) and satisfies (2.31).
4. GN is a spectral, pseudospectral, or collocation method with or without de-

aliasing; hence it is a Γ-equivariant discretization of G, that is, GN is based
on the Γ-invariant subspaces and pairings (see (2.35)) and Γ-equivariant op-
erators, projectors, and O-terms (see (2.2), (2.16), (2.2)) which are related,
e.g., 0 ≤ n ≤ m, by

TNQx−QNTNx = O(Ñ−m+ιK(n)‖x‖m) for x = (u, λ), u ∈ Hm(Ω).

Then, similarly to (2.8), the exact, discrete, and truncated results are related as

wN
k (xN ) = jkw

N (xN ) and BN
k (xN ) = jkB

N (xN ),

‖wN
k (TNxN )− TNwk(xN )‖n = O(Ñ−m+ιK(n)‖xN ‖m),

‖BN
k (TNxN )− TNBk(xN )‖0k = O(Ñ−m+ιK(n)‖xN ‖m),

(2.38)
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with Γ-equivariant BN
k (TNxN ), Bk(xN ) determining Γ-equivalent bifurcation scenar-

ios, since Bk and BN
k are elements in FΓ. As norms for wN

k we use (2.37); for BN
k

we use (2.22). Without the Γ-invariant and equivariant conditions, ∂λG
N (0, 0) = 0,

(2.34), and (2.22), we still obtain convergence of the discrete to the exact bifurcation
scenarios.

Proof. Since all the error-terms O are Γ-equivariant, the bordered system is sta-
ble, the discretization is r-times consistently differentiable, and the problem is struc-
turally stable w.r.t. the seminorm (2.22), the results of this theorem are immediate
consequences of the given conditions.

The validity of the stability assumption for the number of bordering conditions
can be monitored by comparing results for different values of N.

Algorithm 3 (symmetric Liapunov–Schmidt method).
Initiation. For harmonic spectral expansions the harmonic component of the

critical eigenvector consists of a reducible representation of the symmetry group Γ.
Let the dimension of the critical eigenspace be N0; then the spectral space EN0 is
of dimension N0 with maximum wave number lN0 . The nonlinear interactions in the
k-jet jkR

N (u) generate wave numbers of order klN0 .
Iteration. Remove aliasing errors by padded transforms of the nonlinear operator

R (see [19, 11]), where N1 ≥ (k+1)lN0/2−1 for one dimensional trigonometric Fourier
transforms and Nlon,1 ≥ (2k + 1)lN0 + 1, Nlat,1 ≥

(
(2k + 1)lN0

+ 1
)
/2 for spherical

harmonic transforms. Remove the truncation error by the projection T̂N1 , T̂Nk−1 ;
then

j2R
N (u) : EN0 → EN1 , jkR

N (u) : ENk−2 → ENk−1 .

Repeat until determinacy. Thereby one generates the sequence of approximating
spaces ENm with EN0 ⊂ EN1 ⊂ · · · ⊂ ENm .

3. Application to a reaction-diffusion system in biology.

3.1. The model equations. We consider a coupled system of nonlinear reaction-
diffusion equations. The specific model we chose was originally suggested in [39]:

∂c1
∂t

= D1∇2c1 + 1− c1cα2 ,(3.1)

∂c2
∂t

= D2∇2c2 + β
(
c1c

α
2 − c2

)
.(3.2)

It is defined on a spherical domain in R3 of radius R. We abbreviate it in the form

∂c

∂t
= G(c, β) := L̃(β)c+ Ñ(c, β),

∂c

∂r
= 0 at r = R and bounded at r = 0,(3.3)

with a two-component mixture c = {c1, c2}. These problems arise in the context of
mathematical biology, e.g., in Turing’s theory of pattern formation [31]. In the specific
model [39] we choose, with α and λ related as in subsection 3.3,

L̃(β) =

(
D1∇2 − 1 −α

β D2∇2 + β(α− 1)

)
with L̃ := L̃(βc),

G′
0 = (L̃, 0), N (G′

0) = N (L̃)×R,(3.4)

satisfying (2.31), and the nonlinear part is Ñ(c, β) = (−c1cα2 , βc1cα2 )T . Following
[39] we assume a fixed effective Hill constant α = 3 and the diffusion constants as
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D1 = 0.15 and D2 = 0.015. The distinguished bifurcation parameter β represents
a rate constant measuring the level of enzyme activity. The isotropy of the model
induces theO(3)-equivariance of the model equations. We discuss stationary solutions.

3.2. Computation of the linearized eigenvalue problem. The concentra-
tion vector yields the homogeneous solution c1 = c2 = 1 for arbitrary β, G0 = G(c1 =
c2 = 1, β) = 0. With ∂λG0 = 0, N (G′

0) satisfies (2.31). For an extended study,
see [12]. A linear stability calculation shows that c1 = c2 = 1 is stable for small
β. Instabilities or bifurcation occur whenever an eigenvalue σ of L̃v = σv crosses the
imaginary axis. We solve the eigenvalue problem with boundary conditions from (3.3)
for the fl(r) and fNl (r) below, via

v =

∞∑
l=0

l∑
m=−l

fl(r)Ylm(θ, φ) =

∞∑
l=0

l∑
m=−l

(fl1(r), fl2(r))TYlm(θ, φ) ∈ E .(3.5)

With ∇2Ylm = −l(l + 1)Ylm, (Ykm, Yln)2 = δkl · δmn, the linear eigenvalue problem
L̃v = σv can be split and reduced to the radial eigenvalue problem

L̃flYlm = YlmL̃lfl = Ylmσlfl, and reduced to L̃lfl = σlfl for fixed l;(3.6)

here σl is an eigenvalue of multiplicity 2l + 1 and 1 for L̃ and L̃l, respectively, and

d2l =
d2

dr2
+

2d

rdr
− l(l + 1)

r2
replaces ∇2 in (3.4) to define L̃l.(3.7)

(3.6) may be solved exactly in terms of spherical Bessel functions [20], or numerically
by a Chebyshev-tau or Chebyshev-collocation method with the Gauss–Radau points
applied to the ansatz fNl (r) =

∑N−1
n=0 f̂n Tn(r), f̂n ∈ R2 for the f̂n ∈ R2. Mind

that this transition from fl(r) to fNl (r) causes the discretization errors discussed
below. The critical or stability curves β = βl(R) in the (β,R) plane for each value
of the wave number l satisfy  {σl} = 0 = σl, since for the parameter range of our
interest the eigenvalues are always real. The minimal βl selects the critical wave
number l0 and determines the critical rate constant βc(R) = minl βl(R). The critical
curves β(R) are shown in Figure 3.1 for the l = 1, 2, and 3 spherical harmonics.
Generically, there is a unique l for each R. However, when the critical value of βc
occurs at the intersection point of two stability curves, e.g., for l0,1 = 1 and l0,2 = 2
in R ≈ 0.83, the dimension of the kernel is equal to 2(l0,1 + l0,2 + 1). Moreover,
two radial eigenvectors corresponding to a single irreducible representation, l0, may
be simultaneously unstable with a resulting kernel of dimension 4l0 + 2. For the
parameter values in Figure 3.1 that does not appear at criticality.

3.3. Application of the Liapunov–Schmidt reduction. For the Liapunov–
Schmidt procedure and a given shell radius R the minimal critical curve occurs gener-
ically for a single l = l0; see section 4 for l = l0 = 3. Redefining λ := β − βc,
u = (u1, u2)T := c − (1, 1)T the critical value is transformed to λc = λ = 0 with
 {σl0} = 0 = σl0 . This allows the standard form for (3.3) as

G : X = E ×R→ Ê , G(u, λ) = L̃u+R(u, λ), G′
0 = (L̃, 0), L̃ = ∂uG(0, 0);(3.8)

L̃ is a Fredholm operator of index 0, R(·, ·) is the nonlinear operator

R(u, λ) =

( −αu1u2 − (u1 + 1)R(u2)
(λ+ βc)(αu1u2 + (u1 + 1)R(u2)) + λ(u1 + (α− 1)u2)

)
,(3.9)
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Fig. 3.1. Linear stability diagram, β versus R, for l = 1, 2, and = 3 (dot-dashed, solid, and
dashed lines, resp.). For l = 1, 2 two dot-dashed and solid lines are shown for different radial modes.

and α is an integer. The Taylor expansions for R(u2) and R(u, λ) are given as

R(u2) ≡
α∑

k=2

α!

k!(α− k)!u
k
2 , R(u, λ) =

∑
i=1

∑
j=0

Rij(u)λj ,(3.10)

with Rij(u) an i-linear operator in u and R10 = 0; see (3.9) and (3.10). We restrict
ourselves to steady state solutions of (3.8) and obtain

N ≡ N (∂uG(0, 0)
)

= N (L̃) = span{ψl0−l0 , . . . , ψl0l0}
= span{f0

l0
Yl0−l0 , . . . , f

0
l0
Yl0l0}, N (G′

0

)
= N ×R, L̃l0f

0
l0

= 0,
(3.11)

f0
l0

= (f0
l01
, f0

l02
)T , and dim N (L̃) = µ = 2l0 + 1.

Bifurcating branches may then be determined by the truncated Liapunov–Schmidt
reduction. For v ∈ N = N (L̃) = N (L̃∗) (see (3.4)) we have

v = zψ = (vj)
2
j=1 =

(
l0∑

m=−l0

zmf
0
l0j(r)Yl0m(ϑ, φ)

)2

j=1

(3.12)

∈ N = N (L̃) = N (L̃∗).

zm ∈ C, z = (z−l0 , . . . , zl0)T ∈ C2l0+1 satisfy the reality condition z−m = (−1)mz̄m.
Since L̃ = L̃∗ is self-adjoint, the above algorithms can be simplified: We split a

solution (u, λ) ∈ E ×R of (3.8) into u = v + w, with v ∈ N (L̃) = N and w ∈ M ≡
im(G′∗

0 ) = im(L̃∗) = im(L̃), i.e., M is the orthogonal complement of N in (3.11). In
(2.23) we had defined the Γ-equivariant projectors Q, Q̂. Using the same operator P
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in E and Ê , we want to slightly change the notation into

P : Ê → N = N (L̃) = N (L̃∗) and hence Q ≡ I − P = Q̂ : Ê → M,(3.13)

with complementary orthogonal projectors P,Q, and for u ∈ E or u ∈ Ê

Pu =

l0∑
m=−l0

〈u, ψl0m〉ψl0m, Qu = (I − P)u = u− Pu, P(u, λ) = (Pu, λ).(3.14)

The O(3)-symmetry of (3.8) leads to the equivariance of G w.r.t. an infinite di-
mensional representation Tγ , i.e., TγG(u, λ) = G(Tγu, λ) ∀γ ∈ O(3). Tγ induces the
finite dimensional irreducible representation Tl0,γ on the five dimensional subspace N
(see (3.12)) spanned by the critical spherical harmonics for l0 via

Tγv = Tγ

l0∑
m=−l0

zmf
0
l0Yl0m = Tγzψ =

l0∑
m=−l0

zmf
0
l0TγYl0m =

l0∑
m=−l0

(Tl0,γz)mf
0
l0Yl0m.

This implies the relation Tγzψ = (Tl0,γz, ψ) for an element zψ = v ∈ N . It also
follows that TγPu = PTγu and TγQu = QTγu. The bifurcation equations (2.26) are
obtained by projecting (3.8) with P (P∗ for the non-self-adjoint case) onto N to get

B(z, λ) = PR(zψ + w(z, λ)).(3.15)

The successive approximations to the bifurcation equations are calculated as a Taylor
series in z and in λ until determinacy. From (2.27) and (3.10) we get

Bk(z, λ) = PjkR(zψ + wk−1(zψ, λ), λ)(3.16)

= Pjk
∑
i=2

Ri0(zψ + wk−1(z, λ), λ) + λPjk−1

∑
i=1

Ri1(zψ + wk−1(z, λ), λ).

Using the theory of invariants, it can be shown that the equivariance property
permits the series expansion (3.16) to be decomposed at each order i in z into a finite
set of mi

l-equivariant homogeneous polynomials Zij
lm(z) of degree i which are indepen-

dent over R (1 ≤ j ≤ mi
l) [21, 28]. The polynomials Zij

lm(z) have the equivariance
property that Tl,γZ

ik
lm(z) = Zik

l (Tl0,γz) where Tl,γ l ∈ N0 are the irreducible repre-
sentations of O(3) where l is the order of the spherical harmonics Ylm. This will be
exemplified in section 4.1 for second order terms (cf. (4.4)). Since mi

l is small for
lower orders this results in a dramatic simplification of the Taylor series. Since in
previous investigations a complete classification of all the generic singularities with
l < 5 has been achieved [21, 24], we can directly apply these results to our examples.
This is because a given singularity is independent from its physical origin, i.e., it de-
pends only on the specific degeneracy, the symmetry group, and the representation of
the symmetry group. Then a local bifurcation analysis yields three important pieces
of information: the determinacy of the bifurcation problem and the corresponding
normal form, the universal unfolding of the normal form, and the local solution struc-
ture of the bifurcation equations. Consequently, from the results of [21, 24] we know
not only the determinacy of the problem but also which of the terms of the Taylor
expansion in the bifurcation equations need to be calculated. Furthermore, once we
calculate the required terms, we can apply the results of the local analysis again in
order to determine the qualitative branching behavior. In cases in which a complete
classification of the local branching behavior of a given singularity does not exist, the
determinacy of the problem can be also determined numerically [15, 38].
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4. Generic bifurcations in the l = 3 representation.

4.1. Calculation of the bifurcation equations. If we fix the radius of the
sphere to R = 1.55, then in (cf. section 3.2) the minimal critical curve occurs for l0 = 3
and therefore dimN = 5 and z = (z−3, . . . , z3)T , Bk = (Bk,−3, . . . , Bk,3)T ∈ N .
Because generic bifurcations with l = 3 critical are three-determined [28] we must
compute only up to third order terms.

Following section 3 we derive the bifurcation equation near critical rate constant.
For odd values of l the action of the reflective component of O(3) is nontrivial and
the equivariants of even order vanish identically. Therefore we can immediately turn
to the calculation of the third order terms. Note that this requires the computation
of the function w2 = w2(v, λ) = w2(zψ, λ) (cf. Algorithms 1–3 and (2.28) ff.), which
we start now:

G′
0w2(zψ, λ) = Qj2R(zψ, λ), j2R(zψ, λ) = λR11(zψ) +R20(zψ).(4.1)

The term R11 will induce a term of order O(λ‖z‖2) and O(λ2‖z‖) in the bifurcation
equations. From the classification in [21, 24] we know that these terms do not appear
in the normal form and therefore do not effect the local branching behavior. Therefore
we use (3.9), (3.10), (3.12) and simplify

j2R(zψ, λ) = R20(v = zψ) = q

3∑
m′,m′′=−3

zm′zm′′Y3m′Y3m′′ ,(4.2)

with q = q(r) := (−1, βc)
Tα(f0

31(r)f0
32(r) + α−1

2 (f0
32(r))2). With

cl
′l′′l
m′m′′m :=

∫ 2π

0

∫ π

0

Yl′m′Yl′′m′′ Ȳlm sin θdθ dφ

we get

QR20(zψ) = R20(zψ)−
∫ R

0

q(r)f0
3 dr

3∑
m=3


 3∑

m′,m′′=−3

c333m′m′′mzm′zm′′


Y3m = R20(zψ),

since the sum over the c333m′m′′mzm′zm′′ vanishes for all m = −3, . . . , 3. From (4.1) we
get the reduced equation

G′
0w2(zψ) = q

3∑
m′m′′=−3

zm′zm′′Y3m′Y3m′′ = q

∞∑
l=0

l∑
−l

Z21
lm(4.3)

= q
∞∑
l=0

l∑
m=−l

3∑
m′m′′=−3

c333m′m′′mzm′zm′′Ylm = q
∑

l=0,2,4,6

l∑
−l

Z21
lm.

The linearity and O(3)-equivariance of (4.3) w2 admits a product-ansatz

w2(r, θ, φ) =
∑

l=0,2,4,6

f21
l (r)

l∑
m=−l

Z21
lmYlm(θ, φ) ⊥ N .(4.4)

With this ansatz and (4.3) we get a differential equation (see (3.6), (3.7)),

G′
0w2 = L̃w2(r, θ, φ) =

∑
l=0,2,4,6

(L̃lf
21
l )

l∑
m=−l

Z21
lmYlm = q(r)

∑
l=0,2,4,6

l∑
m=−l

Z21
lmYlm.
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Hence we solve instead the better uniquely solvable equations for l = 0, 2, 4, 6.

L̃lf
21
l (r) = q(r), l = 0, 2, 4, 6, where f21

l = (f21
l1 f

21
l2 )T ,(4.5)

for the above boundary conditions; see (3.3). The solutions f21
l depend only on l, r

and not on m. The solution w2 is a second order polynomial in z. The projection of
(3.8) onto N finally yields the bifurcation equations. They are given to order O(|z|3),
O(|z|λ), and O(|z|2λ) (see (3.9), (3.10), (3.13), (3.14)) as

B3(z, λ)= λPR11(zψ) + PR20(zψ + w2(zψ, λ)) + PR30(zψ),

B3,m(z, λ)= B2,m(z, λ) + 〈R30(zψ), ψm〉
= λ〈R11(zψ), ψm〉+ 〈R20(zψ + w2(zψ, λ)), ψm〉+ 〈R30(zψ), ψm〉

= λb1zm + b2

3∑
m′m′′=−3

c333m′m′′mzm′zm′′

+
∑
l′
b̃3l′

3∑
m′m′′=−3

cl
′33
m′m′′mZ

21
l′m′zm′′

+ b̃30

3∑
m′m′′m′′′=−3

zm′zm′′zm′′′

∫ π

0

∫ 2π

0

Y3m′Y3m′′Y3m′′′ Ȳ3m sin θdθ dφ,(4.6)

with

b2 =

∫ R

0

α
(
f0
31f

0
32 + (α− 1)(f0

32)2/2
)(
βcf

0
32 − f0

31

)
r2dr ,

b̃3l =

∫ R

0

α

2

(
f21
l1 f

0
32 + f21

l2 f
0
31 + (α− 1)f21

l2 f
0
32

)(
βcf

0
32 − f0

31

)
r2dr ,

b̃30 =

∫ R

0

α(α− 1)

2

(
f0
31(f0

32)2 + (α− 2)(f0
32)3/3

)(
βcf

0
32 − f0

31

)
r2dr.

For the calculation at third order there are 73 terms per component of z and
thus 73 undetermined coefficients. Using invariant theory, it can be shown that all
coefficients can be expressed in terms of the two third order coefficients b31 and b32.
More precisely, the three-jet of the bifurcation equations B3 can then be decomposed
into only two equivariant polynomials. These two polynomials are given by linear
combinations of the third order terms in (4.6).

4.2. Approximation errors. The approximation errors for the N -term Cheby-
shev spectral approximant yielding the critical rate constant βNc and the coefficient
bN1 are shown in Table 4.1. The converged values βNc = β∞c , b1 = b∞1 (with errors
≈ 10−12) occur for N − 1 = 18. The numerical computation of the radial function is
realized through the approximant BN

3 . Here N refers to the (N + 1)-term Chebyshev
expansion in the radial direction. The dependence of the linear operator on the an-
gular variables (θ, φ) is eliminated by a discretization to a collocation grid chosen to
eliminate aliasing error and is therefore exact. For cubic polynomials the elimination
of aliased terms requires that Nlon ≥ 4l0 + 1 = 13 and Nlat ≥ (4l0 + 1)/2 = 13/2. We
therefore choose Nlon = 16 and Nlat = 8 to allow the use of the FFT. The integrals
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Table 4.1
Relative approximation error for the critical rate constant βc and linear coefficient b1, where

b1 = 1.5096774921862, βc = 0.1871719916317956, and R = 1.55.

N (βN
c − βc)/βc (bN1 − b1)/b1

4 −9.1957157200481×10−4 2.5571536421600×10−2

6 2.1262913035586×10−5 −3.2373852614000×10−3

8 −4.1598759731309×10−7 −1.6182126620001×10−4

10 5.1089623920308×10−9 9.4810774999843×10−6

12 −4.2916614706456×10−11 −3.9807099994071×10−7

Table 4.2
Relative approximation error of the coefficients b31 and b32. Converged values are b31 =

1.0779308458571 and b32 = 1.6624854128710.

N (bN31 − b31)/b31 (bN32 − b32)/b32

8 2.4447858094000 ×10−2 3.6081193658000×10−2

10 3.3783372601999 ×10−3 6.7765473284001×10−3

12 8.9734578699874 ×10−5 3.7732165149995×10−4

14 −2.0430003599969 ×10−5 −7.4240502500045×10−5

16 7.4269237000379 ×10−6 1.7987259500085×10−5

18 −1.4799865999393 ×10−6 −3.1605985999494×10−6

20 2.1271289996072 ×10−7 4.3438650010330×10−7

22 −2.3774499924301 ×10−8 −4.7782700018928×10−8

24 2.1693999929795 ×10−9 4.3290000473206×10−9

defining the projection operator P are then approximated as summations over the
collocation grid points. The resulting third order coefficients b31 and b32 and the ap-
proximation error for increasing numbers of terms N of the Chebyshev expansion are
shown in Table 4.2. Since our computations have been designed to preserve equivari-
ance we are thus assured by the arguments presented in section 3 that a one-to-one
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Fig. 4.1. Lattice of isotropy subgroups for the l = 3 representation: For each isotropy subgroup
a simple representative fix point subspace is given. The numbers at the right denote the dimension
of the subspaces of a given hierarchy. The lines indicate which symmetries of a lower hierarchy are
included in the symmetries of a larger hierarchy.

correspondence exists between the discretized solutions xN ∈ EN ×R and solutions
x ∈ E ×R with ‖x− xN‖ = O(N−m+n‖x‖m).

4.3. Solution branches. Given the computation of the Taylor series coefficients
the bifurcation equations are completely specified:

B3,m(z, λ) = 0, m = −3, . . . , 3(4.7)

with B3,m given in (4.6). Stability and symmetry of bifurcating solution branches
of (4.7) have been completely classified in [21]. Nevertheless, in order to apply the
results of the Liapunov–Schmidt reduction we must present the result of [21] in an
explicit form suitable to our analysis. The solutions of (4.7) can be ordered by their
symmetries of the lattice of isotropy subgroup (cf. Figure 4.1). For an exact definition
for the isotropy subgroups groups of Figure 4.1, c.f. [32, 28]. In [21] it is shown
that in the generic case there are only solutions with symmetries of the maximal
isotropy subgroups. We now restrict B3,m(z, λ) to each of the fixed point subspaces
in Figure 4.1. Then a solution of the bifurcation equations can be written in the form
λ = −(c1kb31 + c2kb32)x2

k/b1 with k = 0 for the octahedral symmetric (O−) branch,
k = 2 for the axisymmetric O(2)− branch, and k = 3 for the dihedral symmetric
(D(6)d) branch, respectively, and coefficients c10 = 1, c20 = 9/(121π), c12 = 2,
c22 = 42/(121π), c13 = 2, c23 = (9/242π). With the values for b31 and b32 we get
three subcritical bifurcation branches. We also determine the stability of the three
nontrivial branches in the full 7 dimensional l = 3 representation space. The result
is shown in the bifurcation digram of Figure 4.2 where the sign of the eigenvalues of
the Jacobian along the bifurcation branches as well as the symmetry of the branches
is indicated. All the solution branches are unstable. The branches with discrete
symmetry have three zero eigenvalues in the direction of the continuous group orbits.
The solution with octahedral symmetry has only two distinct eigenvalues, one of which
is of multiplicity three and is negative. The second eigenvalue is of multiplicity one
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Fig. 4.2. Bifurcation diagram for generic bifurcations in the l = 3 case: The sign of the
eigenvalues of the Jacobian along each solution branch is given. Multiple eigenvalues are collected
into parentheses.

and is positive. This solution can be expected to stabilize in a saddle node bifurcation
at finite amplitudes.
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ports, Prof. B. Schmitt for helpful discussions, and Mrs. Muth for her patient typing.

REFERENCES
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[14] K. Böhmer and N. Sassmannshausen, Stability for generalized Petrov-Galerkin methods ap-
plied to bifurcation, ZAMM Z. Angew. Math. Mech., submitted.
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Abstract. We consider a mechanical system with impact and one degree of freedom. The system
is not necessarily Lagrangian. The representative point is subject to the constraint u(t) ∈ R

+ for all t.
We assume that, at impact, the velocity is reversed and multiplied by a given coefficient of restitution
e ∈ [0, 1]. We define a numerical scheme which enables us to approximate the solutions of the Cauchy
problem: this is an ad hoc scheme which does not require a systematic search for the times of impact.
We prove the convergence of this numerical scheme to a solution. Many of the features of this proof
will be reused in the nonconvex, multidimensional case, written in generalized coordinates, given in
the companion paper [L. Paoli and M. Schatzman, SIAM J. Numer. Anal., 40 (2002), pp. 734–768].
We present some numerical results obtained with the scheme for a spring-dashpot system and we
compare them to the results obtained by impact detection and penalization.

Key words. impact, coefficient of restitution, numerical scheme, convergence, local existence,
global existence
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1. Introduction. We study in this article a numerical approximation of dynam-
ics with impact with one degree of freedom when the representative point u is subject
to the constraint

u ∈ K = [0,∞).

Let f be a continuous function from [0, T ]×R×R to R which is locally Lipschitz
continuous with respect to its last two arguments.

The free dynamics of the system are written as

ü = f(·, u, u̇).(1.1)

This system is more general than the system obtained in Lagrangian mechanics,
since we want to include possible dissipative terms in the dynamics of the problem
under discussion. There is no need for a mass matrix: in the one degree of freedom
case, the velocity is always proportional to the impulsion, and an obvious change of
variable enables us to forget about any other metric other than the Euclidean one.

Let us describe now the system satisfied by the problem with impact: we re-
place (1.1) with

ü = µ+ f(·, u, u̇),(1.2)

and since we cannot expect to have global solutions in general, µ is an unknown
nonnegative measure on [t0, t0 + τ ] which describes the reaction of the constraints; µ
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has the following properties:

supp(µ) ⊂ {t ∈ [t0, t0 + τ ] : u(t) = 0},(1.3a)

µ ≥ 0.(1.3b)

We require the following functional properties for u:

u is a continuous nonnegative function on [t0, t0 + τ ],(1.4a)

u̇ is of bounded variation over [t0, t0 + τ ].(1.4b)

We have to make a supplementary assumption in order to have a complete de-
scription of the impact; we choose a constitutive law of the impact using a coefficient
of restitution. Thus we will assume that there exists e ∈ [0, 1] such that u̇(t + 0) is
equal to −e times u̇(t− 0). In other words, we have

u̇(t+ 0) = −eu̇(t− 0).(1.5)

The set of admissible initial data D will be

D =
{
(t0, u0, v0) ∈ [0, T )×K × R : if u0 = 0, then v0 ≥ 0

}
.

This choice is equivalent to the convention that there is no impact at the initial time
t0.

Given initial conditions (t0, u0, v0) ∈ D, we require that the following Cauchy
data be satisfied:

u(t0) = u0(1.6)

and

u̇(t0) = v0.(1.7)

For all initial data (t0, u0, v0) ∈ D we will obtain the existence of a local solution
to (1.2), (1.3a), (1.3b), and (1.5) belonging to the functional class defined by (1.4a)
and (1.4b) and satisfying the initial conditions (1.6) and (1.7).

The existence of this local solution is obtained by defining a numerical scheme,
whose convergence will be shown in appropriate functional spaces; the limit of the
approximation will be a solution of our problem. The projection on K is given by

PK(x) = max(x, 0) = x+.(1.8)

Given two positive numbers h∗ ≤ 1 and T , assume that F is a continuous function
from [0, T ]×R×R×R× [0, h∗] to R, which is locally Lipschitz continuous with respect
to its second, third, and fourth arguments. Assume, moreover, that F is consistent
with f , i.e., that for all t ∈ [0, T ], for all u and v in R,

F (t, u, u, v, 0) = f(t, u, v).(1.9)

We approximate the solution of (1.2), (1.3a), (1.3b), and (1.4a), (1.4b), (1.5),
(1.6), (1.7) by the following numerical scheme: the initial values y0 and y1 are given
by the initial position

y0 = u0,(1.10)
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and the position at the first time step

y1 = u0 + hv0 + hz(h),(1.11)

where z(h) tends to 0 as h tends to 0.
Henceforth, we will systematically use the notation

tm = t0 +mh.

Given ym−1 and ym, ym+1 is defined by the relations

ym+1 = −eym−1 +
(
2ym − (1− e)ym−1 + h2Fm

)+
(1.12)

and

Fm = F

(
tm, ym, ym−1,

ym+1 − ym−1

2h
, h

)
.(1.13)

The reader should be aware at this point that, given ym−1 and ym, the existence
of ym+1 is an easy consequence of the strict contraction theorem; but we might be in
trouble here, since F is locally Lipschitz continuous and we are not sure about the
existence of a solution on a finite time interval. This existence is not a trivial question
and it depends on estimates which are at the heart of our subject.

A commentary on the construction of this scheme from the point of view of
convex analysis will be useful here. We refer to the book of Rockafellar [25] for more
information on the basic ideas in convex analysis to be used below.

Recall that the indicator function ψK of the closed convex set K is defined by

ψK(x) =

{
0 if x ∈ K,
+∞ otherwise,

(1.14)

and its subdifferential ∂ψK is a function from K to the set of closed convex sets given
by

∂ψK(x) =

{
{0} if x ∈ int(K),

R
− if x ∈ ∂K.(1.15)

For all λ > 0, the multivalued equation

x+ λ∂ψK(x) � f(1.16)

has a unique solution given by

x = PKf.(1.17)

In the announcement [22], we assumed that the set of constraints K was convex
and the geometry was Euclidean and d-dimensional, and we had defined a numerical
scheme by the multivalued equation

ym+1 − 2ym + ym−1

h2
+ ∂ψK

(
ym+1 + eym−1

1 + e

)
� Fm.(1.18)
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We may rewrite (1.18) as

ym+1 + eym−1

1 + e
+

h2

1 + e
∂ψK

(
ym+1 + eym−1

1 + e

)

� 2ym − (1− e)ym−1 + h2Fm

1 + e
,

(1.19)

which reduces, thanks to (1.16), (1.17), and (1.8), to relation (1.12). In contrast with
the original proof of convergence of this scheme, as written in [19], the proof presented
here is written in such a way that many of its features can be reused in the nonconvex,
multidimensional case, written in generalized coordinates. This more general proof
will be given in the companion paper [20].

Let us outline now the structure of the article and of the proofs. The main
estimates are given by Lemma 2.1 in section 2.

Then we find two constants A and τ such that for initial data given by (1.10)–
(1.11), and for all small enough h and all m ≤ τ/h, the discrete velocity is bounded:

sup
∣∣(ym+1 − ym)/h

∣∣ ≤ A.
In sections 4, 5, 6, and 7, we prove estimates on the discrete acceleration, we

establish the variational properties of the limit of the numerical scheme, and we
study the transmission of energy at impact, as well as the passage to the limit for
the initial conditions. All these results are obtained under the assumption that on a
certain time interval starting at t0, the discrete velocity is bounded independently of
the time step.

As a preliminary to the global existence proof, we give a priori estimates on
problem (1.2)–(1.7) in section 8, which is completely independent from the remainder
of the article.

In section 9, we establish a very weak semicontinuity for the supremum of the
local norm of the discrete velocities; this result enables us to obtain a global existence
and convergence theorem.

This article contains theoretical results and reports also on some of the numerical
implementations.

The existence result obtained here is a generalization of [26], [2], [24], [19], [17].
The numerical scheme has been implemented in the one-dimensional case, and the
results were reported in [19], [18], [23]. In all these articles, we compared the per-
formances of this scheme with those of a method based on the detection of impact.
When the impact times are isolated, the algorithm by detection of impacts is more
precise than the present scheme. As soon as the restitution coefficient is strictly less
than one, we find systematically nonisolated impact times. In all cases, the present
scheme is substantially faster. Since the phenomena that we want to approximate are
highly nonlinear and often very sensitive to the initial data, the issue of precision is
not necessarily crucial. Our numerical experiments show that the performance of the
present numerical scheme is quite satisfactory from the point of view of qualitative
conclusions.

The aforementioned references also concern the multidimensional case.
Let us remark that many articles have been devoted to the problem treated here

under the assumption of inelasticity, i.e., a situation where the normal component of
the impulsion vanishes after the impact. Moreau applied Gauss’s principle of least
constraint to unilateral problems in order to justify his choice of inelastic impact
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[11], which eventually led him to sweeping processes [14], followed by [12], [13]. Dry
friction enters in Moreau’s work as [15]; frictionless inelastic impact starts as [16], and
the mathematical theory is tackled by M. Monteiro Marques in a series of articles:
his main contributions are [9] for the general theory of differential inclusions, [10] for
one-dimensional dynamics with friction, and [5] which adds percussion to the previous
framework; this work is improved as [6], where dynamics of n particles on a plane
with normal friction are considered. The discretization approach has been taken up
by Kunze and Monteiro Marques in [4], but most significantly by Stewart and Trinkle:
they use that approach in [27], [29], and [30]. The real coronation is the beautiful and
difficult article of Stewart [28], which concludes the study of dynamics with friction
and inelastic impact for a finite number of degrees of freedom and one constraint;
his results are not quite so precise in the case of many constraints but are still very
important.

The philosophy of this long list of works is somewhat different from ours: we feel
that not all impacts are inelastic, and we were originally motivated by continuous
media; thus, we wanted to develop methods which work well for stiff systems of
ordinary differential equations. From this point of view, any method which has to
calculate with some precision the impact times is doomed to failure. On the other
hand, the precision of the method presented here needs improvement, and globally it
would make sense to agree on benchmarks which would enable the end-user to decide
between different numerical methods.

Our approach is not the only possible one. In particular, in recent work, Mabrouk
in [7] and [8] defines a numerical scheme for vibro-impact as a tool for proving ex-
istence of dynamics with impact; he allows for elastic, partially elastic, or inelastic
impact. In his work, the mass matrix is assumed to be scalar, and therefore the met-
ric is Euclidean. The idea is to discretize Moreau’s formulation which describes the
constraint in terms of velocity instead of describing it in terms of position, as we do
here.

From a practical point of view a nice property of Mabrouk’s scheme is that the
velocity is reversed immediately upon impact. However, the number of steps during
which the representative point of the system is outside of the set of constraints can
be very large. For e = 0, the representative point of the system can even leave for
ever the set of constraints, while remaining close to it.

Therefore, numerical simulations will probably decide which of all these numerical
schemes gives the most reliable simulations of dynamics with impact. It may well be
that a future scheme will conciliate the two distinct approaches and perform better
than them: the road is open to researchers to try their ingenuity on these challenging
problems.

2. The heart of the estimates. In the one-dimensional case, the main estimate
on the numerical scheme is described in the following lemma; we recall the definition

r+ = max(r, 0).

Lemma 2.1. Let the real-valued sequence
(
ym
)
m

satisfy the following recurrence
relation for all m ≥ 1:

ym+1 = −eym−1 +
(
2ym − (1− e)ym−1

)+
+ h2λm.(2.1)

Then, for all m ≥ 2, the discrete velocity

ηm =
(
ym+1 − ym)/h(2.2)
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satisfies the estimate

|ηm| ≤ max
(∣∣ηm−1

∣∣ , e ∣∣ηm−2
∣∣)+ h |λm| + h

∣∣λm−1
∣∣ .(2.3)

Proof. Assume first that 2ym−(1−e)ym−1 is nonnegative, and substitute ym+1 =
ym + hηm, ym−1 = ym − hηm−1 into (2.1); we obtain

ηm = ηm−1 + hλm

so that

|ηm| ≤ ∣∣ηm−1
∣∣ + h |λm| .(2.4)

Assume now that 2ym − (1 − e)ym−1 is strictly negative. On the one hand, (2.1)
implies the relation

ηm = eηm−1 − 1 + e

h
ym + hλm;

the assumption on the sign of 2ym − (1− e)ym−1 is equivalent to

(1 + e)ym

h
< −(1− e)ηm−1,

and therefore

ηm > ηm−1 + hλm.(2.5)

On the other hand, we subtract from the relation

ym+1 + eym−1 = h2λm

the inequality implied by (2.1) with m substituted by m− 1:

ym + eym−2 ≥ h2λm−1,

and we infer that

ηm ≤ −eηm−2 + h
(
λm − λm−1

)
.(2.6)

When we summarize (2.4), (2.5), and (2.6), we find (2.3).

3. Existence of a discrete solution and estimates on the discrete veloc-
ity. We systematically use the floor and ceiling notations: when r is a real number,
the floor r� of r is the largest integer at most equal to r, and the ceiling �r� is
the smallest integer at least equal to r. In this section we prove that for h and τ
small enough, relations (1.12) and (1.13) uniquely define a numerical solution while
(m+1)h ≤ τ ; moreover the discrete velocity of this solution is bounded independently
of h.

The idea of this result is to show the existence by the Brouwer fixed point argu-
ment and the uniqueness by local considerations.

We say that a pair of numbers y0 and y1 satisfy the property P (a, h) if the
following conditions are true:

|y0| ≤ a, |y1| ≤ a,(3.1a)

|y1 − y0| ≤ ah,(3.1b) {
There exists y2 such that |y2 − y1| ≤ ah
and y2 + ey0 − (2y1 − (1− e)y0 + h2F (t1, y0, y1, (y2 − y0)/2h, h)

)+
= 0.

(3.1c)
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Theorem 3.1. For all a > 0 and for all A > a, there exists τ > 0 such that,
for all t0 ∈ [0, T ) and for all y0 and y1 satisfying property P (a, h), there exists a
numerical solution of the scheme (1.12) and (1.13) for 0 ≤ mh ≤ τ , which satisfies,
moreover, the estimate

∀m ∈ {0, . . . , τ/h� − 1}, |ym+1 − ym| ≤ Ah.(3.2)

Proof. Define

C1 = sup{|F (t, u, u′, 0, h)| : 0 ≤ t ≤ T, |u| ≤ a, |u′| ≤ a, 0 ≤ h ≤ h∗}.
Let L be the local Lipschitz constant of F defined by

∀(t, ui, u′i, vi, h) ∈ [0, T ]× [−a−AT, a+AT ]2 × [−A,A]× [0, h∗], i = 1, 2,

|F (t, u1, u
′
1, v1, h)− F (t, u2, u

′
2, v2, h)| ≤ L

(|u1 − u2| + |u′1 − u′2| + |v1 − v2|
)
.

Choose τ > 0 such that

2τ
(
C1 + LA+ 2LAτ

) ≤ A− a.(3.3)

We will apply a Brouwer fixed point argument; we choose y2 according to (3.1c), and
we define a compact convex set Bh by

Bh =
{
ŷ =

(
ŷm)0≤mh≤τ : ŷ0 = y0, ŷ1 = y1, ŷ2 = y2,

∀m ∈ {1, . . . , τ/h� − 1} : |ŷm+1 − ŷm| ≤ Ah}.
Assuming that ŷ belongs to Bh, we define F̂ by

F̂m = F (tm, ŷm, ŷm−1, (ŷm+1 − ŷm−1)/2h, h), m ∈ {1, . . . , τ/h� − 1}.
We now write the numerical scheme

ym+1 + eym−1 − (2ym − (1− e)ym−1 + h2F̂m
)+

= 0,(3.4)

which can be put under the form (2.1), provided that we define

h2λm =
(
2ym − (1− e)ym−1 + h2F̂m

)+ − (2ym − (1− e)ym−1
)+
.(3.5)

It should be remarked that (3.4) possesses a unique solution, since it is explicit in
ym+1, and that if the mapping ŷ �→ y possesses a fixed point, this fixed point is
precisely the numerical solution sought here. We estimate the discrete velocity ηm

thanks to Lemma 2.1: the number λm is estimated by

|λm| ≤ |F̂m|
≤ |F (tm, y0, y0, 0, h)| + L

(|ŷm − y0| + |ŷm−1 − y0| + |η̂m|/2 + |η̂m−1|/2),
and the assumption ŷ ∈ Bh guarantees that

|λm| ≤ C1 + 2LAτ + LA.(3.6)

Estimate (2.3) implies

|ηm| ≤ max
(|η0|, |η1|)+ 2

(
C1 + 2LAτ + LA

)
mh



SCHEME FOR IMPACT I 709

by discrete integration. We may conclude now that for (m+ 1)h ≤ τ ,

|ηm| ≤ a+ 2
(
C1 + 2LAτ + LA

)
τ,

and thanks to assumption (3.3), y also belongs to Bh. This mapping is clearly con-
tinuous, which implies the existence of a fixed point thanks to Brouwer’s fixed point
theorem.

There remains two easy lemmas; the first one settles for h small the question of
the uniqueness of the numerical solution.

Lemma 3.2. Under the hypotheses of Theorem 3.1, there exists h1 > 0 such
that for all h ∈ (0, h1], for all y0 and y1 satisfying condition P (a, h), the numerical
solution of (1.12) and (1.13) satisfying estimate (3.2) is unique.

Proof. Given ym−1 and ym, the discrete velocity ηm is a fixed point of the mapping

η �→ h−1
(
−eym−1 − ym

+
(
2ym − (1− e)ym−1 + h2F (tm, ym, ym−1, (η + ηm−1)/2, h)

)+)
.

(3.7)

Let L be the Lipschitz constant of the mapping

z �→ F (t, y, y′, z, h)

for t ∈ [0, T ], y and y′ in [−a − TA, a + TA], |z| ≤ A, and 0 ≤ h ≤ h∗. Then the
Lipschitz constant of the mapping (3.7) is hL/2, and therefore, if h1 < 2/M , the
uniqueness of ηm is guaranteed and the lemma is proved.

The second lemma establishes that under conditions (1.10) and (1.11), property
P (a, h) holds.

Lemma 3.3. Assume that y0 = u0 and y1 = u0 + hv0 + ho(h) as in (1.11); then
there exists h1 > 0 such that for all h ∈ (0, h1], there exists a unique y2 such that

y2 + ey0 − (2y1 − (1− e)y0 + h2F (t1, y0, y1, (y2 − y0)/2h, h)
)+

= 0

and

max(|y1 − y0|, |y2 − y1|) ≤ (3|v0| + 1)h.

Proof. Define a mapping

z �→ h−1
((

(1 + e)y0 + 2η0h+ h2F (t1, y0, y1, z/2, h)
)+ − (1 + e)y0

)
,(3.8)

which is slightly different from the mapping (3.7), since its fixed point will be (y2 −
y0)/h. Standard arguments show that it is possible to find h1 > 0 such that for all
h ∈ (0, h1] and all y1 in [y0− 1, y0 +1], the mapping (3.8) is a strict contraction from
the ball of radius 2|v0|+1/2 to itself. We set y2 = y0 +hz, where z is the fixed point
of the above mapping. Then it is clear that for h small enough,

|η2| = |(y2 − y1)/h| ≤ |z| + |η0|,

and the lemma is proved.
As a consequence of Theorem 3.1 and Lemma 3.2, we have the following result.
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Proposition 3.4. For all (t0, u0, v0) ∈ D, there exists A > 0, τ ∈ (0, T − t0], and
h1 ∈ (0, h∗] such that for all m ∈ {0, . . . , τ/h�}, ym is uniquely defined by (1.10),
(1.11), and the recursive formulas (1.12), (1.13) and satisfies the estimate

∀m ∈ {0, . . . , τ/h� − 1
}
, |ym+1 − ym| ≤ Ah.

Proof. The main observation is that we have to choose A as a function of the
initial data. Thanks to Lemma 3.3, it suffices to take

A ≥ max
(
3|v0| + 1, |u0| + 1

)
;

the remainder of the argument is clear.

4. Estimates on the discrete acceleration. In this section and the three
following ones, we assume that there exist strictly positive numbers τ , A, and h1 and
a subsequence of time steps to which correspond solutions of the numerical scheme
defined by (1.10), (1.11), (1.12), and (1.13), which satisfy the estimate, for all h ≤ h1,

∀l ∈ {0, . . . , P − 1}, ∣∣yl+1 − yl∣∣ ≤ Ah,(4.1)

where

P = τ/h�.

Here we estimate the discrete total variation of the sequence
(
ηm
)
m
.

Theorem 4.1. Under assumption (4.1), there exists a constant C2 such that for
all h ≤ h1

P−1∑
m=1

∣∣ηm − ηm−1
∣∣ ≤ C2.(4.2)

Proof. The constant C3 is taken as a majorant of |Fm|; we can take it as equal
to

C3 = max
{|F (t, y, y′, z, h)| : t ∈ [0, T ], |y − u0| ≤ AT,
|y′ − u0| ≤ AT, |z| ≤ A, 0 ≤ h ≤ h∗

}
.

(4.3)

We put the numerical scheme under the form (2.1) by defining λm through

h2λm =
(
2ym − (1− e)ym−1 + h2Fm

)+ − (2ym − (1− e)ym−1
)+
,(4.4)

which differs slightly from (3.5), since it involves Fm instead of F̂m. The number λm

is estimated by

|λm| ≤ |Fm| ≤ C3.

We observe that

ηm − ηm−1 = hλm + (2ym − (1− e)ym−1)−/h.(4.5)

Therefore, by the triangle inequality,

|ηm − ηm−1| ≤ hC3 + (2ym − (1− e)ym−1)−/h.
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Using (4.5) again, we obtain

|ηm − ηm−1| ≤ 2hC3 + ηm − ηm−1.(4.6)

We observe that we have the elements of a telescoping sum: we sum (4.6) for m
varying from 1 to P − 1 and we get

P−1∑
m=1

|ηm − ηm−1| ≤ 2hC3P + ηP−1 − η0 ≤ 2C3τ + 2A.

5. Variational properties of the limit of the numerical scheme. In this
section, we work under the assumption (4.1). We define a function uh by affine
interpolation, as follows:


uh(t) = ym + (t− t0 −mh)y

m+1 − ym
h

for t− t0 ∈ [mh, (m+ 1)h
)
, 0 ≤ m ≤ P − 1,

uh(t) = yP for t− t0 ∈ [Ph, τ ].

(5.1)

We also define a measure Fh as the following sum of Dirac masses:

Fh(t) =

P−1∑
m=1

hFmδ(t− t0 −mh).(5.2)

In this section we prove that the sequence (uh)h converges in an appropriate sense
to a function u which satisfies (1.2) to (1.4b) with τ instead of τ . We delay the proof
of (1.5), the transmission condition at impacts, to a later section.

There are three steps in the convergence proof: the first is to prove that the limit
u exists in an appropriate sense and takes its values in K; in the second step, we show
that u̇h is of bounded variation uniformly in h and that Fh converges to f(·, u, u̇)
weakly in the space of R-valued measures. The last step is the characterization of the
measure µ = ü−f(·, u, u̇): there we show that µ satisfies conditions (1.3a) and (1.3b).

Lemma 5.1. From all sequence of functions (uh)h indexed by a sequence h tending
to 0, it is possible to extract a subsequence, still denoted by (uh)h, such that

uh → u in C0([t0, t0 + τ ]) strong,(5.3)

u̇h → u̇ in L∞([t0, t0 + τ ]) weak *.(5.4)

The function u takes its values in K.
Proof. Thanks to assumption (4.1), we know that (uh)0<h≤h1

is uniformly Lip-
schitz continuous over [t0, t0 + τ ]. Therefore, we may extract a subsequence, still
denoted by uh, such that (5.3) and (5.4) hold. Thus u belongs to W 1,∞([t0, t0 + τ ])∩
C0([t0, t0 + τ ]), which means that u is a Lipschitz continuous function [1]. For all m
belonging to {1, . . . , P − 1}, we have that

ym+1 + eym−1

1 + e
= ym + h

ηm − eηm−1

1 + e
≥ 0.(5.5)

It follows that, for all m ∈ {1, . . . , P − 1}, the Euclidean distance between ym and K
can be estimated as follows:

(ym)− ≤ h ∣∣ηm − eηm−1
∣∣ /(1 + e) ≤ hA.(5.6)
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Thanks to the definition (5.1), we can see that for all t ∈ [t0, t0 + τ ] the Euclidean
distance between uh(t) and K is estimated by 2hA. This allows us to pass to the
limit when h tends to 0 and to conclude.

The next lemma describes the convergence of the measures involved in our prob-
lem; we denote by M1

(
(t0, t0 + τ)

)
the space of bounded measures over (t0, t0 + τ).

Lemma 5.2. The measures üh and Fh converge weakly ∗ in M1
(
(t0, t0 + τ)

)
to

ü and f(·, u, u̇), respectively.
Proof. The measure üh is a sum of Dirac measures on (t0, t0 + τ); more precisely,

we have

üh(t) =

P−1∑
m=1

(ηm − ηm−1)δ(t− t0 −mh)− ηP−1δ(t− t0 − Ph),

and the total variation of u̇h on (t0, t0 + τ) is estimated by

TV (u̇h) ≤
P−1∑
m=1

∣∣ηm − ηm−1
∣∣ + ∣∣ηP−1

∣∣ .
Theorem 4.1 implies that (u̇h)0<h≤h1 is a bounded family in BV

(
(t0, t0 + τ)

)
, the

space of functions of bounded variation over (t0, t0+τ). Using Helly’s theorem, we can
extract another subsequence

(
u̇h
)
h

which converges, except perhaps on a countable
set of points, to a function of bounded variation. Hence

u̇ ∈ BV ((t0, t0 + τ)
)
.

Moreover,

üh → ü weakly ∗ in M1
(
(t0, t0 + τ)

)
.

Lebesgue’s theorem implies that u̇h converges to u̇ in L1
(
t0, t0 + τ). We extend

u̇h and u̇ to R by 0 outside of (t0, t0 + τ) and still denote the respective extensions by
u̇h and u̇. The set {u̇h : h ∈ (0, h1]}∪{u̇} is a compact subset of L1(R). The classical
characterization of compact subsets of L1(R) [3] implies that

lim
θ→0

sup
0<h≤h1

∫
R

|u̇h(t− θ)− u̇h(t)| dt = 0.

Letting θ = h, we can see that u̇h(· − h) converges to u̇ in L1
(
R). Let us define an

approximate velocity vh on R by

vh(t) =
u̇h(t− h+ 0) + u̇h(t+ 0)

2
.

The sequence vh converges to u̇ in L1
(
R
)
. Moreover, for all t ∈ [tm, tm+1) and for all

m ∈ {1, . . . , P − 1}, we have the identity

vh(t) =
ηm + ηm−1

2
.

We immediately have the following estimates for all t ∈ (t0, t0 + τ) and all h ∈ (0, h1]:

|vh(t)| ≤ A, |uh(t)− u0| ≤ A(t− t0) ≤ Aτ.(5.7)
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Let ψ be a continuous function over [0, T ] with compact support included in (t0, t0+τ).
For all small enough h, the support of ψ is included in [t0 + h, t0 + (P − 1)h]. The
duality product 〈Fh, ψ〉 has the expression

〈Fh, ψ〉 =
P−1∑
m=1

hψ(t0 +mh)Fm.(5.8)

We wish to compare the expression (5.8) to

∫ t0+τ

t0

ψf(·, u, u̇) dt.(5.9)

We compare the right-hand side of (5.8) which is basically a numerical quadrature
by the formula of rectangles to an appropriate integral. Let us rewrite the individual
terms of the right-hand side of (5.8) as

hψ(tm)Fm =

∫ tm+1

tm
ψ(t)Fm dt+

∫ tm+1

tm

(
ψ(tm)− ψ(t))Fm dt.(5.10)

Consider now the second term on the right-hand side of (5.10). Recalling estimate
(4.3),

max
0≤m≤n

|Fm| ≤ C3,(5.11)

and denoting by ωψ the modulus of continuity of ψ we can see that∣∣∣∣∣
∫ tm+1

tm

(
ψ(tm)− ψ(t))Fm dt

∣∣∣∣∣ ≤ C3ωψ(h)h.(5.12)

We consider now the first term on the right-hand side of (5.10), which we would like
to compare to expression (5.9). Thanks to the consistency assumption (1.9) we have
the following inequalities, for all t ∈ [tm, tm+1) and all m ∈ {1, . . . , P − 1}:∣∣Fm − f(t, uh(t), vh(t))∣∣

≤ ∣∣F (tm, ym, ym−1, vh(t
m), h

)− F (tm, uh(t), uh(t), vh(tm), h
)∣∣

+
∣∣F (tm, uh(t), uh(t), vh(tm), h

)− F (tm, uh(t), uh(t), vh(t), 0)∣∣
+
∣∣f(tm, uh(t), vh(t))− f(t, uh(t), vh(t))∣∣.

Denote by D the set

D =
{
(t, u1, u2, v, h) : 0 ≤ t ≤ T, |u1 − u0| ≤ AT,
|u2 − u0| ≤ AT, |v| ≤ A, 0 ≤ h ≤ h∗}.

Let L be the Lipschitz constant of (u1, u2) �→ F (t, u1, u2, v, h) restricted to D and let
ωF be the modulus of continuity of F on D. With these notations, we can see that∣∣Fm − f(t, uh(t), vh(t))∣∣

≤ L(|ym − uh(t)| + ∣∣ym−1 − uh(t)
∣∣)+ 2ωF (h).

(5.13)
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Since (uh)h converges strongly in C0([t0, t0 + τ ]) and (vh)h converges strongly to
u̇ in L1(R) and almost everywhere on (t0, t0 + τ), we see that f(·, uh, vh) tends to
f(·, u, u̇) strongly in L1(t0, t0+τ) and almost everywhere on (t0, t0+τ). We summarize
relations (5.12) and (5.13) together with the above convergence result, and we find
that ∣∣∣∣〈Fh, ψ〉 −

∫ t0+τ

t0

ψf(·, u, u̇) dt
∣∣∣∣

≤
∫ t0+τ

t0

∣∣f(·, uh, vh)− f(·, u, u̇)∣∣ |ψ| dt
+ C3ωψ(h)τ + (3LAh+ 2ωF (h))

∫ t0+τ

t0

|ψ| dt,

which concludes the proof.
Let us prove now that the measure µ has the required variational properties.
Lemma 5.3. The measure µ satisfies properties (1.3a) and (1.3b).
Proof. Define

µh = üh − Fh;
µh is a sum of Dirac measures on (t0, t0 + τ). More precisely

µh =

P−1∑
m=1

(
ηm − ηm−1 − hFm)δ(t− t0 −mh)

− ηP−1δ(t− t0 − Ph).
With all the previous results, we know that µh converges to µ = ü− f(·, u, p) weakly
* in M1

(
(t0, t0 + τ)

)
. Let us prove property (1.3a). Assume that τ0 is a point of

(t0, t0 + τ) such that u(τ0) > 0. Then, by continuity of u, there exist ε > 0 and ρ > 0
such that

∀t ∈ (τ0 − ε, τ0 + ε), u(t) ≥ 3ρ.

Since the sequence (uh)h converges uniformly to u as h tends to 0, we can decrease
h1 so that

∀h ∈ (0, h1], ∀t ∈ (τ0 − ε, τ0 + ε), uh(t) ≥ 2ρ.

Replacing ym−1 by ym − hηm−1, we have

2ym − (1− e)ym−1 + h2Fm = (1 + e)ym + (1− e)hηm−1 + h2Fm,

and relations (4.3) and (4.1) imply that

2ym − (1− e)ym−1 + h2Fm ≥ (1 + e)ym − (1− e)hA− h2C3.

Possibly decreasing h1, we have

∀h ∈ (0, h1], ∀tm ∈ (τ0 − ε, τ0 + ε), 2ym − (1− e)ym−1 + h2Fm ≥ ρ,
and thus

∀h ∈ (0, h1], ∀tm ∈ (τ0 − ε, τ0 + ε), ηm − ηm−1 − hFm = 0.
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This proves that, for h small enough, the support of µh does not intersect the open
set (τ0 − ε, τ0 + ε) and therefore relation (1.3a). In order to conclude the proof, we
observe that

ηm − ηm−1 − hFm =
1

h
(2ym − (1− e)ym−1 + h2Fm)− ≥ 0.

Thus, for all τ ′ ∈ (0, τ), the measure µh is nonnegative on (t0, t0 + τ ′) for h small
enough, which implies by a straightforward passage to the limit that µ is nonnegative.
This concludes the proof of the lemma.

6. Transmission of energy during impact. The basic assumption is still the
one made at the beginning of section 4.

Let τ ∈ (0, τ) be such that u(t0 + τ) vanishes. Write t = t0 + τ .
We will prove the relation

u̇(t+ 0) = −eu̇(t− 0)

by performing a precise analysis of the transmission of the energy by the scheme.
Possibly decreasing h1, there exists a nonempty interval [τ−5, τ2] containing τ

and included in [h, (P − 1)h]. The apparently strange notations τ−5 and τ2 have been
chosen in view of the upcoming construction of Lemmas 6.1 and 6.2, where we will
consider relative times

τ−5 < · · · < τ−1 < τ < τ1 < τ2.

Define

P = �τ−5/h�+ 1 and Q = τ2/h� − 1.

The measure üh is a sum of Dirac measures on (t0 + τ−5, t0 + τ2). We define two
measures ωh and λh on (t0 + τ−5, t0 + τ2) by

ωh(t) =

Q∑
m=P

(−2ym + (1− e)ym−1
)+

h
δ(t− t0 −mh)

and

λh(t) =

Q∑
m=P

hλmδ(t− t0 −mh).

We have

üh = ωh + λh,

and it is obvious that ωh is a nonnegative measure.
Since the real numbers λm are bounded independently of h and m, the measure

by |λh| of any subinterval [a, b] of (t0 + τ−5, t0 + τ2) is bounded by C3(b − a + h),
and it is clear therefore that there exists a function λ ∈ L∞(t0 + τ−5, t0 + τ2) and a
subsequence λh converging to λ in the weak * topology of M1

(
(t0 + τ−5, t0 + τ2)

)
.

The measure ωh converges in the weak * topology of M1
(
(t0 + τ−5, t0 + τ2)

)
to a

nonnegative measure ω and in the limit

ü = ω + λ,(6.1)
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while

|λ|L∞ ≤ C3.(6.2)

Since u is nonnegative on (t0 + τ−5, t0 + τ2) and u(t) vanishes, we must have

u̇(t+ 0) ≥ 0, u̇(t− 0) ≤ 0.

On the other hand, u̇(t+ 0)− u̇(t− 0) is equal to ω({t}); if ω({t}) vanishes, we have

u̇(t+ 0) = u̇(t− 0) = 0,

and the identity

u̇(t+ 0) = −eu̇(t− 0)

holds. Therefore, the only interesting case is when

ω({t}) > 0.(6.3)

The following two lemmas enable us to prove in two steps that the velocity is
reversed according to the law described by (1.5). Lemma 6.1 shows that if ω has
a Dirac mass at t, then the left velocity at t is outgoing; Lemma 6.2 indeed shows
that (1.5) holds.

Lemma 6.1. If ω({t}) is strictly positive, then u̇(t− 0) is strictly negative.
Proof. The idea of the proof is to find two successive times tm−1 ≤ tm < t

for which we can write down an estimate on the discrete velocities and then to use
Lemma 2.1 to perform a discrete integration and to obtain a contradiction. We must
deal with the fact that u̇h does not converge uniformly to u̇.

Without loss of generality, we may assume that u̇ is continuous on the right and
that for all h ≤ h1, u̇h is also continuous from the right. According to Helly’s theorem,
there exists a countable set D such that

u̇h(t)→ u̇(t) ∀t such that t− t ∈ (τ−5, τ2) \D.
Assume that u̇(t − 0) vanishes; therefore, u̇(t + 0) is strictly positive. Choose α =
u̇(t+ 0)/4, and let τ−4 and τ1 be such that

τ−5 ≤ τ−4 < τ < τ1 ≤ τ2,
6C3

(
τ1 − τ−4

) ≤ α,(6.4)

and

ω
(
[t0 + τ−4, t)

) ≤ α, ω
(
(t, t0 + τ1]

) ≤ α.(6.5)

An integration of (6.1) on appropriate intervals yields

∀t ∈ (t0 + τ−4, t), |u̇(t± 0)| ≤ α+ C3(t− t),(6.6)

∀t ∈ (t, t0 + τ1), u̇(t± 0) ≥ 2ω
({t})− α− C3(t− t).(6.7)

Choose τ−3 ∈ (τ−4, τ) \D and τ−1 ∈ (τ−3, τ) \D; since ωh is a nonnegative measure,
we have the following inequality for all τ ′ ∈ (τ−3, τ−1) and all τ ′′ ∈ (τ ′, τ−1):

|u̇h(t0 + τ ′)− u̇h(t0 + τ ′′)| ≤ ωh((t0 + τ ′, t0 + τ ′′]) + C3(τ
′′ − τ ′ + h)

≤ ωh([t0 + τ−3, t0 + τ−1]) + C3(τ
′′ − τ ′ + h).
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We integrate ωh−ω on the interval
[
t0 + τ−3, t0 + τ−1

]
; since the measures ω and ωh

do not charge t0 + τ−3 and t0 + τ−1, we find that

ωh
([
t0 + τ−3, t0 + τ−1

])− ω([t0 + τ−3, t0 + τ−1

])
= u̇h

(
t0 + τ−1

)− u̇h(t0 + τ−3

)− u̇(t0 + τ−1

)
+ u̇
(
t0 + τ−3

)
+ λ
([
t0 + τ−3, t0 + τ−1

])− λh([t0 + τ−3, t0 + τ−1

])
,

and therefore

ωh
([
t0 + τ−3, t0 + τ−1

])
≤ ω([t0 + τ−3, t0 + τ−1

])
+ |u̇h(t0 + τ−1)− u̇(t0 + τ−1)|

+ |u̇h(t0 + τ−3)− u̇(t0 + τ−3)| + C3

(
2
(
τ−1 − τ−3

)
+ h
)
.

Choose now τ−2 ∈
(
τ−3, τ−1

) \ D; then, for h small enough, tm = hτ2/h� and
tm−1 = tm − h belong to the interval (τ−3, τ−1), and therefore∣∣u̇h(tm)− u̇h(tm−1)

∣∣ ≤ α+ C3

(
2
(
τ−1 − τ−3

)
+ 3h

)
+ εh,(6.8)

where εh tends to 0 as h tends to 0. On the other hand, u̇h(t0 + τ−2) tends to
u̇(t0 + τ−2) and therefore, thanks to relation (6.6), there exists a family ε′h such that

|u̇h(t0 + τ−2)| = |u̇h(tm)| ≤ α+ C3

(
τ − τ−2

)
+ ε′h,

which is equivalent to

|ηm| ≤ α+ C3

(
τ − τ−2

)
+ ε′h;(6.9)

we infer from (6.8) and (6.9) that∣∣ηm−1
∣∣ ≤ 2α+ C3

(
2
(
τ−1 − τ−3

)
+ τ − τ−2 + 3h

)
+ εh + ε′h.

Thus, for all n ≥ m we infer from Lemma 2.1 that

|ηn| ≤ 2α+ C3

(
2
(
τ−1 − τ−3

)
+ 3h

+ τ − τ−2 + 2
(
tn − tm))+ εh + ε′h.

Therefore, in the limit, for all t ≥ t0 + τ−2

|u̇(t)| ≤ 2α+ C3

(
2
(
τ−1 − τ−3

)
+ τ − τ−2 + 2

(
t− t0 − τ−2

))
,

and for all t ∈ [t0 + τ−2, t0 + τ1]

|u̇(t)| ≤ 2α+ C3

(
2
(
τ−1 − τ−3

)
+ τ − τ−2 + 2

(
τ1 − τ−2

))
.(6.10)

On the other hand, relation (6.7) implies that for all t ∈ (t, t0 + τ1),

|u̇(t)| ≥ 3α− C3

(
τ1 − τ

)
.(6.11)

Under assumption (6.4), relation (6.11) contradicts relation (6.10).
We can conclude now the local study of the reflection of the velocity by the

following lemma.
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Lemma 6.2. If ω
({t}) is strictly positive, then

u̇(t) = −eu̇(t− 0).(6.12)

Proof. Since u̇(t− 0) is strictly negative, there exists a real number τ−3 such that
u(t) is strictly positive on [t0 + τ−3, t) ⊂ [t0 + τ−5, t). For all τ−2 ∈ (τ−3, τ), there
exists τ−1 ∈ (τ−2, τ) and h1 > 0 such that

∀h ∈ (0, h1], ∀t ∈ [t0 + τ−2, t0 + τ−1), uh(t) ≥ u(t0 + τ−2)

2
.(6.13)

We prove now that there exists a maximal integer

m ∈ {τ−3/h�, . . . , (τ2)/h�}
such that

∀l ∈ {τ−3/h�, . . . ,m− 1
}
, 2yl − (1− e)yl−1 ≥ 0,(6.14)

and denoting

ρh = tm−1 − t0,(6.15)

the time ρh satisfies

lim
h→0

ρh = τ .(6.16)

Let us first observe that for all small enough h and all tl belonging to [t0+τ−2, t0+τ−1)
we have

2yl − (1− e)yl−1 ≥ 0.(6.17)

Indeed,

2yl − (1− e)yl−1 = (1 + e)yl + (1− e)hηl−1

≥ 1 + e

2
u(t0 + τ−2)− h(1− e)A,

and if 2A(1 − e)h ≤ (1 + e)u(t0 + τ−2), we can see that (6.17) holds. Therefore m
exists and

lim inf ρh ≥ τ .
On the other hand, if there existed τ1 > τ such that for all tm ∈ [t0 + τ−3, t0 +
τ1] we had (6.17), then ωh would vanish on (t0 + τ−3, t0 + τ1), which contradicts
assumption (6.3). Therefore, we have shown that

lim sup ρh ≤ τ ,

i.e., (6.16). We integrate (4.4) discretely, and we find that for t ∈ [t0 + τ−3, t0 + ρh
]

uh(t) =uh(t0 + ρh)− (t0 + ρh − t)u̇h(t0 + ρh)

+

∫ t0+ρh

t

λh((s, t0 + ρh]) ds.
(6.18)



SCHEME FOR IMPACT I 719

In the limit we have

u(t) = u(t0 + τ)− (τ + t0 − t) lim
h↓0

u̇h(t0 + ρh + 0) +

∫ t0+τ

t

∫ t0+τ

s

λ(r) dr ds.(6.19)

The comparison of (6.18) and (6.19) shows that

lim
h↓0

u̇h(t0 + ρh + 0) = lim
h↓0

ηm−1 = u̇(t− 0).(6.20)

Our purpose now is to obtain very precise estimates on the behavior of yh beyond
t0 + ρh. Thanks to the maximality of m, we have the relation

ym+1 = −eym−1 + h2λm;(6.21)

let us estimate 2ym+1 − (1− e)ym. We substitute the value of ym+1 given by (6.21)
into this expression, and we also use (4.4) with m replaced by m− 1; we find that

2ym+1 − (1− e)ym
= −[2ym−1 − (1− e)ym−2

]− (1− e)h2λm−1 + 2h2λm.

We apply relation (2.1) for n = m+ 1 and we find that

ηm+1 + eηm−1 = h
(
λm+1 − λm)

+
{−[2ym−1 − (1− e)ym−2

]
h−1 − (1− e)hλm−1 + 2hλm

}+
.

Therefore, we have

ηm+1 + eηm−1 ≥ −2hC3.

On the other hand, if ξ = −[2ym−1− (1− e)ym−2
]
h−1− (1− e)hλm−1 +2hλm is less

than or equal to 0, ∣∣ηm+1 + eηm−1
∣∣ ≤ 2hC3;

if ξ is positive, then the sign condition on 2ym−1 − (1− e)ym−2 implies that

ηm+1 + eηm−1 ≤ h(λm+1 + λm
)− (1− e)hλm−1.

Thus, we have shown that ∣∣ηm+1 + eηm−1
∣∣ ≤ 3C3h.(6.22)

If e is strictly positive, then for all small enough h,

ηm+1 ≥ e ∣∣u̇(t− 0)
∣∣ /2.

Let us estimate now the expression 2ym+2 − (1− e)ym+1: we have

2ym+2 − (1− e)ym+1 = −e[2ym − (1− e)ym−1
]
+O(h2).

If 2ym+2 − (1− e)ym+1 is nonnegative, then

ym+3 = 2ym+2 − ym+1 + h2λm+2.
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We must estimate 2ym+3 − (1− e)ym+2:

2ym+3 − (1− e)ym+2 − 2ym+2 + (1− e)ym+1

= h
(
2ηm+2 − (1− e)ηm+1

)
= h(1 + e)ηm+1 + 2h2λm+2,

and therefore 2ym+3−(1−e)ym+2 is nonnegative for all small enough h; the repetition
of the argument shows that there exists θ > 0 such that for all small enough h and
all n ∈ {m+ 2, . . . ,m+ θ/h�}, the expression 2yn+1 − (1− e)yn is nonnegative, and
thus we have the relations

yn = ym+1 + h(n−m− 1)ηm+1 +

n−1∑
j=m+2

(
n− j)h2λj .

On the other hand, if 2ym+2 − (1− e)ym+1 is negative, we must have

ym = − (1− e)hηm−1

1 + e
+O(h2),

and therefore

ym−1 = −2hηm−1

1 + e
+O(h2).

These relations and the assumption on the sign of 2ym+2 − (1− e)ym+1 imply that

2ym+3 − (1− e)ym+2 = −
(
4e2 + e(1− e)2)hηm−1

1 + e
+O(h2),(6.23)

which is strictly positive for h small enough. But now, we can see that

ym+3 − ym+2 = −ehηm−1 +O(h2),

which is strictly positive for small enough h, and therefore 2ym+4 − (1 − e)ym+3 is
strictly positive for h small enough, since

2ym+4 − (1− e)ym+3 ≥ −he(1 + e)ηm−1 +O(h2);

the same argument as above shows now that there exists θ > 0 such that for all
n ∈ {m+ 3, . . . ,m+ θ/h�},

yn = ym+2 + h(n−m− 2)ηm+2 +

n−1∑
j=m+3

(
n− j)h2λj .

If we let ρ′h = tm+1 − t0 in the first case and ρ′h = tm+2 − t0 in the second case, we
have now for ρ′h ≤ t− t0 ≤ ρ′h + θ − h

uh(t) = uh(t0 + ρ′h) + (t− ρ′h − t0)u̇h(t0 + ρ′h) +
∫ t

t0+ρ′h

λh((s, t]) ds(6.24)

and

uh(t0 + ρ′h) = O(h), u̇h(t0 + ρ′h) = −eηm−1 +O(h).(6.25)
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Passing to the limit in (6.24), we can see that

u̇(t+ 0) = −eu̇(t− 0).

If we assume now that e vanishes, relation (6.22) implies

ηm+1 = O(h).

We observe that Lemma 2.1 implies that for all n

|ηn| ≤ ∣∣ηn−1
∣∣ + 2C3h,

which implies immediately that for n ≥ m+ 1

|ηn| ≤ ∣∣ηm+1
∣∣ + 2hC3(n−m− 1),

which proves by a straightforward passage to the limit that

u̇(t+ 0) = 0.

This completes the proof of the lemma.

7. Initial conditions. In this section we prove that the solution that we have
constructed satisfies the initial conditions; we work under the hypotheses stated at
the beginning of section 4.

Lemma 7.1. The function u satisfies the initial conditions

u(t0) = u0, u̇(t0 + 0) = v0.

Proof. By uniform convergence of uh to u, it is clear that u(t0) is equal to u0.
There remains to show that the initial condition on the velocity is satisfied.

Assume first u0 > 0; then there exist h1 > 0 and τ1 > 0 such that for all h ∈ (0, h1]
and for all t− t0 ∈ [0, τ1]

uh(t) ≥ u0/2.

Then, for all tm − t0 ∈ (0, τ1], 2y
m − (1 − e)ym−1 + h2Fm belongs to K for h small

enough; we indeed have

2ym − (1− e)ym−1 + h2Fm ≥ (1 + e)ym − (1− e)hA− h2C3

≥ (1 + e)u0/2− (1− e)hA− h2C3,

which is strictly positive for h small enough. Thus the constraints are not active for
t0 ≤ tm ≤ t0 + τ1 and the convergence is clear.

In the second case, u0 vanishes; we have taken admissible initial conditions, so
that

v0 ≥ 0.

Let us show that

u̇(t0 + 0) = v0,
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considering two cases: v0 > 0 and v0 = 0. When v0 vanishes, we have

y1 = y0 + hv0 +O(h2) = O(h2)

and

y2 = −ey0 +
(
2y1 − (1− e)y0

)+
+ h2λ1

= 2
(
y1
)+

+ h2λ1 = O(h2).

Thus,

η0 = O(h), η1 = O(h),

and relation (2.3) implies

|ηm| ≤ O(h) + 2C3h(m− 1);

therefore, a passage to the limit immediately gives

u̇(t0 + 0) = 0.

If, on the other hand, v0 is strictly positive, then

2y1 − (1− e)y0 = 2y1 = 2hv0 +O(h2),

which is strictly positive if h is small enough. Let {1, . . . ,m} be the maximal interval
such that

2yn − (1− e)yn−1 > 0 if n ≤ m.
Then, for all n ∈ {1, . . . ,m},

ηn − ηn−1 = hλn,

which implies by discrete integration that

ηn ≥ η0 − hnC3,

as long as n belongs to {1, . . . ,m}. Moreover, if we choose any τ1 < v0/(2C3) and if
n is at most equal to min

(
m, τ1/h�

)
, we can see that

yn = y0 + h
(
η0 + · · ·+ ηn−1

) ≥ hnv0
2

for all small enough values of h.
In particular, for all n ≤ min

(
m, τ1/h�

)
,

2yn − (1− e)yn−1 ≥ (1 + e)hnv0
2

− (1− e)hA,

which proves that m is at least equal to τ1/h�. Therefore, ωh vanishes on the interval
(t0, t0 + τ1 − h); in the limit, ω vanishes on (t0, t0 + τ1) and therefore

u̇(t0 + 0) = v0,

which completes the proof of the lemma.
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8. A priori estimates. In this section we prove that solutions of the problem
(1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7) satisfy an a priori estimate
on an interval with nonempty interior.

Lemma 8.1. Let R be strictly larger than |v0|. Then there exists τ(R) > 0 such
that for all solution u of (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7)
defined on [t0, t0 + τ ], the following estimates hold:

∀t ∈ [t0, t0 + min(τ, τ(R))], |u(t)− u0| ≤ R, |u̇(t)| ≤ R.(8.1)

Proof. The measure µ appearing in (1.3b) can be decomposed in the sum of an
atomic part µa and a diffuse part µd. There might be a continuous singular part in
the measure µ, and it is convenient to see µ as the sum of the derivative of a jump
function and of the derivative of a continuous function. At each point of the support
of µa we have

|u̇(t+ 0)| ≤ |u̇(t− 0)|(8.2)

thanks to relation (1.5). On any interval (t1, t2) which does not intersect the support
of µa, we multiply relation (1.2) by u̇, and we find that

d

dt

1

2
|u̇|2 = u̇f(·, u, u̇).(8.3)

Define

z = |u̇|.
Relations (8.2) and (8.3) imply that in the sense of measures

zż ≤ u̇f(·, u, u̇).(8.4)

Our purpose now is to transform (8.4) into a differential inequality. We write

u̇f(t, u, u̇) = u̇
[
f(t, u, u̇)− f(t, u0, 0) + f(t, u0, 0)

]
.

Define

g(t) = |f(t, u0, 0)|,
fix R > |v0|, and let ω(R) be the Lipschitz constant of (u, v) �→ f(t, u, v) for t ∈ [0, T ]
and max(|u − u0|, |v|) ≤ R. By construction, ω is continuous and it is an increasing
function of R.

If t0 ≤ t ≤ t0 + τ and if max(|u(t) − u0|, |u̇(t)|) ≤ R on [t0, t0 + τ ], we have the
inequality

zż ≤ |u̇f(·, u, u̇)| ≤ z(g + ω(R)(|u− u0| + |u̇|)
)
.

But we can estimate u(t)− u0:

|u(t)− u0| ≤
∫ t

t0

|u̇(s)| ds ≤
∫ t

t0

z ds.

Therefore we have the estimate

|u̇f(·, u, u̇)| ≤ zg + zω(R)

(∫ t

t0

z ds+ z

)
,
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and we conclude that z satisfies the differential inequality

ż ≤ g + ω(R)

[∫ t

t0

z ds+ z

]
.

Let ẑ be the solution of the integro-differential equation

dẑ

dt
= g + ω(R)

[∫ t

t0

ẑ ds+ ẑ

]
, ẑ(t0) = |v0|.

Such a ẑ exists and is unique, by very classical arguments, and it is also a majorant
of z. Let τ(R) be the largest number in (0, T − t0] such that

∀t ∈ [t0, t0 + τ(R)], ẑ(t) ≤ R,
∫ t

t0

ẑ(s) ds ≤ R.

Such a number exists since ẑ(t0) is strictly inferior to R. On the interval [t0,
t0 + min(τ, τ(R))] we have the desired estimate.

9. Global results. We summarize the results obtained so far in the following
proposition.

Proposition 9.1. Assume that there exist strictly positive numbers τ , A, and
h1 > 0 and a sequence of solutions of the numerical scheme defined by (1.10), (1.11),
(1.12), and (1.13), which satisfies the estimate (4.1). Then it is possible to extract
from the sequence uh defined by (5.1) a subsequence which converges to a solution of
(1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7). The convergence holds in
the following sense: uh converges uniformly to uh on [t0, t0 + τ ]; u̇h converges to u̇ in
L∞(t0, t0 + τ) weakly ∗ and almost everywhere on [t0, t0 + τ ]; and üh converges to ü
in the weak ∗ topology of measures. Moreover, for all τ̄ ∈ (0, τ ], we have the following
convergence:

lim sup
h↓0

sup
{|ηm| : t0 ≤ tm ≤ t0 + τ

}
≤ ess sup

{|u̇(t)| : t0 ≤ t ≤ t0 + τ
}
.

(9.1)

Proof. The only statement which deserves a proof is the last one; if it is not true,
there exists γ > 0, a sequence of time steps still denoted by h, and a sequence of
integers m(h) such that∣∣∣ηm(h)

∣∣∣ ≥ ess sup
{|u̇(t)| : t0 ≤ t ≤ t0 + τ

}
+ γ.(9.2)

Without loss of generality, we may assume that hm(h) tends to τ2 ∈ [0, τ ].
First, τ2 cannot be equal to 0: we have learnt in section 7 that there exists a

constant C4 and a time τ1 such that for all h ≤ h1 and all m ≤ τ1/h,∣∣ηm − η0
∣∣ ≤ C4mh.

In particular, this estimate implies that∣∣∣ηm(h)
∣∣∣ = |v0| +O(mh);

but |v0| is at most equal to ess sup
{|u̇(t)| : t0 ≤ t ≤ t0 + τ

}
, which contradicts (9.2).

In the same fashion, we cannot have u(t0+τ2) > 0; if it were the case, we could find an
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interval [τ1, τ3] containing τ2 and h1 > 0 such that for all h ∈ (0, h1], uh([τ1, τ3]) be-
longs to the interior of K. But, in this case, u̇h converges uniformly to u̇ in C0([τ1, τ3])
and this contradicts again (9.2).

Thus, we assume that τ2 is strictly positive and that u(t0 + τ2) vanishes.
We infer from (2.3) that

|ηm+1| ≤ max
(|ηm|, |ηm−1|)+ 2C3h.

We now use (9.2). We can see that for all m ≤ m(h),

|ηm(h)| ≤ max
(|ηm|, |ηm−1|)+ 2C3

(
m(h)−m)h,

so that

max
(|ηm|, |ηm−1|) ≥ |ηm(h)| − 2C3

(
m(h)−m)h.

If τ4 < τ2 is such that

τ2 − τ4 ≤ γ/4C3,

we can see that for all m ∈ {�τ4/h�, . . . ,m(h)}, the following estimate holds:

max
(|ηm|, |ηm−1|) ≥ ess sup

{|u̇(t)| : t0 ≤ t ≤ t0 + τ
}
+ γ/2.(9.3)

But the function |u̇h| converges almost everywhere on [t0, t0 + τ ] to |u̇|, and so does
max(|u̇h(· − h)|, |u̇h|). Therefore, in the limit, relation (9.3) leads to

lim inf
h↓0

ess sup
{|u̇h(t)| : t ∈ [t0 + τ4, t0 + τ2]

}
≥ ess sup

{|u(t)| : t0 ≤ t ≤ t0 + τ
}
+ γ/2,

which is a contradiction.
A corollary can be inferred imediately from this proposition and Proposition 3.4.
Corollary 9.2. For all admissible initial conditions (t0, u0, p0), there exists

τ > 0 and a solution of (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7)
defined on [t0, t0 + τ ].

We have proved above the existence of a nonempty interval on which the numerical
scheme converges to a solution of (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and
(1.7). On the other hand, Lemma 8.1 gives a priori estimates on the solution of such
a problem.

We couple now the a priori estimates with the local convergence result to obtain
a global result.

Theorem 9.3. Let R be strictly larger than |v0|, and let τ(R) be given as
in Lemma 8.1. Then, for all small enough h, the solution ym of the numerical
scheme (1.10), (1.11), (1.12), (1.13) is defined on a discrete interval {0, . . . ,m(h)}
such that

lim inf
h→0

hm(h) ≥ τ(R);

moreover, the approximation uh converges to a solution u of the continuous time
equation, i.e., (1.2), (1.3a), (1.3b), (1.4a), (1.4b), (1.5), (1.6), and (1.7), which is
defined on [t0, t0 + τ(R)].
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Proof. Let A be given by

A = max
(
3R+ 1, u0 + T (3R+ 1)

)
.

Let {0, . . . ,m(h)} be the maximal discrete time interval for which the numerical
scheme (1.10), (1.11), (1.12), (1.13) has a solution satisfying the estimate

∀m ∈ {0, . . . ,m(h)− 1}, |ym+1 − ym| ≤ Ah.

Let

τ1 = lim inf
h→0

hm(h).

We know from Proposition 3.4 that τ1 is at least equal to some number τ > 0. Assume
that τ1 is strictly inferior to τ(R). Proposition 9.1 implies in particular that for all
ε > 0

lim sup
h→0

{
sup|ηm| : t0 ≤ tm ≤ t0 + τ1 − ε

}
≤ ess sup

{|u̇(t)| : t0 ≤ t ≤ t0 + τ1 − ε
} ≤ R,

thanks to the a priori estimates proved in Lemma 8.1. Since the above inequalities
hold for all ε > 0, we see that

lim sup
h→0

{
sup|ηm| : t0 ≤ tm ≤ t0 + τ1

} ≤ R.
Let

a = max
(
R+ 1/2, u0 + T (R+ 1/2)

)
;

Theorem 3.1 implies the existence of τ2 > 0 such that if ŷ0 and ŷ1 satisfy property
P (a, h), and t̂0 is any time in [0, T ), then there exists a numerical solution of (1.12),
(1.13) which satisfies

∀m ∈ {0, . . . , τ2/h�},
∣∣ŷm+1 − ŷm∣∣ ≤ Ah.

We denote

l(h) = (τ1 − τ2/2)/h�,

and we initialize with the following choices:

t̂0 = t0 + hl(h), ŷ0 = yl(h), ŷ1 = yl(h)+1.

With these data, we know that ŷm exists for 0 ≤ mh ≤ τ2, so that the numerical
solution ym is extended up to (τ1 + τ2/2)/h� − 1, and therefore,

lim inf
h→0

hm(h) ≥ τ1 + τ2/2,

which is a contradiction.
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10. Numerical experiments. In this section, we report about the numerical
implementation of our scheme and of the impact detection method; we compare these
results to results obtained for a penalized version of our model, using a freely available
scientific computation package.

In view of its practical importance and of its ease of programming, we have limited
ourselves to vibro-impact, i.e.,

f(t, u, u̇) = a cosωt− u− 2αu̇

with constraint set

K = [umin,+∞).

The following numerical values are kept constant throughout the numerical experi-
ments:

α = 0.5, a = 1, ω = 50, e = 0.5.

Observe that umin/a is the relevant parameter. We have observed in previous work
[17], [19], [18] that if we systematically choose

u(0) = umin, u̇(0) = 0.1,

the variation of the parameter umin triggers a variety of dynamical behaviors: periodic
solutions, period doubling, and chaotic attractors.

All the penalty computations presented here have been implemented as SCILAB

programs, a free high level scientific computation software developed and distributed
by INRIA (http://www-rocq.inria.fr/scilab). Some of the other computations have
been performed in FORTRAN.

10.1. Implementation particulars. The impact detection scheme goes as fol-
lows: starting from initial data tj , u(tj) = umin, u̇(tj), the solution of the linear
problem

ü+ 2αu̇+ u = a cosωt

is found explicitly; a nonlinear solver finds the first zero tj+1 > tj of t �→ u(t)− u(tj)
and this instant is called tj+1. We let

u(tj+1 + 0) = −eu(tj+1 − 0),

and we restart the process.
The foregoing description is slightly too rough: if there is an accumulation of

impact instants, we have to define a threshold of velocity at tj , under which we set
the solution equal to umin, as long as cosωt remains negative. Observe that the
detection method is potentially accurate to machine precision, since the nonlinear
solvers for a scalar function are extremely precise, and the threshold velocity can be
taken very small.

The numerical scheme is implemented as follows:

yn+1 = −eyn−1 + max
(
(1 + e)umin, x

n
)
,

xn =
h2a

1 + αh
cos(ωtn) +

2− h2

1 + αh
yn − (1− e)− αh(1 + e)

1 + αh
yn−1.
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Fig. 10.1. The penalized solution on the left and its zoom on the right for time step h =
1.25 10−5 and ε = 10−6/256.

The reader will check that this form is equivalent to (1.12) and (1.13); one of the
advantages of this numerical scheme is that it is absolutely trivial to program.

For the penalty method, we applied the SCILAB function ode with the option
stiff to the ordinary differential system

u̇ = v,

v̇ = a cosωt− u− 2αv +
(u− umin)

−

ε
+ 2

β sign− (u− umin)√
ε

,
(10.1)

where

r− = −min(r, 0), sign− (r) =

{
−1 if r < 0,

0 otherwise.

The parameter β is defined in terms of the restitution coefficient e by

β = − ln e√
π2 + (ln e)2

.

It has been proved in [21] that the solution of (10.1) converges to a solution of (1.2),
(1.3a), (1.3b), (1.4a), (1.4b), and (1.5). The choice of β is also justified in that
reference.

10.2. Periodic solution: umin = 0.8. The solution obtained by the scheme
and impact detection agree satisfactorily: they both converge as time increases to a
periodic solution, with an infinite number of impacts per period—of which we calculate
only a finite number, of course!

The penalized approximation is satisfactory for not too small values of the penalty
parameter, but for very small values of the parameter, it completely misses some of
the periods (see Figure 10.1). The choice of parameters corresponds to

√
ε/h = 5,

which is quite sufficient for a good numerical approximation of the rebound.
As a matter of comparison we show in Figure 10.2 that the scheme and the

detection method coincide very precisely.
We cannot offer much in the way of the explanations, since we did not go into

the details of the SCILAB code to understand its inner workings; though it is an open
package, with freely accessible code, we treated it as a black box.
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Fig. 10.2. The scheme for h = 0.0003125 superposed to the solution by detection.
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Fig. 10.3. On the left: detection (solid) and scheme (dotted); on the right: detection (solid)
and penalty (dotted).

10.3. Period doubling: umin = 0.57. We observe period doubling slightly
above this value, and the scheme continues to agree satisfactorily with the detection
method.

The penalty method gives also period doubling, but, depending on ε and the
time step, we may obtain either a good approximation of the period doubled solution
obtained by the previous two approaches or its translate by a half (doubled) period,
i.e., 2π/ω.

For instance, Figure 10.3 shows the results of the calculation with the detection
scheme, our ad hoc scheme with a time step h = 5 10−4, and the penalty method for
ε = 10−7 with a time step h = 2 10−5.

The results of the numerical scheme do not seem to depend on the time step,
once convergence is experimentally achieved; see Figure 10.4, left, where the solution
is significantly improved by decreasing the time step from 6.25 10−4 to 5. 10−4. In
contrast, on the right, decreasing the time step with the same penalty parameter
ε = 10−6 does not give a significant improvement: for the larger time parameter, the
beginning of the numerical solution is bad, and for the smaller one, we hit a phase
shifted solution.

The penalized solution is also very sensitive to the choice of the penalty parameter;
see Figure 10.5, with the same time step of 2 10−5 and penalty parameters of 10−7

and 10−8.
The results of the penalty method keep depending on the choice of the time step

and ε (see Figures 10.4, right, and 10.5), and we have not been able to establish the
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Fig. 10.4. Left: the scheme with h = 6.25 10−4 (solid line) and with h = 5 10−4 (dashed line);
right: the penalty method with h = 2 10−5, ε = 10−6 (solid line) and with h = 10−4, ε = 10−6

(dashed line).
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Fig. 10.5. The penalty method with h = 2 10−5, ε = 10−8 (solid line) and with h = 2 10−5, ε =
10−7 (dashed line).

pattern of dependency.

10.4. Strange attractor: umin = 0.54. We picture a stroboscopic view of the
attractors by displaying the sequences(

u((2k + 1)π/ω), u̇((2k + 1)π/ω)
)

for 1989 values of k.
Figure 10.6 displays a superposition of the computation by the detection method

and the scheme, in FORTRAN double precision. Figure 10.7 displays a superposition
of the SCILAB computation by the penalty method and by the scheme; it is somewhat
surprising to see so few points of the scheme in this last computation, while the sizes
of vectors are identical: k varies from 1 to 1989, corresponding to a final time of
250 (and not to the bicentennial of the French Revolution). We believe that this
phenomenon may be due to a bad control in SCILAB of the format of the numbers.

Nevertheless, these figures show a very satisfactory agreement between the three
methods.

10.5. Numerical conclusion. We would like to stress the qualitative properties
of numerical schemes in a dynamical systems framework: this scientific program has
been started by several authors, and we refer to [31] for an overview of the subject.
However, the methods of analysis rely heavily on a smoothness assumption which is
not satisfied here, and therefore, they do not apply. Thus, at the present moment, we
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Fig. 10.6. A superposition of the stroboscopic pictures of the attractor obtained by the detection
method (dots) and the scheme (points): FORTRAN calculation with time step 510−4.
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Fig. 10.7. A superposition of the stroboscopic pictures of the attractor obtained by the penalty
method (dots) and the scheme (points): SCILAB calculation with time step π/2500.

are reduced to experimental numerics, but we should keep in mind a rational approach
to the numerical analysis of dynamical systems, focusing not only on the accuracy of
a given method for finite time intervals but also on the qualitative properties of the
method for long time ranges. The provisional conclusion for our one-dimensional case
is that the penalty method performs reasonably well, but it misses details, while the
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detection method enables us to benchmark our ad hoc scheme and to certify that it
does not miss details. Our scheme is quite easy to implement, and it contains no black
box; however, it is still missing some bells and whistles, such as time step control. In
any case, our scheme is of very low order: order one with respect to the position and
order zero with respect to the velocity. The reason is that the velocity is discontinuous
and the numerical impact times are usually distinct from their limit. Schemes with a
better order of convergence should approximate very precisely the impact times, but
one cannot but wonder whether it is really necessary to do so.
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Abstract. We consider a mechanical system with impact and n degrees of freedom, written
in generalized coordinates. The system is not necessarily Lagrangian. The representative point is
subject to a constraint: it must stay inside a closed set K with boundary of class C3. We assume
that, at impact, the tangential component of the impulsion is conserved, while its normal coordinate
is reflected and multiplied by a given coefficient of restitution e ∈ [0, 1]: the mechanically relevant
notion of orthogonality is defined in terms of the local metric for the impulsions (local cotangent
metric). We define a numerical scheme which enables us to approximate the solutions of the Cauchy
problem: this is a generalization of the scheme presented in the companion paper [L. Paoli and
M. Schatzman, SIAM J. Numer. Anal., 40 (2002), pp. 702–733]. We prove the convergence of this
numerical scheme to a solution, which also yields an existence result. Without any a priori estimates,
the convergence and the existence are local; with some a priori estimates, the convergence and the
existence are proved on intervals depending exclusively on these estimates. The technique of proof
uses a localization of the scheme close to the boundary of K; this idea is classical for a differential
system studied in the framework of flows of a vector field. It is much more difficult to implement here
because finite differences schemes are only approximately local: straightening the boundary creates
quadratic terms which cause all the difficulties of the proof.

Key words. impact, coefficient of restitution, numerical scheme, convergence, local existence,
global existence
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1. Introduction. In this article we study a numerical approximation of dynam-
ics with impact with a finite number of degrees of freedom and a smooth constraint.

The set of constraints is denoted K and satisfies the following assumptions:

K is a closed subset of R
d with a nonempty interior;(1.1a) {

the boundary ∂K of K is an embedded submanifold

of class C3 of R
d;

(1.1b)

K lies on only one side of ∂K.(1.1c)

It is possible to find a function φ of class C3 such that

K = {u ∈ R
d : φ(u) ≥ 0}

and the differential dφ does not vanish on ∂K =
{
u ∈ R

d : φ(u) = 0
}
.

Let f be a continuous function from [0, T ]×R
d×R

d to R
d which is locally Lipschitz

continuous with respect to its last two arguments, and let M(u) be the mass matrix:
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u �→M(u) is a mapping of class C3 from R
d to the set of symmetric positive definite

matrices.
The free dynamics of the system are written in generalized coordinates as

M(u)ü = f(·, u, p), p =M(u)u̇.(1.2)

This system is more general than the system obtained in Lagrangian mechanics,
since we want to include possible dissipative terms in the dynamics of the problem
under discussion.

Let us give the few geometric notations which are absolutely necessary here, since
we use a Riemannian metric: the cotangent bundle T ∗

R
d is identified with R

d × R
d,

and its elements are denoted as pairs (u, ξ); at each point u of R
d the metric tensor for

tangent vectors is defined by the matrix M(u), and the metric tensor for cotangent
vectors is defined by the matrix M(u)−1. The scalar product of two vectors x and
y in the tangent space at u is denoted by 〈x, y〉u; coordinatewise it can be expressed
as xTM(u)y, where x and y are column vectors. The scalar product of two vectors
ξ and η in the cotangent space at u is denoted by 〈ξ, η〉∗u and coordinatewise it is
equal to ξTM(u)−1η. The corresponding norms of vectors and covectors are denoted,
respectively, by |x|u and |ξ|∗u.

Therefore, a cotangent vector (u, ξ) belonging to T ∗
R
d is orthogonal to the cotan-

gent vector (u, η) iff 〈ξ, η〉∗u vanishes.
With these notations, if the velocity of the system is u̇, the generalized impulsion

is M(u)u̇ = p and (u, p) belongs to the cotangent space T ∗
R
d. Whenever we take the

orthogonal of a vector or a vector subspace of the tangent or the cotangent space at
u, we always use the relevant metric tensor; therefore it is important to know which
of the vectors under consideration are cotangent and which are tangent. Of course,
all the differential forms are cotangent vectors.

Let us describe now the system satisfied by the problem with impact: we re-
place (1.2) by

M(u)ü = µ+ f(·, u, p),(1.3)

and since we cannot expect to have global solutions in general, µ is an unknown
measure on [t0, t0+τ ] with values in R

d which describes the reaction of the constraints
and has the following properties: if dφ denotes the differential of φ, then

supp(µ) ⊂ {t ∈ [t0, t0 + τ ] : φ(u(t)) = 0},(1.4a)

µ = λdφ(u),(1.4b)

λ ≥ 0 |dφ(u)| almost everywhere on [t0, t0 + τ ].(1.4c)

We require the following functional properties for u:{
u is a continuous function taking its values in K

∀ t ∈ [t0, t0 + τ ],
(1.5a)

u̇ is of bounded variation over [t0, t0 + τ ].(1.5b)

If u̇ is of bounded variation, p is also of bounded variation. Assume that u(t)
belongs to ∂K; we decompose p(t − 0) and p(t + 0) on Rdφ(u(t)) ⊕ dφ(u(t))⊥; here
the ⊥ sign means the orthogonality with respect to the local cotangent metric. We
integrate (1.3) on a small neighborhood of t, and relation (1.4b) implies that the
component of p(t− 0) on dφ(u(t))⊥ is conserved.
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Therefore, we have to make a supplementary assumption in order to have a com-
plete description of the impact; we choose a constitutive law of the impact using a
coefficient of restitution. Thus we will assume that there exists e ∈ [0, 1] such that the
component of p(t + 0) along Rdφ(u) is equal to −e times the component of p(t − 0)
on Rdφ(u). In other words, we have

p(t+ 0) = p(t− 0)− (1 + e)
〈dφ(u(t)), p(t− 0)〉∗u(t)

〈dφ(u(t)), dφ(u(t))〉∗u(t)

dφ(u(t)).(1.6)

The set of admissible initial data D will be

D =
{
(t0, u0, p0) ∈ [0, T )×K × R

d :

if u0 ∈ ∂K, then 〈p0, dφ(u0)〉∗u0
≥ 0
}
.

(1.7)

This choice is equivalent to the convention that there is no impact at the initial time
t0.

Given initial conditions (t0, u0, p0) ∈ D, we require that the following Cauchy
data be satisfied:

u(t0) = u0(1.8)

and

p(t0) = p0.(1.9)

For all initial data (t0, u0, p0) ∈ D we will obtain the existence of a local solution
to (1.3), (1.4a), (1.4b), (1.4c), and (1.6) belonging to the functional class defined
by (1.5a) and (1.5b) and satisfying the initial conditions (1.8) and (1.9).

The existence of this local solution is obtained by defining a numerical scheme,
whose convergence will be shown in appropriate functional spaces; the limit of the
approximation will be a solution of our problem.

The distance on R
d is defined with the help of the Riemannian metric: if s �→ u(s)

is a C1 mapping from [a, b] to R
d, the Riemannian length of the image of u is

�(u) =

∫ b

a

|u̇(s)|u(s) ds.

This curve length is invariant by a diffeomorphic change of parameter. Therefore, we
may assume that a = 0 and b = 1. The distance from x to y is the lower bound of
the length of the curves from x to y, or in other words

dist(x, y) = inf{�(u) : u ∈ C1([0, 1]), u(0) = x, u(1) = y}.

It is classical that the lower bound is attained on the geodesics for the given Rieman-
nian metric; it is also known that for each point x there exists r > 0 such that, if
dist(x, y) ≤ r, there is only one geodesic from x to y.

We denote by dist(x,E) the Riemannian distance of a point x to a set E.
Under assumptions (1.1), a projection on ∂K can be defined uniquely on an

appropriate neighborhood of ∂K; more precisely, for all compact C ⊂ ∂K, there
exists a neighborhood of C on which the projection P∂K is uniquely defined, and
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there exists a unique geodesic joining a point of this neighborhood to its projection.
This projection P∂K is characterized by the relation

∀y ∈ ∂K, dist(P∂Kx, x) ≤ dist(y, x).(1.10)

This projection is of class C2.
For all x in ∂K, denote by N(x) the interior unit normal vector: this means that

|N(x)|x is equal to 1 and that it is orthogonal to the tangent space at P∂Kx with
respect to the scalar product in the tangent space; i.e., for all y such that dφ(x)y
vanishes, 〈y,N(x)〉x = 0. The smoothness of ∂K implies that the mapping z �→ N(z)
is of class C2.

When the geodesic from x to P∂Kx is unique it is tangent at P∂Kx to N(P∂Kx).
Starting from this projection on ∂K, we can define a projection on K as follows:

for each compact C included in K, there exists a relatively compact neighborhood U
of C on which PK is defined by

PK(x) =

{
P∂K(x) if x /∈ K,

x otherwise.
(1.11)

The reader will check that PK is Lipschitz continuous over U and that PKx realizes
the minimum of the distance from x to K.

Given two positive numbers h∗ ≤ 1 and T , assume that F is a continuous function
from [0, T ] × R

d × R
d × R

d × [0, h∗] to R
d, which is locally Lipschitz continuous

with respect to its second, third, and fourth arguments; assume, moreover, that F is
consistent with f , i.e., that for all t ∈ [0, T ], for all u and v in R

d

F (t, u, u, v, 0) =M(u)−1f(t, u,M(u)v).(1.12)

We approximate the solution of (1.3), (1.4a), (1.4b), (1.4c), (1.5a), (1.5b), (1.8),
(1.9) by the following numerical scheme: the initial values U0 and U1 are given by
the initial position

U0 = u0,(1.13)

and the position at the first time step

U1 = u0 + hM(u0)
−1p0 + hz(h),(1.14)

where z(h) tends to 0 as h tends to 0.
We will systematically use, henceforth, the notation

tm = t0 +mh.(1.15)

Given Um−1 and Um, Um+1 is defined by the relations

Um+1 = −eUm−1 + (1 + e)PK

(
2Um − (1− e)Um−1 + h2Fm

1 + e

)
(1.16)

and

Fm = F

(
tm, Um, Um−1,

Um+1 − Um−1

2h
, h

)
(1.17)
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provided that Um+1 is unique in a neighborhood of Um. Definition (1.16) and (1.17)
is the obvious generalization of (1.12) and (1.13) of [9].

In the announcement [11], where we assumed that the set of constraints K was
convex and the geometry was Euclidean, we had defined the numerical scheme by
relation (1.16), where PK was the Euclidean projection on the convex set K.

The boundary ∂K is smooth, and as we expect that for small h, the Um’s will
stay close to K, we still have a projection of (2Um − (1 − e)Um−1 + h2Fm)/(1 + e)
on K, and thus we start from (1.16) to define the numerical scheme.

Let us define

Wm =
2Um − (1− e)Um−1 + h2Fm

1 + e
,(1.18)

which will be used in many places in the upcoming proofs. With this definition, (1.16)
is rewritten as

Um+1 = −eUm−1 + (1 + e)PK(W
m).

Hence, if we define

Zm =
Um+1 + eUm−1

1 + e
,(1.19)

we find that

Zm = PK(W
m).(1.20)

Another way of writing (1.16) is to define the discrete velocity V m by

V m =
Um+1 − Um

h
.(1.21)

Then, (1.16) can be rewritten as

V m − V m−1 − hFm =
(1 + e)(Zm −Wm)

h
.(1.22)

A strict contraction argument in R
d gives the existence of a unique Um for small

values of m and h. As the projections on K and F are only Lipschitz continuous, the
iteration of a fixed point argument might request smaller and smaller bounds on the
time step h, and there is no guarantee that we could integrate numerically on a time
interval bounded from below, for any initial time step size.

Let us outline now the structure of the article and of the proofs. In section 2, we
will straighten the boundary, a natural geometrical idea.

While the system (1.3)–(1.6) is nicely transformed under a diffeomorphism, the
numerical scheme (1.13), (1.14), (1.16), and (1.17) does not behave well under dif-
feomorphisms. The reason is that a numerical scheme is not a local object: when
we define a discrete velocity by subtracting Um from Um+1, we use locally a vector
structure which is not intrinsic from the point of view of differential geometry. In
particular, if we apply a diffeomorphism to the numerical scheme, we will find an-
other numerical scheme which will look much more complicated than the previous
one, since it will contain a number of small term which show the lack of an intrinsic
description of the scheme. After a very technical proof, we find two constants C3 and
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τ such that for initial data in a neighborhood of a compact subset of the admissible
set, and for all small enough h and all m ≤ τ/h, the discrete velocity is bounded:

sup |V m| ≤ C3.

Since uniqueness is not true in general [2], [16], and hypotheses of analyticity are
often but not always used for the proof of uniqueness [13], [15], [17], [4], [1], the proof
of convergence of the numerical approximation is delicate also for this reason.

However, there is a bonus: all the effort made to prove the local convergence
of the numerical scheme provides us with a local existence proof for our problem.
In section 3 we prove estimates on the discrete acceleration; then in section 4 we
establish the variational properties of the limit of the numerical scheme. Sections 5
and 6 are devoted to the study of the transmission of energy at impact and the
passage to the limit for the initial conditions. All these results are obtained under
the assumption that on a certain time interval starting at t0, the discrete velocity is
bounded independently of the time step.

As a preliminary to the global existence proof, we give a priori estimates on
problem (1.3)–(1.9) in section 7, which is completely independent from the remainder
of the article.

In section 8, we establish a very weak semicontinuity for the supremum of the
local norm of the discrete velocities; this result enables us to obtain a global existence
and convergence theorem.

A note on the strategy of proof seems necessary here: an essential device is the
straightening of the boundary of K. However, it is not always convenient to work in
the straightened coordinates; in particular, whenever we need very precise estimates
involving PK , the physical coordinates are better. This seeming inconsistency in the
redaction of our proofs is a compromise whereby we tried to save space without losing
clarity.

We present some numerical simulations in section 9: we simulated the dropped
bar experiment of Stoianovici and Hurmuzlu [18], using generalized coordinates and
therefore a nontrivial mass matrix. We compared the results of our ad hoc scheme
to an impact detection method; the reader is referred to the original article [18] for
a comparison with the experiments. Much more information on our simulations has
been given in [12].

The numerical scheme analyzed here has been implemented in the case of a trivial
mass matrix in [8], [7]. Our ad hoc scheme is substantially faster than an impact
detection method.

The existence result obtained here is a generalization of [16], [3], [14], [8], [10],
and of [6] and [5], who also constructs a solution with the help of a numerical method;
however, he does not consider a nonconstant mass matrix.

We refer the reader to the introduction of [9] for more bibliographical references.

2. Existence of (Um)0≤m≤�τ/h� for some τ > 0. We systematically use the
floor and ceiling notations: when r is a real number, the floor �r� of r is the largest
integer at most equal to r, and the ceiling �r� is the smallest integer at least equal to
r.

The main result of this section is the existence of a number τ > 0 such that for
all small enough h and all m ≤ �τ/h� there exists indeed a discrete solution of (1.16)
and (1.17), whose discrete velocity is bounded independently of h. In fact, we prove
a stronger result: provided that the first two discrete velocities are bounded, we find
a uniform lower bound on τ when the initial position belongs to a neighborhood of a
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compact subset of K. As in the one dimensional case [9], the idea is to show the exis-
tence by Brouwer’s fixed point argument and the uniqueness by local considerations.
However, the proof is longer and much more technical: the cost of straightening the
boundary is the appearance of a host of supplementary terms of geometrical origin
that we have to control. At a crucial point of the proof, we use Lemma 2.1 of [9]
to estimate the normal component of the velocity, thereby effectively reducing the N
dimensional problem to the one dimensional case.

We say that U0 and U1 satisfy condition E
(
u, r0, C2, h

)
if∣∣U0 − u

∣∣ ≤ r0,
∣∣U1 − u

∣∣ ≤ r0,
∣∣U1 − U0

∣∣ ≤ C2h,(2.1)

and that, moreover, U2 is uniquely defined in B(u, r0) by

U2 + eU0

1 + e
= PK

(
2U1 − (1− e)U0 + h2F 1

1 + e

)
,(2.2)

and the following inequalities are satisfied:∣∣U2 − u
∣∣ ≤ r0,

∣∣U2 − U1
∣∣ ≤ C2h.(2.3)

When u belongs to ∂K, we need local coordinates in which the projection PK is
particularly simple. They are defined in the following fashion: we choose a coordinate
frame in R

d such that
• u = 0;
• the tangent hyperplane to ∂K at 0 is the hyperplane of the first d− 1 coor-
dinates;

• the positive direction of the dth coordinate axis points inside K.
For a d dimensional vector x, we will use the notation

x′ = (x1, . . . , xd−1).

Locally, ∂K is a graph over the hyperplane of the first d − 1 coordinates, and it
can be parameterized as

χ(x′) =
(

x′

H(x′)

)
,

where x′ belongs to R
d−1, H is of class C3, and DH(0) vanishes. Let s �→ ψ(s, z) be

the parameterization of the geodesic starting at z ∈ ∂K with an initial velocity equal
to −N(z) which satisfies ∣∣∣∣∂ψ∂s (s, z)

∣∣∣∣
ψ(s,z)

= 1.(2.4)

Let Ψ be defined by

Ψ(x′, y) = ψ(−y, χ(x′));(2.5)

the function Ψ is of class C2 in a neighborhood of 0; its derivative at 0 has the block
representation

DΨ(0, 0) =

(
1d−1

0

∣∣∣ N(0)

)
;(2.6)
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it is invertible, since N(0) does not belong to the tangent plane at 0 to ∂K. Thus
Ψ is a local diffeomorphism from a neighborhood U of 0 to a neighborhood Ψ(U) of
0. In particular, we may assume that U contains a compact neighborhood of 0 of the
form O × [−r1, r1], where O is an open neighborhood of 0 in R

d−1.
The inverse diffeomorphism of Ψ is denoted by Φ, and we decompose it as

Φ(x) =

(
S(x)
Y (x)

)
,(2.7)

where S takes its values in R
d−1 and Y takes its values in R. If x belongs to

F = Ψ(O × [−r1, r1]),
the projection PK(x) is given by

PK(x) = Ψ

(
S(x)
Y (x)+

)
.(2.8)

With these preparations, we are able to prove the main local estimates.
Theorem 2.1. For all u ∈ K, for all C2 > 0, there exist two positive numbers,

r1 < r2 and three numbers τ > 0, h1 > 0, and C3 < ∞ such that for all h ∈ (0, h1]
and all t0 ∈ [0, T ), for all U0 and U1, satisfying the condition E

(
u, r1, C2, h

)
, Um is

uniquely defined in B(u, r2), for all m ≤ �min(τ, T − t0)/h�, and |V m| is bounded by
C3 independently of h for 0 ≤ m ≤ �min(τ, T − t0)/h� − 1.

Proof. The theorem decomposes into an easy part and a difficult part. The easy
part is when u belongs to the interior of K.

First case: u ∈ int(K). We choose r0 > 0 such that the ball of center u and
radius 2r0 is included in K. Let C3 be greater than C2. We define the numbers C1

and L by

C1 = sup
{ |F (t, u, u′, 0, h)| : t ∈ [0, T ], |u− u| ≤ 2r0,
|u′ − u| ≤ 2r0, h ∈ [0, h∗]

}
,

(2.9)

L = sup

{ |F (t, u, u′, v, h)− F (t, u, u′, v′, h)|
|v − v′| : t ∈ [0, T ], |u− u| ≤ 2r0,

|u′ − u| ≤ 2r0, |v| ≤ C3, |v′| ≤ C3, h ∈ [0, h∗], v �= v′
}
.

(2.10)

We choose r1 = r0/2 and r2 = r0. Assume that τ satisfies the following inequalities:

τ
(
C1 + LC3 + 2LC3τ

)
< C3 − C2,

τC3 ≤ r0
2
, 0 < τ < T − t0.

(2.11)

Let h1 be a nonnegative number such that

2h1C3

1 + e
+

h2
1

1 + e

(
C1 + LC3 + 2LC3τ

)
< r0.(2.12)

Let U0, U1 satisfy the condition E
(
u, r1, C2, h

)
. We claim that for all h ∈ (0, h1] we

can find a solution of

Um+1 − 2Um + Um−1 = h2F
(
tm, Um−1, Um,

(
V m + V m−1

)
/2, h

)
(2.13)
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for all m ∈ {1, . . . , �τ/h� − 1} which satisfies the estimates
∀m ∈ {0, . . . , �τ/h�}, |Um − u| ≤ r2,(2.14)

∀m ∈ {0, . . . , �τ/h� − 1}, |V m| ≤ C3.(2.15)

In this construction, we seek a solution without considering the constraints, and we
prove eventually that they are satisfied.

We will apply Brouwer’s fixed point argument in order to prove the existence of
a solution of (2.13). Let h ∈ (0, h1] and define a compact convex set Bh by

Bh =
{
Û = (Ûm)0≤m≤�τ/h� : Û0 = U0, Û1 = U1, Û2 = U2,

∀m ∈ {1, . . . , �τ/h� − 1},
∣∣∣Ûm+1 − Ûm

∣∣∣ ≤ C3h
}
.

Assuming that Û belongs to Bh, we define F̂ by

∀m ∈ {1, . . . , �τ/h� − 1}, F̂m = F

(
tm, Ûm, Ûm−1,

Ûm+1 − Ûm−1

2h
, h

)
.

We write now the numerical scheme

∀m ∈ {2, . . . , �τ/h� − 1}, Um+1 − 2Um + Um−1 = h2F̂m.

Since Û belongs to Bh, we estimate
∣∣∣F̂m∣∣∣ by

∣∣∣F̂m∣∣∣ ≤ ∣∣∣F (tm, Û0, Û0, 0, h)
∣∣∣ + L

(∣∣∣Ûm − Û0
∣∣∣ + ∣∣∣Ûm−1 − Û0

∣∣∣ +
∣∣∣∣∣ Û

m+1 − Ûm−1

2h

∣∣∣∣∣
)

≤ C1 + 2LC3τ + LC3.

By definition of V m we have

|V m| =
∣∣∣V m−1 + hF̂m

∣∣∣ ≤ ∣∣V m−1
∣∣ + h

∣∣∣F̂m∣∣∣ ,
and by discrete integration

|V m| ≤ ∣∣V 0
∣∣ + τ

(
C1 + 2LC3τ + LC3

) ≤ C3,

thanks to (2.11) and (2.1). Hence U belongs to Bh and the mapping Û �→ U is clearly
continuous, which implies the existence of a fixed point inBh thanks to Brouwer’s fixed
point theorem. This fixed point is a solution of (2.13) satisfying (2.15). Moreover, for
all m ∈ {0, . . . , �τ/h�} we have

|Um − u| ≤
m−1∑
p=0

h |V p| + ∣∣U0 − u
∣∣ ≤ C3τ + r0/2 ≤ r0

thanks to (2.11), and thus (2.14) holds.
Let us prove that the vector Wm defined by (1.18) belongs to K: since

Wm − u = Um−1 +
2h

1 + e
V m−1 +

h2Fm

1 + e
− u,
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we have the estimate

|Wm − u| ≤ r0 +
2hC3

1 + e
+

h2

1 + e

(
C1 + LC3 + 2LτC3).

With (2.12) we infer that Wm belongs to K, and the sequence Um satisfies (1.16)–
(1.17).

Second case: u ∈ ∂K. We define on R
d a norm denoted by ‖ ‖ as follows:

x =

(
x′

xd

)
, ‖x‖ = max(|x′| , |xd|

)
.

Pick R1 > 0 such that Ψ is a diffeomorphism from a closed neighborhood

B = {x : ‖x− Φ(u)‖ ≤ R1

}
to its image and such that Ψ(B) is included in an Euclidean ball B(u, r0) such that
PK is Lipschitz continuous on B(u, 2r0); denote by γ the Lipschitz constant of PK on
B(u, 2r0).

Define Λ by

Λ =max

{
sup

{ |DΨ(x)x1|
‖x1‖ : x ∈ B, x1 �= 0

}
,

sup

{ |DΦ(u)u1|
‖u1‖ : u ∈ Ψ(B), u1 �= 0

}}

and

C4 =max

{
sup

{∣∣D2Ψ(x)x1 ⊗ x2

∣∣
2 ‖x1‖ ‖x2‖ : x ∈ B, x1 �= 0, x2 �= 0

}
,

sup

{∣∣D2Φ(u)u1 ⊗ u2

∣∣
2 ‖u1‖ ‖u2‖ : u ∈ Ψ(B), u1 �= 0, u2 �= 0

}}
.

A continuity argument shows that the compact set Ψ(B) contains the ball of radius
R1/Λ about u.

We will give now a description of the scheme (1.16), (1.17) in the new coordinates.
We define

Xm = Φ(Um).

Assume, therefore, that

Um+1, Um, Um−1, Wm, and
Um + eUm−1

1 + e
belong to Ψ(B).(2.16)

We know that (1.16) is equivalent to

Um+1 + eUm−1

1 + e
= PK(W

m).(2.17)

We map (2.17) by Φ, and we calculate the Taylor expansion of either side of (2.17)
around Um. The left-hand side of (2.17) can be rewritten as

Um + h
V m − eV m−1

1 + e
,
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and therefore

Φ

(
Um + h

V m − eV m−1

1 + e

)
= Φ(Um) +DΦ(Um)h

V m − eV m−1

1 + e
+ Im,(2.18)

where

‖Im‖ ≤ C4

∣∣∣∣∣h
(
V m − eV m−1

)
1 + e

∣∣∣∣∣
2

.

But Um+1 = Um + hV m, so that another Taylor expansion gives

Φ
(
Um+1

)
= Φ(Um) +DΦ(Um)hV m + Îm

with ∥∥∥Îm∥∥∥ ≤ C4 |hV m|2 .

Thus

DΦ(Um)hV m = Φ(Um+1)− Φ(Um)− Îm.(2.19)

A similar calculation gives

−DΦ(Um)hV m−1 = Φ(Um−1)− Φ(Um)− Ĩm,(2.20)

with ∥∥∥Ĩm∥∥∥ ≤ C4

∣∣hV m−1
∣∣2 .

If we substitute (2.19) and (2.20) into (2.18), we find that

Φ
(
(Um+1 + eUm−1)/(1 + e)

)
=

Xm+1 + eXm−1

1 + e
− I

m

1 + e
,

where

I
m
= Îm + eĨm − (1 + e)Im,

and we have the estimate∥∥∥Im∥∥∥ ≤ C4h
2
(|V m|2 + e

∣∣V m−1
∣∣2 + (1 + e)−1

∣∣V m − eV m−1
∣∣2).(2.21)

Consider now the right-hand side of (2.17). By definition of V m−1, we have the
identity

Wm = Um +
(1− e)hV m−1 + h2Fm

1 + e
,(2.22)

and a Taylor expansion gives

Φ(Wm) = Φ(Um) +DΦ(Um)
(1− e)hV m−1 + h2Fm

1 + e
+ Jm,(2.23)
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with

‖Jm‖ ≤ C4

∣∣∣∣ (1− e)hV m−1 + h2Fm

1 + e

∣∣∣∣
2

.

We substitute (2.20) into (2.23), and we obtain

Φ(Wm) =
2Xm − (1− e)Xm−1 + h2DΦ(Um)Fm

1 + e
+

J
m

1 + e
,

where

J
m
= (1 + e)Jm + (1− e)Ĩm,

so that

∥∥∥Jm∥∥∥ ≤ C4

[∣∣(1− e)hV m−1 + h2Fm
∣∣2

1 + e
+ (1− e)h2

∣∣V m−1
∣∣2] .

We have to estimate ‖Im‖+ ‖Jm‖; by elementary inequalities,
∥∥∥Im∥∥∥ + ∥∥∥Jm∥∥∥ ≤ C4h

2

[
2(1− e)2

∣∣V m−1
∣∣2 + 2h2 |Fm|2

1 + e

+ (1− e)
∣∣V m−1

∣∣2 + |V m|2 + e
∣∣V m−1

∣∣2 + 2 |V m|2 + 2e2
∣∣V m−1

∣∣2
1 + e

]
.

The coefficient of
∣∣V m−1

∣∣2 in the above bracket is
2(1− e)2

1 + e
+ 1 +

2e2

1 + e
,

and since for e ∈ [0, 1], (1 − e)2 ≤ 1 − e2, this coefficient is at most equal to 3. The

coefficient of |V m|2 in the same bracket is equal to 1+2/(1+e), which is also at most
equal to 3. Therefore∥∥∥Im∥∥∥ + ∥∥∥Jm∥∥∥ ≤ C4h

2
[
3 |V m|2 + 3 ∣∣V m−1

∣∣2 + 2h2 |Fm|2].(2.24)

Thanks to the properties of PK ,

Φ

(
Um+1 + eUm−1

1 + e

)
= Φ(PKWm) =

(
S(Wm)
Y (Wm)+

)
.(2.25)

Define

sm = S(Um) =
[
Xm
]′
, ym = Y (Um) = Xm

d .

In these new coordinates, we have

sm+1 − 2sm + sm−1 = h2κm,(2.26)

ym+1 + eym−1 − (2ym − (1− e)ym−1
)+
= h2λm,(2.27)
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and κm and λm are given by

h2κm =
[
h2DΦ(Um)Fm + I

m
+ J

m]′
,

h2λm =
[
2ym − (1− e)ym−1 +

(
h2DΦ(Um)Fm + J

m)
d

]+
− (2ym − (1− e)ym−1

)+
+ I

m

d .

Therefore, we have the estimates:

max
(|κm| , |λm|) ≤ Λ |Fm| + C4

(
3 |V m|2 + 3 ∣∣V m−1

∣∣2 + 2h2 |Fm|2).(2.28)

We define ξm and ζm by

ξm =

(
σm

ηm

)
=

Xm+1 −Xm

h
, ζm =

(
κm

λm

)
.

Now let q be a number which satisfies

q > ΛC2.

Let C3 = Λq, and let C1 and L be, respectively, as in (2.9) and (2.10). If we assume
beyond (2.16) that

max
(∣∣V m−1

∣∣ , |V m|) ≤ C3,(2.29)

we have the estimate

|Fm| ≤ C1 + L
(|V m| + ∣∣V m−1

∣∣)/2;
by elementary inequalities,

|Fm|2 ≤ 2C2
1 + L2

(|V m|2 + ∣∣V m−1
∣∣2),

and therefore, if we define

C5 =
Λ

2
+ C2

1

(
Λ + 4h2

1C4

)
, C6 =

((
Λ

2
+ 2h2

1C4

)
L2 + 3C4

)
Λ2,

we have shown that under assumptions (2.16) and (2.29), the following inequality
holds:

‖ζm‖ ≤ C5 + C6

(‖ξm‖2 + ∥∥ξm−1
∥∥2).(2.30)

Let τ be a number which satisfies the following inequalities:

ΛC2 + 2τ(C5 + 2C6q
2) < q,

τq < R1/3Λ
2, 0 < τ < T − t0.

(2.31)

Let h1 be a nonnegative number such that

max

(
1− e

1 + e
Λqh1 +

h2
1

1 + e
(C1 + LΛq), h1q

)
<

R1

3Λ
.(2.32)
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We will prove that, for all h ∈ (0, h1] and all t0 ∈ [0, T ), for all U0, U1 satisfying the
condition E

(
u, r1, C2, h

)
with r1 = R1/3Λ

3, Um is uniquely defined in B(u, r2), for
all m ≤ �τ/h� with r2 = 2R1/3Λ, and |V m| is bounded by C3 for 0 ≤ m ≤ �τ/h�− 1.

We will apply once again Brouwer’s fixed point argument. Let h ∈ (0, h1] and
define a compact convex set Bh by

Bh =
{
X̂ = (X̂m)0≤m≤�τ/h� : X̂0 = Φ(U0), X̂1 = Φ(U1), X̂2 = Φ(U2),

∀m ∈ {1, . . . , �τ/h� − 1},
∥∥∥X̂m+1 − X̂m

∥∥∥ ≤ qh
}
.

Let X̂ be in Bh. Since Λ ≥ 1 and U0, U1 satisfy the condition E
(
u, r1, C2, h

)
, we

have

{U0, U1, U2} ⊂ B(u, r1) ⊂ B(u,R1/Λ) ⊂ Ψ(B),
and for all m ∈ {3, . . . , �τ/h�} we have∥∥∥X̂m − Φ(u)

∥∥∥ ≤ ∥∥∥X̂m − X̂0
∥∥∥ + ∥∥∥X̂0 − Φ(u)

∥∥∥
≤ τq + Λ

∣∣U0 − u
∣∣ ≤ 2R1

3Λ2
< R1.

(2.33)

It follows that X̂m belongs to B for allm ∈ {0, . . . , �τ/h�}. For allm ∈ {3, . . . , �τ/h�}
we define

Um = Ψ(X̂m).

We clearly have Um ∈ Ψ(B) for all m ∈ {0, . . . , �τ/h�} and
∣∣Um+1 − Um

∣∣ = Λ ∥∥∥X̂m+1 − X̂m
∥∥∥ ≤ Λqh ≤ C3h.

Hence we have the following estimate:

|Fm| ≤ C1 +
L

2

(|V m| + ∣∣V m−1
∣∣) ≤ C1 + LΛq.

Using (2.22) we infer that

|Wm − u| ≤ |Um − u| +
∣∣∣∣ (1− e)hV m−1 + h2Fm

1 + e

∣∣∣∣
≤ Λ

∥∥∥X̂m − Φ(u)
∥∥∥ + (1− e)h

1 + e
Λq +

h2

1 + e
(C1 + LΛq) ≤ R1

Λ
,

thanks to (2.32) and (2.33). Moreover,∣∣∣∣Um+1 + eUm−1

1 + e
− u

∣∣∣∣ ≤ |Um − u| + h

∣∣∣∣V m − eV m−1

1 + e

∣∣∣∣
and (2.32) and (2.33) also imply that∣∣∣∣Um+1 + eUm−1

1 + e
− u

∣∣∣∣ ≤ Λ
∥∥∥X̂m − Φ(u)

∥∥∥ + hq ≤ R1

Λ
.
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Consequently assumption (2.16) is satisfied and we define Im, Îm, Ĩm, and Jm as
in (2.18), (2.19), (2.20), and (2.23). We now write the numerical scheme (2.26)–(2.27)
and define (Xm)0≤m≤�τ/h� by

X0 = X̂0, X1 = X̂1, X2 = X̂2, and, for 3 ≤ m ≤ �τ/h�, Xm =

(
sm

ym

)
.

It should be remarked that if the mapping X̂ �→ X possesses a fixed point X in Bh,
then U = Ψ(X) is precisely the numerical solution sought here. Using (2.30) we have
the following estimate:

‖ζm‖ ≤ C5 + C6

(∥∥∥ξ̂m∥∥∥2 + ∥∥∥ξ̂m−1
∥∥∥2) ≤ C5 + 2C6q

2.

Let us estimate now the discrete velocity ‖ξm‖. By definition of σm we have

|σm| ≤ ∣∣σm−1
∣∣ + h ‖ζm‖ .

For the normal component ηm, we apply Lemma 2.1 of the companion paper [9] and
get

|ηm| ≤ max(∣∣ηm−1
∣∣ , e ∣∣ηm−2

∣∣)+ h ‖ζm‖ + h
∥∥ζm−1

∥∥ .
It follows that

‖ξm‖ ≤ max(∥∥ξm−1
∥∥ , e∥∥ξm−2

∥∥)+ h ‖ζm‖ + h
∥∥ζm−1

∥∥(2.34)

and thus

‖ξm‖ ≤ max(∥∥ξm−1
∥∥ ,∥∥ξm−2

∥∥)+ 2h(C5 + 2C6q
2).

By discrete integration we obtain

‖ξm‖ ≤ max(∥∥ξ1
∥∥ ,∥∥ξ0

∥∥)+ 2τ(C5 + 2C6q
2),

and we have

max
(∥∥ξ1

∥∥ ,∥∥ξ0
∥∥) ≤ Λmax(∣∣∣∣U1 − U0

h

∣∣∣∣ ,
∣∣∣∣U2 − U1

h

∣∣∣∣
)
≤ ΛC2.

Hence (2.31) implies thatX belongs to Bh. The mapping X̂ �→ X is clearly continuous
and Brouwer’s fixed point theorem implies the existence of a fixed point in Bh.

We prove uniqueness in both cases by local considerations. Given Um−1 and Um,
the discrete velocity V m is a fixed point of the mapping

v �→ h−1

[
− eUm−1 − Um

+ (1 + e)PK

(
2Um − (1− e)Um−1 + h2F (tm, Um, Um−1, (v + V m−1)/2h, h)

1 + e

)]
.

The Lipschitz constant of this mapping is hγL/2, and therefore if h1 < 2/(γL), the
uniqueness of V m is guaranteed.
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The next lemma establishes the existence of U2 under appropriate assumptions
on U0 and U1.

Lemma 2.2. For all (t0, u0, p0) ∈ D, define v0 = M(u0)
−1p0; then for all U1

satisfying (1.14) and for all small enough h, there exists a unique solution U2 of (1.16)
for m = 1 satisfying ∣∣U2 − U1

∣∣
u0
≤ 3|v0|u0h+ h.

Proof. Let r > 0 be such that PK is Lipschitz continuous on

Bu0(u0, r) =
{
u ∈ R

d : |u− u0|u0
≤ r
}
.

Define C̃1 by

C̃1 = max
{ |F (t, u, u′, 0, h)|u0

: t ∈ [0, T ], |u− u0|u0
≤ r,

|u′ − u0|u0
≤ r, h ∈ [0, h∗]

}
,

and let L̃ be the Lipschitz constant defined by

L̃ = sup

{ |F (t, u, u′, v, h)− F (t, u, u′, v′, h)|u0

|v − v′|u0

: |u′ − u0|u0
≤ r, |u′ − u0|u0

≤ r,

|v|u0
≤ 2 |v0|u0

+ 1, |v′|u0
≤ 2 |v0|u0

+ 1, v �= v′, h ∈ [0, h∗]
}
.

Finally, let γ̃ be the Lipschitz constant of PK defined by

γ̃ = sup

{
|PKu− PKu′|u0

|u− u′|u0

: |u− u0|u0
≤ r, |u− u0|u0

≤ r, u �= u′
}
.

There exists a function z(t) which is bounded in a neighborhood of 0 such that for
small positive values of t

PK(u0 + tv0) = u0 + tv0 + t2z(t);(2.35)

indeed, if v0 vanishes, or if u0 belongs to int(K), or if u0 belongs to ∂K and the
scalar product 〈v0, N(u0)〉u0

is strictly positive, z vanishes; if u0 belongs to ∂K and
〈v0, N(u0)〉u0 vanishes, while v0 does not vanish, (2.35) is a consequence of the smooth-
ness of P∂K in a neighborhood of u0. For the values of t for which u0+ tv0 belongs to
K, z vanishes; for the values of t for which u0 + tv0 does not belong to K, a Taylor
expansion shows that

P∂K(u0 + tv0) = u0 + tv0 +O(t2)

and hence (2.35). With the change of variable v = (U2 − U0)/h, (1.16) is equivalent
to v = G(v), where the function G is defined by

G(v) =
1 + e

h

[
PK

(
U0 +

2h

1 + e
V 0 +

h2

1 + e
F
(
t1, U

1, U0, v, h
))− U0

]
.

Let us check that G is a strict contraction on Bu0

(
0, 2 |v0|u0

+ 1/2
)
. If |v|u0

≤
2 |v0|u0

+ 1/2, for h small enough, we can use the definitions of L̃ and C̃1:∣∣F (t1, U1, U0, v, h
)∣∣
u0
≤ C̃1 + L̃

(
2 |v0|u0

+ 1/2
)
.(2.36)
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We estimate G(v) as follows: by the triangle inequality and the Lipschitz condition
on PK ,

|G(v)|u0
≤ 1 + e

h
γ̃

∣∣∣∣∣2h
(
V 0 − v0

)
1 + e

+
h2

1 + e
F 1

∣∣∣∣∣
u0

+
1 + e

h

∣∣∣∣PK
(
u0 +

2hv0

1 + e

)
− U0

∣∣∣∣
u0

.

We apply (2.35), (1.14), and (2.36), and we find that

|G(v)|u0
≤ γ̃
[
2 |z(h)|u0

+ h
(
C̃1 + 2L̃ |v0|u0

+ L̃
)]
+ 2 |v0|u0

+
4h

1 + e

∣∣∣∣z
(
2hv0

1 + e

)∣∣∣∣
u0

.

Therefore, for h small enough, G maps Bu0

(
0, 2 |v0|u0

+ 1/2
)
to itself. Moreover, the

Lipschitz constant of G on this ball is at most equal to γ̃L̃h. This proves that G has a
fixed point in Bu0

(
0, 2 |v0|u0

+1/2
)
for small enough values of h. We set U2 = U0+hv,

where v is the fixed point of G in Bu0

(
0, 2 |v0|u0

+ 1/2
)
. Then it is clear that, for h

small enough, ∣∣(U2 − U1)/h
∣∣
u0
≤ 2|v0|u0

+ 1/2 +
∣∣(U1 − U0)/h

∣∣
u0

,

and the lemma is proved.
If we put together Theorem 2.1 and Lemma 2.2, we obtain a local existence result

for the scheme.
Theorem 2.3. For all (t0, u0,M(u0)v0) ∈ D, for all U1 satisfying (1.14), there

exist τ > 0, C3 < ∞, and h1 > 0 such that for all h ∈ (0, h1], there exists a unique
solution of (1.16) and (1.17) for all m ≤ �τ/h� − 1, which satisfies the estimate

∀l ≤ �τ/h�, ∣∣V l
∣∣ ≤ C3.(2.37)

Proof. Let us check that U0 and U1 satisfy condition E(u0, r1, C2, h). Lemma 2.2
and assumption (1.14) on U1 imply that∣∣U1 − u0

∣∣
u0
≤ h
(|z(h)|u0

+ |v0|u0

)
and ∣∣U2 − u0

∣∣
u0
≤ h
(
2 |v0|u0

+ 1/2
)
.

Choose C2 ≥
(
3 |v0|u0

+2
) ∥∥M(u0)

−1/2
∥∥; U0 and U1 satisfy condition E(u0, r1, C2, h)

for small enough values of h. Then it is clear that Theorem 2.1 applies.
It is convenient to give a uniformized version of Theorem 2.1.
Theorem 2.4. For all compact subsets C of K, for all C2 > 0, there exist positive

numbers r1, r2 > r1, τ , C3, and h1 such that for all t0 ∈ [0, T ), for all u ∈ C, for all
h ≤ h1, and for all U0 and U1 satisfying condition E(u, r1, C2, h), relations (1.16)
and (1.17) define uniquely in the ball B(u, r2) under condition (2.37) the vectors Um

for 2 ≤ m ≤ �min(τ, T − t0)/h�.
Proof. Let C2 be a strictly positive number. Any element u of C is included in

an open ball int(B(u, r1(u))) such that Theorem 2.1 holds. We cover C by a finite
number of balls int(B(uj , r1(uj)/2)) with associated numbers r2(uj), τ(uj), h1(uj),
and C3(uj). If we let

r1 =
1

2
min{r1(uj) : 1 ≤ j ≤ J},
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then any u ∈ C belongs to a ball B(uj , r1(uj)/2), and in particular B(u, r1) is included
in B(uj , r1(uj)). If we take

τ = min
j

τ(uj), r2 = max
j

r2(uj), h1 = min
j

h1(uj), C3 = max
j

C3(uj),

it is immediate that the theorem holds, thanks to Theorem 2.1.

3. Estimates on the acceleration. In this section and the three following ones,
we assume that there exist strictly positive numbers τ , C3, and h1, and a subsequence
of time steps to which correspond solutions of the numerical scheme defined by (1.13),
(1.14), (1.16), and (1.17), which satisfy the estimate, for all h ≤ h1,

∀l ∈ {0, . . . , P − 1}, ∣∣U l+1 − U l
∣∣ ≤ C3h,(3.1)

where P = �min(τ, T − t0)/h�. Here we estimate the discrete total variation of the
sequence

(
V m
)
m
. It is also convenient to define the function wh(t) on [t0, t0 + τ ] by

wh(tm) =Wm, wh is continuous and it is affine

on each interval [tm, tm+1) and constant on [tP , t0 + τ ].

Theorem 3.1. Under assumption (3.1), there exists a constant C7 such that for
all h ≤ h1

P−1∑
m=1

∣∣V m − V m−1
∣∣ ≤ C7.(3.2)

Proof. The idea of the proof is exactly the same as in section 4 of [9], up to
geometric complications.

Let C be the compact set K ∩B(u0, C3τ) and let r1 be as in Theorem 2.4; cover
C with a finite number of balls B(uj , r1/4); observe that, thanks to the Ascoli–Arzelá
theorem, the set W of functions (wh)0<h1≤h is relatively compact in C0([t0, t0 + τ ]).
The set of limit points of (wh)0<h≤h1 as h tends to 0 is also a compact set, which we
shall denote by W∞. There exists a finite subset w1, . . . , wI of W∞ such that

∀w ∈ W∞ inf{‖w − wi‖C0[t0,t0+τ ] : 1 ≤ i ≤ I} ≤ r1/4.

For each i ∈ {1, . . . , I}, it is possible to find a finite increasing sequence of times
0 = τ(i, 0) < · · · < τ(i, k) < · · · < τ(i, κ(i)) = τ

such that

wi([t0 + τ(i, k), t0 + τ(i, k + 1)]) ⊂ B
(
uj(i,k), r1/4

)
.

Thus, for all w ∈ W∞, there exists i ∈ {1, . . . , I} such that for all k ∈ {0, . . . , κ(i)−1},
w([t0 + τ(i, k), t0 + τ(i, k + 1)]) ⊂ B

(
uj(i,k), r1/2

)
.

Therefore, we can decrease h1 so that

∀h ∈ (0, h1], ∃i ∈ {1, . . . , I}, ∀k ∈ {1, . . . , κ(i)− 1},
∀t ∈ [t0 + τ(i, k), t0 + τ(i, k + 1)] wh(t) ∈ B

(
uj(i,k), 3r1/4

)
,
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and thanks to (2.22) and to (3.1), we can decrease h1 such that

∀h ∈ (0, h1], ∃i ∈ {1, . . . , I}, ∀k ∈ {1, . . . , κ(i)− 1},
∀l ∈ {�τ(i, k)/h�, . . . , �τ(i, k + 1)/h�}, U l ∈ B

(
uj(i,k), r1

)
.

We simplify the notations by letting

P = �τ(i, k)/h�, Q = �τ(i, k + 1)/h�,
and we take C1 as in (2.9), where u is set equal to uj(i,k), r0 is set equal to r1, and
C3 is set equal to C3.

Now, we have to consider two cases.

First case: B
(
u, r1

) ∩ ∂K = ∅. We have the inequality
|Fm| ≤ C1 + LC3;(3.3)

hence, thanks to (1.16), we have the inequality∣∣V m − V m−1
∣∣ ≤ h

(
C1 + LC3

)
,

and therefore

Q∑
m=P+1

∣∣V m − V m−1
∣∣ ≤ (τ(i, k + 1) + 2h− τ(i, k)

)(
C1 + LC3

)
.(3.4)

Second case: B
(
u, r1

)∩∂K �= ∅. We observe that, thanks to (2.30), we have
the estimate

∀m ∈ {P + 1, . . . , Q− 1}, max
(|κm| , |λm|) ≤ C9,(3.5)

where

C9 = C5 + 2C6Λ
2C2

3 .

The estimates on the first d − 1 components of the velocity in the straightened
coordinates are immediate:

Q−1∑
m=P+1

∣∣∣∣sm+1 − sm

h
− sm − sm−1

h

∣∣∣∣ ≤ (τ(i, k + 1) + 2h− τ(i, k)
)
C9.(3.6)

In order to estimate the last coordinate we use the same idea as in the one dimensional
case (see Theorem 3.1 [9]). We observe that

ηm − ηm−1 = hλm +
(
2ym − (1− e)ym−1

)−
/h(3.7)

and therefore, by the triangle inequality,∣∣ηm − ηm−1
∣∣ ≤ hC9 +

(
2ym − (1− e)ym−1

)−
/h,

and using (3.7) again, ∣∣ηm − ηm−1
∣∣ ≤ 2hC9 + ηm − ηm−1.
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We have the elements of a telescoping sum and we obtain

Q−1∑
m=P+1

∣∣ηm − ηm−1
∣∣ ≤ 2C9h(Q− P ) + 2C3Λ.

Summarizing this relation with (3.6), we can see that

Q∑
m=P+1

∣∣V m − V m−1
∣∣ ≤ ΛC9

(
3τ(i, k + 1)− 3τ(i, k) + 6h)+ 2C3Λ

2.(3.8)

Relations (3.4) and (3.8) do not depend on h ≤ h1; since we have only a finite number
of these estimates, the theorem is proved.

4. Variational properties of the limit of the numerical scheme. In this
section, we work under the assumption (3.1). Recall that P = �τ/h�. We define a
function uh by affine interpolation as follows:


uh(t) = Um + (t− t0 −mh)U

m+1 − Um

h
for t− t0 ∈ [mh, (m+ 1)h

)
, 0 ≤ m ≤ P − 1,

uh(t) = UP for t− t0 ∈ [Ph, τ ].

(4.1)

We also define a measure Fh as the following sum of Dirac masses:

Fh(t) =

P−1∑
m=1

hFmδ(t− t0 −mh).(4.2)

In this section we prove that the sequence (uh)h converges in an appropriate sense
to a function u which satisfies (1.3) to (1.5b) with τ instead of τ . We delay the proof
of (1.6), the transmission condition at impacts, to a later section.

As in the one dimensional case there are three steps in the convergence proof: the
first is to prove that the limit u exists in an appropriate sense and takes its values inK;
in the second step, we show that u̇h is of bounded variation uniformly in h and that
Fh converges to M(u)−1f(·, u,M(u)u̇) weakly in the space of R

d-valued measures.
The last step is the characterization of the measure µ = M(u)ü − f(·, u,M(u)u̇):
there we show that µ satisfies conditions (1.4a), (1.4b), and (1.4c). The main ideas
of the proofs are the same as in the one dimensional case; we will essentially give the
differences in the proofs.

Lemma 4.1. From all sequence of functions (uh)h indexed by a sequence h tending
to 0, it is possible to extract a subsequence, still denoted by (uh)h such that

uh → u in C0([t0, t0 + τ ]) strong,(4.3)

u̇h → u̇ in L∞([t0, t0 + τ ]) weak *.(4.4)

The function u takes its values in K.
Proof. We generalize the proof of Lemma 5.1 of [9], as follows: instead of (5.5),

we have for all m belonging to {1, . . . , P − 1}

Zm =
Um+1 + eUm−1

1 + e
= Um + h

V m − eV m−1

1 + e
;(4.5)
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hence Um = Zm − h(V m − eV m−1)/(1 + e). By definition of the scheme, we have
Zm = PK(W

m) (see (1.20)), and thus Zm belongs to K. It follows that, for all
m ∈ {1, . . . , P − 1}, the Euclidean distance between Um and K can be estimated as
follows:

min
{|Um − u| : u ∈ K

} ≤ h
∣∣V m − eV m−1

∣∣ /(1 + e) ≤ hC3.(4.6)

The next lemma describes the convergence of the measures involved in our prob-
lem; we denote by M1

(
(t0, t0 + τ)

)
the space of bounded measures over (t0, t0 + τ)

with values in R
d.

Lemma 4.2. The measures üh and Fh converge weakly ∗ in M1
(
(t0, t0 + τ)

)
,

respectively, to ü and M(u)−1f(·, u,M(u)u̇).
Proof. The proof is a direct generalization of the proof of Lemma 5.2 of [9]; the

only modifications are the following: ηm is replaced by V m and f(t, u, u̇) is replaced
by M(u)−1f(t, u,M(u)u̇).

Let us prove now that the measure µ has the required variational properties.

Lemma 4.3. The measure µ satisfies properties (1.4a), (1.4b), and (1.4c).

Proof. The measure

µh =M(uh)
(
üh − Fh

)
is a sum of Dirac measures on (t0, t0 + τ) given by

µh =

P−1∑
m=1

M(Um)
(
V m − V m−1 − hFm

)
δ(t− t0 −mh)

−M
(
UP
)
V P−1δ(t− t0 − Ph)

and it converges to µ =M(u)ü− f(·, u, p) weakly ∗ in M1
(
(t0, t0 + τ)

)
. The proof of

property (1.4a) is analogous to the proof of property (1.3a) of the companion paper
(Lemma 5.3. of [9]).

The foregoing proof is precisely the one where one would be tempted to use
straightened coordinates; however, this is an inefficient choice, because of the simplic-
ity of (1.22) in the original coordinates.

Assume now that u1 = u(t1) belongs to ∂K, and let B(u1, r1) be a ball having the
properties of Theorem 2.1; assume that the image of (τ1, τ2) by uh and wh is included
in this ball for all small enough h. We rewrite conditions (1.4b) and (1.4c) as follows:
for all continuous function ψ with compact support included in (t0, t0+ τ) and taking
its values in R

d the following implication holds:

∀t ∈ (t0, t0 + τ), dφ(u(t))ψ(t) ≥ 0 =⇒ 〈µ, ψ〉 ≥ 0.(4.7)

The reader will check the equivalence of (1.4b) and (1.4c) with (4.7). We infer
from relation (4.6) that

|Y (Um)| ≤ ΛhC3;

therefore, there exists a constant C10 such that

|Y (Wm)| ≤ hC10.
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Since (4.7) is local, it is enough to check it in the neighborhood of any t1 ∈ (t0, t0+τ).
Let

P = �τ1/h�, Q = �τ2/h�,

and

P = {m ∈ {P, . . . , Q} :Wm /∈ K
}
, P ′ = {P, . . . , Q} \ P.

We observe that if m belongs to P ′, then

V m − V m−1 − hFm = 0.

Therefore, we have the identity

Q∑
m=P

〈V m − V m−1 − hFm, ψ(tm)〉Um

=
∑
m∈P

〈V m − V m−1 − hFm, ψ(tm)〉Um .

We recall relation (1.22). Relation (2.25) implies that

Φ(Zm)− Φ(Wm) =

(
0

Y (Wm)−

)
,

and therefore∣∣∣∣Zm −Wm −DΨ(Wm)

(
0

Y (Wm)−

)∣∣∣∣ ≤ C4 |Zm −Wm|2 Λ2.(4.8)

On the other hand, the definition of Ψ is such that the dth column of DΨ(Zm) is
equal to N(Zm); therefore

∣∣∣∣DΨ(Wm)

(
0

Y (Wm)−

)
−N(Zm)Y (Wm)−

∣∣∣∣
≤ 2C4 |Zm −Wm| Y (Wm)−.

(4.9)

We combine (4.8) and (4.9) to get

∣∣Zm −Wm − Y (Wm)−N(Zm)
∣∣

≤ C4

(
2Y (Wm)− + Λ2 |Zm −Wm|) |Zm −Wm|

≤ C4C10

(
2 + Λ3

)
h2

1 + e

∣∣V m − V m−1 − hFm
∣∣ ,

and thus there exists C11 such that for all m ∈ P
∣∣Zm −Wm − Y (Wm)−N(Zm)

∣∣ ≤ h2C11

∣∣V m − V m−1 − hFm
∣∣ .
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We now can see that∑
m∈P

〈V m − V m−1 − hFm, ψ(tm)〉Um

=
1 + e

h

∑
m∈P

〈Zm −Wm, ψ(tm)〉Um

≥ 1 + e

h

∑
m∈P

Y (Wm)−〈N(Zm), ψ(tm)〉Um

− C11h(1 + e) max
P≤m≤Q

(‖M(Um)‖ |ψ(tm)|
) ∑
m∈P

∣∣V m − V m−1 − hFm
∣∣ ,

which implies by a straightforward passage to the limit that 〈µ, ψ〉 is nonnegative.
This concludes the proof of the lemma.

5. Transmission of energy during impact. The basic assumption is still the
one made at the beginning of section 3.

Let τ ∈ (0, τ) be such that u(t0 + τ) belongs to ∂K. Write t = t0 + τ . We
decompose p(t ± 0) into a normal component pN (t ± 0) belonging to Rdφ(u(t)) and
a tangential part pT (t ± 0) belonging to the orthogonal of dφ(u(t)) in the cotangent
metric at u(t).

In this section, we shall prove that

pT (t+ 0) = pT (t− 0) and pN (t+ 0) = −epN (t− 0),(5.1)

where e is the restitution coefficient of the problem.
The conservation of the tangential component of the impulsion is proved in next

lemma.
Lemma 5.1. Assume that τ ∈ (0, τ) is such that u(τ) belongs to ∂K. Then

pT (t+ 0) = pT (t− 0).

Proof. Thanks to Lemma 4.3, we know that

M(u)ü = µ+ f(·, u, p)(5.2)

and that there exists a nonnegative measure λ such that

µ = λdφ(u).(5.3)

We take the measure of the set {t} by the two sides of (5.2), and we find that

M(u(t))
(
u̇(t+ 0)− u̇(t− 0)) = µ({t}),

which immediately implies that p(t+ 0)− p(t− 0) is parallel to dφ(u(t)) and proves
the lemma.

Let u = u(t) and let B(u, r1) and B(u, r2) have the properties of Theorem 2.1.
There exists an interval [τ−, τ+] containing τ in its interior such that for all small
enough h, uh

(
[t0 + τ−, t0 + τ+]

)
is included in B(u, r1).

Define

P = �τ−/h�+ 1, Q = �τ+/h� − 1,
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and let xh be obtained from the Xm by affine interpolation, for P ≤ m ≤ Q. We
infer from estimates (3.1) and (3.2) the estimates

max
P≤m≤Q

∣∣∣∣Xm+1 −Xm

h

∣∣∣∣ ≤ ΛC3,

Q∑
m=P

∣∣∣∣Xm+1 −Xm

h
− Xm −Xm−1

h

∣∣∣∣ ≤ ΛC7.

Therefore, we have the following convergences:

xh → x strongly in C0
(
[t0 + τ−, t0 + τ+]

)
;

ẋh → ẋ except on a countable set and weakly ∗
in L∞([t0 + τ−, t0 + τ+]

)
;

ẍh → ẍ weakly in M1
(
[t0 + τ−, t0 + τ+]

)
.

Write for all h ≤ h1

xh =

(
sh
yh

)
, x =

(
s
y

)
,

where the sh’s and s take their values in R
d−1 and the yh’s and y are real valued

functions. We do not have xh = Φ(uh), because xh is a linear interpolation of the
sequence Xm = Φ(Um), and Φ(uh) is the image of the linear interpolation of the
sequence Um. However, we can estimate the difference xh − Φ(uh).

Lemma 5.2. For all t ∈ [t0 + τ−, t0 + τ+] belonging to [tm, tm+1], we have

xh(t)− Φ
(
uh(t)

) ≤ 2C4C
2
3hmin(t− tm, tm+1 − t).

Proof. We observe that xh(tm) = Xm and that∣∣∣∣ ddt[xh(t)− Φ(uh(t))]
∣∣
t=tm+0

∣∣∣∣
=

∣∣∣∣Φ(Um+1)− Φ(Um)− hDΦ(Um)V m

h

∣∣∣∣ ≤ hC2
3C4.

Moreover, for all t ∈ [tm, tm+1)∣∣∣∣ d2

dt2

[
xh(t)− Φ

(
uh(t)

)]∣∣∣∣ = ∣∣D2Φ
(
Um + (t− tm)V

m
)
V m ⊗ V m

∣∣ ≤ 2C2
3C4.

Therefore, a straightforward integration yields∣∣xh(t)− Φ(uh(t))∣∣ ≤ C2
3C4

(
h(t− tm) + (t− tm)

2
)
,

which implies ∣∣xh(t)− Φ(uh(t))∣∣ ≤ 2C2
3C4h(t− tm).

We can write the analogous estimate on the interval [t, tm+1), which concludes the
proof.
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As a consequence of Lemma 5.2 we obtain

∀t ∈ [t0 + τ−, t0 + τ+], x(t) = Φ
(
u(t)
)

and

∀t ∈ (t0 + τ−, t0 + τ+), ẋ(t± 0) = DΦ
(
u(t)
)
u̇(t± 0).

By virtue of relation (2.6),

u̇(t± 0) =
(
ṡ(t± 0)
0

)
+ ẏ(t± 0)N(u).

We can rewrite this relation in terms of pN and pT :

pT (t± 0) =M(u)

(
ṡ(t± 0)
0

)
, pN (t± 0) = ẏ(t± 0)M(u)N(u).

Lemma 5.1 implies ṡ(t+ 0) = ṡ(t− 0). In order to achieve the proof of relation (5.1),
it remains to prove the scalar relation

ẏ(t+ 0) = −eẏ(t− 0).(5.4)

But this relation is an immediate consequence of the precise analysis of the transmis-
sion of energy performed in the one dimensional case in [9] (see section 6).

6. Initial conditions. In this section we prove that the solution that we have
constructed satisfies the initial conditions; we work under the hypotheses stated at
the beginning of section 3.

Lemma 6.1. The function u satisfies the initial conditions

u(t0) = u0, p(t0 + 0) = p0.

Proof. By uniform convergence of uh to u, it is clear that u(t0) is equal to u0.
There remains to show that the initial condition on the impulsion is satisfied.

First assume that u0 belongs to the interior of K; then there exist h1 > 0 and
τ1 > 0 such that for all h ∈ (0, h1] and for all t− t0 ∈ [0, τ1]

|uh(t)− u0| ≤ 1

2
inf{|u0 − y| : y /∈ K}.

Then for all tm− t0 belonging to (0, τ1],
(
2Um− (1−e)Um−1+h2Fm

)
/(1+e) belongs

to K for h small enough; we have indeed∣∣∣∣2Um − (1− e)Um−1 + h2Fm

1 + e
− u0

∣∣∣∣
≤ 1− e

1 + e
hC3 +

1

2
inf{|u0 − y| : y /∈ K}+ h2

1 + e
C8,

which is strictly inferior to inf{|u0 − y| : y /∈ K} for h small enough. Thus the
constraints are not active for 0 ≤ tm ≤ τ1 and the convergence is a classical result.

In the second case, assume that u0 belongs to ∂K; we have taken admissible
initial conditions so that

〈p0, dφ(u0)〉∗u0
≥ 0.
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We use the construction and notations of section 2: Φ, Ψ, Xm, sm, ym, and ζm have
the same signification as there.

Taylor’s formula yields

ξ0 =
X1 −X0

h
= DΦ(u0)

U1 − u0

h
+O(h),

and the definition (1.14) of U1 gives

ξ0 = DΦ(u0)M(u0)
−1p0 +O(h).(6.1)

Write (
σ0

η0

)
= DΦ(u0)M(u0)

−1p0.

Then the normal and tangential components of the impulsion are given by

p0T =M(u0)

(
σ0

0

)
and p0N = η0M(u0)N(u0).

We wish to prove p(t0 + 0) = p0, which is equivalent to

ẋ(t0 + 0) =

(
ṡ(t0 + 0)
ẏ(t0 + 0)

)
=

(
σ0

η0

)
.

We recall relation (2.26). Relation (6.1) implies that

σ0 =
(
DΦ(u0)M(u0)

−1p0

)′
+O(h),

and together with (2.26), we obtain in the limit

ṡ(t) =
(
DΦ(u0)M(u0)

−1p0

)′
+O(t− t0),

i.e., ṡ(t0 +0) = σ0. Finally, using the same arguments as in the one dimensional case
(see Lemma 7.1 in [9]), we obtain

ẏ(t0 + 0) = η0,

which concludes the proof.

7. A priori estimates. In this section we prove that solutions of the problem
(1.3), (1.4a), (1.4b), (1.4c), (1.5a), (1.5b), (1.6), (1.8), and (1.9) satisfy an a priori
estimate on an interval with a nonempty interior.

Lemma 7.1. Let R be strictly larger than |p0|∗u0
. Then there exists τ(R) > 0 such

that for all solution u of (1.3), (1.4a), (1.4b), (1.4c), (1.5a), (1.5b), (1.6), (1.8), and
(1.9) defined on [t0, t0 + τ ], the following estimates hold:

∀t ∈ [t0, t0 +min(τ, τ(R))], |u(t)− u0| ≤ R, |p(t)|∗u(t) ≤ R.(7.1)

Proof. Once again, the main ideas of the proof are the same as in the one dimen-
sional case, but the estimates are more complex. The measure λ appearing in (1.4b)
can be decomposed in the sum of an atomic part λa and a diffuse part λd. At each
point of the support of λa we have

|p(t+ 0)|∗u(t) ≤ |p(t− 0)|∗u(t)(7.2)
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thanks to relation (1.6). On any interval (t1, t2) which does not intersect the support
of λa, we multiply relation (1.3) by u̇T on the left, and we find that

d

dt

1

2
u̇TM(u)u̇ = u̇T f(·, u, p) + 1

2
u̇T (DM(u)u̇)u̇.(7.3)

Define

E(u, p) =
1

2
〈p, p〉∗u, z = |p|∗u.

It is convenient to recall that

|p|∗u = |M(u)−1/2p| = |M(u)1/2u̇|.

Relations (7.2) and (7.3) imply that in the sense of measures

zż = Ė ≤ u̇T f(·, u, p) + 1
2
u̇T
(
DM(u)u̇

)
u̇.(7.4)

Our purpose now is to transform (7.4) into a differential inequality. Let χ(u) be the
norm of the bilinear mapping

(v1, v2) �→M(u)−1/2(DM(u)M(u)−1/2v1)M(u)
−1/2v2.

With this definition, ∣∣u̇T (DM(u)u̇
)
u̇
∣∣ ≤ χ(u)z3.

We write now

u̇T f(t, u, p) = u̇TM(u)1/2M(u)−1/2f(t, u, p)

= u̇TM(u)1/2
[
M(u)−1/2f(t, u, p)−M(u0)

−1/2f(t, u0, 0) +M(u0)
−1/2f(t, u0, 0)

]
.

Define

g(t) = |M(u0)
−1/2f(t, u0, 0)|.

Fix R > |p0|∗u0
and let ω(R) be the Lipschitz constant of (u, p) �→M(u)−1/2f(t, u, p)

for t ∈ [0, T ] and max(|u− u0|, |p|∗u) ≤ R; more precisely,

ω(R) = sup

{ |M(u1)
−1/2f(t, u1, p1)−M(u2)

−1/2
f(t, u2, p2)|

|u1 − u2| + |p1 − p2| : 0 ≤ t ≤ T,

max(|u1 − u0|, |u2 − u0|, |p1|∗u1
, |p2|∗u2

) ≤ R, u1 �= u2 or p1 �= p2

}
.

By construction, ω is continuous and is an increasing function of τ and R.
If t0 ≤ t ≤ t0+ τ and if max(|u(t)−u0|, |p(t)|∗u(t)) ≤ R on [t0, t0+ τ ], we have the

inequality ∣∣u̇T f(·, u, p)∣∣ ≤ z
(
g + ω(R)(|u− u0| + |p|)

)
.
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But we can estimate u(t)− u0:

|u(t)− u0| ≤
∫ t

t0

|u̇(s)| ds ≤
∫ t

t0

‖M(u)−1/2‖z ds.

Therefore we have the estimate

|u̇T f(·, u, p)| ≤ zg + zω(R)

(∫ t

t0

‖M(u)−1/2‖z ds+ ‖M(u)1/2‖z
)
,

and we conclude that z satisfies the differential inequality

ż ≤ g + ω(R)

[∫ t

t0

‖M(u)−1/2‖z ds+ ‖M(u)1/2‖z
]
+
1

2
χ(u)z2.

Set

α = sup
{‖M(u)1/2‖ : |u− u0| ≤ R

}
,(7.5)

β = sup
{‖M(u)−1/2‖ : |u− u0| ≤ R

}
,(7.6)

γ = 2 sup
{
χ(u) : |u− u0| ≤ R

}
.

While t ≤ t0+τ and max(|u(t)−u0|, |p(t)|∗u(t)) ≤ R, z satisfies the following differential
inequality:

ż ≤ g + ω(R)

[
β

∫ t

t0

z ds+ αz

]
+ γz2.(7.7)

Consider the integrodifferential equation

ẏ = g + ω(R)

(
β

∫ t

t0

y ds+ αy

)
+ γ|y|2,(7.8)

with the initial condition y(t0) = z(t0). It has a unique maximal solution which blows
up in finite time, as soon as γ is strictly positive and sup|g| is strictly positive. Let
τ(R) ∈ (0, T − t0] be the largest time for which

∀t ∈ [t0, t0 + τ(R)], y(t) ≤ R, β

∫ t

t0

y ds ≤ R.

Such a number exists since y(t0) < R. Then we can compare the solution z of (7.7)
and the solution y of (7.8), and we find immediately that

∀t ∈ [t0, t0 +min(τ, τ(R))], z(t) ≤ y(t).(7.9)

This concludes the proof of the lemma.

8. Global results. We summarize the results obtained so far in the following
proposition.

Proposition 8.1. Assume that there exist strictly positive numbers τ , C3, and
h1 > 0, and a sequence of solutions of the numerical scheme defined by (1.13), (1.14),
(1.16), and (1.17), which satisfies the estimate (3.1). Then it is possible to extract
from the sequence uh defined by (4.1) a subsequence which converges to a solution of
(1.3), (1.4a), (1.4b), (1.4c), (1.5a), (1.5b), (1.6), (1.8), and (1.9). The convergence
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holds in the following sense: uh converges uniformly to u on [t0, t0+ τ ]; u̇h converges
to u̇ in L∞(t0, t0+τ) weakly ∗ and almost everywhere on [t0, t0+τ ]; and üh converges
to ü in the weak ∗ topology of measures. Moreover, for all τ̄ ∈ (0, τ ], we have the
following convergence:

lim sup
h↓0

sup
{|V m|Um : t0 ≤ tm ≤ t0 + τ

}
≤ ess sup{|u̇(t)|u(t) : t0 ≤ t ≤ t0 + τ

}
.

(8.1)

Proof. The proof of this theorem is for the most part identical to the proof of
Proposition 9.1 of [9]; assume the last statement to be false; then there exist τ2 > 0,
γ > 0, and a sequence of time steps h and a sequence of integers m(h) such that
hm(h) converges to τ2 and∣∣∣V m(h)

∣∣∣2
Um(h)

≥ ess sup{|u̇(t)|2u(t) : t0 ≤ t ≤ t0 + τ
}
+ γ.(8.2)

Moreover, u(t0 + τ2) belongs to ∂K.
Choose a coordinate system such that the origin is at u(t0 + τ2); let Ψ be the

diffeomorphism defined at (2.5). In this case, DΨ(0) is given by (2.6). Define

βm =
(
ξm
)T

DΨ(0)TM(0)DΨ(0)ξm.

Let us compare βm to |V m|2Um ; it is convenient to define

Ṽ m = DΨ(0)ξm;

then

|V m|2Um − βm =
(
V m
)T

M(Um)V m − (Ṽ m
)T

M(0)Ṽ m

=
(
V m
)T (

M(Um)−M(0)
)
V m − (V m − Ṽ m

)
M(0)

(
V m − Ṽ m)

+ 2
(
V m − Ṽ m

)T
M(0)V m.

We observe that

|Um| ≤ ‖uh − u‖ + C3 |mh− τ2| , ‖Xm‖ ≤ Λ ‖Um‖
and that ∣∣∣V m − Ṽ m

∣∣∣ ≤ C4 ‖ξm‖
[
2Λ ‖Xm‖ + ∥∥Xm −Xm−1

∥∥].
These observations enable us to estimate the difference: there exists a constant C12

such that ∣∣∣|V m|2Um − βm
∣∣∣ ≤ C12

(
h+ ‖u− uh‖C0([t0,t0+τ ])

+ |mh− τ2|
)
.

We infer from (2.34) that there exists a constant C13 such that

βm+1 ≤ min(βm, βm−1
)
+ C13h.

We now use (8.2): we can see that for all m ≤ m(h),

βm(h) ≤ max(βm, βm−1
)
+ C13

(
m(h)−m

)
h,
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so that

max
(|V m|2Um ,

∣∣V m−1
∣∣2
Um−1

) ≥ βm(h) − C13

(
m(h)−m

)
h

− C12

(
h+ ‖u− uh‖C0([t0,t0+τ ])

+ |mh− τ2|
)
.

If τ4 < τ2 is such that

τ2 − τ4 ≤ γ/(4C13),

and if

C12

(
h+ ‖u− uh‖C0([t0,t0+τ ])

+ |mh− τ2|
) ≤ γ/4,

we can see that for all small enough h and all m ∈ {�τ4/h�, . . . ,m(h)} the following
estimate holds:

max
(|V m|Um ,

∣∣V m−1
∣∣
Um−1

) ≥ ess sup{|u̇(t)|2u(t) : t0 ≤ t ≤ t0 + τ
}
+ γ/4.(8.3)

But the function vh defined by

vh(t) = |V m|2Um if t ∈ [mh, (m+ 1)h)

converges almost everywhere on [t0, t0+ τ ] to |u̇(t)|2u(t); so does max(vh(t−h), vh(t)).

Therefore, in the limit, relation (8.3) leads to

lim inf
h↓0

ess sup
t∈[t0+τ4,t0+τ2]

vh(t) ≥ ess sup
{|u̇(t)|2u(t) : t0 ≤ t ≤ t0 + τ

}
+ γ/4,

which is a contradiction.
Once again, we have been tempted to work in straightened coordinates; but it

does not shorten the proof, and it introduces more notations. Therefore, it was hardly
worth the effort.

A corollary can be inferred immediately from this proposition and Theorem 2.3.
Corollary 8.2. For all admissible initial conditions u0 and p0, there exists

τ > 0 and a solution of (1.3), (1.4a), (1.4b), (1.4c), (1.5a), (1.5b), (1.6), (1.8), and
(1.9) defined on [t0, t0 + τ ].

Above we have proved the existence of a nonempty interval on which the numerical
scheme converges to a solution of (1.3), (1.4a), (1.4b), (1.4c), (1.5a), (1.5b), (1.6),
(1.8), and (1.9). On the other hand, Lemma 7.1 gives a priori estimates on the
solution of such a problem.

We couple now the a priori estimates with the local convergence result to obtain
a global result.

Theorem 8.3. Let R be strictly larger than |p0|∗u0
, and let τ(R) be given as

in Lemma 7.1. Then, for all small enough h, the solution Um of the numerical
scheme (1.13), (1.14), (1.16), (1.17) is defined on a discrete interval {0, . . . ,m(h)},
such that

lim inf
h→0

hm(h)→ τ(R);

moreover, the approximation uh converges to a solution u of the continuous time
equation, i.e., (1.3), (1.4a), (1.4b), (1.4c), (1.5a), (1.5b), (1.6), (1.8), and (1.9),
which is defined on [t0, t0 + τ(R)].
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Proof. Let C2 be given by

C2 = max
{
(3 |v0|u0

+ 2)
∥∥∥M(u0)

−1/2
∥∥∥ , 1 +Rmax

{∥∥∥M(u)−1/2
∥∥∥ ; |u− u0| ≤ R

}}
.

We know from Theorem 2.4 that there exist nonnegative numbers r1, τ2, C3, and h1

such that for all t̂0 ∈ [0, T ), for all u ∈ K ∩B(u0, R+1), and for all h ∈ (0, h1], if Û
0,

Û1 satisfy the condition E(u, r1, C2, h), then the numerical scheme (1.16)–(1.17) has
a unique solution which satisfies the estimate

∀m ∈ {0, . . . , �τ2/h�}
∣∣∣Ûm+1 − Ûm

∣∣∣ ≤ C3h.

Let {0, . . . ,m(h)} be the maximal discrete time interval for which the numerical
scheme (1.13), (1.14), (1.16), (1.17) has a solution satisfying

|V m| ≤ C3.

Let

τ1 = lim inf
h→0

hm(h).

From Theorem 2.1 we know that τ1 is at least equal to some number τ > 0. Assume
that τ1 is strictly inferior to τ(R). Proposition 8.1 and the a priori estimates proved
in Lemma 7.1 imply that, for h small enough and for all ε > 0,

∀tm ∈ [t0, t0 + τ1 − ε], Um ∈ B(u0, R+ 1),

and |V m|2Um ≤ ess sup{|u̇(t)|2u(t) : t0 ≤ tm ≤ t0 + τ1 − ε
} ≤ R2 + 1.

Since the above estimates hold for all ε > 0, we see that

∀tm ∈ [t0, t0 + τ1], Um ∈ B(u0, R+ 1),

and |V m|2 ≤ 1 +Rmax
{∥∥∥M(u)−1/2

∥∥∥ : |u− u0| ≤ R
}
.

We denote

�(h) = �(τ1 − τ2/2)/h�

and we re-initialize with the following choices:

t̂0 = t0 + �(h)h, Û0 = U �(h), Û1 = U �(h)+1.

With these data, we know that Ûm exists for 0 ≤ mh ≤ τ2, so that the numerical
solution Um is extended up to �(τ1 + τ2/2)/h� − 1, and therefore

lim inf
h→0

hm(h) ≥ τ1 + τ2/2,

which is a contradiction.
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Fig. 9.1. The discretization of the bar and the generalized coordinates.

9. A numerical experiment: The dropped bar of Stoianovici and Hur-
muzlu. In a recent paper [18], D. Stoianovici and Y. Hurmuzlu report experiments
on the dynamics of a slender impacting bar, where they performed measurements of
the apparent restitution coefficient of the bar.

The experiments consisted of dropping a bar on a rigid horizontal massive support:
the velocity vanished initially and the bar initially made an angle θ with respect to
the horizontal. This angle was varied in the experiments. The main conclusion of
[18] was that the apparent coefficient of restitution, calculated by taking the ratio of
the normal velocity of the impacting point after impact to the normal velocity of the
impacting point before impact, varied as a function of θ.

We use a mechanical model of a bar with a finite number of degrees of freedom:
the bar is discretized by a finite number n of identical cylindrical segments (of circular
section) and a half-sphere at the impacting end; the nearest segment to the impacting
half-sphere is joined by a linear spring; every other segment is joined to its neighbors
by three springs and an articulation; see Figure 9.1.

Let θi be the angle between the ith segment and the horizontal; let 2ξi be the
length of the ith segment plus the springs, except for the nth segment, where the
convention is displayed on Figure 9.1. Denote by (x0, y0) the coordinates of the
center of the impacting hemisphere. With these notations, the center of gravity of
the ith segment has coordinates

xi = x0 + 2

i−1∑
j=1

ξj cos θj + ξi cos θi, yi = y0 + 2

i−1∑
j=1

ξj sin θj + ξi sin θi.

We have made the following choice of generalized coordinates:

u =
(
x0, y0, θ1, . . . , θn, ξ1, . . . , ξn

)
.

Whenever convenient, we will denote by ui the ith coordinate of u.
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The kinetic energy and the potential energy are defined, respectively, by

T =
µ

2

(
ẋ2

0 + ẏ2
0

)
+

m

2

n∑
i=1

(
ẋ2
i + ẏ2

i ) +
Jθ̇2

1

2
+

I

2

n∑
i=1

θ̇2
i ,

U = µgy0 +mg

n∑
i=1

yi + k

n−1∑
i=1

(
ξi − L

)2
+

k

2

(
ξn − L

)2

+
Γ

2

n−1∑
i=1

(
θi − θi+1

)2
.

Here m is the mass of each segment, µ is the mass of the end hemisphere, and I and
J are appropriate moments of inertia.

We use all the physical constants chosen by the authors of [18], and the length
of the bar is 200 mm. Our discretization used n = 9 segments, i.e., 20 degrees of
freedom.

The set of constraints is

K = {u ∈ R
2n+2 : φ(u) = y0 −R ≥ 0}.

Let e2 be the second vector of the canonical basis of R
2n+2; let

v(u) =M(u)−1e2,

and denote by vi(u) the ith component of v(u). With these notations, the transmission
law at impact is given for all i = 1, . . . , 2n+ 2 by

u̇i(t+ 0) = u̇i(t− 0)− (1 + e)
vi(u)

v2(u)
u̇2(t− 0).

For i = 2, we find

u̇2(t+ 0) = −eu̇2(t− 0),
which is precisely Newton’s law for the impacting degree of freedom.

In the practical implementation of the scheme, we freeze the metric at Un, and
therefore we utilize the projection PnK onto K with respect to the metric defined by
M(Un); at each step of the scheme we solve

Un+1 + eUn−1

1 + e
= PnK

(
2Un − (1− e)Un−1 + h2Fn

1 + e

)

by Newton’s method. Observe that in our experiments we took e = 1.
In order to compare our ad hoc scheme to methods whose reliability is known, we

set up a detection method: we integrate the free flight by a Newmark scheme, and we
seek the impact time by looking for zeros of the parabolic interpolation of y0 −R.

In Figure 9.2, we show the apparent restitution coefficient obtained by our two
methods. There are many microimpacts; the apparent coefficient of restitution is the
ratio of the vertical velocity of the impacting point after all the microimpacts to the
vertical velocity before impact; we plot this ratio as a function of θ. In this simulation,
the ad hoc scheme is approximately 40% faster than the detection scheme.

We checked that numerically the total energy is conserved; the result plotted
here implies that a significant part of the global kinetic energy is transferred to the
continuous medium modes.

The reader is referred to [18] for a comparison with the experimental results.
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Fig. 9.2. The apparent coefficient of restitution as a function of the angle θ of the bar with the
horizontal.
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Abstract. In this paper we develop a local discontinuous Galerkin method for solving KdV
type equations containing third derivative terms in one and two space dimensions. The method is
based on the framework of the discontinuous Galerkin method for conservation laws and the local
discontinuous Galerkin method for viscous equations containing second derivatives; however, the
guiding principle for intercell fluxes and nonlinear stability is new. We prove L2 stability and a cell
entropy inequality for the square entropy for a class of nonlinear PDEs of this type in both one and
multiple space dimensions, and we give an error estimate for the linear cases in the one-dimensional
case. The stability result holds in the limit case when the coefficients to the third derivative terms
vanish; hence the method is especially suitable for problems which are “convection dominated,” i.e.,
those with small second and third derivative terms. Numerical examples are shown to illustrate
the capability of this method. The method has the usual advantage of local discontinuous Galerkin
methods, namely, it is extremely local and hence efficient for parallel implementations and easy for
h-p adaptivity.
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1. Introduction. In this paper we develop a local discontinuous Galerkin method
for solving KdV type equations containing third derivative terms in one and multiple
space dimensions. An example of such a PDE is the original KdV equation [20],

Ut + (αU + βU
2)x + σUxxx = 0,(1.1)

where α, β, and σ are constants. In this paper we use capital letters such as U , V ,
Q, etc. to denote the solutions to the PDEs and use lowercase letters to denote the
numerical solutions. Our scheme can be designed and proven stable for more general
nonlinearities, namely,

Ut + f(U)x + (r
′(U)g(r(U)x)x)x = 0(1.2)

in one space dimension for arbitrary (smooth) functions f , g, and r, and

Ut +

d∑
i=1

fi(U)xi +

d∑
i=1


r′i(U) d∑

j=1

gij(ri(U)xi)xj



xi

= 0(1.3)

in multiple space dimensions for arbitrary (smooth) functions fi, gij , and ri, i, j =
1, . . . , d.
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KdV type equations describe the propagation of waves in a variety of nonlinear,
dispersive media and appear often in applications. See, e.g., [1]. Various numerical
methods have been proposed and used in practice to solve this type of equation; see,
e.g., [4, 5, 19]. However, in many situations, such as in quantum hydrodynamic mod-
els of semiconductor device simulations [16] and in the dispersive limit of conservation
laws [21], the third derivative terms might have small or even zero coefficients in some
parts of the domain. We will call such cases “convection dominated.” The design of
stable, efficient, and high order methods, especially those for the “convection domi-
nated” cases, i.e., when the third derivative terms are small (|σ| � 1 in (1.1)), remains
a challenge, as the success of such methods depends crucially on correct treatment of
this singular limit. The situation is similar to convection diffusion problems. While
a large class of methods suitable for parabolic problems also works for convection
diffusion problems when diffusion dominates, these methods may not work well when
convection dominates.

The discontinuous Galerkin method is a class of finite element methods using
completely discontinuous piecewise polynomial space for the numerical solution and
the test functions. One certainly needs to use more degrees of freedom because of the
discontinuities at the element boundaries; however, this also gives one room to de-
sign suitable interelement boundary treatments (the so-called fluxes) to obtain highly
accurate and stable methods in many difficult situations.

The first discontinuous Galerkin method was introduced in 1973 by Reed and Hill
[24] in the framework of neutron transport (steady state linear hyperbolic equations).
Convergence for such methods was proven in, e.g., [22]. A major development of
the discontinuous Galerkin method was carried out by Cockburn et al. in a series
of papers [11, 10, 8, 12] in which a framework was established to easily solve non-
linear time dependent hyperbolic conservation laws (i.e., (1.2) and (1.3) without the
third derivative terms) using explicit, nonlinearly stable high order Runge–Kutta time
discretizations [26] and discontinuous Galerkin discretization in space with exact or
approximate Riemann solvers as interface fluxes and TVB (total variation bounded)
nonlinear limiters [25] to achieve nonoscillatory properties for strong shocks. See also
[17] for a discontinuous Galerkin method with additional “shock capturing” terms.

The discontinuous Galerkin method has found rapid applications in such diverse
areas as aeroacoustics, electromagnetism, gas dynamics, granular flows, magneto-
hydrodynamics, meteorology, modeling of shallow water, oceanography, oil recov-
ery simulation, semiconductor device simulation, transport of contaminant in porous
media, turbomachinery, turbulent flows, viscoelastic flows, and weather forecasting,
among many others. Good references for the discontinuous Galerkin method and its
recent development include the survey paper [9], other papers therein, and the review
paper [14].

The original discontinuous Galerkin method was designed to solve first order
hyperbolic problems. A simple example to illustrate its essential ideas is the linear
transport equation

Ut + Ux = 0.(1.4)

Let’s denote the mesh by Ij =[xj− 1
2
, xj+ 1

2
] for j = 1, . . . , N , with the center of the

cell denoted by xj =
1
2 (xj− 1

2
+xj+ 1

2
) and the size of each cell by ∆xj = xj+ 1

2
−xj− 1

2
.

We will denote ∆x = maxj ∆xj . If we multiply (1.4) by an arbitrary test function
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V (x), integrate over the interval Ij , and integrate by parts, we get∫
Ij

UtV dx−
∫
Ij

UVxdx+ U(xj+ 1
2
, t)V (xj+ 1

2
)− U(xj− 1

2
, t)V (xj− 1

2
) = 0.(1.5)

This is the starting point for designing the discontinuous Galerkin method. We replace
both the solution U and the test function V by piecewise polynomials of degree at
most k and denote them by u and v. That is, u, v ∈ V∆x, where

V∆x = {v : v is a polynomial of degree at most k for x ∈ Ij , j = 1, . . . , N} .(1.6)

When U and V in (1.5) are replaced by u and v, there is ambiguity in the last two
terms of (1.5) involving the boundary values at xj± 1

2
, as both the solution u and the

test function v are discontinuous exactly at these boundary points. The idea is to
treat these terms with an upwinding mechanism (information from characteristics)
borrowed from successful high resolution finite volume schemes. Thus u at the in-
terfaces xj± 1

2
is given by a single valued numerical flux ûj± 1

2
= u−

j± 1
2

, determined

from upwinding, and the v’s at the interfaces xj± 1
2
are given by the values taken from

inside the cell Ij , namely, v
−
j+ 1

2

and v+
j− 1

2

. Notice that we use v− and v+ to denote

the left and right limits of v, respectively, at the interface where v is discontinuous.
For more general nonlinear fluxes f(u), the only difference is that the single valued

flux f̂j+ 1
2
would be taken as a monotone flux depending on both u−

j+ 1
2

and u+
j+ 1

2

(exact or approximate Riemann solvers in the system case). The resulting method
of the method-of-lines ODE is then discretized by the nonlinearly stable high order
Runge–Kutta time discretizations [26]. Nonlinear TVB limiters [25] may be used if
the solution contains strong discontinuities. The scheme thus obtained, for solving
hyperbolic conservation laws ((1.2) and (1.3) without the third derivative terms), has
the following attractive properties:

1. It can be easily designed for any order of accuracy. In fact, the order of
accuracy can be locally determined in each cell, thus allowing for efficient p
adaptivity.

2. It can be used on arbitrary triangulations, even those with hanging nodes,
thus allowing for efficient h adaptivity.

3. It is extremely local in data communications. The evolution of the solution in
each cell needs to communicate only with the immediate neighbors, regardless
of the order of accuracy, thus allowing for efficient parallel implementations.
See, e.g., [3].

4. It has excellent provable nonlinear stability. One can prove a strong L2 sta-
bility and a cell entropy inequality for the square entropy, for the general
nonlinear cases, for any orders of accuracy on arbitrary triangulations in any
space dimension, without the need for nonlinear limiters [18]. See also [17]
for a nonlinear stability result of a discontinuous Galerkin method with extra
“shock capturing” terms.

In [13] these discontinuous Galerkin methods were generalized to solve convec-
tion diffusion problems containing second derivative terms. This generalization was
motivated by the successful numerical experiments of Bassi and Rebay [2] for the
compressible Navier–Stokes equations. The idea can be illustrated with the simple
heat equation

Ut − Uxx = 0(1.7)
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which we rewrite into a first order system

Ut −Qx = 0, Q− Ux = 0.(1.8)

We can then formally use the same discontinuous Galerkin method for the convection
equation to solve (1.8), resulting in the following scheme: Find u, q ∈ V∆x such that,
for all test functions v, w ∈ V∆x,∫

Ij

utvdx+

∫
Ij

qvxdx− q̂j+ 1
2
v−
j+ 1

2

+ q̂j− 1
2
v+
j− 1

2

= 0,

∫
Ij

qwdx+

∫
Ij

uwxdx− ûj+ 1
2
w−
j+ 1

2

+ ûj− 1
2
w+
j− 1

2

= 0.(1.9)

However, there is no longer an upwinding mechanism or characteristics to guide the
design of the fluxes ûj+ 1

2
and q̂j+ 1

2
. The crucial part in designing a stable and accurate

algorithm (1.9) is a correct design of these fluxes. In [13], criteria are given for these
fluxes to guarantee stability, convergence, and a suboptimal error estimate of order
k in the L2 norm for piecewise polynomials of degree k. The (most natural) central
fluxes

ûj+ 1
2
=
1

2

(
u−
j+ 1

2

+ u+
j+ 1

2

)
, q̂j+ 1

2
=
1

2

(
q−
j+ 1

2

+ q+
j+ 1

2

)
(1.10)

would satisfy these criteria and give a scheme which is indeed suboptimal in the order
of accuracy for odd k (i.e., the accuracy is order k rather than the expected order
k + 1 for odd k). This deficiency, however, is easily removed by a clever choice of
fluxes, proposed in [13]:

ûj+ 1
2
= u−

j+ 1
2

, q̂j+ 1
2
= q+

j+ 1
2

;(1.11)

i.e., we alternatively take the left and right limits for the fluxes in u and q (we could
of course also take the pair u+

j+ 1
2

and q−
j+ 1

2

as the fluxes). Notice that the evaluation

of (1.11) is simpler than that of the central fluxes in (1.10), and this easily generalizes
to multispace dimensions on arbitrary triangulations. The accuracy now becomes
the optimal order k + 1 for both even and odd k; see [6] for a proof of this in the
general h-p context. Notice that this alternating way of choosing fluxes may render
the resulting system nonsymmetric except for the P 0 case, although it still will be
positive definite. This is not a problem if the method is discretized explicitly in time or
if an implicit time discretization is solved by an iterative method suitable for positive
definite matrices.

The schemes thus designed for the heat equation (1.7), or in fact for the most
general multidimensional nonlinear convection diffusion equations (nonlinear in both
the first derivative convection part and the second derivation diffusion part), retain
all four nice properties listed above for the method used on convection equations.
Moreover, the appearance of the auxiliary variable q is superficial: when a local
basis is chosen in cell Ij , q is eliminated and the actual scheme for u takes a form
similar to that for convection alone. This is a major advantage of the scheme over
the traditional “mixed methods,” and it is the reason that the scheme is termed local
discontinuous Galerkin method in [13]. Even though the auxiliary variable q can be
locally eliminated, it does approximate the derivative of the solution u to the same
order of accuracy, thus matching the advantage of traditional “mixed methods” on
this.
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The purpose of this paper is to develop a similar local discontinuous Galerkin
method for the KdV type equations (1.1), (1.2), and (1.3) containing third derivative
terms. Our objective is to design a method retaining again all four nice properties
listed above for the method used on convection and convection diffusion equations,
plus having the feature of being local, namely, the auxiliary variables introduced to
approximate the first and second derivatives of the solution could be locally elimi-
nated.

The organization of the paper is as follows. In subsection 1.1 we give a short
“preview” of the proposed method on a simple linear equation to motivate the ideas.
In section 2 we describe the method for the one-dimensional case and prove its non-
linear L2 stability and a cell entropy inequality, as well as an error estimate for the
linear case. In section 3 the multiple space dimension case is considered, where the
nonlinear stability is given for the general triangulations. In section 4 we provide
several numerical examples to illustrate the capability of the method. Concluding
remarks and remarks about future work are given in section 5.

1.1. A preview of the method. We will give a “preview” of the method on
the simple linear equation

Ut + Uxxx = 0(1.12)

which we again rewrite into a first order system

Ut + Px = 0, P −Qx = 0, Q− Ux = 0.(1.13)

We can then formally use the same discontinuous Galerkin method for the convection
equation to solve (1.13), resulting in the following scheme: Find u, p, q ∈ V∆x such
that, for all test functions v, w, z ∈ V∆x,∫

Ij

utvdx−
∫
Ij

pvxdx+ p̂j+ 1
2
v−
j+ 1

2

− p̂j− 1
2
v+
j− 1

2

= 0,

∫
Ij

pwdx+

∫
Ij

qwxdx− q̂j+ 1
2
w−
j+ 1

2

+ q̂j− 1
2
w+
j− 1

2

= 0,(1.14)

∫
Ij

qzdx+

∫
Ij

uzxdx− ûj+ 1
2
z−
j+ 1

2

+ ûj− 1
2
z+
j− 1

2

= 0.

However, the fluxes p̂j+ 1
2
, q̂j+ 1

2
, and ûj+ 1

2
must be designed based on guiding prin-

ciples different than the first order convection or second order diffusion cases. The
crucial part in designing a stable and accurate algorithm (1.14) is again a correct
design of these fluxes. It turns out that the simple choices

p̂j+ 1
2
= p+

j+ 1
2

, q̂j+ 1
2
= q+

j+ 1
2

, ûj+ 1
2
= u−

j+ 1
2

,(1.15)

which are partially motivated by upwinding (a simple wave solution to (1.12) moves
from right to left), would guarantee stability and convergence, as will be proven later
in this paper and also clearly seen in Example 4.1 in section 4.

We remark that the choice for the fluxes (1.15) is not unique. In fact, the crucial
part is to take p̂ and û from opposite sides and to take q̂ from the right. Thus

p̂j+ 1
2
= p−

j+ 1
2

, q̂j+ 1
2
= q+

j+ 1
2

, ûj+ 1
2
= u+

j+ 1
2

would also work.
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2. The local discontinuous Galerkin method for the one-dimensional
case. In this section, we present and analyze the local discontinuous Galerkin method
for the following one-dimensional nonlinear problem:

Ut + f(U)x + (r
′(U)g(r(U)x)x)x = 0, 0 ≤ x ≤ 1,(2.1)

with an initial condition

U(x, 0) = U0(x), 0 ≤ x ≤ 1,(2.2)

and periodic boundary conditions. Here f(U), r(U), and g(Q) (with Q defined by
(2.3) below) are arbitrary (smooth) nonlinear functions. Notice that the assumption
of periodic boundary conditions is for simplicity only and is not essential: the method
can be easily designed for nonperiodic boundary conditions. Also notice that both
the linear equation (1.12) and the KdV equation (1.1) are special cases of (2.1).

To define the local discontinuous Galerkin method, we first introduce the new
variables

Q = r(U)x, P = g(Q)x(2.3)

and rewrite (2.1) as a first order system:

Ut + (f(U) + r
′(U)P )x = 0, P − g(Q)x = 0, Q− r(U)x = 0.(2.4)

The local discontinuous Galerkin method is obtained by discretizing the above system
with the discontinuous Galerkin method. This is achieved by multiplying the three
equations in (2.4) by three test functions v, w, z, respectively, integrating over the
interval Ij , and integrating by parts. We also need to pay special attention to the
boundary terms resulting from the procedure of integration by parts, as mentioned
in the previous section. Thus we seek piecewise polynomial solutions u, p, q ∈ V∆x,
where V∆x is defined in (1.6) and consists of piecewise polynomials of degree up to k
in each cell Ij such that for all test functions v, w, z ∈ V∆x we have, for 1 ≤ j ≤ N ,∫
Ij

utvdx−
∫
Ij

(f(u) + r′(u)p)vxdx+
(
f̂ + r̂′p̂

)
j+ 1

2

v−
j+ 1

2

−
(
f̂ + r̂′p̂

)
j− 1

2

v+
j− 1

2

= 0,

∫
Ij

pwdx+

∫
Ij

g(q)wxdx− ĝj+ 1
2
w−
j+ 1

2

+ ĝj− 1
2
w+
j− 1

2

= 0,(2.5)

∫
Ij

qzdx+

∫
Ij

r(u)zxdx− r̂j+ 1
2
z−
j+ 1

2

+ r̂j− 1
2
z+
j− 1

2

= 0.

The only ambiguity in the algorithm (2.5) now is the definition of the numerical fluxes
(the “hats”), which should be designed based on guiding principles different than the
first order convection or second order diffusion cases to ensure stability. It turns out
that we can take the following simple choices (we omit the subscripts j ± 1

2 in the
definition of the fluxes, as all quantities are evaluated at the interfaces xj± 1

2
):

f̂ = f̂(u−, u+), r̂′ =
r(u+)− r(u−)
u+ − u− , p̂ = p+, ĝ = ĝ(q−, q+), r̂ = r(u−),

(2.6)

where f̂(u−, u+) is a monotone flux for f(u), namely, f̂(u−, u+) is a Lipschitz contin-
uous function in both arguments u− and u+, is consistent with f(u) in the sense that
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f̂(u, u) = f(u), and is a nondecreasing function in u− and a nonincreasing function
in u+. Likewise, −ĝ(q−, q+) is a monotone flux for −g(q), namely, ĝ(q−, q+) is a Lip-
schitz continuous function in both arguments q− and q+, is consistent with g(q) in the
sense that ĝ(q, q) = g(q), and is a nonincreasing function in q− and a nondecreasing
function in q+. Examples of monotone fluxes which are suitable for discontinuous
Galerkin methods can be found in, e.g., [11]. We could, for example, use the simple
Lax–Friedrichs flux

f̂(u−, u+) =
1

2

(
f(u−) + f(u+)− α(u+ − u−)) , α = max

u
|f ′(u)|,(2.7)

where the maximum is taken over a relevant range of u. The algorithm is now well
defined.

We remark that the choice for the fluxes (2.6) is not unique. In fact, the crucial
part is to take p̂ and r̂ from opposite sides. Thus

f̂ = f̂(u−, u+), r̂′ =
r(u+)− r(u−)
u+ − u− , p̂ = p−, ĝ = ĝ(q−, q+), r̂ = r(u+)

would also work. Since information for the third order equation (2.1) flows in preferred
directions, the choice of monotone fluxes above is heuristically justified based on
upwind considerations. Of course, the rigorous justification for the choice of fluxes
comes from the stability results to be proven in Proposition 2.1 below.

We also remark that the algorithm (2.5)–(2.6) is very easy for numerical imple-
mentation. Given u, one first uses the third equation in (2.5) to obtain q. This is
achieved locally: q in Ij can be obtained with the information of u in the cells Ij and
Ij−1. The second equation in (2.5) is then used to obtain p locally: p in Ij can be
obtained with the information of q in (at most) the cells Ij , Ij−1, and Ij+1. Finally,
the update of the solution u is obtained using the first equation in (2.5), again locally,
namely, the update of u in Ij can be obtained with the information of u in (at most)
the cells Ij , Ij−1, and Ij+1 and that of p in the cells Ij and Ij+1.

We have the following “cell entropy inequality” for the scheme (2.5)–(2.6). This
is a generalization of the cell entropy inequality obtained in [18] for the discontinuous
Galerkin method applied to hyperbolic conservation laws ((2.1) with g(q) = 0).

Proposition 2.1 (cell entropy inequality). There exist numerical entropy fluxes
Ĥj+ 1

2
such that the solution to the scheme (2.5)–(2.6) satisfies

d

dt

∫
Ij

(
u2(x, t)

2

)
dx+

(
Ĥj+ 1

2
− Ĥj− 1

2

)
≤ 0.(2.8)

Proof. We sum up the three equalities in (2.5) and introduce the notation

Bj(u, p, q; v, w, z) =

∫
Ij

utvdx−
∫
Ij

(f(u) + r′(u)p)vxdx+
(
f̂ + r̂′p̂

)
j+ 1

2

v−
j+ 1

2

−
(
f̂ + r̂′p̂

)
j− 1

2

v+
j− 1

2

+

∫
Ij

pwdx+

∫
Ij

g(q)wxdx− ĝj+ 1
2
w−
j+ 1

2

(2.9)

+ĝj− 1
2
w+
j− 1

2

+

∫
Ij

qzdx+

∫
Ij

r(u)zxdx− r̂j+ 1
2
z−
j+ 1

2

+ r̂j− 1
2
z+
j− 1

2

.

Clearly, the solutions u, p, q of the scheme (2.5)–(2.6) satisfy

Bj(u, p, q; v, w, z) = 0(2.10)
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for all v, w, z ∈ V∆x. We then take

v = u, w = q, z = −p

to obtain, after some algebraic manipulations,

0 = Bj(u, p, q;u, q,−p) = d

dt

∫
Ij

(
u2(x, t)

2

)
dx+

(
Ĥj+ 1

2
− Ĥj− 1

2

)
+Θj− 1

2

with the numerical entropy flux Ĥ defined by

Ĥ = −F (u−) +G(q−)− r(u−)p− +
(
f̂ + r̂′p̂

)
u− − ĝq− + r̂p−(2.11)

and the extra term Θ given by

Θ = [F (u)−G(q) + r(u)p]−
(
f̂ + r̂′p̂

)
[u] + ĝ[q]− r̂[p].

Here

F (u) =

∫ u

f(u)du, G(q) =

∫ q

g(q)dq,

and

[v] = v+ − v−

denotes the jump of v. Notice that we have dropped the subscripts about the location
j − 1

2 or j +
1
2 , as all these quantities are defined at a single interface and depend only

on the left and right values at that interface. Now all we need to do is verify Θ ≥ 0.
To this end, we notice that, with the definition (2.6) of the numerical fluxes and with
simple algebraic manipulations, we easily obtain

[r(u)p]− r̂′p̂[u]− r̂[p] = 0,

and hence

Θ = [F (u)]− f̂ [u]− [G(q)] + ĝ[q]

=

∫ u+

u−

(
f(s)− f̂(u−, u+)

)
ds−

∫ q+

q−

(
g(s)− ĝ(q−, q+)) ds(2.12)

≥ 0,

where the last inequality follows from the monotonicity of the fluxes f̂ and −ĝ. This
finishes the proof.

Now the L2 stability of the method is a trivial corollary as follows.
Corollary 2.2 (L2 stability). The solution to the scheme (2.5)–(2.6) satisfies

the L2 stability

d

dt

∫ 1

0

(
u2(x, t)

2

)
dx ≤ 0.(2.13)

Proof. For the proof, we simply add up (2.8) over j.
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Regarding time discretizations, if we denote the semidiscrete local discontinuous
Galerkin method (2.5)–(2.6) by

ut = R(u),

then the following implicit θ scheme:

un+1 − un
∆t

= R(un+θ), un+θ = (1− θ)un + θun+1(2.14)

also will satisfy the same cell entropy inequality and L2 stability as long as 1
2 ≤

θ ≤ 1. Notice that this includes the first order backward Euler and second order
Crank–Nicholson implicit time discretizations as special cases. See [18] for the purely
hyperbolic case.

Proposition 2.3 (implicit time discretization). The cell entropy inequality and
the L2 stability also hold for the time discretization (2.14) with 1

2 ≤ θ ≤ 1 for the
scheme (2.5)–(2.6). That is,∫

Ij

(
(un+1(x))2 − (un(x))2

2∆t

)
dx+ Ĥn+θ

j+ 1
2

− Ĥn+θ
j− 1

2

≤ 0(2.15)

and ∫ 1

0

(un+1(x))2dx ≤
∫ 1

0

(un(x))2dx.(2.16)

Proof. If we take the test functions at n + θ, e.g., v = un+θ given by (2.14), we
obtain, just as before,∫

Ij

un+1(x)− un(x)
∆t

un+θdx+ Ĥn+θ
j+ 1

2

− Ĥn+θ
j− 1

2

≤ 0,

which can be rewritten as

∫
Ij

(
(un+1(x))2 − (un(x))2

2∆t

)
dx

+Ĥn+θ
j+ 1

2

− Ĥn+θ
j− 1

2

+

(
θ − 1

2

)∫
Ij

(
(un+1(x)− un(x))2

∆t

)
dx ≤ 0.

Thus, a sufficient condition for obtaining the cell entropy inequality (2.15) is just
θ ≥ 1

2 . Again, (2.16) is obtained simply by adding up (2.15) over j.
The stability result obtained here can be used to get an error estimate in L2 for

the numerical solution u when (2.1) is linear. Without loss of generality, we may take
f(U) = U , g(Q) = Q, and r(U) = U , resulting in the equation

Ut + Ux + Uxxx = 0.(2.17)

We have the following result, where C here and below denotes a generic constant
which may be of different values at different locations.

Proposition 2.4 (error estimate). The error for the scheme (2.5)–(2.6) applied
to the linear PDE (2.17) satisfies√∫ 1

0

(U(x, t)− u(x, t))2 dx ≤ C∆xk+ 1
2 ,(2.18)

where the constant C depends on the first k + 3 derivatives of U and time t.
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Proof. First, we notice that, in this linear case, most monotone fluxes simply
become upwinding,

f̂(u−, u+) = u−, ĝ(q−, q+) = q+,

and this is what we will assume. It is then easy to work out the exact form of Θ in
(2.12) for the cell entropy inequality to be

Θ =
1

2

(
[u]2 + [q]2

)
.(2.19)

We now notice that the exact solution of the PDE (2.17), U , Q = Ux, and P = Uxx
clearly satisfies

Bj(U,P,Q; v, w, z) = 0

for all v, w, z ∈ V∆x, where Bj is defined by (2.9). Taking the difference between the
above equality and (2.10), we obtain the error equation

Bj(U − u, P − p,Q− q; v, w, z) = 0(2.20)

for all v, w, z ∈ V∆x. As usual, this error equation is the basic starting point of error
estimates.

We now take

v = SU − u, w = PQ− q, z = p− PP(2.21)

in the error equation (2.20). Here P is the standard L2 projection into V∆x; that is,
for each j, ∫

Ij

(Pr(x)− r(x))s(x)dx = 0 ∀s ∈ P k,

where P k denotes the space of all polynomials of degree at most k. In other words,
the difference between the projection Pr and the original function r is orthogonal to
all polynomials of degree up to k in each interval. S is a special projection into V∆x

which satisfies, for each j,∫
Ij

(Sr(x)− r(x))s(x)dx = 0 ∀s ∈ P k−1 and Sr(x−j+1/2) = r(x
−
j+1/2);

in other words, the difference between the projection Sr and the original function r is
orthogonal to all polynomials of degree up to k−1 in each interval, and the projection
agrees with the function at the right boundary in each interval. This special projection
is needed for U because we have no control over the jumps of p in the cell entropy
inequality; see (2.19). Substituting (2.21) into the error equation (2.20) and moving
terms, we obtain

Bj(v,−z, w; v, w, z) = Bj(ve,−ze, we; v, w, z),(2.22)

where v, w, z are given by (2.21), and ve, we, ze are given by

ve = SU − U, we = PQ−Q, ze = P − PP.(2.23)
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By the same argument as that used for the cell entropy inequality, the left-hand side
of (2.22) becomes

Bj(v,−z, w; v, w, z) = d

dt

∫
Ij

(
v2

2

)
dx+

(
Ĥj+ 1

2
− Ĥj− 1

2

)
+Θj− 1

2
,(2.24)

where, by (2.19),

Θj− 1
2
=
1

2

(
[v]2j− 1

2
+ [w]2j− 1

2

)
.(2.25)

The right-hand side of (2.22) can be written out as

Bj(v
e,−ze, we; v, w, z) = I + II + III + IV,(2.26)

where

I =
∫
Ij

vet vdx,(2.27)

II = −
∫
Ij

zewdx+

∫
Ij

wezdx−
∫
Ij

(ve − ze)vxdx+
∫
Ij

wewxdx+

∫
Ij

vezxdx,

(2.28)

III = −
((
vej− 1

2

)−
−
(
zej− 1

2

)+
)
[v]j− 1

2
+
(
wej− 1

2

)+

[w]j− 1
2
+
(
vej− 1

2

)−
[z]j− 1

2
,

(2.29)

and

IV = ĥj+ 1
2
− ĥj− 1

2
(2.30)

for some flux function ĥ. Notice that v, w, z are given by (2.21) and ve, we, xe are
given by (2.23), respectively.

Now, by using the simple inequality ab ≤ 1
2 (a

2 + b2), and the standard approxi-
mation theory on vet = (SU − U)t (see, e.g., [7]), we have

I ≤ C∆x2k+3
j +

∫
Ij

(
v2

2

)
dx.

Because P is a local L2 projection, and S, even though not a local L2 projection, does
have the property that w − Sw is locally orthogonal to all polynomials of degree up
to k − 1, all the terms in II are actually zero. The last term in III is zero because
of the special interpolating property of the projection S. An application of the simple
inequality ab ≤ 1

2 (a
2+ b2) for the first two terms in III and standard approximation

theory on the point values of ve − ze = (SU − U) + (PP − P ) and of we = PQ−Q
(see, e.g., [7]) then gives

III ≤ C(∆x2k+2
j−1 +∆x2k+2

j ) +
1

4

(
[v]2 + [w]2

)
.

Finally, IV only contains flux difference terms which will vanish upon a summation
in j.
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Combining all these and summing over j we obtain the inequality

d

dt

∫ 1

0

(
v2

2

)
dx+

1

4

(
[v]2 + [w]2

) ≤ C∆x2k+1 +

∫ 1

0

(
v2

2

)
dx.

An integration in t plus the standard approximation theory on ve = SU − U then
gives the desired error estimate (2.18).

We remark that the actual numerical computations in section 4 demonstrate that
the order of accuracy is k + 1 in both L2 and L∞ norms. It is not clear if the error
estimate (2.18) is sharp. The trick to getting the extra half-order in the error estimate
is through the choice of projections in (2.23), similar to S there but satisfying the
point condition on the left boundary. This would eliminate the boundary terms in
III but would cause problems in the control of volume integrals in II. Notice that
for first order linear hyperbolic equations, the optimal order of accuracy is k+1 in one
dimension, and also in tensor product multidimensional cases [22], while the optimal
order is k + 1/2 for general multidimensional cases [23].

3. The local discontinuous Galerkin method for the multiple dimen-
sional case. In this section, we generalize the scheme discussed in the previous sec-
tion to multiple space dimensions x = (x1, . . . , xd). We solve the following nonlinear
problem:

Ut +

d∑
i=1

fi(U)xi +

d∑
i=1


r′i(U) d∑

j=1

gij(ri(U)xi)xj



xi

= 0, 0 ≤ xi ≤ 1, i = 1, . . . , d,

(3.1)

with an initial condition

U(x, 0) = U0(x), 0 ≤ xi ≤ 1, i = 1, . . . , d,(3.2)

and periodic boundary conditions. Here fi(U), ri(U), and gij(Q) are arbitrary
(smooth) nonlinear functions. Notice that the assumption of a box geometry and
periodic boundary conditions is for simplicity only and is not essential: the method
can be easily designed for arbitrary domain and for nonperiodic boundary conditions.

Let’s denote a triangulation of the unit box by T∆x, consisting of nonoverlapping
polyhedra completely covering the unit box. Hanging nodes are allowed. Here ∆x
measures the longest edge of all polyhedra in T∆x. We again denote the finite element
space by

Vd∆x = {v : v is a polynomial of degree at most k for x ∈ K ∀K ∈ T∆x} .(3.3)

Similar to the one-dimensional case, to define the local discontinuous Galerkin
method we first introduce the new variables

Qi = ri(U)xi , Pi =

d∑
j=1

gij(Qi)xj , i = 1, . . . , d,(3.4)

and rewrite (3.1) as a first order system:

Ut +

d∑
i=1

(fi(U) + r
′
i(U)Pi)xi = 0,

Pi −
d∑
j=1

gij(Qi)xj = 0, Qi − ri(U)xi = 0, i = 1, . . . , d.(3.5)
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The local discontinuous Galerkin method is obtained by discretizing the above system
with the discontinuous Galerkin method. This is achieved by multiplying the equa-
tions in (3.5) by test functions v, wi, zi for i = 1, . . . , d, respectively, integrating over
an element K ∈ T∆x, and integrating by parts. We again need to pay special attention
to the boundary terms resulting from the procedure of integration by parts, as in the
one-dimensional case. Thus we seek piecewise polynomial solutions u, pi, qi ∈ V d∆x,
where V d∆x is defined in (3.3), such that for all test functions v, wi, zi ∈ V d∆x we have∫

K

utvdx−
d∑
i=1

∫
K

(fi(u) + r
′
i(u)pi)vxidx+

∫
∂K

ĥnK
vintKds = 0,

∫
K

piwidx+

d∑
j=1

∫
K

gij(qi)(wi)xj
dx−

∫
∂K

ĝi,nK
wintKds = 0, i = 1, . . . , d,(3.6)

∫
K

qizidx+

∫
K

ri(u)(zi)xidx−
∫
∂K

r̂i,nK
zintKds = 0, i = 1, . . . , d,

where ∂K is the boundary of element K, and the numerical fluxes (the “hats”) are
defined similar to the one-dimensional cases, namely,

ĥnK
= f̂nK ,K(u

intK , uextK ) +

∑d
i=1

(
ri(u

extK )− ri(uintK )
)
p+i ni,K

uextK − uintK ,

ĝi,nK
= ̂gi,nK ,K(q

intK , qextK ), r̂i,nK
= ri(u

−)ni,K .(3.7)

Here nK = (n1,K , . . . , nd,K) is the outward unit normal for element K along the
element boundary ∂K, uintK denotes the value of u evaluated from inside the element
K, and uextK denotes the value of u evaluated from outside the element K (inside
the neighboring element). On the other hand, p+ denotes the value of p evaluated
from a predesignated “plus” side along an edge e, which is always the boundaries of
two neighboring elements. For example, we could choose a fixed vector β, which is
not parallel with any normals of element boundaries, and then designate the “plus”
side to be the side at the end of the arrow of the normal n with n · β > 0; see

Figure 3.1. f̂nK ,K(u
intK , uextK ) is a monotone flux for fnK

(u) =
∑d
i=1 fi(u)ni,K ,

namely, f̂nK ,K(u
intK , uextK ) is a Lipschitz continuous function in both arguments

uintK and uextK , is consistent with fnK
(u) in the sense that f̂nK

(u, u) = fnK
(u), and

is a nondecreasing function in uintK and a nonincreasing function in uextK . Moreover,
it is conservative (that is, there is only one flux at each edge shared by two elements,
added to the residue for one and subtracted from the residue for another), namely,

f̂nK ,K(a, b) = − ̂fnK′ ,K′(b, a),

where K and K ′ share the same edge where the flux is computed and hence nK′ =
−nK . Likewise, − ̂gi,nK ,K(q

intK
i , qextKi ) is a monotone flux for −gi,nK

(qi) = −
∑d
j=1

gij(q)nj,K . Notice that we can again use the one-dimensional monotone fluxes as in
the previous section. For example, we can use the simple Lax–Friedrichs flux

(3.8)

f̂nK ,K(u
intK , uextK ) =

1

2

(
d∑
i=1

(
fi(u

intK ) + fi(u
extK )

)
ni,K − α(uextK − uintK )

)
,

α = max
u
|f ′nK

(u)|,
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Fig. 3.1. Illustration of the definition of “plus” and “minus” sides determined by a pre-
determined vector β.

where the maximum is taken over a relevant range of u. The algorithm is now well
defined.

Again, the algorithm (3.6)–(3.7) is very easy for numerical implementation. Given
u, one first locally solves for the qi, then locally solves for the pi, and finally locally
solves for the update of u. All the advantages listed for the method for the one-
dimensional case are still valid in this multiple dimensional case.

We still have the following “cell entropy inequality” for the scheme (3.6)–(3.7).
The proof follows along the same lines as that for the one-dimensional case, so we will
omit it.

Proposition 3.1 (cell entropy inequality). There exist conservative numerical

entropy fluxes ĤnK ,K such that the solution to the scheme (3.6)–(3.7) satisfies

d

dt

∫
K

(
u2(x, t)

2

)
dx+

∫
∂K

ĤnK ,Kds ≤ 0.(3.9)

The definition of the numerical entropy flux ĤnK ,K is similar to (2.11) for the
one-dimensional case and is a bit longer in notation; thus we do not write it out. It
is not important what the exact form of this numerical entropy flux is, as long as it
is a “flux”, i.e., shared by both sides of the edge and coming into the edge from one
cell and out to the other, thus summing to zero when both cells are considered.

The L2 stability of the method is then again a trivial corollary by summing up
the cell entropy inequalities over K as follows.

Corollary 3.2 (L2 stability). The solution to the scheme (3.6)–(3.7) satisfies
the L2 stability

d

dt

∫
Ω

(
u2(x, t)

2

)
dx ≤ 0.(3.10)
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The same cell entropy inequality also holds for the implicit time discretizations
as follows.

Proposition 3.3 (implicit time discretization). The cell entropy inequality and
the L2 stability also hold for the time discretization (2.14) with 1

2 ≤ θ ≤ 1 for the
scheme (3.6)–(3.7). That is,∫

K

(
(un+1(x))2 − (un(x))2

2∆t

)
dx+

∫
∂K

̂Hn+θ
nK ,K

ds ≤ 0(3.11)

and ∫
Ω

(un+1(x))2dx ≤
∫

Ω

(un(x))2dx.(3.12)

Unfortunately, we could not obtain an error estimate similar to the one-dimensional
case because of the lack of a similar suitable projection S. However, numerical ex-
amples in the next section verify that the accuracy holds as in the one-dimensional
case. We remark that we could change the scheme to add an extra penalty term
for the jumps of p (i.e., modifying the definition of the flux r̂ in (2.6) by adding an
additional term −c[p], where c is a positive constant); then the error estimate proof
would proceed in a straightforward way since there will be an additional [p]2 term
in the definition of Θ in (2.19). However, the resulting scheme would be much less
attractive because it will lose the local solvability property for q and p. In order to
get q and p one would then need to solve a global system, thus losing the main ad-
vantage of a local discontinuous Galerkin method. We do not give further details of
this modified scheme here because it has little practical value, but interested readers
can find similar issues addressed for the convection diffusion problems in [13].

4. Numerical examples. In this section we provide a few preliminary numeri-
cal examples to illustrate the accuracy and capability of the method. Attention has not
been paid to efficiency in time discretizations, so an explicit third order Runge–Kutta
method [26] is used, with small time steps so that spatial errors always dominate.
We have also computed them with implicit time discretizations obtaining essentially
the same results. Study of suitable implicit time discretizations which have efficient
iterative solvers maintaining the local structure of the method is the subject of future
work.

We would like to illustrate through these numerical examples the high order ac-
curacy of the methods for both one-dimensional and two-dimensional linear and non-
linear problems. We would also like to illustrate the good behavior of the method for
the so-called convection dominated cases, namely, the case where the coefficients of
the third derivative terms are small.

Example 4.1. We compute the solution of the linear one-dimensional equation

Ut + Uxxx = 0(4.1)

with an initial condition U(x, 0) = sin(x) and periodic boundary conditions (with 2π
periodicity). The exact solution is given by U(x, t) = sin(x+ t). Both uniform meshes
and nonuniform meshes are used. The nonuniform meshes in this and later examples
are a repeated pattern of 0.9∆x and 1.1∆x with an even number of elements. The L2

and L∞ errors, ||U − u||L2 and ||U − u||L∞ , and the numerical order of accuracy are
contained in Table 4.1 for the uniform mesh case and in Table 4.2 for the nonuniform
mesh case. We can clearly see that the method with P k elements gives a uniform
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Table 4.1
Ut + Uxxx = 0. U(x, 0) = sin(x). Periodic boundary conditions. L2 and L∞ errors. Uniform

meshes with N cells. Local discontinuous Galerkin methods with k = 0, 1, 2, 3. t = 1.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 2.2534E-01 1.2042E-01 0.91 6.2185E-02 0.95 3.1582E-02 0.98
L∞ 4.3137E-01 2.1977E-01 0.97 1.1082E-01 0.98 5.5376E-02 1.00

1 L2 1.7150E-02 4.2865E-03 2.00 1.0716E-03 2.00 2.6792E-04 1.99
L∞ 5.8467E-02 1.5757E-02 1.89 4.0487E-03 1.96 1.0210E-03 1.99

2 L2 8.5803E-04 1.0823E-04 2.98 1.3559E-05 2.99 1.6958E-06 3.00
L∞ 4.0673E-03 5.1029E-04 2.99 6.4490E-05 2.98 8.0722E-06 3.00

3 L2 3.3463E-05 2.1035E-06 3.99 1.3166E-07 3.99 8.2365E-09 3.99
L∞ 1.8185E-04 1.1157E-05 3.97 7.2362E-07 3.99 4.5593E-08 3.99

Table 4.2
Ut + Uxxx = 0. U(x, 0) = sin(x). Periodic boundary conditions. L2 and L∞ errors. Non-

uniform meshes with N cells. Local discontinuous Galerkin methods with k = 0, 1, 2, 3. t = 1.

k N=10 N=20 N=40 N=80
error error order error order error order

0 L2 2.2222E-01 1.2014E-01 0.88 6.2532E-02 0.94 3.1900E-02 0.97
L∞ 4.3282E-01 2.2006E-01 0.97 1.1210E-01 0.97 5.8810E-02 0.93

1 L2 2.0144E-02 5.2347E-03 1.94 1.3322E-03 1.97 3.3592E-04 1.98
L∞ 8.8110E-02 2.3302E-02 1.93 5.9387E-03 1.97 1.4969E-03 1.98

2 L2 9.8394E-04 1.1974E-04 3.03 1.4953E-05 3.00 1.8687E-06 3.00
L∞ 5.2984E-03 6.8421E-04 2.95 8.5138E-05 3.00 1.0728E-05 2.99

3 L2 7.3589E-05 4.6509E-06 3.98 2.9191E-06 3.99 2.0141E-08 3.86
L∞ 3.4438E-04 2.2260E-05 3.95 1.3992E-06 3.99 9.1039E-08 3.94

(k + 1)th order of accuracy in both norms for both the uniform and the nonuniform
meshes.

Example 4.2. We compute the solution of the linear two-dimensional equation

Ut + Uxxx + Uyyy = 0(4.2)

with an initial condition U(x, y, 0) = sin(x + y) and periodic boundary conditions
(with 2π periodicity) in both directions. The exact solution is given by U(x, y, t) =
sin(x + y + 2t). Both uniform and nonuniform rectangular meshes are used. The
nonuniform meshes are a repeated pattern of 0.9∆x and 1.1∆x, in both directions,
with an even number of edges in both directions. The L2 and L∞ errors and the
numerical order of accuracy are contained in Table 4.3 for the uniform mesh case and
in Table 4.4 for the nonuniform mesh case. We can clearly see again that the method
with P k elements gives a uniform (k + 1)th order of accuracy for both the uniform
and the nonuniform meshes.

Example 4.3. In order to see the accuracy of the method for nonlinear problems,
we compute the classical soliton solution of the KdV equation

Ut − 3
(
U2
)
x
+ Uxxx = 0(4.3)

in −10 ≤ x ≤ 12. The initial condition is given by

U(x, 0) = −2 sech2(x).
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Table 4.3
Ut + Uxxx + Uyyy = 0. U(x, y, 0) = sin(x + y). Periodic boundary conditions. L2 and L∞

errors. Uniform meshes with N ×N cells. Local discontinuous Galerkin methods with k = 0, 1, 2, 3.
t = 1.

k 10×10 20×20 40×40
error error order error order

0 L2 3.5528E-01 2.0535E-01 0.79 1.1090E-01 0.89
L∞ 7.1359E-01 4.0190E-01 0.82 2.1165E-01 0.92

1 L2 3.3603E-02 9.0904E-03 1.89 2.4084E-03 1.92
L∞ 2.2074E-01 6.1899E-02 1.83 1.5962E-02 1.95

2 L2 3.8750E-03 4.8463E-04 2.99 6.0501E-05 3.00
L∞ 3.9084E-02 4.8902E-03 2.99 6.1274E-04 2.99

3 L2 4.1491E-04 2.6426E-05 3.97 1.6550E-06 3.99
L∞ 4.2847E-03 2.8478E-04 3.91 1.7846E-05 3.99

Table 4.4
Ut + Uxxx + Uyyy = 0. U(x, y, 0) = sin(x + y). Periodic boundary conditions. L2 and

L∞ errors. Nonuniform meshes with N × N cells. Local discontinuous Galerkin methods with
k = 0, 1, 2, 3. t = 1.

k 10×10 20×20 40×40
error error order error order

0 L2 3.5963E-01 2.0788E-01 0.79 1.1228E-01 0.88
L∞ 7.3869E-01 4.0713E-01 0.85 2.1681E-01 0.91

1 L2 3.4590E-02 9.1681E-03 1.92 2.3412E-03 1.97
L∞ 2.5815E-01 7.2978E-02 1.82 1.8533E-02 1.97

2 L2 4.0949E-03 5.1285E-04 2.99 6.4054E-05 3.00
L∞ 5.0429E-02 6.3078E-03 2.99 8.0584E-04 2.97

3 L2 4.5434E-04 2.8854E-05 3.97 1.8080E-06 3.99
L∞ 6.0982E-03 4.0321E-04 3.92 2.5340E-05 3.99

The exact solution is

U(x, t) = −2 sech2(x− 4t).
Table 4.5 (uniform mesh) and Table 4.6 (nonuniform mesh) give the errors of numerical
solution at t = 0.5 using the boundary condition

U(−10, t) = g1(t), Ux(12, t) = g2(t), Uxx(12, t) = g3(t),(4.4)

where gi(t) corresponds to the data from the exact solution. Notice that the local
discontinuous Galerkin method allows for an easy implementation of such boundary
conditions. We can see from these tables that the orders of accuracy are comparable
to that for the linear case.

Example 4.4. In order to see the accuracy of the method for nonlinear problems
with small coefficient for the third derivative term, we compute the soliton solution
of the generalized KdV equation [5]

Ut + Ux +

(
U4

4

)
x

+ εUxxx = 0(4.5)

in −2 ≤ x ≤ 3, where we take ε = 0.2058× 10−4. The initial condition is given by

U(x, 0) = A sech
2
3 (K(x− x0))(4.6)
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Table 4.5
The KdV equation Ut − 3(U2)x + Uxxx = 0. U(x, 0) = −2 sech2(x). Boundary condition

(4.4). L2 and L∞ errors. Uniform meshes with N cells. Local discontinuous Galerkin methods with
k = 0, 1, 2, 3. t = 0.5.

k N=40 N=80 N=160 N=320
error error order error order error order

0 L2 2.5292E-01 1.9098E-01 0.40 1.3019E-01 0.55 7.9780E-02 0.71
L∞ 9.0170E-01 6.8651E-01 0.39 4.6405E-01 0.56 2.8531E-01 0.70

1 L2 2.6512E-02 4.6652E-03 2.50 1.0108E-03 2.20 2.5906E-04 1.96
L∞ 1.4748E-01 3.4625E-02 2.09 1.1840E-02 1.55 3.3239E-03 1.83

2 L2 1.5317E-03 1.8083E-04 3.08 2.2642E-05 2.99 2.8335E-06 2.99
L∞ 1.7486E-02 2.7505E-03 2.66 3.5575E-04 2.95 4.4397E-05 3.00

3 L2 2.0631E-04 1.3981E-05 3.88 8.9054E-07 3.97 5.6029E-08 3.99
L∞ 2.0155E-03 2.1462E-04 3.23 1.4461E-05 3.89 9.1140E-07 3.98

Table 4.6
The KdV equation Ut − 3(U2)x +Uxxx = 0. U(x, 0) = −2 sech2(x). Boundary condition (4.4).

L2 and L∞ errors. Nonuniform meshes with N cells. Local discontinuous Galerkin methods with
k = 0, 1, 2, 3. t = 0.5.

k N=40 N=80 N=160 N=320
error error order error order error order

0 L2 2.4530E-01 1.9004E-01 0.37 1.3390E-01 0.50 8.4635E-02 0.66
L∞ 1.0172E+00 7.6826E-01 0.40 5.3383E-01 0.52 3.3655E-01 0.66

1 L2 2.7042E-02 4.9065E-03 2.46 1.0555E-03 2.21 2.6978E-04 1.97
L∞ 1.4490E-01 4.1570E-02 1.80 1.3925E-02 1.57 3.9129E-03 1.83

2 L2 1.9493E-03 2.0134E-04 3.27 2.4926E-05 3.01 3.1208E-06 2.99
L∞ 2.2876E-02 3.5163E-03 2.70 4.7161E-04 2.89 5.9033E-05 2.99

3 L2 3.0402E-04 1.5462E-05 4.29 1.0064E-06 3.94 6.3370E-08 3.99
L∞ 2.7735E-03 2.1464E-04 3.69 1.8358E-05 3.55 1.3119E-06 3.80

Table 4.7
The GKdV equation (4.5) with initial condition (4.6) and boundary condition (4.7). L2 and L∞

errors. Nonuniform meshes with N cells. Local discontinuous Galerkin methods with k = 0, 1, 2, 3.
t = 1.

k N=160 N=320 N=640 N=1280
error error order error order error order

0 L2 1.6566E-02 1.1259E-02 0.56 7.0817E-03 0.67 4.1526E-03 0.77
L∞ 9.3056E-02 6.6829E-02 0.48 4.4502E-02 0.58 2.7539E-02 0.69

1 L2 3.8554E-04 6.0675E-05 2.66 1.1784E-05 2.36 2.8635E-06 2.04
L∞ 3.2635E-03 6.2508E-04 2.38 2.2689E-04 1.47 6.4595E-05 1.81

2 L2 8.2907E-06 9.5348E-07 3.12 1.1895E-07 3.00 1.5290E-08 2.96
L∞ 1.6684E-04 2.2545E-05 2.88 3.0858E-06 2.87 3.9503E-07 2.97

3 L2 1.7005E-06 1.3664E-07 3.63 3.0527E-09 5.48 1.9206E-10 3.99
L∞ 1.7607E-05 1.3291E-06 3.72 8.3962E-08 3.98 5.2861E-09 3.99

with A = 0.2275, x0 = 0.5, and K = 3
(
A3

40ε

) 1
2

. The exact solution is

U(x, t) = A sech
2
3 (K(x− x0)− ωt) ,

where ω = K
(
1 + A3

10

)
. We compute the solution using the boundary condition

U(−2, t) = g1(t), Ux(3, t) = g2(t), Uxx(3, t) = g3(t)(4.7)

with a nonuniform mesh. The result is contained in Table 4.7. The scheme clearly
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Fig. 4.1. Single soliton profiles. Solutions of (4.8) with initial condition (4.9) and periodic
boundary conditions in [0, 2] using P 2 elements with 100 cells. Top left: solution at t = 0; top right:
t = 1; bottom left: t = 2; bottom right: space time graph of the solution up to t = 3.

demonstrates an order of accuracy of k + 1 for P k elements in both the L2 and L∞

norms for this problem with strong nonlinearity in the first derivative term, small
dispersive term, and nonperiodic boundary conditions.

Example 4.5. In this example we compute the classical soliton solutions of the
KdV equation

Ut +

(
U2

2

)
x

+ εUxxx = 0.(4.8)

The examples are those used in [15].
The single soliton case has the initial condition

U0(x) = 3c sech2 (k(x− x0))(4.9)

with c = 0.3, x0 = 0.5, k = (1/2)
√
c/ε, and ε = 5× 10−4. The solution is computed

in x ∈ [0, 2] with periodic boundary conditions, using P 2 elements with 100 cells, and
is shown in Figure 4.1.

The double soliton collision case has the initial condition

U0(x) = 3c1 sech
2 (k1(x− x1)) + 3c2 sech

2 (k2(x− x2))(4.10)
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Fig. 4.2. Double soliton collision profiles. Solutions of (4.8) with initial condition (4.10) and
periodic boundary conditions in [0, 2] using P 2 elements with 100 cells. Top left: solution at t = 0;
top right: t = 1; bottom left: t = 2; bottom right: space time graph of the solution up to t = 4.

with c1 = 0.3, c2 = 0.1, x1 = 0.4, x2 = 0.8, ki = (1/2)
√
ci/ε for i = 1, 2, and

ε = 4.84 × 10−4. The solution is computed in x ∈ [0, 2] with periodic boundary
conditions, using P 2 elements with 100 cells, and is shown in Figure 4.2.

The triple soliton splitting case has the initial condition

U0(x) =
2

3
sech2

(
x− 1√
108ε

)
(4.11)

with ε = 10−4. The solution is computed in x ∈ [0, 3] with periodic boundary condi-
tions and is shown in Figure 4.3.

Example 4.6. We compute in this example the KdV zero dispersion limit of
conservation laws. The equation is (4.8) with an initial condition

U(x, 0) = 2 + 0.5 sin(2πx)(4.12)

for x ∈ [0, 1] with periodic boundary conditions, and we are interested in the limit
when ε → 0+. Theoretical and numerical discussions about this limit can be found
in [21] and [27]. Here we are concerned mainly with the capability of our numerical
method in resolving the small scale solution structures in this limit when ε is small.
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Fig. 4.3. Triple soliton splitting profiles. Solutions of (4.8) with initial condition (4.11) and

periodic boundary conditions in [0, 3] using P 2 elements with 150 cells. Top left: solution at t = 0;
top right: t = 1; bottom left: t = 2; bottom right: space time graph of the solution up to t = 4.

For this purpose we compute the solution to t = 0.5 with ε = 10−4, 10−5, 10−6, and
10−7 using P 2 elements with 300 cells for the first two cases, 800 cells for the third
case, and 1700 cells for the last case. We have verified that these are “converged”
solutions in the sense that further increasing the number of cells does not change the
solutions graphically. These solutions are shown in Figure 4.4. Notice the physical
“oscillations” which are typical in such dispersive limits; see, e.g., [21]. Clearly our
method is very suitable for computing such solutions.

5. Concluding remarks. We have designed a class of local discontinuous Galer-
kin methods for solving KdV type equations containing third derivatives and have
proven their stability for any space dimensions for a general class of nonlinear equa-
tions. Numerical examples are shown to illustrate the accuracy and capability of the
methods, especially for the convection dominated cases where the coefficients of the
third derivative terms are small. Efficient implicit time discretizations which have
efficient iterative solvers maintaining the local structure of the method, an accuracy
enhancement study, and more numerical experiments with physically interesting prob-
lems constitute an ongoing project.
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Fig. 4.4. Zero dispersion limit of conservation laws. Solutions of (4.8) with initial condition
(4.12) and periodic boundary conditions in [0, 1] using P 2 elements at t = 0.5. Top left: ε = 10−4

with 300 cells; top right: ε = 10−5 with 300 cells; bottom left: ε = 10−6 with 800 cells; bottom right:
ε = 10−7 with 1700 cells.
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1. Introduction. Let X be a Hilbert space and K0,K1, . . . ,Kn−1 be n closed
convex sets in X whose intersection, K, is nonempty. Given an x0 ∈ X, the Boyle–
Dykstra algorithm [3] generates a sequence of iterates {xm} whose limit is the orthog-
onal projection of x0 onto K. Defining PKi

to be the orthogonal projection onto Ki,
letting [m] denote m mod n, and setting

e−n = e−(n−1) = · · · = e−1 = 
0,

Dykstra’s algorithm can be written as

xm+1 = PK[m]
(xm + em−n),

em = (xm + em−n)− xm+1

for m = 0, 1, . . . . If the n closed convex sets are half spaces of the form Hi = {x |
〈x, zi〉 ≤ fi}, where zi ∈ X and fi ∈ 
, then the formula for the (m + 1)st iterate of
Dykstra’s algorithm can be written as xm+1 = xm + ξmz[m], where ξm ∈ 
.

For this finite collection of intersecting closed half spaces, Iusem and De Pierro
[11] showed that the Dykstra algorithm converged linearly. Subsequently Deutsch and
Hundal [6] have sharpened the rate of convergence bound established in [11] and have
shown that

‖xm − PH(x0)‖ ≤ ρcm,(1.1)

where H = ∩n−1
i=0 Hi, ρ is a constant, 0 ≤ c < 1, and m = 0, 1, . . . . In general, the use of

the Deutsch–Hundal result to explicitly bound ‖xm −PH(x0)‖ is problematic in that
although c can be calculated a priori, ρ cannot be. This means that in practice when
computing xm, inequality (1.1) cannot be used to calculate a bound for ‖xm−PH(x0)‖
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for m = 0, 1, . . . . Xu comments in [15] that the applicability of Dykstra’s algorithm for
polyhedron approximation is restrictive unless it is possible to find an active bound
for ρ. This lack of a computable error bound for the Dykstra iterates is the motivation
for this manuscript. Here we develop a method to explicitly bound ‖xm − PH(x0)‖
by a ρm, where limm→∞ ρm = 0. This convergence analysis allows the algorithm to
be terminated when xm is within a prescribed distance of PH(x0).

In section 2, we first review the equivalence between Dykstra’s algorithm for
polyhedral sets in the general Hilbert space setting and the finite dimensional Hildreth
algorithm [10]. This equivalence is critical to our computation of the error bounds for
the iterates. The finite dimensional version allows us to use a linear algebraic analysis
to determine a ρm such that ‖xm − PH(x0)‖ ≤ ρm with limm→∞ ρm = 0. Given that
it is possible to determine when an xm is arbitrarily close to PH(x0), we are then able
to calculate an x ∈ H such that ‖x− PH(x0)‖ < ε.

Section 3 shows how the previously established results can be modified if {zi} is
linearly independent. Other implementation details are discussed and the N -convex
regression problems are reviewed. Numerical results are presented from a sample
isotone regression problem.

There are other methods available for computing PH(x0). These include solving
a related least distance quadratic programming problem [7]. More recently, Xu has
published an algorithm with an error analysis that also computes the nearest point
mapping for polyhedrons in a finite number of iterations [15]. Unfortunately, the use
of Xu’s algorithm requires a priori knowledge of a point in H. Such a point can first
be calculated using the algorithm proposed by T. S. Motzkin [14] and discussed in
Agmon [1].

2. Definitions, lemmas, and theory. In 1988 Han [9] rediscovered Hildreth’s
algorithm [10] and commented that the arguments used to show convergence in Eu-
clidean space can be used in the general Hilbert space setting where the intersecting
closed convex sets are half spaces. Deutsch and Hundal [6] later reported that in
Euclidean space, where the intersection of closed convex sets in polyhedral, Dykstra’s
algorithm reduces to Hildreth’s algorithm.

In fact, the Deutsch–Hundal statement can be strengthened, and Han’s result is
immediately applicable to the general Hilbert space setting. This is due to the fact
that in Hilbert space, Dykstra’s algorithm applied to a finite set of intersecting closed
half spaces is equivalent to Hildreth’s algorithm applied to a related set of linear
inequalities. We next review this equivalence.

Let X be a Hilbert space and H0, H1, . . . , Hn−1 be closed half spaces of the form
Hi = {x | 〈x, zi〉 ≤ fi} for 0 ≤ i ≤ n − 1, where zi ∈ X, ‖zi‖ = 1, fi ∈ 
,
and H = ∩n−1

i=0 Hi is nonempty. The boundary of each closed half space Hi is the
hyperplane Bi, where Bi = {x | 〈x, zi〉 = fi}.

Lemma 2.1. Given x ∈ X,

PHi(x) =

{
x if x ∈ Hi,

x− (〈x, zi〉 − fi)zi if x ∈ Hi,

PBi(x) = x− (〈x, zi〉 − fi)zi,
d(x,Bi) = |〈x, zi〉 − fi|

for i = 0, 1, . . . , n− 1.
Lemma 2.2. Given an x0 ∈ X, the iterates of Dykstra’s algorithm lie in

span{x0, z0, . . . , zn−1}.
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Proof. This follows from Dykstra’s algorithm, the fact that the closed convex sets
are half spaces, Lemma 2.1, and a simple inductive argument.

By Lemma 2.2, the Dykstra iterates {xm} are contained in a finite dimensional
subspace of X. Thus we can use Gram–Schmidt to generate an orthonormal basis
{wj}kj=1 for span{x0, z0, . . . , zn−1}, and we can write

x0 =

k∑
j=1

γjwj(2.1)

as well as

zi =

k∑
j=1

αijwj(2.2)

for 0 ≤ i ≤ n− 1.
Since any finite dimensional Hilbert space is isometric to l2(k), we reduce the

convergence analysis of Dykstra’s algorithm in X to an equivalent analysis in 
k.
Defining

y0 = (γ1, . . . , γk)T(2.3)

and

ai = (αi1, . . . , αik)T(2.4)

for 0 ≤ i ≤ n− 1, it is possible to define the n closed half spaces in 
k by

hi = {y | 〈y, ai〉 ≤ fi}(2.5)

and the corresponding boundaries by

bi = {y | 〈y, ai〉 = fi}.(2.6)

We remark that Dykstra’s algorithm applied to h0, h1, . . . , hn−1 is the same as
Hildreth’s algorithm applied to Ay ≤ f , where AT = [a0, . . . , an−1] and f =
(f0, . . . , fn−1)T.

Throughout what follows, x0 will be defined as in (2.1), {xm} will denote the
sequence of Dykstra iterates generated by the closed half spaces H0, . . . , Hn−1 in X.
Similarly, y0 will be defined as in (2.3) and {ym} will denote the sequence of Dykstra
iterates generated by the closed half spaces h0, . . . , hn−1 in 
k as specified in (2.5).

Let S ⊂ {0, 1, . . . , n − 1}. We define S̃ = {i | 0 ≤ i ≤ n − 1 and i ∈ S} and |S|
to be the cardinality of set S. We introduce the notation HS (resp., hS) to denote
∩i∈SHi (resp., ∩i∈Shi) and BS (resp., bS) to denote ∩i∈SBi (resp., ∩i∈Sbi). For
notational simplicity, if S = {0, 1, . . . , n− 1}, the subscript S is omitted. AT

S and fS
are defined to be

AT
S = [as1 , . . . , as|S|},(2.7)

fS = (fs1 , . . . , fs|S|)
T,(2.8)

where sj ∈ S, 1 ≤ j ≤ |S| with sj < sj+1. Let C ⊂ {0, 1, . . . , n − 1} contain the
indices of the critical boundaries. That is, C = {i | Ph(y0) ∈ bi}. If C = ∅, then
Ph(y0) ∈ int(h) and Ph(y0) = y0. Henceforth we will assume that C = ∅.
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Let S ⊂ {0, 1, . . . , n − 1}, S = ∅, and let AT
S and fS be as defined in (2.7) and

(2.8). We denote the residual rm,S = fS − ASym. If fS ∈ Range(AS) (equivalently
bS = ∅), then by (2.6),

rm,S = ASPbS (ym)−ASym,
= AS(PbS (ym)− ym).

A+
S is the Moore–Penrose generalized inverse of AS , and A+

SAS is the projection
onto the orthogonal complement of the null space of AS (denoted N(AS)⊥) [8]. If
bS = ∅, then PbS (ym)− ym is an element of N(AS)⊥,

A+
SAS(PbS (ym)− ym) = PbS (ym)− ym,

and A⊥
S rm,S = PbS (ym)− ym. Therefore,

‖ym − PbS (ym)‖ = ‖A+
S rm,S‖ ≤ ‖A+

S ‖ ‖rm,S‖(2.9)

with ‖A+
S ‖ being the inverse of the smallest nonzero singular value of AS [8].

For each iterate ym of Dykstra’s algorithm we determine the existence of a set
Cm with the properties

fCm ∈ Range(ACm
),(2.10a)

for all j ∈ C̃m, 2‖A+
Cm
‖ ‖rm,Cm‖ < fj − 〈ym, aj〉,(2.10b)

for all j ∈ C̃m, eπm,j = 
0,

where πm,j ∈ {i | m− n ≤ i ≤ m− 1 and [i] = j}.(2.10c)

If no such Cm exists, we define the bound, ρm, on ‖ym − Ph(y0)‖ to be ∞. In
Theorem 2.16 we prove that for sufficiently large m, the set C satisfies properties
(2.10a)–(2.10c).

For notational simplicity throughout what follows, we will use the notation rm in
place of rm,Cm or rm,C where appropriate. We next assume that Cm = ∅ and develop
the theory to bound ‖ym − Ph(y0)‖ by ρm, where

ρm = 2‖A+
Cm
‖ ‖rm‖.(2.11)

Thereafter, in Theorem 2.17 we will show sufficient conditions on the selection of
{Cm} to guarantee the bound ρm = 2‖A+

Cm
‖ ‖rm‖ tends to zero.

By the construction of Cm and inequality (2.9),

2‖ym − PbCm
(ym)‖ ≤ 2‖A+

Cm
‖ ‖rm‖(2.12)

< fj − 〈ym, aj〉(2.13)

= d(ym, bj)

for all j ∈ C̃m.
The following lemma shows that if Cm = {0, 1, . . . , n − 1}, then the closed ball

centered at PbCm
(ym) with radius d(ym, PbCm

(ym)) is contained in the int(hC̃m
). To

facilitate subsequent discussion, we define

Bm = B[PbCm
(ym),d(ym, PBCm

(ym))].(2.14)
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Lemma 2.3. If Cm = {0, 1, . . . , n− 1}, then the closed ball Bm ⊂ int(hC̃m
).

Proof. We will show that, given any element y contained in the closed ball Bm,
〈y, aj〉 < fj for every j ∈ C̃m. This will imply that y ∈ int(hC̃m

). Let y ∈ Bm and
define ε1 = d(ym, PbCm

(ym)). Then PbCm
(ym) = ym + ε1v1 for some unit vector v1.

Since y ∈ Bm, y = PbCm
(ym) + ε2v2 for 0 ≤ ε2 ≤ d(ym, PbCm

(ym)) = ε1 and some

unit vector v2. Let j ∈ C̃m. Then

〈y, aj〉 = 〈PbCm
(ym) + ε2v2, aj〉

= 〈ym + ε1v1 + ε2v2, aj〉
= 〈ym, aj〉+ ε1〈v1, aj〉+ ε2〈v2, aj〉
≤ 〈ym, aj〉+ ε1‖v1‖ ‖aj‖+ ε2‖v2‖ ‖aj‖
= 〈ym, aj〉+ ε1 + ε2

≤ 〈ym, aj〉+ 2ε1

= 〈ym, aj〉+ 2d(ym, PbCm
(ym))

= 〈ym, aj〉+ 2‖ym − PbCm
(ym)‖

< 〈ym, aj〉+ fj − 〈ym, aj〉 by (2.13)

= fj .

Thus y ∈ int(hj). Since j was arbitrary in C̃m, y ∈ int(hC̃m
), and Bm ⊂

int(hC̃m
).

In order to show the bound stated in (2.11), we will prove that all subsequent
Dykstra iterates are elements of the closed ball Bm. We will then have {ym+k}∞k=0 ⊂
Bm. Bm, by construction, is closed and must contain its limit points. Since {ym+k}∞k=0

converges to Ph(y0), Ph(y0) would then be contained in Bm. This will allow us to
compute a bound on ‖ym − Ph(y0)‖.

The following result is proved in [6]. As in section 1, [m] denotes m mod n.
Result 2.4. If ym is the mth iterate of Dykstra’s algorithm, then ym+1 = (1 −

λ)ym + λPb[m]
(ym) for some λ, 0 ≤ λ ≤ 1.

The following proposition can be proved in part by using the characterization of
best approximation from subspaces in Hilbert space [5].

Proposition 2.5. Let y ∈ 
k, S ⊂ {0, 1, . . . , n− 1}, S = ∅, bS = ∅, m ≥ 0 with
[m] ∈ S; then for 0 ≤ λ ≤ 1

‖(1− λ)y + λPb[m]
(y)− PbS (y)‖ ≤ ‖y − PbS (y)‖.

Let S = ∅ and define the subspace

b̂S =
⋂
i∈S
{y | 〈y, ai〉 = 0}.

If bS = ∅, then PbS (y) = Pb̂S (y) + PbS (
0). Since Pb̂S is continuous, Proposition 2.6
follows.

Proposition 2.6. Let S = ∅ and bS = ∅; then PbS is continuous.
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Proposition 2.7. Let y ∈ 
k, S = ∅, and bS = ∅; then

PbS

(
y +

∑
i∈S

ξiai

)
= PbS (y).

Proposition 2.7 can be shown using the fact that PbS (y) = Pb̂S (y) + PbS (
0), Pb̂S
is a linear operator, and b̂S is the orthogonal complement of spani∈S{ai}.

Lemma 2.8 next shows that ym and all subsequent Dykstra iterates are elements
of the closed ball Bm. As previously defined, Bm = B[PbCm

(ym), d(ym, PbCm
(ym))].

The lemma is actually proven by showing a stronger result as stated in the induction
hypothesis.

Lemma 2.8. The iterates of Dykstra’s algorithm ym+k, k = 0, 1, . . . , are contained
in the closed ball Bm.

Proof. The proof is by induction.
It is evident that ym ∈ Bm. Moreover, by the definition of Cm (2.10c), for all

y ∈ C̃m, eπm,j
= 
0, where πm,j ∈ {i | m− n ≤ i ≤ m− 1 and [i] = j}.

We will assume that for each l, 1 ≤ l ≤ k, ym+l ∈ Bm and for all j ∈ C̃m,
eπm+l,j

= 
0, where πm+l,j ∈ {i | m+ l − n ≤ i ≤ m+ l − 1 and [i] = j}.
Next we will show that ym+k+1 ∈ Bm.
If [m+k] ∈ C̃m, then, by Lemma 2.3 and the induction hypothesis, ym+k ∈ h[m+k].

Therefore

ym+k+1 = Ph[m+k]
(ym+k +
0) = Ph[m+k]

(ym+k) = ym+k.

Since ym+k ∈ Bm, ym+k+1 ∈ Bm.
If [m+ k] ∈ Cm, then by applying Result 2.4 to the m+ k + 1 iterate,

ym+k+1 = (1− λ)ym+k + λPb[m+k]
(ym+k)

for some λ, 0 ≤ λ ≤ 1. By Proposition 2.5,

‖(1− λ)ym+k + λPb[m+k]
(ym+k)− PbCm

(ym+k)‖ ≤ ‖ym+k − PbCm
(ym+k)‖

for 0 ≤ λ ≤ 1. Thus,

‖ym+k+1 − PbCm
(ym+k)‖ ≤ ‖ym+k − PbCm

(ym+k)‖.

Using the induction hypothesis, we have ym+l = ym+l−1 whenever [m + l − 1] ∈ C̃m.
Therefore, it can be shown that ym+k = ym +

∑
j∈Cm

ξjaj and, by Proposition 2.7,
PbCm

(ym+k) = PbCm
(ym).

Therefore

‖ym+k+1 − PbCm
(ym)‖ ≤ ‖ym+k − PbCm

(ym)‖.

Since ym+k ∈ Bm, it follows that ym+k+1 ∈ Bm.
Moreover, regardless of whether [m + k] ∈ Cm or [m + k] ∈ C̃m for all j ∈ C̃m,

eπm+k+1,j
= 
0, where πm+k+1,j ∈ {i | m+ k + 1− n ≤ i ≤ m+ k and [i] = j}.

Therefore, for k = 0, 1, . . . , ym+k ∈ Bm.
We next bound ‖ym − Ph(y0)‖.
Lemma 2.9. ‖ym − Ph(y0)‖ ≤ 2‖ym − PbCm

(ym)‖.
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Proof. By Lemma 2.8, {ym+k}∞k=0 ⊂ Bm. Since Bm is closed and limk→∞ ym+k =
Ph(y0), we have that Ph(y0) ∈ Bm. By the triangle inequality,

‖ym − Ph(y0)‖ ≤ ‖ym − PbCm
(ym)‖+ ‖PbCm

(ym)− Ph(y0)‖
≤ 2‖ym − PbCm

(ym)‖.

The first major result of this section follows.
Theorem 2.10. ‖ym − Ph(y0)‖ ≤ 2‖A+

Cm
‖ ‖rm‖.

Proof. By inequality (2.12), 2‖ym−PbCm
(ym)‖ ≤ 2‖A+

Cm
‖ ‖rm‖. By Lemma 2.9,

‖ym−Ph(y0)‖ ≤ 2‖ym−PbCm
(ym)‖ and thus ‖ym−Ph(y0)‖ ≤ 2‖A+

Cm
‖ ‖rm‖.

We now show the prerequisites for proving Theorems 2.16 and 2.17. Lemma 2.11
shows that C = {i | Ph(y0) ∈ bi} satisfies property (2.10a).

Lemma 2.11. fC ∈ Range(AC).
Proof. By definition of C, Ph(y0) ∈ bC . Therefore ACPh(y0) = fC and fC ∈

Range(AC).
If C = {0, 1, . . . , n−1}, then since ym converges to Ph(y0), there exists a smallest

integer M such that, for all m > M − n, ‖ym − Ph(y0)‖ < 1
3κ , where κ = ‖A+‖ ‖A‖.

Otherwise C = {0, 1, . . . , n− 1}, and again by the convergence of ym to Ph(y0), there
exists a smallest integer M such that, for all m > M−n, ‖ym−Ph(y0)‖ < εC

3κC
, where

κC = ‖A+
C‖ ‖AC‖ and εC > 0 such that B[Ph(y0), εC ] ⊂ int(hC̃).

Lemma 2.12. For all m > M and j ∈ C̃, eπm,j = 
0, where πm,j ∈ {i | m − n ≤
i ≤ m− 1 and [i] = j}.

Proof. If C = {0, 1, . . . , n − 1}, then the lemma is vacuously true. Next assume
that C = {0, 1, . . . , n − 1} and let m > M . Suppose there exists an j ∈ C̃ such that
eπm,j = 
0, where πm,j ∈ {i | m − n ≤ i ≤ m − 1 and [i] = j}. Since eπm,j = 
0,
this implies that yπm,j+1 = Pbj (yπm,j ) and yπm,j+1 ∈ bj . This is impossible since
πm,j + 1 > M − n and yπm,j+1 ∈ B[Ph(y0), εC ] ⊂ int(hj). Clearly 〈yπm,j+1, aj〉 < fj
and 〈yπm,j+1, aj〉 = fj cannot both be true. Therefore eπm,j = 
0.

Thus for all m > M and j ∈ C̃, eπm,j = 
0, where πm,j ∈ {i | m− n ≤ i ≤ m− 1
and [i] = j}.

Lemma 2.12 implies the following result.
Result 2.13. For all m > M , ym+1 = ym whenever [m] ∈ C̃.
We now prove that for sufficiently large m, 2‖A+

C‖ ‖rm‖ < fj − 〈ym, aj〉 for all

j ∈ C̃.
Lemma 2.14. If {ym} is the sequence of Dykstra iterates, then for all m > M ,

PbC (ym) = Ph(y0).
Proof. As a consequence of Result 2.13 and the definition of Dykstra’s algorithm,

for all m > M ,

ym = yM+1 +
∑
i∈C

ξiai.

Using Proposition 2.7,

PbC (ym) = PbC

(
yM+1 +

∑
i∈C

ξiai

)

= PbC (yM+1).
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By Proposition 2.6, PbC is continuous, and thus for all m > M

PbC (ym) = PbC (yM+1)

= lim
m→∞PbC (ym)

= PbC

(
lim
m→∞ ym

)
= PbC (Ph(y0))

= Ph(y0).

The last equality holds since Ph(y0) ∈ bC .
As specified above, κC = ‖A+

C‖ ‖AC‖, εC > 0 such that B[Ph(y0), εC ] ⊂ int(hC̃),
and M is selected such that for all m > M − n we have ‖ym − Ph(y0)‖ < εC

3κC
.

Moreover, it can be shown that κC ≥ 1 [12].
Lemma 2.15. If m > M , then 2‖A+

C‖ ‖rm‖ < fj − 〈ym, aj〉 for all j ∈ C̃.
Proof. If C = {0, 1, . . . , n − 1}, then the lemma is vacuously true. Next assume

that C = {0, 1, . . . , n− 1} and let m > M .

2‖A+
C‖ ‖rm‖ = 2‖A+

C‖ ‖fC −ACym‖
= 2‖A+

C‖ ‖AC(PbC (ym)− ym)‖
≤ 2‖A+

C‖ ‖AC‖ ‖ym − PbC (ym)‖
≤ 2κC‖ym − PbC (ym)‖
= 2κC‖ym − Ph(y0)‖

< 2κC
εC

3κC

=
2εC

3
.

It remains to be shown that 2εC
3 < fj − 〈ym, aj〉 for all j ∈ C̃.

Suppose there exists a j ∈ C̃ such that fj − 〈ym, aj〉 ≤ 2εC
3 . Then

d(Ph(y0), bj) ≤ d(Ph(y0), Pbj (ym))

≤ d(Ph(y0), ym) + d(ym, Pbj (ym))

= ‖ym − Ph(y0)‖+ d(ym, bj)

<
εC

3κC
+ d(ym, bj)

≤ εC
3

+ d(ym, bj)

=
εC
3

+ |〈ym, aj〉 − fj |

≤ εC
3

+
2εC

3

= εC .
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Thus there exists an element of bj that is within εC of Ph(y0). This is a contradiction

since B[Ph(y0), εC ] ⊂ int(hj). Therefore, for all m > M and j ∈ C̃ we have that
2‖A+

C‖ ‖rm‖ < fj − 〈ym, aj〉.
Theorem 2.16. For all m > M , C satisfies properties (2.10a)–(2.10c).
Proof. This is a consequence of Lemmas 2.11, 2.12, and 2.15.
For the remainder of the section, we will assume that Cm = C whenever m > M .
Theorem 2.17. limm→∞ ρm = 0.
Proof. Let m > M . By assumption we have that Cm = C and ρm ≤ 2κC‖ym −

PbC (ym)‖. By Lemma 2.14, for all m > M , PbC (ym) = Ph(y0), and thus ρm ≤
2κC‖ym − Ph(y0)‖. Therefore

lim
m→∞ ρm ≤ lim

m→∞ 2κC‖ym − Ph(y0)‖ = 0,

and limm→∞ ρm = 0.
We have now established that it is possible to construct a sequence {ρm} such

that ‖ym − Ph(y0)‖ ≤ ρm with limm→∞ ρm = 0. Next we exhibit a y ∈ h such that
‖y − Ph(y0)‖ < ε for any ε > 0.

Given ε > 0, it is possible to determine an m such that Cm is nonempty and
‖ym − Ph(y0)‖ < 2ε. Bramley and Sameh have shown that using the conjugate-
gradient method to solve AT

Cm
ACmy = AT

Cm
bCm with an initial approximation of ym

results in a solution of PbCm
(ym) [2]. Using arguments in Lemma 2.9 and Theo-

rem 2.10,

‖PbCm
(ym)− Ph(y0)‖ < ε.

The following lemma shows that PbCm
(ym) ∈ h.

Lemma 2.18. If Cm = ∅, then PbCm
(ym) ∈ h.

Proof. If Cm = {0, 1, . . . , n − 1} (equivalently if C̃m = ∅), then Pb(ym) ∈ b ⊂ h.
Next suppose that C̃m = ∅. By Lemma 2.3, PbCm

(ym) ∈ int(hC̃m
) ⊂ hC̃m

. In addition
PbCm

(ym) ∈ bCm ⊂ hCm . Therefore PbCm
(ym) ∈ (hCm ∩ hC̃m

) = h.
Thus setting y = PbCm

(ym) specifies a point in h with the property that ‖y −
Ph(y0)‖ < ε. Moreover, if m > M , then by Lemma 2.14, y = PbCm

(ym) is in fact
Ph(y0).

3. Implementation, applications, and numerical results. The two main
results of section 2 were Theorem 2.10 and Theorem 2.17. In Theorem 2.10 we showed
that if Cm = ∅, then ‖ym − Ph(y0)‖ ≤ 2‖A+

Cm
‖ ‖rm‖, and we subsequently defined

ρm = 2‖A+
Cm
‖ ‖rm‖. Theorem 2.17 implied that for sufficiently large m, if Cm = C,

then limm→∞ ρm = 0. We remark that for m sufficiently large and Cm = C, we have,
using Lemma 2.14, ‖ym − Ph(y0)‖ ≤ 1

2ρm.
Next we show how to construct a sequence {Cm} so that for large enough m,

Cm = C. Lemma 3.1 shows that if Cm = ∅, then C ⊂ Cm. As previously specified,
Bm = B[PbCm

(ym), d(ym, PbCm
(ym))], C = {i | Ph(y0) ∈ bi}, and Cm is selected to

satisfy properties (2.10a)–(2.10c).
Lemma 3.1. If Cm = ∅, then C ⊂ Cm.
Proof. The proof is by contradiction.
Suppose there exists an m such that C − Cm = ∅. Let j ∈ C − Cm and hence

j ∈ C̃m. By Lemma 2.3 the closed ball Bm ⊂ int(hj). By Lemma 2.8, {ym+k}∞k=0 ⊂
Bm. Since Bm is closed and limk→∞ ym+k = Ph(y0), Ph(y0) ∈ Bm. By definition of
C, Ph(y0) ∈ bj . In addition we have shown above that Ph(y0) ∈ Bm ⊂ int(hj). It
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is impossible for Ph(y0) to be both in the interior of hj and on the boundary of hj .
Therefore, if Cm = ∅, we have that C ⊂ Cm.

By Theorem 2.16, Cm = C satisfies properties (2.10a)–(2.10c) for sufficiently
large m. By Lemma 3.1, if Cm = ∅, then C ⊂ Cm. Therefore, if Cm is chosen to
have the smallest cardinality of any set satisfying properties (2.10a)–(2.10c), then for
sufficiently large m, Cm must be the set C.

As previously stated, we compute

ρm = 2‖A+
Cm
‖ ‖rm‖,

where

‖A+
Cm
‖ = (σmin(ACm

))−1,

σmin(ACm) = 0.
If the columns of AT are linearly independent, we will subsequently show how to

reduce the computational effort required to bound ‖ym − Ph(y0)‖.
Proposition 3.2 may be directly inferred by the repeated application of the inter-

lacing property for singular values [12].
Proposition 3.2. Let AT have linearly independent columns and S ⊂ {0, 1, . . . ,

n− 1}, S = ∅; then ‖A+
S ‖ ≤ ‖A+‖.

We next determine a set Cm with the properties

fCm
∈ Range(ACm),(3.1a)

for all j ∈ C̃m, 2‖A+‖ ‖rm‖ < fj − 〈ym, aj〉,(3.1b)

for all j ∈ C̃m, eπm,j = 
0,

where πm,j ∈ {i | m− n ≤ i ≤ m− 1 and [i] = j}.(3.1c)

Cm is well defined as Cm = {0, 1, . . . , n − 1} vacuously satisfies properties (3.1a)–
(3.1c). Using arguments similar to those presented in section 2, it can be shown that
‖ym − Ph(y0)‖ ≤ 2‖A+‖ ‖rm‖. Thus, in order to bound the error of each Dykstra
iterate we need only determine σmin(A) and ‖rm‖.

Proposition 3.3. Let S ⊂ {0, 1, . . . , n− 1}, S = ∅, then ‖AS‖ ≤ ‖A‖.
Assuming that the columns of AT are linearly independent, using Propositions 3.2

and 3.3 and selecting Cm to satisfy properties (3.1a)–(3.1c),

‖ym − Ph(y0)‖ ≤ 2‖A+‖ ‖rm‖
= 2‖A+‖ ‖ACm(ym − PhCm

(ym))‖
≤ 2‖A+‖ ‖ACm‖ ‖ym − PhCm

(ym)‖
≤ 2‖A+‖ ‖A‖ ‖ym − PhCm

(ym)‖
= 2κ‖ym − PhCm

(ym)‖,
where κ = ‖A+‖ ‖A‖.

In order for the bound 2‖A+‖ ‖rm‖ to be useful, {Cm} must be selected such
that limm→∞ ‖A+‖ ‖rm‖ = 0. To guarantee that

lim
m→∞ 2κ‖ym − PhCm

(ym)‖ = 0,
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it suffices that for sufficiently large m, Cm = C. As in section 2, with such a selection
of {Cm}, limm→∞ 2‖A+‖ ‖rm‖ = 0.

An important class of problems in statistical inference is to find the N -convex
regression for a real valued function g0 defined on a finite subset of 
. Let t1 < t2 <
· · · < tq, q ≥ N +1. For a given y0 = (g0(t1), . . . , g0(tq))

T in 
q we want to determine
the best approximation to y0 from the set of N -convex functions in 
q.

The real valued function g defined on t1, . . . , tq is N -convex if for any set of N +1
points ti1 < ti2 < · · · < tiN+1

, the Nth order divided difference, g[ti1 , . . . , tiN+1
] ≥

0. This type of approximation problem generates a rectangular system of linear
inequalities Ay ≤ f such that {y | Ay ≤ f} is a closed convex cone.

For N -convex regression problems it is possible to show that if h = {y ∈ 
q | y
is N -convex}, then h = ∩q−N−1

i=0 hi, where hi = {y ∈ 
q | 〈y, zi〉 ≤ 0}, bi = {y ∈ 
q |
〈y, zi〉 = 0}, and

ẑi(j) =

{
(−1)j−i+N

(
N

j−i−1

)
whenever 0 ≤ j − i− 1 ≤ N,

0 otherwise

with

zi =
ẑi
‖ẑi‖ .(3.2)

The following proposition is easily proved.
Proposition 3.4. The {zi}q−N−1

i=0 as defined in (3.2) is linearly independent.
Thus it is possible, given y0 = (g0(t1), . . . , g0(tq))

T, to use Dykstra’s algorithm
to approximate Ph(y0) and to bound the norm of the error for each Dykstra iterate,
‖yk − Ph(y0)‖, using the previously developed theory.

The set h of monotonically increasing functions can be expressed using a system
of linear inequalities h = {y ∈ 
q | Ay ≤ 
0}, where AT ∈ 
q×q−1. Let ê ∈ 
q and for
i = 1, . . . , q, j = 1, . . . , q, define

êi(j) =

{
0 whenever i = j,

1 otherwise.

Then AT = [a0, . . . , aq−2], where ai = 1√
2
(êi+2 − êi+1) for i = 0, . . . , q − 2.

By Proposition 3.4, the columns of AT are linearly independent. In order to bound
the norm of the error of the Dykstra iterates when approximating Ph(y0), we need only
to calculate ‖A+‖ and ‖rm‖. As previously stated, ‖A+‖ = (σmin(A))−1 and since

(σmin(A))−1 = λmin(AAT)−
1
2 , we need to estimate the smallest eigenvalue of AAT.

The matrix AAT is tridiag(−0.5, 1,−0.5), and thus λmin(AAT) can be approximated
by using the QR algorithm with Givens rotations.

We present an example of monotonic regression and exhibit error bounds on
‖ym−Ph(y0)‖. Here y0 = (g0(t1), . . . , g0(tq))

T, where g0(ti) ≥ g0(tj) whenever 1 ≤ i <
j ≤ q. It can be shown that Ph(y0) = (g(t1), . . . , (g(t1))T, where g(ti) = 1

q

∑q
j=1 g0(tj)

for 1 ≤ i ≤ q. Thus it is possible to compare ‖ym − Ph(y0)‖ to the error bounds
calculated using the previously derived theory. In the example q = 31, g0(ti) = 16− i
for 1 ≤ i ≤ 31 and C = {0, 1, . . . , 30}. Table 3.1 shows ‖ym − Ph(y0)‖ and ρm =
2‖A+‖ ‖rm‖ for selected values of m.

In order to compute the error bounds for this illustration, we need to determine
for each iterate a set Cm that satisfies properties (3.1a)–(3.1c). For m = 1, . . . , it
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Table 3.1.

m ‖ym − Ph(y0)‖ ρm = 2‖A+‖ ‖rm‖
6.0 E +3 6.3504 E +0 1.2778 E +1
1.2 E +4 8.1138 E −1 1.6326 E +0
1.8 E +4 1.0367 E −1 2.0854 E −1
2.4 E +4 1.3245 E −2 2.6651 E −2
3.0 E +4 1.6923 E −3 3.4051 E −3
3.6 E +4 2.1622 E −4 4.3506 E −4
4.2 E +4 2.7625 E −5 5.5586 E −5
4.8 E +4 3.5296 E −6 7.1020 E −6
5.4 E +4 4.5096 E −7 9.0740 E −7
6.0 E +e 5.7617 E −8 1.1593 E −7

can be shown that Cm = {0, 1, . . . , 30} satisfies properties (3.1a)–(3.1c). In addition,
it is impossible to construct a proper subset of Cm which also satisfies these same
properties. Thus, to compute a bound on ‖ym − Ph(y0)‖ which tends to zero, we
need only to calculate ‖rm‖ = ‖Aym‖ and multiply by the constant 2‖A+‖. In
general, in order to guarantee that limm→∞ ρm = 0, the sequence of sets Cm must be
selected judiciously. As previously discussed in this section, selecting Cm to have the
smallest cardinality of any set satisfying properties (2.10a)–(2.10c) guarantees that
limm→∞ ρm = 0.

The previous discussion shows that it is possible to compute a bound in the general
Hilbert space setting on ‖xm−PH(x0)‖ that tends to zero where xn is the nth iterate
of Dykstra’s algorithm and H is the intersection of a finite number of closed half
spaces. The convergence is studied via an equivalent problem in 
k. This approach is
well suited for those occasions where H is a closed convex cone uniquely determined
by intersecting half spaces. The analysis is of particular interest to the author when
using Dykstra’s algorithm to estimate attribute utility values in nonmetric trade-off
experiments.
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Abstract. We extend the idea of the postprocessing Galerkin methods for dissipative evolution
equations to the case of the linear finite element method. The postprocessing technique has been
developed earlier for spectral methods and for higher order finite element methods.

The analysis shows that this procedure improves the order of convergence of the piecewise linear
Galerkin finite element approximation in the H1 norm. We show by means of numerical experiments
that there is no improvement in the order of convergence in the L2 norm.
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1. Introduction. Let Ω ⊂ R
d, d = 2, 3, be a bounded domain with a smooth

boundary. We consider dissipative partial differential equations which can be written
in the abstract form

ut + νAu+ F (u) = f,(1.1)

in a suitable Hilbert space H. In (1.1) ν > 0 is a scalar, −A is usually the Laplace
operator with appropriate boundary conditions, although other elliptic operators can
also be considered, F is a nonlinear term (typically a reaction or a convection term),
and f is a function that can be time-dependent. Throughout the paper we suppose
that for each initial condition u(·, 0) = u0, smooth enough, (1.1) has a unique solution
defined in some interval [0, T ].

Recently, a postprocessing technique has been introduced to increase the efficiency
of Galerkin methods of spectral type [4], including the p-version of the finite element
method (spectral element method); see [10], [7], [8], [9]. Postprocessed methods yield
greater accuracy than standard Galerkin schemes at nearly the same computational
cost so that the postprocessed Galerkin method really improves the efficiency of the
method to which it is applied.

In [11] the postprocessing technique has been extended to the h-version of the fi-
nite element method for dissipative partial differential equations. There, the authors
prove that the postprocessed method has a higher rate of convergence than the stan-
dard finite element method when other than piecewise linear (say, quadratic, cubic,
. . . ) finite elements are used. The main reason for this limitation is that in [11] the
emphasis is on error analysis in the L2(Ω) norm, whereas, in the case of piecewise
linear finite elements, the improvement in the rate of convergence is observed only in
the H1(Ω) norm (the energy norm).

In the present paper we prove that the postprocessing technique applied to the
linear finite element method improves the rate of convergence of this method when
the error is measured in the H1(Ω) norm. Furthermore, we present some numerical
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†Departamento de Matemática Aplicada y Computación, Universidad de Valladolid, Valladolid

47011, Spain (frutos@mac.cie.uva.es, jnovo@mac.cie.uva.es). The research of the first author was
partly supported by project MCYT BFM2001-2138. The research of the second author was partly
supported by projects DGICYT PB98-074 and MCYT BFM2001-2138.

805



806 JAVIER DE FRUTOS AND JULIA NOVO

experiments showing that the lack of gain in the L2(Ω) norm is really observed in
practice and thus is not merely a consequence of the technique employed in the proofs.
We wish to note that this fact has not been previously reported. We point out that
our technique of proof is related to but different from the one employed in [11].

For the sake of simplicity, in this paper we shall concentrate on equations of
convection-diffusion type as, for example,

ut − ν∆u+ (u · ∇)u = f,(1.2)

or reaction-diffusion type, such as

ut − ν∆u+ g(u) = f,(1.3)

on a bounded domain Ω ⊂ R
d, d = 2, 3, subject to homogeneous Dirichlet boundary

conditions. We confine ourselves to reaction terms of polynomial type

g(u) =

2p−1∑
j=0

bju
j , b2p−1 > 0,

although, in both cases, more general types of nonlinearities can also be treated along
very similar lines. The Hilbert space in the abstract formulation (1.1) is L2(Ω)n, with
n = 1 for (1.3) or n = d for (1.2). In what follows we will denote by F (u) either
F (u) = (u · ∇)u or F (u) = g(u).

In this paper we show that the gain in the convergence rate that is obtained
through postprocessing the linear finite element method is the same for reaction-
diffusion and convection-diffusion equations. This fact is confirmed by the numer-
ical experiments we present. In [11] the improvement obtained by postprocessing
reaction-diffusion type equations was superior to the one obtained by postprocessing
convection-diffusion equations, but only when the postprocessing was applied after
using the finite element method with polynomials of degree greater than or equal to
3, and boundary data approximations were performed with a sufficiently high order
of accuracy by means of superparametric finite elements.

The rest of the paper is as follows. Section 2 contains some standard preliminary
material; in section 3 the postprocessed method is introduced. Section 4 is devoted
to the proof of the main results of the paper. Finally, some numerical experiments
are presented in section 5.

2. Preliminaries and notation. Let W s,p(Ω), Hs(Ω), p ≥ 1, s ≥ 0 be the
standard Sobolev spaces. For simplicity of notation, when we consider (1.2), we shall
write W s,p(Ω), Hs(Ω), or Lp(Ω) instead of W s,p(Ω)d, Hs(Ω)d, or Lp(Ω)d. For reasons
of convenience we denote by ‖ · ‖0, ‖ · ‖∞, and ‖ · ‖1 the norms of the spaces L2(Ω),
L∞(Ω), and H1(Ω), respectively. Let H1

0 (Ω) be the space of functions in H1(Ω) with
null trace at the boundary of Ω. The norm of its dual space will be denoted by ‖ ·‖−1.

We will frequently make use of the following Sobolev inequalities:

‖u‖∞ ≤ C‖u‖Hd/2+ε(Ω), u ∈ Hd/2+ε(Ω) ε > 0,(2.1)

‖u‖W j,q(Ω) ≤ C‖u‖W j+s,p(Ω),
1

p
≥ 1

q
≥ 1

p
− s

d
, u ∈W j+s,p(Ω).(2.2)

We refer to [1, Lemma 5.15] for (2.1) and to [1, Theorem 5.4], [2, Theorem 6.5.1]
for (2.2).
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In H1
0 (Ω) we consider the bilinear form induced by A = −	, that is,

a(u, v) = (A1/2u,A1/2v) = (∇u,∇v), u, v ∈ H1
0 (Ω).

It is well known that a(·, ·) is continuous and coercive in H1
0 (Ω).

Let us fix a positive time T . The error estimates in section 4 and the constant in
(2.8) below depend on the constant

K(u) = max(K1(u),K2(u)),(2.3)

where

K1(u) = max
0≤t≤T

‖u(·, t)‖H2(Ω), K2(u) = max
0≤t≤T

‖ut(·, t)‖H2(Ω).

Notice that we implicitly assume that the solution is sufficiently regular. Equation
(1.1) has sufficiently smooth solutions; in fact, the solution is analytic in time if we
assume that the nonlinear terms and the data of the problem are smooth and satisfy
certain compatibility conditions. We refer to [12] for results concerning the regularity
properties of solutions of dissipative partial differential equations.

In order to simplify the description of the postprocessed method, in the following
we shall suppose that Ω is a convex polygonal or polyhedral domain, although the
results we present are applicable to the general case in which Ω is a bounded domain
with a smooth boundary.

Let Th = (τhi , φ
h
i ), h > 0, be a family of partitions of Ω; the parameter h is

the maximum diameter of the elements τhi in Th and φhi are affine mappings of the
reference simplex τ0 onto τhi . For r ≥ 2 we consider the finite element spaces

Sh,r =
{
χh ∈ C(Ω) | χh|τh

i
◦ φhi ∈ P

r−1(τ0), χh(x) = 0 ∀x ∈ ∂Ω
}
,

where P
r−1(τ0) denotes the space of polynomials of degree r − 1 or less on τ0.

We shall restrict ourselves to quasi-uniform meshes Th so that the following inverse
estimate holds for any element τ ∈ Th and vh ∈ Sh,2 (see, e.g., [13]):

‖vh‖Wm,p(τ) ≤ Chl−m−d( 1
q− 1

p )‖vh‖W l,q(τ), 0 ≤ l ≤ m ≤ 1, 1 ≤ q ≤ p ≤ ∞.(2.4)

There exists a piecewise linear (quasi) interpolant such that, for 1 ≤ p ≤ ∞,
0 ≤ m ≤ s ≤ 2 and any u ∈ L1(Ω) ∩W s,p(Ω) [3],

‖u− Ih(u)‖Wm,p(Ω) ≤ Chs−m‖u‖W s,p(Ω).(2.5)

Let ah(·, ·) be the bilinear form on Sh,r defined by

ah(χh, ψh) = (∇χh,∇ψh) ∀χh, ψh ∈ Sh,r.
We shall denote by Ah the associated positive, self-adjoint operator, that is,

ah(χh, ψh) = (Ahχh, ψh) ∀χh, ψh ∈ Sh,r.
The standard L2(Ω) orthogonal projection and the elliptic projection onto Sh,r are
denoted by Ph,r and Rh,r, respectively. Recall that, for u ∈ H1

0 (Ω),

ah(Rh,r(u), χh) = a(u, χh) ∀χh ∈ Sh,r.
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We shall use the bound [14], [5]

‖u−Rh,2(u)‖0 + h‖u−Rh,2(u)‖1 ≤ Ch2‖u‖H2(Ω), u ∈ D(A).(2.6)

Let u be the solution of (1.2) or (1.3) with initial condition u(·, 0) = u0. Then
the Galerkin linear finite element approximation to u is uh : [0, T ] → Sh,2, uh(0) =
Rh,2(u0) such that, for all t ∈ [0, T ] and ϕh ∈ Sh,2,

((uh)t, ϕh) + ν(∇uh,∇ϕh) + (F (uh), ϕh) = (f, ϕh).(2.7)

The next error estimate for the approximation uh is well known:

‖u(t)− uh(t)‖0 + h‖u(t)− uh(t)‖1 ≤ C(K(u))h2, 0 ≤ t ≤ T.(2.8)

Finally, set B(u, v) = (u · ∇)v. We shall make use of the following inequality [6,
Remark 6.2]. For each u ∈ L∞(Ω), v ∈ H1(Ω), and w ∈ L2(Ω),

|(B(u, v), w)| ≤ C‖u‖∞‖v‖1‖w‖0.(2.9)

3. The postprocessed method. Fix T > 0 and let us suppose that the
Galerkin approximation uh(T ) ∈ Sh,2 has been computed solving (2.7). We consider

an improved finite element space S̃h. Two choices are possible for the new space:
(1) S̃h = Sh′,2, h

′ < h, the linear finite element space that is obtained from Sh,2
by refining the partition. That is, every element τhi is divided into a finite number of

elements τh
′

j .

(2) If the solution u of (1.2) or (1.3) with initial condition u0 belongs to H3(Ω)∩
H1

0 (Ω) we can take S̃h = Sh,3, the space of piecewise quadratic polynomials over the
same grid.

The postprocessed approximation ũh(T ) ∈ S̃h is the solution of the discrete ellip-
tic problem

ν(∇ũh(T ),∇ϕh) = −(F (uh(T )), ϕh)− ((uh(T ))t, ϕh) + (f, ϕh)(3.1)

for all ϕh ∈ S̃h.
Remark 3.1. Let Wh be the orthogonal complement of Sh,2 in S̃h with respect to

the inner product in H1
0 (Ω) (i.e., (∇·,∇·)). Then the postprocessed approximation

ũh(T ) at time T > 0 can also be obtained adding to the Galerkin approximation
uh(T ), the approximate inertial manifold Φh(uh(T )) ∈Wh defined by

ν(∇Φh(uh(T )),∇ψh) = −(F (uh(T )), ψh)− ((uh(T ))t, ψh) + (f, ψh)(3.2)

for all ψh ∈Wh.

4. Analysis of the postprocessed method. In this section we establish the
rate of convergence of the postprocessed linear finite element method in the H1(Ω)
norm. We shall prove that the postprocessed approximation improves, up to one unit
in terms of h (up to a logarithmic term), the rate of convergence of the Galerkin linear
finite element method for both choices of the refined finite element space S̃h.

The proof of the two main theorems will require several preparatory lemmas which
we now state.
Lemma 4.1. Let g ∈ L∞ ([0, T ], Sh,2). For all t ∈ [0, T ] we have∥∥∥∥

∫ t

0

e−(t−s)νAhAhg(s) ds

∥∥∥∥
0

≤ Cν−1log(1/h) max
0≤t≤T

‖g(t)‖0,
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where the constant C does not depend on h.
Proof. We refer to [8, Lemma 4.7] since the proof can be obtained by the same

steps. The only requirement needed in that proof is the bound

(Ahvh, vh) ≤ Ch−2‖vh‖20, vh ∈ Sh,2,

which is a direct consequence of the inverse inequality (2.4).
Lemma 4.2. Let u be the solution of (1.2) with initial condition u0 and let uh be

the Galerkin linear finite element approximation to u. Then, if d = 2, the following
bound holds with l = −1, 0:

‖B(uh, uh)−B(u, u)‖l ≤ C‖u− uh‖l+1‖u‖H3/2(Ω).(4.1)

If d = 3, for l = −1, 0, and ε ∈ (0, 1/2],

‖B(uh, uh)−B(u, u)‖l ≤ C‖u− uh‖l+1‖u‖H3/2+ε(Ω).(4.2)

Proof. We first notice that

‖B(uh, uh)−B(u, u)‖l ≤ ‖B(uh − u, uh)‖l + ‖B(u, uh − u)‖l.(4.3)

Let us prove (4.1). Taking into account that in this case d = 2, we first observe that

‖∇uh‖L4(Ω) ≤ C‖u‖H3/2(Ω).(4.4)

To obtain this bound we use (2.8), (2.4), (2.5), and (2.2) to get

‖∇uh‖L4(Ω) ≤ ‖∇(uh − Ihu)‖L4(Ω) + ‖∇(Ihu− u)‖L4(Ω) + ‖∇u‖L4(Ω)

≤ Ch−1/2‖∇(uh − Ihu)‖L2(Ω) + C‖u‖W 1,4(Ω) + ‖∇u‖L4(Ω)

≤ Ch−1/2
(‖∇(uh − u)‖L2(Ω) + ‖∇(u− Ihu)‖L2(Ω)

)
+ C‖u‖W 1,4(Ω)

≤ Ch−1/2h1/2‖u‖H3/2(Ω) + C‖u‖W 1,4(Ω)

≤ C‖u‖H3/2(Ω).

Then we have

|(B(uh − u, uh), ϕ)| ≤ ‖u− uh‖0‖∇uh‖L4(Ω)‖ϕ‖L4(Ω)

≤ C‖u− uh‖0‖u‖H3/2(Ω)‖ϕ‖H1/2(Ω)

≤ C‖u− uh‖0‖u‖H3/2(Ω)‖ϕ‖1,

where we have used (4.4) and (2.2). Consequently, the first term in (4.3) is bounded
by

‖B(uh − u, uh)‖−1 ≤ C‖u− uh‖0‖u‖H3/2(Ω).

The proof for the case l = −1 is completed by using (2.9), (2.1), and (2.2) to
estimate the second term in (4.3). Thus we get

|(B(u, uh − u), ϕ)| ≤ ‖(B(u, ϕ), uh − u)|+ |(div(u)(uh − u), ϕ)|
≤ ‖u− uh‖0

(‖ϕ‖1‖u‖∞ + ‖∇u‖L4(Ω)‖ϕ‖L4(Ω)

)
≤ C‖u− uh‖0‖u‖H3/2(Ω)‖ϕ‖1.
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The case l = 0 is treated in a similar way. We have

|(B(uh − u, uh), ϕ)| ≤ ‖uh − u‖L4(Ω)‖∇uh‖L4(Ω)‖ϕ‖0.
This gives

‖B(uh − u, uh)‖0 ≤ C‖uh − u‖H1/2(Ω)‖u‖H3/2(Ω)

≤ C‖uh − u‖1‖u‖H3/2(Ω)

after using (4.4) and (2.2). Finally, using (2.9),

|(B(u, uh − u), ϕ)| ≤ C‖u‖∞‖u− uh‖1‖ϕ‖0,(4.5)

and then, using (2.1), we get

‖B(u, uh − u)‖0 ≤ C‖u‖H1+ε(Ω)‖u− uh‖1, ε > 0.

This completes the proof of (4.1).
The proof of (4.2) follows along the same lines as before. We begin with the case

l = −1. Using (2.2) we get

|(B(uh − u, uh), ϕ)| ≤ ‖u− uh‖0‖∇uh‖L3(Ω)‖ϕ‖L6(Ω)

≤ C‖u− uh‖0‖u‖H3/2(Ω)‖ϕ‖1,
where we have used the estimate

‖∇uh‖L3(Ω) ≤ C‖u‖H3/2(Ω).(4.6)

This bound is obtained using again (2.8), (2.4), (2.5), and (2.2) in the following way:

‖∇uh‖L3(Ω) ≤ ‖∇(uh − Ihu)‖L3(Ω) + ‖∇(Ihu− u)‖L3(Ω) + ‖∇u‖L3(Ω)

≤ Ch−1/2‖∇(uh − Ihu)‖L2(Ω) + C‖u‖W 1,3(Ω) + ‖∇u‖L3(Ω)

≤ Ch−1/2
(‖∇(uh − u)‖L2(Ω) + ‖∇(u− Ihu)‖L2(Ω)

)
+ C‖u‖W 1,3(Ω)

≤ Ch−1/2h1/2‖u‖H3/2(Ω) + C‖u‖W 1,3(Ω)

≤ C‖u‖H3/2(Ω).

For the second term in (4.3) we use first (2.9) and then (2.1) and (2.2):

|(B(u, uh − u), ϕ)| ≤ |(B(u, ϕ), uh − u)|+ |(div(u)(uh − u), ϕ)|
≤ ‖u− uh‖0

(‖ϕ‖1‖u‖∞ + ‖∇u‖L3(Ω)‖ϕ‖L6(Ω)

)
≤ C‖u− uh‖0‖u‖H3/2+ε(Ω)‖ϕ‖1, ε > 0.

The case l = 0 can be treated in a similar way as in the proof of (4.1). The only
difference is that now, after using (4.6) and (2.2), we have

|(B(uh − u, uh), ϕ)| ≤ ‖uh − u‖L6(Ω)‖∇uh‖L3(Ω)‖ϕ‖0
≤ C‖uh − u‖1‖u‖H3/2(Ω)‖ϕ‖0

so that in this case also

‖B(uh − u, uh)‖0 ≤ C‖uh − u‖1‖u‖H3/2(Ω).
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Finally, using (4.5) and (2.1) we obtain

‖B(u, uh − u)‖0 ≤ C‖uh − u‖1‖u‖H3/2+ε(Ω), ε > 0,

which completes the proof.
Lemma 4.3. Let u be the solution of (1.3) with initial condition u0 and let uh be

the Galerkin linear finite element approximation to u. Then, if d = 2, the following
bound holds with l = −1, 0:

‖g(uh)− g(u)‖l ≤ C(‖u‖1)‖u− uh‖l+1.(4.7)

If d = 3, for l = −1, 0,

‖g(uh)− g(u)‖l ≤ C(‖u‖H3/2(Ω))‖u− uh‖l+1.(4.8)

Proof. Let us first observe that

g(uh)− g(u) = (uh − u)


2p−1∑

j=1

bj

(
j∑

k=1

uj−kh uk−1

)
 = (uh − u)G(uh, u).

Since, for d = 2, 3, using (2.2),

|(g(uh)− g(u), ϕ)| = |((uh − u)G(uh, u), ϕ)|
≤ ‖uh − u‖0‖G(uh, u)‖L4(Ω)‖ϕ‖L4(Ω)

≤ ‖uh − u‖0‖G(uh, u)‖L4(Ω)‖ϕ‖1
and

‖G(uh, u)‖L4(Ω) ≤
2p−1∑
j=1

|bj |
j∑

k=1

‖uj−kh uk−1‖L4(Ω)

≤
2p−1∑
j=1

|bj |
j∑

k=1

‖uh‖j−kL8(j−k)(Ω)
‖u‖k−1

L8(k−1)(Ω)
,

the estimate (4.7) with l = −1 is readily obtained by taking into account that, after
using (2.2), ‖uh‖L8(j−k)(Ω) and ‖u‖L8(k−1)(Ω) are bounded in terms of ‖uh‖1 and ‖u‖1,
respectively, and then ‖G(uh, u)‖L4(Ω) ≤ C(‖u‖1).

To obtain (4.8), we again use (2.2) to get

‖u‖L8(k−1)(Ω) ≤ C‖u‖H3/2(Ω).

Now using (2.4), (2.5), (2.8), and (2.2), we have, for q = 8(j − k),

‖uh‖Lq(Ω) ≤ ‖uh − Ihu‖Lq(Ω) + ‖Ihu− u‖Lq(Ω) + ‖u‖Lq(Ω)

≤ Ch−3/2‖uh − Ihu‖L2(Ω) + C‖u‖Lq(Ω) + ‖u‖Lq(Ω)

≤ Ch−3/2h3/2‖u‖H3/2(Ω) + C‖u‖H3/2(Ω),

which gives ‖G(uh, u)‖L4(Ω) ≤ C(‖u‖H3/2(Ω)). This completes the proof in the case
l = −1. The corresponding results for l = 0 are obtained in a similar way, taking into
account that

|(g(uh)− g(u), ϕ)| ≤ ‖uh − u‖L4(Ω)‖G(uh, u)‖L4(Ω)‖ϕ‖0
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and again using (2.2).
We now state the first main result of the paper which yields a superconvergence

result. More precisely, we prove that the H1(Ω) norm of the difference between
the elliptic projection of the exact solution and the Galerkin approximation to this
solution is O(h2), up to a logarithmic term.
Theorem 4.4. Fix T > 0, let u be the solution of (1.2) or (1.3) with initial

condition u0, let uh be its Galerkin linear finite element approximation (2.7), and let
rh = Rh,2(u) be the elliptic projection of u onto Sh,2. Then

max
0≤t≤T

‖uh − rh‖1 ≤ C(K(u))ν−1 log(1/h)h2,

where K(u) is the constant in (2.3).
Proof. It is easy to see that the error eh = uh − rh satisfies, for all ϕh ∈ Sh,2,

((eh)t, ϕh) = −ν(∇eh,∇ϕh) + (F (uh)− F (u), ϕh) + (τ, ϕh),(4.9)

where τ = (rh)t − ut. Hence,

eh(t) = e−νAhteh(0) +

∫ t

0

e−νAh(t−s)Ph,2(F (uh)− F (u)) ds

+

∫ t

0

e−νAh(t−s)Ph,2τ ds.(4.10)

Taking into account that eh(0) = 0 and applying A
1/2
h to both sides of (4.10), we

obtain

A
1/2
h eh(t) =

∫ t

0

e−νAh(t−s)A1/2
h Ph,2(F (uh)− F (u)) ds

+

∫ t

0

e−νAh(t−s)A1/2
h Ph,2((rh)t − ut) ds.(4.11)

On the other hand, it is clear that for every function f ∈ L2(Ω) one has

‖A−1/2
h Ph,2f‖0 ≤ C‖f‖−1.

Then, using Lemma 4.1, we have∥∥∥∥
∫ t

0

e−νAh(t−s)A1/2
h Ph,2f ds

∥∥∥∥
0

=

∥∥∥∥
∫ t

0

e−νAh(t−s)AhA
−1/2
h Ph,2f ds

∥∥∥∥
0

≤ Cν−1 log(1/h)‖A−1/2
h Ph,2f‖0

≤ Cν−1 log(1/h)‖f‖−1.

Applying the above inequality to the terms on the right-hand side of (4.11) we obtain

‖A1/2
h eh‖0 ≤ Cν−1 log(1/h) (‖F (uh)− F (u)‖−1 + ‖(rh)t − ut‖−1)

≤ Cν−1 log(1/h) (C(K(u))‖uh − u‖0 + ‖(rh)t − ut‖0) ,
where in the last inequality we have used Lemma 4.2 or Lemma 4.3. Finally, by (2.8)
and (2.6) we get

‖A1/2
h eh‖0 ≤ Cν−1 log(1/h)C(K(u))h2,
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which proves the theorem, on taking into account that since eh ∈ H1
0 (Ω) the norm

‖A1/2
h eh‖ is equivalent to ‖eh‖1.
We next state and prove another technical lemma and then the main theorem of

the paper that gives the rate of convergence of the postprocessed method.
Lemma 4.5. Let u be the solution of (1.2) or (1.3) with initial condition u0 and

uh its Galerkin linear finite element approximation defined by (2.7). Then

max
0≤t≤T

‖(uh)t − ut‖0 ≤ C(K(u)) log(1/h)h.

Proof. Let us first observe that ‖(uh)t − ut‖0 ≤ ‖(eh)t‖0 + ‖(rh)t − ut‖0. The
second term, using (2.6), is bounded by CK(u)h2. We now consider the first term.
From (4.9) and taking ϕh = (eh)t we obtain

‖(eh)t‖20 ≤ Cν‖eh‖1‖(eh)t‖1 + ‖F (uh)− F (u)‖0‖(eh)t‖0 + ‖(rh)t − ut‖0‖(eh)t‖0
≤ C‖(eh)t‖0

(
ν‖eh‖1h−1 + ‖F (uh)− F (u)‖0 + ‖(rh)t − ut‖0

)
,

where we have used the inverse inequality (2.4). Then

‖(eh)t‖0 ≤ Ch−1ν‖eh‖1 + ‖F (uh)− F (u)‖0 + ‖(rh)t − ut‖0.

Now, taking into account Theorem 4.4, Lemma 4.2 or Lemma 4.3, (2.8), and (2.6) we
get

‖(eh)t‖0 ≤ C(K(u)) log(1/h)h+ C(K(u))h+ CK(u)h2,

which is the desired conclusion.
Theorem 4.6. Fix T > 0, let u be the solution of (1.2) or (1.3) with initial condi-

tion u0, and let ũh(T ) = uh(T ) +Φh(uh(T )) ∈ S̃h be the postprocessed approximation

to u(T ) defined in (3.1). If S̃h = Sh′,2, then

‖u(T )− ũh(T )‖1 ≤ C(K(u))ν−1 log(1/h)h2 + C‖u(·, T )‖H2(Ω)h
′.(4.12)

If u(·, T ) ∈ H3(Ω) ∩H1
0 (Ω) and S̃h = Sh,3, then

‖u(T )− ũh(T )‖1 ≤ C(K(u))ν−1 log(1/h)h2 + C‖u(·, T )‖H3(Ω)h
2.(4.13)

Proof. From the decomposition S̃h = Sh,2 ⊕Wh (see Remark 3.1) we define Ψh

such that r̃h = rh + Ψh, where r̃h stands for the elliptic projection of u over the
space S̃h. Let us denote Φh(uh(T )) by Φh. Then the error of the postprocessed
approximation can be decomposed in the following way:

‖u− (uh + Φh)‖1 ≤ ‖u− r̃h‖1 + ‖rh − uh‖1 + ‖Ψh − Φh‖1.(4.14)

The second term on the right-hand side above was estimated in Theorem 4.4.
To bound the third term we first observe that

ν(∇Ψh,∇ψh) = −(F (u), ψh)− (ut, ψh) + (f, ψh) ∀ψh ∈Wh.(4.15)

Subtracting (4.15) from (3.2) we obtain

ν(∇(Φh −Ψh),∇ψh) = (F (u)− F (uh), ψh) + ((u− uh)t, ψh)
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for all ψh ∈Wh. Using the coercivity of a(·, ·),

να‖Φh −Ψh‖1 ≤ ‖F (u)− F (uh)‖−1 + Ch‖(uh − u)t‖0.(4.16)

In this last inequality we used that

‖w‖0 ≤ Ch‖w‖1 ∀w ∈Wh.(4.17)

To prove (4.17) we observe that if w ∈ Wh, then w = w − Rh,2(w) so that (4.17)
follows from (2.6). Now, using Lemma 4.2 or Lemma 4.3 and Lemma 4.5 in (4.16) we
get

να‖Φh −Ψh‖1 ≤ C(K(u))‖u− uh‖0 + C(K(u)) log(1/h)h2

≤ C(K(u))h2 + C(K(u)) log(1/h)h2

after using (2.8) in the last inequality.
To complete the proof it remains only to bound the first term of (4.14). We

distinguish two cases. If S̃h = Sh′,2, then using (2.6) this term is bounded by

C‖u(·, T )‖H2(Ω)h
′ and (4.12) is obtained. In the case S̃h = Sh,3 we use the well-

known bound [5]

‖u−Rh,3(u)‖1 ≤ Ch2‖u‖H3(Ω),(4.18)

instead of (2.6), to deduce that this term is bounded by C‖u(·, T )‖H3(Ω)h
2 so that

the desired estimate (4.13) is obtained.
Remark 4.1. We observe from Theorem 4.6 that the highest possible rate of con-

vergence in theH1(Ω) norm for the postprocessed method is O(h2) up to a logarithmic
term. Then using the postprocessing technique we can obtain an improvement over
the standard linear finite element error bound which is O(h) in the H1(Ω) norm (see
(2.8)). However, to obtain this rate of convergence by postprocessing in the space
Sh′,2, that is, by means of some refinement of the mesh, we need h′ = O(h2). This
is a very demanding requirement especially in two or three dimensions. Fortunately,
for practical computations, only a slightly refined mesh is usually sufficient in order
to observe a considerable reduction of the error in the H1(Ω) norm (see the next
section). Since the refinement of the mesh is performed only at the final time T , the
extra cost of the postprocessing is almost negligible when compared with the cost of
integrating in time from t = 0 to t = T on the coarser mesh.

When the solution u is smooth enough we can use quadratic polynomials over the
same grid once the time integration is completed. In view of (4.13) this procedure
always improves the rate of convergence of the standard Galerkin method by a single
power of h (up to a logarithmic term).

For a general domain with smooth boundary, one can still benefit from using
the postprocessed method. In this case, each Th is a partition of a domain Ωh that
approximates Ω. For an affine family of finite elements

δ(h) = max
x∈Ωh

dist(x, ∂Ω) ≤ ch2

so that (2.6) remains valid; see [14, p. 61]. Therefore, it is possible to obtain exactly

the same bounds as in Theorem 4.6, postprocessing with S̃h = Sh′,2. Postprocessing
with piecewise quadratic polynomials requires that boundary data approximations are
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performed to a sufficiently high order of accuracy since the bound (4.18) is no longer
valid in a straight mesh.

Finally, we remark that the one-dimensional case can be treated in a much easier
way. In this case one can either refine the partition or increase the degree of the
polynomials used in the postprocessing step at the final time level.

5. Numerical experiments. In this section we present some numerical exper-
iments to assess some features of the postprocessed linear finite element method. We
begin with a simple one-dimensional example which will help us to illuminate the
results we have presented in previous sections.

Let us consider the one-dimensional Burgers equation

ut − νuxx + uux = 0, 0 < x < 1,

subject to homogeneous Dirichlet boundary conditions u(0, t) = u(1, t) = 0, t ≥ 0. We
take as the initial condition u(x, 0) = sin(2πx). The value of ν in these experiments
is ν = 0.01, but similar results have been obtained for other values of the diffusion
parameter.

We use linear finite elements in space over a uniform partition of [0, 1] and inte-
grate in time using the backward differentiation formulae implemented in the variable-
step variable-order mode. The final time chosen is T = 1. The Galerkin approxima-
tion at the final time is postprocessed using linear finite elements but over a refined
partition. If the Galerkin approximation has been calculated over a partition of size
h, then h′ ≈ h2 has been taken as the new diameter of the refined partition for the
postprocessing step.

The “exact” solution u has been computed using the Galerkin method with a
sufficiently small mesh size and a sufficiently small value of the tolerance in the time
integrator in order to ensure that the errors in time and space are negligible. Then
the computed solution may be taken as exact, for all intents and purposes, as it is
sufficiently more accurate than those shown in the experiments.

In Figure 5.1 we show, in a logarithmic scale, the L2(0, 1) and H1(0, 1) norms
of the relative errors for the linear finite element method (continuous line) and the
postprocessed method (discontinuous line) against the number N = 1/h of subin-
tervals in the partition used in the calculations. We have used circles to represent
the errors measured in the L2(0, 1) norm and diamonds for the errors in the H1(0, 1)
norm. For each value of h the experiments were carried out with decreasing values
of the time integration tolerance until further reduction of the tolerance did not re-
duce the error any further. This means that, at this point, the time discretization
error is negligible when compared with the spatial error. In the figure it is observed
that the postprocessed method does not reduce the error in the L2(0, 1) norm, while
a considerable reduction of the error is obtained in the H1(0, 1) norm. In fact, the
slopes of the lines in the convergence diagram in the L2(0, 1) norm are −1.99 for the
standard Galerkin scheme and −1.95 for the postprocessed Galerkin method. That
is, the order of convergence in L2(0, 1) is the same for both methods. The slopes in
the H1(0, 1) norm are −1.01 and −1.94 for the standard and postprocessed Galerkin
method, respectively. This result is in agreement with the bound on the error of the
postprocessed method obtained in Theorem 4.6 that predicts quadratic convergence
in H1(0, 1) in contrast to the linear convergence of the Galerkin method in the same
norm. Notice that, as we mentioned before, the value of h′ in this experiment is taken
to be O(h2).

In Figure 5.2 we show the same errors as before (for the H1(0, 1) norm only)
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Fig. 5.1. Burgers equation, ν = 0.01; relative errors against N = 1/h; continuous line:
Galerkin method, discontinuous line: postprocessed method; circle: L2(Ω) norm; diamond: H1(Ω)
norm.

but plotted against the CPU time that was required to compute the corresponding
solutions. The CPU time shown was the smallest among those yielding a given error
but using different values of the time integration tolerance. It can be seen that, for a
given accuracy, the postprocessed method achieves a dramatic reduction in the CPU
time required to compute the corresponding solution. Thus in this experiment the
postprocessing procedure really improves the efficiency of the standard linear finite
element method in the H1(0, 1) norm. We remark that the semidiscrete Galerkin
equations (2.7) are a stiff system of ordinary differential equations that must be
integrated by means of some implicit time stepping procedure. Thus at each time
step one has to solve a nonlinear system of equations by means of some Newton or
quasi-Newton iteration. The cost of the postprocessing step is the same as an extra
single (quasi-) Newton iteration on the refined mesh. Although in this experiment the
mesh size we have used to postprocess is much smaller than the one used to obtain
the Galerkin solution, the most expensive part of the algorithm is the time integra-
tion procedure which is carried out on the coarse mesh. Furthermore, as we show in
the next experiment, usually only a slightly refined mesh is sufficient for ensuring a
substantial reduction in the error. This fact greatly reduces in practice the cost of
the postprocessing step.

Next we present a two-dimensional example. We now consider the following
reaction-diffusion equation with a cubic nonlinearity:

ut − ν∆u− u+ u3 = f(t,x), x ∈ Ω,

in the domain Ω = (−1, 1) × (−1, 1). We impose a homogeneous Dirichlet bound-
ary condition on u. The value of ν in the experiment is ν = 0.01 and the final
time is T = 1. We chose the forcing term so that the exact solution is u(x, y, t) =
cos(2πt) sin(πx) sin(πy).

In the calculations we took a regular triangulation of Ω induced by the set of nodes
(−1+2j/N,−1+2k/N), 0 ≤ j, k ≤ N, where N = 2/h is an integer. The meshes were
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Fig. 5.2. Burgers equation, ν = 0.01; relative errors in the H1(Ω) norm against CPU time;
continuous line: Galerkin method, discontinuous line: postprocessed method.

generated using the finite element package of MATLAB. We use the MATLAB time
integrator ODE15s for the time integration of the semidiscrete Galerkin equations.

In Figure 5.3 we show the L2(Ω) and H1(Ω) norms of the relative errors for the
Galerkin and postprocessed Galerkin methods using the same symbols as before: a
continuous line for the Galerkin method and a discontinuous (dashed or dash-dotted)
line for the postprocessed method, circles for the L2(Ω) norm, and diamonds for the
H1(Ω) norm, respectively. In the postprocessing step we first construct a uniform
refinement of the partition taking h′ = h/8, that is, three regular refinements of the
mesh used in the Galerkin equations. We observe in the figure that the postprocessing
procedure does not improve the error in the L2(Ω) norm. Indeed, for each value of
h, the L2(Ω) norm of the error of the postprocessed method (dashed line, circles) is
significantly larger than the corresponding error of the Galerkin method (continuous
line, circles), although both exhibit quadratic convergence. The slopes in the conver-
gence diagram are −1.98 for the L2(Ω) norm of the Galerkin error and −1.89 for the
L2(Ω) norm of the postprocessed error.

If we consider the errors achieved in the H1(Ω) norm the situation is com-
pletely different. Now the postprocessed errors (dashed line, diamonds) are below
the Galerkin errors (continuous line, diamonds) except for the first point that corre-
sponds to h = 2/8. Furthermore, the difference between Galerkin and postprocessed
Galerkin errors increases as the value of h decreases. The computed slope for the
line representing the postprocessed errors in the H1(Ω) norm is −1.83 showing that
the convergence is almost quadratic. This result is again in agreement with the error
bounds of Theorem 4.6. Indeed, we could have obtained exactly quadratic conver-
gence with the postprocessed method had we postprocessed the last two points in the
picture using a smaller value of h′. However, from a practical point of view, although
the postprocessed step is carried out only at the final time T , the use of a mesh of
size h′ ≈ h2 for ensuring quadratic convergence is not very useful. Fortunately, one
still benefits from using the postprocessed method in two dimensions even if h′ � h2.
To show this fact we have depicted in Figure 5.3, using diamonds joined by a dashed-
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dotted line, the H1(Ω) norm of the errors in the postprocessed solution based on
linear elements over a refined mesh of size h′ = h/2 (only one regular refinement).
Notice then that by postprocessing at the final time T = 1 the Galerkin solution that
has been computed using a mesh of size h = 2/16 we obtain the same error as if
we had used a mesh of size h = 2/32 over the full time interval [0, T ] to calculate
the Galerkin solution. The same result is true for other values of h; compare, for
example, the results with h = 2/32 (postprocessed with h′ = 2/64) and h = 2/64.
Postprocessing the Galerkin approximation with h′ = h/2 one can achieve a smaller
error than by computing the Galerkin solution on a mesh of half the spacing. This
version of applying the postprocessed method is clearly an efficient way to improve the
accuracy of the Galerkin method in the H1(Ω) norm. Notice that now the cost of the
postprocessing step is only slightly larger than that of one (quasi-) Newton iteration
in one step of the time integration procedure, and, furthermore, the postprocessed
method is applied only once at time T where the numerical solution is required.

Acknowledgment. The authors thank Professor Endre Süli for his valuable
suggestions, especially concerning the proof of Lemma 4.2, which is a significant im-
provement over a previous version.
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Abstract. The asymptotic stability of weak discrete stationary shocks for systems of conser-
vation laws in one space dimension is proved. The difference approximation should be conservative,
dissipative, and kth order accurate in space with odd k. The problem is considered in a finite interval
|x| ≤ � with appropriate boundary conditions, where � is large compared with the width of the shock
layer ε−1 = |uR −uL |−1/k. The proof is based on the assumption that the corresponding continuous
shocks for the scalar problem ut + uux = −(i∂x)k+1u are stable. The latter is known to be true for
k = 1 and k = 3.
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1. Introduction. Consider a system of conservation laws

ut + f(u)x = 0,(1.1)

where f :Rn → Rn is a smooth vector function and the unknown function u = u(x, t) ∈
Rn depends on −∞ < x <∞ and t > 0. By planar stationary shock, one means the
solutions

u = u
L
, x < x0; u = u

R
, x > x0,(1.2)

where u
L

, u
R

satisfy the Rankine–Hugoniot condition

f(u
L

) = f(u
R

).(1.3)

Suppose that (1.1) is approximated by a dissipative system

ut + f(u)x = −(i∂x)
k+1
2

[
A(u)(i∂x)

k+1
2

]
u, k odd.(1.4)

Stationary solutions ust of (1.4) which attain the above limits u
L

and u
R

as x→ −∞
and x → ∞ correspondingly are called stationary viscous shocks. (The traveling
shocks by a change of variables x − c · t → x are reduced to the stationary ones.) If
the difference |u

R
− u

L
| is small, the shock is called weak. We assume that u

L
, u

R
lie

in a small neighborhood of a point u0 such that the differential df [u0] of f at u0 has
distinct real eigenvalues with a zero eigenvalue λ1(u0) = 0. Without loss of generality,
we may assume that

df [u0] = diag
(
λ1(u0), λ2(u0), . . . , λn(u0)

)
.(1.5)
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The eigenvalue λ1(u) also should be genuinely nonlinear , i.e., the directional derivative

dλ1[u0] · e1 �= 0, e1 = (1, 0, . . . , 0)
T

.(1.6)

We assume that the pair u
L

, u
R

is entropy-satisfying, i.e.,

λ1(u
L

) > 0 > λ1(u
R

),(1.7)

and the right-hand side (r.h.s.) of (1.4) is dissipative in a proper sense (see the dis-
sipativity assumption in section 2). Under the above assumptions, the existence of
viscous shocks for k = 1 and k = 3 follows from [1]. Using the idea of Conley’s index
[2] and the reduction to the central manifold as in [1], one can actually prove the
existence of viscous shocks for any odd k.

A natural question to ask is whether these shocks are asymptotically stable.
Namely, given an initial condition u(x, 0) which is a small perturbation of the station-
ary viscous shock ust(x), will u(x, t) tend to ust(x) as t→∞? For k = 1 this problem
was studied by Goodman in [3]. Under the assumption of zero mean perturbation, i.e.,∫∞
−∞(u(x, 0) − ust(x))dx = 0, he proved that the shock is asymptotically stable. Liu

in [4] removed the above restriction but assumed that u
L

and u
R

are connected by a
nondegenerate sum of n shocks. Then he showed that u(x, t) tends asymptotically to
a sum of traveling viscous shocks. As far as we know, for k = 3 the stability problem
was never considered.

Lately, while studying the stability of Bunsen flames [5] we became involved in
the stability problem for the shock solution of the scalar equation

ut +

(
u2

2

)
x

= −uxxxx.(1.8)

The stationary shock ust satisfies the equation

uxxx =
1

2
(1− u2), u(∓∞) = ±1,(1.9)

and is not monotone. As a result, the energy method in the L2 space is not applicable
to (1.8). Instead, we used a rigorous computer-assisted proof to show that the linear
problem

su + (ust · u)x + uxxxx = 0, −∞ < x <∞,(1.10)

for complex s with Re s ≥ 0 does not have solutions which decrease exponentially as
|x| → ∞. (See Theorem 5.1 in [5].) Recently, Engelberg [6] proved analytically that
the solution ust of (1.8) is stable in a norm with a weight function w(x) which grows
exponentially as |x| → ∞. It seems that our result could be deduced directly from [6]
or by strengthening the result in [6]. Unfortunately, the weighted norm estimates are
not applicable to systems as in (1.4). Instead, we study the existence and asymptotic
stability of a stationary solution ust on a finite interval |x| ≤ �.

In the case 1 < n1 < n (n1 is defined at (1.14) below), in order to prove the
existence of stationary solutions ust, one needs the restriction

δ−1
0 ε−1 ≤ � ≤ δ0ε

−k(1.11)

and k ≥ 3. (For stability of ust one needs even more, i.e., � ≤ δ0ε
−2.) In cases n1 = 1

and n1 = n, � should satisfy

δ−1
0 ε−1 ≤ � ≤ δ0ε

−k−1(1.12)
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and k ≥ 1. Here ε−1 is proportional to the width of the boundary layer

ε−1 ∼
(
λ1(u

L
)
)−1/k

∼ |u
R
− u

L
|−1/k,(1.13)

and δ0 is a small constant. The boundary conditions should include

P
(
f(u) + (i∂x)

k−1
2

[
A(u)(i∂x)

k+1
2 u
])

= 0, x = ±�,(1.14)

where P :Rn → Rn is a projector on the first n1 components of u. This implies that

the integral
∫ �
−� Pudx is conserved in time. Note that ust tends exponentially fast to

u
L

, u
R

with respect to the variable εx. Thus the boundaries x = ±� are practically
at infinity.

In this paper we will prove asymptotic stability only in the cases n1 = 1 and
n1 = n since, in the case 1 < n1 < n, the result is much weaker and requires special
treatment. However, the existence of a stationary solution ust will be proved for a

general n1. The perturbation u of ust should have the same mean value
∫ �
−� Pudx as

ust. But this is not a restriction on the perturbation since there is an n1 parameter
family of ust depending on this mean value (see (2.89) in what follows).

The real motivation for the shock stability problem comes from computations.
Hence, instead of the continuous model (1.4), we will consider a discrete approximation
to (1.1). The continuous problem could be solved in a similar way. The discrete setting
will follow the one in [7], where we proved the existence of weak discrete shocks for
dissipative approximations with k = 1 and 3. Our numerical experiments for a 2× 2
system of polytropic gas indicate that ust also is stable for strong shocks if k = 1 or
k = 3. We conjecture that the same holds for all odd k. Thus, we consider in this
paper the case of a general odd k, under the assumption that the eigenvalue problem
in (1.10) with (i∂x)

k+1u derivative has no eigensolutions with Re s ≥ 0. The precise
statement of our results will be given in the next section.

One should mention the most recent papers on the subject of stability of viscous
shocks: Kreiss and Kreiss [10], Zumbrun and Howard [11], and Liu and Yu [12]. All
three papers deal with the case of second order viscosity only. In [10] and [11] the
continuous problem is studied. In [10] the Jacobian of the flux is assumed to be the
same at ±∞, which does not hold in real physical applications. The existence and
linear stability of the shock is also postulated. In [11, p. 760] the Evans function
criterion (condition D) is postulated. It holds indeed in the case of weak shocks;
however, it is not clear whether the estimates in [11] give an efficient bound on the
size of the perturbation of the stationary shock as the strength of the shock tends
to 0. The paper of Liu and Yu [12] is closest to our results. Their estimates, unlike
ours, hold on the whole line. They also prove existence of moving shocks while
we consider only stationary ones. However, their uniform dissipativity assumption is
much stronger than our “characteristic-component” dissipativity assumption in (2.16)
below. It would be a great challenge to extend the results of [12] to the case of fourth
order dissipation and to the boundary value problems.

Let us conclude this section with a practical remark. The most popular numerical
schemes for shock wave computations produce monotone shock profiles. As such,
they exclude high order approximations unless the scheme is modified outside the
shock layer. Our result indicates that the high order schemes, although producing
one overshoot of about 20% in the shock layer, converge exponentially fast to the
stationary solution. Since the special oscillations have a canonical form, they could
be filtered out at the end of computation without sacrificing the overall high accuracy.
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2. The difference approximation. The system of conservation laws (1.1) is
approximated by a difference scheme

G
({

Eju(x, t)
})

= 0, j = (j1, j2) ∈ J ⊂ Z
2, j2 ≤ 0.(2.1)

Here J is a finite set; G = G({uj}) is a smooth (at least C3) vector function of vector

variables uj ∈ Rn, j ∈ J ; and Ej = Ej1x E
j2
t is a shift operator

Eju(x, t) = u(x + j1h, t + j2h).(2.2)

We consider u(x, t) in (2.1) as a grid-function defined on a uniform grid with a mesh
size h,

Dh = Ih × (R+)h,(2.3)

in the half-strip [−�, �] × [0,∞). Since the step size h does not enter the problem
explicitly, we will assume that h = 1 so that 2� is equal to the number of grid points
in Ih. The scheme G should be conservative, i.e.,

G
({

Eju(x, t)
})

= (Ex − I)G1

({
Eju(x, t)

})
+ (Et − I)G2

({
Eju(x, t)

})
(2.4)

with multi-index j in G1, G2 varying over corresponding subsets of J . We assume
that G is consistent with (1.1), i.e.,

G1

(
{u}
)

= f(u), G2

(
{u}
)

= u,(2.5)

where {u} stands for the set {uj} of vectors uj = u. Since G2 approximates u, it is
natural to assume that

G2

(
{uj}

)
is a linear function.(2.6)

(This assumption is not essential but somewhat simplifies the proof.)
Since the domain is bounded, there are boundary conditions

S
L

({
Eju(−�, t)}, u

L

)
= 0, S

R

({
Eju(�, t)

}
, u

R

)
= 0,(2.7)

where S
L

and S
R

depend smoothly on its arguments and j belongs to a finite set.
The range of j = (j1, j2) in S

L
is such that j1 ≥ 0, j2 ≤ 0, while in S

R
, j1 ≤ 0, j2 ≤ 0.

The boundary conditions should be consistent with a constant solution, i.e.,

S
L

(
{u}, u

)
≡ S

R

(
{u}, u

)
≡ 0.(2.8)

There are also initial conditions

u(x, t) = uin(x, t), x = j1 ∈ [−�, �], t = j2 ∈ [0,∆j2 − 1],(2.9)

where −∆j2 is the minimal value of the index j2 in the functions G, S
L

, and S
R

.
Note that we can always add to G, S

L
, S

R
dummy variables uj so that they have a

common minimal j2.
We consider a family of initial boundary value problems (IBVPs) that depend

on the parameter ε ∼ (λ1(u
L

))1/k with u
L

, u
R

satisfying (1.3) and (1.7) so that
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u
L

(ε = 0) = u
R

(ε = 0) = u0 and � lies in the bounds of (1.11) or (1.12). More
precisely,

u
L

= u0 + µe1, u
R

= u0 − µe1 + O(µ2), µ = bεk/
(
dλ1[u0] · e1

)
,(2.10)

where b is the (positive) dissipation coefficient defined in (2.16) below and e1 is the
unit vector as in (1.6).

Equation (2.1) is defined for (x, t) in a subdomain D̊h ⊂ Dh such that (x+j1, t+j2)
lie in Dh for all j ∈ J . Denote by x−�, x�− 1 the left and right end points of D̊h, and
sum the equation in (2.1) for x ∈ [x−�, x�− 1]. We obtain the global conservation law

(Et − I)
∑

G2

({
Eju(x, t)

})
= G1

({
Eju(x−�, t)

})−G1

({
Eju(x�, t)

})
.(2.11)

It would be natural to assume that

G1

({
Eju(x±�)

})− f(u
R,L

) = 0;(2.12)

i.e., (2.12) is a part of the boundary conditions in (2.7). More generally, we will
assume that

P
(
G1

({
Eju(x±�, t)

})− f(u
R,L

)
)

= 0,(2.13)

where P = P (µ):Rn → Rn is a projector which depends smoothly on µ such that
P (0) is the standard projection on the first n1 components of u. As a result, the
solution of IBVPs (2.1), (2.7), (2.9) satisfies

P
∑

G2

({
Eju(x, t)

})
= P

∑
G2

(
{Ejuin}

)
.(2.14)

Let us linearize the above IBVP at the constant state u = u0 and µ = 0 with
arbitrary �. The resulting constant coefficient difference operators will be denoted
by dG[u0](Ex, Et), dS[u0](Ex, Et), or simply dG[u0], dS[u0]. The Laplace–Fourier
symbol of dG[u0] is defined as dG[u0](eiξ, es). As in [7], we impose the following
assumptions.

Dissipativity assumption. The symbol dG[u](eiξ, es) is nonsingular for all
pairs (ξ, s) with Re s ≥ 0, but s = 0 and ξ = 0 mod 2π, where u is any vector in a
neighborhood of u0.

Remark 1. Actually, we need the above dissipativity only at u = u0, and the
usual stability at u close to u0.

Accuracy assumption. The difference operator dG[u0], when restricted to the
x variable, is exactly a kth order accurate approximation of df [u0] ∂∂x in the direction

e1 = (1, 0, . . . , 0)
T

. More precisely,

dG[u0](eiξ, 1)e1 = iξdf [u0]e1 + O(ξk+1) = O(ξk+1),(2.15)

where the first component O1(ξk+1) of O(ξk+1) satisfies

O1(ξk+1) = bξk+1 + O(ξk+2), b �= 0.(2.16)

It is easy to show (see Proposition 2.1 in [7]) that the dissipativity assumption then
implies b > 0. Note that the scheme need not be kth order accurate in t.
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Obviously, one should assume that the linear problem

dG[u0]u = F, dS
L

[u0]u = g
L
, dS

R
[u0]u = g

R
(2.17)

is solvable in time. Namely, let dG(0), dS(0)
L

, dS(0)
R

be the upper parts of dG, dS
L

,
dS

R
in t. We should then consider only the half-line problems

dG(0)[u0]u = F, x ≥ −�; dS(0)
L

[u0]u(−�) = g(2.18)

and

dG(0)[u0]u = F, x ≤ �; dS(0)
R

[u0]u(�) = g.(2.19)

Solvability assumption. For any F and g, problems (2.18) and (2.19) have a
unique solution u satisfying the estimate

‖u‖22 ≤ K
(
‖F‖22 + |g|2

)
,(2.20)

where ‖ · ‖2 is the �2 norm and K is independent of F and g. Theorem 1.1 in
[8] states an equivalent algebraic (Lopatinsky) condition on dG(0), dS(0). If � is
large enough, this implies the Lopatinsky condition for the combined (2.18), (2.19)
problem in [−�, �]. The last, in turn, implies estimate (2.20) in norm ‖ · ‖p, p ≥ 1, for
the combined problem. Then, by the inverse function theorem, the nonlinear IBVP
(2.1), (2.7), (2.9) is solvable for u in a small neighborhood of u0.

Finally, let us state the stability condition. Apply to (2.17) the Laplace–Fourier
transform in t; i.e., consider

dG[u0](Ex, e
s)u = F, dS

L
[u0](Ex, e

s) = g
L
, dS

R
[u0](Ex, e

s)u = g
R
.(2.21)

The weak Lopatinsky condition. For Re s ≥ 0, s �= 0, the corresponding
half-line problems have no nontrivial solutions in �2.

As in the solvability case, for Re s ≥ 0 and |s| > δ we obtain for problem (2.21)
a uniform estimate (2.20). (Actually, the norm ‖ · ‖2 could be replaced by any norm
‖ · ‖p, p ≥ 1.) The crucial point, of course, is s = 0. Since λ1(u0) = 0, the boundaries
x = ±� are characteristic. We will see in the next section that, for s = s′εk+1, the
homogeneous solution of the linearized shock problem in proper coordinates consists of
three parts: y1, {yi}, 2 ≤ i ≤ n, and y

I,II
. The first part y1 is a discrete approximation

to a solution of the linearized scalar shock equation

s′y1 + ∂τ (yshy1) + (−1)
k+1
2 ∂k+1

τ y1 = 0,(2.22)

where ysh is the solution of the problem

(−1)
k+1
2 ∂kτ ysh = 1

2 (1− y2
sh), ysh(−∞) = 1, ysh(∞) = −1,(2.23)

and τ = εx. The second, noncharacteristic part approximates the solution of the
equation

syi + λi(u0)∂xyi = 0, 2 ≤ i ≤ n,(2.24)

where λi(u0) are the nonzero eigenvalues of df [u0]. The third, boundary layer part
corresponds to the exponentially decreasing (y

I
) and increasing (y

II
) solutions of the

equation

dG1[u0](Ex, 1)u = 0.(2.25)
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The variables yi, 1 ≤ i ≤ n, modulo O(s) terms affect only ui components of u, but
y
I,II

, due to a possible coupling in the dissipative term, may affect all components of
u. The boundary condition is designed so that the problem for y− = ({yi}, i ≥ 2; y

I,II
)

almost decouples from the one for y1. Toward that end we assume that the boundary
operators dS

L
and dS

R
split into three parts,

(a) PdG1u = 0,

(b) dS1u = 0,

(c) dS2u = 0.

(2.26)

Represent the projector P (µ) as an orthogonal sum

P (µ) = P1(µ)⊕ P−(µ)(2.27)

such that P1(0) is the standard projection on the unit vector e1. The equation
P1dG1u = 0 in (2.26)(a) is used to integrate (2.22) with respect to τ . The remaining
components of (2.26)(a) are used to specify the hyperbolic variables y2, . . . , yn at the
inflow boundaries, which are

x = −� if λi(u0) > 0 and x = � if λi(u0) < 0.(2.28)

There are n1−1 unused conditions in (2.26)(a) which are replaced by the conservation
laws

P−
∑
x

dG2[u0](Ex, Et)u = 0.(2.29)

The operator dS1[u0] has exactly k−1
2 components at each end x = ±� and supplies

the boundary conditions for (2.22). Denote by dS
(1)
1j [u0] the entry in the first column

and jth row of dS1[u0]. We assume that for 1 ≤ j ≤ k−1
2 ,

dS
(1)
1j [u0] = cj(Ex − I)dj + higher powers of (Ex − I),(2.30)

where

0 ≤ dj ≤ k − 1 for n1 = 1 and

0 ≤ dj ≤ k − 2 for 1 < n1 ≤ n
(2.31)

are all distinct and cj �= 0. The boundary condition (2.26)(b) thus approximates for

small ε the conditions ∂
dj
τ y1 = 0 at τ = −ε� or τ = ε�. The resulting boundary value

problem for (2.22) should satisfy the one-sided Lopatinsky conditions, namely, the
following.

The scalar shock stability condition. For complex s with Re s ≥ 0 and real
δ ≥ 0 such that |s|+ δ �= 0, let λ1, λ2, . . . , λ k+1

2
be the roots of the equation

s± δλ + (−1)
k+1
2 λk+1 = 0(2.32)

with corresponding ±Reλ ≤ 0. Then for all such s, the determinant

det(λ
dj+1
i ), 1 ≤ i ≤ k + 1

2
, 0 ≤ j ≤ k − 1

2
, d0

df
= −1(2.33)
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is nonzero. (In the case s = 0, λ1 = 0 and λd0+1
1

df
= 1.)

This condition is obviously satisfied if dj = j − 1. If λi is a multiple root, then

besides λ
dj+1
i we have also the rows (d/dλ)m(λdj+1)|λ=λi , where 1 ≤ m < rj , and rj

is the multiplicity of the root λi. Note that the exponents dj at x = −� and x = �
need not be the same. Due to a scaling, the parameter δ, if nonzero, could be chosen
to be δ = 1. Note also that for k = 1 the set of boundary conditions (2.26)(b) is
empty.

The boundary conditions (2.26)(c) and the conservation laws (2.29) are used to
define the boundary layer y

I,II
and the remaining hyperbolic variables yn1+1, . . . ,

yn. We wish the contribution of y1 to y− for s = s′εk+1 to be of order O(εk).

Therefore, we assume that the first column dS
(1)
2 of dS2 satisfies

dS
(1)
2 [u0](Ex, 1) is divisible by (Ex − 1)k(2.34)

and, similarly,

P−(µ = 0)dG
(1)
2 [u0](Ex, 1) is divisible by (Ex − 1)k+1 .(2.35)

The above two conditions (2.34), (2.35) will be called the decoupling conditions since
they imply that the Lopatinsky condition for the whole solution y decouples into one
for y1 as in (2.22) and one for the y− variables.

Now consider the homogeneous problem dG[u0](Ex, e
s)u = 0 for small |s| with

Re s ≥ 0. Denote the solutions that correspond to the noncharacteristic hyperbolic
components yi, 2 ≤ i ≤ n, by ϕi and the ones that correspond to y

I,II
by ϕ

I
(x),

ϕ
II

(x). Thus, if we disregard the contribution of y1, the general solution u is a linear
combination

u(x) =
n∑
i=2

ϕi(x)ci + ϕ
I
(x)c

I
+ ϕ

II
(x)c

II
.(2.36)

If λi(u0) > 0, then

ϕi(x)ci = Xi(s) exp
(
µi(s)(x + �)

)
ci = Xi(x)yi(x),

Xi(s) = ei + O(s), ei – unit vector.
(2.37)

Here µi(s) = −s
λi(u0)+O(s2) and, by the dissipativity assumption, Reµi(s) < 0. Since s

could be arbitrarily small and � arbitrarily large, the factor ρi = exp(2�µi(s)) could
be any complex number with the only restriction |ρi| < 1. For ϕ

I
c
I

we have

ϕ
I
(x)c

I
= X

I
(s)
(
M

I
(s)
)x+�

c
I

= X
I
(s)y

I
(x),(2.38)

where ‖M
I
‖ < 1. Similar relations hold for ϕici in the case λi(u0) < 0 and for

ϕ
II
c
II

. One can assume that Xi(s), XI,II
(s) depend analytically on s and that the

columns ϕi, ϕI,II
are independent as functions of x. Note that ϕ

I
(�) and ϕ

II
(−�)

are exponentially small so that their contribution to the boundary condition will be
(formally) neglected. On the other hand, the solutions ϕi(x) couple together the
boundary conditions at x = −� and x = �. Let us split the hyperbolic variables yi,
2 ≤ i ≤ n, into four groups y(j1,j2), j1 = 1, 2, j2 = 1, 2, where j1 = 1 if i ≤ n1, and 2
if i > n1, while j2 = 1 if λi(u0) > 0, and 2 if λi(u0) < 0. Substitute the solution u in
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(2.36) into the boundary conditions P−dG1[u0]u = 0 in (2.26)(a). In terms of the y
variables, we obtain

(a)
(
λ(1,1) + O(s)

)
y(1,1)(−�) = sB(1)

(
y(−�); s

)
,

(b)
(
λ(1,2) + O(s)

)
y(1,2)(�) = sB(2)

(
y(�); s

)
,

(c) B(1)
(
y(�); s

)
− ρ(1,1)B(1)

(
y(−�); s

)
= 0,

(d) B(2)
(
y(−�); s

)
− ρ(1,2)B(2)

(
y(�); s

)
= 0.

(2.39)

Here ρ(1,1) = diag(ρi), λ
(1,1) = diag(λi(u0)), where ρi, λi correspond to the (1, 1)

group and similarly for the group (1, 2). The functions B(1), B(2) depend linearly on
y− = (yj , 2 ≤ j ≤ n; y

I
, y

II
) and analytically on s. As s→ 0, (2.39) becomes

(a) y(1,1)(−�) = 0,

(b) y(1,2)(�) = 0,

(c) B(1)
(
y(�); 0

)
− ρ(1,1)B(1)

(
y(−�); 0

)
= 0,

(d) B(2)
(
y(−�); 0

)
− ρ(1,2)B(2)

(
y(�); 0

)
= 0.

(2.40)

In the vectors y(−�), y(�), we assume

y
II

(−�) = y
I
(�) = 0, y(2,1)(�) = ρ(2,1)y(2,1)(−�),

y(2,2)(−�) = ρ(2,2)y(2,2)(�).
(2.41)

To find the function B, one should observe that

s−1dG1[u0](Ex, e
s)ϕ

I
(x)c

I

= −s−1(es − 1)dG2[u0](M
I
, es)(M

I
− 1)−1X

I
(s)y

I
(x)

= −dG2[u0](M
I
, 1)(M

I
− 1)−1X

I
(s)y

I
(x) + O(s)y

I
(x),

(2.42)

where the matrix M
I

has eigenvalues inside the unit circle.
A similar formula holds for ϕ

II
(x). For ϕi we have

s−1dG1[u0](Ex, e
s)ϕi(x)ci

= −
(

1 + O(s)
)
dG2[u0](eµi(s), es)µ−1

i (s)Xi(s)yi(x).
(2.43)

The matrices B(1) and B(2) are obtained by projecting the r.h.s.’s of (2.42), (2.43)
onto the components of u corresponding to the groups y(1,1) and y(1,2). Notice that
the r.h.s. of (2.42) is the summation formula for

∑
dG2[u0]ϕ

I
(x)c

I
and similarly for

(2.43). Thus (2.39)(a)–(d) are equivalent to the equations obtained by substitution of
u in (2.36) into (n1−1) equations P−dG1(u) = 0 and (n1−1) equations in (2.29). By
consistency, dG2[u0](Ex, e

s)Xi(s) = ei +O(s). If i > n1, then Pei = 0 so that indeed
B depends analytically on s. In a particular case when the symbols dGj [u0](κ, es),
j = 1, 2, are diagonal modulo quadratic terms in (κ − 1) and s, the contribution of
ϕi to B is O(s) so that yi, 2 ≤ i ≤ n, do not enter (2.40)(c),(d). For example, if the
scheme G is at least second order accurate, one can rearrange G1 and G2 so that the
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above holds. Another trivial case when yi do not enter (2.40)(c),(d) is n1 = n. The
remaining boundary conditions (2.26)(c) at s = 0,

dS2[u0](Ex, 1)u = 0,(2.44)

involve, generally speaking, all components of y−(±�).
The generalized stability condition. The system of equations (2.40), (2.41),

(2.44) is nonsingular for all complex ρi, n1 < i ≤ n, with |ρi| ≤ 1.
Usually the numerical boundary conditions consist of the physical ones and artifi-

cial ones. The artificial boundary conditions are extrapolatory and vanish on constant
solutions. The physical ones represent some rules of reflection, i.e., express the ingoing
characteristic components in terms of the outgoing ones. Thus, let us assume that
the boundary conditions (2.44) split into

(a) dS
(1)
2,±�(Ex, 1)u = 0,

(b) dS
(2)
2,±�(Ex, 1)u = 0,

(2.45)

such that

dS
(2)
2,±�(1, 1)(I − P ) = 0,(2.46)

while dS
(1)
2,±�(1, 1)u = 0 provide a full set of n − n1 equations for y(2,1)(−�), y(2,2)(�)

correspondingly. As above, we assume also that y(2,1), y(2,2) do not enter (2.40)(c),(d).
Thus (2.40)(c),(d) and (2.45)(b) provide a full set of boundary conditions for y

I
(−�),

y
II

(�). The generalized stability condition then implies that y
I
(−�), y

II
(�) = 0. In

other words, we obtain the following condition.
The stationary boundary layer condition. The equation dG1[u0](Ex, 1)u =

0 has no boundary layer solutions u which satisfy (2.45)(b) and the conservation laws

P−
∑
x

dG2[u0](Ex, 1)u = 0.

By (2.45)(a), the vectors y(2,1)(−�), y(2,2)(�) could be expressed as

(a) y(2,1)(−�) = R(1)y(2,2)(−�),
(b) y(2,2)(�) = R(2)y(2,1)(�).

(2.47)

The generalized stability condition now implies that

det(R(1)ρ(2,2)R(2)ρ(2,1) − I) �= 0.(2.48)

The last clearly holds if

‖R(1)‖ · ‖R(2)‖ < 1;(2.49)

i.e., the reflection boundary conditions in (2.47) are dissipative. It is well known that
if the boundary conditions are nondissipative, a system of hyperbolic differential equa-
tions may have exponentially growing solutions. Clearly, (2.49) and the stationary
boundary layer condition imply the generalized stability condition, provided

P−dG2[u0](1, 1)(I − P ) = 0(2.50)
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and (2.46) hold. Thus, for a wide class of boundary conditions we obtain {ρi} inde-
pendent criteria of stability. In particular, if the scheme dG[u0] is diagonal and if the
boundary conditions do not mix different components of u, then the stability criteria
become very simple. Indeed, the problem becomes scalar. Condition (2.48) is ab-

sent. Since the conservation law
∑

dG2[u0]u = 0 is scalar, either dS
(2)
2,−�(Ex, 1)u = 0

uniquely define y
I
(−�) or dS

(2)
2,� (Ex, 1)u = 0 uniquely define y

II
(�). In any case the

boundary conditions for y
I
(−�), y

II
(�) are uncoupled. Then one can use for S

(2)
2

boundary conditions which satisfy scheme-independent stability criteria. For s away
from zero the eigenvalues of dG[u0](Ex, e

s) are away from the unit circle. The Lopatin-
sky condition for the half-line problems in (2.21) again holds for these boundary con-
ditions.

Remark 2. Notice that the global conservation laws (2.14), though formally
following from (2.13), actually fail for large time due to the round-off errors. Therefore,
at the outflow boundary, the ith component of (2.12) for 2 ≤ i ≤ n1 should be replaced
by the ith component of (2.14). (The outflow boundary is the opposite of the inflow
one in (2.28).) For i = 1 one can do the replacement at either boundary.

Examples. Let us approximate the derivative f(u)x in (1.1) by

F
(
{Eαu}

)
=

1

∆x

(
D(k+1)
x f(u) + (−1)k1K(E1/2

x − E−1/2
x )k+1u

)
,

k1 =
k + 1

2
,

(2.51)

where (∆x)−1D
(k+1)
x is a k+ 1 order central difference approximation of the operator

∂x and K = O∗(1) is a positive constant. For example,

D(k+1)
x =

k1∑
j=1

cj(E
j
x − E−j

x ), cj =
(−1)j−1(k1!)2

j(k1 − j)!(k1 + j)!
,(2.52)

has a maximal accuracy for the k+ 2 point lattice. Since k+ 1 is even, the dissipative

term (−1)k1(E
1/2
x − E

−1/2
x )k+1 contains only integer powers of Ex. Now we replace

(1.1) by the equation

ut + F (u) = 0
(
F (u) is shorthand for F

({Eαu}))(2.53)

in the space of grid-function u(x), x ∈ Ih, and approximate it by an mth order
ODE solver with m ≥ k. For example, one can use the mth order Adams–Bashforth
multistep method

(I − E−1
t ) + ∆t

m∑
i=1

diE
−i
t F (u) = 0.(2.54)

Clearly, F (u) = (Ex − I)F1(u), and hence the scheme is in conservation form (2.4).

Let dF̂ [u0] be the Fourier symbol of the differential of F at [u0]. The eigenvalues λ

of ∆tdF̂ [u0] are

λ =
∆t

∆x


λi(u0)

√−1

k1∑
j=1

2cj sin jξ + K(2 sin ξ/2)k+1


 .(2.55)
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For the stability of the Cauchy problem, one needs that the roots z of the characteristic
equation

1− z−1 +
∑

diz
−1λ = 0(2.56)

satisfy |z| ≤ 1. In other words, −λ should belong to the domain Ω of absolute stability
of the multistep method. Since the method is of order m, a point −λ near 0 with
Reλ ≥ K1| Imλ|m+1 belongs to Ω. Thus, if m > k + 1, then −λ in (2.55) for small
ξ always belongs to Ω. If m = k + 1, then it might be necessary to increase K or
to decrease ∆t

∆x . For nonsmall values of ξ the condition −λ ∈ Ω restricts from above

the values of |λi(u0) ∆t
∆x | and K ∆t

∆x . The scheme clearly satisfies the accuracy and
dissipativity assumptions. The boundary conditions could be set as follows: The zero
flux conditions (2.12),

P
(
F1

(
u(x±�, t)

)
− f(u

L,R
)
)

= 0, x−� = −� + k1, x� = �− k1,(2.57)

are used to compute Pu(±�, t). Hence K should be such that

K �= |ck1λi(u0)|, 1 ≤ i ≤ n1.(2.58)

For 1 ≤ i ≤ n1 we need k1 − 1 more conditions to compute ui(x, t), −� + 1 ≤ x <
−� + k1. These conditions are

ui(−� + 1, t) = u
L,i
, (Ex − I)jui(−� + 1, t) = 0, 1 ≤ j ≤ k1 − 2.(2.59)

If i > n1 and λi(u0) > 0, i.e., x = −� is the inflow boundary, then the conditions are

ui(−�, t) = u
L,i
, (Ex − I)jui(−�, t) = 0, 1 ≤ j ≤ k1 − 1,(2.60)

and in the outflow case,

(Ex − I)jui(−�, t) = 0, 1 ≤ j ≤ k1,(2.61)

or, instead,

(Ex − 1)dEjxui(−�, t) = 0, 0 ≤ j ≤ k1 − 1, d ≥ 1 an integer.(2.62)

Similar conditions are imposed at the right boundary. Note that in (2.62) we used
a fixed type of extrapolation translated along the boundary points. Such boundary
conditions were suggested by [9]. Since the scheme is explicit, it is easy to see that the
boundary conditions define all the boundary values of u(x); i.e., the scheme is solvable.
Let us now check the weak Lopatinsky condition. Since the scheme is diagonal it
suffices to consider the case of scalar f(u) = λiu. Due to the stability of the Cauchy
problem, the characteristic equation dG[u0](κ, es) = 0 for Re s ≥ 0 has only solutions κ
inside or outside the unit circle. Let κν , 1 ≤ ν ≤ N , be the roots |κ| < 1 counted with
their multiplicities. By solvability, N = k1 is the number of boundary conditions.
If all κν are distinct, then the substitution of the general decreasing homogeneous

solution ϕ(x) =
∑

cνκ
(x+�)
ν into (2.62) results in a matrix D = {(κν − 1)dκjν}, which

is proportional to a Vandermonde matrix and hence is nonsingular. If some κν is
a multiple root, then the matrix D will contain the corresponding column and its
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derivatives; hence again D is nonsingular. In view of (2.42), the boundary condition
(2.57) implies ∑

ν

κk1ν (κν − 1)−1cν = 0.(2.63)

The factor κk1ν is due to the negative power E−k1
x in (2.51). The boundary conditions

in (2.59) result in a system∑
ν

κν(κν − 1)jcν = 0, 0 ≤ j ≤ k1 − 2.(2.64)

Since κk1(κ−1)−1 = κ(κ−1)−1+
∑k1−2
j=0 coef ·κ(κ−1)j , the matrix which corresponds

to (2.63), (2.64) is equivalent to D = {κν(κν − 1)j}, −1 ≤ j ≤ k1 − 2, and is
nonsingular, provided κν �= 0. The last follows from (2.58). Notice that for our proof
it is essential that the boundary conditions (2.59) are applied to x = −� + 1 and not
to x = −�. Clearly, conditions (2.59) for i = 1 are of type (2.30). The scalar shock
stability condition in (2.32) is satisfied since dj = j − 1. The decoupling condition
in (2.34), (2.35) is satisfied trivially since the corresponding columns are empty. The
stationary boundary layer condition was already verified above. Since the scheme is
diagonal and (2.46) holds trivially, the generalized stability condition follows. Thus
our difference approximation satisfies all the requirements of asymptotic stability of
the weak discrete shocks.

Another important method of solution of (2.53) is by an explicit r-stage Runge–
Kutta method

kq = ∆tF


u +

q−1∑
j=1

αqjkj


 , Etu = u +

r∑
q=1

αr+1,qkq, αq,q−1 �= 0.(2.65)

Again, for stability of the Cauchy problem the eigenvalues λ in (2.55) should lie in
the domain Ω of absolute stability of the Runge–Kutta method. For example, for a
four stage fourth order Runge–Kutta method the domain Ω is∣∣∣∣∣

4∑
i=1

λi

i!

∣∣∣∣∣ ≤ 1.(2.66)

It is easy to check that Ω includes an imaginary interval around zero (precisely
(−√8i,

√
8i)). Hence the Cauchy stability holds for any odd k and any K, provided

∆t small enough. In case of a two step second order Runge–Kutta method, Ω is∣∣∣∣1 + λ +
λ2

2

∣∣∣∣ ≤ 1.(2.67)

The boundary of Ω for small λ satisfies

Reλ = − (Imλ)4

4
+ O(Imλ)5;(2.68)

hence for k = 3 and sufficiently small ∆t
∆x the Cauchy stability holds. For the sake of

the global conservation law we impose the boundary conditions

PF1


u +

q−1∑
j=1

αqjkj



∣∣∣∣∣
x=x±	

− Pf(u
L,R

) = 0, 2 ≤ q ≤ r + 1.(2.69)
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These conditions are used to determine the values of Pkq(±�), 1 ≤ q ≤ r. Notice that
the equation in (2.69) for q = r + 1 implies

PF1(Etu)|x=x±	
− Pf(u

L,R
) = 0.(2.70)

The boundary conditions (2.59)–(2.62) are replaced correspondingly by

Pi(Ex − I)jkq(−� + 1, t) = 0, 0 ≤ j ≤ k1 − 2,(2.71)

Pi(Ex − I)jkq(−�, t) = 0, 0 ≤ j ≤ k1 − 1,(2.72)

Pi(Ex − I)jkq(−�, t) = 0, 1 ≤ j ≤ k1,(2.73)

and

Pi(Ex − I)dEjxkq(−�, t) = 0, 1 ≤ j ≤ k1 − 1,(2.74)

where Pi are the standard projections and 1 ≤ q ≤ r. We assume that u(t = 0)
satisfies (2.59)–(2.62). Hence u(t) satisfies (2.57) and (2.59)–(2.62). Notice that for
linear F1 the equations in (2.69) become

PF1(kq)|x=x±	
= 0, 1 ≤ q ≤ r.(2.75)

Thus all kq satisfy the same homogeneous boundary conditions. We can consider the
operator F as acting in the space of grid-functions satisfying (2.71)–(2.75). Denote
the extended operator by F . Then

Etu = p(∆tF)u,(2.76)

where p is an rth degree polynomial and p(0) = 1. We can consider (2.76) also on
half-lines x ≥ −� or x ≤ �. The weak Lopatinsky condition for (2.76) is satisfied if
the operator ∆tF restricted to the above half-lines does not have eigenvalues λ �= 0,
λ /∈ Int(Ω). The analysis now proceeds as in the multistep case. Due to the stability
of the Cauchy problem, for λ as above the roots κ of the characteristic equation

det
∣∣∣λI −∆tdF [u0](κ)

∣∣∣ = 0(2.77)

do not lie on the unit circle. The substitution of the roots |κ| < 1 into the boundary
conditions (2.71)–(2.75) leads to the Vandermonde-type matrices. In view of (2.58),
the boundary conditions (2.69), (2.71)–(2.74) uniquely define the boundary values of
kq and hence the scheme is solvable. According to Remark 2, the boundary conditions
(2.57) at the outflow boundaries should be replaced by the global conservation law∑

x−	≤x≤x	−1

Pu(x, t) = const.,(2.78)

and correspondingly, (2.69) should be replaced by∑
−x	≤x≤x	−1

Pkq(x) = 0.(2.79)
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We again denote the operator F with modified boundary conditions by F . Since the
scheme is diagonal, the generalized stability condition decouples into corresponding
conditions for the half-line problems. Namely, for λi(u0) > 0 (i.e., the inflow boundary
at x = −�) the problem for the ith component PidG[u0](Ex, 1)u = 0, x ≥ −�, with
the boundary conditions (2.71)–(2.74) and (2.75) at x = x−� should have no bounded
solutions u. Since the resulting problem could be written in a polynomial form

Pi

(
p(∆tF)− 1

)
u = Pi

r∏
j=1

(∆tF − µj)u = 0,(2.80)

it is enough to show that Pi(∆tF − µj)u = 0 does not have solutions u ∈ �∞ on the
half-line. Here µ1 = 0 and the remaining µj �= 0 belong to the boundary of Ω. The
case µj �= 0 was already considered above, and the case µj = 0 was also considered
when we studied the multistep scheme. For the problem on the half-line x ≤ � the
boundary conditions PiF1(kq) = 0 are replaced by∑

−∞≤x≤x	−1

Pikq(x) = 0.(2.81)

Now the resulting problem should have no solutions in �1 on the half-line. Again we
arrive at the equations Pi(∆tF −µj)u = 0 which were studied above in the multistep
case.

Remark 3. The Runge–Kutta scheme employed here is not exactly of type (2.1)
with boundary conditions (2.13). Indeed, if we eliminate the intermediate steps kq,
the resulting scheme could be rewritten as

(Et − I)u + (Ex − I)G1

({
Eju(x, t)

}
, x
)

= 0,(2.82)

where the flux G1 changes its form as a discrete function of x. For inner points
−� + k1r < x < � − k1r the flux G1 depends on Eju, −k1r ≤ j ≤ k1r − 1, while at
x ≡ x±�, G1 = ∆tF1. One can consider the equations in (2.82) for boundary points
(i.e., noninner points) as artificial boundary conditions which are included in (2.45)(b).
The remaining boundary conditions (2.57), (2.59)–(2.62) are used to compute Etu for
−� ≤ x ≤ −�+k1 and �−k1 ≤ x ≤ �. The first condition in (2.60) belongs to (2.45)(a),
the conditions in (2.59) for i = 1 belong to (2.26)(b), (2.57) stands for (2.26)(a), and
the remaining conditions in (2.59)–(2.62) belong to (2.45)(b). Now formula (2.42)
does not hold. However, if u = ϕ

I
(x)c

I
in (2.38) is a solution of the equation(

sI + (Ex − I)dG1[u0, x]
)
u = 0(2.83)

for all −� ≤ x, then for s = 0, dG1[u0, x]u ≡ 0, and for small |s|, dG1[u0, x]u
= O(s). Hence the functions B(1), B(2) in (2.39) are well defined. With these remarks
in mind, our general theory applies also to the Runge–Kutta scheme.

Finally, let us check the generalized stability condition for the first component
P1u. Since the problem is scalar, it is enough to check the stationary boundary layer
condition. The projector P− vanishes on the first component; hence there is no global
conservation law condition. Thus the boundary layers at x = ±� are uncoupled. Hence
we can assume that the boundary layer u is defined for x ≥ −�, decays exponentially
as x → ∞, and satisfies the equation (Ex − I)dG1[u0, x]u = 0 for all x ≥ −� (see
(2.83)) but not conditions (2.59) and (2.57) for the first component. If we represent
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the polynomial p in (2.76) as p(z) = 1 + zp1(z), then the solution u satisfies the
functional equation

F0p1(∆tF)u = 0,(2.84)

where F0 is given by the difference operator dF [u0] on the half-line x ≥ −� without
boundary conditions. Since λ1(u0) = 0, F0 ≈ (Ex − 1)k+1. Hence u satisfies the
equation p1(∆tF)u =

∏r
j=2(∆tF − µj)u = 0. It was shown above that this equation

has no bounded solutions. The decoupling condition in (2.35) is absent for diagonal
schemes. The boundary operator in (2.34) is given by P1(Ex − I)dG1[u0, x], which
is divisible by (Ex − I)k+1. Thus the asymptotic stability theory applies also to the
above Runge–Kutta approximation.

Our final assumption pertains to the continuous problem (2.22).
The continuous stability hypothesis. The problem (2.23) with odd k has a

solution ysh such that for Re s′ ≥ 0, problem (2.22) has no solutions y1 ∈ Hk+1(R1)
with

∫∞
−∞ y1dx = 0.

The above hypothesis holds trivially for k = 1 and has been proved in [5] for
k = 3. In both cases the solution ysh is unique (up to translation). Now we can state
the main results.

Theorem 2.1 (the existence of stationary shocks). Let all the above assumptions
hold for s = 0. Then there exist ε0 and δ0 such that for ε < ε0 and � > δ−1

0 ε−1

problem (2.1), (2.2) has an n1 ≥ 1 parameter family of stationary solutions ust, where
n1 = dim ImP . This solution has the form

ust = ush + ∆ust,(2.85)

where

ush = 1
2 (u

L
+ u

R
) + 1

2 (u
L
− u

R
)ysh

(
ε(x− x0)

)
, ε =

(
λ1(u

L
)
)1/k

,(2.86)

ysh(τ) is a solution of (2.23), u
L,R

= u0 + O(εk) are as in (1.3), and

ε‖∆ust‖1 + ‖∆ust‖∞ ≤ δ0ε
k .(2.87)

For n1 = 1, k ≥ 1, and for 1 < n1 < n, k ≥ 3, in addition we have

‖(Ex − I)∆ust‖1 ≤ Kε2k−1 + δ0ε
k.(2.88)

Here ‖ · ‖p is the usual �p norm over the interval [−�, �].
Theorem 2.2. Let all the above assumptions hold for all Re s ≥ 0. Then there

exist ε0 and δ0 such that for all ε < ε0 and all � as in (1.12) for n1 = 1 or n1 =
n, the solution of problems (2.1), (2.7), (2.9) with initial condition uin in a small
neighborhood of ust tends to ust as t→∞, provided

P
∑

G2

(
{Ejust}

)
= P

∑
G2

(
{Ejuin}

)
.(2.89)

The last condition uniquely selects the appropriate ust out of the n1 parameter
family of stationary solutions. The precise size of the neighborhood of ust and the
rate of the exponential decay of |u−ust| is given in section 6, estimates (6.26), (6.27),
(6.39), (6.40).
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3. The linearized problem.

3.1. Preliminary transformations and the normal block form. Let ust
be a stationary solution as in (2.85)–(2.87), and consider the linearized problem

(a) dG[ust](Ex, Et)u = F,

(b) dS[ust](Ex, Et)u = g = (g
L
, g

R
, gsum).

(3.1)

Here dG[ust](Ex, Et) is the differential of G({Eju(x, t)}) at u = ust and similarly for
dS. The boundary operator dS consists of the differential of S

L
and S

R
in (2.7) and

of the left-hand side (l.h.s.) of (2.14) with respect to u(x, t). The partition of g above
corresponds to the above partition of dS. We will study the resolvent problem

(a) dG[ust](Ex, e
s)u = F,

(b) dS[ust](Ex, e
s)u = g,

(3.2)

where s is a complex parameter with Re s ≥ 0. Recall that dS
L

and dS
R

consist of
three parts as in (2.26) and, correspondingly, g

L
, g

R
split as

g
L

= (g
L,0
, g

L,1
, g

L,2
), g

R
= (g

R,0
, g

R,1
, g

R,2
).(3.3)

Clearly the system in (3.2) is overdetermined since

P

x	−1∑
x=x−	

F (x) = (1− e−s)gsum + g
R,0
− g

L,0
.(3.4)

To make it uniquely solvable one should proceed as in Remark 2.
For Re s ≥ 0 and s �= 0 the roots κ of the characteristic equation

det dG[u](κ, es) = 0 (here u is a constant grid-function) are away from the unit circle
|κ| = 1, and problem (3.2) is trivial. Hence we will consider the more difficult case
of small |s| (actually, the most difficult is the subcase of |s| < Kεk+1). In order to
eliminate the zero eigenvalue s′ = 0 in (2.22) one should integrate at least the first
component of (3.2)(a). We found it convenient to integrate all components of (3.2)(a).
Namely, represent

dG2(Ex, e
s) = dG2(1, es) + (Ex − I)∆dG2(Ex, e

s)(3.5)

and define U(x) by

(Ex − I)U = u, U(x−�) = −
(
dG2(1, es)

)−1

∆dG2(Ex, e
s)u(x−�)(3.6)

so that U satisfies the boundary condition

dG2(Ex, e
s)U(x−�) = 0.(3.7)

The summation of (3.2)(a) from x−� until x− 1 ≤ x� − 1 yields

dG[ust(x)](Ex, e
s)U(x)

df
= (es − 1)dG2(Ex, e

s)U(x) + dG1[ust(x)](Ex, e
s)(Ex − I)U(x)

=

x−1∑
x−	

F (ξ) + dG1[ust(x−�)](Ex, es)u(x−�) = F (1)(x).

(3.8)
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Recall that by (2.13),

PdG1[ust(x−�)](Ex, es)u(x−�) = g
L,0
.(3.9)

It will turn out that ∆ust in (2.85) is a negligible term, and hence ust in (3.8) and
(3.2)(b) will be replaced by ush. The resulting difference operators dG1 and dS still
depend on ush at several grid points x+ j1. We replace ush(x+ j1) in dG1 and dS by
ush(x) so that the coefficients of dG1 and dS depend only on a point value of ush(x),
and we consider the difference problem

(a) dG(η)(Ex, e
s)U(x)

df
=
[
(es − 1)dG2(Ex, e

s) + dG1(η)(Ex, e
s)(Ex − 1)

]
U

= F (1)(x), x−� + 1 ≤ x ≤ x�,
(b) dS(η)u = g.

(3.10)

Here

η = ush(x)− u0 = µe1ysh

(
ε(x− x0)

)
+ O(µ2)(3.11)

(see (2.10)) is a small parameter. The new grid-functions F (1) and g relate to the old
ones in (3.8) and (3.2)(b) by

F (1)
new = F

(1)
old +

(
O(∆ust) + O(η′)

)
u,(3.12)

gnew = gold +
(
O(∆ust) + O(η′)

)
u.(3.13)

Remark 4. We do not modify dG1

[
ust(x−�)

]
(Ex, e

s) in (3.8) and (3.9).
Recall that, by (2.87),

‖∆ust‖1 ≤ δ0ε
k−1,(3.14)

where δ0 is a small constant, while

‖η′‖1 = |µ| ‖ε∂τysh(τ)‖1 ≤ K|µ| = Kεk.(3.15)

Without loss of generality, we may assume that the powers of Ex in dG are nonnega-
tive,

dG(η)(Ex, e
s) = L(η, s, Ex) =

ν0∑
i=0

Li(η, s)E
i
x.(3.16)

Introduce the grid vector functions

Ũ(x) =
(
U(x), ExU(x), . . . , Eν0−1

x U(x)
)T

, F̃ =
(

0, 0, . . . , F (1)
)T

(3.17)

and difference operators

B =




0 −I 0 0
0 0 −I

. . .

−I
L0 L1 · · · Lν0−1


 , A = diag(I, I, . . . , Lν0).(3.18)
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Then (3.10) could be rewritten as

L̃(η, s, Ex)Ũ =
(
A(η, s)Ex + B(η, s)

)
Ũ = F̃ .(3.19)

The operators L̃ and dG are related by the equivalence

D2(η, s, Ex)L̃(η, s, Ex)D1(Ex) = L(η, s, Ex)⊕ In(ν0−1),(3.20)

where D1, D2 and their inverses are polynomial matrices in Ex, and the first block

column of D1 is (I, Ex, . . . , E
ν0−1
x )

T

. Note that we do not assume that A or B are

nonsingular. The eigenvalues of the pencil of matrices L̃(η, s, κ) = Aκ + B satisfy

det L̃(η, s, κ) = detL(η, s, κ) = 0.(3.21)

The infinite eigenvalues or those which are close to infinity are defined by

detκL̃(η, s, κ−1) = detκν0L(η, s, κ−1) = 0.(3.22)

At s = η = 0 and κ close to 1, L(η, s, κ) becomes

L(0, 0, κ) = (κ− 1)
(

diag(λ1(u0), . . . , λn(u0)) + O(κ− 1)
)
, λ1(u0) = 0,(3.23)

where by (2.15) the first column of O(κ−1) is actually O(κ−1)k. Hence the character-
istic equation (3.21) at s = η = 0 has the eigenvalue κ = 1 of multiplicity n+k. By the
dissipativity assumption, all other eigenvalues are not on the unit circle. We will split
them into two groups: I, for |κ| < 1, and II, for |κ| > 1. There are, correspondingly,
two projectors

Q
I
(η, s) = (2πi)−1

∮
|κ|=1−δ

(
κA(η, s) + B(η, s)

)−1

A(η, s)dκ,(3.24)

Q
II

(η, s) = (2πi)−1

∮
|κ|=1−δ

(
A(η, s) + κB(η, s)

)−1

B(η, s)dκ(3.25)

on the invariant spaces of the pencil Aκ+B corresponding to the eigenvalues of groups
I and II. Here δ is such that the eigenvalues κ of the first group and the inverses κ−1

of the second group lie in the disc |κ| < 1− δ. One can choose basis X
I,II

in ImQ
I,II

which depends analytically on s and η in a neighborhood of zero such that

AX
I
M

I
+ BX

I
= 0, AX

II
+ BX

II
M

II
= 0,(3.26)

where M
I
, M

II
also depend analytically on s and

‖M
I,II
‖ < 1− δ(3.27)

(e.g., see pp. 14–17 in [8]). The projector Q0 associated with the eigenvalue κ = 1 is

Q0(η, s) = (2πi)−1

∮
|κ−1|=δ

(
κA(η, s) + B(η, s)

)−1

A(η, s)dκ(3.28)
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and has an n+ k dimensional image. In order to split ImQ0(η, s) into simple compo-
nents, we rewrite

L(η, s, κ) = dG2(κ, es)
(

(es − I)I + (κ− 1)dG−1
2 (κ, es)dG1(η)(κ, es)

)
= dG2(κ, es)

(
(es − 1)I + (κ− 1)L′(η, s, κ)

)
.

(3.29)

Recall that, by consistency in (2.5), dG2(κ, es) = I + O(κ− 1) + O(s), and hence

L′(η, s, κ) = diag
(
λ1(u0), . . . , λn(u0)

)
+ O(κ− 1) + O(s) + O(η).(3.30)

Since the eigenvalues λi(u0) are distinct, L′ could be brought to a diagonal form

C−1(η, s, κ)L′(η, s, κ)C ′(η, s, κ) = diag
(
p′1(η, s, κ), . . . , p′n(η, s, κ)

)
,(3.31)

where C and p′i depend analytically on the parameters C(0, 0, 1) = I and p′i(0, 0, 1) =
λi(u0). Hence, for i = 2, . . . , n the matrix L(η, s, κ) has eigenvalues

κi = 1− s
(
λ−1
i (u0) + O(s) + O(η)

)
(3.32)

with the eigenvectors

Ci(η, s, κi) = ei + O(s) + O(η),(3.33)

where Ci is the ith column of C. The matrix L̃(η, s, κ) has the corresponding eigen-
vectors

Xi(η, s) = (Ci, κiCi, . . . , κ
ν0−1
i Ci)

T

= (ei, . . . , ei)
T

+ O(s) + O(η).(3.34)

By the dissipativity assumption, for Re s ≥ 0 and small real η,

|κi(η, s)| ≤ 1 if λi(u0) > 0,

|κi(η, s)| ≥ 1 if λi(u0) < 0.
(3.35)

The determinant of L′(η, s, κ) as follows from (2.15), (2.16) is

(3.36)

detL′(η, s, κ) =
(

1 + O(κ− 1) + O(s)
)

·
(
n∏
i=2

λi(u0)b1(κ− 1)k + O(s) + O1(η) + O
(

(κ− 1)k+1
)

+ O(η)O(κ− 1)

)
,

where

O1 = ∂e1f1(u0 + η)

n∏
i=2

λi(u0) + O(η2)

= d∂e1f1(u0) · η
n∏
i=2

λi(u0) + O(η2)

(3.37)



840 DANIEL MICHELSON

and

b1 = (−1)
k+1
2 b (see (2.16)).(3.38)

Here f1 is the first component of the flux f in (1.1). On the other hand,

detL′(η, s, κ) =

n∏
i=1

p′i(η, s, κ)

=

(
n∏
i=2

λi(u0) + O(κ− 1) + O(s) + O(η)

)
p′1(η, s, κ).

(3.39)

Hence

p′1(η, s, κ) = b1(κ− 1)k + d∂e1f1(u0) · η
+O
(

(κ− 1)k+1
)

+ O(s) + O(η2) + O(η) ·O(κ− 1).
(3.40)

Thus the remaining k+1 roots κ of (3.21) in a neighborhood of κ = 1, s, η = 0 satisfy

p1(η, s, κ) = (es − 1) + (κ− 1)p′1(κ, s)

= b1(κ− 1)k+1 +
(
d∂e1f1(u0)η

)
(κ− 1) + s

+(κ− 1)
(
O(κ− 1)k+1

+O(η2) + O(η)O(κ− 1) + O(s)
)

+ O(s2) .

(3.41)

By the Weierstrass preparation theorem, p1(η, s, κ) is equivalent to a (k + 1) degree
polynomial in (κ− 1),

p1(η, s, κ) = p̃1(η, s, κ)q1(η, s, κ) =

(
k+1∑
i=0

αi(η, s)(κ− 1)i

)
q1(η, s, κ),(3.42)

where

α0(η, s) = s
(
b−1
1 + O(s) + O(η)

)
,

α1(η, s) = ∂e1df1(u0)ηb−1
1 + O(s) + O(η2),

αi(η, s) = O(s) + O(η), 2 ≤ i ≤ k, αk+1(η, s) = 1,

(3.43)

and q1 is an analytic function of η, s, (κ−1) which does not vanish at η, s = 0, κ = 1.
We remark that in view of the accuracy assumption (2.15),

C1(η, s, κ) = e1 + C10(s)(κ− 1)k + O(κ− 1)k+1 + O(η) + O(s).(3.44)

Without loss of generality, we may assume that the first component C
(1)
1 (η, s, κ) ≡ 1.

Now we can construct the basis X1 = (X1,1, . . . , X1,k+1) for the invariant space
corresponding to the k+1 roots of p̃1(η, s, κ−1). Note that the image of the projector
Q0 is not changed if we replace the integrand Adκ in (3.28) by ϕ(κ)dκ, where ϕ(κ) is
any holomorphic vector function (e.g., see [8, p. 14]). By (3.20),∮ (

κA(η, s) + B(η, s)
)−1

ϕ(κ)dκ

=

∮
D1(κ)

(
L−1(η, s, κ)⊕ I

)
D2(η, s, κ)ϕ(κ)dκ ∈ ImQ0.

(3.45)
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If we replace D2ϕ by (ϕ0 ), where dimϕ = n, and again replace C−1ϕ by
(
q1ϕ
0

)
, where

ϕ is a scalar function and q1 is as in (3.42), we obtain the vector

(2πi)−1

∮
|κ−1|=δ

D1(κ)C1(η, s, κ)
(
p̃1(η, s, κ)

)−1

ϕ(κ)dκ ∈ ImQ0.(3.46)

The vectors X1,i, 1 ≤ i ≤ k + 1, are obtained by substituting, correspondingly,

ϕ = ϕi =

k+1∑
j=i

αj(η, s)(κ− 1)j−i.(3.47)

At s = η = 0, by direct integration we obtain

X1,i(0) =

(
d

dκ

)i−1(
e1, κe1, . . . , κ

(ν0−1)e1

)T ∣∣∣∣
κ=1

+δi,k+1

(
C10(0), C10(0), . . . , C10(0)

)T

.

(3.48)

Application of B to X1,i(η, s) yields

BX1,i = (2πi)−1

∮
|κ−1|=δ

(L̃−Aκ)D1p̃
−1
1 ϕidκ

= −A(2πi)−1

∮
|κ−1|=δ

D1C1p̃
−1
1 (ϕi + ϕi−1 − αi−1ϕk+1)dκ

= −A(X1,i + X1,i−1 − αi−1X1,k+1).

(3.49)

For i = 1 the term ϕi−1 becomes p̃1, and hence X1,i−1 disappears. Then the basis
X1(η, s) satisfies

AX1M1 + BX1 = 0, M1 = I +




0 1
0 1

...
. . .

0 0 1
−α0 −αk


 ,(3.50)

where both X1 and M1 depend analytically on η and s. If we combine all vectors Xj ,
1 ≤ j ≤ n, into one basis of ImQ0,

X0 = (X1, X2, . . . , Xn), M0 = ⊕nj=1Mj , Mj = κj , j > 1,(3.51)

then

AX0M0 + BX0 = 0.(3.52)

In view of (3.34), (3.48), the columns of X0 are linearly independent for small |η| and
|s|. Thus the matrix

X = (X0 , XI
, X

II
)(3.53)

is nonsingular for small |η| and |s| and

(Aκ + B)X = T


κI −M0

0 0
0 κI −M

I
0

0 0 −κM
II

+ I


 ,(3.54)
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where

T = (AX0 , AXI
, BX

II
).(3.55)

Since Aκ + B is nonsingular for κ which are not the roots of (3.21), T = T (η, s) is
nonsingular for small |η| and |s|.

3.2. The a priori estimate. We now consider (3.19) with boundary conditions
(3.10)(b) and (3.7), where u and U are related by (3.6). With X as in (3.53), we
define the new variables Y (x) and y(x) by

Ũ(x) = X
(
η(x), s

)
Y (x), (Ex − I)Y (x) = y(x)(3.56)

so that

ũ(x) =
(
u(x), . . . , Eν0−1

x u(x)
)T

= (Ex − I)Ũ(x)

=
(

(Ex − I)X
(
η(x), s

))
ExY (x) + X

(
η(x), s

)
(Ex − I)Y (x)

= X
(
η(x), s

)
y(x) + O(η′)ExY (x).

(3.57)

It is also possible to express Y in terms of y. Indeed, by (3.6) one can express the

vector Ũ(x−�) in terms of ũ(x−�). Then by (3.56), (3.57),

X · Y (x−�) = O∗(1)y(x−�) + O(η′)
(
Y (x−�) + y(x−�)

)
.(3.58)

Since X is nonsingular and O(η′) is small, we obtain

Y (x−�) = O∗(1)y(x−�), Y (x) = O∗(1)y(x−�) +

x−1∑
ξ=x−	

y(ξ).(3.59)

In view of (3.54), (3.19) in the Y variables becomes
Ex −M0 0 0

0 Ex −M
I

0
0 0 −M

II
Ex + I


Y

= T−1
(
F̃ −A

(
(Ex − I)X

)
ExY

)
= H.

(3.60)

The vector Y is partitioned into groups Y0
, Y

I
, Y

II
and Y0 = (Y1, . . . , Yn), Y1 =

(Y1,1, . . . , Y1,k+1) according to X, and the same applies for vectors y and H. In the
case n1 = n we will treat only system (3.60). In the case n1 = 1 we will consider the
equations

(a) (Ex −M1)Y1 = H1,

(b) (Ex −Mj)yj = (Ex − I)Hj + O(η′s)Yj = hj , 2 ≤ j ≤ n,

(c) (Ex −M
I
)y

I
= (Ex − I)H

I
+ O(η′)Y

I
= h

I
,

(d) (−M
II
Ex + I)y

II
= (Ex − I)H

II
+ O(η′)Y

II
= h

II
.

(3.61)
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(The term O(η′s) in (3.61)(b) comes from κi in (3.32).) Here and elsewhere, η′ =
∂xη(x), and by (3.15) and (2.86),

ε‖O(η′)‖1 + ‖O(η′)‖∞ ≤ Kεk+1.(3.62)

The general solution of equation (Ex −Mj)Yj = Hj , λj > 0, could be written as

Yj = Cjϕη,j + Y̊j , ϕη,j =
∏

−�≤x′≤x−1

Mj

(
η(x′), s

)
, ϕη,j(−�) = 1,

Y̊j(x + 1) =

x−1∑
x′=−�

x∏
ξ=x′+1

Mj

(
η(ξ), s

)
Hj(x

′) + Hj(x),

(3.63)

and we have similar formulas for (3.61)(b),(c):

yj = cjϕη,j + ẙj , y
I

= c
I
ϕ

η,I
+ ẙ

I
.(3.64)

In the case λj < 0, we instead have ϕη,j(�) = 1 and similar formulas for Yj , yj , and
y
II

. In view of (3.27),

‖ẙ
I
‖1 + ‖ẙ

II
‖1 ≤ K

(
‖h

I
‖1 + ‖h

II
‖1
)

(3.65)

and

‖ẙ
I
‖∞ + ‖ẙ

II
‖∞ ≤ K

(
‖h

I
‖∞ + ‖h

II
‖∞
)
.(3.66)

Since, by (3.35) for j > 1 and λj > 0, |Mj(η, s)| ≤ 1, we have

‖Y̊j‖∞ ≤ K‖Hj‖1 and ‖ẙj‖∞ ≤ K‖hj‖1.(3.67)

The coefficients C and c in (3.63), (3.64) are determined by the following boundary
conditions from (3.10)(b) and (3.7):

(a) P−dG2(Ex, e
s)U(x−�) = 0,

(b) P−
∑
x

dG2(Ex, e
s)u(x) = P−gsum,

(c) dS2(ush)u = g2.

(3.68)

Note that in view of (3.7) we have∑
x

dG2(Ex, e
s)(Ex − I)U = dG2(Ex, e

s)U(x�)− dG2(Ex, e
s)U(x−�)

= dG2(Ex, e
s)U(x�),

(3.69)

and hence (3.68)(b) could be rewritten as

P−dG2(Ex, e
s)U(x�) = P−gsum.(3.70)

We start with the case n1 = n. The components Y
I,II

are written in the form

Y
I

= C
I
ϕ

η,I
+ Y̊

I
, Y

II
= C

II
ϕ

η,II
+ Y̊

II
(3.71)
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as Yj in (3.63) and satisfy

‖Y̊
I
‖p + ‖Y̊

II
‖p ≤ K

(
‖H

I
‖p + ‖H

II
‖p
)
, p = 1,∞.(3.72)

In view of (2.34), (2.35), and (3.48), the contribution of Y1 to the l.h.s. of (3.68)(a),(c)
and (3.70) is bounded by∣∣∣(Ex − I)k+1Y1

∣∣∣+
∣∣∣(Ex − I)Y1,k+1

∣∣∣+ |η′| |Y1|+
(
|s|+ |η|

)∣∣∣(Ex − I)Y1

∣∣∣.(3.73)

Note that by the generalized stability condition, the system of equations for C
I,II

and
Cj , j ≥ 1, is solvable and

|C
I,II
|+
∑
j>1

|Cj | ≤ K


|P−gsum|+ |g2|+ ‖HI,II

‖∞ +
∑
j>1

‖Hj‖1



+ the terms in (3.73).

(3.74)

Hence

‖Y
I,II
‖1 +

∑
j>1

‖Yj‖∞ ≤ K
(
|P−gsum|+ |g2|+ ‖H‖1

)
+ the terms in (3.73).(3.75)

In order to estimate the Y1 components, it is convenient to introduce the scale

σ = ε + |s| 1
k+1 , ε′ =

ε

σ
, s′ =

b−1
1 s

σk+1
, τ = xσ, �′ = σ�(3.76)

and rescale the vectors Y1, H1, α,

Y ′
1,i = σ−i+1Y1,i, H ′

1,i = σ−iH1,i, α′
i = σi−k−1αi.(3.77)

The difference equation for Y ′
1 could be written as

DτY
′
1 − JY ′

1 +

(
0, . . . , 0,

k+1∑
i=1

α′
i−1Y

′
1,i

)T

= DτY
′
1 −M ′

1Y
′
1 = H ′

1,(3.78)

where J is a Jordan cell with zero diagonal and

Dτ =
(Ex − I)

σ
(3.79)

approximates the derivative d
dτ . The equations

(a) P1dG2(Ex, e
s)U(x−�) = 0,

(b) P1dG2(Ex, e
s)U(x�) = P1gsum,

(c) dS1u(x) = dS1(Ex − I)U(x) = g1, x = x−� or x = x�,

(3.80)

provide k + 1 boundary conditions for Y ′
1 . In view of the consistency assumption in

(2.5), (3.80)(a),(b) could be written in the form

Y ′
1,1(x) + O(σ)Y ′

1(x) = O(1)Y
I,II

(x) +
∑n
j=2

(
O(η) + O(s)

)
Yj(x)

+(0, P1gsum) = g′1,0, x = x±�.
(3.81)
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In view of (2.30), (3.34), and (3.48), boundary condition (3.80)(c) could be normalized
as

Y ′
1,di+2 + O(σ)Y ′

1 = σ−di−1

(
O(1)Y

I,II
+

n∑
j=2

(
O(η) + O(s)

)
Yj + O(1)g1,i

)

= g′1,i, 1 ≤ i ≤ k − 1

2
, x = x±�.(3.82)

Consider the boundary value problem (3.78), (3.81), (3.82). By (3.43), (3.11), (3.38),
and (2.10),

k+1∑
i=1

α′
i−1Y

′
1,i = s′Y ′

1,1 + ∂e1df1(u0)e1µb
−1
1 σ−kysh

(
ε(x− x0)

)
Y ′

1,2 + O(σ)Y ′
1

= s′Y ′
1,1 + (ε′)k(−1)

k+1
2 ysh

(
ε(x− x0)

)
Y ′

1,2 + O(σ)Y ′
1 .

(3.83)

Now it is clear that (3.78) approximates the differential equation

∂k+1
τ Y ′

1,1 + (ε′)k(−1)
k+1
2 ysh

(
ε′(τ − τ0)

)
∂τY

′
1,1 + s′Y ′

1,1 =

k∑
i=0

∂iτH
′
1,k+1−i.(3.84)

The l.h.s. of (3.84) is the integral of (2.22) with ∂τY1,1 = y1 modulo a change of scale

ε′τ → τ and s′/[(ε′)k+1(−1)
k+1
2 ] → s′. We will show in section 4 that, under the

scalar shock stability condition in (2.32) and the continuous stability hypothesis for
(2.22), the problem (3.78), (3.81), (3.82) satisfies the estimate

∑
i+j≤k+2

‖DiτY ′
1,j‖∞ ≤ K


 ∑
i+j≤k+1

‖DiτH ′
1,j‖1,σ + |g′1|


 ,(3.85)

where ‖H‖1,σ =
∑
τ |H(τ)| · σ is the usual �1 norm on the grid-interval [−�′, �′] with

step size σ. It is assumed that �ε ≥ δ−1
0 is sufficiently large. The constant K is

independent of � and σ. For |s| � εk+1 one can replace the norm ‖ · ‖1,σ in the
r.h.s. of (3.85) by the norm ‖ · ‖∞ so that (3.85) will become the usual estimate in
‖ · ‖∞ for elliptic boundary value problems.

By means of (3.85) we can estimate the terms in (3.73). Indeed,∣∣∣(Ex − I)k+1Y1

∣∣∣+
∣∣∣(Ex − I)Y1,k+1

∣∣∣+ |η′| |Y1|+
(
|s|+ |η|

)∣∣∣(Ex − I)Y1

∣∣∣
≤
k+1∑
j=1

(
‖(Ex − I)k+2−jY1,j‖∞ + εk+1‖Y1,j‖∞ + σk‖(Ex − I)Y1,j‖∞

)

≤ σk+1
∑

i+j≤k+2

‖DiτY ′
1,j‖∞ ≤ Kσk+1


 ∑
i+j≤k+1

‖DiτH ′
1,j‖1,σ + |g′1|




≤ K
(
σ‖H1‖1 + σk+1|g′1|

)
.

(3.86)

Thus, from (3.75) and (3.85) we obtain a combined estimate

‖Y
I,II
‖1 +

∑
j>1

‖Yj‖∞ ≤ K
(
‖H‖1 + σk+1|g′1|+ |P−gsum|+ |g2|

)
.(3.87)
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The grid-function H in (3.60) is O(1)F̃ + O(η′)Y ; hence

‖H‖1 ≤ K
(
‖F̃‖1 + ‖η′‖1 · ‖Y ‖∞

)
≤ K

(
‖F̃‖1 + εk‖Y ‖∞

)
.(3.88)

The term εk‖Y ‖∞ is absorbed in the l.h.s. of (3.87) with the exception of the com-
ponent εk‖Y1‖∞. Now we should estimate more carefully the contribution of O(η′)Y
to the r.h.s. of (3.85). We have

‖Diτσ−jO(η′)Y ‖1,σ ≤ Kσ−i−jεk · σ‖Y ‖∞ ≤ K‖Y ‖∞.(3.89)

This is a sufficiently nice estimate for the components Y
I,II

, Yj , j ≥ 2, and Y1,j =
σj−1Y ′

1,j , j > 1. The latter are dominated by the l.h.s. of (3.85). For Y1,1,

‖Diτσ−jO(η′)Y1,1‖1,σ ≤ Kσ−jεk · σ
∑
i1≤i
‖Di1τ Y1,1‖∞.(3.90)

The worst case is i = 0, j = k + 1. This comes from the contribution of T−1A(Ex −
I)X1,1ExY1,1 in (3.60) to the component H1,k+1. Note, however, that this contribu-
tion is not O(η′) but O(η′s). Indeed, for s = 0 the vectors Xj(η), j ≥ 2, and X1,1(η)
are eigenvectors of the pencil Aκ + B with eigenvalues κ = 1 and form a basis in the
space V0 of repeated ν0 +1 tuples (u, u, . . . , u), u ∈ C

n. Since (Ex−I)X1,1(η) ∈ V0, it
is a linear combination of the above Xj(η), X1,1(η). Hence the above O(η′)Y1,1 term
for s = 0 contributes only to Hj , j ≥ 2, and H1,1. Thus estimate (3.85) implies

∑
ij≤k+2

‖DiτY ′
1,j‖∞ ≤ K


σ−k‖F̃‖1 + |g′1|+ ‖YI,II

‖∞ +
∑
j≥2

‖Yj‖∞

(3.91)

and

‖Y
I,II
‖1 +

∑
j>1

‖Yj‖∞ + σk
∑

i+j≤k+2

‖DiτY ′
1,j‖∞

≤ K
(
‖F̃‖1 + σk|g′1|+ |P−gsum|+ |g2|

)
.

(3.92)

Recall that F̃ is related to the original F by formulas (3.17), (3.12), and (3.8). Hence

‖F̃‖1 ≤
∥∥∥∥∥
x−1∑
x−	

F (ξ)

∥∥∥∥∥
1

+
∣∣∣dG1[ust(x−�)](Ex, es)u(x−�)

∣∣∣ · �
+‖O(∆ust)u‖1 + ‖O(η′)u‖1.

(3.93)

Since n1 = n, PdG1u in (2.26)(a) is dG1u, and in the notation of (3.2), (3.3) we have

dG1

[
ust(x−�)

]
(Ex, e

s)u(x−�) = g
L,0
.(3.94)

Next, by (3.14), (3.15),

‖O(∆ust)u‖1 + ‖O(η′)u‖1 ≤ δ0ε
k−1‖u‖∞ + Kεk‖u‖∞.(3.95)

The grid-function u could be expressed in terms of Y (see (3.57)). These terms are
negligible with respect to the l.h.s. of (3.92). The only problematic term comes from
the contribution of (Ex − I)Y1 to u (see (3.57)). However,

δ0ε
k−1‖(Ex − I)Y1,j‖∞ ≤ δ0ε

k−1σj‖DτY ′
1,j‖∞ � σk‖DτY ′

1,j‖∞.(3.96)
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From (3.82) we obtain

|σkg′1,i| ≤ σk−di−1


‖Y

I,II
‖∞ + σk

n∑
j=2

‖Yj‖∞ + |g1,i|

 .(3.97)

Because of the Y
I,II

term, we have to assume that

0 ≤ di ≤ k − 2, 1 ≤ i ≤ k − 1

2
.(3.98)

Note that for k = 1 the set of {di} is empty. For odd k ≥ 3 the restriction in (3.98)
does not exclude the set of boundary conditions suggested in (2.59). Hence, the terms
with Y

I,II
, Yj in σkg′1,i are negligible. Altogether, from (3.98) we arrive at the estimate

‖Y
I,II
‖1 +

∑
j>1

‖Yj‖∞ + σk
∑

i+j≤k+2

‖DiτY ′
1,j‖∞

≤ K



∥∥∥∥∥
x−1∑
x−	

F (ξ)

∥∥∥∥∥
1

+ σk
∑
|σ−di−1g1,i|+ |P−gsum|+ σk|P1gsum|+ |g2|+ |gL,0

| · �

 .

(3.99)
From here we can obtain estimates for the variable U . By (3.48), the contribution of
Y1 to the components Uj , j > 1, is bounded by (O(s) +O(η))Y1 +O(1)Y1,k+1. Hence∑

j>1

‖Uj‖∞ +
∑
i≤k
‖σk−i(Ex − I)iU1‖∞ ≤ r.h.s. of (3.99).(3.100)

Now we consider the most important case, n1 = 1. The single global
conservation law prevents the shock wave from “shifting.” Let us return to (3.61)(b)–
(d) with the solutions (3.64). Since the projector P− is zero, the coefficients cj , j > 1,
and c

I,II
are determined by the boundary conditions (3.68)(c). In order to express

these boundary conditions in terms of yj , yI,II
, we use the relations (3.57) and (3.59).

Hence

dS2(ush)


∑
j>1

Xjyj + X
I
y
I

+ X
II
y
II




= g2 + O(η′)Y − dS2(ush)X1y1.

(3.101)

Recall that the contribution of y1 = (Ex − I)Y1 to the r.h.s. of (3.101) is bounded by
the terms in (3.73). Hence∑

j>1

|cj |+ |cI |+ |cII |

≤ K ·

|g2|+∑

j>1

‖ẙj‖∞ + ‖ẙ
I,II
‖∞ + εk+1‖Y ‖∞ + the terms in (3.73)


 ,

(3.102)

and by (3.65), (3.67),∑
j>1

‖yj‖∞ + ‖y
I,II
‖1

≤ K ·

‖h

I,II
‖1 +

∑
j>1

‖hj‖1 + |g2|+ εk+1‖Y ‖∞ + terms in (3.73)


 .

(3.103)
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The variable Y1 was already estimated in (3.85). Unfortunately, the contribution
of the constant term dG1 · u(x−�) in (3.8) to the norm ‖H ′

1,j‖1,σ in (3.85) for j = k

results in terms like ‖yi‖∞�σ−k+1, i > 1. This term contributes to εk+1‖Y1‖∞ a value
�ε2|yj |∞, which is not negligible if � = o(1)ε−k−1, k > 1. Therefore we will improve
estimate (3.85) in the following manner. Define the variables

Ỹ ′
1,i = Y ′

1,i + H ′
1,i−1, i ≥ 2; Ỹ ′

1,1 = Y ′
1,1.(3.104)

Then Ỹ ′
1 satisfies system (3.78) with H ′

1 replaced by

H̃ ′
1,1 = 0; H̃ ′

1,i = DτH
′
1,i−1, 2 ≤ i ≤ k;

H̃ ′
1,k+1 = H ′

1,k+1 + DτH
′
1,k +

∑k
i=1 α

′
iH

′
1,i.

(3.105)

By (3.43) and (3.77),

k∑
i=1

α′
iH

′
1,i =

k∑
i=1

σi−k−1
(
O(η) + O(s)

)
σ−iH1,i = O(σ−1)H1.(3.106)

In boundary conditions (3.81), (3.82), one should replace g′1,i by

g̃′1,i = g′1,i + H ′
1,di+1 + O(σ)H ′

1.(3.107)

Now, from the basic estimate (3.85) for Ỹ ′
1 , we obtain

∑
i+j≤k+2

‖DiτY ′
1,j‖∞ ≤ K

( ∑
i+j≤k

‖DiτDτH ′
1,j‖1,σ + ‖H ′

1,k+1‖1,σ

+‖σ−1H1‖1,σ +
∑

i+j≤k+1
j≤k

‖DiτH ′
1,j‖∞ + |g′1|

)
.

(3.108)

In order to estimate the component H1,k+1, we will need the following elementary
lemma.

Lemma 3.1. The H1,k+1 component of the vector H in (3.60) depends on F (1)

in (3.10)(a) as

H1,k+1 = O(1)P1F
(1) +

(
O(η) + O(s)

)
(I − P1)F (1).(3.109)

(Here P1 is the projection on the first component.)
Proof. Let η, s = 0. Take F (1) to be a constant grid-function with P1F

(1) =
0. Then (3.10)(a) has a solution PjU = x · PjF (1)/λj , j ≥ 2, P1U = 0. Here
Pj is the projection on the jth component. The corresponding vector functions Y
and H defined by (3.17), (3.56), and (3.60) satisfy system (3.60). In particular, Y1

satisfies (Ex − I)Y1 − JY1 = H1. Notice, however, that Ũ in (3.17) is a first order

polynomial in x and so is Y . On the other hand, F (1), F̃ , and H are constants.
Hence, JY1 = H1 − (Ex − I)Y1 is constant. In particular, Y1,k+1 is constant and
H1,k+1 = (Ex − I)Y1,k+1 = 0. Since H(x) depends only on F (1)(x), we obtain that
H1,k+1 for s, η = 0 is independent of (I−P1)F (1). Hence for small s, η, H1,k+1 satisfies
(3.109).
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Now we can express the r.h.s. of (3.108) in terms of F (1) in (3.10)(a) as

∑
i+j≤k+2

‖DiτY ′
1,j‖∞ ≤ K

(
‖σ−k(Ex − I)F (1)‖1 + ‖σ−kP1F

(1)‖1

+‖F (1)‖1 + ‖σ−k−1(Ex − I)F (1)‖∞ + ‖σ−kF (1)‖∞ + |g′1|+ ‖Y ‖∞
)
.

(3.110)

We already have shown in (3.90) that the actual contribution of Y1,1 to ‖Y ‖∞ is
negligible. Thus ‖Y ‖∞ above could be replaced by ‖Y

I,II
‖∞ +

∑
j≥2 ‖Yj‖∞. The

contribution of dG1u(x−�) in (3.8) to the r.h.s. of (3.110) is bounded by∣∣∣σ−kP1dG1u(x−�)
∣∣∣� +

∣∣∣(I − P1)dG1u(x−�)
∣∣∣ · (� + σ−k).(3.111)

By the accuracy assumption in (2.15) and formulas (3.48), (3.57),∣∣∣(I − P1)dG1[u0]u(x−�)
∣∣∣ ≤ K

(
|(I − P1)u|∞ + |(Ex − I)k+1P1u|∞

)

≤ K


‖y

I,II
‖∞ +

∑
j≥2

‖yj‖∞ + ‖y1,k+1‖∞ + σk‖y‖∞ + εk+1‖Y ‖∞

 .

(3.112)

Since dG1u(x−�) is actually dG1[ust(x−�)](Ex, es)u(x−e), by (2.86)–(2.87) we should
add to the above the term Kεk‖y‖∞, which is absorbed in σk‖y‖∞. The component
P1dG1u(x−�) is nothing but P1gL,0

(see (3.3)). Next, the contribution of the term
(O(∆ust) + O(η′))u in (3.12) to the r.h.s. of (3.110) is bounded by

K
(∥∥∥σ−k

(
O(∆ust) + O(η′)

)
u
∥∥∥

1

+
∥∥∥σ−k−1

(
O(∆ust) + O(η′)

)
u
∥∥∥
∞

)
≤ Kδ0σ

−1‖u‖∞.
(3.113)

What is left from F (1) in (3.8) is the sum
∑x−1
x−	

F (ξ). Its contribution to the r.h.s. of

(3.110) is bounded by

K
(
‖σ−kF‖1 + ‖σ−k−1F‖∞
+
∥∥∥σ−kP1

∑
F (ξ)

∥∥∥
1

+
∥∥∥∑F (ξ)

∥∥∥
1

+
∥∥∥σ−k∑F (ξ)

∥∥∥
∞

)
.

(3.114)

Finally, consider the term g′1. Instead of (3.82), we rewrite boundary conditions
(3.80)(c) as

Y ′
1,di+2 + O(σ)Y ′

1 = σ−di−1


O(1)y

I,II
+
∑
j≥2

O(1)yj + O(η′)Y + O(1)g1,i




= g′1,i, i ≥ 1.(3.115)

Hence

|g′1,i| ≤ Kσ−di−1


‖y

I,II
‖∞ +

∑
j≥2

‖yj‖∞ + εi+1‖Y ‖∞ + |g1,i|

 , i ≥ 1.(3.116)
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By (3.81),

|g′1,0| ≤ K


‖Y

I,II
‖∞ + σk

∑
j≥2

‖Yj‖∞ + |P1gsum|

 .(3.117)

Altogether,

∑
i+j≤k+2

‖DiτY ′
1,j‖∞ ≤ K

(
‖σ−kF‖1 + ‖σ−k−1F‖∞ +

∥∥∥σ−kP1

∑
F (ξ)

∥∥∥
1

+
∥∥∥∑F (ξ)

∥∥∥
1

+
∥∥∥σ−k∑F (ξ)

∥∥∥
∞

+ σ−k|g
L,0
| · � + |P1gsum|

+
∑
i≥1

σ−di−1|g1,i|+ (� + σ−k)
(
‖y

I,II
‖∞ +

∑
j≥2

‖yj‖∞ + ‖y1,k+1‖∞

+σk‖y1‖∞ + εk+1‖Y ‖∞
)

+ δ0σ
−1‖u‖∞ + ‖Y

I,II
‖∞ +

∑
j≥2

‖Yj‖∞
)
.

(3.118)

Unlike in (3.98), we can relax the restriction on di to be

0 ≤ di ≤ k − 1, 1 ≤ i ≤ k − 1

2
.(3.119)

The contribution of the y1 and Y1 components to the r.h.s. of (3.118) is bounded by

K
(

(� + σ−k)
(
‖σk+1DτY

′
1,k+1‖∞ + σk‖σDτY1‖∞ + εk+1‖Y1‖∞

)
+δ0σ

−1‖σDτY1‖∞
)
.

(3.120)

Recall that we consider |s| ≤ Kεk+1. Since �εk+1 ≤ δ0, for sufficiently small δ0,
K�σk+1 is small. Hence the terms in (3.120) are dominated by the l.h.s. of (3.118).
By (3.59),

‖Y
I,II
‖∞ +

∑
j≥2

‖Yj‖∞ ≤ K‖y‖∞ + �


‖y

I,II
‖∞ +

∑
j≥2

‖yj‖∞

 .(3.121)

Hence all y, u, and Y terms in the r.h.s. of (3.118) could be replaced by

K(� + σ−k)


‖y

I,II
‖∞ +

∑
j≥2

‖yj‖∞

 .(3.122)

We now return to estimate (3.103). In view of (3.121), the term εk+1(‖Y
I,II
‖∞ +∑

j≥2 ‖Yj‖∞) is dominated by the l.h.s. of (3.103) (modulo the negligible term

Kεk+1‖y1‖∞). By (3.86), the terms in (3.73) are bounded by σk+1 times the l.h.s. of
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(3.118). The same holds for εk+1‖Y1‖∞. The term ‖h‖1 is estimated as

‖h
I,II
‖1 +

∑
j≥2

‖hj‖1 ≤ ‖(Ex − I)H
I,II
‖1 +

∑
j≥2

‖(Ex − I)Hj‖1

+‖O(η′)‖1
(
‖Y

I,II
‖∞ + |s|

∑
j≥2

‖Yj‖∞
)

≤ K

(
‖(Ex − I)F̃‖1 + ‖O(η′)‖1‖F̃‖∞ + ‖O(η′)‖1

·
(
‖y‖∞ + ε‖Y ‖∞

)
+ εk

(
‖y

I,II
‖1 + σk+1�

∑
j≥2

‖yj‖∞ + σk+1‖y‖∞
))

.

(3.123)

Clearly, the y
I,II

and yj , j ≥ 2, terms are negligible, and the y1, Y1 terms are bounded

by σk+1 times the l.h.s. of (3.118). Now consider the F̃ ≈ F (1) terms in the r.h.s. of

(3.123). The contribution of dG1u(x−�) in (3.8) to ‖O(η′)‖1‖F̃‖∞ is

εk
∣∣∣dG1[ust](x−�)(Ex, es)u(x−�)

∣∣∣ ≤ εk
(
‖y‖∞ + εk+1‖Y ‖∞

)
≤ εk

(
‖y‖∞ + εk+1‖Y ‖∞

)
≤ εk(1 + εk+1�)‖y‖∞

(3.124)

and is already included in the εk‖y‖∞ term of the r.h.s. of (3.123). The contribution
of (O(∆ust) + O(η′))u in (3.12) is bounded by

∥∥∥((Ex − I)
(
O(∆ust) + O(η′)

))∥∥∥
1
· ‖u‖∞

+
(
‖∆ust‖1 + ‖η′‖1

)
‖(Ex − I)u‖∞

≤ Kεk‖u‖∞ + δ0ε
k−1‖(Ex − I)u‖∞

(3.125)

(see (2.87), (2.88)). The norms of u and (Ex − I)u could be expressed in terms of y
and Y using (3.57). Namely,

‖u‖∞ ≤ ‖y‖∞ + εk+1‖Y ‖∞(3.126)

and

‖(Ex − I)u‖∞ ≤ K
(
εk+1‖y‖∞ + ‖(Ex − I)y‖∞ + εk+2‖Y ‖∞

)
.(3.127)

The contribution of yj , j ≥ 2, and y
I,II

components to the r.h.s. of (3.125) is negligible
compared with the l.h.s. of (3.103). For the Y1 component, the worst term is

Kεk‖y1‖∞ + δ0ε
k−1‖(Ex − I)y1‖∞ ≤ Kσk+1

(
‖DτY1‖∞ + ‖D2

τY1‖∞
)

(3.128)

and is bounded by Kσk+1 times the l.h.s. of (3.118). Finally, in the |g2| term at the
r.h.s. of (3.103) we have the contribution of (O(∆ust) + O(η′))u in (3.13). This is
bounded by δ0ε

k‖u‖∞.
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We are ready to derive the combined estimate. Multiply (3.118) by K1σ
k+1,

where K1 is a large constant, and add the result to (3.103). We obtain

K1σ
k+1

∑
i+j≤k+2

‖DiτY ′
1,j‖∞ +

∑
j>1

‖yj‖∞ + ‖y
I,II
‖1

≤ K1Kσk+1

(
‖σ−kF‖1 + ‖σ−k−1F‖∞ +

∥∥∥σ−kP1

∑
F (ξ)

∥∥∥
1

+
∥∥∥∑F (ξ)

∥∥∥
1

+
∥∥∥σ−k∑F (ξ)

∥∥∥
∞

+ σ−k|g
L,0
| · � + |P1gsum|+

∑
i≥1

σ−di−1|g1,i|
)

+K
(
‖F‖1 + εk

∥∥∥∑F (ξ)‖∞ + |g2|
)
.

(3.129)

Indeed, K1σ
k+1 times the terms in (3.122) results in K1K(�σk+1 + σ)(‖y

I,II
‖∞ +∑

j>1 ‖yj‖∞). Since σ ≈ ε, these terms are bounded by the l.h.s. of (3.129), provided
K1Kδ0 � 1. In order to neutralize the contribution of Y1 to the r.h.s. of (3.103), it is
enough that K1 > K. Since σk+1� ≈ εk+1�� 1, estimate (3.129) could be rewritten
in an equivalent form

σk+1
∑

i+j≤k+2

‖DiτY ′
1,j‖∞ +

∑
j>1

‖yj‖∞ + ‖y
I,II
‖1

≤ K

(
‖F‖1 + σ

∥∥∥P1

∑
F (ξ)

∥∥∥
1

+ σ�|g
L,0
|

+σk+1|P1gsum|+
∑
i≥1

σk−di |g1,i|+ |g2|
)
.

(3.130)

Since σDτY1 = (Ex − I)Y1 = y1,

σk
∑

i+j≤k+1

‖Diτσ−j+1y1,j‖∞ + ‖y
I,II
‖1 +

∑
j>1

‖yj‖∞ ≤ r.h.s. of (3.130).(3.131)

In the original u variables, we obtain

∑
j>1

‖uj‖∞ +

k∑
i=−1

‖σk−i(Ex − I)iu1‖∞ ≤ r.h.s. of (3.130),(3.132)

where (Ex − I)−1u1
df
=
∑
ξ u1(ξ).

In case Kεk+1 < |s| < δ, the norm ‖ · ‖1 in (3.110) is replaced by the σ−1‖ · ‖∞
norm. As a result, the terms ‖σ−kP1

∑
F (ξ)‖1+‖∑F (ξ)‖1 in (3.129) are replaced by

σ−k−1‖P1

∑
F (ξ)‖∞ + σ−1‖∑F (ξ)‖∞ ≤ σ−k−1‖F‖1. Therefore we obtain estimate

(3.130) without the term σ‖P1

∑
F (ξ)‖1. Finally, instead of (3.132) we obtain

∑
j>1

‖uj‖∞ +

k∑
i=−1

‖σk−i(Ex − I)iu1‖∞

≤ K


‖F‖1 + |g

L,0
|+ σk+1|P1gsum|+

∑
i≥1

σk−di |g1,i|+ |g2|

 .

(3.133)
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In order to prove exponential decay of the solution u, we need to extend estimates
(3.100), (3.132), and (3.133) into the domain

0 ≥ Re s ≥ −δε
k

�
.(3.134)

Indeed, the bound δεk/� cannot be increased, since the differential equation in (3.84)
(with r.h.s. = 0) has for small |s′| and large |τ | the exponential solutions with expo-
nents ≈ s′τ/(ε′)k. If Re s′ < 0, then these exponents reach on the interval [−�, �] the
values of the order exp((Re s)/εk · �). Since these values have to be bounded, we must
impose the bound in (3.134). In order to extend the estimates, we write s = Im s+Re s
and move the O(Re s)u terms in (3.2)(a),(b) to the r.h.s. of the equations. Note that
the O(s)u term in (3.2)(a) is

O(s)u = (es − 1)dG2(u) + O(s)(Ex − I)O(u)

= (es − 1)u + (Ex − I)O(s)u + O(s2)u,
(3.135)

where O(s2) has constant coefficients. Hence, the contribution of the O(Re s)u term
to the r.h.s. of (3.99) is bounded by

|Re s|

∥∥∥∥∑

ξ

u(ξ)

∥∥∥∥
1

+ ‖u‖∞

 ≤ δεk‖U‖∞(3.136)

and is bounded by the l.h.s. of (3.100). In case n1 = 1, |s| ≤ Kεk+1, the contribution
of O(Re s)u to the r.h.s. of (3.130) is estimated as

|Re s|
(
σ

∥∥∥∥∑
ξ

P1u(ξ)

∥∥∥∥
1

+ |s|σ
∥∥∥∥∑

ξ

u(ξ)

∥∥∥∥
1

+ ‖u‖1
)

≤
(
δσεk

∥∥∥∥∑
ξ

P1u(ξ)

∥∥∥∥
∞

+ δεk‖u‖∞
)(3.137)

and is bounded by the l.h.s. of (3.132). The contribution of O(Re s)u to the term
‖F‖1 in (3.133) is negligible. Clearly, for Re s as in (3.134) and �� ε−1,

ε + | Im s|1/(k+1) ∼ ε + |s|1/(k+1).(3.138)

Thus, estimates (3.100), (3.132), (3.133) are valid also for s as in (3.134).

4. The basic stability estimate for the scalar problem. In this section we
will prove the basic stability estimate (3.85) for problem (3.78), (3.81), (3.82). Let us
first consider the analogous differential equation

∂τY −MY = H,(4.1)

where

M =




0 1
. . .

1
−α′

0 − α′
1 −α′

k


 , M ≈ σ−1 log(I + σM ′

1), M ′
1 in (3.78).
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The coefficients α′
imodO(σ) coincide with α′

i in (3.78). They depend analytically on

ysh(ε′(τ−τ0)), s′, ε′, and σ and α′
0 = (−1)

k+1
2 s′+O(σ), α′

1 = (−1)
k+1
2 (ε′)kysh+O(σ),

α′
i = O(σ), i ≥ 2. Equation (4.1) is solved on interval −�′ ≤ τ ≤ �′ with boundary

conditions at τ = ±�′,

Y1 + O(σ)Y = g0, Ydi+2 + O(σ)Y = gi, 1 ≤ i ≤ k − 1

2
.(4.2)

The characteristic equation for (4.1) at τ = ±∞ is correspondingly

(−1)
k+1
2 λk+1 ∓ (ε′)kλ + s′ + O(σ) = 0 (see (3.84))(4.3)

(where O(σ) depends also on λ, ε′, s′). We consider the parameter vector p = (ε′, s′, σ)
in a neighborhood of a point p0 = (ε′0, s

′
0, 0), where

ε′0 + |b1s′0|
1

k+1 = 1, ε′0 > 0, Re s′0 ≥ 0 (see (3.76)).(4.4)

If s′0 �= 0, then the roots of (4.3) split into groups I and II with k+1
2 eigenvalues λ′

correspondingly in the half-planes Reλ < 0 or Reλ > 0. If s′0 = 0, then there is
a simple root λ0 near 0. In order for Reλ0 �= 0, we should assume that Re s ≥ 0
and σ ≥ 0. In order to get an estimate for (4.1), (4.2), we split the interval (−�′, �′)
into three subintervals (−�′,−�′0), (−�′0, �′0), (�′0, �

′). We will assume that �′ ≥ δ−1
0 (as

in (1.11), (1.12)) and could be arbitrarily large. The number �′0 will be specified in
what follows. On the interval [�′0, �

′] we consider (4.1) as a perturbation of a constant
coefficient problem

∂τY −M(∞)Y = ∆MY + H = F, ∆M = M −M(∞).(4.5)

At τ = �′ we impose the boundary conditions (4.2). At τ = �′0 the boundary condition
is

P
I
(τ)Y = g(0), τ = �′0,(4.6)

where P
I
(τ) is an orthogonal projection on the k+1

2 dimensional subspace V
I
(τ) of

exponentially decreasing solutions of (4.1). Note that the “near zero” root λ0 belongs
to group II. The interval [−�′,−�′0] is treated in a similar way. The solution of problem
(4.5), (4.6), (4.2) on [�′0, �

′] and [−�′, �′0] will be expressed as

Y = G1

(
H, g(�′), g(0)(�′0)

)
, Y = G−1

(
H, g(−�′), g(0)(−�′0)

)
.(4.7)

On the interval [−�′0, �′0], (4.1) is solved as an initial value problem. Thus we obtain

Y (�′0) = G0

(
H,Y (−�′0)

)
.(4.8)

Finally, we substitute the values of Y (−�′0), Y (�′0) from (4.7) into (4.8) and obtain
a system of k + 1 equations for k + 1 unknown components of g(0)(�′0) ∈ V

I
(�′0) and

g(0)(−�′0) ∈ V
II

(−�′0). This is the idea. To carry it through we should get bounds on
G1, G−1 and prove solvability of (4.8).

Lemma 4.1. The solution Y = G1(F, g(�′), g(0)(�′0)) satisfies the estimate

‖Y ‖∞ ≤ K
(
‖H‖1 + |g|+ |g(0)|

)
,(4.9)
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where K is independent of �′. For H = 0, g(�′) = 0 the boundary value Y (�′0) is

Y (�′0) = g(0)(�′0)
(

1 + O(e−δ(�
′−�′0))

)
, δ > 0 a constant.(4.10)

Proof. Without loss of generality, one can assume that M(∞) is in the block form
M(∞) = M

I
⊕M

II
, where ReM

I
< −δI and ReM

II
≥ 0. Similarly, we partition

Y = (Y
I
, Y

II
), H, and F . First find a particular solution of (4.5) with boundary

condition Y
I
(�′0) = 0, Y

II
(�′) = 0. Then

1

2
|Y

II
(τ)|2 +

∫ �′

τ

(ReM
II
Y

II
, Y

II
)dτ = −

∫ �′

τ

(F
II
, Y

II
)dτ(4.11)

and similarly for Y
I
. Thus

1
2‖Y ‖∞ ≤ ‖F‖1 ≤ ‖H‖1 + ‖∆M‖1‖Y ‖∞.(4.12)

Recall that ∆M = O(ysh(ε′(τ − τ0)) − 1) = O(e−δ1(τ−τ0)). We should choose �′0
sufficiently large so that for τ > �′0, ‖∆M‖1 ≤ 1

4 . Thus we find a particular solution

Y (1) such that

‖Y (1)‖∞ ≤ 4‖H‖1.(4.13)

Now we solve the homogeneous equation ∂τY − MY = 0 with original boundary
conditions. For Y

II
, instead of (4.11), we obtain

1
2‖YII

‖2∞ ≤ ‖∆M‖1‖Y ‖2∞ + 1
2 |YII

(�′)|2.(4.14)

The equation for Y
I

is multiplied by exp(δ2(τ − �′0)), δ2 < min(δ, δ1), and integrated.
Then, instead of (4.14) we obtain

1
2

∥∥∥YI
exp

(
δ2(τ − �′0)

)∥∥∥2

∞

≤
∥∥∥∆M exp

(
δ2(τ − �′0)

)∥∥∥
1
‖Y ‖∞

∥∥∥YI
exp

(
δ2(τ − �′0)

)∥∥∥
∞

+ 1
2 |YI

(�′0)|2 .

(4.15)

Since ∆M decays faster than exp(δ2(τ − �′0)) grows, we may assume also that
‖∆M exp δ2(τ − �′0)‖1 is small. Since the boundary condition in (4.2) is Lopatin-
sky well posed at τ =∞, we can express

Y
II

(�′) = O(g) + O
(
Y

I
(�′) exp δ2(�′ − �′0)

)
exp

(− δ2(�′ − �′0)
)
.(4.16)

From (4.6) we obtain

Y
I
(�′0) = O(g(0)) + O

(
Y

II
(�′0)

)
.(4.17)

Indeed, P
I
(�′0) = P

I
(∞) + O(exp(−δ2�′0)), while P

I
(∞) acts as an identity on the Y

I

component. Substitute (4.16), (4.17) into (4.14), (4.15), multiply (4.14) by c � 1,
and add the result to (4.15). For large δ2(�′ − �′0) the contribution of Y

I
in (4.16) is

negligible relative to the l.h.s. of (4.15). Hence∥∥∥YI
exp

(
δ2(τ − �′0)

)∥∥∥
∞

+ ‖Y
II
‖∞ ≤ K

(
|g|+ |g(0)|

)
.(4.18)
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The above g, g(0) are also affected by the solution Y (1) estimated in (4.13). Altogether
the sum of the two solutions solves the original problem and satisfies estimate (4.9). In
order to prove (4.10), we take an approximate solution Y (1) ∈ V

I
with Y (1)(�′0) = g(0).

Since it decays exponentially, its contribution to the boundary condition at �′ is
O(exp(−δ(�′ − �′0))). By estimate (4.9) we bound the correction to Y (1).

Now, return to (4.8):

G1

(
H, g(�′), 0

)
+ g(0)(�′0)

(
1 + O

(
exp(−δ(�′ − �′0))

))
= G0

(
H,G−1(H, g(−�′), 0)

)
+G0

(
0, g(0)(−�′0)

(
1 + O

(
exp(−δ(�′ − �′0))

)))
.

(4.19)

Since �′0 is fixed, G0 is a bounded map. The vectors g(0)(�′0) ∈ V
I
(�′0), g(0)(−�′0) ∈

V
II

(−�′0). By the continuous stability hypothesis, G0(0, V
II

(−�′0)) is transversal to
V

I
(−�′0) for the value of parameter p = p0. Otherwise equation ∂τY −MY = 0 or,

equivalently, (2.22), would have a nontrivial solution which decays asymptotically at
infinity. Since exp(−δ(�′ − �′0)) is small, the problem in (4.19) is boundedly solvable
with respect to g(0)(�′0), g(0)(−�′0). The corresponding function Y solves the boundary
value problem (4.1), (4.2) and satisfies the estimate

‖Y ‖∞ ≤ K
(
‖H‖1 + |g|

)
.(4.20)

Remark 5. If s′0 �= 0, then we may assume also that ReM
II
> δI. Then instead of

(4.12) we can obtain a stronger estimate ‖Y ‖p+‖Y ‖∞ ≤ K(‖H‖p+‖H‖∞), p =∞, 1,
and therefore a final estimate will be

‖Y ‖p + ‖Y ‖∞ ≤ K
(
‖H‖p + ‖H‖∞ + |g|

)
, p =∞, 1.(4.21)

Now return to the discrete problem (3.78), (3.81), (3.82). We solve it exactly as
the continuous one. The space V

I
(τ) is replaced by the corresponding space V ′

I
(τ)

of decreasing solutions of (3.78), and the projection P
I

by a projection P ′
I

on V ′
I
(τ).

The difference equation (3.78) is rewritten as

(a) EτY
′
I
− (I + σM ′

I
)Y ′

I
= σH ′

I
+ σO(∆M ′)Y ′ = σF ′

I
,

(b) EτY
′
II
− (I + σM ′

II
)Y ′

I
= σH ′

II
+ σO(∆M ′)Y ′ = σF ′

II
.

(4.22)

(For brevity we dropped the subscript 1 in (3.78).) Here (I + σM ′
I
)∗(I + σM ′

I
) ≤

(1 − 2δ)I, (I + σM ′
II

)∗(I + σM ′
II

) ≥ I. Multiply both sides of (4.22)(a) by EτY
′
I

+
(I + σM ′

I
)Y ′

I
and sum from �′0 until τ and similarly for (4.22)(b). Instead of (4.12),

(4.13), we obtain the estimate ‖Y ′‖∞ ≤ K‖F ′‖1,σ and ‖Y ′(1)‖∞ ≤ K‖H ′‖1,σ. The
rest of the proof of Lemma 4.1 is repeated word for word. Now we arrive at the
functional equation (4.19). The operator G0 is replaced by the solution operator
G′

0 of the difference equation. By the standard convergence theorem for the Euler
method, it follows that G′

0 approximates G0 as σ → 0. Similarly, the stable manifold
V ′

I
(�′0) approximates V

I
(�′0) as σ → 0. This result is less standard; e.g., see Theorem

5.3 in [7]. Then by continuity, G′
0 maps V ′

II
(−�′0) transversally to the subspace V ′

I
(�′0).

Finally, we obtain the estimate

‖Y ′
1‖∞ ≤ K

(
‖H ′

1‖1,σ + |g′|
)
,(4.23)
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and in case |s′0| �= 0,

‖Y ′
1‖p,σ + ‖Y ′

1‖∞ ≤ K
(
‖H ′

1‖p,σ + ‖H ′
1‖∞ + |g′|

)
, p = 1,∞.(4.24)

5. Existence of stationary shocks. In [7] we proved existence of stationary
discrete shocks on the whole line. In this section we will prove Theorem 2.1 about
existence of an n1 parameter family of stationary shocks on the interval [−�, �]. Unlike
the nonstationary case, we also will treat the case 1 < n1 < n. The n1 parameters
are the components of the vector

P
∑
x

G2

(
{Ejxust(x)}

)
= gsum.(5.1)

The function ust satisfies the equation

G1

(
{Ejxust(x)}

)
= const.(5.2)

We will represent this constant as a value f(u
L

+ ∆u
L

) and look for the solution in
the form

ust = ush

(
ε(x− x0), u

L
+ ∆u

L

)
+ ∆ust.(5.3)

Here ush(ε(x− x0), u
L

+ ∆u
L

) is defined as in (2.86), namely,

ush

(
ε(x− x0), u

L
+ ∆u

L

)
= 1

2 (u
L

+ ∆u
L

+ u
R

+ ∆u
R

)

+ 1
2 (u

L
+ ∆u

L
− u

R
−∆u

R
)ysh

(
ε(x− x0)

)
,

ε =
(
λ1(u

L
+ ∆u

L
)
)1/k

,

(5.4)

∆u
R

is defined uniquely by the equation

f(u
L

+ ∆u
L

) = f(u
R

+ ∆u
R

),(5.5)

and ysh is a solution of (2.23). Then, by boundary condition (2.13),

P
(
f(u

L
+ ∆u

L
)− f(u

L
)
)

= 0.(5.6)

The remaining boundary conditions are

S
L,1

(
{Ejxust(x−�)}, uL

)
= 0, S

R,1

(
{Ejxust(x�), uR

)
= 0(5.7)

and

S
L,2

(
{Ejxust(x−�)}, uL

)
= 0, S

R,2

(
{Ejxust(x�), uR

)
= 0(5.8)

(see (2.7), (2.26)(b),(c)). Equation (5.2) will be rewritten as

dG1[ush]∆ust = f(u
L

+ ∆u
L

)−G1

(
{Ejxush(·, u

L
+ ∆u

L
)}
)

+ O(∆ust)
2 = F.(5.9)
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It is easy to see that for u
L

, u
R

as in (2.10),

P1

(
f(u

L
)−G1

(
{Ejxush(εx, u

L
)}
))

= O(εµ2),

(I − P1)
(
f(u

L
)−G1

(
{Ejxush(εx, u

L
)}
))

= O(µ2).
(5.10)

Note that by consistency, the r.h.s. of (5.10) vanishes at εx = ±∞ so that actually
O(εµ2), O(µ2) are multiplied by an exponent of the type e−εδ|x|. The above result
is obviously valid if we replace u

L
by u

L
+ ∆u

L
and µ by λ1(u

L
+ ∆u

L
). However,

the projectors P1 and (I − P1) depend on the point u0 = u0(u
L

). If we change u
L

to
u

L
+ ∆u

L
and do not change P1 and I − P1, then the correct formula will be

(a) P1

(
f(u

L
+ ∆u

L
)−G1

(
{Ejxush(εx, u

L
+ ∆u

L
)}
))

,

= O
(
ελ2

1(u
L

+ ∆u
L

)
)

+ O
(
λ2

1(u
L

+ ∆u
L

)
)
O(∆u

L
),

(b) (I − P1)
(
f(u

L
+ ∆u

L
)−G1

(
{Ejxush(εx, u

L
+ ∆u

L
)}
))

= O
(
λ2

1(u
L

+ ∆u
L

)
)
.

(5.11)

The contribution of ∆ush = ush(ε(x− x0), u
L

+ ∆u
L

)− ush(εx, u
L

) to (5.1) is∑
x

G2

(
{Ejx∆ush}

)
= (∆u

L
+ ∆u

R
)
(
� + O(1)

)

+(u
L

+ ∆u
L
− u

R
−∆u

R
)x0

(
1 + O

(
e−εδ�(1− e−x0δε)

x0ε

))

= (∆u
L

+ ∆u
R

)
(
� + O(1)

)
+(u

L
+ ∆u

L
− u

R
−∆u

R
)x0

(
1 + O(e−εδ�)

)
.

(5.12)

The correspondence u
R

= u
R

(u
L

) is given by an invariant formula

u
R

= u
L
− 2λ1(u

L
)e1(u

L
) + O

(
λ1(u

L
)
)2

,(5.13)

where e1(u
L

) is the eigenvector of df [u
L

] corresponding to λ1(u
L

) and normalized so
that

∇λ1(u
L

) · e1(u
L

) = 1.(5.14)

Hence

(P − P1)(∆u
L

+ ∆u
R

) = (P − P1)2∆u
L

+ O
(
λ1(u

L
)
)

∆u
L
,

(P − P1)(u
L

+ ∆u
L
− u

R
−∆u

R
) = O

(
λ1(u

L
)
)2

+ O
(
λ1(u

L
)
)

∆u
L
,

(5.15)

P1(∆u
L

+ ∆u
R

) = 2P1∆u
L
− 2
(
∇λ1(u

L
),∆u

L

)
+ O

(
λ1(u

L
)
)

∆u
L
,

P1(u
L

+ ∆u
L
− u

R
−∆u

R
) = 2λ1(u

L
) + 2

(
∇λ1(u

L
),∆u

L

)
+ O

(
λ1(u

L
)
)2

+ O
(
λ1(u

L
)
)

∆u
L
.

(5.16)
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By (5.6) one can express P∆u
L

as a function of (I − P )∆u
L

. Namely,

P
(
df [u

L
]∆u

L
+ O(∆u

L
)2
)

= 0,(5.17)

where df [u
L

] = T diag(λ1(u
L

), λ2(u
L

), . . . , λn(u
L

))T−1 and T = I + O(µ). Note that
the entry (df [u

L
])11 is λ1(u

L
)+O(µ2) = O∗(µ). If ∆u

L
/µ is small, then one can write

the solution of (5.17) as

(P − P1)∆u
L

= O(µ)
(
O(P1∆u

L
) + O

(
(I − P )∆u

L

))
,

P1∆u
L

= O
(

(I − P )∆u
L

)
.

(5.18)

From (5.1), (5.12), (5.15), (5.16), and (5.18) we obtain for ∆ust the integral relations

(P − P1)
∑
x

G2

(
{Ejx∆ust(x)}

)

= (P − P1)

(
gsum −

∑
x

G2

(
{Ejxush(εx, u

L
)}
))

+O(µ)
(
� + O(1)

)
(I − P )∆u

L

+
(
O(µ2) + O(µ)(I − P )∆u

L

)
x0

(
1 + O(1)

)
= τ−;

(5.19)

P1

∑
x

G2

(
{Ejx∆ust(x)}

)

= P1

(
gsum −

∑
x

G2

(
{Ejxush(x)}

))

+ �
(

1 + o(1)
)
O
(

(I − P )∆u
L

)
+ x0

(
1 + o(1)

)
·
(

2λ1(u
L

) + 2
(
∇λ1(u

L
),∆u

L

)
+ O(µ2) + O(µ∆u

L
)
)
.

(5.20)

The remaining boundary conditions for ∆ust follow from (5.7), (5.8),

dS
L,1

(
{Ejx∆ust(x−�)}

)
= −S

L,1

(
{Ejxush(x−�)}, uL

)
+ O(∆ust)

2(5.21)

and similarly for dS
R,1

, dS
L,2

, dS
R,2

. By the consistency assumption in (2.8),

S
L

(
{Ejxush(x−�)}, uL

)
= dS

L
∆u

L
+ O(∆u

L
)2 + O(e−δε�)

(
O(µ) + O(∆u

L
)
)

(5.22)

and similarly for the right boundary. Note that by (5.4) and (5.13), (I − P1)(ush −
u

L
−∆u

L
) = (O(µ2) + O(µ∆u

L
))(ysh − 1). Hence by (2.30),

S1j

(
{Ejxush(x−�)}

)
= dS1j(I − P1)∆u

L
+ O(εdje−δε�)

(
O(µ) + O(∆u

L
)
)

+ O(∆u
L

)2 .
(5.23)
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Similarly, by (2.34),

S2

(
{Ejxush(x−�)}

)
= dS2(I − P1)∆u

L
+ O(εke−δε�)

(
O(µ) + O(∆u

L
)
)

+ O(∆u
L

)2 .
(5.24)

We will solve (5.9) with constraints (5.18), (5.19), (5.21). Instead of fixing gsum we
will assume that τ− in (5.19) and x0 are given. The solution ∆ust, ∆u

L
will thus

depend on τ− and (implicitly) on x0. Then (P −P1)gsum will be determined by (5.19)
and P1gsum by (5.20). This way we can overcome the restriction �εk � 1. However,
we need this restriction in order to obtain one-to-one correspondence between gsum

and τ−, x0.
In order to solve (5.9) we proceed as in section 3. Namely, transform the variables

∆ũst(x) =
(

∆ust(x), . . . , Eν0−1
x ∆ust(x)

)T

= X
(
η(x)

)
y(x),(5.25)

where η(x) = ush(ε(x− x0), u
L

+ ∆u
L

). Then (5.9) becomes
Ex −M1 0 0

0 Ex −M
I

0
0 0 Ex −M

II


 y

= T−1
(
F̃ −A

(
(Ex − I)X

)
Exy

)
= H.

(5.26)

Here we have F̃ = (0, . . . , 0, F )
T

as in (3.17), A as in (3.18), and M
I
, M

II
as in (3.26).

Since the operator dG1 is dG(s = 0)/(Ex− I), the matrix M1 in (5.26) is nothing but
the lower k × k block of the matrix M1 in (3.50). Namely,

M1 = I +




0 1
0 1

...
. . .

0 1
−α1 −αk


 ,(5.27)

where αi = αi(η, s = 0) as in (3.43). The characteristic equation

det(M1 − κI) = (κ− 1)k +

k∑
i=1

αi(η)(κ− 1)i−1 = 0(5.28)

at εx = ±∞ has roots

κ = 1 + ε(±1)1/k + O(ε2).(5.29)

Unlike (4.3), now the values of λ = ε−1 log κ are away from the imaginary line Reλ =
0. In such a situation, instead of (4.23) we have a stronger estimate (4.24). Let us
first find y

I
, y

II
. As in (3.64), we represent y

I
= c

I
ϕ

η,I
+ ẙ

I
and similarly for y

II
. For

ẙ
I,II

we have the estimate

‖ẙ
I
‖1 + ‖ẙ

II
‖1 ≤ K

(
‖H

I
‖1 + ‖H

II
‖1
)
.(5.30)
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As in (3.68), the coefficients c
I,II

are determined by the boundary conditions (5.19)
(with given τ−) and (5.21) (with (dS

L,2
, dS

R,2
) = dS2 instead of dS

L,1
). The vector

(I−P )∆u
L

plays the role of cj , n1 < j ≤ n. By the generalized stability condition for
the system (2.40), (2.41), (2.44) (with ρ ≡ 1), these boundary conditions are uniquely
solvable in terms of c

I,II
, (I − P )∆u

L
. We should merely collect all terms which

contribute to the r.h.s. of these equations. In view of (2.35), the contribution of y1 to
(5.19) is estimated∣∣∣∣(P − P1)

(∑
x

e1y1,1(x) +
∑

O(η)y1(x)

)∣∣∣∣ ≤ Kεk‖y1‖1.(5.31)

Notice that because of the reduction of order, the vectors X1,i(0) in (3.48), 1 ≤ i ≤ k,
are not affected by C10. The contribution of y1 to dS2 ·∆ust is estimated as in (3.73)
and is bounded by

K
(
‖(Ex − I)ky1‖∞ + εk‖y1‖∞

)
.(5.32)

The contribution of the particular solution ẙ
I,II

to (5.19) is bounded by K(‖H
I
‖1

+‖H
II
‖1). The nonhomogeneous terms in (5.19) and (5.24) are the ones which do

not include ∆u
L

(since ∆u
L

depends on (I − P )∆u
L

). Thus we obtain the estimate

‖y
I
‖1 + ‖y

II
‖1 + |∆u

L
|+ µ−1|(P − P1)∆u

L
|

≤ K
(
‖H

I
‖1 + ‖H

II
‖1 + εk‖y1‖1 + ‖(Ex − I)ky1‖∞

+ |τ−|+ ε2ke−δε� + |∆u
L
|2 + ‖∆ust‖2∞

)
.

(5.33)

For y1 we have the estimate

∑
i+j≤k+1

(
‖Diτy′1,j‖1,ε + ‖Diτy′1,j‖∞

)

≤ K

( ∑
i+j≤k

‖DiτH ′
1,j‖1,ε +

∑
ε−dj |dS1j(I − P1)∆u

L
|

+ O(e−δε�µ) + O(e−δε�∆u
L

) + ε−(k−1)
(
‖∆ust‖2∞ + |∆u

L
|2
))

,

(5.34)

where y′1,j = ε−j+1y1,j , H
′
1,j = ε−jH1,j . Multiply (5.34) by K1ε

k−1, where K1 � K,
and add to (5.33). We obtain

‖y
I,II
‖1 + εk−1

∑
i+j≤k+1

(
‖Diτy′1,j‖1,ε + ‖Diτy′1,j‖∞

)

+ |∆u
L
|+ µ−1|(P − P1)∆u

L
|

≤ K

(
‖H

I,II
‖1 + εk−1

∑
i+j≤k

‖DiτH ′
1,j‖1,ε + |τ−|

+ ε2k−1e−δε� + ‖∆ust‖2∞ + |∆u
L
|2
)
.

(5.35)
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The terms Kεk‖y1‖1 = Kεk−1‖y1‖1,ε and K‖(Ex − I)ky1‖∞ = Kεk‖Dkτ y1‖∞ are
majorated by K1ε

k−1 times the l.h.s. of (5.34). In the case 1 < n1 < n we have
assumed that dj ≤ k − 2; hence εk−1ε−djO(∆u

L
) is negligible. The terms with H ′

1

are bounded by

εk−1‖DiτH ′‖1,ε = εk‖DiτH ′
1,j‖1 ≤ ‖H1,j‖1.(5.36)

The contribution of y to ‖H‖1 is bounded by

‖O(η′)y‖1 ≤ Kεk‖y‖∞(5.37)

and is negligible compared with the l.h.s. of (5.35). Thus in ‖H‖1 we are left with
‖F‖1, where F is defined in (5.9). Recall that the r.h.s. of (5.11) is actually multiplied
by e−εδ|x|. Hence

‖F‖1 ≤ K
(
ε−1|λ2

1(u
L

+ ∆u
L

)|+ ‖(∆ust)
2‖1
)

≤ K
(
ε2k−1 + ε−1|∆u

L
|2 + ‖∆ust‖∞‖∆ust‖1

)
.

(5.38)

The biggest nonhomogeneous term on the r.h.s. of (5.35) is Kε2k−1 in (5.38). Thus
we will assume that

|τ−| ≤ Kε2k−1.(5.39)

From (5.35) we obtain the estimate for ∆ust:

‖(I − P1)∆ust‖1 + εk−1‖P1∆ust‖∞
+εk‖P1∆ust‖1 + εk−1‖P1(Ex − I)∆ust‖1
+|∆u

L
|+ µ−1|(P − P1)∆u

L
|

≤ K
(
ε2k−1 + ε−1|∆u

L
|2 + ‖∆ust‖∞‖∆ust‖1

)
.

(5.40)

Unfortunately, the last estimate is too weak since it gives the bounds ‖P1∆ust‖∞
= O(εk), ‖P1∆ust‖1 = O(εk−1), and hence the ‖∆ust‖∞ · ‖∆ust‖1 term is not neg-
ligible. Therefore, return to estimate (5.34). We remark that by Lemma 3.1 the
components (I − P1)F in (5.9) affect H1,k in (5.34) as O(µ)(I − P1)F . By (5.11),

‖ε(I − P1)F‖1 + ‖P1F‖1 ≤ K
(
ε2k + ε2k−1|∆u

L
|+ ‖(∆ust)

2‖1
)
.(5.41)

Multiply estimate (5.34) by δ1ε
k−2, where δ1 is a small constant, and add the result

to (5.33). We obtain

‖y
I,II
‖1 + δ1ε

k−2
∑

i+j≤k+1

(
‖Diτy′1,j‖1,ε + ‖Diτy′1,j‖∞

)

+|∆u
L
|+ µ−1|(P − P1)∆u

L
|

≤ K

(
‖H

I,II
‖1 + δ1ε

k−2
∑
i+j≤k

‖DiτH ′
1,j‖1,ε + |τ−|+ ε2ke−δε�

+δ1|∆u
L
|+ δ1e

−δε�ε2k−2 + ε−1δ1

(
‖∆ust‖2∞ + |∆u

L
|2
))

≤ K
(
ε2k−1 + δ1e

−δε�ε2k−2 + δ1|∆u
L
|

+ ε−1|∆u
L
|2 + δ1ε

−1‖∆ust‖1‖∆ust‖∞ + δ1ε
k−1‖y‖∞

)
.

(5.42)
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Now instead of (5.40) we obtain the estimate

‖(I − P1)∆ust‖1 + εk−1‖P1∆ust‖1 + εk−2‖P1∆ust‖∞
+εk−2‖P1(Ex − I)∆ust‖1 + |∆u

L
|+ µ−1|(P − P1)∆u

L
|

≤ K
(
ε2k−1 + e−δε�ε2k−2 + ε−1‖∆ust‖1 · ‖∆ust‖∞
+ ε−1|∆u

L
|2 + |τ−|

)
.

(5.43)

If ε�� 1 then, modulo the quadratic terms,

‖∆ust‖1 � εk−1, ‖∆ust‖∞ � εk, |∆u
L
| � ε2k−2.(5.44)

Hence

ε−1‖∆ust‖1 · ‖∆ust‖∞ + ε−1|∆u
L
|2 � ε2k−2 + ε4k−5 � ε2k−2,(5.45)

provided 2k > 3. The last is true since, in the case 1 < n1 < n, we have assumed that
k > 1. Thus, in (5.43) we can disregard the quadratic terms. Now, at the r.h.s. of
(5.40) we have the terms

‖∆ust‖1 · ‖∆ust‖∞ + ε−1|∆u
L
|2 � ε2k−1 + ε4k−5 ≤ 2ε2k−1(5.46)

since 2k − 4 ≥ 0. We obtain the final estimates

(a) ‖(I − P1)∆ust‖1 + |∆u
L
|+ ε−k|(P − P1)∆u

L
| ≤ Kε2k−1,

(b) ε‖P1∆ust‖1 + ‖∆ust‖∞
+‖P1(Ex − I)∆ust‖1 ≤ K(εk+1 + e−δε�εk).

(5.47)

Recall that the difference ∆ust in (2.85), in our present notation, is the sum ∆ust +
ush(ε(x−x0), u

L
+∆u

L
)−ush(εx, u

L
). Thus the norm ε‖∆ust‖1 +‖∆ust‖∞ +‖(Ex−

I)∆ust‖1 in (2.87) and (2.88) is bounded by

ε‖∆ust‖1 + ‖∆ust‖∞ + ‖(I − P1)∆ust‖1
+‖P1(Ex − I)∆ust‖1 + ε|∆u

L
| · � + |∆u

L
|+ Kε|x0|εk

≤ K
(
εk+1 + e−δε�εk + (εk�)εk + ε|x0|εk

)
.

(5.48)

We will assume

ε|x0| � 1.(5.49)

Then, by (1.11), the r.h.s. of (5.48) is bounded by δ0ε
k as in (2.87). Thus Theo-

rem 2.1 has been proved in the case 1 < n1 < n. Equations (5.19), (5.20) define the
correspondence between τ−, x0 and Pgsum. Rescale the variables

τ ′− = τ−/ε2k−1, x′0 = εx0, ∆u′
L

= ∆u
L
/ε2k−1,

(P − P1)g′sum = (P − P1)

(
gsum −

∑
x

G2

(
{Ejxush(εx, u

L
)}
))

/ε2k−1,

P1g
′
sum = P1

(
gsum −

∑
x

G2

(
{Ejxush(εx, u

L
)}
))

/εk−1.

(5.50)
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Then

(P − P1)g′sum = (�εk)O(∆u′
L

) + x′0
(
O(1) + O(εk∆u′

L
)
)

+ τ ′−(5.51)

−P1g
′
sum = (�εk)O(∆u′

L
) + x′0

(
2λ1(u

L
)/εk + o(1)

)
−P1ε

−k+1
∑
x

G2

(
{Ejx∆ust(x)}

)
.

(5.52)

By (5.47), ∆u′
L

= O(1), P1ε
−k+1

∑
xG2({Ejx∆ust(x)}) = O(ε) + O(e−δε�). Since

�εk � 1 and λ1(u
L

)/εk = O∗(1), (5.51) and (5.52) are uniquely solvable with respect
to x′0 and τ ′−. In order to satisfy (5.39), (5.49) we should assume that

|P1g
′
sum| � 1, |(P − P1)g′sum| ≤ K.(5.53)

Thus we obtain an n1 parameter family of stationary solutions which depend on the
vector Pg′sum.

Now consider the special cases n1 = 1 and n1 = n while k ≥ 1 and �εk+1 � 1. In
the case n1 = 1 the terms (5.31) which contribute to (5.19) are absent. Thus, instead
of (5.33), we obtain

‖y
I,II
‖1 + |∆u

L
| ≤ K

(
‖H

I,II
‖1 + εk‖y1‖∞ + ‖(Ex − I)ky1‖∞

+ ε2ke−δε� + |∆u
L
|2 + ‖∆ust‖2∞

)
.

(5.54)

Besides the norm ‖ · ‖1, we can estimate the norm ‖y
I,II
‖∞,

‖y
I,II
‖∞ + |∆u

L
| ≤ K

(
‖H

I,II
‖∞ + εk‖y1‖∞ + ‖(Ex − I)ky1‖∞

+ ε2ke−δε� + |∆u
L
|2 + ‖∆ust‖2∞

)
,

(5.55)

‖y
I,II
‖∞ + K1ε

k
∑

i+j≤k+1

(
‖Diτy′1,j‖1,ε + ‖Diτy′1,j‖∞

)
+ |∆u

L
|

≤ K
(
‖H

I,II
‖∞ + ε2ke−δε�

)
+ K1K

(
ε‖H1‖1 +

∑
εk−dj |∆u

L
|

+ ε2ke−δε� + ε
(
‖∆ust‖2∞ + |∆u

L
|2
))

.

(5.56)

The contribution of y to the norm of H at the r.h.s. of (5.55) is bounded by Kεk+1‖y‖∞
+K1ε

k+1‖y‖∞, which is negligible. Now, we have a relaxed condition dj ≤ k−1. Thus
∆u

L
term at the r.h.s. of (5.56) could be dropped. Altogether,

‖y
I,II
‖∞ + εk

(∑ ‖Diτy′1,j‖1,ε + ‖Diτy′1,j‖∞
)

+ |∆u
L
|

≤ K
(
‖F‖∞ + ε2ke−δε� + ε‖∆ust‖2∞

)
≤ K

(
ε2k + ‖∆ust‖1 · ‖∆ust‖∞

)
.

(5.57)
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Now return to (5.34). The term with H ′
1 in the r.h.s. of (5.34) is estimated as in

(5.36), (5.37) with a correction as in (5.41). Thus we obtain

∑
i+j≤k+1

(
‖Diτy′1,j‖1,ε + ‖Diτy′1,j‖∞

)

≤ K
(
ε−k+1

(
ε2k + |∆u

L
|+ ‖∆ust‖1 · ‖∆ust‖∞ + εk‖y‖∞

)
+ e−δε�εk + e−δε�|∆u

L
|+ ε−k+1

(
‖∆ust‖2∞ + |∆u

L
|2
))

≤ K
(
εk+1 + e−δε�εk + ε−k+1‖∆ust‖1 · ‖∆ust‖∞

)
.

(5.58)

Then estimate (5.54) implies

‖y
I,II
‖1 ≤ K

(
ε2k−1 + ‖∆ust‖1‖∆ust‖∞

)
.(5.59)

By (5.57)–(5.59),

‖∆ust‖∞ ≤ K
(
εk+1 + e−δε�εk + ε−k+1‖∆ust‖1‖∆ust‖∞

)
(5.60)

and

‖∆ust‖1 ≤ K
(
εk + e−δε�εk−1 + ε−k‖∆ust‖1‖∆ust‖∞

)
.(5.61)

Hence

ε−2k+1‖∆ust‖∞‖∆ust‖1 = A ≤ K2(ε + e−δε� + A)2(5.62)

or A ≤ K(ε + e−δε�). Now, by (5.57)–(5.59) we arrive at estimates (5.47). For
(I − P1)∆ust, ∆u

L
we have a better estimate

‖(I − P1)∆ust‖∞ + |∆u
L
| ≤ K(ε2k + e−δε�ε2k−1).(5.63)

Then, as in (5.48),

ε‖∆ust‖1 + ‖∆ust‖∞ + ε|∆u
L
|� + Kε|x0|εk

≤ K
(
εk+1 + e−δε�εk + εk+1� · εk + (ε�)e−δε�ε2k−1 + ε|x0|εk

)
≤ δ0ε

k,

(5.64)

provided εk+1� � 1, ε|x0| � 1, ε� � 1. The difference (Ex − I)∆ust is estimated
with the aid of (5.58), (5.59), (5.62),

‖(Ex − I)∆ust‖1 ≤ K
(
‖y

I,II
‖1 + ε‖Dτy1‖1

)
≤ K(ε2k−1 + εk+1 + e−δε�εk).(5.65)

Thus, for n1 = 1 we obtained the requested estimates (2.87), (2.88). The only free
parameter in the definition of ∆ust is x′0 = εx0. It is related to P1g

′
sum by (5.52).

Note that ∆u′
L

= ∆u
L
/ε2k−1 = O(ε) + O(e−δε�). Hence

�εkO(∆u′
L

) = O(�εk+1) + O(�εke−δε�)� 1.(5.66)
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Thus x′0 in (5.52) is in one-to-one correspondence with P1g
′
sum, provided |P1g

′
sum|

� 1.
It remains to consider the case n1 = n, when ∆u

L
= 0. Estimate (5.35) is valid

with ∆u
L

= 0. We can afford dj ≤ k−1 since there are no terms εk−1ε−djO(∆u
L

) at
the r.h.s. of (5.35). We proceed as in (5.36)–(5.39) and arrive at (5.40) with (∆u

L
= 0).

All estimates (5.41)–(5.46) are valid; only the term ε4k−5 in (5.45), (5.46) is absent.
Thus there is no restriction k > 1. Hence estimate (5.47) holds also for k = 1. Instead
of (5.48) we have

ε‖∆ust‖1 + ‖∆ust‖∞ + Kε|x0|εk ≤ K
(
εk+1 + e−δε�εk + ε|x0|εk

)
≤ δ0ε

k,(5.67)

provided (5.49) holds. Equations (5.51), (5.52) (with ∆u
L

= 0) define one-to-one
correspondence between g′sum and x′0 and τ ′− under the restriction (5.53).

6. Asymptotic stability of the nonlinear problem. In this section we will
prove the main theorem, Theorem 2.2, about asymptotic stability of the IBVP (2.1),
(2.7), (2.9). Let u be a solution of the IBVP and ust a stationary solution of (2.1),
(2.7) as described in section 5. Denote by ∆u the difference u− ust. Since G has the
form (2.4) with linear operator G2, ∆u satisfies the equation

dG[ust](Ex, Et)∆u = (Ex − I)O(∆u)2 = F.(6.1)

In case n1 = n, one should integrate the above equation. Thus we consider first the
case n1 = 1. Since both u and ust satisfy the boundary conditions (2.7), the difference
∆u satisfies

dS
L,R

[∆ust]∆u = O(∆u)2 = g
L,R

.(6.2)

However, we remove from (6.2) the boundary condition (2.13) at x = x� and replace
it by the integral condition (6.5) below. The initial values of ∆u are

∆uin(x, t) = uin(x, t)− ust(x), (x, t) as in (2.9).(6.3)

We will assume that gsum defined by the initial values uin,

P1

∑
x

G2

({Ejuin}) = gsum,(6.4)

satisfies conditions (5.53), where g′sum is defined by (5.50). Then, as shown in section 5,
one can choose ust such that

P1

∑
x

dG2∆u ≡ ∆gsum = 0.(6.5)

The estimates for the IBVP problem (6.1)–(6.3), (6.5) follow from estimates (3.100),
(3.132), (3.133) for the resolvent problem. Although the procedure is standard, for
completeness we present it here. First we rewrite the problem (6.1), (6.2), (6.5) in
global operator form,

L(Et)∆u =

ν0∑
i=0

LiE
i
t∆u = F (1) = (F, g

L,R
,∆gsum),(6.6)
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where ν0 = ∆j2 is defined in (2.9). Then problem (6.6) is transformed as in (3.19)
into a two-level scheme

L̃(Et)ũ = (A · Et + B)∆ũ = F̃ ,(6.7)

where

∆ũ(t) =
(

∆u(t), Et∆u(t), . . . , Eν0−1
t ∆u(t)

)T

, F̃ = (0, . . . , 0, F (1))
T

.(6.8)

The operators L̃(Et) and L(Et) are related by the identity (3.20). The explicit form
of D1 and D2 is

D1 =




I 0 0 · · · 0
Et I 0 0
E2
t Et I 0
...

. . .

Eν0−1
t · · · E2

t Et I


 , D2 =



Cν0−1 Cν0−2 · · · C1 I
−I 0 0 0

−I
...

...
0 · · · −I 0


 ,

(6.9)
where

C1 = Lν0Et + Lν0−1, Cν+1 = CνEt + Lν0−1−ν for ν = 1, 2, . . . , ν0 − 2.

By the solvability assumption, the operator A is invertible. Thus the problem (6.7),
(6.3) becomes

Etũ = −A−1Bũ + A−1F̃ , ∆ũ(0) = ∆ũin.(6.10)

Recall that the estimates for the resolvent problem could be extended into the domain
Re s ≥ −δεk/�. As a result, the difference ∆ũ will decay in time as exp(−s0t),
s0 ≈ δεk/�. Let us fix s0 = δεk/2� and change the variables

∆ũ = e−s0tv, es0(t+1)A−1F̃ (t) = H(t).(6.11)

Then v satisfies

Etv = Ãv + H, Ã = −es0A−1B.(6.12)

The solution v is a convolution

v(t) =

t∑
τ=0

ÃτH(t− τ) + Ãt∆ũin.(6.13)

The power Ã is computed by the integral

Ãτ ·H = (2πi)−1

∮
|z|=e−s0

(z − Ã)−1zτHdz

= (2πi)−1

∮
|z|=e−s0

(Ae−s0z + B)−1zτe−s0AHdz

= (2πi)−1

∮
|z|=e−2s0

D1(z)
(
L(z)⊕ I

)−1

D2(z)(zes0)τAHdz

= (2πi)−1

∮
|z|=e−2s0

D1(z)
(
L−1(z)⊕ 0

)
D2(z)(zes0)τAHdz.

(6.14)
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Note that

D2(z)AH(t) = D2(z)es0(t+1)F̃ (t) = es0(t+1)
(
F (1)(t), 0, . . . , 0

)
.(6.15)

Since D1(z) is bounded,

‖ÃτH(t− τ)‖∞ ≤ Ke−s0τ
∮
|z|=e−2s0

‖L−1(z)F (1)(t− τ)es0(t−τ)‖∞|dz|.(6.16)

For z = es, Re s = −2s0, | Im s| ≤ Kεk+1, u = L−1(z)F (1) satisfies estimate (3.132)
and for Kεk+1 ≤ | Im s| ≤ δ satisfies estimate (3.133). For s away from 0, by dissipa-
tivity, the operator dG is zero order elliptic. However, because of the global condition
(2.14) we still have the norm ‖F‖1 at the r.h.s. of (3.133). Estimate (3.133) could be

strengthened, but it would not improve the estimate for the power of Ã. Now return
to the integral in (6.16). In the domain | Im s| ≤ Kεk+1, this integral is bounded by

K

∫
σ−k

(
‖F‖1 + σ‖P1

∑
F (ξ)‖1 + σ�|g

L,0
|

+
∑
i≥1

σk−di |g1,i|+ |g2|
)
|dz|

≤ Kεk+1ε−k
(
‖F‖1 + ε‖P1

∑
F (ξ)‖1 + ε�|g

L,0
|

+
∑
i≥1

εk−di |g1,i|+ |g2|
)
.

(6.17)

In the domain | Im s| ≥ Kεk+1 the integral is bounded by

K


‖F‖1 + |g

L,0
|+
∑
i≥1

|g1,i|+ |g2|

 .(6.18)

Altogether,

‖ÃτH(t− τ)‖∞
≤ Ke−s0τes0(t−τ)

(
‖(Ex − I)O(∆u)2‖1 + ‖O(∆u)2‖∞

+ ε2
(
‖O(∆u)2‖1 + �‖O(∆u)2‖∞

))
≤ Ke−s0t�‖v(t− τ)‖2∞

(6.19)

and ∥∥∥∥∥
t∑
τ=0

ÃτH(t− τ)

∥∥∥∥∥ ≤ Kte−s0t� sup
0≤τ≤t

‖v(τ)‖2∞.(6.20)

In the initial term Ãt∆ũin we should apply the last integral in (6.14) to the function
A∆ũin. By (3.18) and (6.9) the first block row of D2A∆ũin is

Cν0−1∆uin(ν0 − 1) + · · ·+ C1∆uin(1) + Lν0∆uin(0).(6.21)
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The resulting vector could be partitioned as (F, g
L,R

, gsum). The F component is
affected by the operator dG[ust] in (6.1), g

L,R
by dS

L,R
[ust] in (6.2), and gsum by

P1

∑
dG2. Recall that the variable coefficient part of dG is (Ex − I)dG1. Hence the

term ‖P1

∑
F (ξ)‖1 is bounded by

�‖∆ũin‖∞ +

∥∥∥∥∥
∑
ξ

∆ũin(ξ)

∥∥∥∥∥
1

.(6.22)

One should add to (6.17), (6.18) the |gsum| term which is bounded by |∑ξ ∆ũin(ξ)|.
Altogether,

‖Ãt∆ũin‖∞ ≤ Ke−s0t


ε2

∥∥∥∥∥
∑
ξ

∆ũin(ξ)

∥∥∥∥∥
1

+ ‖∆ũin‖1 + ε2�‖∆ũin‖∞

 .(6.23)

In order to estimate sup0≤τ≤t ‖v(τ)‖∞, we should assume that

Kte−s0t� sup
0≤τ≤t

‖v(τ)‖∞ < 1
2 .(6.24)

Then in turn,

‖v(t)‖∞ ≤ 2‖Ãt∆ũin‖∞.(6.25)

Thus a sufficient condition for estimate (6.25) to hold for all t is

ε2
∥∥∥∥∑ξ

∆ũin(ξ)

∥∥∥∥
1

+ ‖∆ũin‖1 + ε2�‖∆ũin‖∞

≤ δ�−1

max(te−s0t)
≤ δs0�

−1 ≈ δεk�−2 .

(6.26)

The difference ∆u decays as

‖∆u(t)‖∞ ≤ Kεk�−2e−δε
k�−1t.(6.27)

For minimal possible � ≈ Kε−1, the rate of decay is

‖∆u(t)‖∞ ≤ Kεk+2e−δε
k+1t.(6.28)

Now consider the case n1 = n. The original nonlinear problem (2.1) is integrated,

G1

(
{Ej(Ex − I)U(x, t)}

)
+ (Et − I)G2

(
{EjU(x, t)}

)
= f(u

L
),(6.29)

where (Ex − I)U(x, t) = u(x, t) and U(x, t) satisfies the boundary condition

(a) G2

(
{EjU(x−�, t)}

)
= 0,

(b) G2

(
{EjU(x�, t)}

)
= gsum

df
=
∑
xG2

(
{Ejuin(x)}

)
.

(6.30)

The boundary conditions at x = x−� are used to define the value U(x−�, t), t ≥ ν0,
while for t < ν0 the values U(x−�, t) are arbitrary. The remaining boundary conditions
are the one in (2.26)(b),(c) or, more precisely, in the nonlinear form

S1

(
(Ex − I)U

)
= 0, S2

(
(Ex − I)U

)
= 0.(6.31)
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Given stationary solution ust, which satisfies the conservation law
∑
xG2({Ejust(x)}) =

gsum, one can define Ust, (Ex − I)Ust = ust, which satisfies (6.30)(a) and therefore
also (6.30)(b). The difference ∆U = U − Ust satisfies the equations

dG1[ust](Ex, Et)(Ex − I)∆U + (Et − I)dG2∆U = F = O
(

(Ex − I)∆U
)2

,(6.32)

dG2 ·∆U = 0, x = x±�,(6.33)

and

dS1,2[ust]∆U = g1,2 = O
(

(Ex − I)∆U
)2

,(6.34)

with initial conditions

∆U(x, t) = ∆Uin, 0 ≤ t ≤ ν0 − 1.(6.35)

We proceed as in the case n1 = 1. Now we use estimate (3.100). We remark that the
function F in (6.32) stands for the sum

∑
F (ξ) in (3.99). The terms gsum and g

L,0

are 0. Therefore instead of (6.19) we obtain

‖ÃτH(t− τ)‖∞ ≤ Ke−s0τes0(t−τ)
(
‖F‖1 + |g1,2|

)
≤ Ke−s0t�‖v(t− τ)‖2∞.(6.36)

The initial term is estimated as

‖Ãt∆Ũin‖∞ ≤ Ke−s0t‖∆Ũin‖1.(6.37)

Estimate (6.25) is replaced by

‖V (t)‖∞ ≤ 2‖Ãt∆Ũin‖∞,(6.38)

and condition (6.26) by

‖∆Ũin‖1 ≤ δεk�−2.(6.39)

Finally, instead of (6.27) we have

‖∆U‖1 ≤ Kεk�−2e−δε
k�−1t.(6.40)
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GEOMETRIC PROPERTIES OF RUNGE–KUTTA
DISCRETIZATIONS FOR INDEX 2 DIFFERENTIAL

ALGEBRAIC EQUATIONS∗

JOHANNES SCHROPP†
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Abstract. We analyze Runge–Kutta discretizations applied to index 2 differential algebraic
equations (DAEs). The asymptotic features of the numerical and the exact solutions are compared.
It is shown that Runge–Kutta methods satisfying the first order constraint condition of the DAE
correctly reproduce the geometric properties of the continuous system. The proof combines embed-
ding techniques of index 2 DAEs and ordinary differential equations (ODEs) with some invariant
manifolds results of Nipp and Stoffer [Attractive Invariant Manifolds for Maps, SAM Research Re-
port 92-11, ETH, Zurich, Switzerland, 1992]. The results support the favorable behavior of these
Runge–Kutta methods applied to index 2 DAEs for t ≥ 0.

Key words. differential algebraic systems, projected and half-explicit Runge–Kutta methods,
invariant manifolds

AMS subject classifications. 34C05, 34C40, 65L05

PII. S0036142900376626

1. Introduction. Differential algebraic problems of index 2 frequently arise
when modeling phenomena from scientific computations. (An important class of
such problems is, e.g., multibody systems with constraints on the velocity level or
in the Gear–Gupta–Leimkuhler formulation [8].) They also occur as auxiliary sys-
tems for minimization problems when searching for an evolution that approaches a
local minimum of an objective function restricted by algebraic constraints (see, e.g.,
Schropp [16]).

Quite often, analytic treatment of the system is impossible and, hence, numerical
simulations become important to gain a deeper understanding of the global behavior.
In particular, the question arises of which qualitative properties of the continuous
system are preserved by a numerical method.

In the present paper we analyze the behavior of some widely used Runge–Kutta
type discretizations applied to index 2 differential algebraic equations (DAEs) in Hes-
senberg form. To be more precise, we focus our interest on two different aspects.
It is well known that the solution flow of the DAE takes place in a submanifold of
the state times control space. We characterize how that submanifold persists under
discretization with projected and half-explicit Runge–Kutta methods. We show that
the discretized dynamics possesses an invariant submanifold close to the original one.
Moreover, we deal with the following subject. The index 0 formulation of the DAE
is an ordinary differential equation (ODE) on the manifold defined by the first or-
der constrained condition. Runge–Kutta schemes satisfying that condition can be
regarded as discrete flows on the constrained manifold. Hence, questions about the
behavior of numerical methods near invariant sets like stationary points or periodic
orbits on manifolds are of interest.
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Our main tools are embedding and invariant manifold techniques. We embed
the original DAE into another DAE of the same index such that the corresponding
index 0 ODE admits a representation as a dynamical system on an open subset of the
Euclidian space. Then, using the discrete invariant manifold techniques of Nipp and
Stoffer [14], we mimic that approach for the projected and half-explicit Runge–Kutta
dynamics. An important feature of this method is that it makes general techniques
of regular perturbation methods available for DAEs. Applying the results of Beyn [2]
for one-step methods in R

N , we can establish that hyperbolic periodic orbits persist
under discretization in invariant closed curves. Moreover, in Schropp [17] it is shown
that the phase portrait near hyperbolic equilibria is correctly reproduced. These
results underpin the use of projected or half-explicit Runge–Kutta DAE methods
when dealing with the behavior of index 2 DAEs in the long time run.

Our work was largely motivated by the discretization results of Beyn [2], [3],
Garay, [7], and Kloeden and Lorenz [12] for one-step methods near compact, invariant
sets. Later we learned the convergence theory for DAEs from the excellent book of
Hairer, Lubich, and Roche [10]. After finishing our paper we were informed about a
forthcoming paper of Nipp [13], in which a persistence result of the invariant manifold
of an index 2 DAE under discretization is shown for the special class of stiffly accurate
Runge–Kutta methods and for linear multistep methods of backward differentiation
formulae (BDF) type. Nipp’s result is obtained with a different method of proof which
does not allow analyzing the discrete behavior near compact invariant sets.

2. The main results. We consider the DAE

u̇ = f(u, λ), u(0) = u0,

0 = g(u), λ(0) = λ0,(2.1)

with u ∈ R
N and λ ∈ R

l in Hessenberg form. Let Cν
b denote the space of functions of

class Cν with bounded derivatives up to order ν. We make the following assumptions:
(A1) f ∈ Cν

b (R
N+l,RN ), g ∈ Cν+1

b (RN ,Rl) for ν sufficiently large.
(A2) There is a Cν

b -function ψ0 satisfying Dg(u)f(u, ψ0(u)) = 0 for u ∈ Dτ :=
{u ∈ R

N | ‖g(u)‖2 < τ}, τ > 0.
(A3) Dg(u)∂f∂λ (u, ψ0(u)) is invertible for u ∈ Dτ and the inverse has bounded norm.

In particular, problem (2.1) is of index 2, and consistent initial values for (2.1) must
satisfy g(u0) = 0 and Dg(u0)f(u0, ψ0(u0)) = 0. Additionally, condition (A3) says
that Dg(u) is of full rank so that the second equation of (2.1) defines the submanifold
S := {u ∈ R

N | g(u) = 0} of R
N , and the underlying index 0 ODE reads

u̇ = f(u, ψ0(u)), u(0) = u0 ∈ S(2.2)

(for an illustration of S and the dynamics on it, see Hairer and Wanner [11, p. 458]).
We denote the solution flow of (2.2) with ū(t, u0), u0 ∈ S. Then, (A2) implies the
solution flow (ū(t, u0), λ̄(t, u0)), λ̄(t, u0) = ψ0(ū(t, u0)) for (2.1). This means that the
manifold

M0 = {(u, λ) ∈ Dτ × R
l | g(u) = 0, λ = ψ0(u)}

is the phase space of the solution flow of (2.1).
We are interested in the qualitative, geometric features of s-stage Runge–Kutta

type methods with Butcher tableau

c A

bT
, A = (aij)1≤i,j≤s ∈ R

s,s, b, c ∈ R
s,(2.3)
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and constant step size h when applied to (2.1). The Runge–Kutta method possesses
stage order q if

s∑
j=1

aijc
k−1
j =

cki
k

, k = 1, . . . , q, i = 1, . . . , s.

To avoid drift problems in the discrete long time run, we must focus our interest on
Runge–Kutta type methods which retain the first order constraint g(u) = 0. This
leads us to the widely used projected Runge–Kutta methods introduced by Ascher
and Petzold [1] or to the half-explicit Runge–Kutta methods due to Hairer, Lubich,
and Roche [9]. For the Butcher tableau of the projected Runge–Kutta method, we
impose the following conditions:

(B1) The Runge–Kutta matrix A is invertible.
(B2) R(∞) = 1− bTA−1

I, I = (1, . . . , 1), satisfies |R(∞)| < 1.
(B3) The method is of classical order p and possesses stage order q with p ≥ q ≥ 1.

Applied to (2.1), the projected Runge–Kutta method has the form

ũn+1 = un + h(bT ⊗ I)f̄(Un,Λn),(2.4)

λn+1 = (1− bTA−1
I)λn + (b

TA−1 ⊗ I)Λn,

where Un = (Un
1 , . . . , Un

s ) ∈ R
Ns, Λn = (Λn1 , . . . ,Λ

n
s ) ∈ R

ls denote the solution of the
algebraic system

U − (I⊗ un) = h(A⊗ I)f̄(U,Λ),(2.5)

0 = ḡ(U),

and f̄ , ḡ stand for f̄(Un,Λn) = (f(Un
1 ,Λn1 ), . . . , f(U

n
s ,Λns )), ḡ(Un) = (g(Un

1 ), . . . ,
g(Un

s )). Finally, the projection step

un+1 = ũn+1 +
∂

∂λ
f(un+1, λn+1)γ,

0 = g(un+1)(2.6)

determines un+1. In (2.6) the variable γ is needed for the projection only.

A Runge–Kutta method satisfying asj = bj , j = 1, . . . , s, is called stiffly accurate.
Stiffly accurate Runge–Kutta solutions satisfy the first order constraint g(u) = 0 and,
hence, the projection step (2.6) is superfluous.

For the half-explicit Runge–Kutta methods, that is, ai,j = 0 for i ≤ j in the
Butcher tableau, we assume the following:

(B1′) ai+1,i �= 0 for i = 1, . . . , s− 1 and bs �= 0.
(B2′) The method is of DAE order p (see Hairer and Wanner [11, Chap. VII.6] for

conditions on A, b, c).

The application of a half-explicit Runge–Kutta method to (2.1) reads as follows: Solve
(2.5) in the case ai,j = 0 for j ≥ i and obtain Un and Λni , i = 1, . . . , s− 1. Then Λns
and un+1 are computed by

un+1 = un + h(bT ⊗ I)f̄(Un,Λn),(2.7)

0 = g(un+1).
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With the matrix

Ã =




a21

a31 a32

...
. . .

as1 . . . . . . ass−1

b1 . . . . . . bs−1 bs


 ∈ R

s,s(2.8)

and Ũn := (Un
2 , . . . , Un

s , un+1), the half-explicit Runge–Kutta scheme can be written
in the compact form

Ũn − I⊗ un = h(Ã⊗ I)f̄((un, Ũ
n
1 , . . . , Ũn

s−1),Λ
n),(2.9)

0 = ḡ(Ũn)

(see, e.g., formula (4.59) in Hairer, Lubich, and Roche [10]).
To compute the λ-component one has several possibilities. The most accurate is

the computation of λ from the index 2 condition, that is, λn+1 = ψ0(un+1). Here we
follow the more efficient approach of Hairer, Lubich, and Roche [10]. They propose
to require cs = 1 and take

λn+1 = Λ
n
s .(2.10)

Moreover, we assume
(B3′) Λns − λ̄(h, un) = O(hr), r ≤ p (see, e.g., Brasey and Hairer [5] for sufficient

conditions on A, b, c).
The qualitative properties of the discrete schemes are characterized in the following.

Theorem 2.1. Consider the DAE (2.1) and assume (A1)–(A3). Let (un, λn)
denote the sequences generated with a projected (half-explicit) Runge–Kutta method
satisfying (B1)–(B3) (respectively, (B1′)–(B3′)), when applied to (2.1) with consistent
initial values (u0, λ0).

Then there exists a positive constant h0 such that for h < h0 the iterates (un, λn)
exist for n ∈ N. Moreover, for h ∈ ]0, h0] there is a Cν

b -function ψ0,h : S → R
l,

S = {u ∈ R
N | g(u) = 0} satisfying the following assertions:

(i) The set M0,h = {(u, λ) ∈ Dτ × R
l | g(u) = 0, λ = ψ0,h(u)} is invariant for

the projected (half-explicit) Runge–Kutta map (2.4)–(2.6) (respectively, (2.9)–
(2.10)).

(ii) The manifold M0,h is uniformly attractive with the constant χh = |R(∞)| +
O(hq+1) (χh = 0), that is, ‖λn+1 − ψ0,h(un+1)‖ ≤ χh‖λn − ψ0,h(un)‖ for
every discrete evolution (un, λn) starting sufficiently close to M0.

(iii) For every initial value (u0, λ0) with ‖λ0 − ψ0(u0)‖ sufficiently small, there is
(ũ0, λ̃0) ∈ M0,h and c, ĉ > 0 such that the corresponding evolutions (un, λn)

and (ũn, λ̃n) satisfy

‖ui − ũi‖ ≤ cχih‖λ0 − ψ0(u0)‖, i ∈ N,

‖λi − λ̃i‖ ≤ ĉχih‖λ0 − ψ0(u0)‖, i ∈ N.

(iv) ‖ψ0(u)− ψ0,h(u)‖ ≤ Chq [Chr] for u ∈ S.
Remark . The invariant manifoldM0,h in the projected Runge–Kutta case is highly

attractive if R(∞) = 0. The manifold is infinitely attractive, that is, (u1, λ1) ∈ M0,h

for every (u0, λ0) with ‖λ0 − ψ0(u0)‖ sufficiently small, if χh = 0. This is valid for
half-explicit and stiffly accurate Runge–Kutta methods.
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Next we characterize the behavior of the projected and half-explicit Runge–Kutta
methods for index 2 DAEs (2.1) in a neighborhood of hyperbolic periodic orbits. Here,
we call (ū(t, u0), λ̄(t, u0)), λ̄(t, u0) = ψ0(ū(t, u0)), ū(t, u0) = ū(t+ T, u0) a hyperbolic
T -periodic orbit of (2.1) if ū(t, u0) is a hyperbolic T -periodic solution of (2.2). This
means that the linearized T -flow mapping Tu0(S) = N(Dg(u0)) into itself has the
simple eigenvalue 1, and all other eigenvalues are off the unit circle. Here N(Dg(u0))
stands for the null space of Dg(u0), and Tu0(S) denotes the tangential space of the
manifold S at u0.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and let (ū(t, u0), λ̄(t, u0)),
λ̄(t, u0) = ψ0(ū(t, u0)) be a hyperbolic T -periodic orbit of the DAE (2.1). Additionally,
let (un, λn) be generated by applying the projected Runge–Kutta scheme (2.4)–(2.6)
(half-explicit Runge–Kutta method (2.9)–(2.10)) to the DAE (2.1).

Then for sufficiently small step size h the u-component of the discrete dynamics
possesses an invariant curve γh = uh(R), uh(t) = uh(t+ T ), satisfying

max{‖ū(t, u0)− uh(t)‖ | t ∈ R} ≤ Chq [Chr].

As a direct consequence of Theorems 2.1 and 2.2, we obtain the following.
Corollary 2.3. Under the hypotheses of Theorems 2.1 and 2.2, there is an

invariant curve Sh(R) = (uh(R), ψ0,h(u
h(R))), Sh(t) = Sh(t + T ) for the projected

(half-explicit) Runge–Kutta map such that

max{‖(ū(t, u0), λ̄(t, u0))− Sh(t)‖ | t ∈ R} ≤ Chq [Chr]

is valid.
Theorem 2.2 and Corollary 2.3 show that half-explicit or projected Runge–Kutta

methods correctly reproduce the phase portrait in a neighborhood of a periodic orbit.
Moreover, this result can be regarded as the analogue of Theorem 2.1 of Beyn [2] for
ODEs on manifolds of the form g(u) = 0. Using the results of Garay [7] it is shown in
Schropp [17] that the continuous time-h flow of (2.1) and its corresponding projected
or half-explicit Runge–Kutta time-h map are locally topologically conjugate near a
hyperbolic equilibrium.

The rest of the paper is organized as follows. In section 3 we present existence
results for the projected and half-explicit Runge–Kutta schemes, in section 4 Theorem
2.1 is proved, and in section 5 we give a proof of Theorem 2.2.

3. Embedding techniques for index 2 DAEs. We have seen in the previous
section that the corresponding index 0 version (2.2) to an index 2 DAE (2.1) is a
dynamical system on a manifold. For technical reasons it is useful to embed (2.1)
into another DAE of the same index such that their corresponding index 0 ODE
provides an embedding of (2.2) in an open neighborhood of S in R

N . This allows us
to attack DAE problems with well-developed ODE methods on R

N . Results for the
original DAE (2.1) are then obtained by pulling back the results for the state variable
u derived on an open subset of R

N to the manifold S.
Assuming (A1)–(A3), an embedding of (2.2) intoDτ0 , τ0 ∈ ]0, τ ], sufficiently small

can be established as follows. Consider the DAE

u̇ = f(u, λ), u(0) = u0,

v̇ = −B(u)v, v(0) = v0,(3.1)

0 = g(u)− v, λ(0) = λ0
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and suppose µ2(−B(u)) ≤ −η, η > 0 for u ∈ Dτ with a Cν
b -function B(·) on R

N (e.g.,
choose B ≡ I). Here µ2(C) stands for the logarithmic norm of a matrix C ∈ R

l,l (see,
e.g., Dekker and Verwer [6, p. 27] for a definition). Our first aim here is to show that
(A1)–(A3) imply the following assertions for the DAE (3.1):
(A1′) f ∈ Cν

b (R
N+l,RN ), g ∈ Cν+1

b (RN ,Rl), and B ∈ Cν
b (R

N ,Rl,l) for ν suffi-
ciently large.

(A2′) There is τ0 ∈ ]0, τ ] and a Cν
b -function ψ satisfying Dg(u)f(u, ψ(u, v)) +

B(u)v = 0 for u ∈ Dτ0 and ‖v‖2 < τ0.
(A3′) Dg(u)∂f∂λ (u, ψ(u, v)) is invertible for u ∈ Dτ0 , ‖v‖2 < τ0 and the inverse has

bounded norm.
(A1′) holds trivially for (3.1). To prove (A2′) and (A3′) we need the following version
of the Banach fixed point theorem in a ball which is, for later purposes, formulated
in the more general concept of vector norms.

A functional | · | :W → R
k on a vector space W is called a generalized norm if

|v| ≥ 0, |v| = 0⇐⇒ v = 0,

|v1 + v2| ≤ |v1|+ |v2|,(3.2)

|αv| = |α|R|v|
holds with the natural ordering “≤” on R

k. Here | · |R denotes the absolute value in
R. Every norm ‖ · ‖∗ in R

k defines a norm ‖ · ‖ in W via ‖v‖ = ‖ |v| ‖∗.
Lemma 3.1. Let (W, | · |) be a Banach space with generalized norm | · | and let

Br(v0) := {v ∈ W | |v − v0| ≤ r} for r > 0. Let the map F : Br(v0) �→ W be
continuously differentiable with invertible DF (v0). Moreover, for some nonnegative
matrices P,K ∈ R

k,k, we assume

|DF (v0)
−1z| ≤ P |z|, z ∈W,

|(DF (v0)−DF (v))z| ≤ K|z|, z ∈W, v ∈ Br(v0),

P |F (v0)| < (I − PK)r.

Then F (v) = 0 has a unique solution in Br(v0). In addition, the matrix I − PK is
nonsingular and we have the stability inequality

|v − w| ≤ (I − PK)−1P |F (v)− F (w)| ∀v, w ∈ Br(v0).

A proof of Lemma 3.1 can be found in Beyn and Schropp [4].
We construct ψ by applying Lemma 3.1 to the equation

Fu,v(ζ) := Dg(u)f(u, ψ0(u) + ζ) +B(u)v = 0.(3.3)

For ζ0 = 0 we can compute with ρ := sup{‖B(u)‖2 | u ∈ Dτ} <∞ the inequalities

‖Fu,v(0)‖2 ≤ ρ‖v‖2,
‖DFu,v(0)

−1‖2 ≤ C

as well as DFu,v(0)−DFu,v(ζ) = Dg(u)(∂f∂λ (u, ψ0(u))− ∂f
∂λ (u, ψ0(u) + ζ)). Hence, we

obtain

‖DFu,v(0)−DFu,v(ζ)‖2 ≤ Ĉr0 for ‖ζ‖2 ≤ r0.

Obviously, the inequality

C‖Fu,v(0)‖2 ≤ Cρ‖v‖2 < (1− CĈr0)r0
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holds for ‖v‖2, r0 > 0 sufficiently small. Then Lemma 3.1 guarantees that (3.3)

possesses exactly one solution ζ̂u,v in Br0(0); that is, ψ(u, v) := ψ0(u) + ζ̂u,v satisfies
Dg(u)f(u, ψ(u, v)) + B(u)v = 0 for u ∈ Dτ0 , ‖v‖2 ≤ τ0, and an implicit function
argument ensures the smoothness of ψ. The reader may notice that we have ψ0(u) =
ψ(u, 0) by uniqueness.

Moreover, an application of the Banach lemma with Dg(u)∂f∂λ (u, ψ0(u)) and the

perturbation Dg(u)∂f∂λ (u, ψ(u, v)) shows that Dg(u)∂f∂λ (u, ψ(u, v)), ‖v‖2 < τ0 is in-
vertible, the inverse possesses a bounded norm and (A1′)–(A3′) is verified.

(A1′)–(A3′) imply that (3.1) is of index 2. Consistent initial values must satisfy
g(u0) − v0 = 0 and Dg(u0)f(u0, λ0) + B(u0)v0 = 0. The solution flow of (3.1)
has the form (ũ(t, u0), ṽ(t, u0), λ̃(t, u0)), u0 ∈ Dτ0 , with ṽ(t, u0) = g(ũ(t, u0)) and
λ̃(t, u0) = ψ(ũ(t, u0), ṽ(t, u0)). Moreover,

Me := {(u, v, λ) ∈ Dτ0 × R
2l | g(u)− v = 0, λ = ψ(u, v)}

is the phase space of (3.1). Using the theory of logarithmic norms (see, e.g., Dekker
and Verwer [6, Thm. 1.5.2]), we obtain that

‖ṽ(t, v0)‖2 ≤ ‖v0‖2 exp(−ηt)(3.4)

is valid for the v-component of every solution of (3.1). In particular, with v(0) = v0 =
0 problem (3.1) reduces to (2.1). After eliminating the v-variables by g(u) = v, the
u-component of the underlying index 0 ODE of (3.1) reads

u̇ = f(u, ψ(u, g(u))), u(0) = u0 ∈ Dτ0 ⊂ R
N open.(3.5)

Next we summarize the qualitative properties of the solutions of (3.1).
Lemma 3.2. Consider (3.1) on the phase space Me, and let (A1)–(A3) hold.
Then every solution of (3.1) with initial values u0 ∈ Dτ0 , v0 = g(u0), and λ0 =

ψ(u0, v0) exists for all t ≥ 0. Moreover, M0,e = {(u, v, λ) ∈ Dτ0 × R
2l | g(u) = v = 0,

λ = ψ(u, 0)} is an invariant and globally attractive subset of the phase space Me.
Proof. The proof of Lemma 3.2 is a direct consequence of (3.4) and the fact that

f, g,B are Cν
b -functions.

We are interested in the behavior of s-stage projected and half-explicit Runge–
Kutta type methods of order p with Butcher tableau (2.3) and constant step size h
when applied to (3.1). The projected Runge–Kutta method has the form

ũn+1 = un + h(bT ⊗ I)f̄(Un,Λn),

vn+1 = vn − h(bT ⊗ I)B̄(Un)V n,(3.6)

λn+1 = (1− bTA−1
I)λn + (b

TA−1 ⊗ I)Λn,

where Un = (Un
1 , . . . , Un

s ) ∈ R
Ns, V n = (V n

1 , . . . , V n
s ) ∈ R

ls, Λn = (Λn1 , . . . ,Λ
n
s ) ∈ R

ls

denote the solution of the algebraic system

U − (I⊗ un) = h(A⊗ I)f̄(U,Λ),

V − (I⊗ vn) = −h(A⊗ I)B̄(U)V,(3.7)

0 = ḡ(U)− V,

and B̄ stands for B̄(Un) = diag(B(Un
1 ), . . . , B(U

n
s )). Finally, the projection step

un+1 = ũn+1 +
∂

∂λ
f(un+1, λn+1)γ,

0 = g(un+1)− vn+1(3.8)
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is used to compute un+1.
With Ã from (2.8), Ũn := (Un

2 , . . . , Un
s , un+1), and Ṽ n = (V n

2 , . . . , V n
s , vn+1), the

application of half-explicit Runge–Kutta methods to (3.1) reads as follows:

Ũn − I⊗ un = h(Ã⊗ I)f̄((un, Ũ
n
1 , . . . , Ũn

s−1),Λ
n),

Ṽ n − I⊗ g(un) = −h(Ã⊗ I)B̄((un, Ũ
n
1 , . . . , Ũn

s−1))(g(un), Ṽ
n
1 , . . . , Ṽ n

s−1),(3.9)

0 = ḡ(Ũn)− Ṽ n.

This has to be completed by λn+1 = ψ(un+1, vn+1) or, more efficiently, by λn+1 = Λ
n
s ,

provided cs = 1 holds.
The reader may notice that (3.6)–(3.8) and (3.9) reduce to (2.4)–(2.6) and (2.9),

respectively, when initialized with g(u0) = v0 = 0.
In this section we will guarantee the existence and uniqueness of the discrete

iterates generated by a projected or a half-explicit Runge–Kutta method for all n ∈ N.
If one identifies the two state variables (u, v), then the solvability of the discrete
systems (3.6)–(3.9) for n ∈ N with 0 ≤ nh ≤ tend is guaranteed by the standard
theory; see, e.g., Hairer and Wanner [11, Chaps. VII.4 and VII.6]. But in the process
of proving Theorem 2.1 a refined stability inequality which distinguishes the two
variables u and v is needed. To establish inequalities of that type we work with the
concept of vector norms (see (3.2)).

Lemma 3.3. Let the assumptions of Theorem 2.1 hold and let u0 ∈ Dτ0 , v0 =
g(u0), λ0 = ψ(u0, v0) be a consistent initial value for the DAE (3.1).

Then for 0 < h ≤ h0, h0 > 0 sufficiently small the projected and half-explicit
Runge–Kutta iterates (un, vn, λn) exist for n ∈ N. For the stages (U, V,Λ) of the
projected (respectively, (Ũ , Ṽ ,Λ) of the half-explicit) Runge–Kutta dynamics, we have
with v0(u) := (I ⊗ u, I ⊗ g(u), I ⊗ ψ(u, g(u))), u ∈ Dτ0 , and k(u) := f(u, ψ(u, g(u)))
the inequality

|(U, V,Λ)− v0(u)| ≤ O(h)(‖k(u)‖+ ‖g(u)‖) (1, 1, 1),(3.10)

(|(Ũ , Ṽ ,Λ)− v0(u)| ≤ O(h)(‖k(u)‖+ ‖g(u)‖) (1, 1, 1)).

Moreover, the coefficient γ = γ(h, u, λ) from the projection step (3.8) satisfies

‖γ‖ = O(hq+1) for u ∈ Dτ0 , ‖λ− ψ(u, g(u))‖ sufficiently small.

Remark . The existence result for the half-explicit and projected Runge–Kutta
methods applied to DAE (2.1) follows from Lemma 3.3 by restriction to initial values
satisfying g(u0) = v0 = 0.

Now we give a proof of Lemma 3.3.
Proof. The first step of a projected Runge–Kutta method is a classical Runge–

Kutta step. Following Hairer and Wanner [11, p. 493], we replace (3.7) for h > 0 by
the equivalent system

U − (I⊗ un) = h(A⊗ I)f̄(U,Λ),

V − (I⊗ vn) = −h(A⊗ I)B̄(U)V,

0 =

∫ 1

0

diag(Dg(un + τ(Un
i − un)), i = 1, . . . , s)dτ (A⊗ I)f̄(Un,Λn)(3.11)

+ (A⊗ I)B̄(U)V +
1

h
(ḡ(I⊗ un)− I⊗ vn).
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We use vn = g(un) and prove Lemma 3.3 by applying Lemma 3.1 to the equation

T1(h, u, U, V,Λ) :=




U − (I⊗ u)− h(A⊗ I)f̄(U,Λ)
V − (I⊗ g(u)) + h(A⊗ I)B̄(U)V∫ 1

0
diag(Dg(u+ τ(Ui − u)), i = 1, . . . , s)dτ (A⊗ I)f̄(U,Λ)

+(A⊗ I)B̄(U)V




= 0, u ∈ Dτ0 .(3.12)

Introducing the generalized norm |(U, V,Λ)| = (‖U‖, ‖V ‖, ‖Λ‖) ∈ R
3 and the central

point v0(u) := (I⊗ u, I⊗ g(u), I⊗ ψ(u, g(u))), we calculate

T1(h, u, v0(u)) = (O(h), O(h), 0).(3.13)

For the derivative of T1 with respect to (U, V,Λ), we find with γ̂(u) := (u, ψ(u, g(u)))
the representation

∂

∂(U, V,Λ)
T1(h, u, v0(u)) =


 I +O(h) 0 O(h)

O(h) I +O(h) 0

O(1) O(1) A⊗Dg(u)∂f∂λ (γ̂(u))


 .

Now (A3′) and (B1) imply that (A ⊗ Dg(u)∂f∂λ (γ̂(u))) is nonsingular. Hence, the

matrix ∂
∂(U,V,Λ)T1(h, u, v0(u)) is invertible for 0 < h ≤ h0, h0 > 0, sufficiently small

and the inverse is of the form

∂

∂(U, V,Λ)
T1(h, u, v0(u))

−1 =


 I 0 0

0 I 0

O(1) O(1) (A⊗ (Dg(u)∂f∂λ (γ̂(u))))
−1


+O(h).

In terms of vector norms this leads to | ∂
∂(U,V,Λ)T1(h, u, v0(u))

−1| ≤ Ph with

Ph :=


 1 +O(h) O(h) O(h)

O(h) 1 +O(h) O(h)
O(1) O(1) O(1)


 ∈ R

3,3.

Then, following along the lines of the proof of Lemma 4.1 in Beyn and Schropp
[4], we obtain the unique solvability of (3.12) in Br(v0) := {(U, V,Λ) ∈ R

(N+l+l)s |
|(U, V,Λ) − (I ⊗ u, I ⊗ g(u), I ⊗ ψ(u, g(u)))| ≤ r}, r = (r1, r2, r3) > 0 for 0 < h ≤ h0,
h0 > 0, sufficiently small. We remark that an application of the implicit function
theorem ensures the smooth dependency of the solution (U, V,Λ) from (h, u). In
addition, the claimed stability inequality (3.10) holds.

The second step is the projection of the classical Runge–Kutta iterates onto the
constrained manifold g(u) − v = 0. We define the function λp = λp(h, u, λ) :=
R(∞)λ+ (bTA−1 ⊗ I)Λ(h, u) and consider the equation

T2(h, u, λ, up, vp, γ) =


up − u− h(bT ⊗ I)f̄(U(h, u),Λ(h, u))− ∂

∂λf(up, λp)γ
vp − g(u) + h(bT ⊗ I)B̄(U(h, u))V (h, u)
g(up)− vp




= 0 for 0 < h < h0, u ∈ Dτ0 .(3.14)

With the central point v0(u) = (v0(u)1, v0(u)2, v0(u)3),

v0(u)1 = u+ h(bT ⊗ I)f̄(U(h, u),Λ(h, u)),

v0(u)2 = g(u)− h(bT ⊗ I)B̄(U(h, u))V (h, u),

v0(u)3 = 0,
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we can compute

T2(h, u, λ, v0(u)) = (0, 0, g(v0(u)1)− v0(u)2) =: (0, 0, r(h, u)).

Obviously, r(h, u) = O(hq+1) holds from the local error analysis of the underlying
classical Runge–Kutta map (see, e.g., Hairer and Wanner [11, Chap. VII, Lem. 4.4]).

Next, using λp(h, u, λ) = R(∞)λ+(bTA−1⊗I)Λ(h, u) = ψ(u, g(u))+O(h)+O(ε)
with ε = ‖λ− ψ(u, g(u))‖ and v0(u)1 = u+O(h), we obtain

∂

∂(up, vp, γ)
T2(h, u, λ, v0(u)) =


 I 0 − ∂

∂λf(γ̂(u))
0 I 0

Dg(u) −I 0


+O(h) +O(ε).(3.15)

Thus, ∂
∂(up,vp,γ)

T2(h, u, λ, v0(u)) is invertible for h and ε sufficiently small.

Moreover, T2(h, u, λ, ., ., .) = 0 possesses a unique solution in Br(v0) for r > 0
appropriate and h, ε sufficiently small. Finally, the stability inequality of Lemma 3.1
in the γ-component reads

‖γ‖ = O(hq+1) for u ∈ Dτ0 , ‖λ− ψ(u, g(u))‖ < ε.

It remains to show that the sequence (un, vn, λn) generated by a projected Runge–
Kutta method with consistent initial value u0, v0 = g(u0), λ0 = ψ(u0, g(u0)) satisfies

‖λn − ψ(un, g(un))‖ < ε, n ∈ N, 0 < h ≤ h0, h0 > 0 sufficiently small.(3.16)

To that purpose we define ηn := λn − ψ(un, g(un)). The iteration scheme of this
sequence reads

ηn+1 = R(∞)ηn + ψ(un, g(un))− ψ(un+1, g(un+1))

+ (bTA−1 ⊗ I)(Λ(h, un)− I⊗ ψ(un, g(un)))

=: R(∞)ηn + βn, η0 = 0,(3.17)

with βn := β(h, un, ηn) = O(h). Here, due to the construction of the method, we
have un+1 as a function of (h, un, ηn). Using |R(∞)| < 1, the theory of difference
equations yields

‖ηn‖ ≤ ‖η0‖+ 1

1−R(∞) sup{‖βn‖ | n ∈ N} = O(h) ∀n ∈ N,(3.18)

and (3.16) is verified.
Finally, we prove the existence of the iterates (un, vn, λn) for half-explicit Runge–

Kutta methods. We define Ũ = (U2, . . . , Us, up), Ṽ = (V2, . . . , Vs, vp), Λ = (Λ1, . . . ,Λs)
as well as U1 = u, V1 = g(u). Then, we rewrite (3.9) in the form

T (h, u, Ũ , Ṽ ,Λ) =


Ũ − I⊗ u− h(Ã⊗ I)f̄((u, Ũ1, . . . , Ũs−1),Λ)

Ṽ − I⊗ g(u) +h(Ã⊗ I)B̄((u, Ũ1, . . . , Ũs−1))(g(u), Ṽ1, . . . , Ṽs−1)

ḡ(Ũ)− Ṽ




= 0(3.19)

and apply Lemma 3.1. Except for the shift of (U, V ) to (Ũ , Ṽ ), this is equivalent to
a classical Runge–Kutta step with invertible matrix Ã. Thus, we can adapt the first
step of the projected Runge–Kutta proof with the central point v0(u) = (I ⊗ u, I ⊗
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g(u), I ⊗ ψ(u, g(u))) to work for half-explicit methods too. Moreover, for the stages
(Ũ , Ṽ ,Λ), the stability inequality

|(Ũ , Ṽ ,Λ)− v0(u)| ≤ Ch (‖k(u)‖+ ‖g(u)‖) (1, 1, 1)(3.20)

is valid. This finishes the proof of Lemma 3.3.
Next we complete the existence results of the projected and half-explicit Runge–

Kutta methods with some qualitative properties. This is done in the following.
Lemma 3.4. Let the conditions of Lemma 3.2 hold for (3.1). By (un, vn, λn)

we denote the sequences generated with a projected Runge–Kutta method satisfying
(B1)–(B3) or a half-explicit Runge–Kutta method fulfilling (B1′)–(B3′) when applied
to (3.1) with initial values u0 ∈ Dτ0 , v0 = g(u0), and λ0 = ψ(u0, v0).

Then h0, ε > 0 exist such that for 0 < h < h0, n ∈ N, the projected or half-
explicit Runge–Kutta scheme correctly reproduces the phase portrait of (3.1) in the
state variables (u, v); that is, M0,e,ε := {(u, v, λ) ∈ Dτ0 × R

2l | g(u) = v = 0, ‖λ −
ψ(u, v)‖ < ε} is a positive invariant and globally attractive subset for the discrete
dynamics.

Proof. We consider the v-component of the discrete scheme (3.6)–(3.8) in more
detail. We extract V from the second line in (3.7) explicitly, insert this representation
into (3.6), and obtain

vn+1 = vn − h(bT ⊗ I)B̄(U(h, un))[I + h(A⊗ I)B̄(U(h, un))]
−1(I⊗ vn).(3.21)

Moreover, we know

B̄(U(h, un)) = B̄(I⊗ un) +O(h) = (I ⊗B(un)) +O(h)(3.22)

from Lemma 3.3. Combining (3.21) and (3.22) yields

vn+1 = vn − h(bT ⊗ I)(I ⊗B(un))(I⊗ vn) +O(h2)vn

= (I − hB(un) +O(h2))vn.(3.23)

Next, with µ2(−B(u)) ≤ −η, u ∈ Dτ0 , we can compute

‖I − hB(u) +O(h2)‖2 = max{λ ∈ σ(I − (h/2) (B(u) +B(u)T ) +O(h2))}
≤ 1− hη/4, 0 < h ≤ h0, u ∈ Dτ0 uniformly.(3.24)

Then, with un ∈ Dτ0 for n ∈ N and formula (3.24), the inequality

‖g(un)‖2 ≤
n−1∏
j=0

‖I − hB(uj) +O(h2)‖2 · ‖g(u0)‖2 → 0 as n→∞

follows. This shows our result for the projected Runge–Kutta scheme.
The proof also works for half-explicit Runge–Kutta methods, since (3.21) holds

for these methods too.

4. Embedded index 2 systems under discretization. In this section we give
a proof of Theorem 2.1. We show the assertions (i)–(iv) of Theorem 2.1 simultaneously
by applying Theorem 5 of Nipp and Stoffer [14] on the discrete Runge–Kutta dynamics
of the DAE (3.1). First, let us analyze the projected Runge–Kutta methods. Using
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the structure of the operator T2 (see (3.14)) and the scheme (3.6), the projected
Runge–Kutta iteration can be written in the explicit form

un+1 =

[
I − ∂

∂λ
f(·, λp(h, un, λn))γ(h, un, λn)

]−1

· (un + h(bT ⊗ I)f̄(U(h, un),Λ(h, un))),(4.1)

vn+1 = g(un)− h(bT ⊗ I)B̄(U(h, un))V (h, un),

λn+1 = R(∞)λn + (bTA−1 ⊗ I)Λ(h, un).

Moreover, the stability inequality of Lemma 3.3 implies γ(h, u, λ) = O(hq+1). Then,
using (I−O(hq+1))−1 = I+O(hq+1) (see, e.g., Söderlind [18, Cor. 2.3]) and neglecting
the v-component, iteration (4.1) can be written in the form

un+1 = un + h[(bT ⊗ I)f̄(U(h, un),Λ(h, un)) + hq f̂(h, un, λn)],(4.2)

λn+1 = R(∞)λn + (bTA−1 ⊗ I)Λ(h, un)

with a smooth and bounded function f̂ .
Introducing ηn := λn − ψ(un, g(un)) and rewriting (4.2) yields

un+1 = un + h[(bT ⊗ I)f̄(U(h, un),Λ(h, un)) + hq f̂(h, un, ηn + ψ(un, g(un)))]

=: un +G1(h, un, ηn),(4.3)

ηn+1 = R(∞)ηn + (bTA−1 ⊗ I)(Λ(h, un)− I⊗ ψ(un, g(un)))

+ ψ(un, g(un))− ψ(un +G1(h, un, ηn), g(un +G1(h, un, ηn)))

=: G2(h, un, ηn).

The functions G1, G2 are Lipschitzian with the constants

LG1,u = O(h), LG1,η = O(hq+1),

LG2,u = O(1), LG2,η = |R(∞)|+O(hq+1) < 1.(4.4)

Obviously, for a fixed number r ∈ N, the conditions

2
√

LG1,ηLG2,u < 1− LG1,u − LG2,η,

LG2,η + LG1,ηα < (1− LG1,u − LG1,ηα)
r,

with

α :=
2LG2,u

1− LG1,u − LG2,η +
√
(1− LG1,u − LG2,η)

2 − 4LG1,ηLG2,u

,

are satisfied for h > 0 sufficiently small. Now, Theorem 5 of Nipp and Stoffer [14]
guarantees the existence of a Cν

b -function ηh which defines the discrete invariant
manifold by η = ηh(u). In the (u, λ)-coordinates we obtain the following result with
ψh(u) := ψ(u, g(u)) + ηh(u), u ∈ Dτ0 , for 0 < h ≤ h0, h0 > 0, sufficiently small:

(i) The set Mh = {(u, λ) ∈ Dτ0 × R
l | λ = ψh(u)} is invariant for the projected

Runge–Kutta map (4.2).
(ii) The manifold Mh is uniformly attractive with attractivity constant χh =
|R(∞)|+O(hq+1).
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(iii) For every initial value (u0, λ0) with ‖λ0 − ψ(u0, g(u0))‖ sufficiently small,
there is (ũ0, λ̃0) ∈ Mh and c, ĉ > 0 such that the corresponding evolutions
(un, λn) and (ũn, λ̃n) satisfy

‖ui − ũi‖ ≤ cχih‖λ0 − ψ(u0, g(u0))‖, i ∈ N,

‖λi − λ̃i‖ ≤ ĉχih‖λ0 − ψ(u0, g(u0))‖, i ∈ N.

(iv) ‖ψ(u, g(u)) − ψh(u)‖ ≤ C sup{‖β(h, u, λ − ψ(u, g(u)))‖ | (h, u, λ) ∈ Γh0,ε,τ0}
with Γh0,ε,τ0 := {(h, u, λ) ∈ ]0, h0]×Dτ0 × R

l | ‖λ− ψ(u, g(u))‖ < ε}.
Here the reader may notice that to apply Theorem 5 of Nipp and Stoffer [14] formally,
we have to enlarge the domain of G1, G2 for u ∈ R

N as Cν
b -maps which satisfy the

Lipschitz conditions (4.4).

Reduced to the invariant manifold Mh, the u-component of a projected Runge–
Kutta method reads

un+1 = un + h[(bT ⊗ I)f̄(U(h, un),Λ(h, un)) + hq f̂(h, un, ψh(un))].(4.5)

Obviously, the iteration scheme (4.5) can be regarded as a qth order one-step method
applied to the initial value problem

u̇ = f(u, ψ(u, g(u))), u(0) = u0.(4.6)

Next we estimate the distance between Mh and

M = {(u, λ) ∈ Dτ0 × R
l | λ = ψ(u, g(u))}.

Since βn = O(h) holds with β from (3.17) we directly obtain Mh −M = O(h).

The next step in the proof of Theorem 2.1 for the projected Runge–Kutta methods
is to show βn := β(h, un, ηn) = O(hq). Due to formula (3.17), the representation

βn = (b
TA−1 ⊗ I)(Λ(h, un)− ψ̄(U(h, un), ḡ(U(h, un))))

+ (bTA−1 ⊗ I)(ψ̄(U(h, un), ḡ(U(h, un)))− I⊗ ψ(un, g(un)))(4.7)

+ ψ(un, g(un))− ψ(un+1, g(un+1))

is valid. Now, we analyze the first term on the right-hand side of (4.7). With the
solution flow (ũ(t, u0), ṽ(t, u0), λ̃(t, u0)), u0 ∈ Dτ0 , ṽ(t, u0) = g(ũ(t, u0)), λ̃(t, u0) =
ψ(ũ(t, u0), ṽ(t, u0)) of the underlying DAE (3.1), this gives

(bTA−1 ⊗ I)(Λ(h, un)− ψ̄(U(h, un), ḡ(U(h, un))))

= O(1)[Λi(h, un) + ψ(ũ(cih, un), g(ũ(cih, un)))− λ̃(cih, un)(4.8)

− ψ(Ui(h, un), g(Ui(h, un))), i = 1, . . . , s]

= O(hq),

since

Ui(h, un)− ũ(cih, un) = O(hq+1), i = 1, . . . , s,

Λi(h, un)− λ̃(cih, un) = O(hq), i = 1, . . . , s,(4.9)

hold (see, e.g., Hairer and Wanner [11, Chap. VII, Lem. 4.4]).
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To examine the second term on the right-hand side of (4.7) appropriately we have
to do some preparation. Let

ûn+1 = ûn + h(bT ⊗ I)f̄(Û(h, ûn), Λ̂(h, ûn)),

λ̂n+1 = R(∞)λ̂n + (bTA−1 ⊗ I)Λ̂(h, ûn),(4.10)

with (Û(h, ûn), Λ̂(h, ûn)) being a solution of

S(h, ûn, Û , Λ̂) =

(
Û − I⊗ ûn − h(A⊗ I)f̄(Û , Λ̂)

Dḡ(Û)f̄(Û , Λ̂) + B̄(Û)ḡ(Û)

)
= 0,(4.11)

stand for the Runge–Kutta method with tableau (2.3) applied to the DAE

u̇ = f(u, λ),

0 = Dg(u)f(u, λ) +B(u)g(u).(4.12)

Equation (4.12) is the index 1 problem with eliminated v-variables corresponding to
(3.1). From (4.11) and the fact that the continuous solution (ũ(t, u), λ̃(t, u)), u ∈ Dτ0 ,
satisfies (4.12), we can conclude with (4.9) that

S(h, ûn, U(h, ûn),Λ(h, ûn)) = (0, Dḡ(U(h, ûn))f̄(U(h, ûn),Λ(h, ûn))

− B̄(U(h, ûn))ḡ(U(h, ûn)))

= (0, O(1)[(Ui(h, ûn)− ũ(cih, ûn), i = 1, . . . , s),

(Λi(h, ûn)− λ̃(cih, ûn), i = 1, . . . , s)]) = (0, O(hq)).

Here, (U,Λ) = (U(h, ûn),Λ(h, ûn)) denotes the solution of (3.12). Moreover, we have

∂

∂(Û , Λ̂)
S(h, ûn, Û(h, ûn), Λ̂(h, ûn)) =

(
I 0

O(1) I ⊗Dg(ûn)
∂f
∂λ (γ̂(ûn))

)
+O(h).

Thus, for h > 0 sufficiently small, ∂
∂(Û,Λ̂)

S(h, ûn, Û(h, ûn), Λ̂(h, ûn)) is invertible and

the stability inequality of Lemma 3.1 shows

(U − Û ,Λ− Λ̂)(h, ûn) = O(hq).(4.13)

We insert (4.13) into formula (4.10) and obtain with un = ûn and (4.2) the relation

ûn+1 = un+1 +O(hq+1).(4.14)

With the formulae (4.13) and (4.14) we manipulate the second term on the right-hand
side of (4.7) as follows:

(4.15)

(bTA−1 ⊗ I)(ψ̄(U(h, un), ḡ(U(h, un)))− I⊗ ψ(un, g(un)))

+ ψ(un, g(un))− ψ(un+1, g(un+1))

= (bTA−1 ⊗ I)(ψ̄(Û(h, ûn), ḡ(Û(h, ûn)))− I⊗ ψ(ûn, g(ûn)))

+ ψ(ûn, g(ûn))− ψ(ûn+1, g(ûn+1)) +O(hq).

Next, we embed the index 1 problem (4.12) into the singular perturbed problem

u̇ = f(u, λ),

ελ̇ = Dg(u)f(u, λ) +B(u)g(u).(4.16)
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We define H(u, λ) := Dg(u)f(u, λ) + B(u)g(u) and consider the discrete scheme
corresponding to (4.16). This reads

ûεn+1 = ûεn + h(bT ⊗ I)f̄(Û ε(h, ûn), Λ̂
ε(h, ûn)),

λ̂εn+1 = λ̂εn +
h

ε
(bT ⊗ I)H̄(Û ε(h, ûn), Λ̂

ε(h, ûn)),

with (Û ε(h, ûεn), Λ̂
ε(h, ûεn)) being the solution of

Û ε − I⊗ ûεn = h(A⊗ I)f̄(Û ε, Λ̂ε),

ε(Λ̂ε − I⊗ λ̂εn) = h(A⊗ I)H̄(Û ε, Λ̂ε.

Following Nipp and Stoffer [15, formulae (6) and (7)], we define the functions

E(ûεn, Û
ε(h, ûεn)) := ψ̄(Û ε(h, ûεn), ḡ(Û

ε(h, ûεn)))− I⊗ ψ(ûεn, g(û
ε
n))

− h

ε
(A⊗ I)H̄(Û ε(h, ûεn), ψ̄(Û

ε(h, ûεn), ḡ(Û
ε(h, ûεn)))),

e(ûεn, û
ε
n+1, Û

ε(h, ûεn)) := ψ(ûεn, g(û
ε
n))− ψ(ûεn+1, g(û

ε
n+1))

− h

ε
(bT ⊗ I)H̄(Û ε(h, ûεn), ψ̄(Û

ε(h, ûεn), ḡ(Û
ε(h, ûεn)))).

Then with E(ûεn, Û
ε(h, ûεn)) = O(hq+1) + O(ε), e(ûεn, û

ε
n+1, Û

ε(h, ûεn)) = O(hq+1) +
O(ε) (see formula (18) in Nipp and Stoffer [15]), the relation

(bTA−1 ⊗ I)E(ûεn, Û
ε(h, ûεn))− e(ûεn, û

ε
n+1, Û

ε(h, ûεn))

= (bTA−1 ⊗ I) · (ψ̄(Û ε(h, ûεn), ḡ(Û
ε(h, ûεn)))− I⊗ ψ(ûεn, g(û

ε
n)))(4.17)

+ ψ(ûεn, g(û
ε
n))− ψ(ûεn+1, g(û

ε
n+1)) = O(hq+1) +O(ε)

follows. Letting ε → 0 in (4.17), noticing Û0 = Û , Λ̂0 = Λ̂, û0
n = ûn, λ̂

0
n = λ̂, and

inserting (4.17) with ε = 0 into (4.15) and finally in (4.7) gives βn = O(hq). This
shows ‖ψ(u, g(u))− ψh(u)‖ ≤ Chq, u ∈ Dτ0 .

Now, we complete the proof of Theorem 2.1. Since the projected Runge–Kutta
methods applied to the original DAE (2.1) can be regarded as the same method applied
to the embedded DAE (3.1) with v(0) = v0 = 0, we can draw back the results derived
for (3.1) to (2.1). We restrict (4.5) to the invariant set S and define ψ0,h := ψh|S by
ψ0,h(u) = ψh(u), u ∈ S, as well asM0,h = {(u, λ) ∈ Dτ0×R

l | g(u) = 0, λ = ψ0,h(u)}.
In the case of half-explicit Runge–Kutta methods, we obtain the iteration scheme

un+1 = un + h(bT ⊗ I)f̄((un, Ũ1(h, un), . . . , Ũs−1(h, un)),Λ(h, un)),

λn+1 = Λs(h, un)(4.18)

from (3.19) and (2.10). Again, introducing ηn = λn − ψ(un, g(un)) yields

un+1 = un + h(bT ⊗ I)f̄((un, Ũ1(h, un), . . . , Ũs−1(h, un)),Λ(h, un))

= un + G̃1(h, un, ηn),

ηn+1 = Λs(h, un)− ψ(un + G̃1(h, un, ηn), g(un + G̃1(h, un, ηn))) = G̃2(h, un, ηn).

Then we can adapt the proof of the projected Runge–Kutta method to the half-explicit
Runge–Kutta scheme. With (B3′) and cs = 1 we can estimate

βn = Λs(h, un)− ψ(un+1, g(un+1))

= Λs(h, un)− λ̃(h, un) + ψ(ũ(h, un), g(ũ(h, un)))− ψ(un+1, g(un+1)) = O(hr).

Finally, the attraction constant χh = 0 follows from the fact that LG̃1,η
= LG̃2,η

= 0.
This finishes the proof of Theorem 2.1.
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5. Discretization near periodic orbits. In this section we prove Theorem 2.2.
Let (ū(t, u0), ψ0(ū(t, u0))) be a hyperbolic T -periodic orbit of the DAE (2.1). By
definition this means that ū(t, u0) is a hyperbolic T -periodic orbit of the corresponding
index 0 equation (2.2) with phase space S = {u ∈ Dτ0 | g(u) = 0}. For fixed t we
have the linearized flow

∂

∂u
ū(t, u0) : N(Dg(u0))→ N(Dg(ū(t, u0)))

of (2.1), and ∂
∂u ū(t, u0)v, v ∈ N(Dg(u0)), can be computed via solving

ż =

[
∂f

∂u
(Γ(t, u0)) +

∂f

∂λ
(Γ(t, u0))Dψ0(ū(t, u0))

]
z,

z(0) = v ∈ N(Dg(u0)).

Here Γ(t, u0) stands for (ū(t, u0), ψ0(ū(t, u0))). The reader may recall that the image
space of ∂

∂u ū(t, u0) is N(Dg(ū(t, u0))) since g(ū(t, u0)) = 0, t ∈ R.

For t = T we obtain ∂
∂u ū(T, u0) : N(Dg(u0)) → N(Dg(u0)). The hyperbolicity

says that the linearized T -flow has the simple eigenvalue 1 and all other eigenvalues
have absolute value different from 1.

Now, let V ∈ R
N,N−l denote a basis of N(Dg(u0)). Then, with the monodromy

matrix X(T ) = (X1(T ), . . . , XN−l(T )) ∈ R
N−l,N−l in the basis V = (v1, . . . , vN−l),

we obtain

∂

∂u
ū(T, u0)vi = V Xi(T ), i = 1, . . . , N − l.(5.1)

Here, Xi(T ), vi, i = 1, . . . , N − l, denote the ith column of X(T ), V , respectively.
Our first goal in this section is to show that ū(t, u0) is a hyperbolic periodic orbit of
(3.5). This is the content of the following lemma.

Lemma 5.1. Let (A1)–(A3) hold and let (ū(t, u0), ψ0(ū(t, u0))), ū(t, u0) = ū(t+
T, u0) denote a hyperbolic T -periodic orbit of the DAE (2.1). Then ū(t, u0) is a hy-
perbolic T -periodic orbit of the ODE (3.5).

Proof. Let ũ(t, u) denote the solution flow of (3.5) and let ū(t, u) stand for the
solution flow of (2.2). We know ũ(t, u) = ū(t, u) for u ∈ S. Obviously, ū(t, u0) is a
T -periodic orbit for (3.5). It remains to show the hyperbolicity.

Linearizing (3.5) at the T -periodic orbit ū(t, u0) we obtain that
∂
∂u ũ(t, u0) solves

the variational equation

Ẏ (t) = Dk(ū(t, u0))Y (t), Y (0) = I.

We split the whole space according to R
N = N(Dg(u0)) ⊕ R(∂f∂λ (u0, ψ0(u0))) =:

R(V )⊕R(W ). Here the reader may recall that the split of R
N is possible due to the

index 2 condition (A3). We analyze the behavior of Y (T ) for initial values in V and
W separately. We claim

∂

∂u
ũ(T, u0)V α =

∂

∂u
ū(T, u0)V α, α ∈ R

N−l,(5.2)

for initial values in R(V ). In what follows, we first assume (5.2) and finish the proof.
Combining the formulae (5.1), (5.2) yields Y (T )V = V X(T ) with the monodromy
matrices X(T ), Y (T ) of the periodic orbits ū(t, u0) and ũ(t, u0).
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Now, let Z(t) := Dg(ū(t, u0))Y (t)
∂f
∂λ (Γ(0, u0))S(u0)

−1, S(u) := Dg(u)∂f∂λ (u, ψ0(u)).
A straightforward computation shows that Z is the fundamental matrix of

ẇ = −B(ū(t, u0))w.(5.3)

To analyze the behavior of Y (T ) for initial values in R(W ) we make the ansatz

Y (T )W = V Λ12(T ) +WΛ22(T )

with matrices Λ12(T ) ∈ R
N−l,l and Λ22(T ) ∈ R

l,l. Using Dg(u0)V ≡ 0 we can
calculate

Y (T )(V,W ) = (V,W ) ·
(

X(T ) Λ12(T )
0 S(u0)

−1Z(T )S(u0)

)
.(5.4)

Finally, with µ2(−B(u)) ≤ −η, η > 0, we obtain

‖w(t)‖2 = ‖Z(t)w(0)‖2 ≤ exp(−ηt)‖w(0)‖2
for the solution of (5.3) (see Dekker and Verwer [6, Thm. 1.5.2]). Hence, ‖Z(t)‖2 ≤
exp(−ηt) and ρ(S(u0)

−1Z(T )S(u0)) = ρ(Z(T )) ≤ exp(−ηT ) follows. Together with
formula (5.4) this shows the eigenvalue condition for the monodromy matrix Y (T ) of
the periodic orbit ū(t, u0) of (3.5).

It remains to show formula (5.2). To this purpose we need some additional re-
lations, which we now provide. First, a straightforward calculation with γ̂(u) =
(u, ψ(u, g(u))) shows

Dk(u) =
∂f

∂u
(γ̂(u)) +

∂f

∂λ
(γ̂(u))

(
∂ψ

∂u
(u, g(u)) +

∂ψ

∂v
(u, g(u))Dg(u)

)
.(5.5)

Moreover, implicit differentiation of relation Dg(u)f(u, ψ(u, v)) + B(u)v = 0 with
respect to u and v yields

∂ψ

∂u
(u, v) = −

(
Dg(u)

∂f

∂λ
(u, ψ(u, v))

)−1 [
Dg(u)

∂f

∂u
(u, ψ(u, v)) +DB(u)v

+D2g(u)f(u, ψ(u, v))

]
,(5.6)

∂ψ

∂v
(u, v) = −

(
Dg(u)

∂f

∂λ
(u, ψ(u, v))

)−1

B(u).

Thus, with v = g(u) and the projector Q(u) := ∂f
∂λ (γ̂(u))(Dg(u)∂f∂λ (γ̂(u)))

−1Dg(u)

onto R(∂f∂λ (γ̂(u))) we insert (5.6) into (5.5) and obtain

Dk(u) = (I −Q(u))
∂f

∂u
(γ̂(u))− ∂f

∂λ
(γ̂(u))

(
Dg(u)

∂f

∂λ
(γ̂(u))

)−1

· [B(u)Dg(u) +DB(u)g(u) +D2g(u)k(u)].

Using (I −Q(u))∂f∂λ (γ̂(u)) = 0, we can compute

(I −Q(u))Dk(u) = (I −Q(u))
∂f

∂u
(γ̂(u)).(5.7)
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To link the vectorfields k(u) = f(u, ψ(u, g(u))) and f(u, ψ0(u)), we differentiate the
relation Dg(u)f(u, ψ0(u)) = 0 (compare with (A2)) and obtain

Dψ0(u) = −
(
Dg(u)

∂f

∂λ
(γ̂(u))

)−1 [
Dg(u)

∂f

∂u
(γ̂(u)) +D2g(u)f(u, ψ0(u))

]
.(5.8)

Finally, we need

Dg(ũ(t, u0))
∂

∂u
ũ(t, u0)V α = 0.(5.9)

Relation (5.9) follows from the fact that w̃(t) := Dg(ũ(t, u0))
∂
∂u ũ(t, u0)V α solves (5.3)

with initial condition w̃(0) = 0.
Then, with (5.7)–(5.9) and S(u) = Dg(u)∂f∂λ (u, ψ0(u)), we can compute

∂2

∂t∂u
ũ(t, u0)V α = Dk(ũ(t, u0))

∂

∂u
ũ(t, u0)V α

=

[
(I −Q(ũ(t, u0)))

∂f

∂u
(Γ(t, u0))

+Q(ũ(t, u0))Dk(ũ(t, u0))

]
∂

∂u
ũ(t, u0)V α

=

[
∂f

∂u
(Γ(t, u0))− ∂f

∂λ
(Γ(t, u0))S(ũ(t, u0))

−1

[
Dg(ũ(t, u0))(5.10)

· ∂f
∂u
(Γ(t, u0)) +D2g(ũ(t, u0))k(ũ(t, u0))

]]
∂

∂u
ũ(t, u0)V α

=

[
∂f

∂u
(Γ(t, u0)) +

∂f

∂λ
(Γ(t, u0))Dψ0(ū(t, u0))

]
∂

∂u
ũ(t, u0)V α,

and (5.2) is shown. This finishes the proof.
In the remainder of this section we give a proof of Theorem 2.2. By virtue of

Lemma 5.1, ū(t, u0) is a hyperbolic T -periodic orbit of (4.6) and, in section 4, we have
seen that (4.5) is a smooth qth order one-step method applied to (4.6). Thus, Beyn
[2, Thm. 1] is applicable and ensures for sufficiently small step size h the existence of
an invariant curve ūh(R), ūh(t) = ūh(t+ T ), for the one-step method

un+1 = un + h(bT ⊗ I)f̄(U(h, un),Λ(h, un)) + hq+1f̂(h, un, ψh(un))(5.11)

=: Gh(un), u0 ∈ Dτ0

(compare with (4.5)) having properties

ūh(t+ h+O(hq+1)) = Gh(ū
h(t)),(5.12)

max{‖ū(t, u0)− ūh(t)‖ | t ∈ R} ≤ Chq.

The last step in our proof is to draw back the results (5.12) to S. Obviously, we have
g(ūh(R)) = 0. This is a consequence of the fact that ūh(R) is an invariant set and
every invariant set is located in the maximal invariant set S.

On the phase space S the iteration scheme (5.11) coincides with the u-component
of the projected Runge–Kutta method (2.4)–(2.6) applied to u̇ = f(u, λ), g(u) = 0.
Thus, the discrete iteration scheme (2.4)–(2.6) possesses an invariant curve which is
O(hq) close to the periodic orbit.

An analogous argument works for the half-explicit Runge–Kutta methods too and
ensures the existence of an O(hr) invariant curve close to the periodic orbit.



890 JOHANNES SCHROPP

REFERENCES

[1] U. M. Ascher and L. R. Petzold, Projected implicit Runge–Kutta methods for differential-
algebraic equations, SIAM J. Numer. Anal., 28 (1991), pp. 1097–1120.

[2] W.-J. Beyn, On invariant closed curves for one-step methods, Numer. Math., 51 (1987),
pp. 103–122.

[3] W.-J. Beyn, On the numerical approximation of phase portraits near stationary points, SIAM
J. Numer. Anal., 24 (1987), pp. 1095–1113.

[4] W.-J. Beyn and J. Schropp, Runge-Kutta discretizations of singularly perturbed gradient
equations, BIT, 40 (2000), pp. 415–433.

[5] V. Brasey and E. Hairer, Half-explicit Runge–Kutta methods for differential-algebraic sys-
tems of index 2, SIAM J. Numer. Anal., 30 (1993), pp. 538–552.

[6] K. Dekker and J. G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differ-
ential Equations, CWI Monographs 2, North-Holland, Amsterdam, 1984.

[7] B. Garay, Discretization and some qualitative properties of ordinary differential equations
about equilibria, Acta Math. Univ. Comenian. (N.S.), 62 (1993), pp. 249–275.

[8] C. W. Gear, G. K. Gupta, and B. Leimkuhler, Automatic integration of Euler-Lagrange
equations with constraints, J. Comput. Math., 12/13 (1985), pp. 77–90.

[9] E. Hairer, Ch. Lubich, and M. Roche, Error of Runge-Kutta methods for stiff problems
studied via differential algebraic equations, BIT, 28 (1988), pp. 678–700.

[10] E. Hairer, Ch. Lubich, and M. Roche, The Numerical Solution of Differential-Algebraic
Systems by Runge-Kutta Methods, Lecture Notes in Math. 1409, Springer-Verlag, Berlin,
1989.

[11] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, 2nd ed., Springer-
Verlag, Berlin, 1996.

[12] P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-
step discretizations, SIAM J. Numer. Anal., 23 (1986), pp. 986–995.

[13] K. Nipp, Numerical Integration of Differential Algebraic Systems and Invariant Manifolds,
SAM Research Report 99-12, ETH, Zürich, Switzerland, 1999.
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[18] G. Söderlind, Bounds on nonlinear operators in finite-dimensional Banach spaces, Numer.
Math., 50 (1984), pp. 27–44.



UNIFORM STABILITY OF A FINITE DIFFERENCE SCHEME FOR
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Abstract. An asymptotic preserving numerical scheme (with respect to diffusion scalings) for a
linear transport equation is investigated. The scheme is adopted from a class of schemes developed
in [S. Jin, L. Pareschi, and G. Toscani, SIAM J. Numer. Anal., 38 (2000), pp. 913–936] and [A. Klar,
SIAM J. Numer. Anal., 35 (1998), pp. 1073–1094]. Stability is proven uniformly in the mean free
path under a CFL-type condition turning into a parabolic CFL condition in the diffusion limit.
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1. Introduction. Transport equations and kinetic equations are used for a va-
riety of applications, for example, to simulate radiative heat transfer processes or
rarefied gas flows. Near to the continuum regimes the equations are approximated by
macroscopic equations like diffusion equations or fluid dynamic equations. In recent
years, asymptotic preserving schemes for kinetic equations and transport equations
have gained considerable attention in the literature. These schemes are used to treat
singularly perturbed transport equations in situations with small mean free paths,
i.e., in the above-mentioned macroscopic limits. Schemes for in-stationary transport
equations in the diffusion limit can be found, for example, in [6, 7, 8, 12] and references
therein. Schemes for other types of transport equations with diffusive macroscopic
limits have been developed in [5, 4, 1, 9, 11, 10].

Concerning the numerical analysis of these schemes, proofs of uniform consistency
with respect to a small mean free path ε can be found in [7, 1, 8]. Furthermore, using
the homogenization theory for transport equations, a proof of uniform convergence
(as ε→ 0) for time-continuous equations discretized spatially and in velocity is given
in [3, 2].

The aim of our paper is to prove a uniform stability result for semidiscrete (time-
and space-discrete) numerical schemes for transport equations as developed in [7, 8].
(Numerical investigations of these schemes and proofs of uniform consistency can be
found in [7, 8].)

A time-and-space discretization is performed and linear stability is proved uni-
formly in ε using a careful direct analysis of the iterative scheme. First, the problem
is tackled by a von Neumann analysis of the system in a continuous function space
setting. This gives explicit and accurate estimates.

Under an ε-dependent CFL-type restriction, the iterations are proved to be uni-
formly bounded. As ε tends to 0, the CFL-type condition turns into a parabolic CFL
condition which can be satisfied by ε-independent grids.
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For a large mean free path, the CFL condition is adapted to the transport equa-
tion.

In a further step, it is shown that the stability analysis carries over to discrete
function spaces with piecewise linear finite element method (FEM) for the spatial
discretization.

The paper is organized as follows. In section 2 equations and the semidiscrete
scheme are introduced. Section 3 contains some definitions and the statement of the
main result. In section 4 several preliminary results are established, and section 5
contains the proof of the main result. Section 6 is concerned with the recursion on a
discrete function space.

2. Equations and numerical scheme. Our model problem is the one-dimen-
sional linear transport equation with isotropic scattering,

ε2 ∂tF + ε v ∂xF =
1

2

∫ 1

−1

Fdv − F,(2.1)

with density F = F (x, v, t), x ∈ R, v ∈ [−1, 1], and t ∈ [0,∞). We pass to the
even-odd parity formulation by introducing, for v > 0, the even and odd functions

f(v) =
1

2
(F (v) + F (−v)),

g(v) =
1

2ε
(F (v)− F (−v)).

This defines

F (v) = f(v) + εg(v), v > 0,

F (v) = f(−v)− εg(−v), v < 0,

such that (2.1) becomes, for v > 0,

∂tf + v ∂xg =
1

ε2
([f ]− f) , [f ] :=

∫ 1

0

fdv,(2.2)

∂tg +
v

ε2
∂xf = − 1

ε2
g.(2.3)

Remark. Concerning the limit ε → 0 in (2.2), (2.3) we obtain, from a formal
asymptotic expansion,

f = ρ = [f ], g = −v ∂xf,
where ρ = ρ(x, t) fulfills the diffusion equation

∂tρ =
1

3
∂xxρ.(2.4)

We describe a semidiscrete scheme which is taken from a general class of schemes
developed in [8, 6]. For the time discretization we use the time step ∆t ∈ R

+.
The spatial step size is ∆x. The time iterations approximating f(x, v, n∆t) and
g(x, v, n∆t) are fn(x, v) and gn(x, v) (for n ∈ N or n = 0), respectively.

Given fn, gn we calculate fn+1, gn+1 by a fractional step scheme, where the spatial
discretization is a first order discretization.

Remark. The reader is invited to consult [6] for more sophisticated approaches.
Notation. In what follows, N0 = N ∪ {0}.



STABILITY OF NUMERICAL SCHEMES FOR TRANSPORT 893

Algorithm.
Step 1. Approximate the solution of the system

∂tf + v∂xg = 0,

∂tg = 0

by an explicit discretization; i.e., determine fn+ 1
2 , gn+ 1

2 via

fn+ 1
2 = fn −∆t v D+g

n

gn+ 1
2 = gn

}
n ∈ N0,

where D+ is the forward difference with step size ∆x,

D+f(x) =
f(x+∆x)− f(x)

∆x
.

Step 2. Approximate the solution of the system

∂tf =
1

ε2
([f ]− f)

∂tg =
1

ε2
(−v ∂xf − g)


 n ∈ N0

by a semi-implicit discretization to treat the stiffness of the equations correctly; i.e., de-
termine fn+1, gn+1 from fn+ 1

2 , gn+ 1
2 via

fn+1 = fn+ 1
2 +

∆t

ε2

([
fn+ 1

2

]
− fn+1

)
gn+1 = gn+ 1

2 +
∆t

ε2
[−v D−fn+1 − gn+1

]

 n ∈ N0,

where D− denotes the backward difference with step size ∆x.
We rewrite the recursion formula of Step 2 as

fn+1 = Afn+ 1
2 +B

[
fn+ 1

2

]
gn+1 = Agn+ 1

2 −B vD−fn+1


 n ∈ N0,(2.5)

with

A :=

(
1 +

∆t

ε2

)−1

,

B :=
∆t

ε2
A = 1−A =

(
ε2

∆t
+ 1

)−1

.

For the numerical analysis, it is convenient to combine both steps into a single
step,

fn+1 = A(fn −∆t v D+g
n) +B [fn −∆t v D+g

n]

gn+1 = Agn − v ABD−fn+1 − v B2 D−
[
fn+1

]
}

n ∈ N0,(2.6)

or

gn+1 = Agn − v ABD−(fn −∆t v D+g
n)− v B2 D− [fn −∆t v D+g

n] , n ∈ N0.
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We are concerned mainly with investigations of scheme (2.6). Uniform consistency of
similar schemes has been considered in [8] and [7]. We will prove a uniform (in ε)
stability result.

Remark. Keeping ∆t fixed and considering the limit ε → 0 of (2.6), we have
A→ 0, B → 1 as ε→ 0, and we obtain the scheme

fn+1 =
[
fn+1

]
= [fn −∆t v D+g

n] ,

gn+1 = −v D−
[
fn+1

]
;

i.e., in terms of ρn = [fn],

ρn+1 = ρn +
1

3
∆tD+D−ρn,

which is a straightforward explicit discretization of the diffusion equation (2.4).

3. The main result. In this section we state a theorem on uniform stability for
(2.6). The proof is settled on a von Neumann stability analysis.

The recursion scheme (2.6) involves two positive discretization parameters ∆t,
∆x (which enter via D±) and the scaled mean free path ε ∈ (0,∞). We assume that
∆t,∆x, ε satisfy the following condition.

Definition. ∆t,∆x, and ε fulfill the transport CFL condition iff

∆t

(∆x)2
∆t

ε2 +∆t
<

1

2
.(3.1)

Remark. Condition (3.1) is equivalent to

∆t

(∆x)2
<

ε2 +∆t

2∆t
(3.2)

or

∆t

∆x
<

√
ε2 +∆t

2
.(3.3)

For ε2 � ∆t, condition (3.2) reduces to a parabolic CFL condition,

∆t

(∆x)2
<

1

2
,(3.4)

related to the diffusion equation and, in case ε2 	 ∆t, condition (3.3) reduces to

∆t

∆x
<

ε√
2

(3.5)

which is, for fixed ε, a hyperbolic CFL condition related to the transport equation.
Remark. Introducing

ρ :=
∆t

ε2
, i.e., ∆t = ρε2,

the transport CFL condition (3.1) holds iff

∃δ ∈ R
+ : (∆x)2 = 2ρ2 1 + δ

1 + ρ
· ε2.



STABILITY OF NUMERICAL SCHEMES FOR TRANSPORT 895

Here, ρ � 1 corresponds to the well-resolved case ∆t � ε2, and 1 � ρ corresponds
to the underresolved case ε2 � ∆t.

In the following, a von Neumann stability analysis of the semidiscrete scheme
(2.6) will be performed.

First, we shall give the recursion (2.6) a well-defined meaning by introducing sets
of functions on which the recursion operator of (2.6) acts. The recursion scheme will
be viewed as an operator acting on a continuous function space. Remarks on the
action of the recursion on discrete functions given by the values at the grid points are
included in section 6.

We introduce the spaces

M := {φ : R× [0, 1]→ C : φ is measurable} ,

L2(dx) :=

{
ϕ : R→ C : ϕ is measurable and

∫
R

|ϕ|2 dx <∞
}
,

L1(dv) :=

{
ϕ : [0, 1]→ C : ϕ is measurable and

∫
[0,1]

|ϕ| dv <∞
}
,

L2(d(x, v)) :=

{
ϕ ∈M :

∫
R×[0,1]

|ϕ|2 d(x, v) <∞
}

equipped with the standard seminorms

∀ϕ ∈ L2(dx) : ‖ϕ‖L2(dx) =

√∫
R

|ϕ|2 dx,

∀ϕ ∈ L1(dv) : ‖ϕ‖L1(dv) =

∫
[0,1]

|ϕ| dv,

∀ϕ ∈ L2(d(x, v)) : ‖ϕ‖L2(d(x,v)) =

√∫
R×[0,1]

|ϕ|2 d(x, v).

We choose the anisotropic Lebesgue space

L2(dx,L1(dv)) =
{
φ ∈M :

(∀x ∈ R : φ(x, .) ∈ L1(dv)
) ∧ (‖φ‖L1(dv) ∈ L2(dx)

)}
equipped with the canonical seminorm

‖φ‖L2(dx,L1(dv)) =

√∫
R

‖φ(x, .)‖2L1(dv) dx, φ ∈ L2(dx,L1(dv)),

as the domain of the integration operator [.].
Remark. Obviously, L2(d(x, v)) ⊆ L2(dx,L1(dv)) and

‖ϕ‖L2(dx,L1(dv)) ≤ ‖ϕ‖L2(d(x,v)), φ ∈ L2(d(x, v)).
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Then we have, in operator notation,

[.] : L2(dx,L1(dv))→ L2(dx), [φ](x) =

∫
[0,1]

φ(x, .) dv, x ∈ R.

Obviously, [.] is linear and

|[φ]|(x) ≤ ‖φ(x, .)‖L1(dv), (φ, x) ∈ L2(dx,L1(dv))× R.

The Fourier transform of φ ∈ L2(dx,L1(dv)) with respect to x is

φ̂(ξ, v) :=
1√
2π

∫
R

φ(x, v) exp(−ixξ) dx, (ξ, v) ∈ R× [0, 1].

Certainly,

φ̂ ∈ L2(dξ,L1(dv)), φ ∈ L2(dx,L1(dv)).

For later reference we introduce the Bessel potential space

H1
(
dx,L1(dv)

)
=

{
φ ∈ L2(d(x, v)) :

∫
R

|ξ|2
∥∥∥φ̂(ξ, .)∥∥∥2

L1(dv)
dξ <∞

}

with canonical seminorm

‖φ‖H1(dx,L1(dv)) =

√
‖φ‖2L2(d(x,v)) +

∫
R

|ξ|2
∥∥∥φ̂(ξ, .)∥∥∥2

L1(dv)
dξ.

Remark. Obviously, H1
(
dx,L1(dv)

) ⊂ L2(d(x, v)) ⊂ L2(dξ,L1(dv)).
Remark. If φ ∈ L2(d(x, v)) and if φ(., v) ∈ H1(R) for almost all v ∈ [0, 1], with

square integrable (with respect to v) seminorm ‖φ(., v)‖H1(R), then by the theory of

Sobolev spaces, φ ∈ H1
(
dx,L1(dv)

)
.

Furthermore, let

L∞(dv,L2(dx)) =

{
ϕ ∈M : sup

v∈[0,1]

‖ϕ(., v)‖L2(dx) <∞
}

equipped with the canonical seminorm

‖ϕ‖L∞(dv,L2(dx)) = sup
v∈[0,1]

‖ϕ(., v)‖L2(dx), ϕ ∈ L∞(dv,L2(dx)).

Applying the Fourier transform (with respect to x) on (2.6) gives

f̂n+1 = A
(
f̂n + v α ĝn

)
+B

[
f̂n + α v ĝn

]
ĝn+1 = A

(
ĝn + v β f̂n −Θ v2 ĝn

)
+B v β

[
f̂n + α v ĝn

]

 n ∈ N0,(3.6)

where

α = α(ξ,∆t,∆x) =
∆t

∆x

(
1− eiξ∆x

)
= ξ∆tH(ξ∆x),(3.7)

β = β(ξ,∆t,∆x, ε) =
B

∆x

(
e−iξ∆x − 1

)
= − ξ∆t

ε2 +∆t
H(ξ∆x),(3.8)
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Θ = Θ(ξ,∆t,∆x, ε) = −αβ =
∆t

(∆x)2
∆t

ε2 +∆t
(2− 2 cos(ξ∆x)),(3.9)

and the holomorphic function H,

H : C→ C, H(z) =




1− exp(iz)

z
, z �= 0,

−i, z = 0,

is bounded on R with |H|(σ) < 1 for all σ ∈ R with σ �= 0, and |H|(0) = 1.
Furthermore, |σH(σ)| ≤ 2 for all σ ∈ R.

Remark. We have

0 = inf
ξ∈R

Θ(ξ,∆t,∆x, ε) < sup
ξ∈R

Θ(ξ,∆t,∆x, ε) =
4∆t

(∆x)2
∆t

ε2 +∆t

for all positive ∆t,∆x, ε, which highlights the importance of the value of Θ.
Remark. The transport CFL condition is equivalent to

sup
ξ∈R

Θ(ξ,∆t,∆x, ε) < 2.

Remark. Concerning α, β we have, on the one hand, estimates which are inde-
pendent of ξ and of ε but depend on the grid sizes ∆t and ∆x,

|α|(ξ,∆t,∆x) ≤ 2∆t

∆x
, |β|(ξ,∆t,∆x) ≤ 2

∆x
;(3.10)

on the other hand, there are estimates which are “almost linear” in ξ, which depend
in an acceptable way on ∆t, and which are independent of ε,

|α|(ξ,∆t,∆x) ≤ ∆t |ξ|, |β|(ξ,∆t,∆x) ≤ |ξ|.(3.11)

Remark. Obviously, (3.11) is suitable for uniform stability analysis, however, due
to the “linear” dependence of the estimates on |ξ| for the price of obtaining estimates
involving different kinds of seminorms.

It is convenient to introduce for (f, g) ∈ L2(dx,L1(dv)) × L2(dx,L1(dv)) the
notation

f = (f, g), f̂ = (f̂ , ĝ).

We rewrite recursion (2.6) as

fn+1 = Sfn(3.12)

and the Fourier transformed recursion (3.6) as

f̂n+1 = (AT +BT0) f̂
n(3.13)

with A,B ∈ (0, 1), A + B = 1 as above and n ∈ N0. The linear operators T and T0

depend on the parameters α, β. Due to (3.10) we have

(3.14) T : L2(dξ,L1(dv))× L2(dξ,L1(dv))→ L2(dξ,L1(dv))× L2(dξ,L1(dv)),

T (̂f)(ξ, v) =
(
f̂(ξ, v) + α v ĝ(ξ, v), β v f̂(ξ, v) + (1−Θ v2) ĝ(ξ, v)

)
,

(ξ, v) ∈ R× [0, 1],



898 A. KLAR AND A. UNTERREITER

and

(3.15) T0 : L2(dξ,L1(dv))× L2(dξ,L1(dv))→ L2(dξ,L1(dv))× L2(dξ,L1(dv)),

T0(̂f)(ξ, v) =
([
f̂ + α v ĝ

]
(ξ), β v

[
f̂ + α v ĝ

]
(ξ)
)
,

(ξ, v) ∈ R× [0, 1].

Remark. Due to (3.10) it is seemingly impossible to obtain uniform estimates
(with respect to ε and the grid sizes) on the operator seminorms of T0, T1.

Our aim is to prove uniform bounds in suitable seminorms of the iterations fn =
(fn, gn) for all n ∈ N0 and for all ε ≥ 0.

The results will depend on pointwise estimates of f̂n. Let us consider the formal
limiting problem when ε is set to zero. In this situation, recursion (3.12) reduces to

f̂n+1 = (f̂n+1, ĝn+1) = T0 f̂
n. This means

f̂n+1 =
[
f̂n + α v ĝn

]
ĝn+1 = v β

[
f̂n + α v ĝn

]
= v β

[
f̂n+1

]

 n ∈ N0,

with

β = β(ξ,∆t,∆x, ε = 0) = −ξ H(ξ∆x),

and therefore,

f̂n+1 =
(
1−Θ

[
v2
]) [

f̂n
]
=

(
1− Θ

3

) [
f̂n
]
, n ∈ N0,

where

Θ = Θ(ξ,∆t,∆x, ε = 0) =
∆t

(∆x)2
(2− 2 cos(ξ∆x)).

Thus, we have pointwise estimates∣∣∣f̂n∣∣∣ (ξ, v) =
∣∣∣∣1− Θ

3

∣∣∣∣
n ∣∣∣[f̂0

]∣∣∣ (ξ)
∣∣ĝn+1

∣∣ (ξ, v) ≤ |v| |ξ| ∣∣∣∣1− Θ

3

∣∣∣∣
n ∣∣∣[f̂0

]∣∣∣ (ξ)


 n ∈ N0.(3.16)

In particular, whenever

sup
ξ∈R

Θ(ξ,∆t,∆x, ε = 0) ≤ 6,

which is the case iff the usual parabolic CFL condition for the diffusion equation (2.4),

∆t

(∆x)2
≤ 3

2
,(3.17)

holds, then we obtain from (3.16)∣∣∣f̂n∣∣∣ (ξ, v) ≤ ∥∥∥f̂0(ξ, .)
∥∥∥
L1(dv)

, (n, ξ, v) ∈ N0 × R× [0, 1],(3.18)

∣∣ĝn+1
∣∣ (ξ, v) ≤ |ξ| ∥∥∥f̂0(ξ, .)

∥∥∥
L1(dv)

, (n, ξ, v) ∈ N0 × R× [0, 1],(3.19)
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and therefore, since the Fourier transform is an isometry between L2(dx) and L2(dξ),

‖fn‖L2(d(x,v)) ≤
∥∥f0
∥∥
L2(d(x,v))

, ‖fn‖L∞(dv,L2(dx)) ≤
∥∥f0
∥∥
L2(d(x,v))

, n ∈ N0,

and, furthermore,

∥∥gn+1
∥∥
L2(d(x,v))

≤ ∥∥f0
∥∥
H1(dx,L2(dv))

,

∥∥gn+1
∥∥
L∞(dv,L2(dx))

≤ ∥∥f0
∥∥
H1(dx,L2(dv))

, n ∈ N0,

which indicates that the introduced spaces are canonical.
Our main result is the following theorem.
Theorem 3.1. Assume ∆x,∆t, ε ∈ R

+ satisfy (3.1). With initial values f0 ∈
L2(d(x, v))× L2(d(x, v)), define the sequence (fn)n∈N = ((fn, gn))n∈N by (2.6).

Then, for all n ∈ N0,

(a) ‖fn‖L2(d(x,v)) ≤ 21.
∥∥f0
∥∥
L2(d(x,v))

+ 33.
√
ε2 +∆t.

∥∥g0
∥∥
L2(d(x,v))

and

‖gn‖L2(d(x,v)) ≤
(
30 +

3ε2

(ε2 +∆t)3/2

)
.
∥∥f0
∥∥
H1(dx,L1(dv))

+
(
3 + 48.

√
ε2 +∆t

)
.
∥∥g0
∥∥
H1(dx,L1(dv))

,

where the right-hand side of the estimate on ‖gn‖L2(d(x,v)) is set to ∞ when-

ever f0 �∈ H1(dx,L1(dv))×H1(dx,L1(dv));
(b) if f0 ∈ L∞(dv,L2(dx)), then

‖fn‖L∞(dv,L2(dx)) ≤ 24
∥∥f0
∥∥
L2(d(x,v))

+ 35
√
ε2 +∆t

∥∥g0
∥∥
L2(d(x,v))

and

‖gn‖L∞(dv,L2(dx)) ≤
(
30 +

9ε2

(ε2 +∆t)3/2

)∥∥f0
∥∥
H1(dx,L1(dv))

+
(
4 + 48.

√
ε2 +∆t

)∥∥g0
∥∥
H1(dx,L1(dv))

,

where the right-hand side of the estimate on ‖gn‖L2(d(x,v)) is set to ∞ when-

ever f0 �∈ H1(dx,L1(dv))×H1(dx,L1(dv)).
Theorem 3.1 allows for the derivation of several stability results for (2.6) inde-

pendently of ε. As examples, we deduce the following.
Corollary 3.2. Let M, ε0 be positive constants. Then there is a positive

constant C0 = C0(M, ε0) such that, for all ∆x,∆t, ε ∈ R
+, if ∆t,∆x, ε satisfy

(3.1), ∆t + ε ≤ M , and ε ≤ ε0∆t, then the following estimates hold for any se-
quence (fn)n∈N0 = ((fn, gn))n∈N defined by (2.6) with initial value f0 ∈ L2(d(x, v))×
L2(d(x, v)):

‖fn‖L2(d(x,v)) ≤ C0.
(∥∥f0

∥∥
L2(d(x,v))

+
∥∥g0
∥∥
L2(d(x,v))

)
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and

‖gn‖L2(d(x,v)) ≤ C0.
(∥∥f0

∥∥
H1(dx,L1(dv))

+
∥∥g0
∥∥
H1(dx,L1(dv))

)
,

where the right-hand side of the estimate on ‖gn‖L2(d(x,v)) is set to ∞ whenever f0 �∈
H1(dx,L1(dv))×H1(dx,L1(dv)).

Corollary 3.3. Let M, ε1 be positive constants. Then there is a positive
constant C1 = C1(M, ε1) such that, for all ∆x,∆t, ε ∈ R

+, if ∆t,∆x, ε satisfy
(3.1), ∆t + ε ≤ M , and ε1 ≤ ε, then the following estimates hold for any sequence
(fn)n∈N = ((fn, gn))n∈N defined by (2.6) with initial value f0 ∈ L∞(dv,L2(dx)):

‖fn‖L∞(dv,L2(dx)) ≤ C0.
(∥∥f0

∥∥
L2(d(x,v))

+
∥∥g0
∥∥
L2(d(x,v))

)
and

‖gn‖L∞(dv,L2(dx)) ≤ C0.
(∥∥f0

∥∥
H1(dx,L1(dv))

+
∥∥g0
∥∥
H1(dx,L1(dv))

)
,

where the right-hand side of the estimate on ‖gn‖L∞(dv,L2(dx)) is set to ∞ whenever

f0 �∈ H1(dx,L1(dv))×H1(dx,L1(dv)).
Remark. We notice that although the scheme is developed based on consideration

of the diffusive limit ε tending to 0, the transport CFL condition (3.1) is sufficient
to guarantee stability also for large ε. In particular, for large mean free paths, the
time step is no longer restricted by a parabolic CFL condition related to the limiting
diffusion equation (2.4), but it is restricted by the hyperbolic CFL condition (3.5)
related to the transport equation (2.1).

Remark. The transport CFL condition (3.1) is seemingly not optimal. For exam-
ple, for ε tending to 0 we have

∆t

(∆x)2
<

1

2
.

However, as the direct analysis for ε = 0 shows, actually, the correct restriction is the
parabolic CFL (3.17)

∆t

(∆x)2
<

3

2
.

Remark. The conditions ε0 ≤ ε ≤ M and ε ≤ ε1∆t cover the well-resolved and
underresolved cases, respectively.

4. Preliminaries. The main ingredients of the proof of Theorem 3.1 are in-
vestigations of recursion formulae. These investigations require several preliminary
estimates.

Lemma 4.1. We define

ψ : [0, 2]× [0, 1]→ [0, 1], ψ(σ, v) = arccos

(
1− σv2

2

)
.

Then for all (σ, n) ∈ [0, 2]× N0,∣∣∣∣
∫ 1

0

(
cos(nψ(σ, v))− sin(nψ(σ, v))

1− cos(ψ(σ, v))

sin(ψ(σ, v))

)
dv

∣∣∣∣ ≤ 1.
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Proof. Introducing for fixed σ ∈ (0, 2) the new variable t := ψ(σ, v), we obtain∫ 1

0

(
cos(nψ(σ, v))− sin(nψ(σ, v))

1− cos(ψ(σ, v))

sin(ψ(σ, v))

)
dv

=
1√
2σ

∫ ψ(σ,1)

0

(√
1 + cos(t). cos(nt)−

√
1− cos(t). sin(nt)

)
dt

=
1√
σ

∫ ψ(σ,1)

0

(cos(t/2). cos(nt)− sin(t/2). sin(nt)) dt

=
1√
σ

sin((n+ (1/2)).ψ(σ, 1))

n+ (1/2)
=

sin((n+ (1/2)).ψ(σ, 1))

(n+ (1/2))
√
2(1− cos(ψ(σ, 1)))

=
sin((n+ (1/2)).ψ(σ, 1))

(n+ (1/2)).ψ(σ, 1)
· ψ(σ, 1)/2

sin(ψ(σ, 1)/2)
∈ [−1,+1].

Lemma 4.2. Let (cn)n∈N0 and (γn)n∈N0 be complex sequences. Define a complex
sequence (κn)n∈N0 by recursion via

κ0 = c ∈ C ∀n ∈ N0 : κn+1 = cn + (κ0.γn−1 + κ1.γn−2 + · · ·+ κn−1.γ0) .

Assume
∞∑
k=0

|ck| <∞,

∞∑
k=0

|γk| ≤ 1.

Then the sequence (κn)n∈N0 is bounded; more precisely,

∀n ∈ N0 : |κn| ≤ |κ0|+ (|c0|+ · · ·+ |cn−1|) .(4.1)

Proof. We prove (4.1) by induction. There is nothing to do in case n = 0. To
pass from n to n+ 1, we calculate

|κn+1| =
∣∣∣∣∣∣cn +

n−1∑
j=0

κj .γn−1−j

∣∣∣∣∣∣ ≤ |cn|+
n−1∑
j=0

|κj |.|γn−1−j |

≤ |cn|+max{|κ0|, . . ., |κn−1|}
n−1∑
j=0

|γj | ≤ |cn|+ |κ0|+ |c0|+ · · ·+ |cn−1|.

Furthermore, we require the following result about the recursion scheme (2.6)
when A is set to 1 (or equivalently, when B is set to 0).

Lemma 4.3. Let ξ ∈ R and let ∆t,∆x, ε be positive real numbers. Let α, β,Θ be
as in (3.7), (3.8), (3.9), respectively. For (f̂0, ĝ0) ∈ L2(dξ,L1(dv)) × L2(dξ,L1(dv))
and (ξ, v) ∈ R× [0, 1], we write T from (3.14) in vector notation:

T

(
f̂0

ĝ0

)
(ξ, v) =

(
1 α v
β v 1−Θ v2

) (
f̂0(ξ, v)
ĝ0(ξ, v)

)
.

For n ∈ N let (
f̂n
ĝn

)
= Tn

(
f̂0

ĝ0

)
.

Assume ∆t,∆x, ε satisfy the transport CFL condition (3.1). Then for all n ∈ N0 and
for all (ξ, v) ∈ R× (0, 1),
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(a) |f̂n|(ξ, v) ≤
(
2|f̂0|+

√
2(ε2 +∆t) |ĝ0|

)
(ξ, v).

(b) |ĝn|(ξ, v) ≤
( √

2√
ε2+∆t

|f̂0|+ 2|ĝ0|
)
(ξ, v).

(c) |α v ĝn|(ξ, v) ≤
(
2|f̂0|+ 4

√
ε2 +∆t |ĝ0|

)
(ξ, v).

(d) If f̂0 = 1 and ĝ0(ξ, v) = β v, then

|f̂n|(ξ, v) ≤ 2, |ĝn|(ξ, v) ≤ 3 |ξ|,
∣∣∣∣
∫ 1

0

(f̂n(ξ, s) + α s ĝn(ξ, s)) ds

∣∣∣∣ ≤ 1.

Proof. First, we prove statements (a) and (b). We recall that if ∆t,∆x, ε satisfy
(3.1), then supξ∈R Θ(ξ,∆t,∆x, ε) < 2. We shall use this estimate frequently.

We keep (ξ, v) ∈ R× [0, 1] fixed and introduce the 2× 2 matrix

R := R(α, β,Θ, v) :=

(
1 α v
β v 1−Θ v2

)
.

Then we have for all n ∈ N0,

Tn
(

f̂0

ĝ0

)
(ξ, v) = Rn ·

(
f̂0(ξ, v)
ĝ0(ξ, v)

)
.

If Θ = 0, then ξ = 0 and therefore α = β = 0 as well. In this case, R is the identity
matrix and the proof of the lemma is straightforward.

Let us assume Θ > 0 henceforth. The eigenvalues of R are

λ1,2(v) =

(
1− Θ v2

2

)
±
√(

Θ v2

2

)2

−Θ v2.

Since a := Θ v2/2 < 1, we have 2 a− a2 > 0 such that

λ1,2 = (1− a)± i
√
2 a− a2;

i.e., R has two distinct, nonreal, complex conjugate eigenvalues

λ1 = λ := (1− a) + i
√
2 a− a2, λ2 = λ.

Hence there is a regular 2× 2 matrix B = B(α, β,Θ, v) with

Rn = B

(
λn 0

0 λ
n

)
B−1, n ∈ N0.

Since |λ| = 1, we have λ := ei θ for some θ ∈ (0, 2π). Since cos(θ) = 1 − a > 0 and
sin(θ) =

√
2 a− a2 > 0, we have θ ∈ (0, π/2). Furthermore,

v =

√
2a

Θ
=

√
2

Θ
· (1− cos(θ)) =

2√
Θ
sin(θ/2)(4.2)

and

B =

( −α v −α v
1− eiθ 1− e−iθ

)



STABILITY OF NUMERICAL SCHEMES FOR TRANSPORT 903

such that for all n ∈ N0

Rn =
i

2αv sin(θ)

( −α v −α v
1− eiθ 1− e−iθ

) (
eniθ 0
0 e−niθ

)(
1− e−iθ α v
−1 + eiθ −α v

)

=
i

2αv sin(θ)

( −α v −α v
1− eiθ 1− e−iθ

) (
eniθ − e(n−1)iθ α v eniθ

−e−niθ + e−(n−1)iθ −α ve−niθ
)

=


 sin(nθ)−sin((n−1)θ)

sin(θ) αv sin(nθ)
sin(θ)

− 2 sin(nθ)−sin((n−1)θ)−sin((n+1)θ)
αv sin(θ) − sin(nθ)−sin((n+1)θ)

sin(θ)




=


 sin(nθ)−sin((n−1)θ)

sin(θ)
2α√
Θ

sin(θ/2) sin(nθ)
sin(θ)

−
√

Θ
2α

2 sin(nθ)−sin((n−1)θ)−sin((n+1)θ)
sin(θ/2) sin(θ)

sin(nθ)−sin((n+1)θ)
sin(θ)




=




cos(nθ) + sin(nθ) 1−cos(θ)
sin(θ)

2α√
Θ
sin(nθ) sin(θ/2)

sin(θ)

−
√

Θ
α sin(nθ) 1−cos(θ)

sin(θ/2) sin(θ) cos(nθ)− sin(nθ) 1−cos(θ)
sin(θ)




=:

(
Rn;11 Rn;12

Rn;21 Rn;22

)
.

Since θ ∈ (0, π/2), we have
|Rn;11| , |Rn;22| ≤ 2, n ∈ N0.(4.3)

Furthermore, we have for all n ∈ N0,

(4.4) Rn;12 =
2α√
Θ

sin(nθ)
sin(θ/2)

sin(θ)
= αv

sin(nθ)

sin(θ)
= αv

sin(nθ)
√
Θv
√
1− Θv2

4

=
α√
Θ

sin(nθ)√
1− Θv2

4

=
(ξ∆tH(ξ∆x))(∆x

√
ε2 +∆t)

∆t
√
2(1− cos(ξ∆x))

sin(nθ)√
1− Θv2

4

=
√
ε2 +∆t

ξ∆xH(ξ∆x)√
2(1− cos(ξ∆x))

sin(nθ)√
1− Θv2

4

=
√
ε2 +∆t

H(ξ∆x)

|H(ξ∆x)|
sin(nθ)√
1− Θv2

4

,

and analogously,

Rn;21 = − 1√
ε2 +∆t

|H(ξ∆x)|
H(ξ∆x)

sin(nθ)√
1− Θv2

4

;(4.5)

hence

|Rn;12| ≤
√
2(ε2 +∆t),

|Rn;21| ≤
√

2√
ε2+∆t

.
(4.6)
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Since for all n ∈ N0,

f̂n(ξ, v) = Rn;11 f̂0(ξ, v) +Rn;12 ĝ0(ξ, v),

ĝn(ξ, v) = Rn;21 f̂0(ξ, v) +Rn;22 ĝ0(ξ, v),
(4.7)

statements (a) and (b) of the lemma follow from (4.3), (4.6), and (4.7).
Now we prove statement (c). We calculate for all n ∈ N0,

αvRn;21 = −v
√
Θ sin(nθ)

1− cos(θ)

sin(θ/2) sin(θ)
= −2 sin(nθ) · 1− cos(θ)

sin(θ)

and

αvRn;22 = 2 sin(θ/2)
α√
Θ
Rn;22.

Hence for all n ∈ N0,

|αvRn;21| ≤ 2(4.8)

and

|αvRn;22| ≤ 4
√
ε2 +∆t.(4.9)

Statement (c) of the lemma follows from (4.7), (4.8), and (4.9).

For the proof of statement (d), we finally turn our attention to f̂0 = 1 and
ĝ0(ξ, v) = β v. We set

P0 = 1, Q0 = 1

and easily verify

f̂n = Pn, ĝn = β v Qn, n ∈ N0,

where, for n ∈ N0, 
 Pn+1

Qn+1


 =


 1 −Θ v2

1 1−Θ v2




 Pn

Qn


 ,

from which we obtain, after some elementary manipulations for all n ∈ N0 (we recall
Θ < 2),

Pn = Re

((
(1− a)− i.

√
2a− a2

)n
.

(
1− i.(2a− a2)√

2a− a2

))
,

Qn = Re

((
(1− a)− i.

√
2a− a2

)n
.

(
1 +

i.(2− 2a)√
2a− a2

))
,

where we recall a = Θv2

2 . Then we have for all n ∈ N0,[
(1, αv) ·

(
f̂n
ĝn

)]
=

[
(1, αv) ·

(
Pn

β v Qn

)]
=
[
Pn −Θ v2 Qn

]
= [Pn+1].(4.10)
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Writing as above,

(1− a) + i
√
2a− a2 = eiθ,

we have θ ∈ (0, π/2), cos(θ) = (1− a), sin(θ) =
√
2a− a2. Hence for all n ∈ N0,

Pn = cos(nθ)− sin(nθ)
1− cos(θ)

sin(θ)
,

Qn = cos(nθ) + 2 sin(nθ)
1− cos(θ)

sin(θ)

such that for all n ∈ N0,

|f̂n|(ξ, v) = |Pn|(ξ, v) ≤ 2, |ĝn|(ξ, v) = |β| |v| |Qn|(ξ, v) ≤ 3 |β| ≤ 3 |ξ|,
and due to Lemma 4.1 and (4.10) for all n ∈ N0,

(4.11)

∫ 1

0

(1, α s) ·
(

f̂n(ξ, s)
ĝn(ξ, s)

)
ds = [Pn+1](ξ)

=

∫ 1

0

(
cos((n+ 1)θ(s))− sin((n+ 1)θ(s))

1− cos(θ(s))

sin(θ(s))

)
ds ∈ [−1,+1],

where cos(θ(s)) = 1− Θ s2

2 , s ∈ (0, 1).
5. Proof of Theorem 3.1. For n ∈ N let f̂n, ĝn be as in (3.6) and let (ξ, v) ∈

R× (0, 1) be fixed. We now introduce for n ∈ N or n = 0 the complex number

κn := B
[
f̂n + α v ĝn

]
(ξ).(5.1)

Then it is easy to see that for all n ∈ N,(
f̂n

ĝn

)
= An Tn

(
f̂0

ĝ0

)
+

n−1∑
j=0

κj A
n−1−j Tn−1−j

(
1
βv

)
.(5.2)

We derive from (5.2) a recursion formula for (κn)n∈N,

κ0 = B.
[
f̂0 + α v ĝ0

]
(ξ),

κn = B.

[
(1, α v) ·

(
f̂n

ĝn

)]

= AnB.

[
(1, αv) ·

(
Tn
(

f̂0

ĝ0

))]

+

n−1∑
j=0

κjBA
n−1−j

[
(1, αv) ·

(
Tn−1−j

(
1
βv

))]

= cn + (κ0γn−1 + · · ·+ κn−1γ0),

where for n ∈ N,

cn := AnB

[
(1, αv) ·

(
Tn
(

f̂0

ĝ0

))]
(ξ),
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γn = BAn
[
(1, αv) ·

(
Tn
(

1
βv

))]
(ξ).

By part (d) of Lemma 4.3 we have for all n ∈ N,

|γn| ≤ BAn;

hence,

∞∑
n=0

|γn| ≤ 1.(5.3)

Furthermore, due to parts (a) and (c) of Lemma 4.3, we have for all n ∈ N,

∣∣∣∣
[
(1, αv) ·

(
Tn
(

f̂0

ĝ0

))]∣∣∣∣ (ξ)
≤
[
2
∣∣∣f̂0
∣∣∣+√2(ε2 +∆t)

∣∣ĝ0
∣∣] (ξ) + [2 ∣∣∣f̂0

∣∣∣+ 4
√
ε2 +∆t

∣∣ĝ0
∣∣] (ξ)

≤ 4
∥∥∥f̂0(ξ, .)

∥∥∥
L1(dv)

+ 6
√
ε2 +∆t

∥∥ĝ0(ξ, .)
∥∥
L1(dv)

;

hence for all n ∈ N,

|cn| ≤ AnB

(
4
∥∥∥f̂0(ξ, .)

∥∥∥
L1(dv)

+ 6
√
ε2 +∆t

∥∥ĝ0(ξ, .)
∥∥
L1(dv)

)
;(5.4)

in particular, (cn)n∈N is in /1(C).
We can therefore apply Lemma 4.2 to deduce for all n ∈ N the estimate

(5.5) |κn| ≤ |κ0|+ (|c0|+ · · ·+ |cn−1|)

≤
∣∣∣B [f̂0 + α v ĝ0

]∣∣∣+ (4∥∥∥f̂0(ξ, .)
∥∥∥
L1(dv)

+ 6
√
ε2 +∆t

∥∥ĝ0(ξ, .)
∥∥
L1(dv)

) n−1∑
j=0

AnB

≤ [|f̂0|](ξ) + 2
√
ε2 +∆t [|ĝ0|](ξ) + 4

∥∥∥f̂0(ξ, .)
∥∥∥
L1(dv)

+ 6
√
ε2 +∆t

∥∥ĝ0(ξ, .)
∥∥
L1(dv)

= 5
∥∥∥f̂0(ξ, .)

∥∥∥
L1(dv)

+ 8
√
ε2 +∆t

∥∥ĝ0(ξ, .)
∥∥
L1(dv)

,

where we made use of |α v| ≤ 2
√
ε2 +∆t; see (4.2).

From (5.2), (5.5), and parts (a) and (d) of Lemma 4.3, we deduce the estimate

(5.6) |f̂n|(ξ, v) ≤
(
2 |f̂0|+

√
2 (ε2 +∆t) |ĝ0|

)
(ξ, v)

+ 10
∥∥∥f̂0(ξ, .)

∥∥∥
L1(dv)

+ 16
√
ε2 +∆t

∥∥ĝ0(ξ, .)
∥∥
L1(dv)

,

(n, ξ, v) ∈ N0 × R× [0, 1],

and therefore due to

∀(δ1, δ2, δ3, δ4) ∈ R
4 : (|δ1|+ |δ2|+ |δ3|+ δ4|)2 ≤ 4.

(|δ1|2 + |δ2|2 + |δ3|2 + δ4|2
)
,
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we obtain the estimate∥∥∥f̂n∥∥∥2
L2(d(ξ,v))

≤ 416.
∥∥∥f̂0
∥∥∥2
L2(d(ξ,v))

+ 1032.
(
ε2 +∆t

)
.
∥∥ĝ0
∥∥2
L2(d(ξ,v))

, n ∈ N0.

Hence, via

∀(δ1, δ2) ∈ R
2 :

√
|δ1|2 + |δ2|2 ≤ |δ1|+ |δ2|,

we deduce

‖fn‖L2(d(x,v)) =
∥∥∥f̂n∥∥∥

L2(d(ξ,v))
≤ 21.

∥∥∥f̂0
∥∥∥
L2(d(ξ,v))

+ 33.
√
ε2 +∆t.

∥∥ĝ0
∥∥
L2(d(ξ,v))

= 21.
∥∥f0
∥∥
L2(d(x,v))

+ 33.
√
ε2 +∆t.

∥∥g0
∥∥
L2(d(x,v))

, n ∈ N0.

In a similar way we deduce from (5.2), (5.5), and parts (b) and (d) of Lemma 4.3
the estimate

(5.7) |ĝn|(ξ, v) ≤ A

( √
2√

ε2 +∆t
|f̂0|+ 2 |ĝ0|

)
(ξ, v)

+ |ξ|
(
15
∥∥∥f̂0(ξ, .)

∥∥∥
L1(dv)

+ 24
√
ε2 +∆t

∥∥∥f̂0(ξ, .)
∥∥∥
L1(dv)

)

≤
( √

2 ε2

(ε2 +∆t)3/2
|f̂0|+ 2 |ĝ0|

)
(ξ, v)

+ |ξ|
(
15
∥∥∥f̂0(ξ, .)

∥∥∥
L1(dv)

+ 24
√
ε2 +∆t

∥∥ĝ0(ξ, .)
∥∥
L1(dv)

)
,

(n, ξ, v) ∈ N0 × R× [0, 1],

and therefore

|ĝn|2(ξ, v) ≤ 8ε4

(ε2 +∆t)3
· |f̂0|2(ξ, v) + 900.|ξ|2.

∥∥∥f̂0(ξ, .)
∥∥∥2
L1(dv)

+ 8|ĝ0|2(ξ, v) + 2304.|ξ|2. (ε2 +∆t
)
.
∥∥ĝ0(ξ, .)

∥∥2
L1(dv)

,

≤
(

8ε4

(ε2 +∆t)3
+ 900

)
.

(
|f̂0|2(ξ, v) + |ξ|2.

∥∥∥f̂0(ξ, .)
∥∥∥2
L1(dv)

)

+
(
8 + 2304.

(
ε2 +∆t

))
.
(
|ĝ0|2(ξ, v) + |ξ|2.∥∥ĝ0(ξ, .)

∥∥2
L1(dv)

)
,

(n, ξ, v) ∈ N0 × R× [0, 1],

which implies

‖gn‖L2(d(x,v))

≤
√

8ε4

(ε2 +∆t)3
+ 900.

∥∥f0
∥∥
H1(dx,L1(v))

√
8 + 2304. (ε2 +∆t).

∥∥g0
∥∥
H1(dx,L1(v))

≤
(
30 +

3ε2

(ε2 +∆t)3/2

)
.
∥∥f0
∥∥
H1(dx,L1(dv))

+
(
3 + 48.

√
ε2 +∆t

)
.
∥∥g0
∥∥
H1(dx,L1(dv))

,

n ∈ N0.
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This establishes part (a) of Theorem 3.1. On the other hand, we deduce from (5.6)
that due to the fact that the Fourier transform is an isometry between L2(dx) and
L2(dξ),

‖fn(., w)‖2L2(dx) ≤ 16
∥∥f0(., w)

∥∥2
L2(dx)

+ 8
(
ε2 +∆t

) ∥∥g0(., w)
∥∥2
L2(dx)

+ 400
∥∥f0
∥∥2
L2(d(x,v))

+ 1024.
(
ε2 +∆t

)
.
∥∥g0
∥∥2
L2(d(x,v))

,

(n,w) ∈ N0 × [0, 1],

and therefore

‖fn‖L∞(dv,L2(dx)) ≤ 4
∥∥f0
∥∥
L∞(dv,L2(dx))

+ 3
√
ε2 +∆t

∥∥g0
∥∥
L∞(dv,L2(dx))

+ 20
∥∥f0
∥∥
L2(d(x,v))

+ 32.
√
ε2 +∆t.

∥∥g0
∥∥
L2(d(x,v))

, n ∈ N0,

which yields, via

‖ϕ‖L2(d(x,v)) ≤ ‖ϕ‖L∞(dv,L2(dx)) , ϕ ∈ L∞(dv,L2(dx)),

the first estimate of (b).
Finally, we deduce from (5.7),

‖gn(., w)‖2L2(dx) ≤
8ε4

(ε2 +∆t)3
· ∥∥f0

∥∥2
L∞(dv,L2(dx))

+ 16
∥∥g0
∥∥2
L∞(dv,L2(dx))

+ 900
∥∥∥ξ.f̂0

∥∥∥2
L2(d(ξ,v))

+ 2304.
(
ε2 +∆t

)
.
∥∥ξ.ĝ0

∥∥2
L2(d(ξ,v))

,

≤ 8ε4

(ε2 +∆t)3
· ∥∥f0

∥∥2
L2(d(x,v))

+ 16
∥∥g0
∥∥2
L2(d(x,v))

+ 900
∥∥∥ξ.f̂0

∥∥∥2
L2(d(ξ,v))

+ 2304.
(
ε2 +∆t

)
.
∥∥ξ.ĝ0

∥∥2
L2(d(ξ,v))

,

≤
(

8ε4

(ε2 +∆t)3
+ 900

)∥∥f0
∥∥2
H1(dx,L1(dv))

+
(
16 + 2304.

(
ε2 +∆t

)) ∥∥g0
∥∥2
H1(dx,L1(dv))

,

(n,w) ∈ N0 × [0, 1].

The second estimate of (b) follows by elementary manipulations.

6. Discrete function spaces. In this section we investigate the action of the
recursion (3.12), (2.6) on a discrete space. The discretization considered here is a
piecewise affine FEM on a uniform grid (j.∆x)j∈Z; i.e., the values at the spatial
gridpoints given by the recursion define a continuous function on the whole space via
linear interpolation.

We introduce some notation. The identity function on R is id : R→ R, id(x) = x
and if A ⊆ R, then the indicator function of A is indA : R → {0, 1}, indA(x) = 1 iff
x ∈ A. If ϕ : R→ R and if A ⊆ R, then the restriction of ϕ to A is

ϕ � A : A→ R, (ϕ � A)(x) = ϕ(x).

We introduce the sequence space

/2(∆x, dv) =
{
(γj)j∈Z :

(∀j ∈ Z : γj ∈ L2(dv)
)}
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equipped with the ∆x-dependent norm

‖(γj)j∈Z‖�2(∆x,dv) = ∆x ·
√∑
j∈Z

‖γj‖2L2(dv).

Given ∆x ∈ R
+, a function ϕ : R × [0, 1] → C is a square integrable affine ∆x finite

element function iff ϕ ∈ L2(d(x, v)) and if there is (γj)j∈Z ∈ /2(∆x, dv) such that

ϕ =
∑
j∈Z

(
γj+1 · id− j.∆x

∆x
+ γj · (j + 1).∆x− id

∆x

)
· ind[j.∆x,(j+1).∆x);

i.e., ϕ ∈ L2(d(x, v)) is an affine ∆x finite element function iff for all v ∈ [0, 1], ϕ(., v)
is continuous and for all (j, v) ∈ Z× [0, 1], ϕ(., v) � [j.∆x, (j + 1).∆x) is affine.

The set of all square integrable affine ∆x finite element functions is L2(∆x, dv).
We observe that the mapping

ι∆x : L2(∆x, dv)→ /2(∆x, dv), ι∆x(φ) = (φ(j∆x, .))j∈Z

is a linear isometry.
Next we shall prove the following lemma.
Lemma 6.1. For all (∆x,∆t, ε) ∈ R

+ × R
+ × R

+, the operator S of algorithm
(2.6) maps L2(∆x, v) × L2(∆x, v) into itself. Furthermore, if (f, g) ∈ L2(∆x, dv) ×
L2(∆x, dv), and if we set

(f∗, g∗) = S(f, g),

then for all (j, v) ∈ Z× [0, 1],

f∗(j∆x, v) = A(f(j∆x, v)−∆t v D+g(j∆x, v)) +B [f(j∆x, .)−∆t v D+g(j∆x, .)] ,
(6.1)

(6.2) g∗(j∆x, v) = Ag(j∆x, v)− v ABD−(f(j∆x, v)−∆t v D+g(j∆x, v))

− v B2 D− [f(j∆x, .)−∆t v D+g(j∆x, .)] .

Proof. We recall that if (f, g) ∈ L2(∆x, dv)×L2(∆x, dv), and if (f∗, g∗) = S(f, g),
then

f∗ = A(f −∆t v D+g) +B [f −∆t v D+g] ,(6.3)

g∗ = Ag − v ABD−(f −∆t v D+g)− v B2 D− [f −∆t v D+g] .(6.4)

Furthermore, for all ϕ ∈ L2(∆x, dv)—in particular for f and for g—we have

ϕ =
∑
j∈Z

(
ϕ((j + 1)∆x, .)

id− j.∆x

∆x
+ ϕ(j∆x, .)

(j + 1).∆x− id

∆x

)
ind[j.∆x,(j+1).∆x).

We proceed stepwise.
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Step 1. Since (f, g) ∈ L2(∆x, dv)×L2(∆x, dv), and since L2(∆x, dv) ⊂ L2(d(x, v)),
we have (f, g) ∈ L2(d(x, v))×L2(d(x, v)), and thus (f∗, g∗) = S(f, g) ∈ L2(d(x, v))×
L2(d(x, v)).

Step 2. The function ϕ(. + ∆x, .) : R × [0, 1] → C, (x, v) �→ ϕ(x + ∆x, v) is in
L2(∆x, dv). Indeed, we have ϕ(.+∆x, .) ∈ L2(d(x, v)) and, for all (x, v) ∈ R× [0, 1],

ϕ (x+∆x, v)

=
∑
j∈Z

(
ϕ((j + 1).∆x, v) · x+∆x− j.∆x

∆x
+ ϕ(j.∆x, v) · (j + 1).∆x− (x+∆x)

∆x

)

· ind[j.∆x,(j+1).∆x)(x+∆x)

=
∑
j∈Z

(
ϕ((j + 2).∆x, v) · x+∆x− (j + 1).∆x

∆x

+ϕ((j + 1).∆x, v) · (j + 2).∆x− (x+∆x)

∆x

)
· ind[j.∆x,(j+1).∆x)(x)

=
∑
j∈Z

(
ϕ((j + 2).∆x, v) · x− j.∆x

∆x
+ ϕ((j + 1).∆x, v) · (j + 1).∆x− x

∆x

)

· ind[j.∆x,(j+1).∆x)(x);

i.e., for all (j, v) ∈ Z× [0, 1], ϕ(.+∆x, v) � [j.∆x, (j+1).∆x) is affine, and ϕ(.+∆x, v)
is continuous.

Step 3. The proof of Step 2 can be easily modified to prove that the function
ϕ(.−∆x, .) : R× [0, 1]→ C, (x, v) �→ ϕ(x−∆x, v) is in L2(∆x, dv).

Step 4. [ϕ] ∈ L2(∆x, dv). Certainly, [ϕ] ∈ L2(d(x, v)). Furthermore, for all
(x, v) ∈ R× [0, 1],

[ϕ] (x) =
∑
j∈Z

(
[ϕ((j + 1).∆x, .)] · x− j.∆x

∆x
+ [ϕ(j.∆x, .)] · (j + 1).∆x− x

∆x

)

· ind[j.∆x,(j+1).∆x)(x);

i.e., for all (j, v) ∈ Z× [0, 1], [ϕ] � [j.∆x, (j + 1).∆x) is affine, and [ϕ] is continuous.

Step 5. By Steps 1 and 2, D+g ∈ L2(∆x, dv). Hence ∆t v D+g ∈ L2(∆x, dv),
and therefore f −∆t v D+g ∈ L2(∆x, dv), which implies, via Step 4, [f −∆t v D+g] ∈
L2(∆x, dv), such that f∗ = A. (f −∆t v D+g) +B.[f −∆t v D+g] ∈ L2(∆x, dv). In a
similiar way we prove g∗ ∈ L2(∆x, dv).

Step 6. Formulae (6.1) and (6.2) follow from evaluations (6.3) and (6.4) at
(j∆x, v), (j, v) ∈ Z× [0, 1].

This finishes the proof of Lemma 6.1.

Since a function ϕ ∈ L2(∆x, dv) is entirely determined by ϕ(j∆, v), (j, v) ∈
Z× [0, 1], we deduce the following corollary from Lemma 6.1.

Corollary 6.2. Let (f0
j )j∈Z ∈ /2(∆x, dv), (g0

j )j∈Z ∈ /2(∆x, dv). For n ∈ N0 let
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(fn+1
j )j∈Z, (gn+1

j )j∈Z be pointwise defined via the following version of (2.6):

(6.5) fn+1
j (v) = A.

(
fn+1
j (v)−∆t v

gnj+1(v)− gnj (v)

∆x

)

+B.

[
fn+1
j (.)−∆t v

gnj+1(.)− gnj (.)

∆x

]
,

(6.6) gn+1
j (v) = Agnj

− v AB

(
fnj−1(v)− fnj (v)

∆x

)
+∆t v2

(
gnj+1(v)− 2gnj (v) + gnj−1(v)

(∆x)2

)

− v B2

[
fnj−1(.)− fnj (.)

∆x

]
+∆t v B2

[
v · g

n
j+1(.)− 2gnj (.) + gnj−1(.)

(∆x)2

]
.

Then

(fnj )j∈Z ∈ /2(∆x, dv), (gnj )j∈Z ∈ /2(∆x, dv), n ∈ N0,

and if we set

fn =
∑
j∈Z

(
fnj+1 ·

id− j.∆x

∆x
+ fnj ·

(j + 1).∆x− id

∆x

)
· ind[j.∆x,(j+1).∆x), n ∈ N0,

(6.7)

and

gn =
∑
j∈Z

(
gnj+1 ·

id− j.∆x

∆x
+ gnj ·

(j + 1).∆x− id

∆x

)
· ind[j.∆x,(j+1).∆x), n ∈ N0,

(6.8)

then

∀n ∈ N0 : (fn+1, gn+1) = S(fn, gn);

i.e., the sequence ((fn, gn))n∈N0 is obtained via recursion (2.6) from the initial pair
(f0, g0).

Now we are in the position to finally derive two results which show that for the
affine ∆x FEM recursion (6.5), (6.6) the same error estimates hold as in the continuous
case.

Corollary 6.3. Given (f0, g0) ∈ L2(∆x, dv)× L2(∆x, dv), let

f0
j : [0, 1]→ C, f0

j (v) = f0(j∆x, v), j ∈ Z,

g0
j : [0, 1]→ C, g0

j (v) = g0(j∆x, v), j ∈ Z.

Furthermore, let M, ε0 be positive constants. Then there is a positive constant C0 =
C0(M, ε0) such that, for all ∆x,∆t, ε ∈ R

+, if ∆t,∆x, ε satisfy (3.1), ∆t+ε ≤M , and
ε ≤ ε0∆t, then the following estimates hold for the sequence (fn)n∈N0 = ((fn, gn))n∈N

defined by (6.5), (6.6), (6.7), and (6.8):

‖fn‖L2(d(x,v)) ≤ C0.
(∥∥f0

∥∥
L2(d(x,v))

+
∥∥g0
∥∥
L2(d(x,v))

)
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and

‖gn‖L2(d(x,v)) ≤ C0.
(∥∥f0

∥∥
H1(dx,L1(dv))

+
∥∥g0
∥∥
H1(dx,L1(dv))

)
,

where the right-hand side of the estimate on ‖gn‖L2(d(x,v)) is set to ∞ whenever f0 �∈
H1(dx,L1(dv))×H1(dx,L1(dv)).

Corollary 6.4. Given (f0, g0) ∈ L2(∆x, dv)× L2(∆x, dv), let

f0
j : [0, 1]→ C, f0

j (v) = f0(j∆x, v), j ∈ Z,

g0
j : [0, 1]→ C, g0

j (v) = g0(j∆x, v), j ∈ Z.

Furthermore, let M, ε1 be positive constants. Then there is a positive constant C1 =
C1(M, ε1) such that, for all ∆x,∆t, ε ∈ R

+, if ∆t,∆x, ε satisfy (3.1), ∆t+ε ≤M , and
ε1 ≤ ε, then the following estimates hold for the sequence (fn)n∈N0 = ((fn, gn))n∈N

defined by (6.5), (6.6), (6.7), and (6.8):

‖fn‖L∞(dv,L2(dx)) ≤ C0.
(∥∥f0

∥∥
L2(d(x,v))

+
∥∥g0
∥∥
L2(d(x,v))

)
and

‖gn‖L∞(dv,L2(dx)) ≤ C0.
(∥∥f0

∥∥
H1(dx,L1(dv))

+
∥∥g0
∥∥
H1(dx,L1(dv))

)
,

where the right-hand side of the estimate on ‖gn‖L∞(dv,L2(dx)) is set to ∞ whenever

f0 �∈ H1(dx,L1(dv))×H1(dx,L1(dv)).

7. Conclusions. We have proved uniform stability of the iterative scheme under
the following two restrictions:

• Uniform bounds of the iterative scheme could be proven for underresolved
numerical computations ε ≤ ε0∆t or a bounded mean free path ε1 ≤ ε ≤M .
• The necessary CFL restriction is, in the diffusive limit, a parabolic CFL
condition, as was expected. However, for finite values of ε the parabolic
restriction can be relaxed. One obtains a CFL condition adapted to the
hyperbolic part of the original kinetic equation.

Acknowledgment. We are grateful to Ed Larsen for interesting discussions and
suggestions.
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Abstract. This work tries to increase our understanding of why moving mesh methods of-
ten work very well. It combines techniques from the symmetric error estimates (SEEs) of Dupont
[Math. Comp., 39 (1982), pp. 85–107] and Bank and Santos [SIAM J. Numer. Anal., 30 (1993),
pp. 1–18] with ideas that motivated the analysis of a modified method of characteristics by Douglas
and Russell [SIAM J. Numer. Anal., 19 (1982), pp. 871–885]. By changing the usual time derivative
to a time derivative along approximate characteristics in the SEE norm, the symmetric error estimate
of Bank and Santos can be improved. In addition, by introducing yet another SEE norm which is
more strongly mesh dependent, we provide another SEE which provides different insights into the
convergence of these methods; one symmetric error estimate that is presented can be used to derive
optimal order L2 convergence in certain settings.

Key words. Galerkin methods, parabolic equations, finite element, moving mesh

AMS subject classifications. 65M60, 65M12

PII. S0036142900380431

1. Introduction. Moving mesh finite element methods have been known for
quite a while [6, 5] and they are increasingly used in practice, but the analytical
understanding of these methods is far from complete.

A symmetric error estimate (SEE) is, roughly speaking, a statement of the fol-
lowing form: If the error can be small in a certain norm, then it is small in that same
norm. Somewhat more precisely, there is a norm, ||| · |||, and a constant, C, such that

|||error||| ≤ C|||best approximation error|||,

where the left-hand side measures the error in the method at hand and the right-hand
side reflects the distance between the true solution and the function spaces used in
the method. Of course, we need control on C if such an estimate is to be informative.

The results in section 2 of [4], section 3 of [1], and section 3 of this work give
bounds of this type. There are two things that distinguish the bounds given here from
earlier work. The first is that here the constant, C, does not increase as the advective
term increases in size, provided the mesh movement approximates the advective term
well in a sense that is made precise. Hence, these results make it more clear that the
mesh movement is actually modeling the advection. The second is that the norm in
section 3 involves the convective derivative instead of the partial with respect to time
and, as Douglas and Russell pointed out in [3], for advection dominated problems
the convective derivative will be much smoother, and therefore easier to approximate
well. To give credit where it is due, Bank and Santos noted in [1] that in part of their
analysis the constants could be made independent of the size of the advective term,
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and they also noted the similarity between the difference equations and the modified
method of characteristics [3].

While symmetric error estimates for parabolic equations have a certain attractive-
ness in the simplicity of the statement that they make, it is sometimes hard to see the
precise meaning of the result. In the case of Galerkin methods for elliptic equations,
one has a symmetric error estimate in the H1-norm, a statement that is relatively easy
to understand. In the case of parabolic equations, symmetric error estimates [2, 4, 1]
involve combining several norms and seminorms; in the case of [4], for example, the
||| · ||| is constructed from two norms and a seminorm: the maximum in time of the
L2-norm in space, the L2 in time norm of the H1-norm in space, and the L2 in time
norm of the discrete H−1 seminorm in space of the time derivative. In one of the
analogous results here, the H1-norm is replaced by the “discrete H1”-norm, i.e., the
H1-norm of the H1-projection into the space. It might appear at first that weakening
the norms is not an advantage, but it actually highlights the importance of the only
remaining norm to such a degree that one can get optimal order L2 convergence in
some contexts. In a sense, the SEE that results from this norm provides a way to
combine the techniques of [4] with those of Wheeler [7]. We view this as one of the
most interesting results of this work.

In section 2 we give the advection-diffusion problem whose approximate solution
we are studying here, and we define a continuous-time moving mesh method in terms
of a “convected time derivative.” In section 3 we give three symmetric error bounds for
the continuous-time case. Then we present a symmetric error estimate for a discrete
time case. In sections 4 and 5 we give two optimal order L2 error bounds that follow
from the results of section 3.

2. Model problem and a moving mesh Galerkin method. Consider the
following advection-diffusion model problems on Q = Ω× (0, T ):



∂tu−� · (a� u) + v · �u+ cu = f on Q,
∂u

∂ν
= g on ΓN × (0, T ),

u = 0 on ΓD × (0, T ),
u = u0 for t = 0,

(2.1)

where a(x, t), v(x, t), c(x, t), f(x, t), and g(x, t) are smooth and bounded and 0 < a0 ≤
a ≤ a1 for some constants a0, a1 > 0. Ω is a bounded domain in R

d. For simplicity,
we assume that Ω is a fixed polyhedron. ΓD,ΓN are parts of the boundary ∂Ω such
that ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = ∂Ω, and ΓD is closed. Suppose that D̄ = ∪Di is
a fixed polyhedron, where the Di’s are closed sets with nonvoid interior such that
the interiors of the Di’s are disjoint. We need few restrictions on the Di’s for much
of the argument, but to keep the discussion simple we suppose that each Di is a
simplex and that together they form a tessellation of D. We suppose that there is
a continuous mapping G from D̄ × [0, T ] onto Ω̄ such that (1) for each t, G(·, t) is a
one-to-one piecewise linear mapping (with respect to {Dj}) of D̄ onto Ω̄; and (2) G is
continuously differentiable on each Di × [0, T ]. We also suppose that ∂D = γD ∪ γN
and that ΓD = G(γD, t) and ΓN = G(γN , t). We denote by Ωi = Ωi(t) the image
of Di under G(·, t). LetMD be a finite dimensional subspace of H1(D) so that each
function in MD vanishes on γD; then the finite element space on Ω is defined by
M(t) = {φ(x, t) : φ(G(·, t), t) ∈ MD}. It is sometimes convenient to think of this
moving mesh as being generated by a mapping of Ω onto itself. (See Figure 2.1.)

Let G−1 = G−1(·, t) denote the inverse of G as a map of D̄ onto Ω̄ with t fixed;
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G(·, t)

G−1(·, t)D Ω

Fig. 2.1. Moving mesh as a time dependent mapping G.

this function can be thought of as being defined on Q̄. Let Gt be the partial derivative
of G with respect to t. The finite element mesh is advected with a flow that is given
by

ẋ(t) = Gt(G−1(x, t), t).

Denote a particular directional derivative as follows:

D

Dt
F (x, t) =

∂

∂t
F (x, t) + w · �xF (x, t),

where w(x, t) is a differentiable vector function such that w · ν = 0 on ΓN for t ≥ 0
and ν is the unit outer normal of ∂Ω.

We will use ‖ · ‖k as the norm on the Sobolev space Hk(Ω); for domains R other
than Ω we will use the more explicit notation ‖ · ‖Hk(R). The norm and inner product
on L2(Ω) will be denoted as ‖ · ‖ and (·, ·), respectively.

The exact solution of (2.1) will satisfy(
Du

Dt
, ψ

)
+ (a� u,�ψ) + ((v − w) · �u, ψ) + (cu, ψ) = (f, ψ) +

∫
ΓN

gψds(2.2)

for any ψ ∈ H1(Ω). We are looking for U ∈M(t) such that(
DU

Dt
, φ

)
+ (a� U,�φ) + ((v − w) · �U, φ) + (cU, φ) = (f, φ) +

∫
ΓN

gφds(2.3)

for any φ ∈ M(t). The inclusion of the convective derivative here is not really a
change from the method discussed in [4]—we have just added and subtracted a term.
However, it reflects a change in the way that we think about and analyze the method.
We will take the initial value for U to be the L2-projection of u0 intoM(0).



SYMMETRIC ERROR ESTIMATES 917

3. Symmetric error bounds. First, we get a basic relation that will be used in
bounding the error. Taking Ψ ∈M(t) and setting Φ = U −Ψ ∈M(t) and η = u−Ψ
give, for φ ∈M(t),(

DΦ

Dt
, φ

)
+ (a� Φ,�φ) + ((v − w) · �Φ, φ) + (cΦ, φ)

=

(
Dη

Dt
, φ

)
+ (a� η,�φ) + ((v − w) · �η, φ) + (cη, φ).

(3.1)

From the definition of the directional derivative we have the following equality
which we use in the energy-type arguments used later.

Lemma 1. Suppose that φ(t) ∈ M(t) and that φ is differentiable with respect to
t as a map into L2(Ω). Then(

Dφ

Dt
, φ

)
=
1

2

{
d

dt
‖φ‖2 −

∫
Ω

φ2 �x ·wdx
}
.

Proof.

d

dt
‖φ‖2 = 2

∫
Ω

φtφdx

= 2

∫
Ω

Dφ

Dt
φdx− 2

∫
Ω

(w · �φ)φdx

= 2

∫
Ω

Dφ

Dt
φdx+

∫
Ω

φ2(� · w)dx−
∫

ΓN

φ2w · νds

= 2

∫
Ω

Dφ

Dt
φdx+

∫
Ω

φ2(� · w)dx.

(3.2)

Define the mesh-dependent seminorm ‖ · ‖(−1,M(t)) by

‖u‖(−1,M(t)) = sup
φ∈M(t),φ �=0

|(u, φ)|
‖φ‖1 .

For X a normed space and v a function that maps (0, T ) into X, let

‖v‖Lp(0,T ;X)

denote the Lp-norm on the interval (0, T ) of the X-norm of v. The first SEE will be
given in the norm ||| · ||| defined by

|||v|||2 = ‖v‖2L∞(0,T ;L2(Ω)) + ‖v‖2L2(0,T ;H1(Ω)) +

∫ T

0

∥∥∥∥DvDt
∥∥∥∥

2

(−1,M(t))

dt.

Theorem 1. Suppose that there exist constants c1 and c2 such that for all
(x, t) ∈ Q,

�x · w(x, t) ≤ c1, |w − v|(x, t) ≤ c2.(3.3)
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Then there is a constant C depending only on c1, c2, T , and bounds on the coefficients
a and c such that, for any smooth function Ψ from [0, T ] into L2(Ω) with Ψ(t) ∈M(t),

|||u− U ||| ≤ C|||u−Ψ|||.

Proof. By using φ = Φ in (3.1) we see then that

d

dt
‖Φ‖2 + a0‖Φ‖21 ≤ C

{
‖Φ‖2 +

∥∥∥∥DηDt
∥∥∥∥

2

(−1,M(t))

+ ‖η‖21
}
.(3.4)

This estimate and Gronwall’s inequality give that

‖Φ‖2L∞(0,T ;L2(Ω)) + a0‖Φ‖2L2(0,T ;H1(Ω)) ≤ C
(
‖Φ(0)‖2L2(Ω) + |||η|||2

)
.(3.5)

Also, for any φ ∈M(t), (3.1) gives that

(
DΦ

Dt
, φ

)
≤ C

{
‖Φ‖1 +

∥∥∥∥DηDt
∥∥∥∥

(−1,M(t))

+ ‖η‖1
}
‖φ‖1.(3.6)

Therefore ∫ T

0

∥∥∥∥DΦDt
∥∥∥∥

2

(−1,M(t))

dt ≤ C|||η|||2.(3.7)

Since U(0) is the L2-projection intoM(0) of u0, we see that ‖Φ(0)‖ ≤ ‖η(0)‖. Hence
|||Φ||| ≤ C|||η|||. The triangle inequality then gives that |||u− U ||| ≤ C|||u−Ψ|||.

In the application of Gronwall’s inequality one gets exponential growth in time
of the estimate of the error unless there is sufficient dissipation in the equation to
counter it. If we let c0 be a bound for the absolute value of c(x, t) on Q, then the
arithmetic of the proof gives that the constant C of (3.5) contains a factor exp(KT ),
where K can be of the form

K = 3c0 + c1 + c2 + a0/3 + 3c
2
2/a0.

Hence, if c2 is large and a0 is small, this constant is very big. An interesting aspect
of the above calculation is that most of it is local so that the important quantity
for most parts of the estimate is the maximum of |v − w|2/a. This would lead one
to conjecture that in parts of the problem where diffusion is small, the directional
derivatives that we bring into the estimation should be very close to the ones that
point in characteristic directions.

The function w in the definition of the directional derivative should be chosen so
that |||u−Ψ||| in the above theorem is small. To illustrate how this might be done, we
consider the case in whichM(t) is the space of continuous piecewise linear functions
over a triangular mesh given by the Ωi’s. If we take w = ẋ, then nodal interpolation
commutes with the convective differentiation; i.e., DIuDt = I DuDt , where Iu is the nodal
interpolant of u. Therefore,

∥∥∥∥D(u− Iu)Dt

∥∥∥∥
(−1,M(t))

≤
∥∥∥∥D(u− Iu)Dt

∥∥∥∥ ≤ C
(∑

i

h4
i

∥∥∥∥DuDt
∥∥∥∥

2

H2(Ωi)

) 1
2

,
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where hi is the diameter of Ωi. Here we emphasize that the norm involved is applied
to the convective derivative, which can be a much smoother function than the usual
partial time derivative.

Next we weaken the norm used in the previous theorem in two different ways to
get somewhat different results.

Let c3 = (a0 + c
2
2/a0)/2. Set

B(ϕ,ψ) = (a� (ϕ),�ψ) + ((v − w) · �ϕ,ψ) + c3(ϕ,ψ).
It is easy to check that for any ϕ ∈ H1(Ω),

B(ϕ,ϕ) ≥ a0

2
‖ϕ‖21.(3.8)

We define a linear projection P1 : H
1(Ω)→M(t) by

B(v − P1v, φ) = 0(3.9)

for all φ ∈ M(t). Now we can define a new norm ||| · |||0 in which the H1 part of the
previous norm has been weakened to be a seminorm:

|||v|||20 = ‖v‖2L∞(0,T ;L2(Ω)) + ‖P1v‖2L2(0,T ;H1(Ω)) +

∫ T

0

∥∥∥∥DvDt
∥∥∥∥

2

(−1,M(t))

dt.(3.10)

The mnemonic for the use of the subscript 0 is that this norm emphasizes the H0 or
L2 part of the norm.

Another norm also can be defined to put more weight on the L2(H1) part of ||| · |||
by weakening the L∞(L2) part. Let P0 be the L

2-projection ontoM(t). Set

|||v|||21 = ‖P0v‖2L∞(0,T ;L2(Ω)) + ‖v‖2L2(0,T ;H1(Ω)) +

∫ T

0

∥∥∥∥DvDt
∥∥∥∥

2

(−1,M(t))

dt.(3.11)

Theorem 2. If the conditions of Theorem 1 hold, then there is a constant C ≥ 0
depending only on c1, c2, T , and bounds on the coefficients a, c such that for any smooth
function Ψ from [0, T ] into L2(Ω) with Ψ(t) ∈M(t),

|||u− U |||0 ≤ C|||u−Ψ|||0,
|||u− U |||1 ≤ C|||u−Ψ|||1.

Proof. Because the test function φ in (3.1) is in the spaceM(t), we can rewrite
that relation as(

DΦ

Dt
, φ

)
+ (a� Φ,�φ) + ((v − w) · �Φ, φ) + (cΦ, φ)

=

(
Dη

Dt
, φ

)
+ B(P1η, φ) + ((c− c3)η, φ).

(3.12)

This gives the following analogue of (3.4):

d

dt
‖Φ‖2 + a0‖Φ‖21 ≤ C

{
‖Φ‖2 +

∥∥∥∥DηDt
∥∥∥∥

2

(−1,M(t))

+ ‖P1η‖21 + ‖η‖2
}
.(3.13)
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Since P1Φ = Φ, this becomes

d

dt
‖Φ‖2 + a0‖P1Φ‖21 ≤ C

{
‖Φ‖2 +

∥∥∥∥DηDt
∥∥∥∥

2

(−1,M(t))

+ ‖P1η‖21 + ‖η‖2
}
.(3.14)

The estimate (3.6) becomes

(
DΦ

Dt
, φ

)
≤ C

{
‖P1Φ‖1 +

∥∥∥∥DηDt
∥∥∥∥

(−1,M(t))

+ ‖P1η‖1 + ‖η‖
}
‖φ‖1.(3.15)

The relations (3.14) and (3.15) give the bound for the ||| · |||0 norm, just as in the proof
of Theorem 1.

Examination of (3.4) shows that the η term in (3.5) can be replaced by |||η|||1. The
fact P0Φ = Φ gives

‖P0Φ‖2L∞(0,T ;L2(Ω)) + a0‖Φ‖2L2(0,T ;H1(Ω)) ≤ C
(
‖P0Φ(0)‖2L2(Ω) + |||η|||21

)
.

Next, from (3.6) and the above relation we see that the analogue of (3.7) holds with
|||η||| replaced by |||η|||1. Also, the use of U(0) = P0u(0) gives that ‖Ψ(0)‖ = ‖η(0)‖.
Combining these observations completes the proof of the second inequality in the
theorem.

Next we examine a fully discrete scheme. In this case we restrict ourselves to the
case w(x, t) = ẋ. Following [1], for a given partition P = {t0 = 0, t1, . . . , tn−1, tn = T}
of [0, T ], consider G(s, t) to be linear in t for t ∈ [ti−1, ti), for any i, and continuous
in t on the whole of [0, T ]. Let M be the collection of functions φ(x, t) on Q such
that φ(·, t) ∈M(t) for any t ∈ [0, T ], and such that φ is continuous in t and piecewise
linear along the trajectory of mesh movement, i.e.,

φ(G(s, t), t) = φ(G(s, tj−1), tj−1) + θ[φ(G(s, tj), tj)− φ(G(s, tj−1), tj−1)],

where t = tj−1 + θ(tj − tj−1) for any θ ∈ [0, 1]. The following relation holds for any
t ∈ (ti−1, ti), s ∈ Dj , for all i, j:

φ(G(s, ti), ti)− φ(G(s, ti−1), ti−1)

ti − ti−1
=
Dφ

Dt
(G(s, t), t).

Note that Dφ
Dt is just the same as in the continuous-time case on each (ti−1, ti) with

the restriction that w = ẋ, but it also has a discrete form in this special case. It
is clear that functions in M are defined by their values at the tj ’s, so to define the
approximate solution we need only say how it is computed at the times tj .

The time discrete approximate solution U ∈ M is such that U(0) is the L2-
projection of u(0) ontoM(0) and, for t = tj−,(

DU

Dt
, φ

)
+ (a� U,�φ) + ((v − w) · �U, φ) + (cU, φ) = (f, φ) +

∫
ΓN

gφds(3.16)

for any φ ∈M(tj), j = 1, 2, . . . , n. Let

|||v|||20,d = max
0≤j≤n

‖v(tj)‖2 +
n∑
j=1

(tj − tj−1)

{
‖P1v(tj)‖21 +

∥∥∥∥ DDtv(tj−)
∥∥∥∥

2

(−1,M(tj))

}
;
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we have the following theorem parallel to Theorem 3.1 in [1].
Theorem 3. Let D(tj) denote the piecewise constant function |det(�sG)| on D.

If there are constants c1, c2 > 0 independent of the mesh so that

D(tj)−D(tj−1)

tj − tj−1
≤ c1D(tj−1)

for 1 ≤ j ≤ n, and |w− v|(x, t) ≤ c2 for all (x, t) ∈ Q, then there is a constant C ≥ 0
depending only on c1, c2, T , and bounds of coefficients a, c such that |||u − U |||0,d ≤
C|||u−Ψ|||0,d for any Ψ ∈M .

Proof. The fully discretized scheme yields an error similar to (3.12), with t = tj−.
Let φ = Φ(tj) in the analogue of (3.12), and use an argument like that in [1] to get(

DΦ(tj−)
Dt

,Φ(tj)

)
≥ 1

2∆tj
(‖Φ(tj)‖2 − ‖Φ(tj−1)‖2)

−c1
2
‖Φ(tj−1)‖2,

(3.17)

where ∆tj = tj − tj−1. We then have

1

∆tj
(‖Φ(tj)‖2 − ‖Φ(tj−1)‖2) + 1

2
a0‖ � Φ(tj)‖2

≤ C
{∥∥∥∥Dη(tj−)Dt

∥∥∥∥
2

(−1,M(tj))

+ ‖P1η(tj)‖21 + ‖Φ(tj)‖2 + ‖η(tj)‖2
}
.

(3.18)

From the discrete Gronwall’s inequality one obtains the following:

‖Φ(tj)‖2 + 1
2
a0

j∑
i=1

∆ti‖ � Φ(ti)‖2 ≤ C|||η|||20,d.(3.19)

Also, from the analogue to (3.12) at t = tj−, for any φ ∈M(tj),(
DΦ(tj−)
Dt

, φ(tj)

)
≤ C

{
‖ � Φ(tj)‖+ ‖Φ(tj)‖+

∥∥∥∥Dη(tj−)Dt

∥∥∥∥
(−1,M(tj))

+ ‖P1η(tj)‖1 + ‖η(tj)‖
}
‖φ(tj)‖1.

(3.20)

With the help of (3.19), (3.20) becomes

j∑
i=1

∆ti

∥∥∥∥DΦ(ti−)Dt

∥∥∥∥
(−1,M(ti))

≤ C|||η|||0,d.(3.21)

Finally, combine (3.19), (3.21), and a triangle inequality to complete the proof.

4. An optimal order L2 error estimate. In this section, we prove the fol-
lowing optimal order error estimate for the one-space dimensional, continuous-time
case: We will takeMD to be the space of continuous piecewise linear functions over
a mesh 0 = s0 < s1 < · · · < sm = 1 on the reference domain D = [0, 1], so M(t) is
just the space of continuous functions which are polynomials of degree at most 1 on
each interval Ωi = [xi−1, xi], with xi(t) = G(si, t). Take w = ẋ. Let hi denote the
length of Ωi, and note that ẋ is a continuous piecewise linear function over the mesh.
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The following theorem gives an optimal order error estimate in which the error bound
depends on the bounds of the difference between the growth rate of the length of each
element with respect to time and the rate of “compression” of the exact solution (i.e.,
c1), the difference between the convection velocity and the velocity of mesh movement
(i.e., c2), and other bounds of the coefficients of (2.1). Most importantly, the error
bound does not depend on the convection velocity v, which shows an advantage of
mesh movement.

Theorem 4. If there are constants c1, c2, c3 > 0 so that ‖∂x(v − ẋ)‖∞ ≤ c1,
‖v − ẋ‖∞ ≤ c2, and maxi ‖∂xa‖L∞(Ωi) ≤ c3 for all t ∈ [0, T ], then there is a constant
C(c1, c2, c3, a0, a1, c, T ; Ω) such that

‖u− U‖(t) ≤ C



∥∥∥∥∥∥
(∑

i

h4
i ‖u‖2H2(Ωi)

)1/2
∥∥∥∥∥∥
L∞[0,T ]

+

∥∥∥∥∥∥
(∑

i

h4
i

∥∥∥∥DuDt
∥∥∥∥

2

H2(Ωi)

)1/2
∥∥∥∥∥∥
L2[0,T ]




(4.1)

for any 0 ≤ t ≤ T .
Proof. The proof is an application of Theorem 2 using ||| · |||0. Since |||u − U |||0

dominates the term we want to bound, it suffices to show that |||u − Ψ|||0 can be
bounded by terms on the right-hand side of (4.1). We choose Ψ to be the nodal
interpolant Iu of u. The estimate of ‖u − Ψ‖L∞(0,T ;L2(Ω)) is straightforward. The

observation that D
Dt commutes with interpolation means that ‖ DDt (u−Ψ)‖L2(0,T ;L2(Ω))

can be bounded by the terms on the right-hand side of (4.1); hence, the weaker
semi-norm on D

Dt (u−Ψ) is also bounded.
The H1(Ω)-norm of P1(u−Ψ) can be bounded as follows: For any φ ∈M(t),

B(P1(u−Ψ), φ) = B(u−Ψ, φ)

=
∑
i

∫
Ωi

a∂x(u−Ψ) ∂xφdx+
∑
i

∫
Ωi

(v − ẋ)∂x(u−Ψ) φdx

+c3(u−Ψ, φ)

= −
∑
i

∫
Ωi

(u−Ψ)∂xa ∂xφdx−
∑
i

∫
Ωi

(u−Ψ){φ∂x(v − ẋ)

+(v − ẋ)∂xφ}dx+ c3(u−Ψ, φ)

≤ ‖∂xa‖L∞(Ω)‖u−Ψ‖‖φ‖1 + ‖∂x(v − ẋ)‖L∞(Ω)‖u−Ψ‖‖φ‖
+‖v − ẋ‖L∞(Ω)‖u−Ψ‖‖φ‖1.

(4.2)

Using the coercivity of B(·, ·) (see (3.8)) and taking φ = P1(u−Ψ), we get that
‖P1(u−Ψ)‖1 ≤ C‖u−Ψ‖.

Note that the integration by parts was done subinterval by subinterval so a need
only be locally smooth. The approximation results in this section are more local than
we can prove in the general case studied in the next section.
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5. Optimal order L2(Ω) error estimate for general space dimension. In
this section we return to the d-dimensional case. There will be several situations in
which we need to use surface integrals on the elements Ωi; we will use 2-dimensional
terminology and refer to these as integrals over the edges. Thus an edge is the in-
tersection of Ω̄i’s with positive (d − 1)-dimensional measure. Consider the Dirichlet
problem, ΓN = ∅, and take w = ẋ. Denote by ej the edge between two adjacent
elements and by nej a normal to ej , and define the jump operator [·] across the edge
ej by

[F ](x) = lim
ε→0+

{F(x+ εnej )−F(x− εnej )} ∀x ∈ ej .

Assume that Ω and a are such that the Dirichlet problem has uniform H2 regularity;
i.e., there is a constant C such that for any t ∈ [0, T ], q ∈ L2(Ω), there exists a
ξ ∈ H1

0 (Ω) ∩H2(Ω) satisfying∫
Ω

a� ξ · �ηdx =
∫

Ω

qηdx ∀η ∈ H1
0 (Ω),(5.1)

and ‖ξ‖2 ≤ C‖q‖.
Suppose that MD consists of a space of continuous piecewise polynomials of

degree at most r. We assume that there is a constant C̃ such that for any t ∈ [0, T ]
and for any ξ ∈ H1

0 (Ω) ∩ {ΠiHs(Ωi)}, s ≥ 2,

inf
φ∈M(t)

‖ξ − φ‖2l ≤ C̃
∑
i

h
2(min{r+1,s}−l)
i ‖ξ‖2Hs(Ωi)

, l = 0, 1,

where hi is the diameter of the element Ωi. Let h denote maxi hi.
In this section we need bounds on�ẋ, the Jacobian of the function ẋ with respect

to x. We will use the norm on matrices that is induced by the Euclidean norm on
vectors. In particular, ‖ � ẋ‖∞ is the L∞(Ω)-norm of the norm of the matrix �ẋ.

We have the following optimal order estimate for the L2(Ω)-norm of the error.
While it looks like a generalization of Theorem 4 to higher dimensional spaces, there
are differences. The hypotheses are stronger here, and the result is not quite so local.

Theorem 5. Suppose that there are constants c1, c2, c3, c4, c5 > 0 so that, for all
t ∈ [0.T ], we have ‖ � ẋ‖∞ ≤ c1; ‖ � ·v‖∞ ≤ c2; ‖v − ẋ‖∞ ≤ c3; and ‖DaDt ‖∞, ‖ �
a‖∞, ‖� Da

Dt ‖∞ ≤ c4; and the norm of the jump in �ẋ across an edge e = Ω̄k ∩ Ω̄m is
bounded by c5min{hk, hm}. Then there is a constant C(c1, c2, c3, c4, c5, a0, a1, c, T,Ω)
such that

‖u− U‖(t) ≤ C



∥∥∥∥∥∥h
(∑

i

h
2(min{r+1,s}−1)
i ‖u‖2Hs(Ωi)

)1/2
∥∥∥∥∥∥
L∞[0,T ]

+

∥∥∥∥∥∥h
(∑

i

h
2(min{r+1,s}−1)
i

∥∥∥∥DuDt
∥∥∥∥

2

Hs(Ωi)

)1/2
∥∥∥∥∥∥
L2[0,T ]




(5.2)

for any t ∈ [0, T ].
Proof. Again we will use Theorem 2 to establish this L2(Ω) estimate. We will use

an elliptic projection to give the Ψ that is in Theorem 2. The most tedious part of
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the proof is bounding the time derivative part of ||| |||0; we do that here by estimating
the L2(Ω)-norm of that term.

Set B1(ξ, η) = (a� ξ,�η), and define a linear projection P : H1
0 (Ω)→M(t) by

B1(ξ − Pξ, φ) = 0 ∀φ ∈M(t).

Denote η = u − Pu. For any given t ∈ [0, T ], let φ(x) be any function inM(t). Let
ψ(x, t̃) = φ(G(G−1(x, t̃), t)) for any t̃ ∈ [0, T ]. It is easy to see that ψ(x, t) = φ(x) and
Dψ
Dt̃

= 0 for any t̃ ∈ [0, T ].
We have, at time t,

0 =
d

dt
{B1(η(., t), ψ(., t))} =

∑
i

{
d

dt

∫
Ωi

a� η · �ψdx
}

=
∑
i

{∫
Ωi

at � η · �φdx+
∫

Ωi

a� ηt · �φdx

+

∫
Ωi

a� η · �ψtdx+
∫
∂Ωi

a� η · �φ(ẋ · n)ds
}
,

(5.3)

where n is the outer norm of ∂Ωi. Note that∫
Ωi

a� ηt · �φdx =
∫

Ωi

a� Dη

Dt
· �φdx−

∫
Ωi

a� (ẋ · �η) · �φdx

and

ẋ · �(�η · �φ) =
∑
k

ẋk∂xk


∑

j

∂xjη∂xjφ




=
∑
k

∑
j

(ẋk∂xj∂xk
η∂xjφ+ ẋk∂xj∂xk

φ∂xjη)

= �(ẋ · �η) · �φ− (�η)T (�ẋ)(�φ)
+�(ẋ · �φ) · �η − (�φ)T (�ẋ)(�η).

(5.4)

Using the fact that 0 = Dψ(x,t)
Dt = ψt(x, t) + ẋ · �φ(x), we have

d

dt

∫
Ωi

a� η · �ψdx

=

∫
Ωi

Da

Dt
� η · �φdx+

∫
Ωi

a�
(
Dη

Dt

)
· �φdx+

∫
Ωi

a� η · �φ(� · ẋ)dx

−
∫

Ωi

a(�η)T (�ẋ)(�φ)dx−
∫

Ωi

a(�φ)T (�ẋ)(�η)dx.

(5.5)

Therefore we can write

d

dt
B1(η, ψ) = B1

(
Dη

Dt
, φ

)
+ E(η, φ) = 0,
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where

E(η, φ) =

∫
Ω

Da

Dt
� η · �φdx+

∫
Ω

a� η · �φ(� · ẋ)dx

−
∫

Ω

a(�η)T {�ẋ+ (�ẋ)T }(�φ)dx.
(5.6)

It is easy to see that E(u, v) ≤ C‖u‖1‖v‖1, so∥∥∥∥DηDt
∥∥∥∥

2

1

≤ CB1

(
Dη

Dt
,
Dη

Dt

)

= C

{
B1

(
Dη

Dt
,
Dη

Dt
− φ

)
+ E

(
η,
Dη

Dt
− φ

)
− E

(
η,
Dη

Dt

)}

≤ C

{∥∥∥∥DηDt
∥∥∥∥

1

∥∥∥∥DηDt − φ
∥∥∥∥

1

+ ‖η‖1
∥∥∥∥DηDt − φ

∥∥∥∥
1

+ ‖η‖1
∥∥∥∥DηDt

∥∥∥∥
1

}
.

(5.7)

It follows that ∥∥∥∥DηDt
∥∥∥∥

1

≤ C
{
‖η‖1 + inf

φ∈M(t)

∥∥∥∥DuDt − φ
∥∥∥∥

1

}
.(5.8)

Next we use a duality argument to get an estimate of ‖DηDt ‖. Let ξ ∈ H1
0 (Ω) ∩H2(Ω)

satisfy ∫
Ω

a� ξ · �ζdx =
∫

Ω

Dη

Dt
ζdx ∀ζ ∈ H1

0 (Ω).

For any φ ∈M(t),(
Dη

Dt
,
Dη

Dt

)
= B1

(
Dη

Dt
, ξ

)

= B1

(
Dη

Dt
, ξ − φ

)
+ E(η, ξ − φ)− E(η, ξ),

(5.9)

and by integration by parts,

E(η, ξ) = −
∫

Ω

η

(
�Da
Dt
· �ξ + Da

Dt
� ξ

)
dx−

∑
i

∫
Ωi

η� ξ(� · ẋ)dx

−
∑
j

∫
ej

η
∂ξ

∂nej
[� · ẋ]ds

+
∑
i

∫
Ωi

η{(�a)T (�ẋ)(�ξ) + a� ·((�ẋ)(�ξ))}dx

+
∑
j

∫
ej

a η([�ẋ](�ξ)) · nejds

+
∑
i

∫
Ωi

η{(�a)T (�ẋ)T (�ξ) + a� ·((�ẋ)T (�ξ))}dx

+
∑
j

∫
ej

a η([�ẋ]T (�ξ)) · nejds.

(5.10)
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We need to take a close look at the integrals over the edges. Suppose that an
edge e = Ω̄k ∩ Ω̄m. Let h(e) = min{hk, hm}. The first boundary integral in (5.10)
can be bounded as follows:∑

j

∫
ej

η
∂ξ

∂nej
[� · ẋ]ds ≤ C

∑
j

‖h1/2(ej)η‖L2(ej)

∥∥∥∥h1/2(ej)
∂ξ

∂nej

∥∥∥∥
L2(ej)

≤ C(ε)
∑
j

‖h1/2(ej)η‖2L2(ej)
+ ε
∑
j

∥∥∥∥h1/2(ej)
∂ξ

∂nej

∥∥∥∥
2

L2(ej)

≤ C(ε)
∑
i

(‖η‖2L2(Ωi)
+ h2

i |η|2H1(Ωi)
) + Cε

∑
i

(|ξ|2H1(Ωi)
+ h2

i |ξ|2H2(Ωi)
)

≤ C(ε)
{
‖η‖2 +

∑
i

h2
i |η|2H1(Ωi)

}
+ Cε‖DηDt ‖2 ∀ε > 0.

(5.11)

Similar results can be achieved for the other integrals over the edges ej , so that by
choosing ε small enough, we can conclude that

|E(η, ξ)| ≤ C
{
‖η‖2 +

∑
i

h2
i |η|2H1(Ωi)

}
+
1

4

∥∥∥∥DηDt
∥∥∥∥

2

.

Also choose φ ∈M(t) so that

B1

(
Dη

Dt
, ξ − φ

)
≤ C

∥∥∥∥DηDt
∥∥∥∥

1

‖ξ − φ‖1 ≤ Ch
∥∥∥∥DηDt

∥∥∥∥
1

∥∥∥∥DηDt
∥∥∥∥

and

E(η, ξ − φ) ≤ Ch‖η‖1
∥∥∥∥DηDt

∥∥∥∥ .
Therefore we have from (5.9),∥∥∥∥DηDt

∥∥∥∥
2

≤ C

{
h2

∥∥∥∥DηDt
∥∥∥∥

2

1

+ h2‖η‖21 + ‖η‖2 +
∑
i

h2
i |η|2H1(Ωi)

}

≤ Ch2
∑
i

h
2(min{r+1,s}−1)
i

{∥∥∥∥DuDt
∥∥∥∥

2

Hs(Ωi)

+ ‖u‖2Hs(Ωi)

}
.

(5.12)

The rest of the proof is an application of Theorem 2 using ||| · |||0. Since |||u− U |||0
dominates the term we want to bound, it suffices to show that |||u − Ψ|||0 can be
bounded by terms on the right-hand side of (4.1).

We choose Ψ = Pu. The estimate of ‖u − Ψ‖L∞(0,T ;L2(Ω)) is straightforward.

The weaker seminorm on D
Dt (u − Ψ) is also bounded from (5.12). The H1(Ω)-norm

of P1(u−Ψ) can be bounded as follows: For any φ ∈M(t),

B(P1(u−Ψ), φ) = B(u−Ψ, φ)
= B1(u−Ψ, φ) + ((v − ẋ) · �(u−Ψ), φ) + c3(u−Ψ, φ)
= −((u−Ψ), φ� ·(v − ẋ) + (v − ẋ) · �φ) + c3(u−Ψ, φ)
≤ (‖ � ·(v − ẋ)‖L∞(Ω) + c3)‖u−Ψ‖‖φ‖

+‖v − ẋ‖L∞(Ω)‖u−Ψ‖‖φ‖1.

(5.13)
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Using the coercivity of B(·, ·) (see (3.8)) and taking φ = P1(u−Ψ), we get that

‖P1(u−Ψ)‖1 ≤ C‖u−Ψ‖.

The Dη
Dt term was estimated in L2(Ω) instead of the discrete H−1 seminorm, so

one might think that, if (5.1) satisfies an H3-regularity bound and ẋ was smooth
enough, one might be able to weaken the norm on Dη

Dt . We were not able to do this,
except in trivial special cases.

6. Remarks. If we replace the boundary condition w·ν = 0 on ΓN by (w−ẋ)·ν =
0 on ΓN , Lemma 1 holds even if the domain Ω is time dependent. Therefore it
seems possible to get analogous results in this situation. However, a more interesting
situation is one in which mesh elements flow into and out of the domain instead of
just moving around in the domain; this will be the topic of future work.
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Abstract. From the literature it is known that the conjugate gradient method with domain
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1. Introduction.

1.1. Origin of the problem from the p-version. We consider the boundary
value problem

−�u = f in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
2 is a domain which can be decomposed into (straight-line) quadrilaterals.

Problem (1.1) will be discretized by means of the p-version of the finite element method
using quadrilaterals Rs. Let R = (−1, 1)2 be the reference element and Φs : R → Rs

be the bilinear mapping to the element Rs. We define the finite element space

M := {u ∈ H1
0 (Ω), u |Rs= u(Φs(ξ, η)) = ũ(ξ, η), ũ ∈ Qp},

where Qp is the space of all polynomials p(ξ, η) = p1(ξ)p2(η) of maximal degree p in
each variable. Now we can formulate the following discretized problem: Find up ∈M

such that

a�(up, vp) :=

∫
Ω

∇up · ∇vp =

∫
Ω

fvp ∀vp ∈M(1.2)

holds. Let (ψ1, . . . , ψnp
) be a basis of M. Then problem (1.2) is equivalent to solving

the system of algebraic finite element equations

Apup = f
p
, where Ap = [a�(ψj , ψi)]

np

i,j=1 , f
p
=

[∫
Ω

fψi

]np

i=1

.
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Now we specify the choice of the basis and divide the shape functions into three
distinct groups:

• the vertex functions, which are the usual piecewise bilinear functions;
• the edge bubble functions;
• the interior bubbles, which are nonzero only on one element.

An edge bubble function corresponds to an edge e of the mesh. Its support is formed
by those two elements which have this edge e in common. Corresponding to the
division of the shape functions, we split the matrix Ap as follows:

Ap =


 Avert Avert,edg Avert,int

Aedg,vert Aedg Aedg,int

Aint,vert Aint,edg Aint


 .(1.3)

The indices vert, edg, and int denote the blocks corresponding to the vertex, edge bub-
ble, and interior bubble function, respectively. Jensen and Korneev [16] and Ivanov
and Korneev [14], [15] developed preconditioners for the p-version of the finite ele-
ment method in a two-dimensional domain using domain decomposition techniques
[4]. They considered the preconditioning matrix

Cp =


 Avert 0 0

0 Aedg Aedg,int

0 Aint,edg Aint


(1.4)

and proved that the condition number κ(C−1
p Ap) grows as 1+ log p; cf. Lemma 2.3 in

[14]. Therefore, the vertex unknowns can be determined separately. Computing the
other unknowns, we factorize the remaining 2× 2 block as follows:(

Aedg Aedg,int

Aint,edg Aint

)
=

(
I Aedg,intA

−1
int

0 I

)(
S 0
0 Aint

)(
I 0

A−1
intAint,edg I

)

with the Schur complement S := Aedg − Aedg,intA
−1
intAint,edg. The matrix Aint is a

block diagonal matrix; one block corresponds to one element. Therefore, for comput-
ing the interior unknowns, we have to solve a Dirichlet problem on each quadrilateral.
The edge unknowns are computed via the Schur complement S.

Hence, in addition to a solver for Avert, we require three tools to define a precon-
ditioner for the matrix of (1.4), namely a preconditioner for the interior problem, a
preconditioner for the Schur complement, and an extension operator from the edges of
a quadrilateral into its interior. Ivanov and Korneev [14], [15] derived some precondi-
tioners CS for the Schur complement. The condition number of C−1

S S is O(1+log2 p)
in the worst case, where p is the polynomial degree. The solution of CSx = y can be
done fast by solving triangular systems and fast Fourier transforms.

Jensen and Korneev [16] considered a scaled version of the integrated Legendre
polynomials as the basis of the space M. They found a spectral equivalent precondi-
tioner Cint for the interior problem, which has O(p2) nonzero entries. In the case of
parallelogram elements, the element stiffness matrix has O(p2) nonzero entries; oth-
erwise it is a dense matrix. However, the suggested methods compute the solution of
the system of equations with this preconditioning matrix in O(p3) arithmetical opera-
tions. Finding a fast solver, i.e., a solver which requires O(p2) arithmetical operations,
was an open question. This paper is concerned with the construction of such an ef-
ficient preconditioner for the interior problem. The matrix Cint is a block diagonal
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Fig. 1.1. Mesh for h-version (left); notation within a macroelement Ek
ij (right).

matrix of four blocks Cint,m, m = 1, 2, 3, 4. In [5], we derived a new preconditioner
C4 for each block of Cint. This matrix is defined via the matrices D4 and T3,

D4 := diag

(
4

(
i2 +

1

6

))n−1

i=1

, T3 :=
1

2
tridiag(−1, 2,−1),

C4 := D4 ⊗ T3 + T3 ⊗D4,(1.5)

where ⊗ denotes the Kronecker product. We have proved in [5] that the condition
number of the matrix C−1

4 Cint,m grows as (1+log p). We can interpret the matrix C4

as the stiffness matrix arising from an h-version finite element method for an elliptic
boundary value problem with a degenerate operator. This will be discussed in the
following.

1.2. Formulation of the elliptic problem. We consider the following prob-
lem: Find u ∈ H1

0 (Ω1) = {u ∈ H1(Ω1) : u = 0 on ∂Ω1} such that

a(u, v) :=

∫
Ω1

y2uxvx + x2uyvy =

∫
Ω1

gv =: 〈g, v〉 ∀v ∈ H1
0 (Ω1)(1.6)

holds. The domain Ω1 = (0, 1)2 is the unit square. The differential operator in (1.6)
is not uniformly elliptic in the Sobelev space H1(Ω1); an estimate of the type

a(u, u) ≥ γ ‖ u ‖2H1(Ω1)

with a constant γ > 0 is not satisfied. We refer to the book of Kufner and Sändig [17]
for such problems.

We want to find an approximate solution of (1.6) using finite elements. For this
purpose, we introduce some notation. Let k be the level of approximation and n = 2k.
Let us denote by xkij the nodes xkij = ( in ,

j
n ), i, j = 0, . . . , n. We triangulate Ω1 into

congruent, isosceles, right-angled triangles τ s,kij , where 0 ≤ i, j < n, and s = 1, 2; see

Figure 1.1. The triangle τ1,k
ij has the three vertices xkij , x

k
i+1,j+1, and xki,j+1, whereas

τ2,k
ij has the three vertices xkij , x

k
i+1,j+1, and xki+1,j ; see Figure 1.1.
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Furthermore, let Ekij = τ1,k
ij ∪ τ2,k

ij be the square (macroelement)[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
.

Let Vk := span{φkij , 0 < i, j < n} ⊂ H1
0 (Ω1) be the subspace of piecewise linear

functions. The basis functions φkij are continuous, linear on each triangle τ s,klm ⊂ Ω1,

and fulfill the condition φkij(x
k
lm) = δilδjm. (δil denotes the Kronecker delta.)

Now we can formulate the discrete problem. Find uk ∈ Vk such that

a(uk, vk) = 〈g, vk〉 ∀vk ∈ Vk(1.7)

holds. Problem (1.7) is equivalent to solving the system of algebraic finite element
equations Kkuk = g

k
with

Kk = a(φklm, φ
k
ij)

n−1
i,j;l,m=1, g

k
= 〈g, φklm〉n−1

l,m=1, uk = (uij)
n−1
i,j=1.

Then uk =
∑n−1

i,j=1 uijφ
k
ij is the solution of (1.7). By a simple calculation one obtains

a(φkij , φ
k
i+1,j) = − 1

n2

(
1

6
+ j2

)
,

where n > i, j and j > 0, but i ≥ 0. By symmetry, we have (i > 0, j ≥ 0)

a(φkij , φ
k
i,j+1) = − 1

n2

(
1

6
+ i2

)

and

a(φkij , φ
k
ij) = − (a(φkij , φki+1,j) + a(φkij , φ

k
i,j+1) + a(φkij , φ

k
i,j−1) + a(φkij , φ

k
i−1,j)

)
.

All other matrix entries are zero. Inserting the boundary condition and using the
definition of C4 (1.5), we get the relation

Kk =
1

2n2
C4

after a proper permutation of the unknowns. In this paper, we will derive a fast solver
for the degenerate problem (1.6).

For systems of finite element equations arising from the discretization of boundary
value problems as, e.g., −uxx − uyy = f , efficient solution techniques are known.
Examples for such solvers are the preconditioned conjugate gradient (PCG) method,
with BPX preconditioners [9] or hierarchical basis preconditioners [23], and multi-
grid methods [12], [13]. However, we have to solve problems with variable coefficients.
These coefficients tend to 0 if x → 0 or y → 0. Bramble and Zhang [10] consider
multigrid methods in a more general case as for Laplace. They proved multigrid
convergence for differential operators of the type −(f(x, y)ux)x − (g(x, y)uy)y, where
0 < g(x, y) ≤ gmax and 0 < fmin < f(x, y) < fmax; i.e., one of the coefficients can be
arbitrarily small. However, in (1.6) both coefficients can be arbitrarily small.

This paper deals with the solution of (1.7) by a multigrid method with special
line smoothers. We get another efficient solver when these special line smoothers are
applied within an AMLI preconditioner (see [2], [3] for the definition of the AMLI
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preconditioner). In [6], we give a convergence proof for the PCG method with such
an AMLI preconditioner. The analysis of both methods is based on the strengthened
Cauchy inequality.

This paper is organized as follows. In section 2, we present the multigrid conver-
gence proof for problem (1.7). In section 3 we describe and analyze the smoother used
in the multigrid method and explain implementational details. Finally, in section 4
we give some numerical experiments confirming the theory.

2. Multigrid method for solving −y2uxx − x2uyy. For solving (1.7) ap-
proximately, we will employ the following multigrid algorithm.

2.1. Multigrid algorithm. We represent the space Vk as the direct sum

Vk = Vk−1 ⊕Wk, where Wk := span{φkij}(i,j)∈Nk
.(2.1)

The subset Nk contains the indices of the new nodes on level k and is given by

Nk := {(i, j) ∈ N
2, 1 ≤ i, j ≤ n− 1, i = 2m+ 1 or j = 2m+ 1,m ∈ N}.(2.2)

Let u0 be the initial guess. One step of the multigrid algorithm u1 = MULT (k, u0, g)
is defined recursively as follows.

• Set l = k. If l > 1, then do
1. Presmoothing on Wl: Solve

a(w, v) = 〈g, v〉 − a(u0, v) ∀v ∈Wl

approximately by using ν steps of a simple iterative method S; the
approximate solution is w̃. Set u1

0 = u0 + w̃.
2. Coarse grid correction on Vl−1: Find w ∈ Vl−1 such that

a(w, v) = 〈g, v〉 − a(u1
0, v) = 〈r, v〉 ∀v ∈ Vl−1

holds. Compute an approximate solution w̃ by using µl−1 steps of the
algorithm MULT (l − 1, 0, r). Set u2

0 = u1
0 + w̃.

3. Postsmoothing on Wl: Solve

a(w, v) = 〈g, v〉 − a(u2
0, v) ∀v ∈Wl

approximately by using ν steps of a simple iterative method S; the
approximate solution is w̃. Set u1 = u2

0 + w̃.
• else

– Solve a(w, v) = 〈g, v〉 − a(u0, v) ∀v ∈ Vl exactly.
• endif.

Remark 2.1. In a standard multigrid algorithm the space Wl in steps 1 and 3 is
replaced by Vl; e.g., the smoother operates on the complete approximation space.

2.2. Algebraic multigrid proof. We prove the convergence of the multigrid
algorithm for solving (1.7) using µ = µl = 3 and a special line smoother, which will
be defined in (2.21). From [19], [20] the following convergence theorem for multigrid
algorithms of the type of the algorithm MULT is known.

Theorem 2.1. Let us assume that the following assumptions are fulfilled.
• Let a(·, ·) be a symmetric and positive definite bilinear form on Vk, and let
‖ · ‖2a:= a(·, ·) be the energy norm.
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• Let S be a smoother satisfying

‖ Sνw ‖2a≤ ρ2ν ‖ w ‖2a ∀w ∈Wk,(2.3)

where 0 ≤ ρ < 1 is independent of k.
• There is a constant 0 ≤ γ < 1 independent of k such that the strengthened

Cauchy inequality

(a(v, w))2 ≤ γ2a(v, v)a(w,w) ∀w ∈Wk,∀v ∈ Vk−1(2.4)

holds.
• Let uj+1,k = MULT (k, uj,k, g), let u∗ be the exact solution of (1.7), and let

σk := sup
uj,k−u∗∈Vk

‖ uj+1,k − u∗ ‖a
‖ uj,k − u∗ ‖a

be the convergence rate of MULT with ν smoothing operations.
Then, the following recursion formula holds:

σk ≤ σ
µk−1

k−1 + (1− σ
µk−1

k−1 )(ρν + (1− ρν)γ)2.(2.5)

Proof. The proof is given by Theorem 2.2 of [20] with ρ = ρ1 = ρ3; see also
Theorem 4 of [19].

The following lemma of the standard multigrid theory is helpful for the analysis
of the recursion formula (2.5).

Lemma 2.1. Let µk = µ ∈ N, µ > 1, and

κ := (ρν + (1− ρν)γ)
2
<

µ− 1

µ
.(2.6)

Then the elements σk of the recursion

σ0 := 0, σk := σµk−1 + (1− σµk−1)κ

are contained in the interval [0, σ). The equation σ = κ + σµ(1 − κ) has a solution
σ ∈ (0, 1). More precisely, the sequence {σk}∞k=0 is monotonically increasing and
bounded from above by σ < 1 for 0 < κ < µ−1

µ .

Proof. The proof can be found in several papers; see, e.g., Lemma 3 of [19] or
Lemma 3.2 of [20].

Using Theorem 2.1 and Lemma 2.1, we can prove a mesh-size independent con-
vergence rate in the case µ = 2, i.e., the W -cycle, if κ < 1

2 .

If µ = 3 and κ < 2
3 , from (2.6) it can be concluded that ν >

ln(
√

2
3−γ)−ln(1−γ)

ln ρ

smoothing steps are needed if γ2 < 2
3 . We want to prove multigrid convergence for

system (1.7) via Theorem 2.1. For this aim, we have to determine bounds for ρ in
(2.3) and γ2 in (2.4). In the next subsection we summarize some lemmas which are
helpful for our aim. Most of them are standard or trivial, and we refer to [1], [8], [11],
[18], [21] or the preprint [7] for the proofs.

2.2.1. Basic definitions and helpful lemmas of the linear algebra. For
proving the strengthened Cauchy inequality

(a(v, w))
2 ≤ γ2a(v, v)a(w,w) ∀v ∈ Vk−1, w ∈Wk
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with γ2 < 1, we split a(v, w) into

a(v, w) =

∫
Ω

y2vxwx + x2vywy =
∑
i,j

∫
Ek
i,j

y2vxwx + x2vywy =:
∑
i,j

aE
k
i,j (v, w).

The angle between the spaces Vk−1 and Wk can be estimated using the local angles.
Lemma 2.2. Let a(·, ·) be a symmetric, positive definite bilinear form. Under the

assumption that (
aE

k
ij (v, w)

)2

≤ γ2aE
k
ij (v, v)aE

k
ij (w,w)

for all v ∈ Vk−1 |Ek
ij

and w ∈Wk |Ek
ij

holds, we have

(a(v, w))
2 ≤ γ2a(v, v)a(w,w) ∀v ∈ Vk−1, w ∈Wk,

where V |Ek
ij

denotes the restriction of V on Ekij.
Proof. The proof is standard [8], [18].
The following lemma (see [11], [21]) relates the constant of the strengthened

Cauchy inequality to the largest eigenvalue of a generalized eigenvalue problem. In
order to formulate it, we need the following definition. Let X be a linear (finite-
dimensional) space, and let Y be a subspace of X. We define the difference X− Y as
any linear subspace satisfying

X = Y⊕ (X− Y).

Note that the choice of X− Y is not unique.
Lemma 2.3. Consider the splitting V⊕W. Let

V = span{φi}ni=1, W = span{ψi}mi=1,

G = [a(φj , φi)]
n
i,j=1 , Ht = [a(φj , ψi)]

n,m
i,j=1 , K = [a(ψj , ψi)]

m
i,j=1 .

Furthermore, let V ∩W = {0} and ker a ⊂ V, where ker a = {v ∈ V : a(v, w) =
0 ∀w ∈ V} is the kernel of the bilinear form a. The bilinear form a(·, ·) is symmetric
and positive semidefinite. Then the minimal constant γ2 with

a(v, w)2 ≤ γ2a(v, v)a(w,w) ∀v ∈ V, w ∈W

is equal to the largest eigenvalue λ of

V tHtK−1HV w = λV tGV w,

where V ∈ R
n,n−q is chosen such that imV = R

n − kerG and kerV t = 0. The
parameter q denotes the dimension of kerG.

Proof. See [11], [21].
For the proof of the strengthened Cauchy inequality we need in our case an

estimate for the eigenvalues of a 2× 2 matrix. A useful tool is the next lemma.
Lemma 2.4. Let M ∈ R

2,2 be a matrix with real eigenvalues and ϑ a real number
with

p = 2ϑ− trace(M) ≥ 0 and q = detM + ϑ2 − ϑtrace(M) ≥ 0.
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Then we have λmax(M) ≤ ϑ.
Proof. The proof is trivial; cf. [7].
The following lemma (see [1], [22]) of the finite element analysis is helpful for

the proof of the smoothing property (2.3). It analyzes the eigenvalue bounds of an
assembled matrix by the eigenvalue bounds of the element matrices.

Lemma 2.5. Let {Ai ∈ R
mi,mi}si=1 be a finite set of symmetric positive definite

matrices. Let A =
∑s

i=1 L
t
iAiLi, where Li ∈ R

mi,m and A ∈ R
m,m. Furthermore, let

Ci be a preconditioner for the matrix Ai; i.e., for all w ∈ R
mi the relations

λi(Ciw,w) ≤ (Aiw,w) ≤ λ
i
(Ciw,w)

with 0 < λi and 0 ≤ λi hold. Let C =
∑s

i=1 L
t
iCiLi. Then, for all v ∈ R

m

λ(Cv, v) ≤ (Av, v) ≤ λ(Cv, v)

is valid with

λ = min
i
λi, λ = max

i
λ
i
.

2.2.2. Discussion of the strengthened Cauchy inequality on the macro-
elements Ek

ij. We prove the strengthened Cauchy inequality (2.4) with the bilinear

form a(·, ·) restricted on τ1,k
ij and τ2,k

ij if i, j > 0, and on the macroelements Ekij if i = 0
or j = 0.

We want to obtain the stiffness matrix on the macroelements Ekij with respect to
the two level basis built by the basis functions of Vk |Ek

ij
and Wk+1 |Ek

ij
. We start

with the introduction of the basis functions on Ekij . Note that the triangle τ2,k
ij is the

union of the triangles τ2,k+1
2i,2j , τ1,k+1

2i+1,2j , τ
2,k+1
2i+1,2j , and τ2,k+1

2i+1,2j+1, and the triangle τ1,k
ij

is the union of the triangles τ1,k+1
2i,2j , τ1,k+1

2i,2j+1, τ
2,k+1
2i,2j+1, and τ1,k+1

2i+1,2j+1. The nodes xkij ,

xki,j+1, x
k
i+1,j , and xki+1,j+1 are the coarse grid nodes, and the nodes xk+1

2i+1,2j , x
k+1
2i,2j+1,

xk+1
2i+2,2j+1, x

k+1
2i+1,2j+2, and xk+1

2i+1,2j+1 are new in the level k + 1; compare Figure 2.1.

xk
i,j+1 x

k+1
2i+1,2j+2

xk
i+1,j+1

x
k+1
2i,2j+1

x
k+1
2i+1,2j+1

x
k+1
2i+2,2j+1

xk
i,j x

k+1
2i+1,2j

xk
i+1,j

τ
1,k+1
2i,2j+1

τ
2,k+1
2i,2j+1

τ
1,k+1
2i+1,2j+1

τ
2,k+1
2i+1,2j+1

τ
1,k+1
2i,2j

τ
2,k+1
2i,2j

τ
1,k+1
2i+1,2j

τ
2,k+1
2i+1,2j

Fig. 2.1. Local numbering of the nodes and subtriangles of Ek
ij .

Using this notation, we have

Vk |Ek
ij
= span{φklm}(l,m)∈NVk

ij

and Wk+1 |Ek
ij
= span{φk+1

lm }(l,m)∈NWk+1
ij

,



936 SVEN BEUCHLER

where

NVk
ij := {(l,m) ∈ N

2, i ≤ l ≤ i+ 1, j ≤ m ≤ j + 1}
and with the help of Nk+1 defined in (2.2),

N
Wk+1

ij := Nk+1 ∩ {(l,m) ∈ N
2, 2i ≤ l ≤ 2i+ 2, 2j ≤ m ≤ 2j + 2}.

Note that for boundary macroelements Ekij , i.e., with i = 0, j = 0, i = n−1, j = n−1,

some modifications are necessary because of Vk ⊂ H1
0 (Ω).

We define the matrices

G :=
[
aτ

2,k
ij (φklm, φ

k
rs)
]
(r,s),(l,m)∈N2,Vk

ij

,

Ht :=
[
aτ

2,k
ij (φklm, φ

k+1
rs )

]
(r,s)∈N2,Vk

ij ,(l,m)∈N2,Wk+1
ij

,

K :=
[
aτ

2,k
ij (φk+1

lm , φk+1
rs )

]
(r,s),(l,m)∈N2,Wk+1

ij

,

with N2,Vk

ij := T 2
ij ∩ NVk

ij and N
2,Wk+1

ij := T 2
ij ∩ N

Wk+1

ij , where T 2
ij := {(l,m) ∈

N
2, l − m ≥ i − j}. The ordering of the rows and columns in the matrices G, H,

and K corresponds to the ordering of the coarse grid nodes and of the new nodes
introduced above. The matrices G, H, and K can be determined by a straightforward
calculation. We start with the case 0 < i, j < n− 1. With

a :=
48i2 + 48i+ 14

192n2
, b :=

48i2 + 16i+ 2

192n2
, c :=

48i2 + 80i+ 34

192n2
,

d :=
48j2 + 48j + 14

192n2
, e :=

48j2 + 16j + 2

192n2
, f :=

48j2 + 80j + 34

192n2
(2.7)

one obtains

Ht = 2


 0 −d d

a d −a− d
−a 0 a


 , K = 4


 a+ e 0 −a

0 c+ d −d
−a −d a+ d


 ,

G =


 d+ e −d− e 0
−d− e a+ c+ d+ e −a− c

0 −a− c a+ c


 .

(2.8)

We note that in the case of elements laying on the boundary of the domain Ω1, the
matrices G, H, and K (2.8) are similarly defined, but we have only to cancel all rows
and columns in G, H, and K which correspond to boundary nodes.

For choosing the matrix V of Lemma 2.3 we need kerG. From the last relations
it follows kerG = span{(1, 1, 1)t} and kerH = span{(1, 1, 1)t}.

Corollary 2.1. We have kerG ⊂ kerH.
Now we determine the constant γτ2,k

ij
, the constant of the strengthened Cauchy

inequality on the triangle τ2,k
ij , by solving a generalized eigenvalue problem of the type

(2.3).
Lemma 2.6. For 1 ≤ i, j ≤ n− 2 one obtains(

aτ
2,k
ij (v, w)

)2

≤ γ2
τ2,k
ij

aτ
2,k
ij (v, v)aτ

2,k
ij (w,w) ∀v ∈ Vk |τ2,k

ij
, w ∈Wk+1 |τ2,k

ij
(2.9)
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with γ2
τ2,k
ij

= 95
176 .

Proof. Corollary 2.1 states that kerG ⊂ kerH, and relation (2.8) states that
kerK is trivial. Hence, we can apply Lemma 2.3. We know kerG = span{(1, 1, 1)t}.
Thus, we can choose

V =


 1 0

0 1
0 0


 .(2.10)

The matrix V tGV is symmetric and positive definite; the matrix V tHtK−1HV is
symmetric. Therefore, the generalized 2 × 2 eigenvalue problem has real eigenvalues
and is equivalent to the eigenvalue problem

(V tGV )−1V tHtK−1HV x = λx.

This is a 2× 2 eigenvalue problem for which we can apply Lemma 2.4. With the help
of a computer algebra system we computed the matrix

M := (V tGV )−1V tHtK−1HV.

The choice γ2
τ2,k
ij

= 95
176 yields

p = 2γ2
τ2,k
ij

− trace(M) ≥ 0 and q = detM + γ4
τ2,k
ij

− γ2
τ2,k
ij

trace(M) ≥ 0.(2.11)

Using Lemmas 2.3 and 2.4 we infer (2.9).
Note that the detailed proof of the lemma is very technical. The terms p and q

of (2.11) are rational functions in i and j of the type

∑6
s,r=0 brs(i− 1)r(j − 1)s∑6
s,r=0 crs(i− 1)r(j − 1)s

with brs ≥ 0 and crs > 0 for all r, s = 0, . . . , 6 and i, j > 0. Our aim was finding
a constant γ2

τ2,k
ij

as small as possible. The direct computation of the eigenvalues for

the element τ2,k
1,1 leads to the value γ2

τ2,k
1,1

= 95
176 . Therefore, this constant cannot be

improved.
The estimates presented above are valid for all i, j > 0. Therefore, the theory of

Lemma 2.6 can be extended to the boundary elements at x = 1 or y = 1.
Corollary 2.2. Let i > 0 and j > 0. The inequality

(
aτ

2,k
ij (v, w)

)2

≤ γ2
τ2,k
ij

aτ
2,k
ij (v, v)aτ

2,k
ij (w,w) ∀v ∈ Vk |τ2,k

ij
, w ∈Wk+1 |τ2,k

ij
(2.12)

is valid for i = n− 1 or j = n− 1 with γ2
τ2,k
ij

≤ 95
176 .

Proof. We start with j = n − 1 and 0 < i < n − 1. We omit the unknown
corresponding to φki+1,j+1. Thus, we have to cancel the last row and column in the
matrix G (2.8), which is the same as choosing the matrix V tGV (2.10). In the case
i = n− 1 and 0 < j < n− 1, the unknowns corresponding to the second and last row
and column in G and the third in K are omitted.
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By symmetry of the differential operator, the relation (2.12) is valid for τ1,k
ij ,

0 < i, j ≤ n − 1. Hence, the constant in the strengthened Cauchy inequality for the
macroelements Ekij , 0 < i, j ≤ n− 1, fulfills (cf. Lemma 2.2)

(
aE

k
ij (v, w)

)2

≤ γ2
Ek
ij
aE

k
ij (v, v)aE

k
ij (w,w) ∀v ∈ Vk |Ek

ij
, w ∈Wk |Ek

ij
(2.13)

with γ2
Ek
ij

= 95
176 .

It remains to consider the case i = 0 or j = 0. The proof is similar and uses
explicitly the Dirichlet boundary conditions at x = 0 and y = 0. We compute the
constant of the strengthened Cauchy inequality directly on the macroelements Ekij .
We obtain

γ2
Ek
ij
<

95

176
(2.14)

for i = 0 or j = 0. For details, see [7, Lemma 5.20 and Lemma 5.22].
Now we are able to formulate the main result of this subsection.
Theorem 2.2. The inequality

(a(v, w))
2 ≤ γ2a(v, v)a(w,w) ∀v ∈ Vk, w ∈Wk+1

is valid with γ2 = 95
176 .

Proof. We apply Lemma 2.2. By inequalities (2.13) and (2.14) the assertion
follows.

2.2.3. Construction of the smoother. We need a good smoother for applying
a multigrid solver to the linear system (1.7). This smoother will be constructed
according to the local behavior of the differential operator. An idea presented in [1]
for the construction of smoothers in the case of anisotropic problems is extended to
the problem (1.6). This smoother operates only on the space Wk+1. Consider the

triangle τ2,k
ij . For our discussion only the submatrix K is needed, which corresponds

to the nodal basis functions of Wk+1. We discuss the two cases i < j and i ≥ j.
Recall from (2.8) that

K2,ij = 4


 a+ e 0 −a

0 c+ d −d
−a −d a+ d


 .

The indices i, j and 2 induce that this is the stiffness matrix with respect to Wk on
the triangle τ2,k

ij ; the index k is omitted. We now define a local preconditioner C2,ij

for this matrix by omitting all those off-diagonal entries whose absolute values are
small with respect to the main diagonals. We start with the case i < j. By (2.7),
a < d holds. Hence, we set

C2,ij := 4


 a+ e 0 0

0 c+ d −d
0 −d a+ d


 .(2.15)

This matrix is a good preconditioner for K2,ij as the following lemma shows.
Lemma 2.7. For 0 ≤ i < j < n one has

λmin(C
−1
2,ijK2,ij) ≥ 1−

√
1

3
and λmax(C

−1
2,ijK2,ij) ≤ 1 +

√
1

3
.
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Proof. The roots of the characteristical polynomial of C−1
2,ijK2,ij are

λ1 = 1, λ2,3 = 1±√ρ, where ρ =
a

a+ e

ac+ ad

ac+ ad+ cd
.

We have for i ≤ j − 1 that c
d ≤ 1 and e

a ≥ 1. Therefore, using a < c, we obtain

ac+ ad

ac+ ad+ cd
≤ 2

3
and

a

a+ e
≤ 1

2
.(2.16)

Inserting the estimates (2.16), we obtain 1 −
√

1
3 ≤ λ3 ≤ λ2 ≤ 1 +

√
1
3 . Hence, the

assertion follows immediately.
We now consider i ≥ j. Then, a > d holds, and we define

C2,ij := 4


 a+ e 0 −a

0 c+ d 0
−a 0 a+ d


 .(2.17)

Lemma 2.8. It holds that

λmin(C
−1
2,ijK2,ij) ≥ 1− 1

10

√
35 and λmax(C

−1
2,ijK2,ij) ≤ 1 +

1

10

√
35

for n > i ≥ j ≥ 0.
Proof. The proof is similar to the proof of Lemma 2.7. However, we have to

distinguish the cases
• i < n− 1 and j > 0, the same case as in Lemma 2.7;
• i = n− 1 and j > 0, where C−1

2,ijK2,ij = I;
• j = 0, where we have to solve an eigenvalue problem with 2× 2 matrices.

For details, see [7].

We define matrices C1,ij corresponding to the triangle τ1,k
ij in the same way:

C1,ij := 4


 b+ d 0 −d

0 a+ f 0
−d 0 a+ d


 for i ≤ j,

C1,ij := 4


 b+ d 0 0

0 a+ f −a
0 −a a+ d


 for i > j.

(2.18)

By the symmetry of the differential operator, we obtain the same results as in Lemmas
2.7 and 2.8.

Now we define a global preconditioner CWk+1
using the local matrices Cs,ij . We

know that

KWk+1
= a(φk+1

ij , φk+1
lm )(i,j),(l,m)∈Nk+1

is the stiffness matrix Kk restricted to the space Wk+1 (compare (2.1), (2.2)). The
matrixKWk+1

is the result of assembling the local stiffness matricesKs,ij (2.8), s = 1, 2
and i, j = 0, . . . , n− 1, i.e.,

KWk+1
=

2∑
s=1

n−1∑
i,j=0

Lts,ijKs,ijLs,ij .(2.19)
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The matrices Ls,ij ∈ R
3·4k−1−2k,3 are the usual finite element assembling matrices.

We define the matrix CWk+1
by

CWk+1
=

2∑
s=1

n−1∑
i,j=0

Lts,ijCs,ijLs,ij .(2.20)

Because of the properties of the local preconditioners Cs,ij , the matrix CWk+1
is a

good preconditioner for KWk+1
. This result is stated as the main theorem of this

subsection.
Theorem 2.3. It holds that

λmin(C
−1
Wk+1

KWk+1
) ≥ 1− 1

10

√
35, λmax(C

−1
Wk+1

KWk+1
) ≤ 1 +

1

10

√
35.

Proof. Use Lemmas 2.5, 2.7, and 2.8, and relations (2.19) and (2.20).
Applying Theorem 2.3 an efficient smoother in the multigrid algorithm MULT

can be built as a preconditioned simple iteration method. The iteration operator of
this method is defined by

S := I − ωC−1
Wk+1

KWk+1
.(2.21)

Corollary 2.3. Then, for all w ∈Wk+1, ν ≥ 1, and ω = ωopt = 1

‖ Sνw ‖a≤ ρν ‖ w ‖a
holds with ρ = 1

10

√
35.

Proof. The assertion follows by the theory of Jacobi smoothers; for details,
see [7].

2.3. Application of the multigrid theory to −x2uyy − y2uxx = g. We
now apply the theory of subsection 2.1 to problem (1.7). We state the main theorem
of this paper.

Theorem 2.4. Consider (1.7) with the exact solution u∗. This linear system is
solved by the multigrid algorithm MULT (k, uj,k, g) with µ = 3 and ν ≥ 3 smoothing
steps. Then the rate of convergence σk on level k can be bounded by

σk ≤ σ < 1.

Proof. We check the assumptions of Theorem 2.1. From Theorem 2.2 we have the
estimate γ2 ≤ 95

176 for the constant in the strengthened Cauchy inequality (2.4). The
second assumption (2.3) is fulfilled for the smoother S defined in (2.21); cf. Corollary
2.3. Hence, we can prove a convergence rate 0 ≤ σ < 1 of the multigrid algorithm for
µ ≥ 3.

Using Lemma 2.1, we can analyze the number of smoothing steps ν which is
necessary for a convergence rate σ < 1. We have to show

κ = ρν + (1− ρν)γ2 <
2

3

with γ2 = 95
176 and ρ = 1

10

√
35 (Corollary 2.3). Therefore, we have for ν ≥ 3 a

mesh-size independent convergence rate σ < 1.
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3. Implementational details. For applying the smoother S (2.21), the linear
system

CWk+1
w = r(3.1)

has to be solved. In this section, we explain an algorithm for solving (3.1). We want to
show that this matrix is a block diagonal matrix of tridiagonal blocks. Furthermore,
we show that the smoother S is a line smoother operating on lines L2m−1 which will
be defined below. According to (2.20), (2.15), (2.17), and (2.18), the matrix CWk+1

has the structure

CWk+1
= diag(KWk+1

) +R,

where diag(KWk+1
) is the diagonal part of the matrix KWk+1

defined in (2.19). The
matrix R will be defined below. Let b : Wk ×Wk → R be the following bilinear form
uniquely determined by the values of the basis functions {φkij}(i,j)∈Nk

∈Wk:

b(φkij , φ
k
lm) :=


 a(φkij , φ

k
lm) if

i = l = 2r − 1, j = 2, . . . , i, m = j − 1,
j = m = 2r − 1, i = 2, . . . , j, l = i− 1,

0 otherwise

for r = 1, . . . , n2 . Note that a(φkij , φ
k
lm) is equal to the element (i, j), (l,m) of the

matrix Kk. The matrix R is defined via the bilinear form b. More precisely

R :=
[
b(φkij , φ

k
lm) + b(φklm, φ

k
ij)
]
(i,j),(l,m)∈Nk

;

i.e., the entries of the matrix R are those entries of the matrix CWk+1
which correspond

to edges marked by a bold line in Figure 3.1.
After a proper permutation the matrix CWk+1

is a block diagonal matrix with di-
agonal and tridiagonal blocks. Therefore, we can solve the system (3.1) using Cholesky
decomposition in O(n2) flops. Hence, the operation Sw is arithmetically optimal. We
can choose ν = 3 on each level. The number of unknowns of the system (1.7) in-
crease per level to the factor 4. Therefore, using Theorem 2.4 the multigrid algorithm
MULT for µ = 3 is an arithmetically optimal method [13].

Fig. 3.1. Nonzero entries of the matrices R (left) and R̃ (right).

Additionally, a smoother S1 is built, which uses the ideas of (2.21). This smoother
operates on the space Vk. Let C̃k := diag(Kk) + R̃, where

R̃ :=
[
b̃(φkij , φ

k
lm) + b̃(φklm, φ

k
ij)
]n−1

i,j;l,m=1
,
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with the bilinear form b̃ : Vk × Vk → R, where

b̃(φkij , φ
k
lm) :=


 a(φkij , φ

k
lm) if

i = l = r, j = 2, . . . , i, m = j − 1,
or j = m = r, i = 2, . . . , j, l = i− 1,

0 otherwise

for r = 1, . . . , n− 1. We now define the smoother

S1 = I − ωC̃−1
k Kk.(3.2)

In contrast to the smoother S (2.21) this smoother is a line smoother on each bold line
of Figure 3.1. Therefore, we expect better convergence rates of a standard multigrid
algorithm (cf. Remark 2.1) in contrast to S. The matrix C̃k is block tridiagonal.
Therefore, S1w = r can be solved arithmetically optimal using Cholesky decompostion
in O(n2) flops.

4. Numerical results.

Table 4.1
Convergence rates and number of iterations of multigrid algorithm MULT using smoother S

(ν = 3).

Level µ = 1 µ = 2 µ = 3 µ = 4
k It σk It σk It σk It σk
2 18 0.4070 18 0.4070 18 0.4070 18 0.4070
3 32 0.6017 24 0.4997 22 0.4778 22 0.4722
4 50 0.7239 25 0.5221 22 0.4698 21 0.4583
5 72 0.7974 27 0.5449 22 0.4770 21 0.4582
6 97 0.8463 30 0.5755 24 0.5035 22 0.4719
7 128 0.8814 34 0.6201 25 0.5156 22 0.4788
8 176 0.9123 37 0.6432 26 0.5282 23 0.4838
9 247 0.9373 41 0.6724 26 0.5339 23 0.4847
10 300 0.9545 44 0.6901 26 0.5380 23 0.4841

4.1. Convergence rate of multigrid. Table 4.1 shows the convergence rates
of the multigrid algorithm MULT for solving (1.7) with g(x, y) ≡ 1. We use several
kinds of cycles. We stop the algorithm when the relative error measured in the KT

k Kk

norm is less than 10−7.
The V -cycle has clearly growing numbers of iterations, but for µ ≥ 3 we have

mesh-independent convergence rates. It is not clear if the convergence rates for the
W -cycle are bounded from above by σ < 1. The reason for the bad convergence of
the V -cycle is the smoother S which operates only on the nodes on Wk.

Additionally, we perform numerical experiments with multigrid algorithms using
the smoother S1, which we have defined in (3.2). Table 4.2 displays the convergence
rates for this algorithm using the smoother S1. We solve (1.7) with g(x, y) ≡ 1 and
stop the algorithm when the error in the energy norm is less than 10−7. We choose
ω = 0.8, which shows the best convergence rates. We obtain for the V - and W -cycle
mesh-independent convergence rates.

4.2. Number of iterations for multigrid as preconditioner in the PCG
method. We expect to obtain better convergence properties by using a PCG method
with one multigrid cycle as preconditioner. Table 4.3 shows the number of iterations
to reduce the error in the preconditioned energy norm by a factor 10−9. We choose
g(x, y) ≡ 1. We see constant numbers of iterations in two cases, V -cycle with smoother
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Table 4.2
Convergence rates and number of iterations of a standard multigrid algorithm using smoother

S1 (ν = 1, ω = 0.8).

Level µ = 1 µ = 2
k It σk It σk
2 9 0.1611 9 0.1611
3 11 0.2290 10 0.1951
4 13 0.2723 12 0.2522
5 15 0.3250 14 0.2941
6 16 0.3517 15 0.3192
7 16 0.3619 15 0.3331
8 17 0.3680 15 0.3392
9 17 0.3720 16 0.3429
10 17 0.3750 16 0.3442

Table 4.3
Number of iterations of the PCG method using a multigrid preconditioner with smoother S

(ω = 1) and S1 (ω = 0.8) and ν = 1.

Level S S1
µ = 1 µ = 2 µ = 3 µ = 1

2 7 8 7 7
3 12 12 11 9
4 15 13 13 10
5 16 14 13 10
6 18 14 13 11
7 21 15 13 11
8 23 16 14 11
9 25 16 14 11

S1 and for µ = 3 with smoother S, but with a growing number of iterations for the
V -cycle and smoother S. The results for the W -cycle (µ = 2) give no precise answer
as to whether the number of iterations are bounded or not.

5. Concluding remarks. Finally, we restate the two main results of this paper.
A degenerate boundary value problem in the unit square was discretized by piecewise
linear finite elements on a simple mesh. We constructed an arithmetically optimal
multigrid method for the solution of the system of algebraic finite element equations
arising from this discretization.

The second result concerns the application of this problem to the p-version of the
finite element method. Consider (1.1) in Ω = (−1, 1)2. Discretize this problem by
the p-version of the finite element method and use only one element. Then the blocks
corresponding to the vertex functions and edge bubbles do not exist, i.e., Ap = Aint

in (1.3). We choose as preconditioner

Ĉp := blockdiag
[
C4[I −M ]−1

]4
i=1

,

where M denotes the iteration operator of our multigrid method. Then it follows from
Theorem 3.4 in [7] and Theorem 2.4 (see also Theorem 7.1 in [7]) that the condition
number of Ĉ−1

p Kp grows as 1 + log p. Numerical experiments confirm the theory in

this case [7]. Hence, we have found a preconditioner Ĉp for the interior problem of
the p-version of the finite element method which is nearly optimal. Furthermore, the
operation r = Ĉ−1

p w can be done in O(p2) arithmetical operations.

Acknowledgment. I thank Michael Jung for helpful comments.
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Abstract. In the porous media equation vt = (vm)xx (m > 1), it is well known that there
appears a finite propagation of the initial support and that, if the initial support is connected, so
is supp v(t, ·) for t > 0. When the effect of the absorption is considered as the additional lower
order term −cvp (c > 0, p > 0), the possibility that the support will split is expected. Rosenau
and Kamin [Phys. D, 8 (1983), pp. 273–283] tried the numerical computations and suggested the
support splitting phenomena. But the theoretical justification is not discussed. In this paper, such
phenomena are investigated by use of finite difference schemes, and the sufficient conditions under
which the support begins to split are obtained in the specific case where m+ p = 2 and 0 < p < 1.
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1. Introduction. We are concerned with the propagation of thermal waves in
an absorbing medium occupying all of R1 in which there is an interaction between
diffusion and absorption. The equation which describes this process is written in the
form of the following initial value problem for the nonlinear diffusion equation with
absorption which is used to describe the flow of liquids through porous media:

vt = (vm)xx − cvp, x ∈ R1, t > 0,(1.1)

v(0, x) = v0(x), x ∈ R1,(1.2)

where m(> 1), p(> 0), and c(≥ 0) are constants, and v0(x) ∈ C0(R1) is nonnegative
and has compact support. In a heated plasma, v denotes the temperature and −cvp

describes the losses caused by radiation. We may take p = 0.5 for bremsstrahlung
radiation and 0.5 ≤ p ≤ 2 for synchrotron radiation [24].

The existence and uniqueness of the nonnegative weak solution v of (1.1)–(1.2)
was established by Oleinik, Kalashnikov, and Chzou [23], Kalashnikov [13], [14],
Kersner [16], and Herrero and Vázquez [11]. The smoothness of v in the open set
{(x, t); v(t, x) > 0 and t > 0} is also proved. Moreover, Kalashnikov proved that the
solution becomes extinct in a finite time for c > 0 and 0 < p < 1.

Since the diffusion rate mvm−1 vanishes at points where v = 0, the initial support
propagates at finite speed; that is, there appear interface curves between the region
where v > 0 and the region where v = 0. It is shown in the following papers that
supp v(t, ·) exhibits three properties:
(i) Positivity. supp v(t, ·) expands as t increases and limt→∞ supp v(t, ·) = R1,

when c = 0, or c > 0 and m ≤ p [1], [3], [11], [13], [14], [18];
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(ii) Localization. supp v(t, ·) expands as t increases and is uniformly bounded with
respect to t, when c > 0 and 1 ≤ p < m [3], [10], [13], [14], [17], [18]. There exist
constants Mj (j = 1, 2) such that supp v(t, ·) ⊂ [M1,M2] for all t ≥ 0;

(iii) Total extinction. supp v is compact in [0,∞) ×R1, when c > 0, m > 1, and
0 < p < 1. Thus supp v(t, ·) expands and/or shrinks and v(t, x) becomes extinct
in a finite time: v(t, ·) ≡ 0 for t ≥ T ∗, and v(t, ·) �≡ 0 for t < T ∗, where T ∗ > 0
is some constant and is called the extinction time of v [13], [14], [15], [17].
When the solution v possesses the positivity property or the localization property,

supp v(t, ·) never becomes disconnected, even if the initial function v0(x) has zeros
in the interval (α1, α2), where [α1, α2] = supp v0(x) ((A),(B)→(a) in Figure 1.1).
When the solution v has the total extinction property, that is, absorption can cool the
medium faster than diffusion supplies heat from hot area, the support shrinks and
becomes disconnected ((A)→(b)). Moreover, there is the possibility of the support
splitting into several disjoint sets, even if v0(x) is positive on (α1, α2) ((B)→(b)).

Fig. 1.1. Support splitting and connecting.

This motivates us to investigate the problem “How does the support vary when
t varies?” To answer this problem we consider the behavior of supp v(t, ·) for the
following two cases.

Case 1. v0(x) ∈ C0(R1) is a nonnegative function with compact support [α1, α2]
and has only one zero α0 ∈ (α1, α2); that is,

v0(α0) = 0 and v0(x) > 0 on (α1, α0) ∪ (α0, α2).(1.3)

Case 2. v0(x) ∈ C0(R1) has compact support [α1, α2] and satisfies

v0(x) > 0 on (α1, α2).(1.4)

Rosenau and Kamin [24] tried numerical computations in Case 2, and obtained
the numerical profile of v beginning to split into several subpulses, which means the
splitting of the support. But they did not theoretically prove the appearance of such
phenomena. From analytical points of view, Chen, Matano, and Mimura [4] con-
structed the solution v(t, x) such that supp v(t, ·), while initially connected, splits
into multiple connected components in a finite time. For Case 1 there are Kersner’s
results [15] which are useful to determine whether or not supp v(t, ·) becomes dis-
connected (see Remarks 5.1 and 5.2). In this paper, we treat such a problem from
numerical points of view under the following assumption.

Assumption A. The constants m and p satisfy

m+ p = 2 and 0 < p < 1.(1.5)
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To analyze the behavior of the support we have to construct the finite difference
scheme of which both numerical solutions and numerical interfaces converge to the
exact ones. Putting u = vm−1, we rewrite (1.1)–(1.2) as

ut = muuxx + a(ux)
2 − c′, a =

m

m− 1
, c′ = (m− 1)c,(1.6)

u(0, x) = u0(x) ≡ (v0(x))m−1.(1.7)

We note that the effect of absorption is expressed as the constant −c′ under Assump-
tion A.

Our difference scheme is constructed along the two important ideas which are
proposed by Graveleau and Jamet [9] and DiBenedetto and Hoff [5]. Their differ-
ence schemes give the approximation to (1.6)–(1.7) with c = 0; that is, the porous
media equation. Graveleau and Jamet’s scheme is based on splitting the operator
Au = muuxx + a(ux)

2 into two parts ut = Pu ≡ muuxx and ut = Hu ≡ a(ux)
2.

These two equations are discretized separately by the suitable difference schemes and
solved alternately to approximate the solution of (1.6)–(1.7). They proved the con-
vergence of numerical solutions and the finite propagation of support. However, since
their difference scheme includes an artificial viscosity in approximating the nonlinear
hyperbolic equation ut = Hu, it does not give good approximations in realizing the
interfaces. DiBenedetto and Hoff’s scheme approximates (1.6)–(1.7) with the interface
equation ζ̇(t) = − m

m−1ux(t, ζ(t)). They succeeded in proving the convergence of nu-
merical solutions and numerical interfaces, and obtained error bounds. We note that
their idea is applied to the approximation of the interfaces for a doubly degenerate
parabolic equation [12].

Along the idea of Graveleau and Jamet, we construct the difference scheme con-
sisting of three approximations to ut = Pu, ut = Hu, and ut = Du ≡ −c′ in section 2.
By solving Riemann problems included in ut = Hu and using the Rankine–Hugoniot
jump equation, we propose the improved scheme so that an artificial viscosity is
excluded. In sections 3 and 4 we succeed in proving the convergence of numerical so-
lutions and numerical interfaces by using DiBenedetto and Hoff’s argument. However,
we are unable to obtain error bounds. In section 5, we partially improve Kersner’s
results in Case 1. Moreover, we obtain the sufficient condition under which the sup-
port begins to split into at least two disjoint sets in Case 2. Unfortunately, when
m + p �= 2, m > 1, and 0 < p < 1, we are unable to construct the difference scheme
satisfying the basic inequalities (Theorem 2.1) in approximating ut = Du. However,
our numerical computations show support splitting phenomena, which seems true.
We need the improvement of our mathematical proofs to justify such phenomena.
Numerical examples will be submitted for publication elsewhere.

On the other hand, Galaktionov [6], Galaktionov and Samarskii [7], [8], Kur-
dyumov, Kurkina, Malinetskii, and Samarskii [19], Kurdyumov, Gurevich, and Tel’-
kovskaya [20], and Samarskii, Galaktionov, Kurdyumov, and Mikhailov [25] estab-
lished the existence of an unbounded solution for the equation with the effect of heat
sources:

vt = ∇ · (vm∇v) + vp, t > 0, x ∈ Rn.

They constructed self-similar solutions and difference solutions, and obtained the in-
teresting properties of the behavior of the solution.
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2. Difference schemes.

2.1. Difference operators. Our difference scheme approximates the problem
(1.6)–(1.7) instead of (1.1)–(1.2), and is described as follows: Find the sequence
{unh}n=1,2,... ⊂ Vh for each u0

h ∈ Vh such that

un+1
h = Sh,ku

n
h ≡ (Ph,κ)

µ ·
ν∏

j=1

Hh,τj ·Dh,ku
n
h for n = 0, 1, 2, . . . .(2.1)

Here k ≡ kn+1 ≡ tn+1 − tn (t0 = 0), τj ≡ τn+1,j , and κ ≡ κn+1 are variable time
steps, h is a space mesh width, µ ≡ µn+1 and ν ≡ νn+1 are positive integers satisfying

νn+1∑
j=1

τn+1,j = µn+1κn+1 = kn+1,(2.2)

Dh,k, Hh,τj , and Ph,κ are difference operators approximating ut = −c′, ut = Hu, and
ut = Pu, respectively, which are stated later, and Vh is the set of the nonnegative
continuous functions uh = uh(x) with the following properties:

(i) uh has compact support with the left and right interfaces  (uh) and r(uh),
respectively, which are defined by

 (uh) = sup{ξ; uh(x) = 0 on (−∞, ξ]},(2.3)

r(uh) = inf {ξ; uh(x) = 0 on [ξ,∞)};(2.4)

(ii) uh is linear on each interval [xi, xi+1] (i ∈ Z), where xi = xi( , r) (i ∈ Z),

xi( , r) =




ih for i ∈ Z \ {L− 1, R + 1},
 for i = L− 1,
r for i = R + 1,

(2.5)

L ≡ L( ), L( ) = min{i ∈ Z; ih >  },  =  (uh),(2.6)

R ≡ R(r), R(r) = max{i ∈ Z; ih < r}, r = r(uh).(2.7)

The determination of the variable time steps k, τj , and κ are stated in the description
of Dh,k, Hh,τj , and Ph,κ, respectively. When Dh,ku

n∗
h ≡ 0 holds for some integer

n∗ > 0, we denote the numerical extinction time by T ∗
h = tn∗+1 ≡ tn∗ + kn∗+1 and

stop the numerical computation by putting

tn = T ∗
h + (n− n∗ − 1)kn∗+1 and unh(x) = 0 for all n ≥ n∗ + 1.(2.8)

We put X( , r) = {xi( , r) ; i ∈ Z} and
 n =  (unh), rn = r(unh), Ln = L( n), Rn = R(rn) (n = 0, 1, . . . , n∗).(2.9)

For simplicity, we introduce the following notations, which will be used in the
proof of Theorem 3.1 and the descriptions of Theorem 4.1 and Lemma 4.2:{

un+1,s
h =

(∏s
j=1 Hh,τn+1,j

)
un+1,0
h (s = 1, 2, . . . , νn+1),

un+1,0
h = Dh,kn+1u

n
h,

(2.10)

Ln+1,s = L( n+1,s),  n+1,s =  (un+1,s
h ) (s = 0, 1, . . . , νn+1),(2.11) {

un+1,·,q
h = (Ph,κn+1)

qun+1,·,0
h (q = 1, 2, . . . , µn+1),

un+1,·,0
h = u

n+1,νn+1

h ,
(2.12)

Ln+1,·,q = L( n+1,·,q),  n+1,·,q =  (un+1,·,q
h ) (q = 0, 1, . . . , µn+1).(2.13)
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Now we describe the difference operators Dh,k, Hh,τ , and Ph,κ by putting

hi = xi+1 − xi, ui = uh(xi),
δui = (ui+1 − ui)/hi, δ2ui = 2(δui − δui−1)/(hi + hi−1).

2.1.1. Difference operator Dh,k. For uh ∈ Vh we define Dh,kuh by

Dh,kuh(x
′
i) = max{uh(x′

i)− c′k, 0} for all x′
i ∈ X( (Dh,kuh), r(Dh,kuh)),(2.14)

 (Dh,kuh) = max{ (uh), (L′ − 1)h}, r(Dh,kuh) = min{r(uh), (R′ + 1)h},(2.15)

where

L′ = L( (u(k, ·))), R′ = R(r(u(k, ·))).(2.16)

We determine the time step k by either (2.17) with i = L or (2.17) with i = R− 1:

k =
1

c′
max(ui, ui+1) (i = L or R− 1).(2.17)

2.1.2. Difference operator Hh,τ . For uh ∈ Vh let u(τ, x) be the exact solution
of ut = Hu with the initial value u(0, x) = uh(x). We define Hh,κuh by

Hh,τuh(x
′
i) = u(τ, x′

i) for all x′
i ∈ X( (Hh,τuh), r(Hh,τuh)),(2.18)

 (Hh,τuh) =  (u(τ, ·)), r(Hh,τuh) = r(u(τ, ·)).(2.19)

The time step τ is the number satisfying

a‖(uh)x‖∞τ ≤ min

{
h

4
, Lh−  (uh), r(uh)−Rh

}
,(2.20)

where ‖ ·‖∞ denotes ‖ ·‖L∞(R1). We put  ′ =  (Hh,τuh), r′ = r(Hh,τuh), L′ = L( ′),
and R′ = R(r′). Then, for x′

i ∈ X( ′, r′), (2.18) and (2.19) are rewritten as

Hh,τuh(x
′
i) =




ui + a(δui)
2τ if i ∈ S+ = S+

S ∪ S+
R ,

ui + a(δui−1)
2τ if i ∈ S− = S−

S ∪ S−
R ,

ui if i ∈ S0,
(L′h−  ′)δuL−1 if i = L′ = L− 1,
(R′h− r′)δuR if i = R′ = R + 1,
0 if i ∈ Z \ {L′, . . . , R′},

(2.21)

 ′ =  (uh)− aδuL−1τ, r′ = r(uh)− aδuRτ,(2.22)

where

S+
S =

{
i ∈ {L, . . . , R}; δui−1 < δui and δui−1 > −δui

}
,

S−
S =

{
i ∈ {L, . . . , R}; δui−1 < δui and δui−1 ≤ −δui

}
,

S+
R =

{
i ∈ {L, . . . , R}; δui−1 ≥ δui > 0

}
,

S−
R =

{
i ∈ {L, . . . , R}; 0 > δui−1 ≥ δui

}
,

S0 =
{
i ∈ {L, . . . , R}; δui−1 ≥ 0 ≥ δui

}
.
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We apply the expression (2.21) to numerical computations, which we can show by
integrating the solution w(t, x) of the following Riemann initial value problem:

wt = a(w2)x with the initial value w(0, x) = (uh(x))x.(2.23)

Here (2.23) is derived from ut = Hu by putting w = ux. The numerical interface
equations (2.22) are well known as the Rankine–Hugoniot jump equation determining
the line on which the solution w has a shock.

2.1.3. Difference operator Ph,κ. For uh ∈ Vh we define Ph,κuh by the usual
explicit difference operator

Ph,κuh(x
′
i) = ui + κmuiδ

2ui for all x′
i ∈ X( (Ph,κuh), r(Ph,κuh)),(2.24)

 (Ph,κuh) =  (uh), r(Ph,κuh) = r(uh).(2.25)

The time step κ is the largest number satisfying

m‖uh‖∞κ
{ 1

h2
+

2

h(h+ hj)

}
≤ 1 and

4m‖(uh)x‖∞κ

h+ hj
≤ 1(2.26)

for j = L− 1 and R.

2.2. Basic inequalities.
Theorem 2.1 (basic inequalities). Let {unh}n=1,2,... be given by the scheme (2.1)

for u0
h ∈ Vh. Then unh either becomes extinct or belongs to Vh for each n ≥ 0, and the

following estimates hold for all n ≥ 0:

 0 − a‖(u0
h)x‖∞tn ≤  n ≤ rn ≤ r0 + a‖(u0

h)x‖∞tn if unh �≡ 0,(2.27)

0 ≤ unh(x) ≤ max(‖u0
h‖∞ − c′tn, 0) on R1,(2.28)

‖(unh)x‖∞ ≤ ‖(u0
h)x‖∞,(2.29)

TV ((unh)x) ≤ TV ((u0
h)x),(2.30)

‖(un+1
h − unh)/kn+1‖L1(R1) ≤ (m+ a)‖u0

h‖∞TV ((u0
h)x)(2.31)

+ c′
{
r0 −  0 + 2a‖(u0

h)x‖∞tn
}
,

inf
i∈Z

δ2u0
i ≤ inf

i∈Z
δ2uni ,(2.32)

where TV (f) denotes the total variation of f on R1.
Proof. The inequalities (2.27)–(2.32) with c = 0 immediately follow from Lem-

mas 3.1, 3.2, and 5.1 in [21]. Put u′
h = Dh,kuh (uh ∈ Vh). By simple calculations, it

can be shown that

‖u′
h‖∞ ≤ max(‖uh‖∞ − c′k, 0), ‖((u′

h))x‖∞ ≤ ‖(uh)x‖∞, TV ((u′
h)x) ≤ TV ((uh)x),

‖(u′
h − uh)/k‖L1(R1) ≤ c′ {r(uh)−  (uh)} , inf

i∈Z
δ2ui ≤ inf

i∈Z
δ2u′

i.

Hence (2.27)–(2.32) hold for c > 0 by these inequalities and (2.15).

2.3. Numerical extinction time. We show the existence of the numerical ex-
tinction time.

Theorem 2.2 (existence of numerical extinction time). Let {unh}n=1,2,... be given
by the scheme (2.1) for u0

h ∈ Vh. Then there exists an integer N(h) such that tN(h)

attains the numerical extinction time T ∗
h , and the following estimate holds:

T ∗
h ≤ tn +

‖unh‖∞
c′

for all n ≥ 0.(2.33)
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Proof. We prove the existence of N(h) such that tN(h) = T ∗
h . Assume the con-

trary; that is, suppose unh > 0 for all n ≥ 0. Then, it follows from (2.28) that

tn <
‖u0

h‖∞
c′

for all n ≥ 0.(2.34)

Let Q� and Qr be the sets of nonnegative integers defined by

Q� = {n; k = kn+1 satisfies (2.17) with i = L} and
Qr = {n; k = kn+1 satisfies (2.17) with i = R− 1},

respectively. From the determination of the numerical interfaces (see (2.15)) it follows
that

 ′n −  n ≥ h for n ∈ Q� and rn − r′n≥ h for n ∈ Qr,(2.35)

where  ′n =  (Dh,kn+1
unh) and r′n = r(Dh,kn+1

unh). By using (2.22), (2.29), and (2.35),
we have

 n+1 −  n =  n+1 −  ′n +  ′n −  n ≥
{ −a‖(u0

h)x‖∞kn+1 + h for n ∈ Q�,
−a‖(u0

h)x‖∞kn+1 for n /∈ Q�,
(2.36)

rn+1 − rn = rn+1 − r′n + r′n − rn ≤
{

a‖(u0
h)x‖∞kn+1 − h for n ∈ Qr,

a‖(u0
h)x‖∞kn+1 for n /∈ Qr.

(2.37)

Since { n} and {rn} are bounded sequences by (2.27) and (2.34), we can extract
convergent subsequences { ns} and {rns}. We find from (2.36) and (2.37) that

 ns+1
−  ns

=

ns+1−1∑
j=ns

( j+1 −  j) ≥ −a‖(u0
h)x‖∞

ns+1−1∑
j=ns

kj+1 + h for ns ∈ Q�,

rns+1
− rns

=

ns+1−1∑
j=ns

(rj+1 − rj) ≤ a‖(u0
h)x‖∞

ns+1−1∑
j=ns

kj+1 − h for ns ∈ Qr,

which yield

a‖(u0
h)x‖∞

ns+1−1∑
j=ns

kj+1 ≥
{

 ns
−  ns+1

+ h for ns ∈ Q�,
rns+1

− rns
+ h for ns ∈ Qr.

Then there exists an integer s0 such that

a‖(u0
h)x‖∞

ns+1−1∑
j=ns

kj+1 ≥ h

2
for s ≥ s0,

which implies

tnq − tns0
=

q−1∑
s=s0

ns+1−1∑
j=ns

kj+1 ≥ (q − s0)h

2a‖(u0
h)x‖∞

for q ≥ s0 + 1.(2.38)

Hence limq→+∞ tnq = +∞, which contradicts (2.34). Thus we have tN(h) = T ∗
h for

some integer N(h).
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Finally we show (2.33). From (2.28) we obtain

‖umh ‖∞ ≤ max{‖unh‖∞ − c′(tm − tn), 0} for all m > n,

which immediately yields

‖umh ‖∞ = 0 for tm ≥ tn +
‖unh‖∞

c′
.

Hence (2.33) holds, and the proof is complete.

3. Convergence of numerical solutions. In this section we state the conver-
gence of the numerical solutions. For this end, we start the scheme (2.1) with u0

h ∈ Vh
given by {

 (u0
h) =  (u0), r(u0

h) = r(u0),
u0
h(xi) = u0(xi) for all i ∈ Z.

(3.1)

We define the function uh(t, x) by

uh(t, x) = unh(x) on [tn, tn+1)×R1 for all tn and h(3.2)

and impose Condition B on v0.

Condition B. u0 ≡ (v0)m−1 ∈ C0(R1) is a nonnegative function with compact
support and u0

x ∈ L∞(R1) ∩BV (R1).

From Theorem 2.1 we have the following convergence theorem.

Theorem 3.1 (convergence of numerical solutions uh). Assume Condition B.
Let {h} be an arbitrary sequence which tends to zero. Then there exist a subsequence
{h′} of {h} and a function u with the following properties:

(i) u ∈ C0(H) ∩ L∞(H), ux ∈ L∞(H);
(ii) u(0, x) = u0(x) for all x ∈ R1;
(iii) as h′ → 0,

‖uh′ − u‖L∞(H) → 0,(3.3)

‖(uh′)x − ux‖Lp(H) → 0 (1 ≤ p < +∞);(3.4)

(iv) u is a weak solution; that is, the following integral relation holds for any
function φ(t, x) ∈ C1,1(H) with compact support

∫∫
supp u

(uφt −muuxφx − (m− a)(ux)
2φ− c′φ)dxdt+

∫
R1

u(0, x)φ(0, x)dx = 0;(3.5)

(v) uxx ∈ E ′ and ut ∈ E ′, where E ′ is the dual of the space E consisting of all
continuous functions with compact support in (0,∞)×R1.

As a direct corollary of Theorem 3.1 we have the following theorem.

Theorem 3.2 (convergence of numerical solutions vh). Let the same assumptions

as stated in Theorem 3.1 be satisfied. Then vh ≡ (uh)
1

m−1 converges uniformly on H
to the unique weak solution v of (1.1)–(1.2) as h tends to zero.

Proof of Theorem 3.1. By following Graveleau and Jamet (Theorem 6.1 and
Lemma 7.1 in [9]), the properties (i), (ii), (iii), and (v) are proved.
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We now show the property (iv). We note that u has a compact support from
(2.27), (2.33), and (3.3). Let {h} take the value belonging to the extracted subse-
quence {h′}. From (2.1) we have

un+1
i − uni =

µn+1−1∑
q=0

(
un+1,·,q+1
i − un+1,·,q

i

)

+

νn+1−1∑
s=0

(
un+1,s+1
i − un+1,s

i

)
+
(
un+1,0
i − uni

)
,

where un+1,s
i (s = 0, 1, . . . , νn+1) and un+1,·,q

i (q = 0, 1, . . . , µn+1) are defined by
(2.10) and (2.12), respectively. Let φ(t, x) ∈ C1,1(H) have compact support and T ∗

be the extinction time of v. Then we have∑
(tn,ih)∈supp u

hφni
(
un+1
i − uni

)

= −
∑

ih∈supp u0

hu0
iφ

0
i −

∑
(tn,ih)∈supp u

hun+1
i (φn+1

i − φni ) +
∑

ih∈supp u(tn∗ ,·)
hun

∗+1
i φn

∗+1
i

= Ah +Bh + Ch,

where φni = φ(tn, ih), the integer n∗ satisfies tn∗ < T ∗ and tn∗+1 ≥ T ∗, and

Ah=
∑

(tn,ih)∈supp u

hφni

{
µn+1−1∑
q=0

(un+1,·,q+1
i − un+1,·,q

i )

}
,

Bh=
∑

(tn,ih)∈supp u

hφni

{
νn+1−1∑
s=0

(un+1,s+1
i − un+1,s

i )

}
,

Ch=
∑

(tn,ih)∈supp u

hφni (u
n+1,0
i − uni ).

The following convergence is obvious:∑
ih∈supp u0

hu0
iφ

0
i −→

∫
R1

u(0, x)φ(0, x) dxdt as h→ 0,(3.6)

∑
ih∈supp u(tn∗ ,·)

hun
∗+1

i φn
∗+1

i −→ 0 as h→ 0.(3.7)

By Lemma 4.1 in [21] we obtain∑
(tn,ih)∈supp u

hun+1
i (φn+1

i − φni ) −→
∫∫

supp u
uφt dxdt as h→ 0,(3.8)

Ah −→ −
∫∫

supp u
{muuxφx +m(ux)

2φ}dxdt as h→ 0,(3.9)

Bh −→
∫∫

supp u
{a(ux)2φ}dxdt as h→ 0.(3.10)

We prove the following convergence:

Ch −→
∫∫

supp u
(−c′φ) dxdt as h→ 0.(3.11)
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Let ε be an arbitrary positive number. Then we can choose the compact sets Gj(ε)
(j = 1, 2, 3) such that

G1(ε) ⊂
◦
G2 (ε), G2(ε) ⊂ ◦

supp u, suppu ⊂
◦
G3 (ε),(3.12)

meas(G2 \G1) < ε, meas(suppu \G2) < ε, meas(G3 \ suppu) < ε,(3.13)

where
◦
G denotes the set of interior points of the set G, and meas(A) is the measure

of the set A. Since uh converges uniformly on H, there exist positive numbers h̃1(ε)
and h̃2(ηε) for ε and the positive constant ηε ≡ 1

2min
G2(ε)

u(t, x), respectively, such
that

(t+ kn+1, x+ h) ∈ G3(ε) \G1(ε)(3.14)

for (t, x) ∈ suppu \G2(ε), n ≥ 0, and h < h̃1(ε),

unh(x)− c′kn+1 ≥ uh(tn, x)− 2‖u0
x‖∞h > ηε(3.15)

for (tn+1, x) ∈ G2(ε) and h < h̃2(ηε).

Here we use the inequality c′kn+1 ≤ 2‖u0
x‖∞h which follows from (2.17). From the

definition of the difference operator Dh,k it follows that

−c′ ≤ un+1,0
i − uni

kn+1
≤ 0 for n ≥ 0 and i ∈ Z,(3.16)

un+1,0
i − uni

kn+1
= −c′ for (tn, ih) ∈ G2(ε) and h < min{h̃1(ε), h̃2(ηε)}.(3.17)

Since there exists a positive number h̃3(ε) such that∣∣∣∣∣∣
∑

(tn,ih)∈G2(ε)

hkn+1(−c′φni )−
∫∫

G2(ε)

(−c′φ) dxdt

∣∣∣∣∣∣ < ε for h < h̃3(ε),

we obtain from (3.12)–(3.17)∣∣∣Ch −
∫∫

supp u
(−c′φ) dxdt

∣∣∣(3.18)

≤
∣∣∣ ∑
(tn,ih)∈supp u\G2(ε)

hkn+1φ
n
i

un+1,0
i − uni

kn+1

∣∣∣+ ∣∣∣∫∫
supp u\G2(ε)

c′φdxdt
∣∣∣

+
∣∣∣ ∑
(tn,ih)∈G2(ε)

hkn+1φ
n
i

un+1,0
i − uni

kn+1
−
∫∫

G2(ε)

(−c′φ) dxdt
∣∣∣

≤ (4c′‖φ‖∞ + 1)ε for h < min{h̃1(ε), h̃2(ηε), h̃3(ε)},
which yields (3.11). Hence, the property (iv) follows from (3.6)–(3.11), which com-
pletes the proof.

Theorem 3.3 (convergence of numerical extinction time). Let the same assump-
tions as stated in Theorem 3.1 be satisfied. Then

|T ∗
h − T ∗| −→ 0 as h→ 0,(3.19)

where T ∗ is the extinction time of the unique weak solution v of (1.1)–(1.2).
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Proof. From Theorem 3.2 there exist x̃ ∈ R1 and h′ > 0 for an arbitrary fixed
t < T ∗ such that vh(t, x̃) ≥ 1

2v(t, x̃) > 0 holds for h < h′. Then

lim inf
h→0

T ∗
h ≥ T ∗.(3.20)

By (2.33) the inequality T ∗
h ≤ T ∗ + 1

c′ ‖uh(T ∗, ·)‖∞ holds. Since ‖u(T ∗, ·)‖∞ = 0 and

‖uh(T ∗, ·)− u(T ∗, ·)‖∞ −→ 0 as h −→ 0,

we have

lim sup
h→0

T ∗
h ≤ T ∗.(3.21)

Hence (3.19) follows.

4. Convergence of numerical interfaces. Let {unh}n=0,1,2,... be the numerical
solutions given by (2.1) with (3.1). We introduce the setW consisting of all functions
ϕ(x) which satisfy Condition B and the following conditions:

(i) (ϕm−1)x(x) is absolutely continuous on I ≡ suppϕ;
(ii) ess.infx∈I(ϕ

m−1)xx(x) is finite.
Since ϕ(x) ∈W has compact support, it is clear that ess.infx∈I(ϕ

m−1)xx(x) is nega-
tive.

For v0(x) ∈W we put

C0 = ‖u0‖∞, C1 = ‖u0
x‖∞, C2 = − ess.inf

x∈I
u0
xx(x),(4.1)

where u0(x) = (v0(x))m−1 and I = supp v0, and define the left (resp., right) numerical
interface  h(t) (resp., rh(t)) by piecewise linearly interpolating (tn,  n) (resp., (tn, rn))
(0 ≤ n ≤ n∗). Then we obtain the following theorem, which plays an important role
in proving the convergence of numerical interfaces and in finding the behavior of the
support.

Theorem 4.1. For v0(x) ∈ W , assume that M and ε are positive constants
satisfying

u0
x(x) > M for x ∈ [ (u0),  (u0) + ε).(4.2)

Let the time step kn+1 (n ≥ 0) satisfy (2.17) with i = L. Then the following estimates
hold for each positive constant M ′ < M :

δu0
L0−1, δu0

L0
, δu0

L0+1 > M ′ for h < h̃,(4.3)

δun+1,s
Ln+1,s−1, δun+1,s

Ln+1,s
, δun+1,s

Ln+1,s+1 > M ′(s = 0, 1, . . . , νn+1)(4.4)

for tn+1 ≤ T̃ and h < h̃,

δun+1
Ln+1−1, δun+1

Ln+1
, δun+1

Ln+1+1 > M ′ for tn+1 ≤ T̃ and h < h̃,(4.5)

where un+1,s
i (s = 0, 1, . . . , νn+1) are defined by (2.10), and

T̃ =
(M −M ′)M ′

2(2a+m)C1C2M ′ + 6c′C2
, h̃ = min

(
ε,

M −M ′

4C2

)
.(4.6)

Proof. In order to prove the theorem, we need Lemma 4.2, the proof of which is
stated after the proof of this theorem.
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Lemma 4.2. Let v0(x) ∈W and (2.17) with i = L be satisfied. Then,

δun+1,0
Ln+1,0−1 ≥ δunLn−1 − 2C2h,(4.7)

δun+1,s
Ln+1,s−1 ≥ δun+1,0

Ln+1,0−1 − C2h− 2aC1C2

s∑
j=1

τn+1,j (s = 1, 2, . . . , νn+1),(4.8)

δun+1,·,q
Ln+1,·,q−1 ≥ δun+1,·,0

Ln+1,·,0−1 −mC1C2 qκn+1 (q = 1, 2, . . . , µn+1)(4.9)

for all n ≥ 0, where un+1,·,q
i (q = 0, 1, . . . , µn+1) are given by (2.12).

Now we prove the theorem. It follows from (4.1), (4.2), and (4.6) that

δu0
L0−1 > M > M ′ for h < h̃,(4.10)

δu0
L0

= δu0
L0−1 +

h+ L0h−  0
2

δ2u0
L0

> M − C2h > M ′ for h < h̃,(4.11)

δu0
L0+1 = δu0

L0
+ hδ2u0

L0+1 > M − 2C2h > M ′ for h < h̃,(4.12)

which implies (4.3).
We note that (4.4) is shown in the proof of (4.5) and that the following estimates

hold by Lemma 5.1 in [21] and the inequality infi∈Z δ2ui ≤ infi∈Z δ2u′
i (u

′
h = Dh,kuh)

in the proof of Theorem 2.1:

δ2uni ,δ
2un+1,s

i (s = 0, 1, . . . , νn+1), δ
2un+1,·,q

i (q = 1, 2, . . . , µn+1) ≥ −C2(4.13)

for all i ∈ Z and n ≥ 0.

By Lemma 4.2 and (4.13) we have

δun+1,0
Ln+1,0+i ≥ δunLn−1 − 2C2h− (i+ 1)C2h(4.14)

≥ δun,·,0Ln,·,0−1 −mC1C2kn − 2C2h− (i+ 1)C2h

≥ δun,0Ln,0−1 − (2a+m)C1C2kn − 3C2h− (i+ 1)C2h

≥ δu1,0
L1,0−1 − (2a+m)C1C2tn − 3C2nh− (i+ 1)C2h

≥ δu0
L0−1 − (2a+m)C1C2tn − 3C2nh− 2C2h− (i+ 1)C2h for n ≥ 0,

δun+1,s
Ln+1,s+i ≥ δun+1,0

Ln+1,0−1 − C2h− 2aC1C2kn+1 − (i+ 1)C2h(4.15)

≥ δu0
L0−1 − (2a+m)C1C2tn − 2aC1C2kn+1

− 3C2(n+ 1)h− (i+ 1)C2h (s = 1, 2, . . . , νn+1) for n ≥ 0,

δun+1
Ln+1+i ≥ δu

n+1,·,µn+1

Ln+1,·,µn+1
−1 − (i+ 1)C2h(4.16)

≥ δun+1,·,0
Ln+1,·,0−1 −mC1C2kn+1 − (i+ 1)C2h

≥ δu0
L0−1 − (2a+m)C1C2tn+1 − 3C2(n+ 1)h− (i+ 1)C2h for n ≥ 0,

where i = −1, 0, 1.
Let us prove (4.5) by induction on n (n ≥ 0). Let n = 0. Since (4.3) and (2.17)

with i = L yield

hM ′ < c′k1 = u0
L0+1,(4.17)

we have from (4.2), (4.6), and (4.14)–(4.16)

min(δu1,0
L1,0+i, δu

1,1
L1,1+i, . . . , δu

1,ν1

L1,ν1
+i, δu1

L1+i)(4.18)

> M − (2a+m)C1C2t1 − 3c′C2k1

M ′ − M −M ′

2
≥M ′ (i = −1, 0, 1),
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which implies (4.4) and (4.5) with n = 0.
Suppose that (4.5) holds for all n − 1 (n ≥ 1). Then we have from (2.17) with

i = L

hM ′ < c′kj+1 = ujLj+1 (j = 0, 1, . . . , n).(4.19)

Hence, by (4.2), (4.6), and (4.14)–(4.16)

min(δun+1,0
Ln+1,0+i, δu

n+1,1
Ln+1,1+i, . . . , δu

n+1,νn+1

Ln+1,νn+1
+i, δu

n+1
Ln+1+i)(4.20)

> M − (2a+m)C1C2tn+1 − 3C2

n∑
j=0

c′kj+1

M ′ −
M −M ′

2

= M −
{
(2a+m)C1C2 +

3c′C2

M ′
}
tn+1 − M −M ′

2
≥M ′ (i = −1, 0, 1),

which shows that (4.4) and (4.5) hold for n. Thus the induction on n is complete,
and the theorem is proved.

Proof of Lemma 4.2. For simplicity we put

u·,s
h = un+1,s

h , u·,·,q
h = un+1,·,q

h , κ = κn+1, τj = τn+1,j ,

L·,s = Ln+1,s, L·,·,q = Ln+1,·,q,  ·,s =  n+1,s,  ·,·,q =  n+1,·,q.

We first show (4.7) and (4.9). From (2.17) and (4.13) it follows that

δu·,0
L·,0−1 ≥




δunLn+1 ≥ δunLn−1 − 2C2h if δunLn
≥ 0,

0 ≥ δunLn
≥ δunLn−1 − C2h if δunLn

< 0,

which yields (4.7). From (2.24) we have

u·,·,q
L·,·,q = u·,·,q−1

L·,·,q−1
+ κmu·,·,q−1

L·,·,q−1
δ2u·,·,q−1

L·,·,q−1
.

Since

u·,·,q
L·,·,q = (L·,·,qh−  ·,·,q)δu

·,·,q
L·,·,q−1, u·,·,q−1

L·,·,q−1
= (L·,·,q−1h−  ·,·,q−1)δu

·,·,q−1
L·,·,q−1−1,

 ·,·,q =  ·,·,q−1 =  ·,·,0, L·,·,q = L·,·,q−1 = L·,·,0,

we obtain

δu·,·,q
L·,·,q−1 ≥ δu·,·,q−1

L·,·,q−1−1 −mC1C2 κ ≥ δu·,·,0
L·,·,0−1 −mC1C2 qκ,(4.21)

which shows (4.9).
Next we show (4.8). By using the expression (2.21) we obtain

δu·,s
L·,s−1 ≥ min(δu·,s−1

L·,s−1−1, δu·,s−1
L·,s−1

) (s = 1, 2, . . . , νn+1),(4.22)

δu·,s
L·,s ≥ min(δu·,s−1

L·,s−1−1, δu·,s−1
L·,s−1

− 2aC1C2τs) (s = 1, 2, . . . , νn+1).(4.23)

For s = 1 we have from (4.22) and (4.13)

δu·,1
L·,1−1 ≥ δu·,0

L·,0−1 − C2h.(4.24)
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For 2 ≤ s ≤ νn+1 it follows from (4.22), (4.23), and (4.13) that

δu·,s
L·,s−1 ≥ min(δu·,s−1

L·,s−1−1, δu·,s−2
L·,s−2−1, δu·,s−2

L·,s−2
− 2aC1C2τs−1)(4.25)

≥ min
(
δu·,s−1

L·,s−1−1, δu·,s−2
L·,s−2−1, δu·,s−3

L·,s−3−1 − 2aC1C2τs−1,

δu·,s−4
L·,s−4−1 − 2aC1C2(τs−1 + τs−2), . . . ,

δu·,0
L·,0−1 − 2aC1C2(τs−1 + τs−2 + · · ·+ τ2),

δu·,0
L·,0 − 2aC1C2(τs−1 + τs−2 + · · ·+ τ1)

)
≥ min(δu·,0

L·,0−1, δu·,0
L·,0)− 2aC1C2(τs−1 + τs−2 + · · ·+ τ1)

≥ δu·,0
L·,0−1 − C2h− 2aC1C2(τ1 + τ2 + · · ·+ τs).

Hence the desired inequality (4.8) holds by (4.24) and (4.25), which completes the
proof.

From Theorem 4.1 we have the following theorem.
Theorem 4.3 (convergence of the left numerical interface). Let the assumptions

of Theorem 4.1 be satisfied. Then the left numerical interface  h(t) converges uni-
formly to the exact one on [0, T̃ ] for each positive constant M ′ < M , where T̃ is given
by (4.6).

Proof. Since by Theorem 4.1

0 < unLn
< unLn+1 < unLn+2 for all tn ≤ T̃ ,

it follows from Theorem 2.1 and (2.17) with i = L that

 n+1 −  n=
unLn

δunLn−1

+
c′kn+1 − unLn

δunLn

−
νn+1∑
s=1

aδun+1,s−1
Ln+1,s−1−1τn+1,s




> −a‖u0
x‖∞kn+1 for tn+1 ∈ [0, T̃ ],

<
c′kn+1

M ′ for tn+1 ∈ [0, T̃ ],

which gives

| ̇h(t)| ≤ max
(
a‖u0

x‖∞,
c′

M ′
)

for t ∈ [0, T̃ ].(4.26)

From (2.27) we have

 0 − a‖u0
x‖∞T̃ ≤  h(t) ≤ r0 + a‖u0

x‖∞T̃ for t ∈ [0, T̃ ].(4.27)

By (4.26) and (4.27) we can apply Ascoli–Arzelà’s theorem to the sequence { h}. Thus
there exist a Lipschitz continuous function  ̃(t) and a subsequence { h′} satisfying

‖ h′ −  ̃‖L∞([0,T̃ ]) −→ 0 as h′ → 0.(4.28)

Now we show that  ̃(t) is the left interface of the weak solution v of (1.1)–(1.2).
For simplicity we use h instead of h′.

Let t∗ ∈ [0, T̃ ]. Then there exist integers n and Ln such that tn ≤ t∗ < tn+1 and
(Ln − 1)h ≤  h(tn) < Lnh, which imply

uh(t
∗, (Ln − 1)h− ξ) = 0 for any positive number ξ.(4.29)
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For each fixed η ∈ (0, M
′

C2
) let p be the positive integer satisfying (p − 1)h ≤ η < ph.

Then we have

uh(t
∗, (Ln + p)h) > h

Ln+p−1∑
i=Ln

δuni = h

p−1∑
j=0

{
δunLn−1 +

Ln+j∑
i=Ln

(δuni − δuni−1)

}
(4.30)

≥ phδunLn−1 − h

p−1∑
j=0

(j + 1)C2h = ph
{
δunLn−1 −

(p− 1)C2h

2
− C2h

}

> η
(
M ′ − C2η

2
− C2h

)
>

η(M ′ − 2C2h)

2
>

ηM ′

4
for h <

M ′

4C2
.

Since uh converges uniformly to u = vm−1 on H by Theorems 3.1 and 3.2, we have
from (4.29) and (4.30)

u(t∗,  ̃(t∗)− ξ) = 0 for any positive number ξ,(4.31)

u(t∗,  ̃(t∗) + η) ≥ ηM ′

4
for each η ∈

(
0,

M ′

C2

)
.(4.32)

Hence,  ̃(t) becomes the left interface on [0, T̃ ]. Since the left interface is uniquely
determined,  h(t) converges to it on [0, T̃ ] as the whole sequence {h} tends to zero.
Thus the proof is complete.

Remark 4.1. Taking the statement of Theorems 4.1 and 4.3 into consideration,
we can easily obtain the convergence of the right numerical interface.

Remark 4.2. When suppu0 is concave downward on its support, the convergence
of vh,  h, rh, and T ∗

h is shown by Nakaki (see Theorems 4.2, 4.3, and 5.2 in [22]).

5. Behavior of the support. In this section we consider the possibility that
the support will split in Cases 1 and 2 stated in section 1. We obtain the following
theorem in Case 1, which improves Kersner’s result [15]. To state it we put

w0
1(x) =

{
v0(x) if x ≤ α0,
0 if x > α0,

w0
2(x) =

{
0 if x ≤ α0,
v0(x) if x > α0.

(5.1)

Theorem 5.1. In Case 1, assume w0
j (x) ∈ W (j = 1, 2). Put Wj(x) =

(w0
j )

m−1(x) (j = 1, 2). Suppose

a ((W1)x(α0 − 0))
2

and a ((W2)x(α0 + 0))
2
> c′.(5.2)

Then there exist a constant T̃ > 0 such that supp v(t, ·) is connected for each t ∈ [0, T̃ ].
Suppose

a‖(Wj)x‖2∞ < c′ (j = 1, 2).(5.3)

Then supp v(t, ·) is disconnected for each t ∈ (0, T∗), where T∗ = min(T ∗
1 , T ∗

2 ) and
T ∗

1 and T ∗
2 are the extinction times of the solutions of (1.1)–(1.2) with v0(x) = w0

1(x)
and v0(x) = w0

2(x), respectively.
Proof. Let  ̃(t) and {unh}n=0,1,2,... be the left interface of the solution v of (1.1)–

(1.2) with v0(x) = w0
2(x) and the numerical solutions given by (2.1) with (3.1), re-

spectively, where (2.17) with i = L is satisfied and  ̃(0) = α0.
We show the first assertion of the theorem. We take arbitrary positive constants

K1 and K ′
1 such that (c′

a

) 1
2

< K ′
1 < K1 < (W2)x(α0 + 0).(5.4)
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By applying Theorem 4.1 to the initial function v0(x) = w0
2(x) with the positive

constants M = K1 and M ′ = K ′
1, we have

δunLn−1, δunLn
, δunLn+1 > K ′

1 for tn ≤ T̃1 and h < h̃,(5.5)

δun+1,s
Ln+1,s−1, δun+1,s

Ln+1,s
, δun+1,s

Ln+1,s+1 > K ′
1(5.6)

(s = 0, 1, . . . , νn+1) for tn+1 ≤ T̃1 and h < h̃,

where T̃1 and h̃ are some positive constants. Hence, it follows from (2.15), (2.17) with
i = L, and (2.22) that

 n+1=  n +
unLn

δunLn−1

+
c′kn+1 − unLn

δunLn

−
νn+1∑
s=1

aδun+1,s−1
Ln+1,s−1−1τn+1,s(5.7)

<  n +
c′kn+1

K ′
1

− aK ′
1kn+1

<  0 − 1

K ′
1

(aK ′
1
2 − c′)tn+1 <  0 = α0 for tn+1 ∈ (0, T̃1],

which gives

 h(t) < α0 − 1

K ′
1

(aK ′
1
2 − c′)t < α0 for t ∈ (0, T̃1].

From the convergence of  h(t) we have

 ̃(t) ≤ α0 − 1

K ′
1

(aK ′
1
2 − c′)t < α0 for t ∈ (0, T̃1].(5.8)

Taking arbitrary positive constants K2 and K ′
2 such that

(c′
a

) 1
2

< K ′
2 < K2 < −(W1)x(α0 − 0),(5.9)

we can similarly obtain

r̃(t) ≥ α0 +
1

K ′
2

(aK ′
2
2 − c′)t > α0 for t ∈ (0, T̃2],(5.10)

where r̃(t) is the right interface of the solution v of (1.1)–(1.2) with v0(x) = w0
1(x),

r̃(0) = α0, and T̃2 is some positive constant. Put T ′ = min(T̃1, T̃2). Then we have
from (5.8), (5.10), and the comparison theorem on the initial data (see [2])

v(t, α0) > 0 for t ∈ (0, T ′].(5.11)

Hence, the continuity of v(t, x) yields the existence of a positive constant T̃ (< T ′)
such that supp v(t, ·) is connected for each t ∈ [0, T̃ ].

We prove the second assertion of the theorem. Let K3 be an arbitrary positive
constant satisfying

‖(Wj)x‖∞ < K3 <
(c′
a

) 1
2

(j = 1, 2).(5.12)

By Lemma 3.1 in [21] and Theorem 2.1 we have

‖δuni ‖∞, ‖δun+1,s
i ‖∞ < K3 (i ∈ Z, s = 0, 1, . . . , νn+1) for tn+1 ∈ (0, T ∗

2 ].(5.13)
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Then, it follows from (2.15), (2.17) with i = L, and (2.22) that

 n+1 ≥  n +
c′kn+1

max(δunLn
, δunLn−1)

−
νn+1∑
s=1

aδun+1,s−1
Ln+1,s−1−1τn+1,s(5.14)

>  n +
c′kn+1

K3
− aK3kn+1

>  0 +
1

K3
(c′ − aK2

3 )tn+1 >  0 = α0 for tn+1 ∈ (0, T ∗
2 ],

which immediately yields

 ̃(t) ≥ α0 +
1

K3
(c′ − aK2

3 )t > α0 for t ∈ (0, T ∗
2 ].(5.15)

Similarly, we have

r̃(t) ≤ α0 − 1

K3
(c′ − aK2

3 )t < α0 for t ∈ (0, T ∗
1 ].(5.16)

Hence supp v(t, ·) becomes disconnected for t ∈ (0, T∗), which completes the
proof.

Remark 5.1. The first assertion of Theorem 5.1 holds, when the orders of van-
ishing of (w0

j (x))
m−1 (j = 1, 2) at x = α0 are less than 1. This result also coincides

with the one given by Kersner (see Theorem 2 in [15]).
Remark 5.2. Let us consider the sufficient condition under which v(t, α0) = 0

holds for all t ≥ 0. Put

v0(x) =




A1{(α1 − x)(x− α0)}
s

m − 1
if α1 ≤ x ≤ α0,

A2{(α0 − x)(x− α2)}
s

m − 1
if α0 ≤ x ≤ α2,

0 otherwise,

(5.17)

where s = 1 + ε (ε ≥ 0) and Aj (j = 1, 2) are positive constants. According to
Theorem 1 in [15], Kersner’s sufficient condition is

4A
2(m−1)
j

( |α0 − αj |
2

)2+4ε

(1 + ε)(1 +mε) <
c(m− 1)2

m
(j = 1, 2).(5.18)

Our sufficient condition (5.3) yields

4A
2(m−1)
j

( |α0 − αj |
2

)2+4ε(
2ε

1 + 2ε

)2ε
(1 + ε)2

1 + 2ε
<

c(m− 1)2

m
(j = 1, 2).(5.19)

For ε = 0 his sufficient condition coincides with ours. For ε > 0 we find that the
condition imposed on Aj (j = 1, 2) by (5.19) is weaker than that imposed by (5.18).

We show a sufficient condition under which the support begins to split into at
least two disjoint sets.

Theorem 5.2. In Case 2, let v0(x) ∈ W and α1 < β1 < γ1 < γ2 < β2 < α2.
Assume

u0(βj)

c′ +mC0C2
>

‖u0‖L1[γ1,γ2]

c′(γ2 − γ1)− (m+ a)C0TV (u0
x)

> 0 (j = 1, 2),(5.20)
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where u0(x) = (v0(x))m−1 and Cj (j = 0, 2) are constants given by (4.1). Then there
exist t̃ > 0 and x̃ ∈ [γ1, γ2] such that

v(t̃, x̃) = 0 and v(t̃, βj) > 0 (j = 1, 2).(5.21)

Also, if u0(x) satisfies

a‖u0
x‖2∞ < c′,(5.22)

then there exists a positive constant t∗ such that supp v(t, ·) is disconnected for each
t ∈ (t̃, t̃+ t∗).

Proof. Let {unh}n=0,1,2,... and uh be the numerical solutions given by (2.1) with
(3.1) and by (3.2), respectively. Put

Tj =
u0(βj)

c′ +mC0C2
(j = 1, 2), T̃ =

‖u0‖L1[γ1,γ2]

c′(γ2 − γ1)− (m+ a)C0TV (u0
x)

,(5.23)

T ′ = T̃ +
1

4
{min(T1, T2)− T̃}, T ′′ = T̃ +

1

2
{min(T1, T2)− T̃},(5.24)

S = [0, T ′′]× [γ1, γ2].(5.25)

We first show that S contains at least one point (t̃, x̃) such that v(t̃, x̃) = 0. For
this end we assume the contrary; that is, suppose the solution v(t, x) is positive on S.
Since (uh)

1/(m−1) converges uniformly to the solution v on S by Theorem 3.2, there
exists a positive number h′(η) for the constant η ≡ 1

2 min(t,x)∈S u(t, x) > 0 such that

unh(x)− c′kn+1 ≥ uh(tn, x)− 2‖u0
x‖∞h > η(5.26)

for (tn+1, x) ∈ S and h < h′(η).

Here we use the inequality c′kn+1 ≤ 2‖u0
x‖∞h which follows from (2.17). Then we

have from Lemmas 3.1 and 3.2 in [21] and Theorem 2.1 that

‖un+1
h ‖L1[γ1,γ2] ≤

∥∥∥∥∥∥un+1
h −


 ν∏

j=1

Hh,τj


Dh,kn+1

unh

∥∥∥∥∥∥
L1[γ1,γ2]

(5.27)

+

∥∥∥∥∥∥

 ν∏

j=1

Hh,τj


Dh,kn+1u

n
h −Dh,kn+1u

n
h

∥∥∥∥∥∥
L1[γ1,γ2]

+ ‖Dh,kn+1u
n
h‖L1[γ1,γ2]

≤ mC0TV (u0
x)kn+1 + aC0TV (u0

x)kn+1 + ‖unh‖L1[γ1,γ2] − c′(γ2 − γ1)kn+1

≤ ‖u0
h‖L1[γ1,γ2] − {c′(γ2 − γ1)− (m+ a)C0TV (u0

x)}tn+1

= ‖u0
h‖L1[γ1,γ2] − ‖u0‖L1[γ1,γ2] +

(
1− tn+1

T̃

)
‖u0‖L1[γ1,γ2]

for tn+1 ∈ (0, T ′′] and h < h′(η).

Since T ′ > T̃ , we have

‖un+1
h ‖L1[γ1,γ2] < 0 for tn+1 ∈ (T ′, T ′′] and for sufficiently small h,(5.28)

which is a contradiction. Hence we obtain

u(t̃, x̃) = 0 for some (t̃, x̃) ∈ S.(5.29)
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Next, we have

un+1
h (βj) =


un+1

h −

 ν∏

j=1

Hh,τj


Dh,kn+1

unh


 (βj)(5.30)

+




 ν∏

j=1

Hh,τj


Dh,kn+1

unh −Dh,kn+1
unh


 (βj) + (Dh,kn+1

unh)(βj)

≥ −mC0C2kn+1 + unh(βj)− c′kn+1 ≥ u0
h(βj)− (c′ +mC0C2)tn+1

≥ u0
h(βj)− u0(βj) + (c′ +mC0C2)(Tj − T ′′) for tn+1 ∈ [0, T ′′] (j = 1, 2).

Letting h→ 0, we obtain

u(t, βj) ≥ (c′ +mC0C2)(Tj − T ′′) > 0 for t ∈ [0, T ′′] (j = 1, 2),(5.31)

which implies

u(t̃, βj) > 0 (j = 1, 2).(5.32)

Thus (5.21) follows from (5.29) and (5.32).
Finally, we show the last assertion of the theorem. Let wj(t, x) (j = 1, 2) be the

solutions of (1.1)–(1.2) with v0(x) = w0
j (x) (j = 1, 2), where

w0
1(x) =

{
v(t̃, x) if x ≤ x̃,
0 if x > x̃,

w0
2(x) =

{
0 if x ≤ x̃,
v(t̃, x) if x > x̃.

(5.33)

Since the solution v is smooth in the open set {(t, x); v(t, x) > 0}, it follows from
Theorems 2.1 and 3.2 that w0

j (x) (j = 1, 2) belong to W . Applying the second

assertion of Theorem 5.1 to w0
j (x) (j = 1, 2), we have

r(w1(t, x)) < x̃ <  (w2(t, x)) for t ∈ (0, t∗),(5.34)

where t∗ = min(T ∗
1 , T ∗

2 ) and T ∗
1 and T ∗

2 are the extinction times of w1(t, x) and
w2(t, x), respectively. Thus supp v(t, ·) is disconnected for each t ∈ (t̃, t̃+ t∗), and the
proof is complete.

Remark 5.3. We briefly explain the construction of the initial function for which
(5.20) is satisfied. In Theorem 5.2 we assume

u0(βj)

c′ +mC0C2
>

ε

c′
(j = 1, 2) and u0(x) = ε on [γ1, γ2](5.35)

instead of (5.20), where ε is a positive constant. For an arbitrary positive number d
let

u0
d(x) =




u0(x+ d) if x < γ1 − d,
ε if γ1 − d ≤ x ≤ γ2 + d,
u0(x− d) if x > γ2 + d,

(5.36)

and put C0(d) = ‖u0
d‖∞ and C2(d) = − ess.infx∈I(u

0
d)xx(x). Since Cj(d) = Cj (j =

0, 2) and TV ((u0
d)x) = TV (u0

x), we can choose d sufficiently large so that

u0
d(βj + (−1)jd)

c′ +mC0(d)C2(d)
>

ε

c′ − (m+a)C0(d)TV ((u0
d
)x)

γ2−γ1+2d

>
ε

c′
(j = 1, 2).(5.37)
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Then, by using ‖u0
d‖L1[γ1−d,γ2+d] = (γ2−γ1+2d)ε, we find that u0

d(x) satisfies (5.20),
where βj and γj (j = 1, 2) are replaced by βj + (−1)jd and γj + (−1)jd (j = 1, 2),
respectively.
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Abstract. We present a theoretical study of the recovery of an unknown vector x ∈ R
p (such

as a signal or an image) from noisy data y ∈ R
q by minimizing with respect to x a regularized cost-

function F(x, y) = Ψ(x, y) + αΦ(x), where Ψ is a data-fidelity term, Φ is a smooth regularization
term, and α > 0 is a parameter. Typically, Ψ(x, y) = ‖Ax− y‖2, where A is a linear operator. The
data-fidelity terms Ψ involved in regularized cost-functions are generally smooth functions; only a few
papers make an exception to this and they consider restricted situations. Nonsmooth data-fidelity
terms are avoided in image processing. In spite of this, we consider both smooth and nonsmooth
data-fidelity terms. Our goal is to capture essential features exhibited by the local minimizers of
regularized cost-functions in relation to the smoothness of the data-fidelity term.

In order to fix the context of our study, we consider Ψ(x, y) =
∑

i
ψ(aTi x − yi), where aTi are

the rows of A and ψ is Cm on R \ {0}. We show that if ψ′(0−) < ψ′(0+), then typical data y
give rise to local minimizers x̂ of F(., y) which fit exactly a certain number of the data entries:

there is a possibly large set ĥ of indexes such that aTi x̂ = yi for every i ∈ ĥ. In contrast, if ψ is
smooth on R, for almost every y, the local minimizers of F(., y) do not fit any entry of y. Thus,
the possibility that a local minimizer fits some data entries is due to the nonsmoothness of the
data-fidelity term. This is a strong mathematical property which is useful in practice. By way of
application, we construct a cost-function allowing aberrant data (outliers) to be detected and to be
selectively smoothed. Our numerical experiments advocate the use of nonsmooth data-fidelity terms
in regularized cost-functions for special purposes in image and signal processing.

Key words. inverse problems, MAP estimation, nonsmooth analysis, perturbation analysis,
proximal analysis, reconstruction, regularization, stabilization, outliers, total variation, variational
methods

AMS subject classifications. 49N45, 62H12, 49J52, 49N60, 94A12, 94A08, 35A15, 68U10,
26B10

PII. S0036142901389165

1. Introduction. We consider the general problem where a sought vector (e.g.,
an image or a signal) x̂ ∈ R

p is obtained from noisy data y ∈ R
q by minimizing a

regularized cost-function F : Rp × R
q → R of the form

F(x, y) = Ψ(x, y) + αΦ(x),(1)

where typically Ψ : R
p × R

q → R is a data-fidelity term and Φ : R
p → R is a

regularization term, with α > 0 a parameter. In many applications, the relation
between x and y is modeled by yi = a

T
i x + ni for i = 1, . . . , q, where a

T
i : R

p → R

are linear operators and ni accounts for perturbations. We focus on such situations
and assume that aTi , i = 1, . . . , q, are known and non-null. The relevant data-fidelity
term assumes the form

Ψ(x, y) =

q∑
i=1

ψi(a
T
i x− yi),(2)
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where ψi : R → R, i = 1, . . . , q, are continuous functions which decrease on (−∞, 0]
and increase on [0,+∞). Usually, ψi = ψ for all i. One usual choice is ψ(t) = |t|ρ, for
ρ > 0, which yields [31, 4]

Ψ(x, y) =

q∑
i=1

|aTi x− yi|ρ.(3)

Let A ∈ R
q×p be the matrix whose rows are aTi for i = 1, . . . , q. This matrix can

be ill-posed, or singular, or invertible. Most often, Ψ(x, y) = ‖Ax − y‖2, that is,
ψ(t) = t2. Such data-fidelity terms are currently used in denoising, in deblurring, and
in numerous inverse problems [37, 35, 13, 33, 1, 14, 38]. In a statistical framework, Ψ
accounts for both the distortion and the noise intervening between the original x and
the device recording the data y. The above quadratic form of Ψ corresponds to white
Gaussian noise {ni}. Recall that many papers are dedicated to the minimization
of Ψ(., y) alone and of the form (3), i.e., F = Ψ, mainly for ψ(t) = t2 [22], in
some cases for ψ(t) = |t| [8], but functions ψ(t) = |t|ρ for different values for ρ
in the range (0,∞] also have been considered [31, 30]. Specific data-fidelity terms
arise in applications such as emission and transmission computed tomography, X-ray
radiography, eddy-currents evaluation, and many others [23, 20, 34, 10]. In general, for
every y, the data-fidelity term Ψ(., y) is a function which is smooth and usually convex.
The introduction of nonsmooth data-fidelity terms in regularized cost-functions (1)
remains very unusual. Only a few papers make an exception to this; we cite [2, 3],
where Ψ corresponds to ψ(t) = |t| and aTi x = xi for all i. Nonsmooth data-fidelity
terms Ψ are avoided in image processing, for instance. In spite of this, we analyze the
effects produced by both smooth and nonsmooth data-fidelity terms Ψ. In the latter
case we suppose that {ψi} are any functions which are Cm-smooth on R\{0}, m ≥ 2,
whereas at zero they admit finite side derivatives which satisfy ψ′

i(0
−) < ψ′

i(0
+).

The regularization term Φ usually takes the form

Φ(x) =

r∑
i=1

ϕ(‖GTi x‖),(4)

where GTi : R
p → R

s for s ∈ N
∗ are linear operators, e.g., operators yielding the

differences between neighboring samples; ‖.‖ stands for a norm on R
s; and ϕ : R → R

is a potential function. In a Bayesian estimation framework, Φ is the prior energy of
the unknown x modeled using a Markov random field [6, 17, 24]. Several customarily
used potential functions ϕ are [20, 29, 21, 33, 9, 7, 39, 36]

Lν ϕ(t) = |t|ν , 1 ≤ ν ≤ 2,
Lorentzian ϕ(t) = νt2/(1 + νt2),
Concave ϕ(t) = ν|t|/(1 + ν|t|),
Gaussian ϕ(t) = 1− exp (−νt2),
Huber ϕ(t) = t2 if |t| ≤ ν, ϕ(t) = ν(ν + 2|t− ν|) if |t| > ν,
Mean-field ϕ(t) = − log (exp(−νt2) + 1),

(5)

where ν > 0 is a parameter. Being convex and differentiable, the function Lν for
1 < ν ≤ 2 is preferred in many applications requiring intensive computation [9, 10].
In our paper, Φ in (1) is any Cm-smooth function, with m ≥ 2.

The visual aspect of a minimizer of a cost-function is determined on the one hand
by the data and on the other hand by the shape of the cost-function. Our goal is to
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capture essential features expressed by the local minimizers of cost-functions of the
form (1)–(2) in relation to the smoothness of the data-fidelity term Ψ. Note that
all our results hold for local minimizers, and hence for global minimizers as well,
so we systematically speak of local minimizers. There is a striking distinction in
the behavior of the local minimizers relevant to smooth and nonsmooth data-fidelity
terms. It concerns the possibility of fitting exactly a certain number of the data
entries, i.e., that for y given, a local minimizer x̂ of F(., y) satisfies aTi x̂ = yi for
some, or even for many, indexes i (see section 2). Intuitively, one is unlikely to obtain
such minimizers, especially when data are noisy. Our main result states that for F
of the form (1)–(2), with Ψ nonsmooth as specified, typical data y give rise to local
minimizers x̂ which fit a certain number of the data entries; i.e., there is a nonempty
set ĥ of indexes such that aTi x̂ = yi for every i ∈ ĥ (see sections 3 and 4). This effect
is due to the nondifferentiability of Ψ since it cannot occur when F is differentiable
(see section 5). The obtained result is a strong mathematical property which can be
used in different ways. Based on it, we construct a cost-function allowing aberrant
data (outliers) to be detected and to be selectively smoothed from signals, or from
images, or from noisy data, while preserving efficiently all the nonaberrant entries
(see section 7). This is illustrated using numerical experiments.

Readers may associate cost-functions where Ψ is nonsmooth (e.g., ψ(t) = |t|) with
cost-functions where Ψ is smooth and Φ is nonsmooth, e.g., Ψ(x, y) = ‖Ax− y‖2 and
ϕ(t) = |t| in (4), as in total-variation methods [33, 1, 14, 12]. Since the latter methods
arouse an increasing interest in the area of image and signal restoration, we compare
in section 6 nonsmooth regularization to the cost-functions considered in this paper.
To this end, we use some previous results [26, 27] and illustrate the strikingly different
visual effects they produce (see section 7).

2. The problem of an exact fit for some data entries. We shall use the
symbol ‖.‖ to denote the �2-norm of vectors. Next, we denote by N

∗ the positive
integers and R+ = {t ∈ R : t ≥ 0}. The letter S will systematically denote the
centered, unit sphere in R

n, say S := {x ∈ R
n : ‖x‖ = 1}, for whatever dimension

n is appropriate in the context. For x ∈ R
n and ρ > 0, we put B(x, ρ) := {x′ ∈

R
n : ‖x′ − x‖ < ρ}. For any i = 1, . . . , n the letter ei represents the ith vector of the
canonical basis of R

n (i.e., ei = ei[i] = 1 and ei[j] = 0 for all j �= i). The closure of
a set N will be denoted N . For a subspace T ; its orthogonal complement is denoted
T⊥. If a function f : Rp ×R

q → R depends on two variables, its kth differential with
respect to the jth variable is denoted Dkj f . The notation f ∈ Cm(N) means that the
function f is Cm-smooth on the set N . For a discrete, finite set h ⊂ {1, . . . , n}, with
n ∈ N

∗, the symbol #h is the cardinality of h and hc is the complementary of h. Next
we introduce a set-valued function which is constantly evoked in what follows.

Definition 1. Let H be the function which for every x ∈ R
p and y ∈ R

q yields
the following set:

(x, y) → H(x, y) = {i ∈ {1, . . . , q} : aTi x = yi
}
.(6)

Given y and a local minimizer x̂ of F(., y), the set of all data entries which are
fitted exactly by x̂ reads ĥ := H(x̂, y). Furthermore, with every h ⊆ {1, . . . , q} we
associate the following sets:

(h, y)→ Θh(y):= {x ∈ R
p : aTi x = yi ∀i ∈ h and aTi x �= yi ∀i ∈ hc},(7)

h → Th := {u ∈ R
p : aTi u = 0 ∀ i ∈ h},(8)

h → Mh:= {(x, y) ∈ R
p × R

q : aTi x = yi ∀i ∈ h and aTi x �= yi ∀i ∈ hc}.(9)
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Note that for every y and h �= ∅, the sets Θh(y) and Mh are composed of a finite
number of connected components, whereas their closures Θh(y) andMh, respectively,
are affine subspaces. The family of all Θh, when h ranges over all the subsets of
{1, . . . , q}, forms a partition of R

p. Observe that for y ∈ R
q fixed, {x ∈ R

p : (x, y) ∈
Mh} = Θh(y). Notice also the equivalences

H(x′, y′) = h ⇔ x′ ∈ Θh(y′) ⇔ (x′, y′) ∈Mh.(10)

The theory in this paper is developed by analyzing how the local minimizers of
every F(., y) behave under small variations of the data y. We thus consider local
minimizer functions.

Definition 2. Let f : Rp×R
q → R and N ⊆ R

q. The family f(., N) := {f(., y) :
y ∈ N} is said to admit a local minimizer function X : N → R

p if for any y ∈ N the
function f(., y) has a strict local minimum at X (y).

The next lemma addresses local minimizer functions relevant to smooth cost-
functions.

Lemma 1. Let F : R
p × R

q be a Cm-function with m ≥ 2. For y ∈ R
q, assume

that x̂ ∈ R
p is such that D1F(x̂, y) = 0, and D2

1F(x̂, y) is positive definite.
Then there exists a neighborhood N ⊂ R

q containing y and a Cm−1-function X :
N → R

p such that for every y′ ∈ N we have D1F(X (y′), y′) = 0, and D2
1F(X (y′), y′)

is positive definite. In particular, x̂ = X (y).
Equivalently, X : N → R

p is a local minimizer function relevant to F(., N) such
that D2

1F(X (y′), y′) is positive definite for every y′ ∈ N .
Proof. Being a local minimizer of F(., y), x̂ satisfies D1F(x̂, y) = 0. We focus on

the equation D1F(x′, y′) = 0 in the vicinity of (x̂, y) and notice that D2
1F(x̂, y)

determines an isomorphism from R
p to itself. From the implicit functions theo-

rem [5], there exist ρ1 > 0 and a unique Cm−1-function X : B(y, ρ1) → R
p such that

D1F (X (y′), y′) = 0 for all y′ ∈ B(y, ρ1). Furthermore, since y′→det D2
1F(X (y′), y′)

is continuous and det D2
1F(x̂, y) > 0, there is ρ2 ∈ (0, ρ1] such that det D2

1F(X (y′), y′)
> 0 for all y′ ∈ B(y, ρ2).

Remark 1 (on the conditions required in Lemma 1). The minimizers of Cm-
functions of the form

F(x, y) = ‖Ax− y‖2 + αΦ(x)

are extensively studied in [16]. It is shown there that if rankA = p, and under some
assumptions ensuring that F(., y) admits local minimizers for every y ∈ R

q, the data
domain R

q contains a subsetN whose interior is dense in R
q such that for every y ∈ N ,

then every local minimizer x̂ of the corresponding F(., y) is strict and D2
1F(x̂, y) is

positive definite. Reciprocally, all data leading to minimizers at which the conditions
of Lemma 1 fail belong to a closed negligible subset of R

q: the chance of acquiring
data placed in such subsets is null.

The central question of this paper is how the shape of a cost-function F favors,
or inhibits, the possibility that a local minimizer x̂ of F(., y), for y ∈ R

q, fits a certain

number of the entries of this same y, i.e., that the set ĥ := H(x̂, y) is nonempty. It
will appear that this possibility is closely related to the smoothness of Ψ. We recall
some facts about nonsmooth functions [32].

Definition 3. Let E0 ⊆ R
p be an affine subspace and E be the relevant vector

space. Consider a function f : E0 → R, and let x ∈ E0 and u ∈ E. The function f
admits a one-sided derivative at x in the direction of u �= 0, denoted by δg(x)(u), if
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the following (possibly infinite) limit exists:

δf(x)(u) := lim
t↓0
f(x+ tu)− f(x)

t
.

If u = 0, put δf(x)(0) = 0.
The downward pointing arrow above means that t ∈ R+ converges to zero by

positive values. If f is differentiable at x, then δf(x)(u) = Df(x).u. If f : R → R,
we have δf(x)(1) = f ′(x+). The left derivative of f at x for u is −δf(x)(−u). In
the following, δ1F will address one-sided derivatives of F with respect to its first
argument.

3. Cost-functions with nonsmooth data-fidelity terms. Here and in sec-
tion 4 we focus on cost-functions which read

F(x, y) = Ψ(x, y) + αΦ(x, y),(11)

Ψ(x, y) =

q∑
i=1

ψ(aTi x− yi),(12)

where ψ : R → R is Cm on R \ {0}, with m ≥ 2, whereas at zero it admits finite
side derivatives satisfying ψ′(0−) < ψ′(0+). The term Φ : R

p × R
q → R is any

Cm-function. This formulation allows us to address data-fidelity terms composed of
a nonsmooth function Ψ and of a smooth function Ψ̃, since we can write Φ(x, y) =
Ψ̃(x, y) + Φ̃(x) with Φ̃ a regularization term. For example, we can have Φ(x, y) =∑
i

(
φi(B

T
i x− yqi) + ϕi(GTi x)

)
, where φi : R

qi → R and ϕi : R
pi → R are Cm-

functions, yqi ∈ R
qi are data, and BTi ∈ R

qi×p and GTi ∈ R
pi×p, with pi ∈ N

∗ and
qi ∈ N

∗.
Remark 2. The results presented in sections 3 and 4 are developed for Ψ of

the form (12), that is, ψi = ψ for all i, but we should emphasize that they remain
true for Ψ of the form (2) provided that all ψi, for i = 1, . . . , q, have finite side
derivatives at zero satisfying ψ′

i(0
−) < ψ′

i(0
+). The proofs are straightforward to

extend to this situation but at the expense of complicated notation which may cloud
the presentation.

We start by providing a sufficient condition for a strict local minimum.
Proposition 1. For y ∈ R

q, let F(., y) : R
p → R be of the form (11)–(12),

where Φ ∈ Cm(Rp × R
q) for m ≥ 1 and ψ ∈ Cm(R \ {0}) satisfies −∞ < ψ′(0−) <

ψ′(0+) < +∞. Let x̂ ∈ R
p be such that

1. the restricted function F|
Θĥ(y)

(., y) : Θĥ(y) → R reaches a strict local mini-

mum at x̂,
2. δ1F(x̂, y)(u) > 0 for all u ∈ T⊥

ĥ
∩ S,

where ĥ := H(x̂, y), Θĥ(y), and Tĥ are determined according to (6), (7), and (8),
respectively.

Then F(., y) reaches a strict local minimum at x̂.

Proof. The result is a tautology if ĥ = ∅ since then Θĥ(y) = R
p. So consider that

ĥ is nonempty. First of all, we put F into a more convenient form. Define

ψ̃(t) := ψ(t)− t

2

(
ψ′(0−) + ψ′(0+)

)− ψ(0).(13)

Now we have

ψ̃′(0+) = −ψ̃′(0−) > 0 and ψ̃(0) = 0,(14)
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which will allow important simplifications. By means of ψ̃, the cost-function F as-
sumes the form

F(x, y) = Ψ̃(x, y) + Φ̃(x, y),(15)

where Ψ̃(x, y) =

q∑
i=1

ψ̃(aTi x− yi)

and Φ̃(x, y) =

q∑
i=1

ψ′(0−) + ψ′(0+)
2

(aTi x− yi) + qψ(0) + αΦ(x, y).

Both Ψ̃ and Φ̃ satisfy the assumptions about Ψ and Φ, respectively. Henceforth,
we deal with the formulation of F given in (15). For notational convenience, we
systematically write ψ for ψ̃, Ψ for Ψ̃, and Φ for Φ̃.

Let us consider the altitude increment of F(., y) at x̂ in the direction of an arbi-
trary u ∈ S,

F(x̂+ tu, y)−F(x̂, y) for t ∈ R+.

In order to avoid misunderstandings, u0 will denote a vector of Tĥ and u⊥ a vector of
T⊥
ĥ
. Using the fact that every u ∈ S has a unique decomposition into

u = u0 + u⊥ with u0 ∈ Tĥ ∩B(0, 1) and u⊥ ∈ T⊥
ĥ

∩B(0, 1),(16)

we decompose the altitude increment of F(., y) accordingly:
F(x̂+ tu, y)−F(x̂, y) = F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y)(17)

+ F(x̂+ tu0, y)−F(x̂, y).(18)

The term on the right-hand side of (17) is analyzed with the aid of assumption 2. In
order to calculate the side derivative δ1F(x̂, y), we decompose F into

F(x′, y′) = Ψĥ(x
′, y′) + Fĥ(x′, y′),(19)

where Ψĥ(x
′, y′) :=

∑
i∈ĥ
ψ(aTi x

′ − y′i)

and Fĥ(x′, y′) =
∑
i∈ĥc

ψ(aTi x− y′i) + αΦ(x′, y′).

This decomposition is used recurrently in the following.
Remark 3. The function Fĥ is Cm on a neighborhood of (x̂, y) which contains

B(x̂, σ)×B(y, σ) for

σ :=
1

2(‖a‖∞ + 1)
min
i∈ĥc

|aTi x̂− yi|,(20)

‖a‖∞:= q
max
i=1

‖ai‖.(21)

Indeed, for every (x′, y′) ∈ B(x̂, σ)×B(y, σ) we have
i ∈ ĥc ⇒ |aTi x′ − y′i| =

∣∣(aTi x̂− yi) + aTi (x′ − x̂) + (yi − y′i)∣∣(22)

≥ ∣∣aTi x̂− yi∣∣− ∣∣aTi (x′ − x̂)∣∣− |yi − y′i|
≥ min
i∈ĥc

|aTi x̂− yi| − ‖a‖∞σ − σ = (‖a‖∞ + 1)σ > 0,
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since clearly ‖a‖∞ > 0 and σ > 0.
In contrast, Ψĥ is nonsmooth at (x̂, y). Using Definition 3 we calculate that for

every u ∈ R
p,

δ1F(x, y)(u) = δ1Ψĥ(x̂, y)(u) +DFĥ(x̂, y).u,(23)

where δ1Ψĥ(x̂, y)(u) = ψ
′(0+)

∑
i∈ĥ

|aTi u|,(24)

since δψ(aTi x̂ − yi)(u) = limt↓0 ψ(taTi u)/t = ψ′(0+)|aTi u|, for every i ∈ ĥ, which
accounts for (14). Notice that δ1Ψĥ(x̂, y)(u) = δ1Ψĥ(x̂, y)(−u) ≥ 0 for every u ∈ R

p.
Applying assumption 2 to both u⊥ ∈ T⊥

ĥ
and −u⊥ yields

|DFĥ(x̂, y).u⊥| < ψ′(0+)
∑
i∈ĥ

|aTi u⊥| ∀u⊥ ∈ T⊥
ĥ
.(25)

Now consider the function

f : T⊥
ĥ

∩ S → R,

u⊥ → f(u⊥) :=
|DFĥ(x̂, y).u⊥|

ψ′(0+)
∑

i∈ĥ|a
T
i u⊥|

.

Since for every u⊥ ∈ T⊥
ĥ

∩ S there is at least one index i ∈ ĥ such that aTi u⊥ �= 0, this
function is well defined and continuous. If u⊥ → DFĥ(x̂, y).u⊥ is not identically null
on T⊥

ĥ
, put

c0 := sup
u⊥∈T⊥

ĥ
∩S
f(u⊥).(26)

Since T⊥
ĥ

∩ S is compact, f reaches the maximum value c0. By (25) we see that

0 < c0 < 1. If DFĥ(x̂, y).u⊥ = 0 for all u⊥ ∈ T⊥
ĥ
, we put c0 := 1/2. In both cases,

|DFĥ(x̂, y).u⊥| ≤ c0 ψ′(0+)
∑
i∈ĥ

|aTi u⊥| ∀u⊥ ∈ T⊥
ĥ
.(27)

Using (19), the right-hand side of (17) takes the form

F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y) = Ψĥ(x̂+ tu0 + tu⊥, y)−Ψĥ(x̂+ tu0, y)(28)

+ Fĥ(x̂+ tu0 + tu⊥, y)−Fĥ(x̂+ tu0, y).(29)

First, we focus on the right-hand side of (28). From the definition of ĥ and (16),

Ψĥ(x̂+ tu0, y) = 0,

Ψĥ(x̂+ tu0 + tu⊥, y) =
∑
i∈ĥ
ψ
(
aTi (x̂+ tu⊥ + tu0)− yi

)
=
∑
i∈ĥ
ψ(taTi u⊥).

Applying Definition 3 to ψ′(0+) shows that there is η0 ∈ (0, σ] such that
ψ(t)

t
≥ ψ′(0+)− 1− c0

2
ψ′(0+) ∀t ∈ (0, ‖a‖∞η0) ,
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since (1 − c0)/2 ∈ (0, 1). On the other hand, |aTi u| ≤ ‖ai‖‖u‖ ≤ ‖a‖∞ for all

u ∈ B(0, 1) and for all i ∈ {1, . . . , q}. Then

t ∈ (0, η0) ⇒ ψ(taTi u⊥) ≥
c0 + 1

2
ψ′(0+) t |aTi u⊥| ∀u⊥ ∈ T⊥

ĥ
∩B(0, 1).

Hence, taking t ∈ (0, η0) ensures that for all u ∈ S, decomposed into u = u0 + u⊥ as
in (16), we have

Ψĥ(x̂+ tu0 + tu⊥, y) ≥
c0 + 1

2
t ψ′(0+)

∑
i∈ĥ

|aTi u⊥|.(30)

Second, we consider (29). Define the constants

c1 := min
u⊥∈T⊥

ĥ
∩S

∑
i∈ĥ

|aTi u⊥|,(31)

c2 := c1ψ
′(0+)

1− c0
4

,(32)

and notice that c1 > 0 and c2 > 0, and that (31) implies∑
i∈ĥ

|aTi u⊥| ≥ c1‖u⊥‖ ∀u⊥ ∈ T⊥
ĥ
.(33)

Since Fĥ(., y) ∈ C1 (B(x̂, σ)) (see Remark 3), the mean-value theorem [5] shows that
for every u ∈ S and for every t ∈ [0, σ) there exists θ ∈ (0, 1) such that

Fĥ(x̂+ tu0 + tu⊥, y)−Fĥ(x̂+ tu0, y) = tD1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥,(34)

where u = u0 + u⊥ is decomposed as in (16). Moreover, there is η1 ∈ (0, η0) such that
for every t ∈ (0, η1),∣∣D1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥ −D1Fĥ(x̂, y).u⊥

∣∣ ≤ c2‖u⊥‖ ∀u ∈ S, ∀θ ∈ (0, 1),
and hence∣∣D1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥

∣∣ ≤ ∣∣D1Fĥ(x̂, y).u⊥
∣∣+ c2‖u⊥‖ ∀u ∈ S, ∀θ ∈ (0, 1).(35)

Starting with (28)–(29), we derive

F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y)(36)

≥ c0 + 1

2
t ψ′(0+)

∑
i∈ĥ

|aTi u⊥| − t
∣∣D1Fĥ(x̂+ tu0 + θtu⊥, y).u⊥

∣∣ [by (30) and (34)]
≥ c0 + 1

2
t ψ′(0+)

∑
i∈ĥ

|aTi u⊥| − t
∣∣D1Fĥ(x̂, y).u⊥

∣∣− tc2‖u⊥‖ [by (35)]

≥ 1− c0
2

t ψ′(0+)
∑
i∈ĥ

|aTi u⊥| − tc2‖u⊥‖ [by (27)]

≥ 1− c0
2

ψ′(0+)tc1‖u⊥‖ − tc2‖u⊥‖ [by (33)]

=
1− c0
4

ψ′(0+)tc1‖u⊥‖. [by (32)](37)
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Consequently,

t ∈ (0, η1) ⇒ F(x̂+ tu0 + tu⊥, y)−F(x̂+ tu0, y) > 0 ∀u ∈ S with u⊥ �= 0.(38)

From assumption 1, there exists η2 ∈ (0, η1] such that
t ∈ (0, η2) ⇒ F(x̂+ tu0, y)−F(x̂, y) > 0 ∀u0 ∈ Tĥ ∩B(0, 1) \ {0}.(39)

If u0 = 0, then (38) holds since ‖u⊥‖ = 1, whereas if u⊥ = 0, then (39) is true
since ‖u0‖ = 1. Introducing (38) and (39) into (17)–(18) shows that if t ∈ (0, η2), then
F(x̂+ tu, y)−F(x̂, y) > 0 for every u ∈ S.

Remark 4. The conditions required in Proposition 1 are pretty weak. Indeed, if
an arbitrary function F(., y) : Rp → R has a strict minimum at x̂, then assumption 1
is trivially true and necessarily δ1F(x̂, y)(u) ≥ 0 for all u ∈ T⊥

ĥ
∩S [32]. In comparison,

assumption 2 requires only that the latter inequality be strict.
Observe that the above sufficient condition for strict minimum concerns the be-

havior of F(., y) on two orthogonal subspaces separately. This occurs because of the
nonsmoothness of ψ.

4. Minimizers that fit exactly some data entries. The theorem below states
the main contribution of this work.

Theorem 1. Consider F as given in (11)–(12), where Φ ∈ Cm(Rp × R
q) for

m ≥ 2, and ψ ∈ Cm(R \ {0}) has finite side derivatives at zero such that ψ′(0−) <
ψ′(0+). Given y ∈ R

q and x̂ ∈ R
p, let ĥ := H(x̂, y), Θĥ(y), and Tĥ be obtained by

(6), (7), and (8), respectively. Suppose the following:

1. The set {ai : i ∈ ĥ} is linearly independent;
2. for every u ∈ Tĥ ∩ S we have D1(F|

Θĥ(y)
)(x̂, y).u = 0 and

D2
1(F|

Θĥ(y)
)(x̂, y)(u, u) > 0;

3. for every u ∈ T⊥
ĥ

∩ S we have δ1F(x̂, y)(u) > 0.
Then there is a neighborhood N ⊂ R

q containing y and a Cm−1 local minimizer
function X : N → R

p relevant to F(., N) (see Definition 2) yielding, in particular,
x̂ = X (y), whereas for every y′ ∈ N ,

aTi X (y′) = y′i if i ∈ ĥ,

aTi X (y′) �= y′i if i ∈ ĥc.
(40)

The latter means that H(X (y′), y′) = ĥ is constant on N .
Proof. If ĥ = ∅, then Θĥ(y′) = R

p for all y′. Applying Lemma 1 shows the
existence of Ñ ⊂ R

q and of a Cm−1 local minimizer function X relevant to F(., Ñ).
By the continuity of X , there is N ⊂ Ñ where (40) holds, in which case (40) is reduced
to aTi X (y′) �= y′i for all i ∈ {1, . . . , q}.

In the following we consider that ĥ is nonempty. As in the proof of Proposition 1,
we use the formulation of F given in (13)–(15) and write ψ for ψ̃ and Φ for Φ̃. This
proof is based on two lemmas given next.

Lemma 2. Let assumptions 1 and 2 of Theorem 1 be satisfied. Then there exist
ν > 0 and a Cm−1-function X : B(y, ν)→ R

p so that for every y′ ∈ B(y, ν) the point
x̂′ := X (y′) belongs to Θĥ(y′) and satisfies

D1

(
F|

Θĥ(y′)

)
(x̂′, y′).u = 0 and D2

1

(
F|

Θĥ(y′)

)
(x̂′, y′)(u, u) > 0 ∀u ∈ Tĥ\{0}.

(41)
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In particular, x̂ = X (y).
Proof of Lemma 2. We start by commenting on the restricted functions in (41).
Remark 5. For σ as in (20), the inequality reached in (22) shows that for all

(x′, y′) ∈ B(x̂, σ)×B(y, σ) we have H(x′, y′) ⊆ ĥ. On the other hand, if x′ ∈ Θĥ(y′),
then H(x′, y′) ⊇ ĥ. If we put

Bĥ ((x̂, y), σ) := (B(x̂, σ)×B(y, σ)) ∩Mĥ,(42)

where Mĥ is given in (9), we have

(x′, y′) ∈ Bĥ ((x̂, y), σ) ⇒ H(x′, y′) = ĥ,
and Bĥ ((x̂, y), σ) ⊂Mĥ. By (7) and (10), for every (x

′, y′) ∈Mĥ we find Ψĥ(x
′, y′) =

0 and hence F|
Θĥ(y′)(x

′, y′) = Fĥ|Θĥ(y′)(x
′, y′). Since Fĥ ∈ Cm (B(x̂, σ)×B(y, σ))

(see Remark 3), we get

F|
Θĥ(y′) ∈ Cm (Bĥ ((x̂, y), σ)) and F|

Θĥ(y′)(x
′, y′) = Fĥ(x′, y′) ∀ (x′, y′) ∈ Bĥ ((x̂, y), σ).

We now pursue the proof of the lemma. Let the indexes contained in ĥ read ĥ =
{j1, . . . , j#ĥ}. Let Iĥ be the #ĥ× q matrix with entries Iĥ[i, ji] = 1 for i = 1, . . . ,#ĥ,
the remaining entries being null. Thus yĥ := Iĥy ∈ R

#ĥ is composed of only those

entries of y whose indexes are in ĥ. Similarly, put Aĥ := IĥA; then Aĥ ∈ R
#ĥ×p

and Aĥx̂ = yĥ. With this notation, Mĥ =
{
(x′, y′) ∈ R

p × R
q : Aĥx

′ − Iĥy′ = 0
}
. By

assumption 1, rankAĥ = #ĥ. Then for every y′ we have the following dimensions:
dim Θĥ(y

′) = dim Tĥ = p−#ĥ while dim Mĥ = p−#ĥ+ q. Recalling that AĥATĥ is
invertible, put

Pĥ := A
T
ĥ

(
AĥA

T
ĥ

)−1

Iĥ.(43)

Let Cĥ : Tĥ → R
p−#ĥ be an isomorphism. The affine mapping

Γ : Mĥ → R
p−#ĥ,

(x′, y′)→ Γ(x′, y′) = Cĥ
(
x′ − x̂− Pĥ(y′ − y)

)
(44)

is well defined for every y′ ∈ R
q since on the one hand x̂+Pĥ (y

′ − y) is the orthogonal
projection1 of x̂ onto Θĥ(y

′), whereas on the other hand x′ ∈ Θĥ(y′) by (10). Consider
also the conjugate mapping

Γ† : R
p−#ĥ × R

q → Θĥ(y
′),

(z, y′)→ Γ†(z, y′) = C−1

ĥ
z + x̂+ Pĥ(y

′ − y),(45)

1The orthogonal projection of x̂ onto Θĥ(y
′), denoted by x̂y′ , is unique and is determined by

solving the problem

minimize ‖x̂y′ − x̂‖ subject to x̂y′ ∈ Θĥ(y
′).

The latter constraint also reads Aĥx̂y′ = y′
ĥ

if we denote y′
ĥ

= Iĥy
′. It is easily calculated that the

solution to this problem reads

x̂y′ = x̂−AT
ĥ

(
AĥA

T
ĥ

)−1 (
Aĥx̂− y′

ĥ

)
.

Recalling that Aĥx̂ = Iĥy from the definition of ĥ, we obtain that x̂y′ = x̂+ Pĥ (y′ − y).
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which is also well defined. Let

ν0 :=
σ

2
min

{
1,

(
sup
z∈S

‖C−1

ĥ
z‖+ sup

y′∈S
‖Pĥy′‖

)−1
}
.(46)

Clearly, 0 < ν0 < σ. It is worth noticing that

Γ†(z, y′) ∈ Θĥ(y′) ∩B(x̂, σ) ⊂ Θĥ(y′) ∀(z, y′) ∈ B(0, ν0)×B(y, ν0),(47)

since on the one hand (45) shows that Γ†(z, y′) ∈ Θĥ(y′) whereas, on the other hand,

‖Γ†(z, y′)− x̂‖ ≤ ‖C−1

ĥ
‖ ‖z‖+ ‖Pĥ‖ ‖y′ − y‖ ≤ (‖C−1

ĥ
‖+ ‖Pĥ‖) ν0 < σ.

Now we introduce the function

G : Rp−#ĥ × R
q → R,

(z, y′)→ G(z, y′) := Fĥ
(
Γ†(z, y′), y′

)
.(48)

Since for every y′ ∈ R
q we have

z = Γ(x′, y′) ⇔ x′ = Γ†(z, y′),

then

G (Γ(x′, y′), y′) = Fĥ(x′, y′) = F|
Θĥ(y′)(x

′, y′) ∀(x′, y′) ∈ Bĥ ((x̂, y), σ) ,

where the last equality comes from Remark 5. Now for every (x′, y′) ∈ Bĥ ((x̂, y), σ),
the derivatives of F|

Θĥ(y′), mentioned in (41), can be calculated in terms of G and Γ
as follows:

D1

(
F|

Θĥ(y′)

)
(x′, y′).u0 = D1G (Γ(x′, y′), y′) .Cĥu0 ∀u0 ∈ Tĥ,(49)

D2
1

(
F|

Θĥ(y)

)
(x′, y′)(u0, u0) = D2

1G (Γ(x′, y′), y′) .
(
Cĥu0, Cĥu0

) ∀u0 ∈ Tĥ.(50)

Since Cĥ is an isomorphism, D1Γ(x
′, y′).u0 = Cĥ.u0 �= 0 for every u0 ∈ Tĥ \ {0},

whereas Cĥ.Tĥ = R
p−#ĥ. Then assumption 2, combined with the fact that Γ(x̂, y) = 0

by construction, yields

D1G(0, y) = 0,
D2

1G(0, y)(u, u) > 0 ∀u ∈ R
p−#ĥ \ {0}.

By Lemma 1, there exist ν ∈ (0, ν0] and a unique Cm−1-function Z : B(y, ν) →
B(0, ν0) such that

D1G (Z(y′), y′) = 0 and D2
1G (Z(y′), y′) is positive definite ∀y′ ∈ B(y, ν),(51)

with, in particular, Z(y) = 0. Next we express the derivatives in (51) in terms of
Fĥ and Γ†. From (47) and Remark 5 it follows that Fĥ is Cm at every

(
Γ†(z, y′), y′

)
relevant to (z, y′) ∈ B(0, ν0)×B(y, ν), in which case (48) gives rise to

D1G(z, y′).u = D1Fĥ(Γ†(z, y′), y′).C−1

ĥ
u,(52)

D2
1G(z, y′)(u, u) = D2

1Fĥ(Γ†(z, y′), y′)
(
C−1

ĥ
u,C−1

ĥ
u
)
.(53)
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Put

X (y′) := Γ† (Z(y′), y′) ∀y′ ∈ B(y, ν),(54)

and notice that X (y′) ∈ Θĥ(y′). Then (51) implies that for every y′ ∈ B(y, ν),

D1Fĥ(X (y′), y′).C−1

ĥ
u = 0 ∀u ∈ R

p−#ĥ,

D2
1Fĥ(X (y′), y′)

(
C−1

ĥ
u,C−1

ĥ
u
)
> 0 ∀u ∈ R

p−#ĥ \ {0}.

Since C−1

ĥ
u �= 0 for all u ∈ R

p−#ĥ \ {0} and C−1

ĥ
.Rp−#ĥ = Tĥ, it follows that for

every y′ ∈ B(y, ν),
D1Fĥ (X (y′), y′) .u0 = 0 and D2

1Fĥ(X (y′), y′).(u0, u0) > 0 ∀u0 ∈ Tĥ \ {0}.
Again applying Remark 5 allows us to write that if y′ ∈ B(y, ν), then

D1

(
F|

Θĥ(y′)

)
(X (y′), y′) .u0 = 0 and D2

1

(
F|

Θĥ(y′)

)
(X (y′), y′)(u0, u0) > 0

∀u0 ∈ Tĥ \ {0}.
The proof of Lemma 2 is complete.

The next lemma addresses assumption 3 of the theorem.
Lemma 3. Given x̂ ∈ R

p and y ∈ R
q, let ĥ = H(x̂, y) �= ∅. Let assumption 3 of

Theorem 1 hold.
Then there exists µ > 0 such that

y′ ∈ B(x̂, µ) and x′ ∈ Θĥ(y′)∩B(x̂, µ) ⇒ δ1F(x′, y′)(u⊥) > 0 ∀u⊥ ∈ T⊥
ĥ
∩S.(55)

Proof of Lemma 3. We decompose F according to (19). Let σ and Bĥ ((x̂, y), σ)
be defined according to (20) and (42), respectively. Remark 5 applies to Bĥ ((x̂, y), σ).
Similarly to (23)–(24), for every (x′, y′) ∈ Bĥ ((x̂, y), σ) we have

δ1F(x′, y′)(u) = ψ′(0+)
∑
i∈ĥ

|aTi u|+D1Fĥ(x′, y′).u ∀u ∈ R
p.(56)

By the continuity ofD1Fĥ, there is µ ∈ (0, σ] such that for every (x′, y′) ∈ Bĥ ((x̂, y), µ),∣∣D1Fĥ(x′, y′).u⊥ −D1Fĥ(x̂, y).u⊥
∣∣ ≤ 1− c0

2
ψ′(0+)c1‖u⊥‖ ∀u⊥ ∈ T⊥

ĥ
,(57)

where c0 ∈ (0, 1) and c1 > 0 are the constants given in (26) and (31), respectively.
We derive the following inequality chain which holds for all (x′, y′) ∈ Bĥ ((x̂, y), µ)
and for all u⊥ ∈ T⊥

ĥ
:∣∣D1Fĥ(x′, y′).u⊥

∣∣
≤ ∣∣D1Fĥ(x̂, y).u⊥

∣∣+ 1− c0
2

ψ′(0+)c1‖u⊥‖ [by (57)]

≤ c0 ψ′(0+)
∑
i∈ĥ

|aTi u⊥|+
1− c0
2

ψ′(0+)c1‖u⊥‖ [by (27)](58)

≤ c0 ψ′(0+)
∑
i∈ĥ

|aTi u⊥|+
1− c0
2

ψ′(0+)
∑
i∈ĥ

|aTi u⊥| [by (33)]

=
c0 + 1

2
ψ′(0+)

∑
i∈ĥ

|aTi u⊥|.(59)
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On the other hand, (56) shows that for every (x′, y′) ∈ Bĥ ((x̂, y), µ) and for all
u⊥ ∈ T⊥

ĥ
∩ S, we have

δ1F(x′, y′)(u⊥) ≥ ψ′(0+)
∑
i∈ĥ

|aTi u⊥| − |D1Fĥ(x′, y′).u⊥|

≥
(
1− c0 + 1

2

)
ψ′(0+)

∑
i∈ĥ

|aTi u⊥| > 0. [by (59)]

The last inequality is strict since for every u⊥ ∈ T⊥
ĥ

∩ S, there is at least one index
i ∈ ĥ for which aTi u⊥ �= 0.

We now complete the proof of Theorem 1. Consider ν > 0 and µ > 0 the radii
found in Lemmas 2 and 3 and X the function exhibited in Lemma 2. By the continuity
of X , there exists ξ ∈ (0,min{µ, ν}] such that X (y′) ∈ B(x̂, µ) for every y′ ∈ B(y, ξ).
For any y′ ∈ B(y, ξ), consider the point x̂′ := X (y′). From Lemma 2, x̂′ ∈ Θĥ(y′) and
x̂′ is a strict local minimizer of F|

Θĥ(y′)(., y
′). From Lemma 3, δ1F(x̂′, y′)(u⊥) > 0 for

all u⊥ ∈ T⊥
ĥ

∩ S. All the conditions of Proposition 1 being satisfied, F(., y′) reaches a
strict local minimum at x̂′. It follows that X : B(y, ξ)→ R

p is the sought-after Cm−1

minimizer function.
We now focus on the assumptions involved in this theorem. Assumption 2 is

nothing else but the very classical sufficient condition for a strict local minimum of
a smooth function over an affine subspace. Assumption 3 was used in Proposition 1
and was discussed therein.

Remark 6 (on assumption 1). The subset {ai : i ∈ ĥ} in assumption 1 is deter-
mined by (6). With the notation introduced in the beginning of Lemma 2, yĥ := Iĥy ∈
R

#ĥ belongs to the range of Aĥ, denoted by R(Aĥ). Since dim R(Aĥ) = rankAĥ, it
follows that if rankAĥ < #ĥ, then all y

′
ĥ
belonging to R(Aĥ) belong to a subspace

of dimension strictly smaller than #ĥ. Thus, assumption 1 fails to hold only if y is
included in a subspace of dimension smaller than q. But the chance that noisy data
y belong to such a subspace is null. Hence, assumption 1 is satisfied for almost all
y ∈ R

q.
It is worth emphasizing that the independence of the whole set {ai : i ∈ {1, . . . , q}}

is not required. Thus, Theorem 1 addresses any matrix A whether it be ill conditioned,
or singular, or invertible.

Theorem 1 entails some important consequences which are discussed next.
Remark 7 (stability of minimizers). The fact that there is a Cm−1 local minimizer

function shows that, in spite of the nonsmoothness of F , for any y, all the strict local
minimizers of F(., y) which satisfy the conditions of the theorem are stable under weak
perturbations of data y. This result extends Lemma 1 to nonsmooth functions of the
form (11)–(12). Moreover, if for every y ∈ R

q the function F(., y) is strictly convex,
then the unique minimizer function X : R

q → R
p, relevant to F(.,Rq), is Cm−1 on

R
q.
Remark 8 (stability of ĥ). The result formulated in (40) means that the set-

valued function y′ → H(X (y′), y′) is constant on N , i.e., that H is constant under

small perturbations of y. Equivalently, all residuals (aTi X (y′)− y′i) for i ∈ ĥ are null
on N .

Remark 9 (data domain). Theorem 1 reveals that the data domain R
q contains

volumes of positive measure composed of data that lead to local minimizers which
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fit exactly the data entries belonging to the same set (e.g., for A invertible, α = 0

yields ĥ = {1, . . . , q} and the data volume relevant to this ĥ is R
q). For a meaningful

choice of ψ, Φ, and α, there are volumes corresponding to various ĥ, and they are large
enough so that noisy data come across them. That is why in practice, nonsmooth data-
fidelity terms yield minimizers fitting exactly a certain number of the data entries.
The resultant numerical effect is observed in section 7.

Next we present a simple example which illustrates Theorem 1.
Example 1 (nonsmooth data-fidelity term). Consider the function

F(x, y) =
q∑
i=1

|xi − yi|+ α
q∑
i=1

x2
i

2
,

where α > 0. For every y ∈ R
q, the function F(., y) is strictly convex, so it has a

unique minimizer and the latter is strict. Moreover,

min
x

F(x, y) =
q∑
i=1

min
xi

f(xi, yi),

where f(xi, yi) = |xi − yi|+ αx
2
i

2
for i = 1, . . . , q.

For y ∈ R
q, let x̂ be the minimizer of F(., y). Now ĥ = {i : x̂i = yi}. For every i, the

fact that f(., yi) has a minimum at x̂i means that δ1f(x̂i, yi)(u) ≥ 0 for every u ∈ R.
Then for every u ∈ R we have

if (i ∈ ĥc ⇔ x̂i �= yi), then δ1f(xi, yi)(u) = Df(xi, yi).u = (sign(xi − yi) + αxi) .u ≥ 0;
if (i ∈ ĥ ⇔ x̂i = yi), then δ1f(x̂i, yi)(u) = |u|+ (αyi) .u ≥ 0.
From Proposition 1, the entries of the minimizer function X are

if |yi| > 1

α
, then Xi(y) = 1

α
sign(yi);

if |yi| ≤ 1

α
, then Xi(y) = yi.

Theorem 1 applies, provided that |yi| �= 1/α for every i ∈ ĥ, which corresponds to
assumption 3. In such a case, we can take for the neighborhood exhibited in Theorem 1

N = B(y, ξ) with ξ =
q

min
i=1

∣∣∣∣ |yi| − 1

α

∣∣∣∣ .
We see that y′ → H(X (y′), y′) reads

H(X (y′), y′) =
{
i ∈ {1, . . . , q} : |y′i| ≤

1

α

}

and is constant on N . The above expression shows also that the cardinality of ĥ
increases when α decreases.

We now illustrate Remark 9. For h ⊂ {1, . . . , q}, put

Vh :=

{
y ∈ R

q : |yi| ≤ 1

α
∀i ∈ h and |yi| > 1

α
∀i ∈ hc

}
.
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Obviously, every y′ ∈ Vh gives rise to a minimizer x̂′ of F(., y′) satisfyingH(x̂′, y′) = h.
That is, the function y′ → H(X (y′), y′) is constant on Vh. Note that V∅ = {y ∈ R

q :
|yi| > 1/α for all i} and that V∅ = ∅ if α = 0. Moreover, for every h ⊂ {1, . . . , q}, the
set Vh has a positive volume in R

q, whereas the family of all Vh, when h ranges over
the family of all the subsets of {1, . . . , q} (including the empty set), is a partition of
R
q.

5. Smooth data-fidelity terms. In this section we focus on smooth cost-
functions with the goal of checking whether we can get minimizers which fit exactly
a certain number of data entries. We start with an illuminating example.

Example 2 (smooth cost-function). For A ∈ R
q×p and G ∈ R

r×p with r ∈ N
∗,

consider the cost-function F : Rp × R
q → R,

F(x, y) = ‖Ax− y‖2 + α‖Gx‖2.(60)

Recall that since the publication of [37], cost-functions of this form are among the
most widely used tools in signal and image estimations [25, 22, 35, 13]. Under the
classical assumption kerATA ∩ kerGTG = ∅, it is seen that for every y ∈ R

q, F(., y)
is strictly convex and its unique minimizer x̂ is determined by solving the equation

D1F(x̂, y) = 0 where D1F(x̂, y) = 2(Ax̂− y)TA+ 2αx̂TGTG.
The relevant minimizer function X : Rq → R

p reads

X (y) = (ATA+ αGTG)−1AT . y.(61)

We now determine the set of all data points y ∈ R
q for which x̂ := X (y) fits exactly

the ith data entry yi. To this end, we have to solve with respect to y the equation

aTi X (y) = yi.(62)

Using (61), this is equivalent to solving the equation

pi(α).y = 0,(63)

where pi(α) = aTi (A
TA+ αGTG)−1AT − eTi .

We can have pi(α) = 0 only if α belongs to the discrete set of several values which
satisfy a data-independent system of q polynomials of degree p. However, α will almost
never belong to such a set so, in general, pi(α) �= 0. Then (63) implies y ∈ {pi(α)}⊥.
More generally, we have the implication

∃i ∈ {1, . . . , q} such that Xi(y) = yi ⇒ y ∈
q⋃
j=1

{pj(α)}⊥.

Since every {pi(α)}⊥ is a subspace of R
q of dimension q − 1, the union on the right-

hand side above is a closed, negligible subset of R
q. The chance that noisy data come

across this union is null. Hence, the chance that noisy data y yield a minimizer X (y)
which fits even one data entry, i.e., that there is at least one index i such that (62)
holds, is null.

The theorem stated below generalizes this example.
Theorem 2. Consider a Cm-function F : Rp×R

q → R, with m ≥ 2, of the form
(1)–(2), and let h ⊂ {1 . . . , q} be nonempty. Assume the following:
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1. For all i = 1, . . . , q, the functions ψi : R → R satisfy ψ′′
i (t) > 0 for all t ∈ R;

2. A is invertible (recall that for every i = 1, . . . , q, the ith row of A is aTi );
3. there is an open domain N0 ⊂ R

q so that F(., N0) admits a Cm−1 local
minimizer function X : N0 → R

p, such that D2
1F(X (y), y) is positive definite,

for all y ∈ N0;
4. for every x ∈ X (N0) ⊂ R

p and for every i ∈ h we have D2Φ(x).[A−1]i �= 0,
where [A−1]i denotes the ith column of A

−1, for i = 1, . . . , q.
For a given set of constants {θi, i ∈ h}, and for any N ⊂ N0 a closed subset of R

q,
put

Υh :=
{
y ∈ N : aTi X (y) = yi + θi ∀i ∈ h

}
.(64)

Then Υh is a closed subset of R
q whose interior is empty.

Proof. For every h nonempty we have

Υh =
⋂
i∈h
Υ{i}.

It is hence sufficient to consider Υ{i} for some i ∈ h. For simplicity, in the following
we write Υi for Υ{i}. Since X is continuous on N , every Υi is closed in N and hence
in R

q. Our reasoning below is developed ad absurdum. So suppose that Υi contains
an open, connected subset of R

q, say Ñ ⊂ Υi ⊂ N . We can hence write

aTi X (y) = yi + θi ∀y ∈ Ñ .(65)

Differentiating both sides of this identity with respect to y yields

aTi DX (y) = eTi ∀y ∈ Ñ .(66)

We next determine the form of DX . Since for every y ∈ Ñ the point X (y) is a local
minimizer of F(., y), it satisfies D1F(X (y), y) = 0. Differentiating both sides of the
latter identity leads to

D2
1F (X (y), y)DX (y) +D1,2F (X (y), y) = 0 ∀y ∈ Ñ .(67)

The Hessian of x→ F(x, y), denoted H(x, y) := D2
1F (x, y), reads

H(x, y) = D2
1Ψ(x, y) + αD

2Φ(x)

= AT Diag
(
ψ̈(x, y)

)
A+ αD2Φ(x),(68)

where for every x and y, ψ̈(x, y) ∈ R
q is the vector whose entries read

[ψ̈(x, y)]i = ψ
′′
i (a

T
i x− yi) for i = 1, . . . , q.

By assumption 3, H (X (y), y) is an invertible matrix for every y ∈ Ñ . Furthermore,

D1,2F(x, y) = −AT Diag
(
ψ̈(x, y)

)
.

Inserting the last expression and (68) into (67) shows that

DX (y) = (H(X (y), y))−1
AT Diag

(
ψ̈(X (y), y)

)
∀y ∈ Ñ .(69)
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Now introducing (69) into (66) yields

aTi (H(X (y), y))−1
AT Diag

(
ψ̈(X (y), y)

)
= eTi ∀y ∈ Ñ .(70)

By assumption 1, Diag
(
ψ̈(X (y), y)) is invertible for every y ∈ Ñ . Its inverse is

a diagonal matrix whose diagonal terms are
(
ψ′′
i (a

T
i X (y)− yi)

)−1
for i = 1 . . . , q.

Noticing that

eTi

(
Diag

(
ψ̈(X (y), y)

))−1

=
eTi

ψ′′
i

(
aTi X (y)− yi

) ,
we find that (70) equivalently reads

ψ′′
i (a

T
i X (y)− yi) .aTi (H(X (y), y))−1

= eTi A
−T ∀y ∈ Ñ ,

where A−T :=
(
AT
)−1
. Then, taking into account (68),

ψ′′
i (a

T
i X (y)− yi) .aTi = eTi A−T

(
AT Diag

(
ψ̈(X (y), y)

)
A+ αD2Φ(X (y))

)
∀y ∈ Ñ .

By the invertibility of A (assumption 2), and noticing that eTi A = aTi , the latter
expression is simplified to

ψ′′
i

(
aTi X (y)− yi

)
.aTi = ψ

′′
i

(
aTi X (y)− yi

)
.aTi + αe

T
i A

−TD2Φ(X (y)) ∀y ∈ Ñ ,
and finally to

D2Φ(X (y)).A−1ei = 0 ∀y ∈ Ñ .
However, the obtained identity contradicts assumption 4. Hence the conclusion.

Let us comment on the assumptions taken in this theorem. Recall first that
assumption 3 was discussed in Lemma 1 and Remark 1. In the typical case when Ψ
is a data-fidelity measure, every ψi is a strictly convex function satisfying ψi(0) = 0
and ψi(t) = ψi(−t).

Remark 10 (on assumption 2). This proposition also addresses the case when

F(x, y) = ‖Ax− y‖2 + αΦ(x) with rankA = p ≤ q.
Indeed, for p < q, F can equivalently be expressed in terms of an invertible p × p
matrix Ã with ÃT Ã = ATA in place of A.

Remark 11 (on assumption 4). By the invertibility of A (assumption 2), we see
that [A−1]i = A

−1ei �= 0 for every i = 1, . . . , q. It would be a “pathological” situation
to have some of the columns of A−1 in kerD2Φ(x) for some x. For instance, focus on
the classical case given in (4) with GTi : R

p → R. Let G denote the r×p matrix whose
rows are GTi for i = 1, . . . , r. Then D

2Φ(x) = GTDiag (ϕ̈(Gx))G, where ϕ̈(Gx) ∈ R
r

is the vector with entries [ϕ̈(Gx)]i = ϕ
′′(GTi x) for i = 1, . . . , r. Focus on the case when

ϕ′′(t) > 0 for all t ∈ R (e.g., ϕ is strictly convex) and G yields first-order differences
between neighboring samples. Then KerD2Φ(x) is composed of the constant vectors
κ[1, . . . , 1]T , κ ∈ R. Then assumption 4 is satisfied provided that A−1 does not involve
constant columns.

Remark 12 (meaning of the theorem). If for some y ∈ R
q a minimizer x̂ of F(., y)

satisfies an affine equation of the form aTi x̂ = yi + θi, then Theorem 2 asserts that
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y belongs to a closed subset of R
q whose interior is empty. There is no chance that

noisy data y yield local minimizers of a smooth cost-function F(., y) satisfying such
an equation.

The next proposition states the same conclusions but under different assumptions.
Proposition 2. Consider a Cm-function F : R

p × R
q → R, with m ≥ 2, of the

form (1)–(2) and let h ⊂ {1 . . . , q} be nonempty. Assume the following:
1. There is a domain N0 ⊂ R

q so that F(., N0) admits a Cm−1 local minimizer
function X : N0 → R

p such that D2
1F(X (y), y) is positive definite for all

y ∈ N0;
2. for every y ∈ N0 and for every i ∈ h there exists j ∈ {1, . . . , q} such that the
function Ki,j,

Ki,j(y′) := ψ′′
i

(
aTj X (y′)− eTj y′

)
.aTi (H(X (y′), y′))−1

.aj ,

where H was given in (68), is nonconstant on any neighborhood of y.
For {θi ∈ R : i ∈ h} given, and for every N ⊂ N0 a closed subset of R

q, put

Υh :=
{
y ∈ N : aTi X (y) = yi + θi ∀i ∈ h

}
.(71)

Then Υh is a closed subset of R
q whose interior is empty.

Proof. As in the proof of Theorem 2, we focus on Υi for i ∈ h and develop our
reasoning by contradiction. So suppose that Υi contains an open ball Ñ . Then (65)
and (66) are true. In particular, comparing (66) for y′ �= y with the same equality for
y yields

aTi DX (y′) = aTi DX (y) ∀y′ ∈ Ñ .(72)

Notice that AT Diag
(
ψ̈(x, y′)

)
is a matrix whose jth column reads ψ′′(aTj x − y′j).aj .

Introducing (69) into (72) shows that the latter is equivalent to the system

Ki,j(y′) = Ki,j(y) ∀j ∈ {1, . . . , q}, ∀y′ ∈ Ñ .
The obtained result contradicts assumption 2.

Remark 13 (on assumption 2). Although a general proof of the validity of this
assumption appears to be more intricate than important, we conjecture that it is
usually satisfied. The intuitive arguments are the following. Let us focus on the
classical case when Φ is as in (4). The entries of H(x′, y′) read

[H(x′, y′)]m,n =
q∑
j=1

η2j,mψ
′′(ajx′−y′j)+

r∑
j=1

κ2
j,nϕ

′′(Gjx′) for (m,n) ∈ {1, . . . , p}2,(73)

where ηj,m, j = 1, . . . , q, and κj,n, j = 1, . . . , r, are constants that are calculated
from G and A. From Cramer’s rule for matrix inversion, for every j, the term
aTi (H(x

′, y′))−1
aj is the fraction of two polynomials. The entries of the numer-

ator read βs,m,n([H(x
′, y′)]m,n)

s for all (m,n) ∈ {1, . . . , p}2 with βs,m,n ∈ R for
s = 0, . . . , p − 1. In the denominator we have γs,m,n([H(x′, y′)]m,n)s for all (m,n) ∈
{1, . . . , p}2 with γs,m,n ∈ R for s = 0, . . . , p. For X a minimizer function and j and i
given, Ki,j has the form

Ki,j(y′) = ψ′′ (aTj X (y′)− y′j) .
∑p−1
s=1

∑
(m,n) βs,m,n([H(X (y′), y′)]m,n)s∑p

s=1

∑
(m,n) γs,m,n([H(X (y′), y′)]m,n)s

.(74)

Assumption 2 requires that for i ∈ h, there is at least one index j ∈ {1, . . . , q} for
which the relevant function Ki,j does not remain constant on any neighborhood of y.
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6. Nonsmooth regularization versus nonsmooth data-fidelity. In this
section we compare cost-functions involving nonsmooth data-fidelity terms to cost-
functions involving nonsmooth regularization terms. The visual effects produced by
these classes of cost-functions can be seen in section 7.

Cost-functions with nonsmooth regularization typically have the form (1), where
Ψ is a Cm-function, m ≥ 2, whereas Φ is as in (4) with ϕ nonsmooth at zero. Most
often, Ψ(x, y) = ‖Ax − y‖2. Nonsmooth functions ϕ are, for instance, the L1- and
concave functions in (5). Since the publication of [33, 18], such cost-functions are
customarily used in signal and image restoration [18, 1, 14, 11, 12, 38]. Visually,
the obtained minimizers exhibit a staircasing effect since they typically involve many
constant regions—see, for instance, Figures 6 and 10 in section 8. This effect is
discussed by many authors [18, 15, 14, 12]. In particular, the ability of the L1-function
to recover noncorrelated “nearly black” images in the simplest case when Gi = ei for
all i was interpreted in [15] using mini-max decision theory. Total-variation methods,
corresponding to ϕ(t) = |t| also, were observed to yield “blocky images” [14, 12].
The concave function was shown to transform ramp-shaped data into a step-shaped
minimizer [19].

A theoretical explanation of staircasing was given in [26, 27, 28]. It was shown
there that regularization of the form (4) with ϕ nonsmooth at zero yields local min-
imizers x̂ which satisfy GTi x̂ = 0 exactly for many indexes i. For instance, if GTi ,
i = 1, . . . , r, yield first-order differences between neighboring samples (if x is a signal
of R

p, GTi x = xi − xi+1 for i = 1, . . . , p − 1), the relevant minimizers x̂ are constant
over many zones. If GTi , i = 1, . . . , r, yield second-order differences, then x̂ involves
many zones over which it is affine, etc. More generally, the sets of indexes i for which
GTi x̂ = 0 determine zones which can be said to be strongly homogeneous [27]. Stair-
casing is due to a special form of stability property which is explained next. Let a data
point y give rise to a local minimizer x̂ which satisfies GTi x̂ = 0 for all i ∈ ĥ, where
ĥ �= ∅. It is shown in [26, 27, 28] that y is in fact contained in a neighborhood N ∈ R

q

whose elements y′ ∈ N (noisy data) give rise to local minimizers x̂′ of F(., y′), placed
near x̂, which satisfy GTi x̂

′ = 0 for all i ∈ ĥ. Since every such N is a volume of pos-
itive measure, noisy data come across these volumes and yield minimizers satisfying
GTi x̂

′ = 0 for many indexes i. Notice that this behavior is due to the nonsmoothness
of ϕ at zero since it cannot occur with differentiable cost-functions [27, 28].

The behavior of the minimizers of cost-functions with nonsmooth data-fidelity, as
considered in Theorem 1, is opposite. If y leads to a minimizer x̂ which fits exactly
a set ĥ of entries of y, Theorem 1 shows that y is contained in a neighborhood N
such that the relevant minimizer function X follows closely every small variation of
all data entries y′i for i ∈ ĥ when y′ ranges over N . Thus aTi X (y′) is never constant
in the vicinity of y for i ∈ ĥ.

7. Nonsmooth data-fidelity to detect and smooth outliers. Our objec-
tive now is to process data in order to detect, and possibly to smooth, outliers and
impulsive noise. To this end, take ai = ei for every i ∈ {1, . . . , q} in (2). Focus on

F(x, y) =
q∑
i=1

ψ(xi − yi) + α
r∑
i=1

ϕ(GTi x),(75)

where GTi : R
p → R for i = 1, . . . , r yield differences between neighboring samples

(e.g., GTi x = xi − xi+1 if x is a signal); ψ and ϕ are even and strictly increasing on
[0,∞), with ψ′(0+) > 0 and ϕ smooth on R. Suppose that x̂ is a strict minimizer
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of F(., y) and put ĥ = H(x̂, y). Based on the results in section 4, we naturally come
to the following method for the detection of outliers. Since every yi corresponding
to i ∈ ĥ is kept intact in the minimizer x̂, that is, x̂i = yi, every such yi can be
considered as a faithful data entry. In contrast, every yi with i ∈ ĥc corresponds to
x̂i �= yi which can indicate that this yi is aberrant. In other words, given y ∈ R

q,
we posit that ĥc, the complementary of ĥ = H(X (y), y), provides an estimate of the
locations of the outliers in y. The possibility of keeping intact all faithful data entries
is both spectacular and valuable from a practical point of view, e.g., to preprocess
data.

Remark 14 (stability of the detection of outliers). If a minimizer x̂ of F(., y) for
y ∈ R

q gives rise to ĥ = H(x̂, y), then Theorem 1 ensures that all data y′ placed near y
yield minimizers x̂′ which recover exactly the same set of outlier positions ĥc. Hence,
the suggested method for detection of outliers is stable under small data variations.

We also can envisage smoothing outliers since the value of every x̂i for i ∈ ĥc is
obtained from the values of neighboring data samples through the terms αϕ(GTj x̂)
for all j neighbor of i. Small values of α make the weight of Ψ more important, so
the relevant minimizers x̂ fit larger sets of data entries, i.e., ĥ is larger. At the same
time, all samples x̂i for i ∈ ĥc incur an only-weak smoothing and may remain close to
yi. In contrast, large values of α improve smoothing since they increase the weight of
Φ. To resume, small values of α are better adapted for the detection of outliers while
large values of α are better suited for smoothing of outliers. We are hence faced with
a compromise between efficiency of detection and quality of smoothing. The next
example, as well as the experiments presented below, corroborate this conjecture.

Example 3. Consider the following cost-function:

F(x, y) =
q∑
i=1

|xi − yi|+ α
p−1∑
i=1

(xi − xi+1)
2.

Let x̂ be a minimizer of F(., y) for which ĥ := H(x̂, y) is nonempty. Focus on i ∈ ĥc.
Since x̂i �= yi, then

0 =
∂F(x̂, y)
∂x̂i

= sign(x̂i − yi) + 2α ((x̂i − x̂i+1)− (x̂i−1 − x̂i)) ,

which yields

x̂i =
x̂i−1 + x̂i+1

2
− sign(x̂i − yi)

4α
.(76)

Hence, x̂i takes the form (76) only if we have

either yi >
x̂i−1 + x̂i+1

2
+
1

4α
or yi <

x̂i−1 + x̂i+1

2
− 1

4α
.

We remark that (76) does not involve yi but only the sign of (x̂i − yi). Thus, if yi is
an outlier, the value of x̂i relies only on faithful data entries yj for j ∈ ĥ by means of
x̂i−1 and x̂i+1. Moreover, the smoothing incurred by x̂i is stronger for large values of
α, since then x̂i is closer to the mean of x̂i−1 and x̂i+1. Otherwise, if i ∈ ĥ, we have
δ1F(x̂, y)(ei) ≥ 0, which yields

x̂i = yi ⇔ x̂i−1 + x̂i+1

2
− 1

4α
≤ yi ≤ x̂i−1 + x̂i+1

2
+
1

4α
.
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This inequality is easier to satisfy if α is small, in which case numerous data samples
are fitted exactly, whereas only a few samples are detected as outliers.

Concrete results depend on the shape of ψ, ϕ, {GTi }, and α. We leave this
crucial question for future work. In order to recover and smooth outliers, we take the
following cost-function:

F(x, y) =
q∑
i=1

|xi − yi|+ α
p∑
i=1

∑
j∈N (i)

|xi − xj |ν for ν ∈ (1, 2],(77)

where for every i = 1, . . . , p the set N (i) contains the indexes of all samples j which
are neighbors to i. In all the restorations presented below, N (i) is composed of the
eight nearest neighbors. Since the publication of [9], we can expect that ν > 1 but
close to 1 allow edges to be better preserved when outliers are smoothed. Based on
this, all the experiments with (77) in the following correspond to ν = 1.1.

The minimizer x̂ of F(., y) for y ∈ R
q is calculated by continuation. Using that

the Huber function (5),

ψν(t) =

{
t2 if |t| ≤ ν,

ν(ν + 2|t− ν|) if |t| > ν, where ν > 0,

satisfies ψν(t) → |t| when ν ↓ 0, we construct a family of functions Fν(., y) indexed
by ν > 0:

Fν(x, y) :=
q∑
i=1

ψν(a
Tx− yi) + Φ(x).

Being strictly convex and differentiable, every Fν(., y) has a unique minimizer, de-
noted by x̂ν , which is calculated by a gradient descent. Since by construction having
ν > ν′ entails Fν(x, y) ≥ Fν′(x, y) for all x ∈ R

p, we see that Fν(x̂ν , y) decreases
monotonically when ν decreases to 0. It is easy to check that, moreover, as ν ↓ 0, we
have Fν(x̂ν , y) → F(x̂, y), and hence x̂ν → x̂, since every Fν(., y) has a unique min-
imizer and the latter is strict. Total-variation methods are similar from a numerical
point of view since they involve ϕ(t) = |t|. Many authors used smooth approximations
[33, 38], e.g., ϕν =

√
t2 + ν. However, approximation using the Huber function has

the numerical advantage of involving only quadratic and affine segments. At the same
time, the fact that ψ′

ν is discontinuous at ±ν is of no practical importance since the
chance of obtaining a minimizer x̂ν involving a difference whose modulus is exactly ν
is null [27].

First experiment. The original image x in Figure 1(a) can be assumed to be a
noisy version of an ideal piecewise constant image. Data y in Figure 1(b) are obtained
by adding aberrant impulsions to x whose locations are seen in Figure 4, left. Recall
that our goal is to detect, and possibly smooth, the outliers in y, while preserving all
the remaining entries of y.
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0

1

2

(a) Original x.

0

1

2

(b) Data y = x+ outliers.

Fig. 1. Original x and data y degraded by outliers.

The image in Figure 2(a) is the minimizer x̂ of the cost-function F(., y) proposed
in (77), with ν = 1.1 and α = 0.14. The outliers are clearly visible although their
amplitudes are considerably reduced. The image of the residuals y−x̂, shown in Figure
2(b), is null everywhere except at the positions of the outliers in y. Reciprocally, the

pixels corresponding to nonzero residuals (i.e., the elements of ĥc) provide a faithful
estimate of the locations of the outliers in y, as seen in Figure 4, middle. Next, in
Figure 3(a) we show a minimizer x̂ of the same F(., y) obtained for α = 0.25. This
minimizer does not contain visible outliers and is very close to the original image x.
The image of the residuals y− x̂ in Figure 3(b) is null only on restricted areas but has
a very small magnitude everywhere beyond the positions of the outliers. However,
applying the above detection rule now leads to numerous false detections, as seen in
Figure 4, right. These experiments confirm our conjecture about the role of α.

The issue of the minimization of a smooth cost-function, namely, F in (75) with
ψ(t) = ϕ(t) = t2 and α = 0.2, is shown in Figure 5(a). As expected, edges are blurred,
whereas outliers are clearly seen. The residuals in Figure 5(b) are large everywhere,
which shows that x̂ does not fit any data entry. The minimizer in Figure 6(a) is
obtained using nonsmooth regularization, where F is of the form (75) with ψ(t) = t2,
ϕ(t) = |t|, and α = 0.2. In accordance with our discussion in section 6, x̂ exhibits
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0

1

2

(a) Restoration x̂ for α = 0.14.

0

1

2

(b) Residuals y − x̂.

Fig. 2. Restoration using the proposed cost-function F with nonsmooth data-fidelity in (77)
for ν = 1.1 and α = 0.14. The residuals provide a faithful estimator for the locations of outliers.

staircasing since it is constant on very large regions.

Second experiment. The original, clean image x is shown in Figure 7(a). The
data y, shown in Figure 7(b), are obtained by adding to x 770 impulsions with random
locations and random amplitudes in the interval (0, 1.2).

In Figure 8(a) we show a zoom of the histograms of x (up) and of y (down).
Figure 8(b) shows the result from applying to y two iterations of median filtering.
The obtained image contains only a few outliers with weak amplitude but the entire
image is degraded and, in particular, the edges are blurred. The �1-norm of the error
‖x̂− x‖1 =

∑
i |x̂i− xi| is 523. The next two restorations in Figure 9 are obtained by

minimizing the cost-function F with nonsmooth data-fidelity proposed in (77), where
ν = 1.1. The minimizer in Figure 9(a) corresponds to α = 0.2 and it fits exactly
the data everywhere except for several hundred pixels, where it detects outliers. This
detection gives rise to 50 erroneous nondetections and to 15 false alarms, the remaining
detections being correct. Figure 9(b) is obtained for α = 0.55. The minimizer x̂ does
not contain outliers any longer but it fits exactly only a restricted number of the data
entries. Nevertheless, it remains very close to all data entries which are not outliers,
since the �1-norm of the error is 126. This minimizer provides a very clean restoration,
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0

1

2

(a) Restoration x̂ for α = 0.25.

0

1

2

(b) Residuals y − x̂.

Fig. 3. Restoration using the proposed cost-function F in (77) for ν = 1.1 and α = 0.25. The
outliers are well smoothed in x̂, whereas the residuals remain small everywhere beyond the outlier
locations.

Fig. 4. Left: The locations of the outliers in y. Middle: The locations of the pixels i of x̂ at
which x̂i 	= yi, where x̂ is the minimizer obtained for α = 0.14 given in Figure 2. Right: The same
locations for x̂ the minimizer relevant to α = 0.25, shown in Figure 3.

where both edges and smoothly varying areas are nicely preserved. The restoration in
Figure 10(a) results from a smooth cost-function F , as in (75) with ψ(t) = ϕ(t) = t2
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0
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2

(a) Restoration from yo x̂ for α = 0.2.

0

1

2

(b) Residuals y − x̂.

Fig. 5. Restoration using a smooth cost-function, namely, F in (75) with ψ(t) = ϕ(t) = t2 and
α = 0.2.

and α = 0.2. This image fits no data entry while edges are smooth. Figure 10(b)
illustrates the staircasing effect induced by nonsmooth regularization. This minimizer
corresponds to F , of the form (75) with ψ(t) = t2 and ϕ(t) = |t|, for α = 0.4 and it
still contains several outliers.

8. Conclusion. We showed that taking nonsmooth data-fidelity terms in a reg-
ularized cost-function yields minimizers which fit exactly a certain number of the data
entries. In contrast, this cannot occur for a smooth cost-function. These are strong
properties which can be used in different ways. We proposed a cost-function with
a nonsmooth data-fidelity term in order to process outliers. The obtained results
advocate the use of nonsmooth data-fidelity terms in image processing.
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(a) Restoration x̂ for α = 0.2.

0

1

2

(b) Residuals y − x̂.

Fig. 6. Restoration involving nonsmooth regularization: F is as in (75) with ψ(t) = t2 and
ϕ(t) = |t| for α = 0.2. The minimizer x̂ is constant over large regions.
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(a) Original image x. (b) Data y = x+ 770 outliers.

Fig. 7. Original image x and data y obtained by adding to x 770 outliers with random location
and random amplitude.
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(a) Histograms: x (up), y (down). (b) Restoration by median filtering.

Fig. 8. (a) Zoom of the histograms of the original x (up) and of the data y (down). (b)
Restoration using two iterations of median filtering.
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(a) Minimizer obtained for α = 0.2. (b) Minimizer calculated for α = 0.55.

Fig. 9. Minimizers obtained using the proposed cost-function F in (77) involving a nonsmooth
data-fidelity term. (a) For α = 0.2 there are 720 correct and 65 erroneous detections of outliers.
Outliers are only weakly smoothed. (b) For α = 0.55, outliers are well smoothed and the error is
weak.

(a) Smooth cost-function. (b) Nonsmooth regularization.

Fig. 10. Minimizers obtained by minimizing F of the form (75). (a) For ψ(t) = t2 = ϕ(t) and
α = 0.2. Outliers are clearly seen, whereas edges are degraded. (b) For ψ(t) = t2, ϕ(t) = |t|, and
α = 0.4. Only several outliers remain visible. Staircasing is clearly present.
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Abstract. We consider the question of “numerical errors” in large eddy simulation. It is often
claimed that straightforward discretization and solution using centered methods of models for large
eddy motion can simulate the motion of turbulent flows with complexity independent of the Reynolds
number and dependence only on the resolution “δ” of the eddies sought. This report considers this
question analytically: Is it possible to prove error estimates for discretizations of actually used large
eddy models whose error constants depend only on δ but not Re? We consider the most common,
simplest, and most mathematically tractable model and the most mathematically clear discretization.
In two cases, we prove such an error estimate and try to explain why our technique of proof fails in
the most general case. Our analysis aims to assume as little time regularity on the true solution as
possible.
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1. Introduction. The laminar or turbulent flow of an incompressible fluid is
modeled by solutions (u, p) of the incompressible Navier–Stokes equations:

ut + u · ∇u+∇p−Re−1∆u = f in Ω× (0, T ],
∇ · u = 0 in Ω× [0, T ],
u(x, 0) = u0(x) in Ω,

u = 0 on Γ× [0, T ],∫
Ω

p dx = 0 in (0, T ].

(1.1)

Here Ω ⊂ R
d(d = 2, 3) is a bounded, simply connected domain with polygonal bound-

ary Γ, u : Ω× [0, T ]→ R
d is the fluid velocity, p : Ω× (0, T ]→ R is the fluid pressure,

f(x, t) is the (known) body force, u0(x) is the initial flow field, and Re is the Reynolds
number. Unfortunately, when Re is large the resulting turbulent flow is typically so
complex that so-called direct numerical simulation of (u, p) is not practically feasible.

One conjecture of Leray is that “turbulence” in nature is associated with a
breakdown of uniqueness of weak solutions to (1.1). It is known that, for exam-
ple, weak solutions to (1.1) are unique for d = 3 and for very small time intervals,
e.g., 0 ≤ t ≤ O(Re−3), and, more importantly, over O(1) time intervals 0 ≤ t ≤ T if

∫ T

0

‖∇u‖4L2(Ω)dt <∞.
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There are numerous generalizations of this basic result [13, 28]. With this in mind,
solutions u to (1.1) with ‖∇u‖L2(Ω) ∈ L4(0, T ) are frequently described as “lami-
nar.” Thus, the Lp-regularity in time which can be reasonably assumed is of critical
importance.

There are numerous approaches to the simulation of turbulent flows in practical
settings. One of the most promising current approaches is large eddy simulation
(LES) in which approximations to local spatial averages of u are calculated. A spatial
length scale δ is selected. The large eddies are considered to be those of size greater
than or equal to O(δ) and the small eddies are considered to be those of size less
than O(δ). The large eddies are approximated directly while the effects of the small
eddies on the large eddies are modeled. In computational turbulence studies using
LES it is often reported that the resulting computational complexity is independent
of the Reynolds number (but dependent on the resolution sought, δ). There has been
little or no analytical support for this observation, however. The goal of this report
is to begin numerical analysis in support of this claim.

To be more specific, a smooth, nonnegative function g(x) with g(0) = 1 and∫
Rd g dx = 1 is selected and the mollifer gδ(x) is defined in the usual way:

gδ(x) = δ
−dg(x/δ).

One common example is a Gaussian, g(x) = (6/π)d/2 exp(−6xjxj), where the sum-
mation convention is used. The spatial averaging/filtering operation is now defined
by convolution:

u(x, t) = gδ ∗ u(x, t), p = gδ ∗ p, f = gδ ∗ f, etc.

In LES, approximations to (u, p) are sought rather than to (u, p). The usual procedure
is to first filter the Navier–Stokes equations:

ut +∇ · (u u) +∇p−Re−1∆u = f +∇ · T in Ω,
∇ · u = 0 in Ω,

where the “Reynolds stress tensor” T is

T = T(u, u) = u u− u u.

Closure is addressed by a modeling step in which T is written in terms of u. The
resulting (closed) space filtered Navier–Stokes equations are solved numerically. In
this procedure, there are three essential issues:

1. The “modeling error” committed in approximating T.
2. The “numerical error” in solving the resulting system.
3. Correct boundary conditions for the flow averages.
In this report, we study the numerical error analytically. Since there are many

models in LES (see, e.g., [25, 14, 23, 9, 2, 31, 35, 34]) and few analytical studies, we
take herein the simplest model commonly in use, presented, for example, in Ferziger
and Peric [9, section 9.3].

To describe the model, let D(u) be the deformation tensor associated with the
indicated velocity field by

D(u) =
1

2
(∇u+∇ut) = 1

2
(ui,xj + uj,xi).
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The Reynolds stresses are thought of as a turbulent diffusion process based upon the
Boussinesq assumption or eddy viscosity hypothesis that “turbulent fluctuations are
dissipative in the mean,” [25, 11, 32, 34]. We will accordingly consider a model of
the form

∇ · T ∼ ∇ · (νturb(u, δ) D(u)),

where νturb
.
= νturb(u, δ) is the so-called turbulent viscosity or eddy viscosity. This

turbulent viscosity’s determination can be very complex, involving even solutions of
accompanying systems of nonlinear partial differential equations. In the simplest
case, the turbulent viscosity depends on the mean flow u through the magnitude
of the deformation of u, νturb = νturb(D(u)), with a functional dependence. Under
the Boussinesq assumption, ∇ · T should act like a physical viscosity. Following the
reasoning of Ladyzhenskaya [29], thermodynamic considerations imply that the Taylor
series of νturb(D) should be dominated by odd degree terms. The simplest case is of
linear dependence upon |D|:

νturb = νturb(|D(u)|) = a0(δ) + a1(δ)|D(u)|,(1.2)

where |D(u)| denotes the Frobenius norm of D(u). For specificity and for accord with
the most commonly used Smagorinsky [37] model, we take the bulk turbulent viscosity
a0(δ) ≥ 0 and a1(δ) = Csδ2. Other scalings are possible [30] though less tested, as
are many other subgridscale models [25, 35]. Here Cs is typically either chosen to
be around 0.1 or taken to be a function Cs = Cs(x, t) and extrapolated as in the
“dynamic subgridscale model” of Germano et al. [15].

With the model (1.2), the resulting system of equations for the approximations
(w, q) to (u, p) is

wt +∇ · (w w) +∇q −Re−1∆w −∇ · (νturbD(w)) = f in Ω× (0, T ],
∇ · w = 0 in Ω× [0, T ],
w(x, 0) = w0(x) in Ω,∫
Ω

q dx = 0 in [0, T ].

(1.3)

Boundary conditions must be supplied for the large eddies. It is physically clear that
large eddies do not adhere to solid walls. (For example, tornadoes and hurricanes
move while touching the earth and lose energy as they move.) Therefore, in [14, 26]
(see also [34] for the use of similar boundary conditions in a conventional turbulence
model), it was proposed that the large eddies should satisfy a no-penetration condition
and a slip with friction condition on ∂Ω:

w · n̂ = 0 on Γ,
w · τ̂ = 0 on Γ0, meas (Γ0) > 0,

βw · τ̂ + �t · τ̂ = 0 on Γ \ Γ0,
(1.4)

where �t is the Cauchy stress vector on Γ (for background information, see Serrin [36]),
β = β(δ,Re) is the friction coefficient (calculated explicitly in [26]), n̂ is the outward
unit normal, and τ̂ is an orthonormal system of tangent vectors on each face of Γ.
The friction coefficient β can be calculated once a specific filter is chosen [26]. It has
the property [26] that no slip conditions are recovered as δ → 0:

β(Re, δ)→∞ as δ → 0.
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A Dirichlet boundary condition w = winflow on Γ0 is appropriate if Γ0 is an inflow
boundary upon which u can be calculated by extending the known, inflow velocity
field upstream. We take winflow = 0 for simplicity.

The Cauchy stress vector �t includes the action of both the viscous stresses and
Reynolds stresses and is given by

�t(w) := n̂ · [−qI+ 2Re−1
D(w) + a0(δ)D(w) + Csδ

2|D(w)|D(w)].
Standard properties of convolution operators imply that the flow averages (u, p)

are C∞(Ω) in space, have bounded kinetic energy∫
Ω

|u|2dx ≤
∫

Ω

|u|2dx ≤ C(Ω, f, u0),

have no solution scales smaller than O(δ), and converge to u as δ → 0 [24]. On the
other hand, it is not obvious, nor has it been proven yet, that solutions (w, q) to the
large eddy model approximating (u, p) share any of these properties! Nevertheless, the
spatial regularity of solutions (w, q) we shall consider to be a modeling issue (beyond
the scope of this report studying numerical errors in LES). The time regularity of
solutions (w, q) is still an important consideration. For example, we shall show that
solutions of this model satisfy ∫ T

0

‖∇w‖3L3dt <∞

uniformly in Re. One goal is thus to assume no greater time regularity than this. The
fundamental error analysis of Heywood and Rannacher [22] for the Navier–Stokes
equations is based, in part, on a laminar-type assumption ∇u ∈ L∞(0, T ;L2(Ω)).
Weakening this to an assumption of the form ∇u ∈ L3(0, T ;L3(Ω)) (as we seek to do
herein) is nontrivial.

2. Preliminaries. This section sets the notation used in the report, describes
the function spaces employed, and collects several useful inequalities. The notation
used is standard for the most part. The Lp(Ω) norms, for p �= 2, are explicitly denoted
as ‖f‖Lp . Sobolev spaces W k,p(Ω) are defined in the usual way [1]. The associated
norm is denoted by ‖ · ‖k,p. If the domain in question is not Ω (e.g., Ω× (0, T )), then
it will be explicitly indicated. If p = 2, these norms will be written ‖ · ‖k for the
W k,2(Ω) norm and ‖ · ‖k,Γ for the W k,2(Γ) norm and ‖ · ‖ and ‖ · ‖Γ, respectively, for
the L2(Ω) and L2(Γ) norms. We suppose the polygonal boundary Γ is composed of
faces Γ0,Γ1, . . . ,ΓJ , where (with some abuse of notation) Γ0 consists of the face(s)
upon which v = 0 is strongly imposed.

The spaces associated with the boundary conditions (1.4) are

X := {v : v ∈ (W 1,3(Ω)
)d
, v = 0 on Γ0 and v · n̂ = 0 on Γj , j = 1, . . . , J},

Q := L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
.

The boundary condition in X is defined to hold in the sense of the trace theorem on
each Γj , and n̂ is the outward unit normal to Γ. The L

2(Ω) and L2(Γ) inner products
are denoted by (·, ·) and (·, ·)Γ, respectively.

If v ∈ X, D(v) denotes the usual deformation tensor, defined in the introduction.
The unit vector τ̂ denotes an orthonormal system of tangent vectors on Γ. Whenever
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τ̂ occurs, it will be understood that the term is to be summed over the two tangent
vectors if d = 3; for example,

‖v · τ̂‖2Γj
if d = 3 means (‖v · τ̂1‖2Γj

+ ‖v · τ̂2‖2Γj
).

Lemma 2.1 (inf-sup condition). Let X̃ := {v : v ∈ (W 1,2(Ω)
)d
, v = 0 on Γ0 and

v · n̂ = 0 on Γj , j = 1, . . . , J}. The velocity-pressure spaces (X̃,Q) satisfy the inf-sup
condition

inf
λ∈Q

sup
v∈X̃

(λ,∇ · v)
‖λ‖

[
‖D(v)‖2 +∑J

j=1 ‖v · τ̂‖21/2,Γj

]1/2 ≥ C > 0.(2.1)

Proof. Since ‖∇v‖ ≥ ‖D(v)‖, the trace theorem [20] shows that (2.1) is implied
by the usual inf-sup condition

inf
λ∈Q

sup
v∈X̃∩H1

0 (Ω)d

(λ,∇ · v)
‖λ‖ ‖∇v‖ ≥ C > 0.

Lemma 2.1 implies that the space of weakly divergence free functions V ,

V := {v ∈ X̃ : (λ,∇ · v) = 0 for all λ ∈ Q},

is a well defined, nontrivial, closed subspace of X̃.
Remark 2.1. Since Γ is not C1, discontinuities in τ̂ and n̂j have forced modifica-

tions in the norms to piecewise definition. For example, v · τ̂ /∈ H1/2(Γ) for v ∈ H1(Ω)
but v · τ̂ ∈ H1/2(Γj), j = 0, . . . , J .

The conforming finite element method for this problem begins by selecting finite
element spaces Xh ⊂ X and Qh ⊂ Q, where h denotes as usual a representative mesh
width for (Xh, Qh), satisfying the usual approximation theoretic conditions required
of finite element spaces. The condition that Xh ⊂ X imposes the restriction that
vh · n̂|Γj

= 0 for all vh ∈ Xh. For intricate boundaries, this could possibly be onerous

so it is interesting to consider imposing vh ·n̂|Γ = 0 with penalty or Lagrange multiplier
methods, following, e.g., the work in [31]. Nevertheless, there is already considerable
computational experience with imposing this condition in finite element methods (see,
e.g., [19, 8]), so we shall not focus on the interesting detail of the treatment of corners.
Without these additional regularizations in the numerical method, it is useful in the
analysis to assume that (Xh, Qh) satisfies the discrete analogue of (2.1),

inf
λh∈Qh

sup
vh∈Xh

(λh,∇ · vh)
‖λh‖

[
‖D(vh)‖2 +∑J

j=1 ‖vh · τ̂‖21/2,Γj

]1/2 ≥ C > 0,(2.2)

where C > 0 is independent of h. The next lemma shows, in essence, that if the
computational mesh follows the boundary and if the velocity space, restricted to no
slip boundary conditions, and the pressure space satisfy the usual inf-sup condition,
then (2.2) holds.

Lemma 2.2 (discrete inf-sup condition). If (Xh, Qh) satisfies

inf
λh∈Qh

sup
vh∈Xh∩H1

0 (Ω)d

(λh,∇ · vh)
‖λh‖ ‖∇vh‖ ≥ C1 > 0,
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then (2.2) holds.
Proof. By trace theorem [20] and the Poincaré–Friedrichs inequality, for any

λh �= 0, vh(�= 0) ∈ Xh,

(λh,∇ · vh)
‖λh‖

[
‖D(vh)‖2 +∑J

j=1 ‖vh · τ̂‖21/2,Γj

]1/2 ≥ C (λh,∇ · vh)‖λh‖ ‖vh‖1 ≥ C
(λh,∇ · vh)
‖λh‖ ‖∇vh‖ .

Thus, (2.2) will be assumed throughout this report. Under (2.2), the space of
discretely divergence free functions

V h := {vh ∈ Xh : (λh,∇ · vh) = 0 for all λh ∈ Qh}
is a nontrivial closed subspace of Xh [16, 21].

We shall frequently use Young’s inequality in the form

ab ≤ ε
q
aq +

ε−q
′/q

q′
bq

′
, 1 < q, q′ <∞, 1

q
+
1

q′
= 1.

The generalization of Hölder’s inequality∫
Ω

|u| |v| |w|dx ≤ ‖u‖Lp‖v‖Lq‖w‖Lr ,
1

p
+
1

q
+
1

r
= 1, 1 ≤ p, q, r ≤ ∞,

is also useful. We shall frequently use the Sobolev embedding theorem, often, but not
always, in the form that in three dimensions W 1,3(Ω) ↪→ Lp(Ω) for 1 ≤ p <∞.

The nonlinear form in the subgridscale term, for v, w ∈ (W 1,3(Ω))d

(|D(w)|D(w),D(v)),
is of p-Laplacian type (with p = 3). Thus, it is strongly monotone and locally Lip-
schitz continuous in the sense made precise in the following well-known lemma; see,
e.g., [30, 7].

Lemma 2.3 (strong monotonicity and local Lipschitz-continuity). There are con-
stants C and C such that for all u1, u2, v ∈ (W 1,3(Ω))d and d = 2 or 3, with
r = max{‖D(u1)‖L3 , ‖D(u2)‖L3},

(|D(u1)|D(u1)− |D(u2)|D(u2),D(u1 − u2)) ≥ C‖D(u1 − u2)‖3L3 ,

(|D(u1)|D(u1)− |D(u2)|D(u2),D(v)) ≤ Cr‖D(u1 − u2)‖L3‖D(v)‖L3 .

Korn’s inequalities relate Lp norms of the deformation tensor D(v) to those same
norms of the gradient for 1 < p < ∞ (see Galdi, Heywood, and Rannacher [13],
Gobert [17, 18], Temam [39], or Fichera [10]) and fail if p = 1.

Theorem 2.4 (Korn’s inequalities). There is a C > 0 such that for 1 < p <∞
‖v‖pW 1,p ≤ C(Ω)[‖v‖pLp + ‖D(v)‖pLp ]

for all v ∈ (W 1,p(Ω))d.
Further, if γ(v) is a seminorm on Lp(Ω) which is a norm on the constants, then

‖∇v‖Lp ≤ C(Ω)[γ(v) + ‖D(v)‖Lp ]

holds for 1 < p <∞ and for all v ∈ (W 1,p(Ω))d.
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As a consequence of Korn’s inequality it follows that, taking γ(v) = ‖v‖Lp(Γ0), if
meas(Γ0) > 0, then

‖∇v‖pLp ≤ ‖v‖p1,p ≤ CK‖D(v)‖pLp

for all v ∈ {v ∈W 1,p(Ω)d : v|Γ0
= 0}.

We will often use Poincaré’s inequality, which holds since v ·n̂ = 0 on Γ (Galdi [12,
p. 56]),

‖v‖ ≤ C(Ω)‖∇v‖ for all v ∈ X.
We shall use the Gagliardo–Nirenberg inequality in W 1,p(Ω)∩X. This inequality

[1, 33, 13, 6] states that, provided Γ satisfies a weak regularity condition (holding in
particular for polygonal domains) and meas(Γ0) > 0 for all v ∈ W 1,p(Ω) ∩ X, 1 ≤
q, s ≤ ∞,

‖v‖Lq ≤ C‖∇v‖aLp‖v‖1−aLs for all v ∈ (W 1,p(Ω)
)d ∩X,

where, for Ω ⊂ R
3 (improvable if Ω ⊂ R

2), p ≥ 3, q ≥ s, 0 ≤ a < 1, and

a =

(
1

s
− 1
q

)(
1

3
− 1
p
+
1

s

)−1

.

In particular, note that taking q = 6, p = 3, and s = 2 gives

‖v‖L6(Ω) ≤ C‖∇v‖2/3L3(Ω)‖v‖1/3.(2.3)

The following combination of this and Korn’s inequality will be useful in section 4.
Lemma 2.5. Let meas(Γ0) > 0 and Ω ⊂ R

d, d = 2, 3. Then,

‖v‖L6 ≤ C‖v‖1/3‖D(v)‖2/3L3 , C = C(Ω).

Proof. This follows immediately from (2.3) and Korn’s inequality.
The following dual norms are defined in an equivalent but slightly nonstandard

way: for 1
q +

1
q′ = 1, 1 < q, q

′ <∞,

‖f‖∗ := sup
v∈X

(f, v)

‖D(v)‖ ,

‖f‖W−1,3/2 := sup
v∈X

(f, v)

‖D(v)‖L3

,

‖f‖W−1,q′ (Ω×(0,t)) := sup
v∈Lq(0,T ;X)

∫ t
0
(f, v)dt′

(
∫ t
0
‖D(v)‖qLqdt′)1/q

.

Note that ‖D(·)‖L3 defines a norm in X as a consequence of Poincaré’s and Korn’s
inequality.

3. The finite element formulation. This section develops the finite element
method for the LES model. The stability of the model is also studied. In particular,
we show w and wh ∈ L∞(0, T ;L2(Ω)) ∩ L3(0, T ;H1(Ω)) uniformly in Re. Lastly, the
error in an equilibrium projection is considered.

The variational formulation is derived in the usual way by multiplication of (1.3)
by (v, q) ∈ (X,Q) and applying the divergence theorem. The boundary integral terms
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require careful treatment (following, e.g., [31]) on account of the slip with friction
condition on Γ. Let α ≥ 0 be a constant. The formulation which results is to find
w : [0, T ]→ X, q : (0, T ]→ Q satisfying

(wt, v) + β(δ,Re)

J∑
j=1

(w · τ̂ , v · τ̂)Γj
+
(
(2Re−1 + a0(δ) + Csδ

2|D(w)|)D(w),D(v))
+ (w · ∇w, v)− (q,∇ · v) + α(∇ · w,∇ · v) = (f, v) for all v ∈ X,(3.1)

(λ,∇ · w) = 0 for all λ ∈ Q,
and w(x, 0) = u0(x) ∈ X. For compactness, define the nonlinear and trilinear form:

a(u,w, v) := α(∇ · w,∇ · v) +
J∑
j=1

β(w · τ̂ , v · τ̂)Γj

+ ((2Re−1 + a0(δ) + Csδ
2|D(u)|)D(w),D(v)),

b(u,w, v) :=
1

2
(u · ∇w, v)− 1

2
(u · ∇v, w).

It is a simple index calculation to check that for v ∈ X,w ∈ V (since such
functions have zero normal components on Γ) (w · ∇w, v) = b(w,w, v). Thus, the
variational formulation can be rewritten as follows: find (w, q) : [0, T ] → (X,Q)
satisfying w(x, 0) = u0(x) and

(wt, v) + a(w,w, v) + b(w,w, v) + (λ,∇ · w)− (q,∇ · v) = (f, v)(3.2)

for all (v, λ) ∈ (X,Q).
Using Lemma 2.3, it is easy to prove that the LES model (1.3), (1.4) satisfies the

analogue of Leray’s inequality for the Navier–Stokes equations.
Lemma 3.1 (Leray’s inequality for the LES model). A solution of (3.2) satisfies

1

2
‖w(t)‖2 +

∫ t

0


 J∑
j=1

β‖w · τ̂‖2Γj
+ (2Re−1 + a0(δ))‖D(w)‖2 + CCsδ2‖D(w)‖3L3


dt′

≤ 1
2
‖w(0)‖2 +

∫ t

0

(f, w)dt′.

Proof. Set v = w, λ = q in (3.2) and use Lemma 2.3.
Remark 3.1.
1. Because of the slip with friction boundary conditions (1.4), it is important to

choose the formulation of the viscous terms, as in (3.1), (3.2), involving the deforma-
tion tensor.

2. Leray’s inequality immediately implies stability in various norms (which we
will develop) and is the key, first step in proving existence of weak solutions to (1.3),
(1.4). This last question is fully investigated (under different boundary conditions) in
remarkable papers by Ladyzhenskaya [27], Parés [34], and Du and Gunzburger [7].

Lemma 3.2. Let (w, q) be the solution of (1.3). Then, there is a constant C
independent of Re such that for almost all t ∈ (0, T ) with 0 < T <∞

‖wt‖W−1,3/2 ≤ C (‖w‖2L3 + ‖q‖L3/2 + (2Re−1 + a0(δ))‖D(w)‖L3/2

+ Csδ
2‖D(w)‖2L3 + ‖f‖W−1,3/2

)
,
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‖wt‖3/2L3/2(0,T ;W−1,3/2)
≤ C

(
‖w‖3L3(0,T ;L3) + ‖q‖3/2L3/2(0,T ;L3/2)

+ (2Re−1 + a0(δ))‖D(w)‖3/2L3/2(0,T ;L3/2)

+ Csδ
2‖D(w)‖3L3(0,T ;L3) + ‖f‖3/2L3/2(0,T ;W−1,3/2)

)
.

Proof. From the momentum equation in (1.3) it follows that for almost all t ∈
(0, T ) (alternately, dividing (3.1) by ‖v‖W 1,3 and taking the supremum over v)

‖wt‖W−1,3/2 ≤ ‖∇ · (ww)‖W−1,3/2 + ‖∇q‖W−1,3/2 + Csδ
2‖∇ · (|D(w)|D(w))‖W−1,3/2

+ (2Re−1 + a0(δ))‖∇ · D(w)‖W−1,3/2 + ‖f‖W−1,3/2 .

The definition of the norm, integration by parts, using v · n = 0 on Γ for v ∈ X,
Hölder’s inequality, and Korn’s inequality give, e.g.,

‖∇q‖W−1,3/2 = sup
v∈X

∫
Ω

−q(∇ · v)dx
‖D(v)‖L3

≤ sup
v∈X
‖q‖L3/2‖∇ · v‖L3

‖D(v)‖L3

≤ C‖q‖L3/2 .

The other terms are estimated in the same way also using ‖ww‖L3/2 = ‖w‖2L3 and
‖|D(w)|D(w)‖L3/2 = ‖D(w)‖2L3 .

The second inequality follows raising both sides to the power 3/2 and integrating
in time.

The continuous-in-time finite element method for (1.3) uses the variational for-
mulation (3.2) as follows. First, velocity-pressure finite element spaces Xh ⊂ X ∩
(W 1,3(Ω))d, Qh ⊂ Q satisfying (2.2), and the parameter α ≥ 0 are selected.

The finite element approximations to (w, q) are maps (wh, qh) : [0, T ]→ (Xh, Qh)
satisfying

(wht , v
h) + a(wh, wh, vh) + b(wh, wh, vh) + (λh,∇ · wh)− (qh,∇ · vh) = (f, vh)(3.3)

for all (vh, λh) ∈ (Xh, Qh) where wh(x, 0) ∈ Xh is an approximation to w(x, 0) = u0.
It is straightforward to verify that Leray’s inequality holds for wh as well as w.
Lemma 3.3 (Leray’s inequality for wh). For α ≥ 0, any solution of (3.3) satisfies

1

2
‖wh(t)‖2 +

∫ t

0

[
β

J∑
j=1

‖wh · τ̂‖2Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ C Csδ
2‖D(wh)‖3L3

]
dt′ ≤ 1

2
‖wh(0)‖2 +

∫ t

0

(f, wh)dt′.

Using various inequalities in the right-hand side, stability bounds for wh follow
from Lemma 3.3.

Proposition 3.4 (stability of wh). The solution wh of (3.3) satisfies

1

2
‖wh(t)‖2 +

∫ t

0

[
J∑
j=1

β‖wh · τ̂‖2Γj
+ (Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ CCsδ
2‖D(wh)‖3L3

]
dt′ ≤ 1

2
‖wh(0)‖2 + Re

4

∫ t

0

‖f‖2∗dt′,(3.4)
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1

2
‖wh(t)‖2 +

∫ t

0

[
J∑
j=1

β‖wh · τ̂‖2Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+
2

3
CCsδ

2‖D(wh)‖3L3

]
dt′ ≤ 1

2
‖wh(0)‖2

+
2

3
(CCs)

−1/2δ−1‖f‖3/2
W−1,3/2(Ω×(0,t))

,(3.5)

‖wh(t)‖2 + 2
∫ t

0

et−t
′
[
J∑
j=1

β‖wh · τ̂‖2Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ CCsδ
2‖D(wh)‖3L3

]
dt′ ≤ et‖wh(0)‖2 +

∫ t

0

et−t
′‖f‖2dt′.(3.6)

Proof. Inequality (3.4) follows by applying Young’s inequality to Lemma 3.3. The
bound (3.5) follows from the definition of the dual norm and ab ≤ ε

3a
3 + 2

3ε
−1/2b3/2

applied in the same manner.
For (3.6), set vh = wh and λh = qh in (3.3), use Lemma 2.3, and apply Young’s

inequality on the right-hand side. This gives

d

dt
‖wh‖2 − ‖wh‖2 + 2

[
J∑
j=1

β‖wh · τ̂‖2Γj
+ (2Re−1 + a0(δ))‖D(wh)‖2 + α‖∇ · wh‖2

+ CCsδ
2‖D(wh)‖3L3

]
≤ ‖f‖2.

Inequality (3.6) now follows by using an integrating factor.
In the analysis of the error in the approximation of the time dependent problem,

it is useful to have a clear description of the error in the Stokes projection under slip
with friction boundary conditions [31]. It is also necessary that any dependence on
Re, δ, and β be made explicit.

Under the discrete inf-sup condition, the Stokes projection Π : (X,Q)→ (Xh, Qh)
is defined as follows. Let Π(w, q) = (w̃, q̃), where (w̃, q̃) satisfies

α(∇ · (w − w̃),∇ · vh) + (2Re−1 + a0(δ))(D(w − w̃),D(vh))

+

J∑
j=1

β((w − w̃) · τ̂ , vh · τ̂)Γj − (q − q̃,∇ · vh) = 0 for all vh ∈ Xh,

(∇ · (w − w̃), λh) = 0 for all λh ∈ Qh.

This is equivalent to the following formulation provided w ∈ V and vh ∈ V h. Given
(w, q), find w̃ ∈ V h satisfying

α(∇ · (w − w̃),∇ · vh) + (2Re−1 + a0(δ))(D(w − w̃),D(vh))

+
J∑
j=1

β((w − w̃) · τ̂ , vh · τ̂)Γj − (q − λh,∇ · vh) = 0

for all vh ∈ V h and λh ∈ Qh. Under the discrete inf-sup condition, it is well known
that (w̃, q̃) is a quasi-optimal approximation of (w, q). The dependence of the stability
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and error constants upon Re and β = β(Re, δ) is important to the error analysis. That
dependence is described in the next lemma and proposition.

Lemma 3.5 (stability of the projection w̃). Let w ∈ V be given. Then if α > 0,
w̃ satisfies

α‖∇ · w̃‖2 + (2Re−1 + a0(δ))‖D(w̃)‖2 +
J∑
j=1

β‖w̃ · τ̂‖2Γj

≤ α−1‖q‖2 + (2Re−1 + a0(δ))‖D(w)‖2 +
J∑
j=1

β‖w · τ̂‖2Γj
.

If α = 0, then

1

2
(2Re−1 + a0(δ))‖D(w̃)‖2 +

J∑
j=1

β‖w̃ · τ̂‖2Γj

≤ 2(2Re−1 + a0(δ))
−1‖q‖2 + (2Re−1 + a0(δ))‖D(w)‖2 +

J∑
j=1

β‖w · τ̂‖2Γj
.

Proof. Set vh = w̃ ∈ V h in the second formulation of the Stokes projection. This
immediately gives

α‖∇ · w̃‖2 + (2Re−1 + a0(δ))‖D(w̃)‖2 +
J∑
j=1

β‖w̃ · τ̂‖2Γj

= (2Re−1 + a0(δ))(D(w),D(w̃)) +

J∑
j=1

β(w · τ̂ , w̃ · τ̂)Γj + (q − λh,∇ · w̃)

≤ 1
2
(2Re−1 + a0(δ))[‖D(w)‖2 + ‖D(w̃)‖2] +

J∑
j=1

β

2
[‖w · τ̂‖2Γj

+ ‖w̃ · τ̂‖2Γj
]

+
α

2
‖∇ · w̃‖2 + 1

2α
‖q‖2,

from which the first result follows. If α = 0, the term (q,∇ · w̃) is bounded by noting
that ∇ · w̃ = trace (D(w̃)) so that

(q,∇ · w̃) ≤ ‖q‖ ‖D(w̃)‖ ≤ 1
4
(2Re−1 + a0(δ))‖D(w̃)‖2 + (2Re−1 + a0(δ))

−1‖q‖2.

Proposition 3.6. Suppose the discrete inf-sup condition (2.2) holds. Then,
(w̃, q̃) exists uniquely in (Xh, Qh) and satisfies

α‖∇ · (w − w̃)‖2 + (2Re−1 + a0(δ))‖D(w − w̃)‖2 +
J∑
j=1

β‖(w − w̃) · τ̂‖2Γj

≤ C inf
vh∈Xh,λh∈Qh

{
(2Re−1 + a0(δ))‖D(w − vh)‖2

+

J∑
j=1

β‖(w − vh) · τ̂‖2Γj
+min{α−1, (2Re−1 + a0(δ))

−1}‖q − λh‖2
}
.
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Proof. The proof follows standard arguments, carefully tracking the dependence
of the constants upon Re and β.

Note that the use of least squares penalization of incompressibility allows an error
estimate for the Stokes projection whose constants are essentially independent of the
Reynolds number in a suitably weighted norm.

4. The convergence theorem. Let us first note that for standard piecewise
polynomial finite element spaces it is known that the L2-projection of a function in
Lp, p ≥ 2, is in Lp itself and the L2-projection operator is stable in Lp, p ≥ 2 [5].

Let e = w−wh and let w̃ denote a stable approximation of w in V h∩ (W 1,3(Ω))d,
for example, the L2-projection under the conditions of [5]. This stability in W 1,p

follows for many piecewise polynomial finite element spaces using [5].
The error is decomposed as e = (w − w̃)− (wh − w̃) = η − φh, where η = w − w̃

and φh = wh − w̃ ∈ V h. An error equation is obtained by subtracting (3.2) from
(3.3) and using the fact that w ∈ V . This gives, for any vh ∈ V h ∩ (W 1,3(Ω))d and
λh ∈ Qh,

(et, v
h) + a(w,w, vh)− a(wh, wh, vh)(4.1)

+ b(w,w, vh)− b(wh, wh, vh)− (q − λh,∇ · vh) = 0.
This is rewritten, adding and subtracting terms and setting vh = φh, as follows:

(φht , φ
h) + a(wh, wh, φh)− a(w̃, w̃, φh) = (ηt, φh)(4.2)

+ a(w,w, φh)− a(w̃, w̃, φh) + b(w,w, φh)− b(wh, wh, φh)− (q − λh,∇ · φh).
The monotonicity lemma (Lemma 2.3) implies that

a(wh, wh, φh)− a(w̃, w̃, φh)

≥ CCsδ2‖D(φh)‖3L3 + α‖∇ · φh‖2 + (2Re−1 + a0(δ))‖D(φh)‖2 +
J∑
j=1

β‖φh · τ̂‖2Γj
,

and with r := max{‖D(w)‖L3 , ‖D(w̃)‖L3}
a(w,w, φh)− a(w̃, w̃, φh)

≤ (2Re−1 + a0(δ))‖D(φh)‖ ‖D(η)‖+
J∑
j=1

β‖φh · τ̂‖Γj
‖η · τ̂‖Γj

+ CsCδ
2r‖D(η)‖L3‖D(φh)‖L3 + α‖∇ · η‖ ‖∇ · φh‖.

Remark 4.1. If w̃ is taken to be the Stokes projection of (w, q) into V h, then,
e.g., the term “Re−1‖D(φh)‖ ‖D(η)‖” on this last right-hand side does not occur.

Inserting these two bounds in (4.2) and using the Cauchy–Schwarz and Young’s
inequalities gives

1

2

d

dt
‖φh‖2 + CCsδ2‖D(φh)‖3L3 + α‖∇ · φh‖2

+ (2Re−1 + a0(δ))‖D(φh)‖2 +
J∑
j=1

β‖φh · τ̂‖2Γj

≤ |b(w,w, φh)− b(wh, wh, φh)|+ ε1
3
δ2‖D(φh)‖3L3 +

2

3
ε
−1/2
1 δ−1‖ηt‖3/2W−1,3/2
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+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 1

2
(2Re−1 + a0(δ))‖D(η)‖2

+

J∑
j=1

(
β

2
‖φh · τ̂‖2Γj

+
β

2
‖η · τ̂‖2Γj

)
+
ε1
3
δ2‖D(φh)‖3L3

+
2

3
ε
−1/2
1 δ2C

3/2
C3/2
s r3/2‖D(η)‖3/2L3 +

α

2
‖∇ · φh‖2 + 1

α
‖q − λh‖2 + α‖∇ · η‖2.

Picking ε1 = CCs and collecting terms gives

1

2

d

dt
‖φh‖2 + 1

3
CCsδ

2‖D(φh)‖3L3 +
α

2
‖∇ · φh‖2

+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2Γj

≤ |b(w,w, φh)− b(wh, wh, φh)|+ 2
3
(CCs)

−1/2δ−1‖ηt‖3/2W−1,3/2(4.3)

+
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2L3 + α

−1‖q − λh‖2 + α‖∇ · η‖2.

This is the basic differential inequality for the error. Three cases will be considered,
revolving around the treatment of the first term on the right-hand side of (4.3).

Remark 4.2. If α = 0, an estimate which is uniform in Re can still be obtained by
using Korn’s inequality and Young’s inequality on the term (q−λh,∇·φh) as follows:

(q − λh,∇ · φh) ≤ ‖q − λh‖L3/2‖∇ · φ‖L3 ≤ C‖D(φh)‖L3‖q − λh‖L3/2

≤ 1
3
CCsδ

2‖D(φh)‖3L3 + Cδ−1‖q − λh‖3/2
L3/2 .

However, an estimate of the nonlinear convective term which is uniform in Re fails in
the case α = 0; see Remark 4.7.

Consider the convection terms

b(w,w, φh)− b(wh, wh, φh) = b(w, η − φh, φh) + b(η − φh, wh, φh).(4.4)

The terms containing η shall be bounded first. Consider b(w, η, φh) and b(η, wh, φh).
Using the inequalities in section 2 appropriately gives

|b(w, η, φh)| =
∣∣∣∣12 [(w · ∇η, φh)− (w · ∇φh, η)]

∣∣∣∣
≤ 1
2

[‖φh‖ ‖∇η‖Ls′ ‖w‖Ls + ‖∇φh‖L3‖w‖Lq‖η‖Lq′
]
,

where 1
2 +

1
s′ +

1
s = 1 and

1
3 +

1
q +

1
q′ = 1. Picking s

′ = 3, s = 6, q = 2, and q′ = 6 gives

|b(w, η, φh)| ≤ 1
2

[‖φh‖ ‖∇η‖L3‖w‖L6 + ‖∇φh‖L3‖w‖ ‖η‖L6

]
≤ 1
4
‖φh‖2‖w‖2L6 +

1

4
‖∇η‖2L3 +

ε3
6
‖D(φh)‖3L3 +

C

3
ε
−1/2
3 ‖w‖3/2‖η‖3/2L6 .(4.5)
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The term b(η, wh, φh) is similarly bounded as follows:

|b(η, wh, φh)| =
∣∣∣∣12 [(η · ∇wh, φh)− (η · ∇φh, wh)]

∣∣∣∣
≤ 1
2
‖∇wh‖L3‖η‖L6‖φh‖+ 1

2
‖∇φh‖L3‖η‖L6‖wh‖

≤ 1
4
‖∇wh‖2L3‖φh‖2 + 1

4
‖η‖2L6 +

ε3
6
‖D(φh)‖3L3 +

C

3
ε
−1/2
3 ‖η‖3/2L6 ‖wh‖3/2.(4.6)

Korn’s inequality and the stability bounds (3.5) and (3.6) immediately imply that
D(wh) ∈ L3(0, T ;L3) uniformly in Re so that ‖∇wh‖2L3 ∈ L1(0, T ), uniformly in Re.
The Sobolev imbedding theorem and Korn’s inequality also imply ‖w‖2L6 ∈ L1(0, T )
uniformly in Re. Thus, these bounds suffice for a later application of Gronwall’s
inequality.

The first term containing only φh, b(w, φh, φh), is zero due to skew symmetry.
Thus, there only remains the term b(φh, wh, φh). Estimating the term b(φh, wh, φh)
is the essential, core difficulty in obtaining an error bound which is uniform in Re.
There are only a few natural ways to bound this using Hölder’s inequality and the
Sobolev embedding theorem. There are two cases in which the analysis is successful:

(i) a0(δ) �= 0 and ∇w ∈ L3(0, T ;L3(Ω)),
(ii) a0(δ) = 0 and ∇w very regular, ∇w ∈ L2(0, T ;L∞(Ω)).

There is one important case in which the analysis fails:
(iii) a0(δ) = 0 and ∇w ∈ L3(0, T ;L3(Ω)).

To highlight subsequent analysis and, hopefully, spur further study, we shall first
present the case (iii) and explain the failure of the analysis.

Remark 4.3. On the condition a0(δ) > 0 in part (i), if a1(δ) > 0 and a0(δ) ≥
0, then it is known that the difference between two weak solutions of (1.3) can be
bounded (nonuniformly in Re) by the change in the problem data [7, 29, 34]. These
bounds imply uniqueness over O(1) time intervals. On the other hand, if a1(δ) ≡ 0
and a0(δ) > 0, weak solutions are then only known to be unique over very small time
intervals 0 ≤ t ≤ T ∗(δ), where (loosely speaking) T ∗(δ) ∼ (a0(δ) +Re−1)3.

4.1. The case ∇w ∈ L3(0, T ;L3(Ω)) and a0(δ) = 0. If we assume only
that ∇w ∈ L3(0, T ;L3(Ω)), there is no need to add and subtract terms since a priori
bounds on ‖∇wh‖L3(0,T ;L3) have been proven which are uniform in Re. Thus, we can
use Hölder’s inequality to write

|b(φh, wh, φh)| =
∣∣∣∣12(φh · ∇wh, φh)− 12(φh · ∇φh, wh)

∣∣∣∣
≤ 1
2
‖∇wh‖L3‖φh‖Ls‖φh‖Ls′ +

1

2
‖∇φh‖L3‖φh‖ ‖wh‖L6 ,

where 1
3 +

1
s′ +

1
s = 1 and 1 ≤ s′, s ≤ ∞. Thus, picking s′ = 2, s = 6, using the

embedding W 1,3(Ω)→ L6(Ω) and Poincaré’s inequality gives

|b(φh, wh, φh)| ≤ C(Ω)
2
‖∇wh‖L3‖φh‖ ‖φh‖1,3 + C(Ω)

2
‖∇φh‖L3‖φh‖ ‖wh‖1,3

≤ ε
6
‖φh‖31,3 + Cε−1/2‖∇wh‖3/2L3 ‖φh‖3/2 + ε

6
‖D(φh)‖3L3 .(4.7)

Remark 4.4. Using Lemma 2.5 instead of the embedding of W 1,3 → L6 changes
the critical exponent on ‖φh‖ “3/2” to 12/7 in the first term of (4.7) but not the final
conclusion.
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Combining (4.5), (4.6), (4.7) with ε3 = ε gives an initial bound on the convection
term’s difference:

|b(w,w, φh)− b(wh, wh, φh)|

≤
[
1

4
‖∇η‖2L3 +

1

4
‖η‖2L6 + Cε−1/2

(
‖w‖3/2 + ‖wh‖3/2

)
‖η‖3/2L6

]

+
2ε

3
‖∇φh‖3L3 + Cε−1/2‖∇wh‖3/2L3 ‖φh‖3/2 +

[
1

4
‖w‖2L6 +

1

4
‖∇wh‖2L3

]
‖φh‖2.(4.8)

Inserting (4.8) into (4.3), applying Korn’s inequality, and collecting terms gives

1

2

d

dt
‖φh‖2 +

(
1

3
CCsδ

2 − 2ε
3

)
‖D(φh)‖3L3 +

α

2
‖∇ · φh‖2

+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2L3 + α

−1‖q − λh‖2 + α‖∇ · η‖2 + 1
4
‖∇η‖2L3

+ Cε−1/2‖w‖3/2‖η‖3/2L6 +
1

4
‖η‖2L6 + Cε−1/2‖η‖3/2L6 ‖wh‖3/2

]

+ Cε−1/2‖∇wh‖3/2L3 ‖φh‖3/2 +
[
1

4
‖w‖2L6 +

1

4
‖∇wh‖2L3

]
‖φh‖2.

Thus, pick ε such that

2ε

3
=
1

6
CCsδ

2,

i.e., ε = O(δ2). This gives

1

2

d

dt
‖φh‖2 + 1

6
CCsδ

2‖D(φh)‖3L3 +
α

2
‖∇ · φh‖2 +Re−1‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2W−1,3/2 +Re
−1‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2L3 + α

−1‖q − λh‖2 + α‖∇ · η‖2 + 1
4
‖∇η‖2L3

+
C

δ

(
‖w‖3/2 + ‖wh‖3/2

)
‖η‖3/2L6 +

1

4
‖η‖2L6

]

+
[
Cδ−1‖∇wh‖3/2L3

]
‖φh‖3/2 +

[
1

4
‖w‖2L6 +

1

4
‖∇wh‖2L3

]
‖φh‖2.

Consider the bracketed terms on this right-hand side. The first is approximation
theoretic; the second is an L1 function multiplying ‖φh(t)‖3/2; the third is an L1



1010 V. JOHN AND W. J. LAYTON

function multiplying ‖φh(t)‖2. Let y(t) := ‖φh(t)‖2. This inequality may then be
written as

d

dt
y(t) + (nonnegative terms) ≤ C(t)hγ + a(t)y(t) + b(t)δ−1y3/4(t),

where a(t), b(t) ∈ L1(0, T ).
The final step would normally be to apply Gronwall’s inequality to deduce y(t) =

1
2‖φh(t)‖2 to be bounded by its initial values and approximation theoretic terms.
Unfortunately, the term y3/4 is not Lipschitz, so the argument fails at this last step.

Tracing the inequalities backward, the problem term arises from the steps used to
bound b(φh, wh, φh) to obtain Re independence. The error analysis in the successful
cases (i) and (ii) centers therefore on alternate bounds for this term. We shall first
consider case (i).

Remark 4.5. If the estimate in (4.7) is improved as noted in Remark 4.3, the
term y(t)3/4 is changed to y(t)6/7 but the final conclusion still holds.

4.2. The case ∇w ∈ L3(0, T ;L3(Ω)) and a0(δ) > 0. The main result of
this section is the following theorem.

Theorem 4.1. Assume α > 0 and a0(δ) > 0. Let

a(t) =
1

4
‖w‖2L6 +

1

4
‖∇wh‖2L3 +

C

a0(δ)
‖∇wh‖2L3 + Ca0(δ)

−1/2α−3/2‖D(wh)‖3L3 .

Then, there is a C1 = C1(δ), independent of Re and h, such that

‖a(t)‖L1(0,T ) ≤ C1(δ).

Further, there is a C2 = C2(δ), independent of Re and h, such that

C

δ

(
‖w‖3/2 + ‖wh‖3/2

)
≤ C2(δ).

Then, the error w − wh satisfies for T > 0
‖w − wh‖2L∞(0,T ;L2) + δ

2‖D(w − wh)‖3L3(0,T ;L3) + α‖∇ · (w − wh)‖2L2(0,T ;L2)

+
(
Re−1 + Ca0(δ)

) ‖D(w − wh)‖2L2(0,T ;L2) +

J∑
j=1

β‖(w − wh) · τ̂‖2L2(0,T ;L2(Γj))

≤ C exp(C1(δ))‖(w − wh)(x, 0)‖2 + C inf
w̃∈V h∩(W 1,3(Ω))d,λh∈Qh

F(w − w̃, q − λh, δ)

with

F(w − w̃, r − qh, δ)
= ‖w − w̃‖2L∞(0,T ;L2) + δ

2‖D(w − w̃)‖3L3(0,T ;L3)

+ exp(C1(δ))

[
‖(w − w̃)(x, 0)‖2 + δ−1‖(w − w̃)t‖3/2L3/2(0,T ;W−1,3/2)

+ (2Re−1 + a0(δ))‖D(w − w̃)‖2L2(0,T ;L2) +

J∑
j=1

β‖(w − w̃) · τ̂‖2L2(0,T ;L2(Γj))

+ C(δ)‖D(w − w̃)‖3/2L3(0,T ;L3) + α
−1‖q − λh‖2L2(0,T ;L2) + α‖∇ · (w − w̃)‖2L2(0,T ;L2)

+ ‖∇(w − w̃)‖2L2(0,T ;L3) + ‖w − w̃‖2L2(0,T ;L6) + C2(δ)‖w − w̃‖3/2L3/2(0,T ;L6)

]
.



NUMERICAL ERRORS IN LARGE EDDY SIMULATION 1011

Proof. This analysis follows the previous discussion closely except for the treat-
ment of the b(φh, wh, φh) term and the final application of Gronwall’s inequality.

Consider, therefore, b(φh, wh, φh). Integration by parts and using the fact that
φh · n̂ = 0 on Γ give

b(φh, wh, φh) =
1

2
(φh · ∇wh, φh)− 1

2
(φh · ∇φh, wh)

= (φh · ∇wh, φh) + 1
2
(∇ · φh, φh · wh)(4.9)

≤ ‖∇wh‖L3‖φh‖2L3 +
1

2
|(∇ · φh, φh · wh)|.

Using the embedding H1/2 ↪→ L3 in d = 2, 3 and Young’s inequality give

∣∣b(φh, wh, φh)∣∣ ≤ ε1
2
‖D(φh)‖2 + C

2ε1
‖∇wh‖2L3‖φh‖2 + 1

2
|(∇ · φh, φh · wh)|.(4.10)

Consider now the last term on the above right-hand side. By Hölder’s inequality, we
obtain

|(∇ · φh, φh · wh)| ≤ ‖∇ · φh‖ ‖φh‖Lr′ ‖wh‖Ls ,

where 1
r′ +

1
s =

1
2 . Thus,

|(∇ · φh, wh · φh)| ≤ α
4
‖∇ · φh‖2 + α−1‖φh‖2

Lr′ ‖wh‖2Ls .(4.11)

The Sobolev embedding theorem implies that for any s, 1 ≤ s < ∞ in two or three
dimensions, W 1,3(Ω) ↪→ Ls(Ω). Thus,

‖wh‖2Ls ≤ C(s,Ω) ‖wh‖2W 1,3(Ω) ≤ C(s,Ω)‖D(wh)‖2L3 .

This implies that for any r′ > 2

|(∇ · φh, wh · φh)| ≤ α
4
‖∇ · φh‖2 + C(r′,Ω)α−1‖φh‖2

Lr′ ‖D(wh)‖2L3 .

Consider the last term on the above right-hand side. The Sobolev embedding theorem
also implies

‖φh‖Lr′ ≤ C(r′,Ω)‖φh‖W t,2(Ω) for t ≥ 3
2
− 3
r′
.

(The final result is not improved by applying here instead the Gagliardo–Nirenberg
inequality.) As r′ → 2, t → 0 in this inequality. Thus, picking r′ = r′(t) > 2 close
enough to 2 implies that, using an embedding inequality and Korn’s inequality,

‖φh‖2
Lr′ ≤ C(t,Ω)‖φh‖2t ≤ C(t,Ω)‖φh‖2(1−t) ‖D(φh)‖2t

for any t > 0. Thus, for these values of r′ and s

1

α
‖φh‖2

Lr′ ‖wh‖2Ls ≤ C
α
‖D(φh)‖2t‖φh‖2(1−t)‖D(wh)‖2L3

for any t > 0. For conjugate exponents q = 3 and q′ = 3
2 in Young’s inequality, we

then have

1

α
‖φh‖2

Lr′ ‖wh‖2Ls ≤ ε
3
‖D(φh)‖6t + ε−1/2α−3/2C‖φh‖3(1−t)‖D(wh)‖3L3 .
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Picking t = 1
3 > 0 gives for these values of r

′ and s

1

α
‖φh‖2

Lr′ ‖wh‖2Ls ≤ ε
3
‖D(φh)‖2 + C(r′, s, t,Ω)ε−1/2α−3/2‖φh‖2‖D(wh)‖3L3 .

Using this bound, (4.10) and (4.11) finally give

|b(φh, wh, φh)| ≤ ε1
2
‖D(φh)‖2 + C

2ε1
‖∇wh‖2L3‖φh‖2

+
α

8
‖∇ · φh‖2 + ε2

6
‖D(φh)‖2 + Cε−1/2

2 α−3/2‖D(wh)‖3L3‖φh‖2.

Remark 4.6. It appears on first consideration that this last term (∇ ·φh, wh ·φh)
can be agreeably bounded more directly and easily by

|(∇ · φh, wh · φh)| ≤ C‖∇ · φh‖ ‖∇wh‖ ‖φh‖1/2 ‖∇φh‖1/2
≤ C‖∇φh‖3/2‖φh‖1/2‖∇wh‖ ≤ ε‖∇φh‖2 + C(ε)‖∇wh‖4‖φh‖2.

This bound, while certainly true, is not sufficient because of the condition that in-
evitably arises from using it that wh or w ∈ L4(0, T ;H1(Ω)). The extra work in
the bound we use reduces the time regularity requirements arising from this term
to wh ∈ L3(0, T ;W 1,3(Ω)) (which is bounded uniformly in Re by problem data in
section 3).

Substituting this bound for b(φh, wh, φh) in the derivation of the upper estimate
(4.8) for the difference of the convection terms gives

|b(w,w, φh)− b(wh, wh, φh)|
≤
[
1

4
‖∇η‖2L3 +

C

3
ε
−1/2
3 ‖w‖3/2‖η‖3/2L6 +

1

4
‖η‖2L6 +

C

3
ε
−1/2
3 ‖η‖3/2L6 ‖wh‖3/2

]

+
[ε3
3
‖D(φh)‖3L3 +

ε1
2
‖D(φh)‖2 + α

8
‖∇ · φh‖2 + ε2

6
‖D(φh)‖2

]
(4.12)

+

[
1

4
‖w‖2L6 +

1

4
‖∇wh‖2L3 +

C

2ε1
‖∇wh‖2L3 + Cε

−1/2
2 α−3/2‖D(wh)‖3L3

]
‖φh‖2.

To proceed further, (4.12) is inserted in the right-hand side of (4.3). This yields
the differential inequality

1

2

d

dt
‖φh‖2 +

(
1

3
CCsδ

2 − ε3
3

)
‖D(φh)‖3L3 +

3

8
α‖∇ · φh‖2

+

(
1

2
(2Re−1 + a0(δ))− ε1

2
− ε2
6

)
‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2L3 + α

−1‖q − λh‖2 + α‖∇ · η‖2 + 1
4
‖∇η‖2L3(4.13)

+
C

3
ε
−1/2
3

(
‖w‖3/2 + ‖wh‖3/2

)
‖η‖3/2L6 +

1

4
‖η‖2L6

]

+

[
1

4
‖w‖2L6 +

1

4
‖∇wh‖2L3 +

C

ε1
‖∇wh‖2L3 + Cε

−1/2
2 α−3/2‖D(wh)‖3L3

]
‖φh‖2.
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Pick ε3 = CCCsδ
2, C < 1/3, ε1 = a0(δ)/3, and ε2 = a0(δ). These choices sim-

plify (4.13) to

1

2

d

dt
‖φh‖2 + CCCsδ2‖D(φh)‖3L3 +

3

8
α‖∇ · φh‖2

+

(
Re−1 +

a0(δ)

6

)
|D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2L3 + α

−1‖q − λh‖2 + α‖∇ · η‖2(4.14)

+
1

4
‖∇η‖2L3 +

C

δ
(‖w‖3/2 + ‖wh‖3/2)‖η‖3/2L6 +

1

4
‖η‖2L6

]

+

[
1

4
‖w‖2L6 +

1

4
‖∇wh‖2L3 +

C

a0(δ)
‖∇wh‖2L3 +

C

a0(δ)1/2α3/2
‖D(wh)‖3L3

]
‖φh‖2.

Before applying Gronwall’s inequality, let us first verify that it will indeed give us
an error bound that is uniform in the Reynolds number by considering the coefficients
on the right-hand side of (4.14).

First, note that r ≤ C‖D(w)‖L3 . By the stability estimates ‖w‖ ∈ L∞(0, T ) and
‖wh‖ ∈ L∞(0, T ) uniformly in Re. Thus,

C

δ
‖w‖3/2‖η‖3/2L6 +

C

δ
‖η‖3/2L6 ‖wh‖3/2 ≤ C

δ
(‖w‖3/2 + ‖wh‖3/2)‖η‖3/2L6 ≤ C2(δ)‖η‖3/2L6 .

Consider the (critical) bracketed coefficient of the last term on the right-hand side.
We must show this coefficient is in L1(0, T ) uniformly in Re. Indeed, by the stability
estimates and the Sobolev imbedding ‖w‖L6 , ‖D(wh)‖L3 , ‖D(w)‖L3 ∈ L3(0, T ) uni-
formly in Re. Since T <∞, L3(0, T ) ⊂ L2(0, T ), and thus the first factor of the last
term is in L1(0, T ) uniformly in Re.

Hiding all constants in generic C’s, Gronwall’s lemma now implies for almost all
t ∈ [0, T ] that
‖φh(x, t)‖2 + δ2‖D(φh)‖3L3(0,t;L3) + α‖∇ · φh‖2L2(0,t;L2)

+
(
Re−1 + Ca0(δ)

) ‖D(φh)‖2L2(0,t;L2) +

J∑
j=1

β‖φh · τ̂‖2L2(0,t;L2(Γj))

≤ C exp (‖a(t)‖L1(0,t)

) ‖φh(x, 0)‖2
+ C exp

(‖a(t)‖L1(0,t)

)[
δ−1‖ηt‖3/2L3/2(0,T ;W−1,3/2)

+ (2Re−1 + a0(δ))‖D(η)‖2L2(0,t;L2)

+

J∑
j=1

β‖η · τ̂‖2L2(0,t;L2(Γj))
+ δ2

∫ t

0

‖D(w)‖3/2L3 ‖D(η)‖3/2L3 dt
′

+ α−1‖q − λh‖2L2(0,t;L2) + α‖∇ · η‖2L2(0,t;L2) + ‖∇η‖2L2(0,t;L3) + ‖η‖2L2(0,t;L6)

+

∫ t

0

1

δ
(‖w‖3/2 + ‖wh‖3/2)‖η‖3/2L6 dt

′
]
.
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Note that by the Cauchy–Schwarz inequality in L2(0, t), t ∈ [0, T ], and the stability
estimates∫ t

0

‖D(w)‖3/2L3 ‖D(η)‖3/2L3 dt
′ ≤ ‖D(w)‖3/2L3(0,t;L3)‖D(η)‖3/2L3(0,t;L3) ≤ C(δ)‖D(η)‖3/2L3(0,t;L3).

Now, the essential supremum of t ∈ [0, T ] is applied on both sides of the inequality.
As w−wh = η−φh, the triangle inequality completes the proof of Theorem 4.1.

Remark 4.7. On the condition α > 0, the least squares control of ∇·u seems to be
essential to get an estimate uniform in Re. Consider (4.9) in the proof of Theorem 4.1.
There are two important nonlinear terms in the error equation corresponding loosely
to convection and reaction. The reaction term is controlled by the subgrid model.
The convection term can be converted into a reaction-like term. It is controllable
provided that ∇ · φh is controllable, which α > 0 accomplishes.

Another promising approach is to use a variational formulation, such as SUPG
developed by Brooks and Hughes [3], which will control the convection term directly.
We note that both SUPG and least squares control of ∇ · u are consistent: they work
on the error and do not change the solution.

4.3. The case ∇w ∈ L2(0, T ;L∞(Ω)) and a0(δ) ≥ 0. We now consider the
case of smoother w, i.e.,

w ∈ L2(0, T ;W 1,∞(Ω)) uniformly in Re,

allowing for the case a0(δ) ≡ 0. This case is primarily of interest because many
tests involve “academic” flow fields given in closed form (as in section 5). These
are typically smooth and bounded. In this case Theorem 4.2 gives an error estimate
with constants independent of Re (but depending on δ and α). It is noteworthy in
this estimate that multiplicative constants depend on δ but the rate constant in the
(inevitable) exponential term takes the form

exp(C3(w)), C3 = C3(‖w‖L2(0,T ;W 1,∞(Ω))),

with no explicit dependence on δ.
Theorem 4.2. Suppose a0(δ) ≥ 0, α > 0, and w ∈ L2(0, T ;W 1,∞(Ω)) uniformly

in Re. Let

a(t) :=
3

4
+ ‖∇w‖L∞ +

(
1

4
+
1

4α

)
‖w‖2L∞ +

1

2
‖∇w‖2L∞ ;

then there is a C3 = C3(w) such that

‖a(t)‖L1(0,T ) ≤ C3(w).

Let C4 = C4(δ) be such that

‖D(wh)‖L3(0,T ;L3) ≤ C4(δ).

Then, the error w − wh satisfies
‖w − wh‖2L∞(0,T ;L2) + δ

2‖D(w − wh)‖3L3(0,T ;L3) + α‖∇ · (w − wh)‖2L2(0,T ;L2)

+
(
Re−1 + Ca0(δ)

) ‖D(w − wh)‖2L2(0,T ;L2) +

J∑
j=1

β‖(w − wh) · τ̂‖2L2(0,T ;L2(Γj))

≤ C exp(C3(w))‖(w − wh)(x, 0)‖2 + C inf
w̃∈V h∩(W 1,3(Ω))d,λh∈Qh

F(w − w̃, q − λh, δ)
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with

F(w − w̃, r − qh, δ)
= ‖w − w̃‖2L∞(0,T ;L2) + δ

2‖D(w − w̃)‖3L3(0,T ;L3)

+ exp(C3(w))

[
‖(w − w̃)(x, 0)‖2 + δ−1‖(w − w̃)t‖3/2L3/2(0,T ;W−1,3/2)

+ (2Re−1 + a0(δ))‖D(w − w̃)‖2L2(0,T ;L2) +

J∑
j=1

β‖(w − w̃) · τ̂‖2L2(0,T ;L2(Γj))

+ C(δ)‖D(w − w̃)‖3/2L3(0,T ;L3) + α
−1‖q − λh‖2L2(0,T ;L2)

+

(
1

4
+ α

)
‖∇ · (w − w̃)‖2L2(0,T ;L2) + ‖w − w̃‖2L2(0,T ;L2)

+ C4(δ)
(
‖D(w − w̃)‖2L18/5(0,T ;L3) + ‖w − w̃‖2L6(0,T ;L6)

)]
.

Proof. In this case, the difference in the nonlinear terms is decomposed a bit
differently as

|b(w,w, φh)− b(wh, wh, φh)| = |b(η − φh, w, φh) + b(wh, η − φh, φh)|
= |b(η, w, φh)− b(φh, w, φh) + b(wh, η, φh)|.(4.15)

Consider the individual terms on the right-hand side of (4.15):

|b(η, w, φh)| =
∣∣∣∣12(η · ∇w, φh)− 12(η · ∇φh, w)

∣∣∣∣
=

∣∣∣∣(η · ∇w, φh) + 12(∇ · η, φh · w)
∣∣∣∣

≤ 1
2
‖η‖2 + 1

2
‖∇w‖2L∞‖φh‖2 + 1

4
‖∇ · η‖2 + 1

4
‖w‖2L∞‖φh‖2,

|b(φh, w, φh)| =
∣∣∣∣(φh · ∇w, φh) + 12(∇ · φh, w · φh)

∣∣∣∣
≤ ‖∇w‖L∞‖φh‖2 + α

4
‖∇ · φh‖2 + 1

4α
‖w‖2L∞‖φh‖2,

|b(wh, η, φh)| =
∣∣∣∣(wh · ∇η, φh) + 12(∇ · wh, η · φh)

∣∣∣∣
≤ ‖wh‖L6‖∇η‖L3‖φh‖+ 1

2
‖∇ · wh‖L3‖η‖L6‖φh‖

≤ C (‖wh‖2L6‖∇η‖2L3 + ‖D(wh)‖2L3‖η‖2L6

)
+
3

4
‖φh‖2.

Combining these three estimates gives

|b(w,w, φh)− b(wh, wh, φh)|
≤ 1
2
‖η‖2 + 1

4
‖∇ · η‖2 + C‖wh‖2L6‖∇η‖2L3 + C‖D(wh)‖2L3‖η‖2L6 +

α

4
‖∇ · φh‖2

+

(
3

4
+
1

2
‖∇w‖2L∞ +

1

4
‖w‖2L∞ + ‖∇w‖L∞ +

1

4α
‖w‖2L∞

)
‖φh‖2.(4.16)
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The term ‖wh‖L6 is bounded using the Gagliardo–Nirenberg inequality (Lemma 2.5)

‖wh‖2L6 ≤ C‖wh‖2/3‖D(wh)‖4/3L3 .

Since ‖wh‖ is bounded uniformly in ν and h by (3.5) or (3.6), it follows that
‖wh‖2L6 ≤ C‖D(wh)‖4/3L3 .

This bound, together with (4.16), is now inserted in the right-hand side of (4.3) giving

1

2

d

dt
‖φh‖2 + 1

3
CCsδ

2‖D(φh)‖3L3 +
α

2
‖∇ · φh‖2

+
1

2
(2Re−1 + a0(δ))‖D(φh)‖2 +

J∑
j=1

β

2
‖φh · τ̂‖2Γj

≤
[
2

3
(CCs)

−1/2δ−1‖ηt‖3/2W−1,3/2 +
1

2
(2Re−1 + a0(δ))‖D(η)‖2 +

J∑
j=1

β

2
‖η · τ̂‖2Γj

+
2

3
C−1/2CsC

3/2
r3/2δ2‖D(η)‖3/2L3 + α

−1‖q − λh‖2 + α‖∇ · η‖2 + 1
2
‖η‖2

+
1

4
‖∇ · η‖2 + C‖D(wh)‖4/3L3 ‖∇η‖2L3 + C‖D(wh)‖2L3‖η‖2L6

]
+

[
α

4
‖∇ · φh‖2

]

+

(
3

4
+ ‖∇w‖L∞ +

(
1

4
+
1

4α

)
‖w‖2L∞ +

1

2
‖∇w‖2L∞

)
‖φh‖2.

To apply Gronwall’s inequality we need

3

4
+ ‖∇w‖L∞ +

(
1

4
+
1

4α

)
‖w‖2L∞ +

1

2
‖∇w‖2L∞ ∈ L1(0, T ),

in other words w ∈ L2(0, T ;W 1,∞(Ω)). The term on the right-hand side of this in-
equality containing r3/2 is treated as in the proof of Theorem 4.1. In the final result of
Gronwall’s lemma, we must also verify that the resulting terms containing ‖D(wh)‖L3

are bounded uniformly in Re. To this end, apply Hölder’s inequality∫ T

0

‖D(wh)‖4/3L3 ‖D(η)‖2L3dt ≤ ‖D(wh)‖4/3L4q/3(0,T ;L3)
‖D(η)‖2

L2q′ (0,T ;L3)
,

where 1
q +

1
q′ = 1. From the stability estimates, we clearly must take q such that

4q/3 ≤ 3. Accordingly, take q = 9
4 , q

′ = 9
5 . This gives∫ T

0

‖D(wh)‖4/3L3 ‖D(η)‖2L3dt ≤ C‖D(wh)‖4/3L3(0,T ;L3)‖D(η)‖2L18/5(0,T ;L3)

≤ CC4(δ)‖D(η)‖2L18/5(0,T ;L3).

Similarly, for q and q′ conjugate exponents take q = 3
2 , q

′ = 3,∫ T

0

‖D(wh)‖2L3‖η‖2L6dt ≤ ‖D(wh)‖2L2q(0,T ;L3)‖η‖2L2q′ (0,T ;L6)

≤ ‖D(wh)‖2L3(0,T ;L3)‖η‖2L6(0,T ;L6) ≤ C4(δ)‖η‖2L6(0,T ;L6).

The stated error estimate now follows from Gronwall’s inequality and the triangle
inequality as in the proof of Theorem 4.1.
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5. A numerical example. To give a numerical illustration several decisions
must be made, mainly whether to work on an “academic” flow problem with a known
exact solution or to work on a more realistic flow problem containing the accompany-
ing uncertainties. Since our aim is to illustrate a convergence theorem, we have chosen
the former. (To assess a model or study the limitations of an algorithm, we would
naturally have chosen the latter.) Accordingly, we have selected the vortex decay
problem of Chorin [4], used also by others, e.g., Tafti [38]. The domain is Ω = (0, 1)2

and we choose

w1 = − cos(nπx) sin(nπy) exp(−2n2π2t/τ),
w2 = sin(nπx) cos(nπy) exp(−2n2π2t/τ),
q = − 1

4 (cos(2nπx) + cos(2nπy)) exp(−4n2π2t/τ).
(5.1)

For the relaxation time τ = Re this is a solution of the Navier–Stokes equation
consisting of an array of opposite signed vortices which decay as t → ∞. The right-
hand side f , initial condition, and nonhomogeneous Dirichlet boundary conditions are
chosen so that (w1, w2, q) is the closed form solution of (1.3).

Since we are studying convergence as h → 0 for δ fixed and Re varying we have
accordingly chosen a 4× 4 array of the vortices (so n = 4) and

τ = 1000,
final time T = 8,
eddy scale δ = 0.1,

Smagorinski constant Cs = 0.05,
a0(δ) = 0.

It is significant that δ = 0.1 ≤ 1
4 =

1
n so that the vortices are larger than O(δ) and

hence should be “visible” to the model.
The fractional—step θ—scheme with an equal distant time step ∆tn = 0.001 is

used as discretization in time. The time discretization error should be kept small
by using this very small time step. In space, the Q2/P

disc
1 and the Q3/P

disc
2 finite

element discretizations are applied; see Table 1 for the number of degrees of freedom
for different mesh sizes. The unit square was divided into an h×h mesh with h = 1/2
on level 0. Both the Smagorinsky subgridscale model and the convection term are
treated implicitly. The viscous term is treated not as (∇wh,∇vh) but as using the
deformation tensor formulation, (D(wh),D(vh)), as analyzed herein. The least squares
constant α is chosen to be zero and we used the convective form of the nonlinear
convection term. The nonlinear system in each time step is solved up to a Euclidean
norm of the residual vector less than 10−10.

The numbers of degrees of freedom in space are certainly not extremely large.
However, their importance is only relative to the Reynolds number, ranging from 102

Table 1
Mesh widths and degrees of freedom in space.

Q2/Pdisc
1 Q3/Pdisc

2
Mesh width Velocity Pressure Total Velocity Pressure Total

1/4 - - - 338 96 434
1/8 578 192 770 1 250 384 1 634
1/16 2 178 768 2 946 4 802 1 536 6 338
1/32 8 450 3 072 11 522 18 818 6 144 24 962
1/64 33 282 12 288 45 570 - - -
1/128 132 098 49 152 181 250 - - -
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Table 2
Q2/Pdisc

1 finite element discretization, ‖e‖L∞(0,T ;L2).

Re \ h 1/8 1/16 1/32 1/64 1/128
102 2.20176e-2 2.76780e-3 3.47796e-4 4.35185e-5 5.43988e-6
103 3.19389e-2 3.50372e-3 4.81015e-4 4.86864e-5 5.50381e-6
104 5.97051e-2 7.01100e-3 1.00294e-3 1.39466e-4 1.44707e-5
105 7.67057e-2 7.73782e-3 1.09801e-3 1.62252e-4 1.92555e-5
106 7.86394e-2 7.81755e-3 1.10830e-3 1.64891e-4 1.98666e-5
107 7.88349e-2 7.82560e-3 1.10934e-3 1.65161e-4 1.99290e-5
108 7.88545e-2 7.82641e-3 1.10945e-3 1.65188e-4 1.99373e-5
109 7.88564e-2 7.82649e-3 1.10946e-3 1.65190e-4 1.99379e-5
1010 7.88566e-2 7.82650e-3 1.10946e-3 1.65191e-4 1.99380e-5

Table 3
Q3/Pdisc

2 finite element discretization, ‖e‖L∞(0,T,L2).

Re \ h 1/4 1/8 1/16 1/32
102 3.09237e-2 2.14568e-3 1.39746e-4 8.96881e-6
103 7.61050e-2 2.53153e-3 1.40003e-4 8.85819e-6
104 1.09160e-1 2.79077e-3 1.43102e-4 8.81959e-6
105 1.13716e-1 2.82963e-3 1.43815e-4 8.81915e-6
106 1.14186e-1 2.83371e-3 1.43896e-4 8.81835e-6
107 1.14234e-1 2.83412e-3 1.43904e-4 8.81929e-6
108 1.14238e-1 2.83416e-3 1.43905e-4 8.81853e-6
109 1.14239e-1 2.83417e-3 1.43905e-4 8.81961e-6
1010 1.14239e-1 2.83417e-3 1.43905e-4 8.81754e-6

to 1010, and the resolution sought, δ = 0.1. Again, LES is focused on situations in
which the number of degrees of freedom is small relative to Re. Thus, the chosen
values of h and Re seem appropriate.

Tables 2 and 3 present the L∞(0, T ;L2) norm of the error for both discretizations
in space. Note that the behavior is exactly as anticipated by the theory: the error in
this norm is clearly independent of Re.

Tables 4 and 5 present the errors in L2(0, T ;H1). These errors are not predicted
to be in general uniform in Re. But in the particular example which we have chosen,
one can observe uniformity in Re.

6. Conclusions. Reynolds number dependence in finite element error analysis
arises in three basic places: multiplicative error constants (Re), time scale constants
(exp(C(Re)T )), and time regularity assumptions on the true solution (needed even to
prove continuous dependence on the initial data) which might fail for turbulent flows.
In the error analysis of a large eddy model all three sources must be addressed. The
idea of our error analysis herein for the Smagorinsky model has been that the greater
spatial regularity of the large eddies must be used to compensate for the reduced time
regularity of the underlying turbulent flow. The execution of this idea is necessarily
technical since it entails using, in so far as possible, L3 bounds (the natural norm
arising from the model) for the nonlinear error terms. For different models, this same
idea can be possibly applied; its execution will vary with the particular features of
the model.

The error equation contains nonlinear terms resembling both convection and reac-
tion. Our analysis suggests that uniformity in Re can be accomplished by the control
of both effects. The second is controlled by the subgrid model while the first seems
to need a correctly adapted numerical method; see Remark 4.7.
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Table 4
Q2/Pdisc

1 finite element discretization, ‖D(e)‖L2(0,T,L2).

Re \ h 1/8 1/16 1/32 1/64 1/128
102 1.24827 3.13720e-1 7.84736e-2 1.96114e-2 4.90234e-3
103 1.56935 3.60470e-1 8.42787e-2 2.00913e-2 4.93406e-3
104 2.35100 4.66554e-1 1.05387e-1 2.34301e-2 5.28506e-3
105 2.68127 4.98844e-1 1.14609e-1 2.61063e-2 5.79700e-3
106 2.72037 5.02793e-1 1.15920e-1 2.66473e-2 5.96091e-3
107 2.72434 5.03197e-1 1.16058e-1 2.67093e-2 5.98435e-3
108 2.72474 5.03237e-1 1.16072e-1 2.67156e-2 5.98686e-3
109 2.72478 5.03241e-1 1.16073e-1 2.67162e-2 5.98711e-3
1010 2.72478 5.03242e-1 1.16073e-1 2.67163e-2 5.98714e-3

Table 5
Q3/Pdisc

2 finite element discretization, ‖D(e)‖L2(0,T,L2).

Re \ h 1/4 1/8 1/16 1/32
102 1.15300 1.65587e-1 2.07562e-2 2.60050e-3
103 2.87920 1.93565e-1 2.15627e-2 2.62325e-3
104 4.79996 2.24195e-1 2.27512e-2 2.67749e-3
105 5.07949 2.31037e-1 2.31277e-2 2.71302e-3
106 5.10843 2.31820e-1 2.31768e-2 2.72525e-3
107 5.11134 2.31899e-1 2.31819e-2 2.72679e-3
108 5.11163 2.31907e-1 2.31824e-2 2.72674e-3
109 5.11166 2.31908e-1 2.31825e-2 2.72698e-3
1010 5.11166 2.31908e-1 2.31825e-2 2.72759e-3

We note that replacing multipliers like exp(C(Re)T ) in the error estimate by
exp(C(δ)T ) establishes that a LES will be valid over a much longer time interval than
a DNS, although still not over 0 < t ≤ ∞. It would certainly be interesting to know
which flow statistics could be accurately approximated over 0 < t ≤ ∞, but this
requires a different analysis.
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Abstract. The present paper deals with the solution of Maxwell-type problems by means of
nodal H1-conforming finite elements. In a nonconvex piecewise regular domain surrounded by a
perfect conductor, such a discretization cannot in general approximate the singular behavior of the
electromagnetic field near “reentrant” corners or edges. The singular field method consists of adding
to the finite element discretization space some particular fields which take into account the singular
behavior. The latter are deduced from the singular functions associated with the scalar Laplace
operator.

The theoretical justification of this approach as well as the analysis of the convergence of the
approximation are presented for a very simple model problem arising from magnetostatics in a trans-
lation invariant setting, but the study can be easily extended to numerous Maxwell-type problems.
The numerical implementation of both variants is studied for a domain containing a single reentrant
corner.

Key words. Maxwell’s equations, singularities of solutions, finite element method, singular
function methods, error analysis
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1. Introduction. In a previous paper [8], we described the theoretical aspects
of a method for solving Maxwell’s equations in a polyhedron of R

3 by means of nodal
finite elements. This approach is based on the fact that aH1-conforming discretization
cannot in general approximate the singular behavior of the electromagnetic field near
nonconvex edges or corners of a perfect conductor (which explains the imperfection
of the attempts in engineering to make nodal elements work; see, e.g., [6] and the
remarks in [9]). However, this behavior can be expressed explicitly in terms of the
so-called singularities of the scalar Laplace operator. The idea of the singular field
method consists of using this explicit knowledge by splitting the electromagnetic field
into two parts: a regular part which can be approximated by a H1-conforming finite
element method and a singular part which is taken into account explicitly.

The initial motivation of this work was to find a cure for the failure of classical
Lagrange elements for solving Maxwell-type problems in nonconvex piecewise regular
domains. To a certain extent the singular field method proposes a way to adapt
usual codes for those who cling to H1-conforming elements! The question is to know
whether this approach represents a good alternative to the popular edge elements.
The answer depends on the problem to be solved. Of course, edge elements take into
account the singular behavior of the field near reentrant corners, provided the mesh
is properly refined. However, in the case of the time-dependent Maxwell equations,
refinement in space induces refinement in time and thus heavy computations. Nodal
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elements are also advantageous when coupled with other codes requiring continuous
fields, for instance in the resolution of the Vlasov–Maxwell system.

The aim of the present paper is not to compare both methods (which would require
a precise investigation of convergence rates) but rather to describe some practical
aspects of the singular field method in the two-dimensional case.

For the sake of simplicity, we consider a simple model problem which describes
magnetostatics in a translation invariant setting and holds for transversal components
of the field. Such a particular problem is hardly of practical interest. However,
as mentioned in [8], there are numerous straightforward extensions of the method
for Maxwell-type problems: time-harmonic full Maxwell’s equations, eddy current
models, inhomogeneous media, exterior scattering by obstacles or screens, etc. A
more interesting but more complex application is presented in [25]: it deals with the
determination of guided modes in an inhomogeneous cylindrical optical waveguide.
More generally, the method applies for two-dimensional elliptic variational problems
(or compact perturbations of such problems) in some piecewiseH(curl,div) space (i.e.,
for fields E ∈ L2 such that curlE ∈ L2 and div E ∈ L2) containing proper boundary
or transmission conditions along piecewise regular curves. To extend the singular field
method to such a problem, the main difficulty consists of identifying the singular fields
related to the variational space, which amounts to the determination of scalar singular
functions (by means of the techniques described for instance in Grisvard [21, 22] or
Dauge [18]).

The paper is organized as follows. In section 2, we define our model problem
and exhibit an equivalent regularized formulation, as well as a “spurious” regularized
problem: the latter consists in the same variational equation as the former, set in a
smaller functional space (which contains only regular fields). The key to the method
lies in the fact that the latter space can be completed by a finite dimensional space
of singular fields in order to solve the proper regularized problem: two such decom-
positions are given in section 3. They lead to the singular field method (SFM) and
its orthogonal variant, the orthogonal singular field method (OSFM) which are de-
scribed in section 4. The analysis of the convergence of these methods is the object
of section 5. Both numerical schemes seem to have the same rate of convergence, but
the numerical applications presented in section 6 clearly show that the OSFM yields
far better results: we shall try to explain why.

Let us mention a similar approach developed by Assous, Ciarlet, and Segré [3] and
Assous, Ciarlet, and Garcia [2] in the context of time-dependent Maxwell’s equations
(see also [23] for a unified presentation of both approaches): their method is based
on an alternative decomposition of the electromagnetic field into regular and singular
components. This approach has been extended to three dimensions in the case of
axisymmetric geometries [1, 11]. Also worth mentioning is the procedure proposed by
Costabel, Dauge, and Martin [17]. Contrary to our approach, the idea is to penalize
the homogeneous boundary condition near the perfect conductor by an impedance
condition simulating an imperfect conductor with high conductivity. From a theo-
retical point of view, the addition of singular fields is no longer necessary. Indeed,
this is due to the density of regular fields in the functional space associated with the
penalized problem (see [12, 16]). In practice, however, the choice of the penalization
parameter is not obvious. Notice that for the unpenalized problem the density re-
sult fails: this is precisely the underlying cause of the failure of a direct use of nodal
elements.
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2. Classical and regularized formulations. Let Ω ⊂ R
2 be a bounded,

simply connected, nonconvex polygonal domain with boundary Γ. We denote by
n = (n1, n2) the unit normal vector to Γ. We are looking for a numerical approx-
imation of the solution E = (E1, E2) ∈ R

2 to

curl curlE = J in Ω,(1)

div E = 0 in Ω,(2)

E× n = E1n2 − E2n1 = 0 on Γ,(3)

where the datum J is assumed divergence-free:

div J = 0 in Ω.(4)

The notations curl and curl distinguish between the scalar and vector curl operators:

curlE =
∂E2

∂x1
− ∂E1

∂x2
and curlϕ =

(
∂ϕ

∂x2
,− ∂ϕ
∂x1

)
.

Let us mention that (1)–(3) does not define a “real vector problem” since it is
known to reduce to a scalar problem. Indeed, the assumption (4) amounts to saying
that J = curl f for some scalar potential f (which can be chosen such that

∫
Ω
f = 0;

see, e.g., [20]). Hence the solution to (1)–(3) is nothing but E = curlψ, where ψ
satisfies

−∆ψ = f in Ω,

∂ψ

∂n
= 0 on Γ

since curl curl = −∆. Nevertheless, the vector formulation (1)–(3) here plays the
role of a model problem whose interest lies in its simplicity rather than in its physical
significance. The reader interested in the full Maxwell equations may replace operator
curl curl by curl curl−k2 in (1) (with k2 real or complex). Except for well-posedness
results, the same method applies. From a numerical point of view, the only difference
induced by this perturbation is the coupling between the regular and singular parts
of the field which appears in the OSFM variant (see section 4).

The SFM is based on the fact that the solution to (1)–(3) can be found by solving
an equivalent regularized problem involving the vector Laplace operator ∆ instead of
curl curl and a divergence-free boundary condition instead of the volume condition
(2). For the time being, we write the regularized problem in an imprecise form:

−∆E = J in Ω,(5)

div E = 0 on Γ,(6)

E× n = 0 on Γ.(7)

Formally, a solution to (1)–(3) satisfies (5)–(7) (since −∆ = curl curl−graddiv),
and, conversely, a solution to (5)–(7) is divergence-free (which shows that it satisfies
(1)–(3)). Indeed, by denoting ϕ = div E, we deduce from (5) and (6) that

−∆ϕ = 0 in Ω,

ϕ = 0 on Γ,

which yields ϕ ≡ 0 provided ϕ is regular enough.
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In order to clarify the real meaning of the equivalence between the initial and
regularized problems, we have to make precise the functional framework which leads
to their variational interpretations. Following the notations used in [8], we introduce
the spaces

HN (curl) =
{
E ∈ L2(Ω)2

∣∣ curlE ∈ L2(Ω) and (E× n)|Γ = 0
}
,

HN (curl,div) =
{
E ∈ HN (curl)

∣∣ div E ∈ L2(Ω)
}
,

HN (curl,div 0) = {E ∈ HN (curl) | div E = 0 in Ω} ,
HN (grad) =

{
E ∈ H1(Ω)2

∣∣ (E× n)|Γ = 0
}

(where the index N indicates that the fields are normal to Γ). We denote by (· , ·) the
usual scalar product in L2(Ω)2. Notice that the sesquilinear form

a(E,E ′) = (curlE, curlE ′) + (div E,div E ′)

is continuous and coercive in the last three spaces: for each of them, it defines ac-
tually a scalar product whose associated norm is equivalent to the graph norm. For
HN (curl,div), this derives from the compactness of the embedding of HN (curl,div)
in L2(Ω)2 (see, e.g., [28]). The case of HN (curl,div 0) follows since it is a closed
subspace of HN (curl,div). (Note that a(· , ·) = (curl · , curl ·) in this case.) Finally,
for HN (grad), the result is not obvious (see Costabel [13]): HN (grad) appears as a
closed subspace of HN (curl,div) with finite codimension (see section 3).

In what follows, we denote by PN (curl,div), PN (curl,div 0), and PN (grad) the
following problems:

(PN (· · ·)) Find E ∈ HN (· · ·) such that
a(E,E ′) = (J,E ′) ∀E ′ ∈ HN (· · ·)

for a given J ∈ L2(Ω)2. The coerciveness of a(· , ·) shows that these problems are well
posed. (The assumption (4) is necessary only for PN (curl,div 0).) The question is to
understand the role of each of them.
PN (curl,div 0) is the variational interpretation of our initial problem (1)–(3): it

is easy to see that a field E ∈ HN (curl,div 0) satisfies (1) in the sense of distributions
(in D′(Ω)2) if and only if it is a solution to PN (curl,div 0) (see [24]).
PN (curl,div) is actually the “good” interpretation which makes the regularized

problem (5)–(7) equivalent to (1)–(2): its solution coincide with that to PN (curl,div 0),
provided div J = 0. Indeed, if E ∈ HN (curl,div 0) satisfies (1), then (curlE, curlE ′) =
(J,E ′) for every E ′ ∈ HN (curl); hence it is also a solution to PN (curl,div).
PN (grad) is a sort of “spurious” interpretation of the regularized problem, where

the boundary condition (6) has to be understood in a “weak” sense (see [8]). In gen-
eral, its solution differs from that to PN (curl,div), for HN (grad) is strictly contained
in HN (curl,div).

3. Decomposition of HN(curl, div). With regard to the numerical approxi-
mation of PN (curl,div 0), the idea of solving its regularized formulation PN (curl,div)
seems attractive since it involves the elliptic operator −∆ and avoids taking into
account the divergence-free condition in Ω. However, one has to be careful: a H1-
conforming finite element discretization can provide only an approximation of the
“spurious” solution to PN (grad) but not of the “physical” solution. The SFM con-
sists of adding to HN (grad) a complementary subspace Hsing such that

HN (curl,div) = HN (grad)⊕Hsing.(8)
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In order to understand how to construct such a singular subspace, let us first
recall some classical results about the singularities of the (scalar) Laplace operator in
a nonconvex polygon (see Grisvard [22]). We denote by x�, for � = 1 to L, the vertices
of the polygon Ω, numbered according to the positive orientation. At each vertex,
we define local polar coordinates (r�, θ�), where r�(x) = ‖x− x�‖ , θ�(x�+1) = 0, and
θ�(x�−1) = ω� > 0. (Here we denote xL+1 = x1 and x0 = xL.) For every �, consider
a regular cut-off function η� = η�(r�) such that η� ≡ 1 near x� and η� vanishes if
r� > c� with 0 < c� < min�′ �=� ‖x�′ − x�‖ . For the reentrant corners, i.e., for � such
that ω� > π, let us finally introduce the singular functions

s�(r�, θ�) = r
π/ω�

� sin

(
π

ω�
θ�

)
.(9)

Function s� satisfies ∆s� = 0 in the sector {(r, θ�) | r > 0, θ� ∈]0, ω�[}, vanishes on its
boundary, and belongs to H1(Ω) \ H2(Ω). Hence, the truncated singular function
η�s� belongs to H1

0 (Ω) \ H2(Ω) and satisfies ∆(η�s�) = 0 in a neighborhood of the
reentrant corner.

Then consider the subspace S of H1
0 (Ω) defined by

S = span {η�s� | ω� > π } .(10)

This space, whose dimension is exactly the number of “reentrant corners,”gives us the
first level of singularity of the solution ϕ ∈ H1

0 (Ω) of the variational equation

(gradϕ,gradψ) = (f, ψ) ∀ψ ∈ H1
0 (Ω)

for a given f ∈ L2(Ω). Indeed, ϕ can be uniquely decomposed as

ϕ = ϕreg + ϕsing, where ϕreg ∈ H1
0 (Ω) ∩H2(Ω) and ϕsing ∈ S.

The space S offers a first possible choice for the singular subspace Hsing in (8).
Indeed, notice that gradS ⊂ HN (curl,div) since curlgradϕ = 0, (gradϕ×n)|Γ = 0
for all ϕ ∈ H1

0 (Ω) and div(grad(η�s�)) = ∆(η�s�) is a regular function in Ω. As a
consequence, we infer that

gradS ⊂ HN (curl,div) \ HN (grad).

The point is that gradS describes all the possible singularities of fields in the space
HN (curl,div), which is expressed by the following direct decomposition of type (8)
(see [5] or [8] for the proof):

HN (curl,div) = HN (grad)⊕ gradS.(11)

This sum is not orthogonal, but it can be used to construct an orthogonal com-
plementary subspace of HN (grad). Indeed, for each � such that ω� > π, the field

E� = grad(η�s�) + G� with G� ∈ HN (grad)(12)

is orthogonal to HN (grad) (for the scalar product a(· , ·)) if and only if

a(G�,E
′) = −(∆(η�s�),div E ′) ∀E ′ ∈ HN (grad),
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which amounts to solving PN (grad) for J = grad(∆(η�s�)). Following the idea pro-
posed by Moussaoui [27] for the scalar Laplace operator, another way of writing the
decomposition (12) is

E� = grad(s�) + F�,(13)

where F� = G� + grad((η� − 1)s�). Noticing that ∆s� = 0, we see that F� is the
solution to the following inhomogeneous variational problem (similar to PN (grad)) :

Find F� ∈ H1(Ω)2 such that
a(F�,E

′) = 0 ∀E ′ ∈ HN (grad), and
F� × n = −grad s� × n on Γ.

(14)

Hence the decomposition (8) becomes orthogonal if we choose

Hsing = span {E� | ω� > π } .(15)

4. Numerical implementation. We shall illustrate the numerical implemen-
tation of the SFM in the case of a simple model domain. To this end, let us consider
a domain Ω which has only one reentrant corner situated at the origin 0. We thus can
omit the subscript � in the notation of the angle ω, the local polar coordinates (r, θ),
the singular function s, and the cut-off function η introduced in the previous section.
We shall indicate the complications that arise from the numerical implementation for
more than one reentrant corner.

Let Th, 0 < h ≤ h0 be a family of regular triangulations of the domain Ω; that
means that there exist two constants c0, c1 > 0 such that every triangle Th ∈ Th
contains a circular disc with radius c0h and is contained within another disc with
radius c1h. The associated discretization space of finite elements of type P1 is given
by

Yh =
{
Eh ∈ H1(Ω)2

∣∣ Eh|Th
is affine ∀Th ∈ Th

}
.(16)

Let {MI}I=1,...,dimYh
be the set of nodal points of the triangulation. Then

Vh = {Eh ∈ Yh | “(Eh × n)(MI) = 0” ∀MI ∈ Γ}(17)

is a finite dimensional subspace of HN (grad), and we denote (wI)I=1,...,Nh
its basis.

Note that the discrete boundary condition “(Eh × n)(MI) = 0” is ambiguous at a
vertex of the polygon: the use of the quotes means that here Eh(MI) = 0.

As mentioned in [8], the idea of the SFM consists of discretizing the regular part
of the solution by means of nodal finite elements, whereas the singular part is taken
into account explicitly. The question is now, Which choice of the complementary
space Hsing is the best? In what follows, we shall illustrate the approach for the two
spaces introduced in section 3.

4.1. The SFM. The nonorthogonal decomposition (11) of HN (curl,div) natu-
rally leads to the following discretization space:

Xh = Vh ⊕ gradS,(18)

where S = span{ηs} with the notations introduced at the beginning of this section.
The corresponding discrete problem then reads as follows:

Find Eh ∈ Xh such that
a(Eh,E

′
h) = (J,E ′

h) ∀E ′
h ∈ Xh.

(19)
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It is clear that Xh is of dimension Nh+1, and (19) may be written in an equivalent
manner in matrix form:(

AFE C
CT as

)(
ER
αh

)
=

(
JFE

js

)
,(20)

where
• AFE and JFE, respectively, denote the stiffness matrix and the right-hand

side corresponding to the space of finite elements, Vh,

AFE = (a(wJ ,wI))I,J=1,...,Nh
, and JFE = ((J,wI))

T
I=1,...,Nh

;(21)

• as and js denote the matrix and the right-hand side of order 1 corresponding
to the singular field,

as = a(grad(ηs),grad(ηs)) and js = (J,grad(ηs));(22)

• C is finally a matrix of order Nh × 1 coupling the basis functions of FE-type
and the singular field,

C = (a(grad(ηs),wI))
T
I=1,...,Nh

.(23)

The decomposition (18) appears in the block structure of the stiffness matrix, and
we may rewrite (20) in order to solve two subproblems involving only the standard
FE-matrix AFE. The algorithm of the SFM then consists of the following three steps:

1. Solve two linear systems{
AFEEFE = JFE,
AFES = C.

(24)

2. Calculate the approximate singular coefficient αh through the identity

αh =
js − CTEFE

as − CTS .(25)

3. Finally, set

Eh =

Nh∑
I=1

(EFE,I − αhSI)wI + αh grad(ηs)(26)

in order to obtain the approximate solution.
Remark 4.1. In the case of more than one reentrant corner, say Ns, the coefficient

as becomes a Ns ×Ns matrix As whose generic term is simply given by

(As)�,�′ = a(grad(η�s�),grad(η�′s�′)).

Notice that this is a diagonal matrix since the supports of the different cut-off functions
η� do not intersect. Similarly, js becomes aNs×1 matrix, denoted Js, and the coupling
matrix C = (C1 . . . CNs) is of order Nh × Ns. The adaptation of the algorithm
described above then reads as follows: in step 1, we have to solve Ns + 1 linear
systems of order Nh involving the same sparse matrix AFE,{

AFEEFE = JFE,
AFESl = Cl, l ∈ {1, . . . , Ns}.(27)
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In step 2, the computation of the Ns singular coefficients αh,l, may be achieved by
solving the linear system of order Ns,

(As − CTS)αh = Js − CTEFE,(28)

where αh = (αh,1 . . . αh,Ns
)T and S = (S1 . . . SNs

) ∈ R
Nh×Ns . The formula corre-

sponding to (26) is straightforward.

4.2. The OSFM. Let us notice that the SFM presented in the previous section
depends on the choice of the cut-off function η. It is well known from the imple-
mentation of singular function methods that the use of a cut-off function may cause
numerical difficulties since its derivatives take very high values. Therefore we consider
here a singular subspace, Hsing, that does not use any cut-off function. Indeed, it has
been shown in section 3 that this may be done by choosing the following orthogonal
decomposition of HN (curl,div):

HN (curl,div) = HN (grad)⊕ span{grad(s) + F},(29)

where F is the solution to the inhomogeneous problem (14).
In order to use (29) for an approximation of the solution to PN (curl,div), we

thus have to discretize separately HN (grad) and span{grad(s) + F}. With regard to
HN (grad), this will be done as before by means of nodal finite elements. However,
contrary to the SFM, the singular field grad(s) + F is not known exactly because of
the contribution of F. We are thus led to introduce an approximate singular field

grad(s) + Fh,(30)

where Fh is the FE-approximation of F, that is, the solution to the following problem:

Find Fh ∈ Yh such that
a(Fh,E

′
h) = 0 ∀E ′

h ∈ Vh, and
“(Fh × n)(MJ) = −(grad(s)× n)(MJ)” ∀MJ ∈ Γ.

(31)

If X̃h denotes the finite dimensional subspace of HN (curl,div) given by

X̃h = Vh ⊕ span{grad(s) + Fh},(32)

the discrete formulation of PN (curl,div) reads as follows:

Find Ẽh ∈ X̃h such that

a(Ẽh,E
′
h) = (J,E ′

h) ∀E ′
h ∈ X̃h,

(33)

or, equivalently, in matrix form(
AFE 0

0 ãs

)(
EFE

α̃h

)
=

(
JFE

̃s

)
.(34)

As before, AFE and JFE denote the stiffness matrix and the right-hand side of
the FE-discretization, and ãs and j̃s are, respectively, given by

ãs = a(Fh,Fh) and ̃s = (J,grad(s) + Fh)(35)

since grad(s) is curl- and divergence-free. Note as well that no coupling terms occur
in (34) because of the discrete orthogonality relation

a(grad(s) + Fh,E
′
h) = 0 ∀E ′

h ∈ Vh.(36)

The algorithm of the OSFM then reads as follows:
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1. Solve (31) and the linear system

AFEEFE = JFE.

2. Calculate the approximate singular coefficient α̃h through the identity

α̃h =
̃s
ãs
.

3. Set

Ẽh =

Nh∑
I=1

EFE,IwI + α̃h (grad(s) + Fh) .

Remark 4.2. As for the SFM, the algorithm can be easily adapted for Ns > 1
reentrant corners. Step 1 will consist of solving Ns + 1 linear systems (one for EFE

and one for each problem of type (31) corresponding to each singular function s�).
The determination of the Ns singular coefficients in step 2 will be achieved by solving
a linear system of order Ns which involves a full matrix Ãs describing the coupling
between the Ns discrete singular fields. Finally, note that for more involved situations
(such as the full Maxwell equations), the inhomogeneous problem of type (31) has to
be replaced by the following problem:

Find Fh,� ∈ Yh such that
a(Fh,E

′
h) = −a(grad(s�),E

′
h) ∀E ′

h ∈ Vh, and
“(Fh,� × n)(MJ) = −(grad(s�)× n)(MJ)” ∀MJ ∈ Γ,

(37)

introducing a coupling of singular fields and basis functions of FE-type.

4.3. Computational cost. In this section we will compare the computational
cost of both SFM and OSFM in the general case of the full Maxwell equations and
multiple corners.

Notice that in both methods we have to solve Ns + 1 linear systems of order Nh
involving the standard (sparse) FE-matrix and one linear system of order Ns � Nh
involving a full symmetric matrix. From this point of view, SFM and OSFM thus
have the same complexity.

What about the computational cost and the implementation of the respective
matrices and right-hand sides? Besides the standard FE-matrix AFE and the right-
hand side JFE, which may be calculated using a standard finite element code, there
are three kinds of terms:

• pure FE-terms obtained by matrix-vector or vector-vector products of order
Nh (such as CTS in the SFM and a(Fh,�,Fh,�′) = FT� AFEF�′ in the OSFM),
• coupling terms of order Nh which need high order quadrature rules at least

near the corners, and
• singular terms which may be calculated analytically or again by means of

high order quadrature rules.
Notice that coupling and singular terms in OSFM occur only for the full Maxwell
equations and are reduced to L2-scalar products (i.e., containing no derivatives of the
singular fields) since the function s� is harmonic for all �, and grad(s�) is thus curl-
and divergence-free in Ω.

Summing up, the number of FE-terms, singular and coupling terms is of order
O(Ns) in SFM and of order O(N2

s ) for OSFM. However, the number of reentrant
corners is not significant compared to the complexity of the mesh, and thus there is
no real difference between the computational complexity of the two methods.
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5. Error analysis. In this section, we shall investigate error estimates for the
respective solutions obtained by the SFM and the OSFM based on finite elements of
type P1. The generalization of the results to higher order elements is straightforward.
We study the global error in the energy norm and in the L2-norm as well as the error
on the singularity coefficient. It turns out that the SFM and the OSFM are of the
same order.

Proposition 5.1 (energy norm estimates for the SFM). Let E and Eh be the
respective solutions of PN (curl,div) and (19). There exists a constant C > 0 such
that

||E−Eh||HN (curl,div) ≤ C inf
E ′

h∈Vh

||Ereg −E ′
h||1,Ω ,(38)

where Ereg denotes the regular part of E corresponding to the decomposition (11). If
in addition Ereg belongs to Hs+1(Ω)2 with s > 0, there is a constant C ′ > 0 such that

||E−Eh||HN (curl,div) ≤ C ′ hmin(s,1) ||Ereg||s+1,Ω .(39)

Remark 5.2. Estimate (38) implies that the SFM will converge but does not
give any convergence order. Nevertheless, the regular part Ereg of the solution to
PN (curl,div) always belongs to Hs+1(Ω)2 for all s < 2π

ω − 1 (see [15] and Lemma
5.5). Hence, (39) implies that the SFM is at least of order 2π

ω − 1 − ε (with ε > 0
arbitrarily small).

Proof of Proposition 5.1. Since the bilinear form a(·, ·) is continuous and coercive
on HN (curl,div), Cea’s lemma implies

||E−Eh||HN (curl,div) ≤ C inf
E ′

h
∈Xh

||E−E ′
h||HN (curl,div) ,(40)

where C > 0 depends only on the continuity and coercivity constants of a(·, ·). De-
composition (11) implies that there is Ereg ∈ HN (grad) and α ∈ R such that

E = Ereg + αgrad(ηs).

Now note that for any field Gh belonging to the FE-space Vh the field

E ′
h = Gh + αgrad(ηs)

belongs to Xh, and hence

inf
E ′

h
∈Xh

||E−E ′
h||HN (curl,div) ≤ inf

Gh∈Vh

||Ereg −Gh||HN (curl,div) ,

and we obtain (38) since, on HN (grad), the norms ||·||HN (curl,div) and ||·||1,Ω are
equivalent.

If, in addition, the regular part Ereg of the solution belongs to Hs+1(Ω)2 with
s > 0, the standard error analysis of the FE-method yields (39) (see [10, 21]).

Remark 5.3. Note that the error on the singular coefficient of the SFM is governed
by the same term as the global error, that is, the interpolation error of the finite
element method. Indeed, the decomposition of HN (curl,div) into the direct sum of
HN (grad) and Hsing yields

|α− αh| ≤ C ||E−Eh||HN (curl,div)
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and thus estimates similar to (38) and (39) for the error on the singular coefficient.
Hence, there is a fundamental difference compared to singular function methods known
to improve the convergence order of a nodal finite element method: these methods
are of order 1 (for finite elements of type P1) with regard to the global error in
the energy norm but of order less than 1 (depending on the angle of the reentrant
corner) with regard to the convergence of the singular coefficient (see, e.g., [7]). In our
context the fact that HN (grad) is a closed subspace of HN (curl,div) forbids any nodal
discretization to approach the singular fields. In other words, the “angle” between
gradS and Vh (see (18)) cannot shrink to zero.

The next proposition gives error estimates in the L2-norm.
Proposition 5.4 (L2-estimates for the SFM). Let E and Eh be the respective

solutions of PN (curl,div) and (19), and let Ereg denote the regular part of E corre-
sponding to the decomposition (11). Assume that Ereg belongs to Hs+1(Ω)2, where
s > 0. There is a constant C > 0 such that

||E−Eh||0,Ω ≤ C hλ ||Ereg||s+1,Ω ∀λ < min(s, 1) +
2π

ω
− 1.(41)

Proof. In order to get the L2-error estimates for the SFM, we apply the Aubin–
Nitsche trick which yields

||E−Eh||0,Ω

≤ C ||E−Eh||HN (curl,div)

(
sup

K∈L2(Ω)2

{
1

||K||0,Ω
inf

E ′
h
∈Xh

||EK −E ′
h||HN (curl,div)

})
,

where EK ∈ HN (curl,div) denotes the unique solution to PN (curl,div) corresponding
to a datum K in L2(Ω)2. According to Proposition 5.1, the first factor in the preceding
inequality can be bounded by

C hmin(s,1) ||Ereg||s+1,Ω .

In order to get an estimate for the second factor, we consider the regular part of EK
which belongs to Ht+1(Ω)2 for all t < 2π

ω − 1 (see [15] and Lemma 5.5 below). We
thus infer once more from Proposition 5.1 that

inf
E ′

h
∈Xh

||EK −E ′
h||HN (curl,div) ≤ C ht ||EK,reg||t+1,Ω ∀t < 2π

ω
− 1.

Now notice that ||EK,reg||t+1,Ω ≤ C ||K||0,Ω according to the a priori inequality (42)
of Lemma 5.5. This completes the proof.

For the sake of completeness, we now prove the a priori estimate that was used
in the proof of Proposition 5.4.

Lemma 5.5. Let E be the solution to PN (curl,div) with a right-hand side J in
L2(Ω)2. Let Ereg denote the regular part of E according to decomposition (11). Then
Ereg ∈ Ht+1(Ω)2 for all t < 2π

ω − 1, and there exists a constant C > 0 such that the
following a priori estimate holds:

||Ereg||t+1,Ω ≤ C ||J||0,Ω .(42)

Proof. According to (11) we get the following decomposition of E:

E = Ereg + αgrad(ηs).
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The regularity result has been proven in [15]. The definition of PN (curl,div) implies

a(Ereg,E
′) = (J,E ′)− α(∆(ηs),div E ′) ∀E ′ ∈ HN (grad).(43)

Ereg thus coincides with the solution to PN (grad) corresponding to the datum J̃ =
J + αgrad(∆(ηs)). (Note that no boundary terms occur in the integration by parts
of the right-hand side of (43) since ∆(ηs) ∈ H1

0 (Ω).) We infer that

||Ereg||t+1,Ω ≤ C1(||J||0,Ω + |α| ||∆(ηs)||1,Ω)(44)

from the closed graph theorem. Indeed, consider the linear operator T : L2(Ω)2 →
Hs(Ω)2 defined by TJ = E, where E ∈ HN (grad) is the unique solution to PN (grad)
with right-hand side J. Inequality (44) is nothing but the continuity of T whose graph
is a closed subset of L2(Ω)2 ×Hs(Ω)2.

As in Remark 5.3, we have

|α| ≤ C2 ||E||HN (curl,div) ≤ C3 ||J||0,Ω
and (42) follows with C = C1(1 + C3 ||∆(ηs)||1,Ω).

Remark 5.6. The weak point of the SFM is hidden among the above estimates.
It is actually related to the cut-off function η involved in the definition of the singular
field grad(ηs). Such a function introduces artificially high variations of the regular
part Ereg in the region where η varies from 0 to 1. Inequality (44) yields a quantified
representation of this effect: the right-hand side depends on the H1-norm of ∆(ηs)
which involves the third derivatives of the cut-off function η. Hence the constant in
the estimate (42) may have a very high value. We shall come back to this problem in
the next section.

The error analysis for the OSFM is very similar to the one for the SFM, the main
difference lying in an appropriate definition of the interpolation error.

For a given real parameter α let us introduce the space Yh,α of those fields Gh of Yh
which satisfy the inhomogeneous boundary condition “((Gh×n)(MI) = −α(grad(s)×
n)(MI)” for allMI ∈ Γ. Note that Yh,α is an affine subspace of Yh of the form αR+Vh,
where R is some fixed FE-element lifting of the tangential trace of −grad(s).

One gets the analogous error estimates when substituting Ereg by Ẽreg + αF,

where Ẽreg and α denote, respectively, the regular part and the singular coefficient of
E corresponding to the decomposition (29) and F is the solution in H1(Ω)2 to (14).

Proposition 5.7 (energy norm estimates for the OSFM). Let Ẽh denote the
solution of (31). There exists a constant C > 0 such that∣∣∣∣∣∣E− Ẽh

∣∣∣∣∣∣
HN (curl,div)

≤ C inf
E ′

h
∈Yh,α

∣∣∣∣∣∣(Ẽreg + αF)−E ′
h

∣∣∣∣∣∣
1,Ω

(45)

with the notations introduced just before.
Proof. We use the following characterization of X̃h:

Eh ∈ X̃h if and only if ∃Gh ∈ Yh and α ∈ R such that
Eh = Gh + αgrad(s), and
“(Gh × n)(MI) = −α(grad(s)× n)(MI)” ∀MI ∈ Γ.

(46)

It may be easily seen that (32) and (46) indeed define the same space.
As for the SFM, Cea’s lemma leads us to look for an estimation of the interpolation

error on X̃h. With a given field Gh belonging to Yh,α we associate the field E ′
h =
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Gh + αgrad(s), where α is the singular coefficient of E. E ′
h clearly belongs to X̃h

and (45) follows as before.
The estimates corresponding to (39) and (41) follow in the same way.

Remark 5.8. It may easily be seen that the fields Ereg and Ẽreg + αF (corre-
sponding to decompositions (11) and (29), respectively) have the same regularity:
they differ by the field αgrad((1− η)s) which is of class C∞. The convergence order
of both methods is thus apparently the same.

Remark 5.9. The generalization of the previous error analysis to the case of
multiple corners is straightforward. Indeed, the energy norm estimates (38) and (39)
keep unchanged. Notice that the minimal regularity of the regular part is now Hs+1

with

s < min
1≤�≤Ns

2π

ω�
.

Consequently, the convergence rate of the error in the L2-norm is O(hλ) with λ <
min(s, 1) + minl

2π
ω�
− 1.

6. Numerical results. In this section, we present numerical tests of the SFM
and the OSFM for several examples where the exact solutions are known. The model
domain is formed by the three quarters of a disc with center 0 and radius 2; the
only reentrant corner is thus of measure 3π/2. Such a “camembert-like”domain is
polygonal near the reentrant corner and convex in the neighborhood of any other
irregular point of the boundary. The results obtained in the previous sections thus
carry over to this curvilinear polygon.

Notice that both methods have been implemented in the case of one reentrant
corner only, but the generalization to several corners is straightforward and has been
described in section 4 (Remarks 4.1 and 4.2). The additional complexity has been
investigated in section 4.3.

We consider two classes of exact solution fields which are defined with the help of
the respective eigenfunctions of the Laplace–Beltrami operator on ]0, ω[ with Dirichlet
and Neumann boundary conditions:

Gn(r, θ) = grad(η(r)rna sin(naθ))(47)

and

Hn(r, θ) = curl(η(r)rna cos(naθ)), where a = π/ω = 2/3 and n ∈ N.(48)

Note that

Hn = −Gn + regular field,

where the regular field vanishes near the corners. The regularity of the fields Hn and
Gn depends on n:

Gn,Hn ∈ Hs(Ω)2 ∀s < na.
In particular, Gn and Hn belong to HN (grad) for n > 1, whereas G1 and H1 are
singular fields in the sense that they have a nonzero component in Hsing. (G1 does
indeed coincide with the singular field that spans Hsing in the case of the SFM.)

The “numerical proof” that the FE-method fails for singular fields appears clearly
in Figure 6.1. We represent the x-component of the FE-element approximation of G1
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on a mesh with h = 2−4 and compare it to the analogous approximation obtained
by the SFM (Figure 6.2). It turns out that nodal finite elements are not at all able
to reproduce the singular behavior at the reentrant corner. Indeed, the condition
(Eh × n) = 0 on the boundary nodes forces the FE-approximation to vanish at 0,
whereas the exact solution tends to ∞ at the corner. Thus, we do not have to deal
with an accuracy problem but, as it has been mentioned in section 3, with the choice
of the appropriate functional frame: the FE-approximation converges to the solution
to PN (grad).

Fig. 6.1. FE-approximation of G1.

Fig. 6.2. SFM-approximation of G1.

Both the SFM and the OSFM have been tested on unstructured triangulations
Th without mesh refinement near the corner. (See Figure 6.3 for an example.) We
use Lagrange finite elements of type P1. Notice that in this case the error induced
by the approximation of the curvilinear domain Ω by a polygon does not affect the
convergence rate of the method.

The mesh parameter h = supTl∈Th
diamTl varies from h = 2−2 to h = 2−6, the

latter corresponding to roughly 2× 31900 degrees of freedom.
The cut-off function η is a piecewise polynomial function of class C3: η ≡ 1 for

0 ≤ r < 0.5, η = pη for 0.5 ≤ r < 1.5 with a polynomial pη of degree 7, and η ≡ 0 for
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h

Fig. 6.3. The coarse mesh (h = 1/4).

1.5 ≤ r ≤ 2. The coefficients of the coupling term C are computed using a 7-point-
quadrature formula which is exact for polynomials up to order 5. The coefficients as
and js are calculated analytically.

The implementation of the boundary condition is realized via a rotation which
maps the canonical basis on a local basis of the normal and tangential vectors; in the
latter basis the vector boundary condition becomes decoupled and standard techniques
apply. In order to implement the inhomogeneous boundary condition in the algorithm
of the OSFM (see (31)), we use a FE-lifting R of the tangential trace of −grad(s) on
Γ. Again, the only difficulty comes from the coupling of the two degrees of freedom
at each boundary node and we proceed in the same way as in the homogeneous case.

The linear systems occurring in the algorithms are solved by a direct method based
on Cholesky factorization. All tests have been realized with the FE-code MELINA.1

We represent the error on the exact solution in logarithmic scale for a discrete
L2-norm which is given by

||E−Eh||h =


 1

Nh

∑
I∈

◦
Ω

|E(MI)−Eh(MI)|2



1/2

.(49)

We could have chosen instead a discrete energy norm, which may appear more relevant
from a physical point of view. Our aim, however, is simply to compare the numerical
results with the theoretical predictions, in spite of their poor practical interest.

Figures 6.4–6.7 show the convergence rates of the SFM and the OSFM for the
fields Gn and Hn with n = 2 and n = 5. This illustrates the L2-error estimate of
Proposition 5.4. For n = 2, the numerical values are in good concordance with the
theory which yields an order of 2/3. The influence of the reentrant corner may be seen
even if the exact solution belongs to H2 (cf. the tests for G5 and H5): the observed

1Developed by D. Martin (IRMAR, University of Rennes 1, and ENSTA/SMP, Paris, France)
[26].
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Fig. 6.4. The SFM for Gn, n = 2, n = 5.

-0.66

-log(h)

n=2

n=5

1

1

-1.70

mesh refinement

lo
g(

L
2-

er
ro

r)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

Fig. 6.5. The SFM for Hn, n = 2, n = 5.

convergence rates still keep below the “optimal” rate O(h2) for finite elements of type
P1 in regular domains. It turns out, however, that the numerical values for n = 5 are
higher than the order given by Proposition 5.4, O(h4/3).

Next, we represent the approximation of the singular fields G1 and H1. Figure 6.8
shows once again that a nodal finite element method does fail: the relative error on the
approximation of G1 is of 52% for the finest mesh (and there is no reason to believe
in a convergence as poor as it may be . . . ), compared to 0.1% for the OSFM. The
points representing the error of the finite element method seem to have a horizontal
asymptote (corresponding to the “gap” between HN (grad) and HN (curl,div)).

At last, Figure 6.9 compares the SFM- and the OSFM-approximation of H1, and
it is obvious that the OSFM yields much better results. As mentioned in Remark 5.6,
this is due to the cut-off function η. Indeed, the performance of the SFM depends
on the implementation of the singular field involving the cut-off function and its
derivatives. The strong variations of the latter lead to high values of the constant
in the error estimations and hence to poor accuracy: in the case of the two coarsest
grids we cannot even speak of an approximation since the relative errors are too high
(about 70% for h = 1/8 compared to 1% for the OSFM) and even the finest mesh
still yields an error of 7%. This means that much more mesh refinement has to be
done when using the SFM in order to get results comparable with those of the OSFM.
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Fig. 6.7. The OSFM for Hn, n = 2, n = 5.

Nevertheless, the numerical results confirm the theoretical order of convergence for the
SFM: taking into account the finest three meshes only, the observed convergence rate
is O(h1.24) compared to O(h4/3). For the OSFM, a “superconvergence” is observed.
We were not able to find a theoretical justification of this phenomena. Maybe it
is due to some particular symmetry of the exact solution. Notice as well that we
omitted the error of the OSFM for h = 1/64 since it is slightly higher than the one for
h = 1/32. This is probably due to the influence of rounding errors since the FE-solver
is implemented with simple precision only.

One question may arise in comparing the SFM and the OSFM: why do accuracy
problems occur only for the field H1? To understand this, consider the fields Gn and
Hn for n > 1. The FE-method will converge since the fields belong to HN (grad). It
seems plausible that the convergence in the variable θ is much better than in r due
to the influence of the cut-off function which does not depend on θ. If we further
assume that the FE-method keeps approximately the separation in variables of the
exact solution, that is,

Gn,FE ≈ grad(un(r) sin(naθ)) ∀n > 1,

Hn,FE ≈ curl(vn(r) cos(naθ)) ∀n > 1,
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Fig. 6.9. SFM/OSFM for H1.

we get

(Gn,FE,grad(ηs)) ≈
∫

Ω

un(r) sin(naθ)w(r) sin(aθ) r drdθ = 0(50)

and

a(Gn,FE,grad(ηs)) ≈ 0,(51)

since sin(naθ) and sin(aθ) are orthogonal on (0, ω), and the corresponding terms for
Hn,FE vanish as well. Now, if we introduce these identities into (25) (note that CTEFE

is nothing but the left-hand side of (51)) and take into account that js = 0, we get a
good approximation of the singular coefficient α = 0, in spite of an eventual pollution
effect due to the cut-off function.

On the other hand, consider the field H1. The corresponding FE-solution H1,FE

yields an approximation of the solution to the “spurious” problem PN (grad) which
is different from H1. In particular, there is no reason to get the “quasi orthogonal-
ity”of (50) and (51). The computation of the singular coefficient αh thus involves
the coupling terms CTEFE and CTS, and the above-mentioned difficulties due to the
cut-off function appear. Unfortunately, this is the general situation, the “supercon-
vergence”observed for Gn and Hn(n > 1) being a lucky exception.
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7. Conclusion. We proposed two variants, SFM and OSFM, of a singular field
method in order to solve Maxwell equations in two-dimensional regions with corners.
Both methods were implemented for a simple model problem on a curvilinear poly-
gon with one reentrant corner. The SFM is based on singular fields localized to a
neighborhood of the corners, whereas its orthogonal variant, OSFM, makes use of
approximate singular fields which are orthogonal (for an appropriate scalar product)
to the discretization space of standard finite elements. With regard to computational
complexity, the methods are equivalent, and the error analysis suggests that they are
of the same order. In practice, however, the OSFM yields better results, the principal
difficulty of the SFM being the implementation of the cut-off function.

Notice that for more involved situations as the one of the model problem studied
in this paper, coupling and singular terms occur in the OSFM which have to be
calculated on the whole domain. This increases slightly the computational cost of
the method. However, the singular fields are regular away from the corners. Hence,
special attention has to be paid only near the geometric singularities. If the domain
does contain large regions where the boundary is regular, a hybrid method, similar
to domain decomposition techniques, may apply which uses the OSFM only near the
corners and a standard FE-method (without singular fields) anywhere else.

To finish, let us have a glance at the three-dimensional situation. Whereas the
theory is now well understood (see, for example, [8, 14, 15]), the implementation of
the method is less simple. This is essentially due to the infinite dimension of the
singular subspace. Roughly speaking, the singular coefficient corresponding to the
reentrant edge of a polyhedron is now a function belonging to some weighted Sobolev
space, and its discretization is far from being obvious. However, some results have
been obtained recently in the particular case of an axisymmetric conical point [19]:
in this case the space of singular fields is still of finite dimension.

Acknowledgment. The authors would like to thank the anonymous referees for
many valuable comments and suggestions.
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Abstract. Traditional finite-time convergence theory for numerical methods applied to stochas-
tic differential equations (SDEs) requires a global Lipschitz assumption on the drift and diffusion
coefficients. In practice, many important SDE models satisfy only a local Lipschitz property and,
since Brownian paths can make arbitrarily large excursions, the global Lipschitz-based theory is not
directly relevant. In this work we prove strong convergence results under less restrictive conditions.
First, we give a convergence result for Euler–Maruyama requiring only that the SDE is locally Lips-
chitz and that the pth moments of the exact and numerical solution are bounded for some p > 2. As
an application of this general theory we show that an implicit variant of Euler–Maruyama converges
if the diffusion coefficient is globally Lipschitz, but the drift coefficient satisfies only a one-sided
Lipschitz condition; this is achieved by showing that the implicit method has bounded moments and
may be viewed as an Euler–Maruyama approximation to a perturbed SDE of the same form. Second,
we show that the optimal rate of convergence can be recovered if the drift coefficient is also assumed
to behave like a polynomial.
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1. Introduction. In this paper we study the numerical solution of the stochastic
differential equation (SDE)

dy(t) = f(y(t))dt+ g(y(t))dW (t), 0 ≤ t ≤ T, y(0) = y0.(1.1)

Here y(t) ∈ R
m for each t, and W (t) is a d-dimensional Brownian motion. Thus

f : R
m → R

m and g : R
m → R

m×d. We assume that the initial condition is chosen
independently of the Wiener measure driving the equation and that all pth moments
of y0, p > 0, are finite. Our primary objective is to study strong convergence questions
for numerical approximations in the case where f and g are not necessarily globally
Lipschitz functions. Most of the existing convergence theory for numerical methods
requires f and g to be globally Lipschitz; see [12, 14], for example. Recent work has
studied convergence in probability [6, 8] and almost sure convergence [7], under more
relaxed conditions on f and g. We focus here on strong mean square convergence,
in the sense of [12, Theorem 10.6.3], which implies convergence in probability. The
main result of [11] is directly related to our work; we summarize the connections at
the end of this section. We also note that the work of Schurz [16] contains a number
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of a priori bounds on the numerical solutions of SDEs from a nonlinear stability
perspective, under structural assumptions similar to those we employ here.

In section 2, we prove that the Euler–Maruyama method converges strongly if
f and g are locally Lipschitz (e.g., for f, g ∈ C1) and the exact and numerical so-
lution have a bounded pth moment for some p > 2 (Theorem 2.2). The bounded
moment assumption will not, of course, hold, in general, as solutions to the SDE may
explode in a finite time. In section 3 we therefore impose further assumptions on f
and g to ensure that y(t) has bounded moments: we assume that g is globally Lip-
schitz and that f satisfies a one-sided Lipschitz condition. The one-sided Lipschitz
condition has proved effective in the analysis of numerical methods for determinis-
tic problems and occurs naturally in a variety of applications [1, 3, 4, 5, 17]. For
a suitably constructed “split-step” implicit variant of Euler–Maruyama we establish
strong convergence (Theorem 3.3) by (a) showing that the method corresponds to
Euler–Maruyama on a perturbed SDE and (b) showing that all moments of the nu-
merical solution are bounded. We are unable to establish moment bounds for the
forward Euler method and, indeed, it may not be possible to do so; the work of [7] is
of importance for nonimplicit methods since, being an almost sure convergence study,
it does not require moment bounds.

In section 4 we turn our attention to establishing an optimal rate of convergence
for the split-step implicit method. We show that if f satisfies a one-sided Lipschitz
condition and behaves polynomially, then Euler–Maruyama converges strongly at the
optimal rate (Theorem 4.4), provided moment bounds hold. We use this to study the
split-step implicit method, for which moment bounds can be found (Theorem 4.7),
again by showing that the method corresponds to Euler–Maruyama on a perturbed
SDE. In section 5 this result is extended to a more widely used implicit variant of
Euler–Maruyama by relating the two implicit methods (Theorem 5.3). A summary is
given in section 6.

It is worth mentioning at this point how our work compares with that of Hu [11].
Theorem 2.4 of [11] is a very important contribution to numerical SDE theory, being,
to our knowledge, the first strong convergence result without global Lipschitz assump-
tions. Hu considered only the backward Euler method and derived a result with the
optimal rate of convergence, and hence his work may be compared with Theorem 5.3
below. Both results assume C1 coefficients in the SDE, a one-sided Lipschitz condition
for the drift, and a global Lipschitz condition for the diffusion. Theorem 5.3 below
imposes polynomial-type growth on the drift (Assumption 4.1), whereas Hu allows for
a more general exponential growth. On the other hand, Theorem 5.3 and all the other
results in our work deal with a very strong error measure, E

[
sup0≤t≤T |Z(t)− y(t)|2

]
,

whereas [11] uses the less stringent measure
∫ T
0

E|Z(t)− y(t)|2 dt. We also note that
[11] uses a different continuous-time extension. Overall, Hu’s result for backward Eu-
ler applies to a wider class of SDEs but controls a weaker measure of the error. The
techniques of analysis are significantly different, although both hinge on establishing
moment bounds for the exact and numerical solutions.

2. General result for Euler–Maruyama. Given a stepsize ∆t > 0, the Euler–
Maruyama (EM) method applied to (1.1) computes approximationsXk ≈ y(tk), where
tk = k∆t, by setting X0 = y0 and forming

Xk+1 = Xk +∆tf(Xk) + g(Xk)∆Wk,(2.1)
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where ∆Wk = W (tk+1) −W (tk). We find it convenient to use continuous-time ap-
proximations, and hence we define X(t) by

X(t) := Xk + (t− tk)f(Xk) + g(Xk)(W (t)−W (tk)) for t ∈ [tk, tk+1).

In our analysis it will be more natural to work with the equivalent definition

X(t) := X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW (s),(2.2)

where X(t) is defined by

X(t) := Xk for t ∈ [tk, tk+1).(2.3)

Note that X(tk) = X(tk) = Xk; that is, X(t) and X(t) coincide with the discrete
solution at the gridpoints. We refer to X(t) and X(t) as continuous-time extensions
of the discrete approximation {Xk}. We will study the error in X(t) in the supremum
norm; this will, of course, give an immediate bound for the error in the discrete
approximation.

Our first result makes the following assumption on the SDE (1.1) and the exact
and numerical solutions. Here, and throughout the paper, | · | is used to denote both
the Euclidean vector norm and the Frobenius (or trace) matrix norm.

Assumption 2.1. For each R > 0 there exists a constant CR, depending only on
R, such that

|f(a)− f(b)|2 ∨ |g(a)− g(b)|2 ≤ CR|a− b|2 ∀a, b ∈ R
m with |a| ∨ |b| ≤ R.(2.4)

For some p > 2 there is a constant A such that

E

[
sup

0≤t≤T
|X(t)|p

]
∨ E

[
sup

0≤t≤T
|y(t)|p

]
≤ A.(2.5)

Inequality (2.4) is a local Lipschitz assumption. From the mean value theorem,
any f and g in C1 will satisfy (2.4). The inequality (2.5) states that the pth moments
of the exact and numerical solution are bounded for some p > 2. We now prove that
Assumption 2.1 is sufficient to ensure strong convergence of EM.

Theorem 2.2. Under Assumption 2.1, the EM solution (2.1) with continuous-
time extension (2.2) satisfies

lim
∆t→0

E

[
sup

0≤t≤T
|X(t)− y(t)|2

]
= 0.(2.6)

Proof. First, we define

τR := inf{t ≥ 0 : |X(t)| ≥ R}, ρR := inf{t ≥ 0 : |y(t)| ≥ R}, θR := τR ∧ ρR
and

e(t) := X(t)− y(t).
Recall the Young inequality: for r−1 + q−1 = 1

ab ≤ δ
r
ar +

1

qδq/r
bq ∀a, b, δ > 0.
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We thus have for any δ > 0

E

[
sup

0≤t≤T
|e(t)|2

]
= E

[
sup

0≤t≤T
|e(t)|21{τR>T,ρR>T}

]
+ E

[
sup

0≤t≤T
|e(t)|21{τR≤T or ρR≤T}

]

≤ E

[
sup

0≤t≤T
|e(t ∧ θR)|21{θR>T}

]
+
2δ

p
E

[
sup

0≤t≤T
|e(t)|p

]

+
1− 2

p

δ2/(p−2)
P
(
τR ≤ T or ρR ≤ T

)
.(2.7)

Now

P (τR ≤ T ) = E

[
1{τR≤T}

|X(τR)|p
Rp

]
≤ 1

Rp
E

[
sup

0≤t≤T
|X(t)|p

]
≤ A

Rp
,

using (2.5). A similar result can be derived for ρR so that

P
(
τR ≤ T or ρR ≤ T

) ≤ P
(
τR ≤ T

)
+ P

(
ρR ≤ T

) ≤ 2A
Rp
.

Using these bounds along with

E

[
sup

0≤t≤T
|e(t)|p

]
≤ 2p−1

E

[
sup

0≤t≤T

(|X(t)|p + |y(t)|p)] ≤ 2pA
in (2.7) gives

E

[
sup

0≤t≤T
|e(t)|2

]
≤ E

[
sup

0≤t≤T
|X(t ∧ θR)− y(t ∧ θR)|2

]

+
2p+1δA

p
+

(p− 2)2A
pδ2/(p−2)Rp

.(2.8)

Now we bound the first term on the right-hand side of (2.8) using an approach similar
to a finite-time convergence proof for the globally Lipschitz case. Using

y(t ∧ θR) := y0 +
∫ t∧θR

0

f(y(s))ds+

∫ t∧θR

0

g(y(s))dW (s),

(2.2), and Cauchy–Schwarz, we have

|X(t ∧ θR)− y(t ∧ θR)|2 =
∣∣∣∣∣
∫ t∧θR

0

f(X(s))− f(y(s))ds

+

∫ t∧θR

0

g(X(s))− g(y(s))dW (s)
∣∣∣∣∣
2

≤ 2
[
T

∫ t∧θR

0

|f(X(s))− f(y(s))|2ds

+

∣∣∣∣∣
∫ t∧θR

0

g(X(s))− g(y(s))dW (s)
∣∣∣∣∣
2

 .
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So, from the local Lipschitz condition (2.4) and Doob’s martingale inequality [14] we
have for any τ ≤ T

E

[
sup

0≤t≤τ
|X(t ∧ θR)− y(t ∧ θR)|2

]

≤ 2CR(T + 4)E
∫ τ∧θR

0

|X(s)− y(s)|2ds

≤ 4CR(T + 4)E
∫ τ∧θR

0

[|X(s)−X(s)|2 + |X(s)− y(s)|2] ds
≤ 4CR(T + 4)

[
E

∫ τ∧θR

0

|X(s)−X(s)|2ds+ E

∫ τ

0

|X(s ∧ θR)− y(s ∧ θR)|2ds
]

≤ 4CR(T + 4)
[
E

∫ τ∧θR

0

|X(s)−X(s)|2ds+
∫ τ

0

E sup
0≤r≤s

|X(r ∧ θR)− y(r ∧ θR)|2ds
]
.

(2.9)

To bound the first term in the parentheses on the right-hand side of (2.9), given
s ∈ [0, T ∧ θR), let ks be the integer for which s ∈ [tks , tks+1). Then

X(s)−X(s) = Xks −
(
Xks +

∫ s

tks

f(X(s))ds+

∫ s

tks

g(X(s))dW (s)

)

= −f(Xks)(s− tks)− g(Xks) (W (s)−W (tks)) .
Hence,

|X(s)−X(s)|2 ≤ 2 [|f(Xks)|2∆t2 + |g(Xks)|2|W (s)−W (tks)|2] .(2.10)

Now, from the local Lipschitz condition (2.4), for |y| ≤ R we have
|f(y)|2 ≤ 2 (|f(y)− f(0)|2 + |f(0)|2) ≤ 2 (CR|y|2 + |f(0)|2) ,

and, similarly,

|g(y)|2 ≤ 2 (CR|y|2 + |g(0)|2) .
Hence, in (2.10),

|X(s)−X(s)|2 ≤ 4(CR|Xks |2 + |f(0)|2 ∨ |g(0)|2)(∆t2 + |W (s)−W (tks)|2).
Thus, using (2.5) and the Lyapunov inequality [12]

E

∫ τ∧θR

0

|X(s)−X(s)|2ds

≤ E

∫ τ∧θR

0

4(CR|Xks |2 + |f(0)|2 ∨ |g(0)|2)(∆t2 + |W (s)−W (tks)|2)ds

≤
∫ τ

0

4E
[
CR|Xks |2 + |f(0)|2 ∨ |g(0)|2)(∆t2 + |W (s)−W (tks)|2

]
ds

≤
∫ T

0

4(CRE[|Xks |2] + |f(0)|2 ∨ |g(0)|2)(∆t2 +m∆t)ds

≤ 4T (CRA2/p + |f(0)|2 ∨ |g(0)|2)∆t(∆t+m).
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In (2.9) we then have

E

[
sup

0≤t≤τ

∣∣X(t ∧ θR)− y(t ∧ θR)∣∣2
]

≤ 16CR(T + 4)T∆t(∆t+m)(CRA2/p + |f(0)|2 ∨ |g(0)|2)
+ 4CR(T + 4)

∫ τ

0

E sup
0≤r≤s

[∣∣X(r ∧ θR)− y(r ∧ θR)∣∣2] ds.
Applying the Gronwall inequality [14] we obtain

E

[
sup

0≤t≤T

∣∣X(t ∧ θR)− y(t ∧ θR)∣∣2
]
≤ C∆t(C2

R + 1)e
4CR(T+4),

where here, and in the following, C is a universal constant independent of ∆t, R, and
δ. Inserting this into (2.8) gives

E

[
sup

0≤t≤T
|e(t)|2

]
≤ C∆t(C2

R + 1)e
4CR(T+4) +

2p+1δA

p
+
(1− 2

p )2A

δ2/(p−2)Rp
.(2.11)

Given any ε > 0, we can choose δ so that (2p+1δA)/p < ε/3, then choose R so that

(1− 2
p )2A

δ2/(p−2)Rp
<
ε

3
,

and then choose ∆t sufficiently small for

C∆t(C2
R + 1)e

4CR(T+4) <
ε

3

so that, in (2.11), E[sup0≤t≤T |e(t)|2] < ε, as required.
We remark that the proof of Theorem 2.2 is optimal in the sense that in the

globally Lipschitz case (CR ≤ C for all R) we may take δ = ∆t and R = ∆t−1/(p−2)

in (2.11) to recover the classical finite-time convergence result

E

[
sup

0≤t≤T
|e(t)|2

]
= O(∆t),

found, for example, in [12, 14].

3. Convergence with a one-sided Lipschitz condition.

3.1. The one-sided Lipschitz condition. In this section we impose further
assumptions on the SDE. In section 3.2 we show that these assumptions guarantee
moment bounds for y(t). Theorem 2.2 requires bounds on the pth moment of the
exact and numerical solution—a condition that is difficult to verify in practice for the
method (2.1) and indeed may fail to hold. In section 3.3 we introduce an implicit
version of the EM method for which moment bounds, and hence a convergence result,
can be obtained.

We make the following assumptions on the SDE.
Assumption 3.1. The functions f and g in (1.1) are C1, and there exist con-

stants µ, c > 0 such that

〈a− b, f(a)− f(b)〉 ≤ µ|a− b|2 ∀a, b ∈ R
m,(3.1)

|g(a)− g(b)|2 ≤ c|a− b|2 ∀a, b ∈ R
m.(3.2)
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Note that we work with the case µ > 0. In the deterministic setting there is a lot of
attention paid to the contractive case µ < 0. This case is of less interest here because,
for most diffusion coefficients g, contractivity is destroyed. Hence µ > 0 is a natural
assumption.

It follows from Assumption 3.1 that

〈f(a), a〉 = 〈f(a)− f(0), a〉+ 〈f(0), a〉 ≤ µ|a|2 + |f(0)||a| ≤ 1
2 |f(0)|2 + (µ+ 1

2 )|a|2

and

|g(a)|2 ≤ 2|g(0)|2 + 2|g(a)− g(0)|2 ≤ 2|g(0)|2 + 2c|a|2.
This gives

〈f(a), a〉 ∨ |g(a)|2 ≤ α+ β|a|2 ∀a ∈ R
m,(3.3)

where

α := 1
2 |f(0)|2 ∨ 2|g(0)|2 and β := (µ+ 1

2 ) ∨ 2c.(3.4)

The inequality (3.3) will prove very useful in what follows. We note that from
[14, Theorem 2.3.5] f, g ∈ C1 and (3.3) ensure the existence of a unique solution
to the SDE (1.1).

The inequality (3.1) in Assumption 3.1, which is known as a one-sided Lipschitz
condition, has been exploited successfully in the deterministic numerical analysis lit-
erature [1, 3, 4, 5, 17] and in the case of SDEs has been used in [11, 15, 16]. The
condition (3.3) is closely related to the monotone condition in [14, section 2.4]. Any
f of the form f(y) = −yp + y, where the integer p ≥ 3 is odd, satisfies (3.1), and
further examples can be found in [17].

3.2. Moment bounds for the SDE. We now show that under Assumption 3.1
the SDE solution has a bounded pth moment for each p > 2.

Lemma 3.2. Under Assumption 3.1, for each p > 2 there is C = C(p, T ) > 0
such that

E

[
sup

0≤t≤T
|y(t)|p

]
≤ C(1 + E|y0|p).(3.5)

Proof. Theorem 2.4.1 of [14] shows that, for p ≥ 2, there is C = C(p, T ) such that
E|y(t)|p ≤ C[1 + E|y0|p] ∀t ∈ [0, T ].(3.6)

By the Itô formula

|y(t)|2 = |y0|2 + 2
∫ t

0

〈f(y(s)), y(s)〉ds+
∫ t

0

|g(y(s))|2ds+ 2
∫ t

0

〈y(s), g(y(s))dB(s)〉.

By (3.3) we have that, for some K = K(p) and t1 ∈ [0, T ],

sup
0≤t≤t1

|y(t)|p ≤ K
(
|y0|p +

{∫ t1

0

[α+ β|y(s)|2]ds
}p/2

+ sup
0≤t≤t1

∣∣∣∣
∫ t

0

〈y(s), g(y(s))dB(s)〉
∣∣∣∣
p/2
)
.
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By property (3.6) we can take expectations to give, for a possibly different K =
K(p, T ),

E

[
sup

0≤t≤t1
|y(t)|p

]
≤ K

(
1 + E|y0|p +

∫ t1

0

E|y(s)|pds

+ E

[
sup

0≤t≤t1

∣∣∣∣
∫ t

0

〈y(s), g(y(s))dB(s)〉
∣∣∣∣
p/2
])

.

By the Burkholder–Davis–Gundy inequality [14], we compute that, again for redefined
K = K(p, T ),

E

[
sup

0≤t≤t1
|y(t)|p

]
≤ K

(
1 + E|y0|p +

∫ t1

0

E|y(s)|pds

+ E

[∫ t1

0

|y(s)|2|g(y(s))|2ds
]p/4)

.(3.7)

Next, note that, by Cauchy–Schwarz,

E

[∫ t1

0

|y(s)|2|g(y(s))|2ds
]p/4

≤ E

[
sup

0≤s≤t1
|y(s)|p/2

(∫ t1

0

|g(y(s))|2ds
)p/4]

≤ 1

2K
E

[
sup

0≤s≤t1
|y(s)|p

]
+
K

2
E

[∫ t1

0

|g(y(s))|2ds
]p/2

≤ 1

2K
E

[
sup

0≤s≤t1
|y(s)|p

]

+
K

2
T (p−2)/2

E

∫ t1

0

(α+ β|y(s)|2)p/2ds.

Substituting this into (3.7) yields, again for a possibly different K = K(p, T ),

E

[
sup

0≤t≤t1
|y(t)|p

]
≤ K

(
1 + E|y0|p +

∫ t1

0

E|y(s)|pds
)
.

The required assertion now follows from property (3.6).

3.3. Split-step backward Euler. We now consider the split-step backward
Euler (SSBE) method, which is defined by taking Y0 = y0 and, generally,

Y �k = Yk +∆tf(Y
�
k ),(3.8)

Yk+1 = Y
�
k + g(Y

�
k )∆Wk.(3.9)

We state our convergence theorem here and then give a sequence of results that lead
to a proof.

Theorem 3.3. Consider the SSBE (3.8)–(3.9) applied to the SDE (1.1) under
Assumption 3.1. There exists a continuous-time extension Y (t) of the numerical so-
lution (so that Y (tk) = Yk) for which

lim
∆t→0

E

[
sup

0≤t≤T
|Y (t)− y(t)|2

]
= 0.
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Proof. See the end of this subsection.
Note that (3.8) is an implicit equation that must be solved in order to obtain

the intermediate approximation Y �k . Having obtained Y
�
k , adding the appropriate

stochastic increment g(Y �k )∆Wk produces the next approximation Yk+1 in (3.9). The
SSBE method reduces to the deterministic backward Euler method [5, 9] when g ≡ 0
and y0 is nonrandom. The method is also studied in [15], where it is effective for
inheriting ergodicity; for related reasons it is effective here in enabling the derivation
of moment bounds. Another stochastic extension of the deterministic backward Euler
method is considered in section 5.

Our proof of Theorem 3.3 relies on showing that SSBE has two key properties
under Assumption 3.1: (a) it may be regarded as EM applied to a modified SDE of
a similar form, and (b) it produces solutions with all moments bounded. The first
property is established in the next lemma and corollary.

Lemma 3.4. Let Assumption 3.1 hold and suppose ∆t ∈ (0,∆tc),∆tc < 1/(2β),
where β is defined in (3.4). Given d ∈ R

m the implicit equation

c = d+∆tf(c)(3.10)

has a unique solution c. If we define the functions F∆t(·), f∆t(·) and g∆t(·) by

F∆t(d) = c, f∆t(d) = f(F∆t(d)), and g∆t(d) = g(F∆t(d)),(3.11)

then F∆t, f∆t, g∆t ∈ C1, g∆t(·)→ g(·) and f∆t(·)→ f(·) as ∆t→ 0 in C1 uniformly
on compact sets and, for any a, b ∈ R

m,

|f∆t(a)| ≤ |f(a)|
1−∆tµ ,(3.12)

|F∆t(d)− F∆t(e)|2 ≤ 1

1− 2∆tµ |d− e|
2,(3.13)

〈a− b, f∆t(a)− f∆t(b)〉 ≤ µ

1− 2µ∆t |a− b|
2.(3.14)

Further, g∆t is globally Lipschitz, and there exist α′, β′ > 0 such that

〈f∆t(a), a〉 ∨ |g∆t(a)|2 ≤ α′ + β′|a|2 ∀a ∈ R
m.(3.15)

Proof. See Appendix A.
Corollary 3.5. Let Assumption 3.1 hold and suppose ∆t ∈ (0,∆tc),∆tc <

1/(2β), where β is defined in (3.4). Then SSBE applied to (1.1) is equivalent to EM
applied to the modified SDE

dy∆t(t) = f∆t(y∆t(t))dt+ g∆t(y∆t(t))dW (t), 0 ≤ t ≤ T, y∆t(0) = y0,(3.16)

where f∆t, g∆t are defined in Lemma 3.4.
Proof. Lemma 3.4 allows us to express the SSBE method (3.8)–(3.9) in the form

Yk+1 = Yk +∆tf∆t(Yk) + g∆t(Yk)∆Wk,(3.17)

and the result is then immediate.
Next, we show that the solution of the modified SDE (3.16) has bounded moments

and converges strongly to y(t).
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Lemma 3.6. Under Assumption 3.1, for each p > 2, there is C = C(p, T ) > 0
such that

E

[
sup

0≤t≤T
|y∆t(t)|p

]
≤ C(1 + E|y0|p),(3.18)

provided ∆t is sufficiently small. In addition,

lim
∆t→0

E

[
sup

0≤t≤T
|y(t)− y∆t(t)|2

]
= 0.(3.19)

Proof. It follows from Lemma 3.4 that for sufficiently small ∆t the functions f∆t
and g∆t satisfy (3.3) with α and β replaced by 2α and 2β. Following through the
proof of Lemma 3.2, which is based entirely on (3.3), we obtain (3.18).

Now to prove (3.19) we note from Lemma 3.4 that given R > 0 there is a function
KR : (0,∞)→ (0,∞) such that KR(∆t)→ 0 as ∆t→ 0 and

|f∆t(u)− f(u)|2 ∨ |g∆t(u)− g(u)|2 ≤ KR(∆t) ∀u ∈ R
m, |u| ≤ R,(3.20)

provided ∆t is sufficiently small. Also, since f, g ∈ C1, there is a constant HR such
that

|f(u)− f(v)|2 ∨ |g(u)− g(v)|2 ≤ HR|u− v|2 ∀u, v ∈ R
m, |u| ∨ |v| ≤ R.(3.21)

From Lemma 3.2 and (3.18) we have

E

[
sup

0≤t≤T
|y(t)|p

]
∨ E

[
sup

0≤t≤T
|y∆t(t)|p

]
≤ K := C(1 + E|y0|p).(3.22)

The remainder of the proof follows in a similar manner to that of Theorem 2.2.
Define

τR = inf{t ≥ 0 : |y(t)| ≥ R}, ρR = inf{t ≥ 0 : |y∆t(t)| ≥ R}, θR = τR ∧ ρR.
For any δ > 0, in the same way that (2.8) was obtained, we have

E

[
sup

0≤t≤T
|y(t)− y∆t(t)|2

]
≤ E

[
sup

0≤t≤T
|y(t ∧ θR)− y∆t(t ∧ θR)|2

]

+
2p+1δK

p
+
(p− 2)2K
pδ2/(p−2)Rp

.(3.23)

To bound the first term on the right-hand side of (3.23), we observe that

y(t ∧ θR)− y∆t(t ∧ θR)

=

∫ t∧θR

0

[f(y(s))− f(y∆t(s)) + f(y∆t(s))− f∆t(y∆t(s))]ds

+

∫ t∧θR

0

[g(y(s))− g(y∆t(s)) + g(y∆t(s))− g∆t(y∆t(s))]dW (s).

Using (3.20), (3.21), Cauchy–Schwarz, and the Doob martingale inequality, we have
that, for any τ ≤ T ,

E

[
sup

0≤t≤τ
|y(t ∧ θR)− y∆t(t ∧ θR)|2

]

≤ 4HR(T + 4)
∫ τ

0

E

[
sup

0≤t≤s
|y(t ∧ θR)− y∆t(t ∧ θR)|2

]
ds

+ 4T (T + 4)KR(∆t).
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So the Gronwall inequality yields

E

[
sup

0≤t≤T
|y(t ∧ θR)− y∆t(t ∧ θR)|2

]
≤ 4T (T + 4)KR(∆t)e4HR(T+4)T .

Inserting this into (3.23) gives

E

[
sup

0≤t≤T
|y(t)− y∆t(t)|2

]
≤ 4T (T + 4)KR(∆t)e4HR(T+4)T

+
2p+1δK

p
+
(p− 2)2K
pδ2/(p−2)Rp

.(3.24)

The final step of the proof follows that of Theorem 2.2.

Now we show that the special structure of SSBE makes it possible for us to bound
all moments of the numerical solution, under Assumption 3.1. We deal first with the
discrete approximation and then with a continuous-time extension.

Lemma 3.7. Suppose Assumption 3.1 holds and let ∆t ≤ ∆tc < 1/(2β), where β
is defined in (3.4). Then for each p ≥ 2 there exists a C = C(p, T ) > 0 (independent
of ∆t) such that for the SSBE method (3.8)–(3.9)

E sup
n∆t∈[0,T ]

|Yn|2p ≤ C.

Proof. In the following we assume that N and M are positive integers such that
N∆t ≤M∆t ≤ T . From (3.3) and (3.8) we have

|Y �n |2 = 〈Yn, Y �n 〉+∆t〈f(Y �n ), Y �n 〉
≤ 1

2 |Yn|2 + 1
2 |Y �n |2 +∆t(α+ β|Y �n |2).

Thus

|Y �n |2 ≤
|Yn|2 + 2α∆t
1− 2β∆t .(3.25)

From (3.9) and (3.25) we have

|Yn+1|2 ≤ |Yn|2 + 2β∆t

1− 2β∆t |Yn|
2 +

2α∆t

1− 2β∆t
+ 2〈Y �n , g(Y �n )∆Wn〉+ |g(Y �n )∆Wn|2.

Summing, and using the notation K = (1− 2β∆t)−1, we obtain

|YN |2 ≤ |Y0|2 + 2β∆tK
N−1∑
j=0

|Yj |2 + 2α∆tNK

+ 2

N−1∑
j=0

〈Y �j , g(Y �j )∆Wj〉+
N−1∑
j=0

|g(Y �j )∆Wj |2.

Raising both sides to the power p we have
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1

5p−1
|YN |2p ≤ |Y0|2p + (2β∆tK)p


N−1∑
j=0

|Yj |2


p

+ (2αTK)p

+ 2p

∣∣∣∣∣∣
N−1∑
j=0

〈Y �j , g(Y �j )∆Wj〉
∣∣∣∣∣∣
p

+


N−1∑
j=0

|g(Y �j )∆Wj |2


p

≤ |Y0|2p + (2βK)pT p−1∆t

N−1∑
j=0

|Yj |2p + (2αTK)p

+ 2p

∣∣∣∣∣∣
N−1∑
j=0

〈Y �j , g(Y �j )∆Wj〉
∣∣∣∣∣∣
p

+Np−1
N−1∑
j=0

|g(Y �j )∆Wj |2p.(3.26)

Now

E


 sup

0≤N≤M

N−1∑
j=0

|Yj |2p

 = M−1∑

j=0

E|Yj |2p.(3.27)

Also, letting C = C(p, T ) be a constant that may change line by line,

E


 sup

0≤N≤M

N−1∑
j=0

|g(Y �j )∆Wj |2p

 = E

M−1∑
j=0

|g(Y �j )∆Wj |2p

≤
M−1∑
j=0

E|g(Y �j )|2pE|∆Wj |2p

≤ C∆tp
M−1∑
j=0

E[α+ β|Y �j |2]p

≤ C∆tp
M−1∑
j=0

E[αp + βp|Y �j |2p]

≤ C∆tp−1 + C∆tp
M−1∑
j=0

E[|Yj |2 + 2α∆t|]p

≤ C∆tp−1 + C∆tp
M−1∑
j=0

E|Yj |2p,(3.28)

where we have used (3.3) and (3.25). Finally, using the Burkholder–Davis–Gundy
inequality [14],

E


 sup

0≤N≤M

∣∣∣∣∣∣
N−1∑
j=0

〈Y �j , g(Y �j )∆Wj〉
∣∣∣∣∣∣
p
 ≤ CE


M−1∑
j=0

|Y �j |2|g(Y �j )|2∆t


p/2

≤ C(∆t)p/2Mp/2−1
E

M−1∑
j=0

|Y �j |p(α+ β|Y �j |2)p/2

≤ C∆t
M−1∑
j=0

[1 + E|Y �j |2p]
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≤ C∆t
M−1∑
j=0

[1 + E(2α∆t+ |Yj |2)p]

≤ C + C∆t
M−1∑
j=0

E|Yj |2p.(3.29)

Combining (3.26)–(3.29) we obtain

E

[
sup

0≤N≤M
|YN |2p

]
≤ C + C∆t

M−1∑
j=0

E|Yj |2p ≤ C + C∆t
M−1∑
j=0

E

[
sup

0≤N≤j
E|YN |2p

]
.

Using the discrete-type Gronwall inequality (see, for example, [13]) and noting that
M∆t ≤ T , we obtain

E

[
sup

0≤N≤M
|YN |2p

]
≤ CeC∆tM ≤ CeCT ,

and the desired result follows.
Corollary 3.8. Suppose Assumption 3.1 holds and let ∆t ∈ (0,∆tc),∆tc <

1/(2β), where β is defined in (3.4). Let p ≥ 2. Then there exists a continuous-
time extension Y (t) of the SSBE solution {Yk} and a constant C = C(p, T ) > 0
(independent of ∆t) such that

E sup
0≤t≤T

|Y (t)|2p ≤ C.

Proof. We know that SSBE can be regarded as EM applied to the modified SDE
(3.16). Hence, we may define Y (t) using (2.2)–(2.3) with f , g replaced by f∆t, g∆t
and X, X,Xk replaced by Y , Y , Yk. By definition we have, for tn = n∆t,

Y (tn + s) = Yn + sf∆t(Yn) + g∆t(Yn)∆Wn(s), s ∈ [0,∆t),
where

∆Wn(s) :=W (tn + s)−W (tn).
However, Y �n = Yn +∆tf∆t(Yn) and so, for a = s/∆t, we have

Y (tn + s) = aY
�
n + (1− a)Yn + g∆t(Yn)∆Wn(s), s ∈ [0,∆t).

Since ∆t ≤ ∆tc < 1/(2β), it follows from (3.25) that

|Y (tn + s)|2 ≤ C[1 + |Yn|2 + |g∆t(Yn)∆Wn(s)|2].
Thus

sup
0≤t≤T

|Y (t)|2p ≤ sup
0≤n∆t≤T

sup
0≤s≤∆t

|Y (tn + s)|2p

≤ sup
0≤n∆t≤T

sup
0≤s≤∆t

C[1 + |Yn|2p + |g∆t(Yn)∆Wn(s)|2p]

≤ C[1 + sup
0≤n∆t≤T

|Yn|2p + sup
0≤s≤∆t

N∑
j=0

|g∆t(Yj)∆Wj(s)|2p],(3.30)
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where 0 ≤ N∆t ≤ T. Now, using Doob’s martingale inequality [14] and (3.15)

E sup
0≤s≤∆t

|g∆t(Yj)∆Wj(s)|2p ≤ CE|g∆t(Yj)∆Wj(∆t)|2p

≤ CE|g∆t(Yj)|2pE|∆Wj(∆t)|2p
≤ C∆tp[1 + E|Yj |2p]
≤ C∆t,(3.31)

where C is a universal constant, independent of ∆t. Since N∆t ≤ T , combining
Lemma 3.7, (3.30), and (3.31) gives the desired result.

Proof of Theorem 3.3. The proof now follows from an application of the triangle
inequality: the SSBE method has a solution close to the solution of an SDE with
modified vector fields, and the solution of this SDE in turn is close to that of the
original SDE. More precisely, we may use Corollary 3.8 to define Y (t) and bound
E sup0≤t≤T |Y (t)|p and Lemma 3.6 to bound E sup0≤t≤T |y∆t(t)|p. We also know from
Lemma 3.4 that f∆t and g∆t are uniformly locally Lipschitz for small ∆t. Hence, we
may follow the proof of Theorem 2.2 to give

lim
∆t→0

E

[
sup

0≤t≤T
|Y (t)− y∆t(t)|2

]
= 0.

Combining this with (3.19) in Lemma 3.6 via the triangle inequality gives the
result.

4. Convergence rates. In this section we show that by augmenting Assump-
tion 3.1 with the condition that f behaves polynomially, it is possible to establish a
rate of convergence. The rate is optimal, agreeing with the standard theory for the
explicit EM scheme in the globally Lipschitz case. The work of [7] also yields optimal
rates of almost sure convergence for the EM scheme, under conditions on the vector
fields similar to ours.

Assumption 4.1. There exist constants D ∈ R
+ and q ∈ Z

+ such that for all
a, b ∈ R

m,

|f(a)− f(b)|2 ≤ D (1 + |a|q + |b|q) |a− b|2.(4.1)

To obtain a convergence rate for EM we require the following moment bound
assumption.

Assumption 4.2. The SDE and EM solutions satisfy

E sup
0≤t≤T

|y(t)|p, E sup
0≤t≤T

|X(t)|p, E sup
0≤t≤T

|X(t)|p <∞ ∀p ≥ 1.

Throughout the following analysis, K and u denote generic positive real and
integer constants whose values may change between occurrences. Before obtaining a
convergence rate for EM, we give the following lemma.

Lemma 4.3. Under Assumptions 3.1, 4.1, and 4.2, for any even integer r ≥ 2,
there exists a constant E = E(r) such that

sup
0≤t≤T

E|X(t)−X(t)|r ≤ E∆tr/2.



STRONG CONVERGENCE FOR NONLINEAR SDES 1055

Proof. Let t ∈ [k∆t, (k + 1)∆t). Then

|X(t)−X(t)|r = |(t− tk)f(Xk) + g(Xk)(W (t)−W (tk))|r
≤ 2r (∆tr|f(Xk)|r + |g(Xk)|r|W (t)−W (tk)|r) .

Hence, for some E = E(r),

E|X(t)−X(t)|r ≤ E
(
∆tr

[
1 + E sup

0≤t≤T
|X(t)|u

]
+

[
1 + E sup

0≤t≤T
|X(t)|u

]
(t− tk)r/2

)
.

Since t− tk ≤ ∆t, the result follows by redefinition of E.
Theorem 4.4. Under Assumptions 3.1, 4.1, and 4.2 the EM solution (2.1) with

continuous-time extension (2.2) satisfies

E

[
sup

0≤t≤T
|X(t)− y(t)|2

]
= O(∆t).

Proof. Using (2.2) and

y(t) = y0 +

∫ t

0

f(y(s))ds+

∫ t

0

g(y(s))dW (s),(4.2)

and letting e(t) := y(t)−X(t), the Itô formula gives

|e(t)|2 =
∫ t

0

2〈f(y(s))− f(X(s)), e(s)〉ds+
∫ t

0

|g(y(s))− g(X(s))|2ds
+ M(t)

≤
∫ t

0

(
2〈f(y(s))− f(X(s)), e(s)〉+ c|y(s)−X(s)|2) ds

+

∫ t

0

2〈f(X(s))− f(X(s)), e(s)〉ds
+ M(t)

≤
∫ t

0

2µ|e(s)|2 + 2c|e(s)|2 + 2c|X(s)−X(s)|2ds

+

∫ t

0

|f(X(s))− f(X(s))|2 + |e(s)|2ds
+M(t)

≤ (1 + 2(µ+ c))
∫ t

0

|e(s)|2ds+
∫ t

0

K
(
1 + |X(s)|q + |X(s)|q) |X(s)−X(s)|2ds

+M(t),

where

M(t) =

∫ t

0

2〈e(s), (g(y(s))− g(X(s)))dW (s)〉.

Using Cauchy–Schwarz and Lemma 4.3 with r = 4
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E

[
sup

0≤s≤t
|e(s)|2

]
≤ (1 + 2(µ+ c))

∫ t

0

E|e(s)|2ds

+

∫ t

0

K
(
E
(
1 + |X(s)|q + |X(s)|q)2 E|X(s)−X(s)|4

)1/2

ds+m(t)

≤ (1 + 2(µ+ c))
∫ t

0

E|e(s)|2ds+K∆t
∫ t

0

E
(
1 + |X(s)|2q + |X(s)|2q) ds

+m(t)

≤ (1 + 2(µ+ c))
∫ t

0

E|e(s)|2ds+K∆t+m(t),(4.3)

where

m(t) = E

[
sup

0≤s≤t
|M(s)|

]
.

From the Burkholder–Davis–Gundy inequality,

m(t) ≤ 16E
[∫ t

0

|e(s)|2|g(y(s))− g(X(s))|2ds
]1/2

≤ 16E
[
sup

0≤s≤t
|e(s)|2

∫ t

0

c|y(s)−X(s)|2ds
]1/2

≤ 1
2E

[
sup

0≤s≤t
|e(s)|2

]
+ 128cE

∫ t

0

|y(s)−X(s)|2ds

≤ 1
2E

[
sup

0≤s≤t
|e(s)|2

]
+ 256c

∫ t

0

[E|e(s)|2 + E|X(s)−X(s)|2]ds

≤ 1
2E

[
sup

0≤s≤t
|e(s)|2

]
+ 256c

∫ t

0

E|e(s)|2ds+K∆t.

Hence, in (4.3),

E

[
sup

0≤s≤t
|e(s)|2

]
≤ 2(1 + 2(µ+ c) + 256c)

∫ t

0

E|e(s)|2ds+K∆t

≤ 2(1 + 2(µ+ c) + 256c)
∫ t

0

E

[
sup

0≤r≤s
|e(r)|2

]
ds+K∆t.

The result follows from the Gronwall inequality.
Note that Theorem 4.4 requires moment bounds on the numerical solution (As-

sumption 4.2). We know that SSBE has bounded moments under Assumption 3.1,
and hence we would expect to get an analogous convergence result for this method
without requiring Assumption 4.2. To obtain such a result we first establish further
properties of f∆t and g∆t under Assumptions 3.1 and 4.1.

Lemma 4.5. Under Assumptions 3.1 and 4.1, for ∆t ≤ ∆tc < 1/(2β), where β
is defined in (3.4), there exist constants c′, D′ ∈ R

+ and q′ ∈ Z
+ such that for all

a, b ∈ R
m

|f∆t(a)− f∆t(b)|2 ≤ D′ (1 + |a|q + |b|q) |a− b|2,(4.4)

|f(a)− f∆t(a)|2 ≤ c′
(
1 + |a|q′

)
∆t2,(4.5)

|g(a)− g∆t(a)|2 ≤ c′
(
1 + |a|q′

)
∆t2.(4.6)
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Proof. See Appendix A.
Lemma 4.6. Under Assumptions 3.1 and 4.1 the solution y∆t(t) of the modified

SDE (3.16) satisfies

E

[
sup

0≤t≤T
|y∆t(t)− y(t)|2

]
= O(∆t2).

Proof. Using

y∆t(t) = y0 +

∫ t

0

f∆t(y∆t(s))ds+

∫ t

0

g∆t(y∆t(s))dW (s),

and (4.2), and letting e(t) := y(t)− y∆t(t), the Itô formula gives

|e(t)|2 =
∫ t

0

2〈f(y(s))− f∆t(y∆t(s)), e(s)〉ds+
∫ t

0

|g(y(s))− g∆t(y∆t(s))|2ds
+ M(t)

=

∫ t

0

2〈f(y(s))− f(y∆t(s)) + f(y∆t(s))− f∆t(y∆t(s)), e(s)〉ds

+

∫ t

0

|g(y(s))− g∆t(y∆t(s))|2ds
+ M(t)

≤
∫ t

0

[2µ|e(s)|2 + |f(y∆t(s))− f∆t(y∆t(s))|2 + |e(s)|2]ds

+ 2

∫ t

0

|g(y(s))− g(y∆t(s))|2 + |g(y∆t(s))− g∆t(y∆t(s))|2ds
+ M(t)

≤ K
∫ t

0

|e(s)|2 ds+K∆t2
∫ t

0

(
1 + |y∆t(s)|q′

)
ds

+ M(t),

where we used Lemma 4.5 and

M(t) =

∫ t

0

2〈e(s), (g(y(s))− g∆t(y∆t(s)))dW (s)〉.

Hence,

E

[
sup

0≤s≤t
|e(s)|2

]
≤ K

∫ t

0

E|e(s)|2 ds+K∆t2
∫ t

0

E

[
1 + |y∆t(s)|q′

]
ds+m(t),

where

m(t) = E

[
sup

0≤s≤t
|M(s)|

]
.

Since y∆t(s) has bounded moments, we have

E

[
sup

0≤s≤t
|e(s)|2

]
≤ K

∫ t

0

E|e(s)|2 ds+K∆t2 +m(t).(4.7)
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However, in the same way as in the proof of Theorem 4.4, we can show

m(t) ≤ 1
2E

[
sup

0≤s≤t
|e(s)|2

]
+ 128E

∫ t

0

|g(y(s))− g∆t(y∆t(s))|2ds,

while

E

∫ t

0

|g(y(s))− g∆t(y∆t(s))|2ds ≤ 2E
∫ t

0

|g(y(s))− g(y∆t(s))|2

+ |g(y∆t(s))− g∆t(y∆t(s))|2ds

≤ K
∫ t

0

E|e(s)|2 ds+K∆t2.

In (4.7) we therefore have

E

[
sup

0≤s≤t
|e(s)|2

]
≤ K

∫ t

0

E|e(s)|2 ds+K∆t2

≤ K
∫ t

0

E

[
sup

0≤r≤s
|e(r)|2

]
ds+K∆t2.

The result follows from the Gronwall inequality.
We may now prove a convergence result for SSBE.
Theorem 4.7. Consider the SSBE method (3.8)–(3.9) applied to the SDE (1.1)

under Assumptions 3.1 and 4.1. There exists a continuous-time extension Y (t) of the
numerical solution (so that Y (tk) = Yk) for which

E

[
sup

0≤t≤T
|Y (t)− y(t)|2

]
= O(∆t).

Proof. We know that SSBE can be regarded as EM applied to the modified SDE
(3.16). Lemmas 3.6 and 3.7 and Corollary 3.8 show that y∆t(t), Y (t), and Y (t) have
bounded moments. Hence, copying the proof of Theorem 4.4 we may conclude that

E

[
sup

0≤t≤T
|Y (t)− y∆t(t)|2

]
= O(∆t).

Combining this with Lemma 4.6 via the triangle inequality gives the required
result.

5. Backward Euler. The SSBE method (3.8)–(3.9) is a stochastic extension of
the deterministic backward Euler method. Another, perhaps more natural, extension
of backward Euler is given by Z0 = y0 and

Zk+1 = Zk +∆tf(Zk+1) + g(Zk)∆Wk.(5.1)

Indeed, this implicit method has appeared frequently in the literature—it is a member
of the family of implicit Euler schemes [12, section 12.2] or the stochastic theta method
class [10] and is sometimes called the semi-implicit Euler method [2]. We will refer to
the method (5.1) as simply the backward Euler (BE) method for (1.1). As mentioned
at the end of section 1, our convergence result, Theorem 5.3 below, is closely related
to that of [11, Theorem 2.4].
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The BE method (5.1) requires an implicit equation to be solved. Under Assump-
tion 3.1, the homotopy argument in the proof of Lemma 3.4 shows that for 2µ∆t < 1
a unique solution exists with probability one. The next lemma points out a useful
connection between BE and SSBE.

Lemma 5.1. Let {Yk} and {Zk} denote the SSBE and BE solutions, given by
(3.8)–(3.9) and (5.1), respectively. Under Assumption 3.1, if Y0 = Z0−∆tf(Z0), then

Zk = Yk +∆tf∆t(Yk) ∀k ≥ 0.(5.2)

Proof. Let Q�k = Zk and Qk = Zk − ∆tf(Zk), where {Zk} is the BE solution
(5.1). Then

Q�k = Qk +∆tf(Q
�
k)

and, using (5.1),

Qk+1 = Zk+1 −∆tf(Zk+1) = Q
�
k + g(Q

�
k)∆Wk.

Hence, {Qk} is precisely the SSBE solution. This gives Yk = Zk − ∆tf(Zk). The
relation (5.2) then follows immediately from Lemma 3.4.

Lemma 5.1 shows that the BE solution can be regarded as an O(∆t) perturbation
of the SSBE solution. We may use this relation between BE and SSBE in order to ob-
tain a convergence result for BE via Theorem 3.3. We first deal with the perturbation
to the initial data.

Lemma 5.2. Under Assumptions 3.1 and 4.1, if y(t) and z(t) are solutions of the
SDE (1.1) with initial conditions such that

E|y(0)|p, E|z(0)|p ≤ ∞ ∀p ≥ 1,
then, for some constant M ,

E

[
sup

0≤t≤T
|y(t)− z(t)|2

]
≤ME|y(0)− z(0)|2.

Proof. Letting e(t) := y(t) − z(t) and applying the Itô formula to |e(t)|2, the
inequality can be obtained by following the process used in the proofs of Theorem 4.4
and Lemma 4.6.

Theorem 5.3. Consider the BE method (5.1) applied to the SDE (1.1) under As-
sumptions 3.1 and 4.1. There exists a continuous-time extension Z(t) of the numerical
solution (so that Z(tk) = Zk) for which

E

[
sup

0≤t≤T
|Z(t)− y(t)|2

]
= O(∆t).

Proof. Let Y (t) denote the continuous-time extension to SSBE defined in Theo-
rem 3.3, with initial data Y (0) = y0 −∆tf(y0). Also, let Z(t) = Y (t) +∆tf∆t(Y (t)),
so that, from Lemma 5.1, Z(t) is a continuous-time extension to the BE solution with
Z(0) = y0. We let ŷ∆t(t) denote the solution to (1.1), with initial data y∆t(0) =
y0 −∆tf(y0).

From Lemma 5.2 we have

E

[
sup

0≤t≤T
|y(t)− ŷ∆t(t)|2

]
≤M∆t2E|f(y0)|2 = O(∆t2).(5.3)
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Also, the SSBE convergence result in Theorem 4.7 shows that

E

[
sup

0≤t≤T
|ŷ∆t(t)− Y (t)|2

]
= O(∆t).(5.4)

Further,

E

[
sup

0≤t≤T
|Y (t)− Z(t)|2

]
≤ ∆t2E

[
sup

0≤t≤T
|f∆t(Y (t))|2

]
= O(∆t2),(5.5)

because, by Lemma 4.5, f∆t is polynomially bounded. Combining (5.3)–(5.5) com-
pletes the proof.

6. Summary. Our aim in this work was to extend strong mean square conver-
gence theory for numerical SDE simulations beyond the realm of globally Lipschitz
problems. The only previous published work in this area that we are aware of is [11].
We gave a strong convergence theorem for EM in the case where the vector fields are
locally Lipschitz (e.g., C1) and moment bounds are available. This style of analysis is
useful whenever moment bounds can be established, both for the EM method and for
other methods that can be shown to be “close” to EM. In general, it is not clear when
such moment bounds can be expected to hold for explicit methods with f, g ∈ C1.
However, for an implicit variant of EM, we obtained bounds on all moments in the
case where the diffusion coefficient is globally Lipschitz but the drift coefficient satis-
fies only a one-sided Lipschitz condition. Then, by interpreting the implicit method
as EM applied to a modified SDE we were able to get a strong convergence result. We
then considered the case where it is further assumed that f behaves like a polynomial.
If all moments are bounded, then EM can be shown to converge strongly at the op-
timal rate, again assuming moment bounds. Moment bounds can be established for
two different implicit variants of EM, allowing us to show that these implicit methods
converge at the optimal rate. One of these convergence results is comparable to the
main result in [11]—we use a stronger error measure but require a more restrictive
assumption on the growth of the drift coefficient.

The methods of analysis could be extended to other implicit methods, such as the
stochastic theta method with θ ∈ [1/2, 1]. Such schemes, especially their split-step
variants, may be of practical interest for Hamiltonian problems perturbed by damping
and/or noise in the case θ = 1/2.

Appendix A. Proofs of Lemmas 3.4 and 4.5.
Proof of Lemma 3.4. Existence and uniqueness for (3.10) can be proved via a

contraction mapping theorem, which also establishes the C1 smoothness of f∆t and
F∆t and the convergence property of f∆t; see [5, 17]. The smoothness and convergence
properties of g∆t follow from g∆t(·) = g(F∆t(·)).

An alternative proof of uniqueness for (3.10) via a homotopy argument is given
in [9, Theorem 14.2]. We repeat the homotopy construction here, as it will be used
to obtain the bound (3.12).

Suppose h = h(τ) satisfies

h = d+∆tf(h) + (τ − 1)∆tf(d),(A.1)

where τ is our homotopy parameter. For τ = 1, h solves (3.10). For τ = 0 we have

h− d = ∆t (f(h)− f(d))



STRONG CONVERGENCE FOR NONLINEAR SDES 1061

and so, using Assumption 3.1,

|h− d|2 = ∆t〈h− d, f(h)− f(d)〉 ≤ ∆tµ|h− d|2.

Note that β > µ so that 2∆tµ < 1. It follows that h = d is the unique solution to
(A.1) when τ = 0. Differentiating (A.1) with respect to τ gives

ḣ = ∆t
∂f

∂y
(h)ḣ+∆tf(d).

So

|ḣ|2 −∆t
〈
ḣ,
∂f

∂y
(h)ḣ

〉
= ∆t〈ḣ, f(d)〉.(A.2)

Setting a− b = εu in (3.1) and letting ε→ 0, we see that

〈
u,
∂f

∂y
(b)u

〉
≤ µ|u|2 for any u, b ∈ R

m.

Hence, in (A.2),

|ḣ|2 −∆tµ|ḣ|2 ≤ ∆t|ḣ| |f(d)|.

So

|ḣ| ≤ ∆t |f(d)|
1−∆tµ .

It follows that h(τ) exists uniquely for all τ > 0 and

|h(1)− d| =
∣∣∣∣
∫ 1

0

ḣ(s) ds

∣∣∣∣ ≤ ∆t |f(d)|1−∆tµ ,

which establishes (3.12).

To obtain (3.13) we note that if c(1) = d(1)+∆tf(c(1)) and c(2) = d(2)+∆tf(c(2)),
then

|c(1) − c(2)|2 −∆t〈f(c(1))− f(c(2)), c(1) − c(2)〉 = 〈d(1) − d(2), c(2) − c(2)〉

and so, using Assumption 3.1,

(1−∆tµ)|c(1) − c(2)|2 ≤ 1
2
|d(1) − d(2)|2 + 1

2
|c(1) − c(2)|2,

which gives (3.13).

Next, note from the implicit definition (3.11) that f∆t(a) is equivalent to f(a +
∆tf∆t(a)). Using (3.1) we thus have

〈f∆t(a)− f∆t(b), a+∆tf∆t(a)− b−∆tf∆t(b)〉 ≤ µ|a+∆tf∆t(a)− b−∆tf∆t(b)|2.

Hence,
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〈f∆t(a)− f∆t(b), a− b〉+∆t|f∆t(a)− f∆t(b)|2 ≤ µ|a− b|2 + 2µ〈a− b, f∆t(a)− f∆t(b)〉∆t
+ µ∆t2|f∆t(a)− f∆t(b)|2,

and (3.14) follows.
The global Lipschitz property of g∆t follows from (3.13).
Finally, we use f∆t(a) = f(a+∆tf∆t(a)) and (3.3) to give

〈f∆t(a), a+∆tf∆t(a)〉 ≤ α+ β|a+∆tf∆t(a)|2.
Hence

(1− 2β∆t)〈f∆t(a), a〉 ≤ α+ β|a|2 + [β∆t2 −∆t]|f∆t(a)|2 ≤ α+ β|a|2.
Since g∆t is globally Lipschitz, the inequality (3.15) follows.

Proof of Lemma 4.5. Recall from Lemma 3.4 that f∆t(a) := f(F∆t(a)), where
F∆t is globally Lipschitz. Hence,

|f∆t(a)− f∆t(b)|2 = |f(F∆t(a))− f(F∆t(b))|2
≤ D (1 + |F∆t(a)|q + |F∆t(b)|q) |F∆t(a)− F∆t(b)|2
≤ D′ (1 + |a|q + |b|q) |a− b|2.

Next, it follows from the equivalence of f∆t(a) in (3.11) and f(a+∆tf∆t(a)) that

|f(a)− f∆t(a)|2 ≤ D (1 + |a|q + |a+∆tf∆t(a)|q)∆t2|f∆t(a)|2.
From (3.12), |f∆t(a)| ≤ 2|f(a)|, and hence we obtain (4.5). A similar argument gives
(4.6).
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[7] I. Gyöngy, A note on Euler’s approximations, Potential Anal., 8 (1998), pp. 205–216.
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Abstract. We present Galerkin methods in both the age and space variables for an age-
dependent population undergoing nonlinear diffusion. The methods presented are a generalization of
methods, where the approximation space in age is the space of piecewise constant functions. In this
paper, we allow the use of discontinuous piecewise polynomial subspaces of L2 as the approximation
space in age. As in the piecewise constant case, we move the discretization along characteristic lines.
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1. Introduction. We present Galerkin methods in both the age and space vari-
ables for a model of an age-dependent population undergoing nonlinear diffusion. The
methods presented are a generalization of methods presented in [2], where the approx-
imation space in age was taken to be the space of piecewise constant functions. The
use, analysis, and numerical solution of models with dependence on age and time, and
of models that also include space, is discussed in [2] and references therein.

In this paper, we allow the use of discontinuous piecewise polynomial subspaces of
L2 as the approximation space in age. As in the piecewise constant case, we move the
discretization along characteristic lines. This preserves the important fact that age
and time advance together and that the resulting discretization will be dispersion-free.

Some previous numerical methods [8, 9, 12] for age-structured models with spatial
diffusion also discretized along characteristics, but they did so simultaneously in age
and time and thus imposed the often crippling constraint that the time and age steps
be both constant and equal. The difficulty with this approach is twofold. First, the
use of constant age and time steps prevents adaptivity of the discretization in age
or, especially, time. Second, and more importantly, the coupling of the age and time
meshes can cause great losses of efficiency since only rarely will the dynamics in time
be on the same scale as the dynamics in age. This is particularly the case when
space is involved since sharp moving fronts can require small time steps, whereas the
behavior in the age variable can remain relatively smooth. A computational example
illustrating the advantages of decoupling age and time is presented in [2] and for the
context of Proteus mirabilis swarm colony development [6, 14] in Chapter 4 of [1].

The age discretization presented in [8, 9, 12] can be viewed as special cases of the
methods presented here and in [2] by setting the time and age meshes to be constant
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and equal and using a backward Euler discretization in time and a piecewise constant
finite element space in age.

The importance of allowing different age and time discretizations is perhaps illus-
trated by the application of the methods of de Roos [3]. These methods have found use
in the study of ecological systems such as Daphnia (see [4] and the references therein)
as well as in theoretical population biology [10, 13]. The methods of de Roos are
formulated for the case of time and a variable representing some sort of physiological
structure, most simply age, and involve moving the age nodes along characteristics.
However, the representation of the approximate solution is probabilistic and not func-
tional, and birth and death are handled differently than in this paper. Even so, it
would be interesting to know if an energy analysis could provide a framework for
the convergence analysis sought in [5]. The main effect of de Roos’s methods is to
separate the age and time discretizations, while yielding an approximation that is
dispersion-free in age, in order to provide a method that works in practice.

The main purpose of this paper is to provide a description and analysis of the use
of higher order finite element spaces in the age variable. The time variable has been
left continuous. The use of continuous time simplifies the presentation and analysis
of the method as well as emphasizes the independence of the age discretization from
any suitable time discretization. The methods are shown to be superconvergent in
the age variable. We provide an example system that illustrates some of the benefits
of using a higher order approximation space in age as well as highlights some of the
interactions between the age and time discretizations in these methods.

2. A continuous model. We consider the age-dependent population model
with nonlinear diffusion,

∂tu+ ∂au = ∇ ·
(
k(x, p)∇u)− µ(x, a, p)u, x ∈ Ω, a > 0, t > 0,(2.1)

where ∇ and ∇· denote the gradient and the divergence, respectively, in x. The
function u(x, a, t) represents the distribution of individuals, Ω ⊂ R

n represents the
spatial domain, a represents age, and t represents time. The function µ > 0 is the
death rate. The total population density, p, is given by

p(x, t) =

∫ ∞

0

u(x, a, t) da, x ∈ Ω, t > 0.(2.2)

We have a birth condition

u(x, 0, t) = b(x, u(x, ·, t)), x ∈ Ω, t > 0,(2.3)

that is dependent on the entire population distribution. We note that b is an op-
erator whose second argument is a function defined on R

+, where R
+ denotes the

nonnegative real numbers. The diffusion arises from the symmetric random motion
of each individual (Fickian diffusion). We have a Neumann boundary condition, with
ν denoting the outward normal to ∂Ω,

k(x, p)∇u · ν = 0, x ∈ ∂Ω, a > 0, t > 0,(2.4)

that represents an isolated habitat. The initial condition is

u(x, a, 0) = u0(x, a), x ∈ Ω, a > 0.(2.5)
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Langlais [11] proved the existence of unique nonnegative solutions for the case
when k, µ, and β in (2.6) are independent of x, and Ω is bounded. A correspond-
ing treatment for the system (2.1)–(2.5) is beyond the scope of this paper; we will
concentrate on the numerical aspects of the problem. Thus we assume existence and
uniqueness of smooth, nonnegative solutions.

We make several assumptions.

Condition 2.1. There exists constants C0 and C1 such that, for (x, p) ∈ Ω×R,
k satisfies 0 < C0 ≤ k(x, p) ≤ C1 and µ satisfies 0 < C0 ≤ µ(x, a, p) ≤ C1 for all a.

Condition 2.2. The functions k(x, p) and µ(x, a, p) are uniformly Lipschitz
continuous with respect to p with Lipschitz constants Kk and Kµ, respectively. The
derivative ∂pk(x, p) exists. The derivative ∂aµ(x, a, p) exists, is uniformly bounded by
C1 as a function of all its arguments, and ‖∂aµ(x, ·, p)‖L2(R+) ≤ C1 uniformly as a
function of x and p.

Condition 2.3. The birth operator, b : Ω× (L1(R+) ∩L2(R+)
)→ R

+, is of the
form

b(x, ϕ(x, ·, t)) =
∫ ∞

0

β(x, a,Φ)ϕ(x, a, t) da,(2.6)

where β ≥ 0 is the birth rate and Φ is the total population density, i.e., the integral of
ϕ with respect to age. The function β is assumed to be uniformly Lipschitz continuous
as a function of Φ. As a function of a, β(x, a,Φ) is in H1(R+), with its H1-norm
bounded independently of x and Φ; and it is also assumed that there is a positive
asmall and a natural number k0 such that β(x, ·,Φ) is a polynomial of degree at most
k0 on (0, asmall) with the coefficients bounded independently of x and Φ.

Condition 2.4. The initial condition, u0(x, a), is bounded and nonnegative, and
there exists ãmax such that u0(x, a) = 0 for a > ãmax.

We note that the birth operator, b, is uniformly bounded and satisfies the Lipschitz
condition

|b(x, ϕ(x, ·, t))− b(x, ψ(x, ·, t))|

≤ Kb
((
1 + ‖ϕ‖L1(R+)

) ∣∣∣∣
∫ ∞

0

(ϕ− ψ) da
∣∣∣∣+ ‖ϕ− ψ‖H−1(R+)

)
,

where H−1(R+) is the dual to H1(R+). The condition that β be polynomial in a for
small a allows us to avoid some issues associated with the introduction of a new age
interval.

Condition 2.4 is technically convenient and seems mild in light of the exponential
decay of u in age [2]. A consequence of this condition is that u(x, a, t) is zero if
a > ãmax + t. Since we are dealing with time in a bounded interval in this work, the
fact that the age is bounded above means that the behavior of β for very large a is
unimportant.

3. An age and space discrete method. Let D = ∂t + ∂a. We reuse the
symbol k to denote the form

k(Φ;ϕ, v) =

∫
Ω

k(x,Φ)∇ϕ · ∇v dx;
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the distinction between the form and k(x,Φ) should be clear from context. In varia-
tional form, for every t ∈ R

+ and every v ∈ H1(Ω)⊗ L2(R+), we have∫ ∞

0

(Du, v) + k(p;u, v) + (µu, v) da = (b(x, u(x, ·, t))− u(x, 0, t), v(x, 0)),(3.1)

where (·, ·) denotes the L2-inner product over Ω. Note that no regularity in a is
required on v because both sides are zero independent of the choice of v, but we find
it useful to think of v(x, 0) being the trace of v at a = 0 when v is smooth.

LetM denote a finite dimensional subspace of H1(Ω). Let {ai}−∞
i=0 be a sequence

such that a0 = ãmax, 0 < ai+1 − ai < ∆a, and ai → −∞ as i → −∞. Let J be the
set of ai’s and let J̌ denote the set of −ai’s. For a fixed nonnegative integer q, let C
denote the space of all piecewise continuous functions over the partition of R defined
by J such that ϕ ∈ C has the property that ϕ restricted to (ai, ai+1) is a polynomial
of degree at most q for i < 0 and ϕ is zero on (a0,∞). We define a finite dimensional
space in age that moves along the characteristic curves, da/dt = 1:

A(t) = {ϕ ∈ L2(R+) : ϕ(·) = ψ(· − t)∣∣
R+ , ψ ∈ C

}
.

Note that the dimension of A increases by q + 1 as t goes from −ai − 0 to −ai + 0.
This discretization will allow the numerical method to be free of numerical dispersion
in age. We take U(·, ·, t) ∈M⊗A(t). For t �∈ J̌ ,

(3.2)

∫ ∞

0

(DU, v) + k(P ;U, v) + (µ(x, a, P )U, v) da

= (b(x, U(x, ·, t))− U(x, 0, t), v(x, 0, t))

for every v(·, ·, t) ∈ M ⊗ A(t). So that U is defined across points in J , we require
U to be a continuous mapping of time into L2(Ω) ⊗ L2(R+). The total population
density is approximated by

P (x, t) =

∫ ∞

0

U(x, a, t) da.

We want to emphasize that the function U is differentiable in the characteristic
direction so that DU makes sense. Functions in A(t) are discontinuous, but those
discontinuities move along characteristic directions.

The system defined by (3.2) is just a set of ordinary differential equations when
t �∈ J̌ . Consider t ∈ J̌ . Since the part that is nonstandard is related to the age
variables, we will suppress the x variables. Let {ϕi} denote a basis for C, where each
ϕi has support in one interval [ak, ak+1]. Then a natural basis for A(t) is of the form
{ϕi(· − t)}; the functions in the basis for A are restricted to R

+, and there are only
a finite number of these that are nontrivial. The function U is expressed as

U(a, t) =
∑
i

ci(t)ϕi(a− t) so that DU =
∑
i

c′i(t)ϕi(a− t).

While it is natural to look at a set of relations of the form∫ ∞

0

DU(a, t)ϕj(a− t)da = F (t, U, ϕj) + (b(U)− U(0, t))ϕj(0− t)(3.3)



1068 BRUCE P. AYATI AND TODD F. DUPONT

as a set of ordinary differential equations for the ci’s, there is a difficulty because the
coefficient of the vector of c′i’s is singular at a transition. Note that∫ ∞

0

DUϕj(a− t)da+ U(0, t)ϕj(0− t) = d

dt

∫ ∞

0

Uϕj(a− t)da.

Thus (3.3) can be written as m′
j = F (t, U, ϕj) + b(U)ϕj(0− t), where

mj(t) =

∫ ∞

0

U(a, t)ϕj(a− t)da;

these are the natural variables. The initial values for the newmj ’s added to the system
when t crosses a point of J̌ are clearly zero because of the assumed continuity of U
(as a map into L2(R+)) at such points. The mj ’s already present are continuous at
these transitions. We must check whether the birth operator is Lipschitz with respect
to these natural variables. This is easy to confirm in the case in which the function
β is polynomial of degree at most k0 near a = 0, and that is why we chose to address
birth operators of that form. What is needed is that we can choose a basis such that
the coefficients of the L2-projection of β(a) into A are bounded. This is trivial away
from a = 0 because of the equivalence of norms on finite dimensional spaces.

4. Error analysis. Wheeler, in her analysis for parabolic equations [15], showed
the value of choosing the right projection in constructing an argument; in her case it
was the elliptic projection. In this paper we use a tensor product projection based on
an elliptic projection in space and an L2-projection in age.

It is convenient to use H−1(Ω) as the dual to H1(Ω). Let ‖ · ‖, ‖ · ‖L∞ , ‖ · ‖H1 ,
and ‖ · ‖H−1 denote the L2, L∞, H1, and H−1 norms over Ω, respectively. Suppose
that Υ is a normed space with norm ‖ · ‖Υ. Then, for any sufficiently nice function
ϕ : R

+ → Υ, let

|||ϕ|||2Υ =
∫ ∞

0

‖ϕ(a)‖2Υ da.

A lack of a subscript indicates Υ = L2(Ω). For ϕ : Ω→ Υ, define

‖ϕ‖Lp(Ω,Υ) =
∥∥∥ ‖ϕ(x)‖Υ ∥∥∥

Lp(Ω)
.

We show that the approximate solution U is close to a function X, which is the
elliptic projection in space and the L2-projection in age of the true solution u. Let
A(t) : L2(R+)→ A(t) denote the L2-projection. To construct X we first project into
space. For each (a, t), we take X̃(a, t) ∈M such that k(p;u− X̃, v) = 0 for all v ∈M
and such that ∫

Ω

|u− X̃| dx = 0.

Similarly, for each t, we take Y (t) ∈M to satisfy k(p; p−Y, v) = 0 for all v ∈M and∫
Ω

|p− Y | dx = 0.

To project into age, we choose X(t) ∈M⊗A(t) such that X(t) = A(X̃(a, t)). We set

ϑ = U −X, η = u− X̃, η̃ = X̃ −X, % = P − Y, and σ = p− Y.
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In the following estimate we will suppose that ∇Y and the L2-norm in age of ∇X
are uniformly bounded. We could instead add conditions onM, Ω, and u that would
imply these bounds, but this would add complexity with no benefit in understanding
why the numerics work. We add the following condition.

Condition 4.1. We suppose the quantities

|||u|||L∞ , ‖u‖L∞(Ω×R+), ‖u‖L∞(Ω,L1(R+)), Kk|||∇X|||L∞ , ‖p‖L∞ , and Kk‖∇Y ‖L∞

are bounded uniformly in time.
Theorem 4.1. Let

θ1(t) =

∫ t

0

C0(|||ϑ|||2H1 + ‖%‖2H1)(τ) dτ,

ε(t) =

∫ t

0

(|||η|||2 + ‖σ‖2 + |||Dη|||2H−1 + ‖∂tσ‖2H−1 + (∆a)2|||η̃|||2 + ‖η(x, 0)‖2)(τ) dτ.

Assume Conditions 2.1, 2.2, 2.3, 2.4, and 4.1 hold. There exists C∗(t) > 0 (dependent
only on Kb, Kµ, C0, C1, and the bounds in Condition 4.1) such that

(|||ϑ|||2 + ‖%‖2 + θ1)(t) ≤ C∗(t)
(
(|||ϑ|||2 + ‖%‖2)(0) + ε(t)).

Remark. This result shows superconvergence of one additional power of ∆a in
the age variable since only η̃ involves approximation in age. Hence, as a function of
age, U is closer to the L2-projection in age of u than it is to u itself, at least for ∆a
sufficiently small.

Proof. For this proof C will denote an arbitrary constant with dependencies not
greater than those of C∗. When only a single argument is given to U , u, η, η̃, or ϑ,
that argument denotes age.

Subtract (3.1) from (3.2) and let v = ϑ to get

(4.1)

∫ ∞

0

(D(ϑ− η − η̃), ϑ) + k(P ;U, ϑ)− k(p;u, ϑ) + (µ(P )U, ϑ)− (µ(p)u, ϑ) da
+ (U(0)− u(0), ϑ(0)) = (b(U)− b(u), ϑ(0)).

By orthogonality, for v(·, ·, t) ∈M⊗A(t),
∫ ∞

0

(η̃, v) da = 0.(4.2)

For t �∈ J̌ , let δ > 0 be such that (t−δ, t+δ)∩J̌ = ∅. For a given v(·, ·, t) ∈M⊗A(t)
and −s ∈ (t − δ, t + δ), take v(·, ·, s) ∈ M ⊗ A(s) such that v is constant along
characteristics. By (4.2) we have, for 0 < ∆t < δ,

0 =
1

∆t

∫ ∞

0

(
η̃(·, a, t+∆t), v(·, a, t+∆t))− (η̃(·, a, t), v(·, a, t)) da

=
1

∆t

∫ ∞

0

(
η̃(·, a+∆t, t+∆t)− η̃(·, a, t), v(·, a+∆t, t+∆t)) da

+
1

∆t

∫ ∆t

0

(
η̃(·, a, t+∆t), v(·, a, t+∆t)) da

+
1

∆t

∫ ∞

0

(
η̃(·, a, t), v(·, a+∆t, t+∆t)− v(·, a, t)) da.
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In this expression the last term is zero because v is constant along characteristics.
Taking limits we see that for v(·, ·, t) ∈M⊗A(t),

∫ ∞

0

(
Dη̃(·, a, t), v(·, a, t)) da+ (η̃(·, 0, t), v(·, 0, t)) = 0.

Hence, with v = ϑ, we note that

(
U − u, ϑ)(0)− ∫ ∞

0

(
Dη̃, ϑ

)
da =

(
ϑ− η − η̃, ϑ)(0)− ∫ ∞

0

(
Dη̃, ϑ

)
da(4.3)

= ‖ϑ(0)‖2 − (η, ϑ)(0)
≥ 3

4
‖ϑ(0)‖2 − ‖η(0)‖2.

Rearranging terms in (4.1) and applying (4.2) and (4.3) gives

∫ ∞

0

(Dϑ,ϑ) + k(P ;ϑ, ϑ) + (µ(P )ϑ, ϑ) da+
3

4
‖ϑ(0)‖2

≤
∫ ∞

0

(k(x, Y )− k(x, P ),∇X · ∇ϑ) + (k(x, p)− k(x, Y ),∇X · ∇ϑ) da

+

∫ ∞

0

((µ(p)− µ(P ))u, ϑ) + (Dη, ϑ) + (µ(P )(η + η̃), ϑ) da

+ (b(U)− b(u), ϑ(0)) + ‖η(0)‖2.

We have the equality∫ ∞

0

(Dϑ, ϑ) da =
1

2

∫ ∞

0

D‖ϑ‖2 da = 1

2
∂t|||ϑ|||2 − 1

2
‖ϑ(0)‖2.

Using Conditions 2.1–2.2, Hölder’s inequality, and the arithmetic-geometric inequality,
yz ≤ 1

2 (εy
2 + (1/ε)z2), we get the following bounds:

∫ ∞

0

k(P ;ϑ, ϑ) + (µ(P )ϑ, ϑ) da ≥ C0|||ϑ|||2H1 ,∫ ∞

0

(k(x, Y )− k(x, P ),∇X · ∇ϑ) da ≤
∫ ∞

0

(Kk|%|, |∇X · ∇ϑ|) da

≤ 2K2
k

C0
|||∇X|||2L∞‖%‖2 + C0

8
|||ϑ|||2H1 ,∫ ∞

0

(k(x, Y )− k(x, P ),∇X · ∇ϑ) da ≤ 2K2
k

C0
|||∇X|||2L∞‖σ‖2 + C0

8
|||ϑ|||2H1 ,∫ ∞

0

((µ(p)− µ(P ))u, ϑ) da ≤
∫ ∞

0

(Kµ|P − p|, |uϑ|) da

≤ Kµ
2
|||u|||L∞

(
2(‖%‖2 + ‖σ‖2) + |||ϑ|||2) ,∫ ∞

0

(Dη, ϑ) da ≤ 1

C0
|||Dη|||2H−1 +

C0

4
|||ϑ|||2H1 ,∫ ∞

0

(µ(P )η, ϑ) da ≤ C1

2
(|||η|||2 + |||ϑ|||2).
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Let µ̄ denote the average of µ in age over each interval of the age discretization. Then∫ ∞

0

(µ(P )η̃, ϑ) da =

∫ ∞

0

(
(µ(P )− µ̄(P ))η̃, ϑ) da

≤ 1

2

(‖µ(P )− µ̄(P )‖2L∞(Ω×R+)|||η̃|||2 + |||ϑ|||2
)

≤ (∆a)2

8
C2

1 |||η̃|||2 +
1

2
|||ϑ|||2.

For the birth term we make the bound

(b(U)− b(u), ϑ(0)) ≤ ‖b(U)− b(u)‖2 + 1

4
‖ϑ(0)‖2

≤ 3K2
b

(
(1 + ‖u‖2L∞(Ω,L1(R+)))‖P − p‖2

+ ‖U − u‖2L2(Ω,H−1(R+))

)
+
1

4
‖ϑ(0)‖2.

We combine the above inequalities and use the fact that ‖η̃‖L2(Ω,H−1(R+)) ≤ ∆a
π |||η̃|||

(see Appendix A of [2]) to get

∂t|||ϑ|||2 + C0|||ϑ|||2H1 ≤ C
(
‖%‖2 + |||ϑ|||2 + ‖σ‖2 + |||η|||2 + |||Dη|||2H−1(4.4)

+ (∆a)2|||η̃|||2 + ‖η(0)‖2
)
.

Before we can use the above evolution inequality to get bounds on the error, we
need corresponding relationships for the total population density. We integrate (2.1)
over a and take the inner product with a test function v ∈M to obtain

(∂tp, v) + k(p; p, v) +

(∫ ∞

0

µ(p)u da , v

)
= (b(u), v).(4.5)

For the approximate total population density we have

(∂tP, v) + k(P ;P, v) +

(∫ ∞

0

µ(P )U da , v

)
= (b(U), v).(4.6)

We subtract (4.5) from (4.6) and let v = % to get

1

2
∂t‖%‖2 + k(P ;P,%)− k(p; p,%) +

(∫ ∞

0

µ(P )U − µ(p)u da,%
)

= (b(U)− b(u), %) + (∂tσ,%).

This has a form similar to (4.1). We have the bound(∫ ∞

0

µ(P )η̃ da,%

)
=

(∫ ∞

0

(µ(P )− µ̄(P ))η̃ da,%
)

≤
(
‖µ(x, ·, P )− µ̄(x, ·, P )‖2L2(R+)‖η̃(x, ·, t)‖2L2(R+), %

)
≤ (∆a)2C2

1

2π2
|||η̃|||2 + 1

2
‖%‖2.
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Using bounds similar to those for (4.1) for the other terms gives

∂t‖%‖2 + C0‖%‖2H1 ≤ C
(
‖%‖2 + |||ϑ|||2 + ‖σ‖2 + |||η|||2 + ‖∂tσ‖2H−1(4.7)

+ (∆a)2|||η̃|||2
)
.

By adding (4.4) and (4.7) and applying a Gronwall’s lemma,1 we obtain the stated
result.

5. Computational example. In this section we provide a computational ex-
ample that shows some of the benefits of using a higher order approximation space in
the age variable. In particular, we are able to use a coarser age discretization for the
same or better error.

The example system in [2] illustrates the importance of being able to decouple
the age and time discretizations so that the age and time steps are neither uniform
nor equal. The spatial dynamics of the problem require small time steps for accurate
resolution. The small time steps taken in the simulation, particularly the initial step,
are caused by roughness in space. The behavior in age is relatively smooth, which in
turn calls for a much coarser discretization in age than in time.

The example presented in [2] was meant to illustrate the need for a method that
discretizes age and time separately because of the influence of space. It does not
clearly illustrate two aspects of the interaction of age and time. First, it is not clear
what is needed to align the introduction of an age interval with the start of a time
step. Second, it does not illustrate the level to which the age dynamics of a system
will determine the size of the time step.

We present an example system that illustrates the benefits of using higher order
approximation spaces in age, as well as some aspects of the interaction of age and
time in these methods. In order to achieve the latter goal, we assume uniformity in
space. Because the dynamics in age can be, and often are, independent of space, the
benefits of using higher order polynomial spaces in age will generalize to systems that
include spatial dynamics.

We consider the system (2.1)–(2.5) with k = 0. We use the birth term,

b(x, u(x, ·, t)) =
∫ ∞

0

5a u da,

so that fecundity increases linearly with age. For the death modulus, we use

µ(x, a, p) = µ(a) =
10e10(a−0.8)

e10(a−0.8) + e−10(a−0.8)
+
1

2
.

This represents a situation where mortality remains low until around a certain age,
at which point it increases dramatically. This is the case in Proteus mirabilis swarm
colony development [6].

For the initial condition, we use a population of older organisms,

u0(x, a) = 128|a− 0.5|3 − 48(a− 0.5)2 + 1,

if |a− 0.5| < 0.25, and u0(x, a) = 0, otherwise.

1Assume u, b, c ≥ 0 are continuous and g ≥ 0 is differentiable. Then g′(t) + b(t) ≤ c(t) + u(t)g(t)

implies g(t) +
∫ t
0 b(τ) dτ ≤ exp(

∫ t
0 u(τ) dτ)(g(0) +

∫ t
0 c(τ) dτ).
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Fig. 5.1. Profiles of the population density, u. The profiles are t = 2/3 apart.
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Fig. 5.2. The total population density, p.

We take the temporal domain to be [0, 2]. We find that truncating the age domain
to [0, 2] is sufficient. We assume uniformity of the solution over the spatial domain Ω.

We implement step-size control in time via step-doubling (without extrapolation)
[1, 7]. This means that for each time step we take a step of size ∆t and compare it to
the solution obtained by taking two steps of size ∆t/2. We adjust a parameter that
limits local truncation error so that the simulation is well resolved in time.

For the age discretization, we assume J is uniform with age intervals of size ∆a.
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Fig. 5.3. Convergence study for q = 0 and q = 1 showing second order and fourth order con-
vergence of the method, respectively. The comparison is of the computed solution, u, at time t = 2.
The slope of the least squares fit for the piecewise constant case postprocessed to continuous piece-
wise linear functions is approximately 2.09. The slope of the least squares fit for the discontinuous
piecewise linear case postprocessed to cubic splines is approximately 4.25.

In other words, all age intervals that are not the birth interval are of length ∆a.
We study the convergence of the method with piecewise constants postprocessed to
continuous piecewise linear functions (q = 0) and with discontinuous piecewise linear
functions postprocessed to cubic splines (q = 1). The postprocessing for piecewise
constants was discussed in [2]; it involves using knot values that are obtained from a
line connecting the midpoints of adjacent intervals. The cubic splines can be produced
from the discontinuous linear functions in several ways; here we used the two Gauss
points in each of two adjacent intervals to define a cubic that is used to give knot
values and slopes. This is a natural choice since the L2-projection into discontinuous
piecewise linear functions is superconvergent at the two Gauss points.

Figure 5.1 shows solution profiles t = 2/3 apart for the simulation using q = 1 and
∆a = 0.1. The solution at t = 2/3 has a discontinuity because the initial condition
does not contain any newborns. However, this discontinuity dies out over time. Figure
5.2 shows the growth of the total population density. There is a period of population
decline, due to the die-off of the initial population, before the population enters a
stage of exponential growth.

Figure 5.3 shows the results of a convergence study using q = 0 and q = 1 with
postprocessing. The error is determined by comparison with the numerical solution
solved with ∆a = 6.25 × 10−3 for the case of q = 0 and ∆a = 2.5 × 10−2 for q = 1.
We get the expected result that the use of discontinuous piecewise linear functions
gives fourth order convergence with much better initial error than the second order
convergence given by the use of piecewise constants.

Figure 5.4 shows the time steps taken for the simulation using q = 1 and ∆a = 0.1.
We find that the time step needed to resolve this simulation is roughly 10−2, with
the exception of a trough at t ≈ 1.8 that corresponds to the die-off of the relatively
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Fig. 5.4. Step sizes for the age and time discretizations. There were 204 accepted steps and 22
rejected steps during the simulation. The smallest step size was approximately 3.88 × 10−4 taken
at t ≈ 1.8. This trough corresponds to the die-off of the relatively large initial population of older
individuals.

large initial population of older individuals. The need for this small time step is due
to the increased complexity of the underlying problem at this point, not the moving
age grid.

The restrictions on the time steps imposed by the age discretization are due to
the need to introduce a new age interval at the start of a time step. This requires that
∆t ≤ ∆a. Moreover, this restriction may require a slightly smaller time step before
the introduction of a new age interval at the birth boundary. Smaller time steps may
also be needed during the initial birthing into a new age interval. These cause the
minor time step fluctuations we see throughout the latter part of the simulation.
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SQUEEZABLE ORTHOGONAL BASES: ACCURACY AND
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Abstract. We present a method for generating local orthogonal bases on arbitrary partitions
of R from a given local orthogonal shift-invariant basis via what we call a squeeze map. We give
necessary and sufficient conditions for a squeeze map to generate a nonuniform basis that preserves
any smoothness and/or accuracy (polynomial reproduction) of the shift-invariant basis. When the
shift-invariant basis has sufficient smoothness or accuracy, there is a unique squeeze map associated
with a given partition that preserves this property and, in this case, the squeeze map may be
calculated locally in terms of the ratios of adjacent intervals. If both the smoothness and accuracy are
large enough, then the resulting nonuniform space contains the nonuniform spline space characterized
by that smoothness and accuracy.

Our examples include a multiresolution on nonuniform partitions such that each space has a local
orthogonal basis consisting of continuous piecewise quadratic functions. We also construct a family
of smooth, local, orthogonal, piecewise polynomial generators with arbitrary approximation order.

Key words. orthogonal bases, nonuniform grids, polynomial reproduction, piecewise polyno-
mial, multiresolution
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1. Introduction. Finitely generated shift-invariant (FSI) spaces naturally arise
in several areas of numerical analysis and approximation theory, including the theory
of splines and wavelets. A major advantage of an FSI space is the existence of a
convenient basis generated by a (usually) small number of functions. When the basis is
local and orthogonal the process of finding the orthogonal projection Pf of f ∈ L2(R)
onto the space is local so that changing f on a compact interval affects only Pf on a
slightly larger interval.

In this paper we introduce and investigate a method for adapting local shift-
invariant bases to nonuniform partitions via what we call a squeeze map. When
the shift-invariant basis is orthogonal, the squeeze map may be chosen so that the
nonuniform basis is also orthogonal.

The notion of squeeze maps generalizes ideas introduced in [4], where we gave
examples of local orthogonal piecewise polynomial shift-invariant bases that are easily
adaptable to arbitrary grids in R. The focus of this paper is on characterizing when a
squeeze map generates a nonuniform basis preserving any smoothness and/or accuracy
(polynomial reproduction) of the shift-invariant basis. When the shift-invariant basis
has sufficient smoothness or accuracy, there is a unique squeeze map associated with
a given partition of R that preserves this property and, in this case, the squeeze map
may be calculated locally in terms of the ratios of adjacent intervals. When both
the smoothness and accuracy are large enough, we find that the resulting nonuniform
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space contains the nonuniform spline space characterized by that smoothness and
accuracy.

Two applications that provide motivation for our work are adaptive least squares
and the construction of orthogonal wavelets on semiregular and irregular families of
grids:

(1) Since the bases constructed here are local and orthogonal and depend locally
on the given grid, it is relatively easy to calculate changes in the orthogonal projection
of a given function (onto the span of this basis) resulting from changes in the grid,
making them well suited for adaptive least square problems.

(2) While we do not focus on refinable spaces in this paper, it is the refinable
case that provides the main motivation for our study. We remark that our methods
provide a means to adapt a multiresolution on uniform grids to one on a semiuniform
family of grids (that is, an arbitrary coarse grid that is uniformly subdivided). In
the example in section 6.3, we start with Daubechies’s famous orthogonal scaling
function 2φ. We find that, given a nonuniform grid, there is a unique squeeze map
that preserves the accuracy of the space. In the example in section 6.4, we use ideas
from [5] to construct a multiresolution on an arbitrary nonuniform subdivision. (The
only requirement is that each interval is subdivided into two subintervals.) Each space
has a local orthogonal basis consisting of continuous piecewise quadratic functions.

Finally, in section 7 we construct a family of smooth, local, orthogonal, piecewise
polynomial generators with arbitrary approximation order using techniques developed
in [6]. These generators have fewer components than the corresponding refinable gen-
erators constructed in [6], and so we prefer them when refinability is not required.
We mention that a possible application of this family is to code division multiple ac-
cess (CDMA) technology, where several users share a single channel using orthogonal
decompositions.

1.1. Shift-invariant spaces. We call a compactly supported, finite-length (col-
umn) vector

Φ =



φ1

...
φn


 ∈ L2(R)

n

a generator. Note that when it is clear from the context, we also consider a generator
Φ to be the set of its components; that is, we also consider Φ ⊂ L2(R). When we
refer to the span of Φ we mean the subspace of L2(R) spanned by the components of
Φ.

For a generator Φ, let

B(Φ) := {φi(· − j) | j ∈ Z, i = 1, . . . , n}.

If B(Φ) is an orthogonal set, we say Φ is an orthogonal generator. For a generator Φ,
let

S(Φ) :=



∑
j∈Z

c(j)�Φ(· − j) | c(j) ∈ Rn, j ∈ Z


 .

If V = S(Φ) for some generator Φ, then V is called a finitely generated shift-invariant
(FSI) space.
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1.2. Minimally supported generators. Our procedure for constructing local
bases on nonuniform partitions starts with generators supported on [−1, 1] satisfying
a local linear independence condition on [0, 1]. In particular, for k ≤ n, we say that a
generator

Φ =




φ1

...
φk

φk+1

...
φn




=

(
Φ̄

Φ̆

)

(where Φ̄ consists of the first k elements of Φ and Φ̆ consists of the last n − k) is a
minimally supported k-generator (or just minimally supported) if

(1) supp Φ ⊂ [−1, 1];
(2) supp Φ̆ ⊂ [0, 1];
(3) the collection Φ̆ ∪ Φ̄χ[0,1] ∪ (Φ̄(· − 1))χ[0,1] is linearly independent.

We denote the collection of all minimally supported k-generators with n components
by Gnk . See section 5 for several illustrative examples of orthogonal minimally sup-
ported generators. The notion of generators minimally supported on [−1, 1] played a
central role in the construction of orthogonal, smooth, piecewise polynomial wavelets
given in [5].

For Φ ∈ Gnk , we denote the “left” and “right” pieces of Φ̄ by

ΦR := Φ̄χ[0,1] and ΦL := Φ̄χ[−1,0).

Obviously, condition (3) can be rewritten as Φ̆ ∪ ΦR ∪ ΦL(· − 1) is linearly indepen-
dent. If Φ is minimally supported, then it follows from the local linear independence
condition (3) above that B(Φ) is linearly independent; that is, any f ∈ S(Φ) has a
unique representation of the form f =

∑
cjΦ(· − j). In the remainder of this paper,

when there is clearly some underlying minimally supported generator with k and n as
above, then, for any (row or column) vector v of length n, we let v̄ denote the subvec-
tor of the first k components of v and v̆ the subvector of the last n − k components
of v.

Also, for f, g ∈ L2(R)
n
we define 〈f, g〉 := ∫

R
f(x)g(x)�dx ∈ Rn×n, where v�

denotes the transpose of a (column) vector v.

2. Squeeze maps. Let a = (aj)j∈Z be a strictly increasing real-valued sequence
with no accumulation point in R, in which case we call a a knot sequence. Let
Lj := aj+1 − aj denote the length of the jth interval [aj , aj+1] and let τj = τaj be
given by

τj(x) =

{
(x− aj)/Lj−1 for x ≤ aj ,

(x− aj)/Lj for x ≥ aj .
(2.1)

Then τj maps the points aj−1, aj , and aj+1 to −1, 0, and 1, respectively.
Suppose Φ is an orthogonal minimally supported generator. Consider

B0 =
⋃
j∈Z

Φ ◦ τj .
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If Φ is continuous and k = 1 (for example, see the example in section 6.1), then
(because τj is affine on each “overlap” interval [aj , aj+1] and continuous on R) it
follows that B0 is a continuous orthogonal basis for its span.

On the other hand, if Φ ∈ C1(R) and Φ′(0) �= 0 (for example, consider the
continuously differentiable Φ with k = 2 in the example in section 6.2), then the
components of B0 are not in C1(R) for nonuniform a. In particular, Φ̄ ◦ τj is not
differentiable at aj unless Lj−1 = Lj . This leads us to consider a more general
construction in which linear combinations of Φ̄L ◦ τj are pieced together with linear
combinations of Φ̄R ◦ τj via what we call a squeeze map.

More specifically, let A
(j)
L and A

(j)
R be invertible k × k matrices for j ∈ Z and let

Aj : R→ Rk×k denote the matrix-valued function on R defined by

Aj = χ[−1,0)A
(j)
L + χ[0,1]A

(j)
R .

Given A and a knot sequence a, we call the sequence of mappings σ = (σj)j∈Z, where
σj : Gnk → L2(R)

n
is given by

σj(Φ) =

(
AjΦ̄ ◦ τj
Φ̆ ◦ τj

)
,

a squeeze map (on Gnk ).
As before, we let σ̄j(Φ) denote the vector of the first k components of σj(Φ) and

σ̆j(Φ) the remaining n− k components. Observe that

σ̄j(Φ) =
(
χ[−1,0)A

(j)
L Φ̄ + χ[0,1]A

(j)
R Φ̄

)
◦ τj =

(
A

(j)
L ΦL +A

(j)
R ΦR

)
◦ τj

and suppσ̄j(Φ) ⊂ [aj−1, aj+1], while suppσ̆j(Φ) ⊂ [aj , aj+1].
If σ is a squeeze map on Gnk and Φ ∈ Gnk , then we define

Bσ(Φ) :=
⋃
j∈Z

σj(Φ)

and

Sσ(Φ) :=



∑
j∈Z

c(j)�σj(Φ) | c(j) ∈ Rn, j ∈ Z


 .

The minimal support of Φ and the invertibility of A
(j)
L and A

(j)
R imply that Bσ(Φ) is

linearly independent.

If σ is a squeeze map with matrix sequences (A
(j)
L ) and (A

(j)
R ), we define

Rj = Rj(σ) := (A
(j)
L )−1A

(j)
R (j ∈ Z).

We say that two squeeze maps σ and ν on Gnk are equivalent whenever Sσ(Φ) = Sν(Φ)
for any Φ ∈ Gnk .

Lemma 2.1. Suppose σ and ν are squeeze maps on Gnk . Then σ and ν are
equivalent if and only if

Rj(σ) = Rj(ν) (j ∈ Z).(2.2)
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Proof. Suppose (2.2) holds. Then

(
A

(j)
L

)−1

σ̄j(Φ) =
(
ÃL

(j)
)−1

ν̄j(Φ) (j ∈ Z),

where σ has matrix sequences (A
(j)
L ) and (A

(j)
R ) and ν has matrix sequences (ÃL

(j)
)

and (ÃR
(j)
). Since A

(j)
L and ÃL

(j)
are nonsingular the above shows that σ̄j(Φ) and

ν̄j(Φ) (considered as sets) have the same span. By definition σ̆j(Φ) and ν̆j(Φ) have
the same span showing that σj(Φ) and νj(Φ) have the same span, and hence Sσ(Φ) =
Sν(Φ).

On the other hand, if Sσ(Φ) = Sν(Φ), then the local linear independence of Bσ(Φ)
and Bν(Φ) shows that σ̄j(Φ) and ν̄j(Φ) have the same span for each j ∈ Z. Thus,
there must be some nonsingular matrix Wj such that

ν̄j(Φ) = Wj σ̄j(Φ) (j ∈ Z),

which implies that (2.2) holds.
Our motivation for considering squeeze maps is that if Φ is a minimally supported

orthogonal generator, then we can always find a local orthogonal basis for Sσ(Φ) ∩
L2(R). To see this, note that the elements of σ̄j(Φ) are orthogonal to the elements of
σ̄j+1(Φ):

〈σ̄j(Φ), σ̄j+1(Φ)〉 = LjA
(j)
R 〈ΦR,ΦL(· − 1)〉

(
A

(j+1)
L

)�
= 0 (j ∈ Z).

It then follows that σj(Φ) is orthogonal to σj′(Φ) for any j �= j′ ∈ Z. Finally, for
each j ∈ Z, we choose some orthogonal basis for the span of σ̄j(Φ) (for instance, by
applying the Gram–Schmidt process to σ̄j(Φ)). This change of basis corresponds to
constructing a squeeze map ν equivalent to σ such that Bν(Φ) is an orthogonal set
and is equivalent to performing the following matrix factorization: Let BjB

�
j be a

Cholesky factorization of 〈σ̄j , σ̄j〉, that is,

BjB
�
j = 〈σ̄j(Φ), σ̄j(Φ)〉 = Lj−1A

(j)
L 〈ΦL,ΦL〉

(
A

(j)
L

)�
+ LjA

(j)
R 〈ΦR,ΦR〉

(
A

(j)
R

)�
.

(2.3)

Then ν with matrix sequences (B−1
j A

(j)
L ) and (B−1

j A
(j)
R ) is equivalent to σ, and Bν(Φ)

is an orthogonal basis for Sσ(Φ) ∩ L2(R). Thus we have the following lemma.
Lemma 2.2. Suppose Φ is a minimally supported orthogonal generator and σ is

a squeeze map for Φ. Then there is some squeeze map ν equivalent to σ such that
Bν(Φ) is an orthogonal basis for Sσ(Φ) ∩ L2(R).

3. Polynomial reproduction and smoothness. In this section we give neces-
sary and sufficient conditions for a squeeze map σ to preserve the accuracy (polynomial
reproduction) and regularity of S(Φ). Throughout this section Φ is a generator in Gnk
and σ is a squeeze map on Gnk with matrix sequences (A

(j)
L ) and (A

(j)
R ). Recall that

Rj = (A
(j)
L )−1A

(j)
R for j ∈ Z.

First we address the smoothness of Sσ(Φ). Since Sσ(Φ) restricted to bounded
intervals has finite dimension it follows that Sσ(Φ) ⊂ Cm(R) if and only if σj(Φ) ⊂
Cm(R) for all j ∈ Z.
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Theorem 3.1. Suppose Φ ⊂ Cm(R). Then, for j ∈ Z, σj(Φ) ⊂ Cm(R) if and
only if Φ̄(q)(0) is either 0 or a right eigenvector of Rj with eigenvalue (Lj/Lj−1)

q for
0 ≤ q ≤ m, that is, if and only if

RjΦ̄
(q)(0) = (Lj/Lj−1)

qΦ̄(q)(0).(3.1)

(Here Φ̄(q) denotes the qth derivative of Φ̄.)
Hence, Sσ(Φ) ⊂ Cm(R) if and only if (3.1) holds for all j ∈ Z.
Proof. The theorem follows from

σj(Φ)
(q)(j−) =

(
(Lj−1)

−qA(j)
L Φ̄(q)(0−)
0

)

and

σj(Φ)
(q)(j+) =

(
(Lj)

−qA(j)
R Φ̄(q)(0+)
0

)

for 0 ≤ q ≤ m and j ∈ Z.
Let Πp, p ≥ 0, denote the collection of univariate polynomials of degree at most

p. A generator Φ is said to have accuracy p+1 if Πp ⊂ S(Φ). If Φ has accuracy p+1,
then (since B(Φ) is a linearly independent set), for each l = 0, . . . , p, there is a unique
sequence of 1× n vectors (αl(j))j∈Z such that

xl =
∑
j∈Z

αl(j)Φ(x− j) =
∑
j

ᾱl(j)Φ̄(x− j) + ᾰl(j)Φ̆(x− j).(3.2)

We say Sσ(Φ) has accuracy p + 1 if Πp ⊂ Sσ(Φ), in which case there exists, for
each l = 0, . . . , p, a unique sequence (α′

l(j))j∈Z, such that

xl =
∑
j

α′
l(j)σj(Φ)(x).(3.3)

Theorem 3.2. Suppose Φ has accuracy p + 1 and σ is a squeeze map for Φ.
Then Sσ(Φ) has accuracy p+1 if and only if ᾱl(0) is either 0 or a left eigenvector of
Rj with eigenvalue (Lj/Lj−1)

l for l = 0, . . . , p and all j ∈ Z.
Proof. Using (3.3) and the definition of σj(Φ), observe that Sσ(Φ) having accuracy

p+ 1 is equivalent to the existence of sequences (α′
l(j))j∈Z, l = 0, . . . , p, such that

xl = ᾱ′
l(j)A

(j)
R Φ̄ ◦ τj(x) + ᾱ′

l(j + 1)A
(j+1)
L Φ̄ ◦ τj+1(x) + ᾰ′

l(j)Φ̆ ◦ τj(x),

for j ∈ Z, and x ∈ τ−1
j ([0, 1]) = [aj , aj+1]. By substituting τ−1

j (x) for x in the above,
we obtain

l∑
i=0

(
l
i

)
Lijx

ial−ij = ᾱ′
l(j)A

(j)
R Φ̄(x) + ᾱ′

l(j + 1)A
(j+1)
L Φ̄(x− 1) + ᾰ′

l(j)Φ̆(x),

where l and j are as above, but here x ∈ [0, 1]. Now, since Φ has accuracy p+ 1, we
can use (3.2) to replace xi in the above. In particular,

xi = ᾱi(0)Φ̄(x) + ᾱi(1)Φ̄(x− 1) + ᾰ(0)Φ̆(x)
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for x ∈ [0, 1]. With this substitution and the minimal support properties of Φ, we
find an equivalent system of equations,

ᾰ′
l(j) =

l∑
i=0

(
l
i

)
Lija

l−i
j ᾰi(0),

ᾱ′
l(j)A

(j)
R =

l∑
i=0

(
l
i

)
Lija

l−i
j ᾱi(0),

ᾱ′
l(j + 1)A

(j+1)
L =

l∑
i=0

(
l
i

)
Lija

l−i
j ᾱi(1).

(3.4)

Now, since A
(j)
L and A

(j)
R are invertible for all j, the last two of these lead to

l∑
i=0

(
l
i

)
Lija

l−i
j ᾱi(0)(A

(j)
R )−1 =

l∑
i=0

(
l
i

)
Lij−1a

l−i
j−1ᾱi(1)(A

(j)
L )−1.(3.5)

Here, we may apply Lemma 3.6 proved at the end of this section, observing that αi(0)
and αi(1) satisfy (3.11), as, therefore, do ᾱi(0) and ᾱi(1). The “only if” part of the
result follows.

All steps in the above argument are reversible except the one from (3.4) to (3.5).
The “if” part of the result is achieved by choosing ᾰ′ and ᾱ′ as in (3.4). The choice
is consistent with (3.5) and leads to the desired accuracy of Sσ(Φ).

If Φ ⊂ Cm(R) and has accuracy p+ 1, then Φ̆(q)(0) = 0 for 0 ≤ q ≤ m and so

ᾱl(0)Φ̄
(q)(0) =

dq

dxq
xl
∣∣∣∣
x=0

= (q!)δl,q(3.6)

for 0 ≤ q ≤ m and 0 ≤ l ≤ p, where δl,q denotes the Kronecker delta. For 0 ≤ q ≤ m
and 0 ≤ l ≤ p, we define the following matrices:

Vl =



ᾱ0(0)
...

ᾱl(0)


 and Wq =

(
Φ̄(0) · · · Φ̄(q)(0)

)
.(3.7)

Then (3.6) is equivalent to the matrix equation

VpWm = D,(3.8)

where D is the (p+1)× (m+1) diagonal matrix whose (l, l)th component is (l− 1)! .
The rank of the right side of (3.8) is min(m+ 1, p+ 1). Also, Vp and Wm have rank
at most k which gives the following bound for k.

Lemma 3.3. Suppose Φ ⊂ Cm(R) and has accuracy p+ 1; then

k ≥ min(m+ 1, p+ 1).

Next we consider when accuracy or smoothness uniquely determines the squeeze
map (up to equivalency) and when accuracy forces smoothness or smoothness forces
accuracy.
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Theorem 3.4. Suppose Φ ⊂ Cm(R) and has accuracy p + 1. Let a be a given
knot sequence.

(i) If k ≤ p + 1 and the square matrix Vk−1 is nonsingular, then there exists
a unique (up to equivalence) squeeze map σ with knot sequence a such that
Sσ(Φ) has accuracy k. In addition, Sσ(Φ) ⊂ Cm(R).

(ii) If k ≤ m + 1 and the square matrix Wk−1 is nonsingular, then there exists
a unique (up to equivalence) squeeze map σ with knot sequence a such that
Sσ(Φ) ⊂ Ck−1(R). Furthermore, Sσ(Φ) has accuracy p+ 1.

Proof. Case (i). Suppose k ≤ p+ 1, V := Vk−1 is nonsingular, and σ is a squeeze
map for Φ. Then ᾱl(0) �= 0 for 0 ≤ l ≤ k − 1, and so Theorem 3.2 asserts that Sσ(Φ)

has accuracy k if and only if ᾱl(0) is a left eigenvector of Rj with eigenvalue (
Lj

Lj−1
)l

for 0 ≤ l ≤ k − 1 and j ∈ Z. The latter condition is equivalent to

V Rj = Λ(Lj/Lj−1)V (j ∈ Z),

where Λ(λ) is a k × k diagonal matrix whose (l, l)th component is λl−1 for λ ∈ R+.
Thus, Sσ(Φ) has accuracy k if and only if

Rj = V −1 Λ(Lj/Lj−1)V (j ∈ Z).(3.9)

Equation (3.8) shows that Φ(q)(0) is the qth column of V −1D. Multiplying both
sides of (3.9) on the right by Φ(q)(0) then shows that Φ̄(q)(0) is a right eigenvector

of Rj with eigenvalue (
Lj

Lj−1
)q for 0 ≤ q ≤ m. Hence, Theorem 3.1 shows that

Sσ(Φ) ⊂ Cm(R).
Case (ii). Now suppose k ≤ m+ 1 and W := Wk−1 is nonsingular. As in case (i)

we find that Sσ(Φ) has accuracy k if and only if

Rj = W Λ(Lj/Lj−1)W
−1(3.10)

and that ᾱl(0) is a left eigenvector of Rj with eigenvalue (
Lj

Lj−1
)l for 0 ≤ l ≤ p. Hence

Theorem 3.2 shows that Sσ(Φ) has accuracy p+ 1.
If k = min(m+1, p+1), then it follows from (3.8) that Vk−1 and Wk−1 are both

nonsingular, and so both cases in Theorem 3.4 hold. The next theorem shows that
Sσ(Φ) contains the spline space

Smp (a) := {f ∈ Cm(R) | f |(aj ,aj+1) ∈ Πp, j ∈ Z}

when k = min(m+1, p+1). In this case, it is known from classical spline theory that
the accuracy determines the approximation order of Sσ(Φ). Note that S

m
p (a) = Πp if

m ≥ p.
Theorem 3.5. Suppose Φ ⊂ Cm(R), Φ has accuracy p + 1 and k = min(m +

1, p+ 1). Let a be a given knot sequence.
(i) There exists a squeeze map σ with knot sequence a such that Sσ(Φ) ⊂ Cm(R)

and has accuracy p+ 1.
(ii) If ν is any other squeeze map with knot sequence a such that either Sν(Φ) ⊂

Ck−1(R) or (ν,Φ) has accuracy k, then ν is equivalent to σ.
(iii) Smp (a) ⊂ Sσ(Φ). (This is nontrivial only when m < p, in which case k =

m+ 1.)
Proof. If k = min(m + 1, p + 1), then it follows from (3.8) that Vk−1 and Wk−1

are both nonsingular and parts (i) and (ii) follow from Theorem 3.4.
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From part (i) we have Πp ⊂ Sσ(Φ), and so we need only consider the case m < p.
Since Wk−1 is nonsingular, it follows from (3.8) that ᾱl(0) = 0 for l = m+ 1, . . . , p.

For simplicity, first suppose that one of the knots, say ai, is 0. Then (3.4) implies

ᾱ′
l(i)A

(j)
R = Lliᾱl(i) = 0 (l = m+ 1, . . . , p).

Thus (3.3) becomes

xl = ᾰ′
l(i)σ̆i(Φ) +

∑
j �=i

α′
l(j)σj(Φ).

Thus the truncated powers (x+)
l, l = m+ 1, . . . , p, can be written as

(x+)
l = ᾰ′

l(i)σ̆i(Φ) +
∑
j>i

α′
l(j)σj(Φ),

and so they are in Sσ(Φ) for l = m + 1, . . . , p. Observe that shifting the knots by a
constant shift translates the basis Bσ(Φ) by the same amount. Hence Sσ(Φ) contains

the truncated powers ((x− aj)+)
l
for l = m + 1, . . . , p and j ∈ Z. The truncated

powers form a basis for Smp (a) showing that (iii) holds.
Finally, we prove the following lemma that was used in the proof of Theorem 3.2.
Lemma 3.6. Suppose a0, a1, L1 ∈ R and L0 = a1 − a0. Further, suppose α(0)

and α(1) are sequences of 1× k vectors such that

αl(1) =

l∑
i=0

(
l
i

)
αi(0)(3.11)

for l = 0, . . . , p. Then the k × k matrices C and D satisfy the conditions

l∑
i=0

(
l
i

)
Li1a

l−i
1 αi(0)C =

l∑
i=0

(
l
i

)
Li0a

l−i
0 αi(1)D(3.12)

for l = 0, . . . , p if and only if

αl(0)(L
l
1C − Ll0D) = 0(3.13)

for l = 0, . . . , p.
Proof. For a given l, we may use (3.11) to substitute for αi(1) in (3.12). Then

using routine combinatorial manipulations we find

l∑
i=0

(
l
i

)
Li1a

l−i
1 αi(0)C =

l∑
j=0

(
l
j

)
αj(0)D

l∑
i=j

(
l − j
i− j

)
Li0a

l−i
0 .(3.14)

By shifting the index on the inner sum by j, the left-hand side becomes

l∑
j=0

(
l
j

)
αj(0)D

l−j∑
i=0

(
l − j
i

)
Li+j0 al−i−j0

=

l∑
j=0

(
l
j

)
αj(0)L

j
0a
l−j
1 D,
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where the final equality follows from a1 = a0 + L0 and the binomial theorem. Thus
(3.12) is equivalent to

l∑
i=0

(
l
i

)
al−i1 αi(0)(L

i
1C − Li0D) = 0.

From here it is easy to show the equivalence with (3.13) by induction on l =
0, . . . , p.

4. Constructing the squeeze map. Suppose Φ ⊂ Cm(R), Φ has accuracy
p+1 and k ≤ max(m+1, p+1). Then either case (i) or (ii) of Theorem 3.4 holds and
the squeeze map preserving accuracy in case (i) or smoothness in case (ii) is unique
up to equivalence. In both cases there is a full set of k eigenvectors for Rj for j ∈ Z
with specified eigenvalues. These eigenvectors then uniquely determine Rj through
either (3.9) or (3.10). In case (i), let U = Vk−1 and in case (ii) let U = W−1

k−1, where
Vk−1 and Wk−1 are given by (3.7). Let

R(λ) := U−1 Λ(λ)U (λ > 0).(4.1)

Then Rj = R(λj), where λj := Lj/Lj−1 for j ∈ Z. Thus, the squeeze map is
determined (up to equivalence) for an arbitrary knot sequence. Furthermore, each Rj
is determined only by the ratio Lj/Lj−1.

Now suppose Φ is an orthogonal generator. Let σ be the squeeze map with matrix
sequences (I,Rj). Following the proof of Lemma 2.2, an equivalent squeeze map ν so
that Bν(Φ) is orthogonal may be found as follows. First, find a Cholesky factorization
(see (2.3)):

B(λ)B(λ)� = 〈ΦL,ΦL〉+ λR(λ)〈ΦR,ΦR〉R(λ)�.(4.2)

Let Bj =
√
Lj−1B(λj) for j ∈ Z. Then ν with matrix sequences A

(j)
L = (B−1

j ) and

A
(j)
R = (B−1

j Rj) gives an orthogonal basis. Again note that for fixed Φ, Bj depends
only on Lj−1 and Lj , and (since a Cholesky factorization is equivalent to an LU
factorization using Gaussian elimination) we can find a closed form expression for νj
in terms of the ratio λj = Lj/Lj−1. This makes it simple and quick to construct the
squeeze map for an arbitrary knot sequence.

In our examples we consider only k = 1 or k = 2. When k = 1 it is trivial to
obtain Bj . Suppose

A =

(
a b
b c

)

is a symmetric positive definite matrix. (That is, v�Av > 0 for any nonzero 2-vector
v.) Then A is positive definite if and only if both a and detA are positive. One choice
for B such that BB� = A is given by

B =
1√
a

(
a 0

b
√
detA

)
.(4.3)

5. Orthogonal minimally supported generators.
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5.1. Rescaling orthogonal generators. Any orthogonal compactly supported
generator may be used to construct an orthogonal generator supported on [−1, 1] as
we next describe. If the support of Φ = (φ1, . . . , φn)

� is contained in [−1,M ], then
let ΦM denote the generator consisting of the concatenation of the M generators
Φ(M · +k), (k = 0, . . . ,M − 1). Then ΦM is an orthogonal generator supported in
[−1, 1] and S(ΦM ) equals S(Φ)(M ·) (that is, the dilation by 1/M of the space S(Φ)).
The local linear independence conditions for minimal support must then be checked
separately. However, when Φ is an orthogonal scalar (n = 1) refinable generator it is
known that Φ is locally linearly independent (that is, the nonzero restrictions of the
shifts of Φ to any open interval are linearly independent), which implies the weaker
type of local linear independence we require in the definition of minimal support. The
example in section 6.3 is constructed in this way.

5.2. General construction. In [5] the authors developed a method for con-
structing orthogonal generators. For W ⊂ L2(R), let PW denote the orthogonal
projection onto W .

Lemma 5.1 (see [5]). Suppose Φ is a minimally supported k-generator. There
exists an orthogonal minimally supported k-generator Ψ such that S(Ψ) = S(Φ) if and
only if

(I − PS(Φ̆))Φ̄ ⊥ (I − PS(Φ̆))Φ̄(· − 1).(5.1)

(That is, (I − PS(Φ̆))φi ⊥ (I − PS(Φ̆))φj(· − 1) for 1 ≤ i, j ≤ k.)

Proof (sketch of proof). Let Ψ̆ be an orthogonal basis for the span of Φ̆ and
choose Ψ̄ to be an orthogonal basis for the span of (I − PS(Φ̆))Φ̄. Then Ψ is an

orthogonal, minimally supported k-generator for S(Φ) if Ψ and Ψ(·−1) are orthogonal
(or, equivalently, if (5.1) holds). The other direction relies on the observation that if
Φ and Ψ are minimally supported k-generators such that S(Ψ) = S(Φ), then

spanΦ̆ = spanΨ̆

and

spanΦ ∪ Φ̆(·+ 1) = spanΨ̆ ∪ Ψ̆(·+ 1)

The idea of the construction is to choose Φ̆ so that (5.1) holds. The orthogonal
generators in the examples in sections 6.1 and 6.2 and section 7 are constructed in
this way.

6. Examples. In this section we present several examples to illustrate our meth-
ods. The examples in sections 6.1 and 6.2 first appeared in [4]. In both examples
it is the smoothness condition that determines the squeeze map. Also, in these two
examples, k = min(m + 1, p + 1), and so the resulting Sσ(Φ) contains Smp (a) by
Theorem 3.5.

In the example in section 6.3, we rescale Daubechies’s orthogonal scaling function

2φ as described in section 5.1 to construct a continuous orthogonal refinable generator
minimally supported on [-1,1] with k = n = 2. The accuracy in this case is p+ 1 = 2
and, by Theorem 3.4 (i), the squeeze map is uniquely determined by the accuracy
condition once a knot sequence is specified. In fact, it is this example that motivated
our study of the accuracy of squeezed spaces Sσ(Φ). In the example in section 6.3 we
have m+ 1 = 1 < 2 = k, and so Theorem 3.5 does not apply in this case.
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We are also interested in this example because the generator Φ is refinable; that
is,

Φ(·/2) =
∑
j∈Z

c(j)Φ(· − j)(6.1)

for some finitely supported sequence c : Z �→ Rn×n. (In this case the support of c is
{−2,−1, 0, 1}.)

We next remark that such a refinable minimally supported generator Φ gener-
ates a semiregular multiresolution analysis (that is, a multiresolution consisting of a
nonuniform coarse space that is uniformly refined; see [3]) as follows: Let a0 be an
arbitrary knot sequence and let a1 ⊃ a0 be given by

a1
2j = a0

j and a1
2j+1 = (a0

j + a0
j )/2 (j ∈ Z).

Let σ0 and σ1 be the squeeze maps determined (up to equivalence) by the knot
sequences a0 and a1, respectively. Then one may verify that Sσ0(Φ) ⊂ Sσ1(Φ). Thus
we provide a way to construct orthogonal semiregular multiresolutions from orthogonal
scaling functions in a way that preserves the accuracy and smoothness of the shift-
invariant multiresolution.

In the example in section 4, we construct an irregular multiresolution analysis
(that is, a fully nonuniform multiresolution; see [3]) such that each space in the
multiresolution has a compactly supported orthogonal basis consisting of continuous
piecewise quadratic functions. The spaces in this irregular multiresolution are not,
strictly speaking, squeezed spaces of the form Sσ(Φ) but instead result from a slight
generalization of our notion of the squeeze map.

6.1. k = 1, m = 0, p = 1, n = 2. Let h denote the hat function defined by
h(x) = (1− |x|)+ and suppose w ∈ L2(R) is nontrivial and supported in the interval
[0, 1]. Let Φ = (h,w). Then (5.1) reduces to

〈h, h(· − 1)〉 = 〈h,w〉〈w, h(· − 1)〉
〈w,w〉 .(6.2)

Thus, any w ∈ L2(R) supported in [0, 1] and satisfying (6.2) gives an orthogonal gen-
erator Ψ by the process described in Lemma 5.1. For example, let q be the piecewise
quadratic function given by q(x) = x(1− x)χ[0,1](x). Choose w ∈ span{q, q2} so that
w = c1q + c2q

2 for some constants c1, c2. Substituting into (6.2) yields a quadratic
equation in the variable α := c2/c1:

α2 + 30α+ 105 = 0

or α = −15 ± 2
√
30. The graphs of φ1 and φ2 are shown in Figure 6.1 for α =

−15− 2
√
30. (This example was first given in [4].)

For 0 ≤ x ≤ 1, we have

φ1(x) =
√
3 (1− x)

(
1− 2x+

(
−3 +

√
30
)
x (1− 5 (1− x) x)

)
and

φ2(x) =

√
330− 60

√
30 (1− x) x

(
−1 +

(
15 + 2

√
30
)
(1− x) x

)
.
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Fig. 6.1. Continuous orthogonal generator of the example in section 6.1.

Note that φ1 is even and supported on [−1, 1] and that φ2 has support [0, 1].
In the case k = 1 and m = 0, the squeeze maps preserving continuity are given

by Rj = 1 for all j ∈ Z. By Theorem 3.4, this squeeze map will also preserve the
approximation of Φ. By the symmetry of Φ we have

〈ΦL,ΦL〉 = 〈ΦR,ΦR〉 = 1/2.

Using (2.3) we get that σ given by

AjL = AjR =

√
2

Lj−1 + Lj

generates an orthogonal basis Bσ(Φ).

6.2. k = 2, m = 1, p = 3, n = 4. We next construct a continuously differen-
tiable orthogonal generator. We start with the C1 cubic Hermite spline functions

h1(x) =




(1 + x)2(1− 2x), x ∈ [−1, 0],
(1− x)2(1 + 2x), x ∈ [0, 1],
0 otherwise,

h2(x) =




(1 + x)2x, x ∈ [−1, 0],
(1− x)2x, x ∈ [0, 1],
0 otherwise

and add two continuously differentiable functions w1 and w2 supported on [0, 1]. (In
[5], it is shown that at least two w’s are required in this case.) The condition (6.2) is
equivalent to the following:

〈hi, hj(· − 1)〉 = 〈hi, w1〉〈w1, hj(· − 1)〉
〈w1, w1〉 +

〈hi, w2〉〈w2, hj(· − 1)〉
〈w2, w2〉 .(6.3)

Again let q be the piecewise quadratic function given by q(x) = x(1−x)χ[0,1](x). We
choose w1 to be of the form (c1+c2q+c3q

2)q2 and w2 of the form (·−1/2)(c4+c5q)q
2
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Fig. 6.2. The C1 orthonormal generator of the example in section 6.2. From upper left, going
clockwise: φ1, φ3, φ4, φ2.

so that w1 is symmetric about x = 1/2 and w2 is antisymmetric about x = 1/2.
Substituting into (6.3) yields three quadratic equations in the three variables c2/c1,
c3/c1, and c5/c4. Solving these equations numerically and choosing c1 and c4 so that
‖w1‖ = ‖w2‖ = 1 yields several solutions. One solution with good properties is given
by

c1 +2.102558692333885
c2 +214.7707569159831
c3 -492.4339092336308
c4 -112.0742772596177
c5 +1401.893433767276

The graphs of the components of the resulting orthogonal generator (φ1, φ2, φ3, φ4)
are shown in Figure 6.2.

From the construction of Φ we see that W =
(
Φ̄(0) Φ̄′(0)

)
is diagonal, and so,

using (4.1), we get that Sσ(Φ) ⊂ C1(R) if

Rj = R(λj) =

(
1 0
0 λj

)
,

where λj := Lj/Lj−1.
Since Φ is piecewise polynomial, the inner products 〈ΦL,ΦL〉 and 〈ΦR,ΦR〉 are

easily calculated. Using Mathematica to perform these calculations, we arrive at the
squeeze maps defined by

A
(j)
L =

1√
Lj−1

×




1.414213√
1+λj

0

2.829115−2.829115λ2
j

(1+λj)
√

(0.381634+λj) (1+λj) (2.62031+λj)

3.162893√
(0.381634+λj) (1+λj) (2.62031+λj)
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Fig. 6.3. C1 basis functions σ̄j(Φ) from the example in section 6.2 for (a) λj = 3 (knots at 1,
2, and 5) and (b) λj = 7 (knots at 1, 3/2, and 5).

and

A
(j)
R =

1√
Lj−1

×




1.414213√
1+λj

0

2.829115−2.829115λ2
j

(1+λj)
√

(0.381634+λj) (1+λj) (2.62031+λj)

3.162893λj√
(0.381634+λj) (1+λj) (2.62031+λj)


 .

We show in Figure 6.3 the resulting σ̄j(Φ) for several values of λj .

6.3. Semiregular multiresolution analysis: k = 2, m = 0, p = 1, n = 2.
Let 2φ denote the continuous orthogonal scaling function of Daubechies supported on
[0, 3] (see [2]) and let

Φ =
√
2

(
2φ(2 ·+2)
2φ(2 ·+1)

)
.

Then, as discussed in section 5.1, Φ is an orthogonal generator supported on [−1, 1].
The local linear independence condition for minimal support may be verified from the
support properties of Φ and the fact that the components of ΦR are orthogonal to
the components of ΦL, thus showing that Φ is a minimally supported generator with
k = 2. Also, note that Φ is continuous and has accuracy 2. In this example, it is the
accuracy that determines the squeeze map.

Recall that 2φ satisfies a refinement equation

2φ =

3∑
j=0

cj 2φ(2 · −j),(6.4)

where

c0 =
1 +
√
3

4
, c1 =

3 +
√
3

4
, c2 =

3−√3
4

, c3 =
1−√3

4
.

Using the refinement equation it is possible to calculate the following coefficients
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from the zeroth and first moments of 2φ (see [1]):

α0(0) =

(
1√
2
,
1√
2

)
, α1(0) =

(
−1−√3
4
√
2

,
1−√3
4
√
2

)

and

〈ΦR,ΦR〉 =
(

7
12 +

5
7
√

3
1

28
√

3
1

28
√

3
5
12 +

5
7
√

3

)
, 〈ΦL,ΦL〉 =

(
5
12 − 5

7
√

3
−1

28
√

3−1
28

√
3

7
12 − 5

7
√

3

)
.

Then

R(λ) =
1

2

(
1−√3 + (

1 +
√
3
)
λ

(
1 +
√
3
)
(1− λ)(

1−√3) (1− λ) 1 +
√
3 +

(
1−√3) λ

)

and

(〈ΦL,ΦL〉+ λR(λ)〈ΦR,ΦR〉R(λ)�
)
=

1

84

(
a(λ) b(λ)
b(λ) c(λ)

)
,

where

a(λ) = 35− 20
√
3 + 4

(
21 + 8

√
3
)
λ− 4

(
44 + 23

√
3
)
λ2 +

(
141 + 80

√
3
)
λ3,

b(λ) = (−1 + λ)
(√

3− 84λ− 31
√
3λ+ 42λ2 + 19

√
3λ2

)
,

c(λ) = 49− 20
√
3 + 4

(
21 + 8

√
3
)
λ− 4

(
19 + 2

√
3
)
λ2 +

(
27− 4

√
3
)
λ3.

The factors Bj may then be calculated from (4.3).

6.4. Irregular multiresolution analysis: k = 1, m = 0, p = 2, n = 3.
Let

(
a�
)
�∈Z

be a sequence of nested knot sequences such that a�+1
2j = a�j for ., j ∈ Z

and such that {a�j | ., j ∈ Z} is dense in R. Let V� = S0,2(a
�) denote the space

of continuous piecewise quadratic splines with break points given by a�. From the
theory of splines it follows that (V�) is a multiresolution analysis. Here we construct
a multiresolution (V ′

� ) such that

V� ⊂ V ′
� ⊂ V�+1

and each V ′
� has a local orthogonal basis. The local orthogonal basis for V

′
� is generated

with a generalization of the squeeze map idea. Our construction here extends the idea
of intertwining multiresolution analyses developed in [5] to the nonuniform case.

Let Φ = (h, q), where h and q are as in the example in section 6.1. Then V� =
Sσ�(Φ), where σ� is the squeeze map with knot sequence a� given by Rj = 1.

Let I�j = [a�j , a
�
j+1]. The idea of the construction is to add basis functions w�j ∈ V�

supported on I�j for each j ∈ Z to the basis Bσ�(Φ) in such a way that the resulting
space V ′

� has a local orthogonal basis. We first describe the construction when I =
I�j = [0, 1]; the general case will follow by rescaling. Then a := a�+1

2j+1 is in (0, 1).
Define q1,0, q1,1, and h1 by

q1,0(x) = q(x/a), q1,1 = q

(
x− a

a

)
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and

h1(x) =



x/a for x ∈ [0, a],
(1− x)/(1− a) for x ∈ [a, 1],
0 otherwise.

Observe that the space A of functions in V �+1 whose support is contained in [0,1] is
spanned by q1,0, q1,1, and h1. Note that q is in this 3-dimensional space. We choose
w = w�j in the 2-dimensional orthogonal complement of q in A. A basis for this space
is given by (with help from Mathematica)

u0 = a2(3a− 5)q1,0 + (1− a)2(2 + 3a)q1,1

u1 = (−2 + 3 (−1 + a) a3)q1,0 + (−2 + 3 (−1 + a)
3
a)q1,1

+

(
16

5
− 12 (−1 + a)

2
a2

)
h1.

We choose w in A and orthogonal to q so that it is of the form

w = c1u1 + c2u2.

Define

θR = (I − Pspan(w,q))hR

and

θL = (I − Pspan(w(·+1),q(·+1)))hL,

where hR = hχ[0,1) and hL = hχ[−1,0). In order to construct a local orthogonal basis
we require

〈θR, θL(· − 1)〉 = 0,

which is equivalent to the following quadratic equation in the variable c = c1/c2:

0 =5
(
4− 5 (1− a)

2
a2 (15 + (1− a) a)

)
(6.5)

− 20 (2 + a (9 + 13 a (−3 + 2 a))) c+ 4 (1 + 45 (1− a) a) c2.

The discriminant of this equation is

80
(
4− 15 (1− a)

2
a2
)2

,

giving the two solutions

c =
20(2 + a(9 + 13a(2a− 3)))± 4

√
5(4− 15(1− a)2a2)

8(1 + 45(1− a)a)
.

Hence, there are two choices for w for any a ∈ (0, 1). For each a ∈ (0, 1) choose one
such w and denote it by Wλ, where λ = (1 − a)/a is the ratio of the lengths of the
two subintervals [0, a] and [a, 1]. Let θR,λ = θR and θL,λ = θL with w = Wλ. Define

ΦλL,λR =


θL,λL

+ θR,λR

q
WλR
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Fig. 6.4. Continuous, orthogonal piecewise quadratic basis functions from the example in sec-
tion 6.4 with knots a�+1 = . . . , 0, 1, 3, 6, 7, 8, 10, . . . .

and note that ΦλL,λR is continuous and supported on [−1, 1]. Given a�+1 we construct

basis functions supported on [a�j−1, a
�
j+1] = [a�+1

2j−2, a
�+1
2j+2] as follows. Let τ

�
j be as in

(2.1) with knot sequence a�, let L�j = a�j+1 − a�j , and let

λ�j = L�+1
2j+1/L

�+1
2j .

Note that the collection of functions

B� =
⋃
j∈Z

Φλ
�
j−1,λ

�
j ◦ τ �j

is an orthogonal system of functions. Let

V ′
� = spanL2B�

for . ∈ Z. Then

V� ⊂ V ′
� ⊂ V�+1 ⊂ V ′

�+1,

from which it follows that (V ′
� )�∈Z is a multiresolution with local orthogonal basis B�.

Figure 6.4 shows several of the basis functions (we chose the minus branch of the
square root) for a� = . . . , 0, 3, 7, 10, . . . and a�+1 = . . . , 0, 1, 3, 6, 7, 8, 10, . . . .

7. Higher order accuracy and smoothness. Let Snm be the space of poly-
nomial splines of degree n with Cm knots at the integers. If we denote An,m =
{g ∈ Snm : supp g = [0, 1]}, then it is easy to see [6] that an orthogonal basis for

An,m is provided by φmi (t) = tm(1 − t)mp
2m+5/2
i−2m−2(2t − 1), 2m + 2 ≤ i ≤ n, where

p
2m+5/2
j (t) is the monic ultraspherical polynomial of degree j with λ = 2m + 5/2.

If we set Φ = (φm0 · · ·φmn )T , where φmi , i = 0, . . . ,m, supp φmi = [−1, 1] are appro-
priately chosen (i.e., judicious linear combinations of rim and lim, i = 0, . . . ,m, with
rim(t) = ti(1 + t)m+1 − 1 ≤ t ≤ 0 and lim(t) = ti(1 − t)m+10 < t ≤ 1), then Φ and
all its integer translates form a basis for Snm. This basis is not orthogonal, so Φ does
not generate a local orthogonal basis. We will modify Φ in order to construct an
orthogonal set of generators. We do this by adding to Φ, m+1 functions wi chosen so
that W ⊥ An,m and 〈(I − PW )φ̂mi , (I − PW )φ̂mj (· − 1)〉 = 0 i, j = 1, . . . ,m + 1.
Here W = span{wi : i = 1, . . . ,m + 1}, PW is the orthogonal projection onto
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W , and φ̂mi = (I − P{An,m,An,m(+1)})φmi . In the examples given below we will
choose wi to be linear combinations of {φmj }j>n. In this way wi ⊥ An,m since the

{tm(1 − t)mp
2m+5/2
l (2 · −1)}∞l=0 is a set of orthogonal polynomials. Notice that the

above wi will have their knots located at the integers. This is in contrast to the
construction carried out in [6] where in order to build a MRA it was necessary to use
wi with half integer knots.

7.1. C0 example. As a first example we consider the case m = 0. Then r0(t) =
(1 + t) and l0(t) = (1 − t), and we will choose wn1 = φ0

n+1 + αnφ
0
n+3. Since φ0

i

is symmetric or antisymmetric about 1/2 depending on whether i is even or odd,
respectively, we see that wn1 chosen above will be either symmetric or antisymmetric.

With r̂n0 (·) = (I − PAn,0)r0(· − 1) and l̂n0 (t) = (I − PAn0 )l0 we choose αn so that

〈(I −Pwn
1
)r̂0, (I −Pwn

1
)l̂0(t)〉 = 0. This gives the following quadratic equation for αn:

〈r̂n0 , l̂n0 〉〈wn1 , wn1 〉 = 〈wn1 , r0(· − 1)〉〈wn1 , l0〉(7.1)

or

〈r̂n0 , l̂n0 〉(〈φ0
n+1, φ

0
n+1〉+ α2

n〈φ0
n+3, φ

0
n+3〉)

= (〈φ0
n+1, r0(· − 1)〉+ αn〈φ0

n+3, r0(· − 1)〉)(〈φ0
n+1, l0〉+ αn〈φ0

n+3, l0〉).(7.2)

From [6] we find 〈r̂n0 , l̂n0 〉 = (−1)n+1n!
(n+3)! , 〈r̂n0 , r̂n0 〉 = 1

n(n+2) , and 〈r0, φ0
n〉 = 2n−2 n!(n−2)

2n! .

Furthermore, since 〈φ0
n, φ

0
n〉 = 1

32
(n+2)!(n−2)!

(2n−1)!(2n+1)!! , the above equation may be solved for

αn to obtain

αn =

− ((2n+ 7)(2n+ 3)(n+ 1)±√3(2n+ 7)(2n+ 3)(n+ 1)(n+ 3)(n+ 3))(2n+ 5)

(n+ 2)(n+ 1)(n2 − 5n− 30)
,

and φn,00 is given by

φn,00 (t) = (I − P(wn
1 ,w

n
1 (·+1)))h(t),

where h(t) = (1− |t|)+.
With φn,01 = wn1 we have the following theorem,
Theorem 7.1. For n ≥ 3,Φn = (φn,00 , φn,01 , φ0

2 . . . , φ
0
n)
T constructed as above is

a continuous orthogonal generator for B(Φ). Furthermore, Φn has accuracy n+ 1.

Figure 7.1 shows φn,00 and φn,01 for n = 3.

7.2. C1 example. We now construct a family of C1 orthogonal compactly sup-
ported generators which have varying degrees of accuracy. In this case four ramp
functions, ri1 = ti(1 + t)2, i = 0, 1 and li1 = ti(1 − t)2, i = 0, 1, are needed in the
construction of the orthogonal generators with support equal to [−1, 1]. We set

r̂n,i1 (·) = (I − PAn,1)ri1(· − 1) and l̂n,i1 (t) = (I − PAn,1)li1. The necessary integrals
to compute the above projections can be found in [6]. In order to make the computa-
tions somewhat more tractable we biorthogonalize the above ramp functions. Utilizing
the integrals [6]

〈r̂n,10 , l̂n,10 〉 =
4(−1)n+1(n2 + 2n− 9)(n− 2)!

(n+ 3)!
,(7.3)
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Fig. 7.1. The functions φ0 and φ3 from section 7.1 for n = 3.

〈r̂n,10 , l̂n,11 〉 =
12(−1)n+1(n− 2)!

(n+ 3)!
,(7.4)

and

〈r̂n,11 , l̂n,11 〉 =
36(−1)n+1(n− 3)!

(n+ 4)!
,(7.5)

we set rn,0 = r̂n,10 , ln,0 = l̂n,10 , rn,1 = r̂n,11 − 〈r̂n,1
1 ,ln,0〉

〈rn,0,ln,0〉rn,0, and ln,1 = l̂n,11 −
〈l̂n,1

1 ,rn,0〉
〈rn,01,ln,1〉 ln,1. With the help of the inner products given above, we find

〈rn,1, ln,1〉 = (−1)n36(n− 3)!

(n+ 4)!(n2 + 2n− 9)
(7.6)

and

〈rn,1, φ1
i 〉 = −

3

8

2n+i(n+ i)!(n+ i− 4)!(i2 + i+ 2ni− n− 3)

(2n+ 2i)!(n2 + 2n− 9)
.(7.7)

Two functions wi, i = 1, 2 will be needed to construct orthogonal generators from the
above ramp functions, and these will be symmetric and antisymmetric with respect
to 1/2 in order to construct symmetric or antisymmetric generators. To this end
let w1 = v0(n) + α1(n)v2(n), where vi(n) linear combinations of φ

1
n+1+i and φ1

n+3+i

and chosen so that 〈vi(n), rn,1〉 = 0. Thus v0(n) = − (5n+9)(n−2)
2(2n+5)(2n+3)φ

1
n+1 + φ1

n+3 and

v2(n) = −9 (n+3)(n+1)n
2(2n+9)(2n+7)(5n+9)φ

1
n+3+φ1

n+5. Likewise, w2 = v1(n)+α2(n)v3(n), where

vi(n) i = 1, 3 are orthogonal to rn,0. In this case v1(n) = − (n+8)(n+1)n
2(2n+7)(2n+5)(n+8)φ

1
n+2 +

φ1
n+4 and v3(n) = v1(n+ 2). The biorthogonality of the ramps and the construction

of vi, i = 0, 1, 2, 3 imply that each αi(n) must be chosen as a solution to the equation

〈rn,i, ln,i〉〈wi+1, wi+1〉 = 〈wi+1, r
1
i (· − 1)〉〈wi+1, l

1
i 〉.
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Utilizing (7.6), (7.7), and 〈φ1
n, φ

1
n〉 = n!(n+8)!

256(2n+9)!!(2n+7)!! to compute the inner products

needed in the above equation we find using Maple that

α1(n) =
(5n+ 9)(2n+ 7)

(n+ 3)

×
(2n+ 11)q1(n)± (n+ 4)(n+ 5)(5n+ 9)(2n+ 7)

{
5(2n+11)(n+4)
n(n+1)(2n+3) q2(n)

} 1
2

2q3(n)
,

where

q1(n) = 41n5 + 625n4 + 3733n3 + 11099n2 + 17010n+ 11340,

q2(n) = 17n5 + 131n4 − 105n3 − 2979n2 − 7884n− 6804,

and

q3(n) = 37n7 + 1376n6 + 18862n5 + 139394n4 + 502291n3

+ 1099160n2 + 1287090n+ 635040.

Likewise,

α2(n) =
(2n+ 9)(n+ 8)

(n+ 3)(n+ 6)

×

(
−(2n+ 13)q4(n)± (n+ 5)(n+ 6)(n+ 8)(2n+ 9)

{
7(2n+13)(n+4)(n+1)

(2n+5)(n+2) q5(n)
} 1

2

)
2q6(n)

,

where

q4(n) = 11n6 + 115n5 + 323n4 + 893n3 + 8642n2 + 28968n+ 25200,

q2(n) = 3n5 + 27n4 + 7n3 − 503n2 − 1486n− 1400,

and

q6(n) = 5n7 + 39n6 − 335n5 − 5129n4 − 29484n3 − 112048n2 − 242304n− 159600.

Knowing w1 and w2, we are now able to construct the orthogonal C1 generator. Let
h0(t) = 2|t|3−3 |t|2+1, if t ∈ [−1, 1), and 0 elsewhere; h1(t) = (1−|t|)2t, if t ∈ [−1, 1),
and 0 elsewhere; and φn,1i+1 = wi, i = 1, 2. Figure 7.2 shows φn,10 , φn,11 , φn,12 , and φ3,1

1

for n = 6. Then with

φn,1i =
(
I − P(φ1

2,... ,φ
1
n,φ

1
2(·+1),... ,φ1

n(·+1))

)
hi (i = 0, 1),

the above computations give the following theorem.
Theorem 7.2. For n ≥ 5, and αi(n) given above, Φ1(n) = (φn,10 , . . . , φ1

n)
T is a

continuously differentiable orthogonal generator for B(Φ1(n)). Furthermore, the last
n− 1 functions are symmetric or antisymmetric about 1/2. The first function φn,10 is
symmetric about 0, while φn,11 is antisymmetric about 0.
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Fig. 7.2. The functions φn,1
i for n = 6 and i = 0, . . . , 3.

We now construct the squeeze map associated with Φ1(n). Since the last n − 2
generators are supported on [0, 1] we need only concentrate on φn,10 and φn,11 . Because
of the definition of h0 and h1 and the symmetry of φn,10 and φn,11 it is easy to see that
W (n) is a diagonal matrix for all n. Therefore R(n) is as in the previous C1 example,

and with A
(j)
L a diagonal matrix R(n) is equal to A

(j)
R . In order to complete the

construction of the squeeze map we need to compute the inner products 〈ΦL,ΦL〉
and 〈ΦR,ΦR〉. From (3.9) in [6] (we would like to point out some errors in that

equation; namely, rn,ki+1 in the first term on the right-hand side should be rn,ki , the
factor multiplying the third term on the right-hand side should be (n − k − 1 − i),
and the factor multiplying the last term should be (n+ k + i+ 3)) we find that

〈rn,10 , rn,10 〉 = 4
(n2 + 2n− 6)(n− 2)!

(n+ 3)!
,(7.8)

〈rn,11 , rn,10 〉 = 6
(n− 2)!

(n+ 3)!
,(7.9)

and

〈rn,11 , rn,11 〉 = 12
(n− 3)!

(n+ 4)!
.(7.10)
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To continue on we choose the minus sign in α1(n) and the plus sign in α2(n) to
compute φn,1i i = 2, 3. Then (7.7) and the norm squared of φ1

n can be employed to

compute (using Maple) the norms of φn,1i , i = 2, 3 and the inner products of these

functions with r̂n,1i , i = 0, 1. With these in hand, (7.8), (7.9), and (7.10) can be used
to compute 〈ΦR,ΦR〉, which is

〈ΦR,ΦR〉 =
(

4 n5+3n4−10n3−21n2+27n+18
(n−2)(n2+2n+9)(n+1)(n+2)(n+3) −6 n3−9n+6

(n−2)(n2+2n+9)(n+1)(n+2)(n+3)

−6 n3−9n+6
(n−2)(n2+2n+9)(n+1)(n+2)(n+3) 12 n−3

(n−2)(n2+2n+9)(n+1)(n+2)(n+3)

)
.

Since these functions are either symmetric or antisymmetric 〈ΦL,ΦL〉 is the same as
the above matrix, except that the off diagonal elements take the opposite sign. Thus
(2.3) becomes

BBT = (Lj + Lj−1)

×

 4 (n5+3n4−10n3−21n2+27n+18)

(n−2)(n2+2n+9)(n+1)(n+2)(n+3) 6
(Lj−Lj−1)(n

3−9n+6)
Lj−1(n−2)(n2+2n+9)(n+1)(n+2)(n+3)

6
(Lj−Lj−1)(n

3−9n+6)
Lj−1(n−2)(n2+2n+9)(n+1)(n+2)(n+3) 12

(L2
j−LjLj−1+L

2
j−1)(n−3)

L2
j−1(n−2)(n2+2n+9)(n+1)(n+2)(n+3)


 .

The determinant of the above matrix may be written as

det(BBT ) = (Lj + Lj−1)
2

×12(n
3 − 9n− 18)(L2

j + L2
j−1) + 6(5n5 − 92n3 + 54n2 + 423n− 450)LjLj−1

(Lj−1(n− 2)(n2 + 2n+ 9)(n+ 1)(n+ 2)(n+ 3))2

so that (4.3) may be used to compute B.

Acknowledgment. We thank the anonymous referees for their careful reading
and suggestions.
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Abstract. We describe a preconditioning technique for the Galerkin approximation of the elec-
tric field integral equation (EFIE), which arises in the scattering theory for harmonic electromagnetic
waves. It is based on a discretization of the Calderon formulas and the Helmholtz decomposition.
We prove several properties of the method, in particular that it produces a variational solution on
a subspace of the Galerkin space for which we have an LBB inf-sup condition. When the Krylov
spaces associated with the continuous operators are nondegenerate we prove that the discrete Krylov
spaces converge as the mesh refinement goes to zero; when, moreover, the EFIE is nondegenerate on
the continuous Krylov spaces, the discrete Krylov iterates converge towards the continuous ones. We
also argue that one might expect the continuous Krylov iterates to exhibit superlinear convergence of
the form n �→ Cn(n!)−α for some C > 0 and α > 0. Finally, we illustrate the theory with numerical
experiments.

Key words. electric field integral equation, Calderon formula, preconditioning, Krylov subspace

AMS subject classifications. 65N38, 78M15

PII. S0036142901388731

Introduction. In [51] Steinbach and Wendland described several strategies for
the preconditioning of some boundary integral equations of the first kind, based on
the knowledge of an operator of the opposite order. On several examples of sym-
metric positive definite (SPD) integral operators, they provided a discretization of
the operators to construct a preconditioner such that the extreme eigenvalues of the
preconditioned matrix remain bounded away from 0 and +∞ independently of the
mesh refinement. When iterative algorithms are used to solve the matrix equations,
this in turn is well known to yield convergence estimates that are also independent of
the mesh refinement, of the form ‖Un − U�‖ ≤ Cαn‖U�‖ for some C > 0, 0 < α < 1
(so-called linear convergence).

In [17] we adapted the theory to some non-SPD problems. We showed that in
these cases one can still prove that the spectral condition number of the precondi-
tioned matrix remains bounded independently of the mesh refinement, as long as all
the bilinear forms involved satisfy uniform inf-sup estimates on the Galerkin spaces.
This was applied to some problems of three-dimensional acoustic scattering. Comple-
mentary results, in particular close to resonant frequencies, were exposed in [18].

We restricted our attention to preconditioners deduced from Calderon formulas—
for some scalar operators—and remarked that they provide an inverse up to a compact
endomorphism. One would expect this to produce a matrix with a spectrum clustered
around 1. This would imply very fast, perhaps in some sense superlinear, convergence
of Krylov subspace methods. However, we presented no formal proof of this intuition.

In this paper we use the Calderon formulas—for some operators on tangential
vector fields—to construct a preconditioner for the electric field integral equation
(EFIE). Compared with the scalar case there is a major pitfall: the involved bilinear
forms do not all satisfy uniform inf-sup conditions on the standard Galerkin spaces
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(Proposition 3.1). We nevertheless construct a numerically efficient preconditioner for
which we can identify and prove satisfactory properties. In effect the Galerkin problem
is solved on a subspace of the standard space, and we show that this subspace has
all the properties required to ensure the well-posedness of the EFIE on it (Theorem
3.15). We also prove that the discretized preconditioner is stable and approximating
in the sense of Proposition 4.6. The discrete Krylov spaces converge as the mesh
refinement h decreases to 0 (Theorem 4.7) and from this we deduce that, under
some natural hypotheses, the approximate solution at iteration n converges as h→ 0,
towards a vector un (Corollary 4.10). We also explain why we expect (un) to converge
superlinearly, perhaps even at the rate Cn(n!)−α, for some C > 0, α > 0 (section 4.3).

We first officially detailed this discretization technique in [16] and announced the
theorems justifying it in [19]. Proofs of one of them (Theorem 1.2) can be found in [15].
(This paper also contains complementary results on the behavior of the equation at
resonant frequencies.) In the present paper we explicitate and prove—and sometimes
improve—the remaining announced results, as well as a few others that sustain the
construction.

At about the same time, in [21], another research team announced progress on
what also amounts to the use of the Calderon formulas for the construction of a stable
method. However, discretizations were proposed only for Nyström schemes, and it
seems that for these they did not encounter a difficulty comparable to Proposition 3.1.
Since this was the main problem we had to solve in the Galerkin setting, in extending
the method from acoustics to electromagnetics, we believe there to be no overlap for
the techniques involved.

Outline. The paper is organized as follows:

Section 1. We describe the continuous problem we are dealing with and state sufficient
conditions for the discretization to satisfy uniform inf-sup estimates. We also
prove the Calderon formulas.

Section 2. We define the Galerkin spaces we will use and give some useful proper-
ties: negative norm estimates, approximation properties for harmonic tangent
fields, and properties of the discrete Helmholtz decomposition.

Section 3. We introduce the preconditioner we propose, after having described the
main difficulty. Then we give a first interpretation of the system we solve
and the projections we use. We give several characterizations of the range of
the discrete rotation operator and deduce from these that the EFIE is well
posed on this subspace. We also devise an intrinsic stopping criterion for the
algorithm.

Section 4. We show the convergence of the Krylov subspaces and explain why this
should lead to superlinear convergence of the iterates.

Section 5. We illustrate the theory with numerical results for diffraction by a sphere,
a cavity, and a singular geometry.

1. The EFIE. We briefly recall the setting for exterior boundary value problems
for the harmonic Maxwell equations, the integral representation of exterior electro-
magnetic fields, and the related integral equation known as the EFIE, as presented,
for instance, in Cessenat [14] or Nédélec [43]. Then we turn to the discretization of
this equation by the Galerkin method and state some new sufficient conditions (ob-
tained in Christiansen [15]) for its well-posedness, in the sense of satisfying a uniform
inf-sup condition. This in turn is well known to guarantee quasi-optimal convergence
of the approximate solutions. Finally, we include a proof of the Calderon formulas
and explain why they should lead to an efficient preconditioning technique.
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1.1. The continuous problem. Let Ω− be a smooth, bounded, and open sub-
set of R

3, denote by Γ its surface, and denote by Ω+ the complement of Ω− ∪ Γ. We
refer to Ω− as the interior domain and to Ω+ as the exterior domain. The unit-length
orthogonal vector field on Γ, pointing into Ω+, is denoted n. We suppose throughout
that Ω+ is connected. The free-space harmonic Maxwell equations for vector fields E
and H in Ω+ are

curlE = +iωµH,(1.1)

curlH = −iωεE,(1.2)

where µ is the magnetic permeability, ε is the electric permittivity, and ω is the
pulsation. Define the wavenumber k and the impedance Z by

k = ω(µε)1/2,(1.3)

Z = (µ/ε)1/2.(1.4)

Then we have +iωµ = +ikZ and −iωε = −ik/Z.
Spaces of functions. On any smooth Riemannian manifold M which is either an

open subset of an Euclidean space or is compact without boundary, the usual Sobolev
spaces of scalar and tangential fields of regularity order s ∈ R are denoted Hs(M) and
HsT(M), respectively (see, e.g., Taylor [52, Chap. 4]), and the corresponding norms
are both written

u �→ |u|s.(1.5)

On any open subset Ω of R
3, define the Sobolev spaces Hscurl(Ω) of vector fields by

Hscurl(Ω) = {v ∈ HsT(Ω) : curl v ∈ HsT(Ω)}.(1.6)

We will use also the Hilbert spaces Hsdiv(Γ) of tangent fields on Γ defined by

Hsdiv(Γ) = {u ∈ HsT(Γ) : div u ∈ Hs(Γ)}.(1.7)

The spaces Hsdiv(Γ) are equipped with the norms

u �→ ‖u‖s : ‖u‖2s = |u|2s + |div u|2s.(1.8)

We define Hsrot(Γ) in a similar way, but we do not introduce any notation for the
corresponding norm. Notice that u �→ u×n induces isomorphisms Hsrot(Γ)→ Hsdiv(Γ)
and Hsdiv(Γ)→ Hsrot(Γ).

For any space of (scalar) distributions X on Γ, we denote by X• the subspace
of elements u such that for all v that are constant on each connected component of
Γ (i.e., satisfying ∆v = 0) 〈u, v〉 = 0. ∆ has a meaning even for vector distributions
(currents). As usual, the Hilbert spaces we consider are vector spaces over C obtained
as complexifications of real Hilbert spaces of scalar and tangent fields. In particular,
they are equipped with conjugations u �→ u, induced by the standard conjugation
in C.

Recall the result of Paquet [45] (see [43, Thm. 5.4.2, p. 209]) that we have well-
defined continuous and surjective tangential trace operators for arbitrary large enough
R > 0 (with BR = {x ∈ R

3 : |x| < R} ):

γT :

{
H0

curl(Ω+ ∩BR) → H
−1/2
rot (Γ),

v �→ vT = v − (v · n)n.(1.9)
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For simplicity we denote by H0
curl(Ω+)loc the Fréchet space of vector fields in Ω+

whose restrictions are in H0
curl(Ω+ ∩ BR) for all R > 0. We caution the reader that

this notation is sometimes (but not in this article) used for a different space consisting
of the fields whose restrictions are in H0

curl(Ω+ ∩ U) for all open U such that U is a
compact subset of Ω+. This space is larger, since it allows rather wild behavior close
to Γ. In particular, there is no trace operator on this space.

A technique we shall use many times is to write tangential vector fields u in the
form of their Helmholtz decomposition:

u = grad p+ rot q + α,(1.10)

with ∆α = 0, and to use regularity theorems of the Laplacian to characterize p and q.
We shall refer to this technique as the HDRL. It was used to study electromagnetic
scattering by DeLaBourdonnaye [24].

Integral representation for exterior scattering problems. The basic property for
exterior boundary value problems for the harmonic Maxwell equations is (see [43,

Thm. 5.4.6, p. 220]) that for any k > 0, and any v ∈ H−1/2
rot (Γ), there is a unique

(E,H) ∈ H0
curl(Ω+)

2
loc such that

• (E,H) solves the harmonic Maxwell equations in Ω+,
• (E,H) satisfies the Silver–Müller radiation conditions,
• and γTE = v.

Let Gk be the fundamental solution of the Helmholtz operator −∆−k2 satisfying
the Sommerfeld radiation condition

Gk(x, y) =
eik|x−y|

4π|x− y| ,(1.11)

and let Φk be the potential, mapping any sufficiently smooth tangent field u on Γ to
the field in R

3 defined away from Γ by

(Φku)(y) =

∫
Γ

Gk(x, y)u(x)dx.(1.12)

Returning to the above boundary value problem, if k is not a resonance of the

interior Maxwell equations there is a unique u ∈ H−1/2
div (Γ) such that for all y ∈ Ω+

E = (1 + (1/k2) grad div)Φku,(1.13)

H = 1/(ikZ) curl Φku.(1.14)

This formula is a special case of the Stratton–Chu integral representation (see [43,
Thm. 5.5.1, p. 234]). For any k �= 0 we define the electric field integral operator Ak by

Aku = γT(1 + (1/k
2) grad div)Φku.(1.15)

One shows that the EFIO is continuous Ak : H
s
div → Hsrot and that if k is not a

resonance of the interior problem it is an isomorphism (see [43, Thm. 5.6.2, p. 247]).

Thus if k is not a resonant frequency the exterior problem for a given v ∈ H−1/2
rot (Γ)

is reduced to the problem of solving the integral equation Aku = v, called EFIE.
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Variational formulation. From the HDRL it follows that the bilinear form on
smooth tangent fields,

(u, v) �→ 〈u, v〉 =
∫

Γ

u · v,(1.16)

extends continuously to a duality between Hsdiv(Γ) and H
−1−s
rot (Γ) (see also [43, Lem.

4.5.1, p. 208]). Thus one obtains the variational formulation of the EFIE. For a given
v ∈ Hsrot(Γ), solve

u ∈ Hsdiv(Γ) and ∀u′ ∈ H−1−s
div (Γ) 〈Aku, u′〉 = 〈v, u′〉.(1.17)

Remark that the case s = −1/2 is symmetric. From a practical point of view it is
important that we have the following expression, with only weakly singular integrals
(all integrals are on Γ):

〈Aku, u′〉 =
∫∫

Gk(x, y)u(x) · u′(y)dxdy(1.18)

−(1/k2)

∫∫
Gk(x, y) div u(x) div u

′(y)dxdy.

1.2. Discretization. Put X = H
−1/2
div (Γ). Given some sequence (Xh) of closed

(finite-dimensional) subspaces of X, the Galerkin method to solve (1.17) is to consider
the problems

u ∈ Xh and ∀u′ ∈ Xh 〈Aku, u′〉 = 〈v, u′〉.(1.19)

When it is uniquely solvable for each h one obtains a sequence (uh), and it is of
fundamental importance to know to which extent it converges towards A−1

k v.
In this context we have the following fundamental theorem due to Babuska [2].
Theorem 1.1. Let X be a reflexive Banach space and A : X → X� be linear and

continuous. Suppose we have a closed subspace Xh of X and that for some α > 0 we
have

inf
u∈Xh

sup
u′∈Xh

|(Au)(u′)|
‖u‖ ‖u′‖ ≥ α(1.20)

∀u′ ∈ Xh

(∀u ∈ Xh (Au)(u′) = 0
)⇒ (

u′ = 0
)
.(1.21)

Then the induced map Ah : Xh → X�
h is invertible (with an inverse of norm less than

α−1). Moreover, for all l ∈ X�, if we have a solution u ∈ X to Au = l, then

‖A−1
h (l|Xh

)− u‖ ≤ (1 + α−1‖A‖) inf{‖u′ − u‖ : u′ ∈ Xh}.(1.22)

Notice that finite-dimensional subspaces are closed and that for these condition
(1.21) is implied by (1.20).

Now suppose we have a family (Xh) of closed subspaces of X. When there is an
α that holds for all h in estimate (1.20), and (1.21) holds for all h, we say that we
have a uniform discrete inf-sup condition. Then the only remaining point is whether
the spaces Xh are approximating, in the sense that

∀u ∈ X lim
h
inf{‖u− u′‖ : u′ ∈ Xh} = 0.(1.23)

In general this question is well studied in the literature (with improved convergence
estimates on some dense subspaces of X). However, in order to justify the precondi-
tioning technique we shall describe in this paper, we will need to study this question
for some nonstandard spaces.
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Inf-sup conditions for the EFIE. The Galerkin discretization of the EFIE by
Raviart–Thomas-type vector fields was studied by Bendali [4, 5]. More generally, we
consider the following hypotheses for the Galerkin spaces (Xh).
(H0) The spaces Xh are finite-dimensional subspaces of H

0
div(Γ), which are stable

under the conjugation u �→ u (conj.-stable for short).
(H1) There is C > 0 such that for all u ∈ H1

div(Γ)

inf
u′∈Xh

‖u− u′‖0 ≤ Ch‖u‖1.(1.24)

(H2) There is C > 0 such that, for all u ∈ Xh, ‖u‖0 ≤ Ch−1‖u‖−1.
(H3) Putting Wh = {u ∈ Xh : div u = 0}, there is C > 0 such that for all u ∈ Xh, if

∀w ∈Wh 〈u,w〉 = 0,(1.25)

then the solution φ of

φ ∈ H1(Γ)• and ∆φ = div u(1.26)

satisfies

|u− gradφ|0 ≤ Ch|div u|0.(1.27)

Notice that (H3) implies the usual inf-sup estimate: There is C > 0 such that

inf
q∈divXh

sup
u∈Xh

|〈q,div u〉|
|q|0‖u‖0 ≥ 1

C
.(1.28)

The following theorem was proved in Christiansen [15].
Theorem 1.2. If k is not a resonance of the interior problem and a family (Xh)

of Galerkin spaces satisfies the four conditions (H0), . . . ,(H3), then the bilinear form
induced by Ak on X satisfies a uniform inf-sup condition on Xh.

Of course these hypotheses also guarantee that in addition the (Xh) are approx-
imating, so the approximate solution converges to the exact one (see section 2.2 for
some details on this question).

The fact that the fields obtained by suitable transportation of Raviart–Thomas
fields onto Γ satisfy these hypotheses is also checked in Christiansen [15], relying
mostly on classical results that can be found, for instance, in Brezzi and Fortin [12].
Variants of the estimate on discrete Helmholtz decompositions appearing in (H3) have
been used to study eigenvalue problems in mixed form and related discrete compact-
ness results (see Kikuchi [37], Boffi [7], Boffi, Brezzi, and Gastaldi [8], and Demkowicz
et al. [27]). Here, as already indicated, we will need to prove the hypothesis for some
new spaces, in order to justify our preconditioning technique.

Solving the matrix equation. To solve the Galerkin problem one chooses a basis
eh = (eh(i)) of Xh and defines the matrix Ah(k) and the tuple Vh by

Ah(k)ij = 〈A(k)eh(j), eh(i)〉, (Vh)i = 〈v, eh(i)〉.(1.29)

In other words Ah(k) is the matrix, from eh to its dual basis, of the induced map

Ah(k) :
{

Xh → X�
h,

u �→ 〈A(k)u, ·〉,(1.30)
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whereas Vh is the coordinate vector, in the dual basis of eh, of the linear form 〈v, ·〉
restricted to Xh.

Then the discrete Galerkin problem (1.19) is stated in matrix terms as

Ah(k)U = Vh.(1.31)

When this equation is solved iteratively one usually observes very slow convergence, if
one observes it at all. Loosely speaking this is due to the fact that the operator Ak, via
the Helmholtz decomposition, is seen to have one term of order 1 and another of order
−1 acting on supplementary infinite-dimensional subspaces and with different signs.
Thus, at least if the basis eh is such that the canonical scalar product on C

dimXh

corresponds to the H0
T(Γ) scalar product, the spectrum of Ah(k) accumulates both at

0 and ∞. The presence of resonant frequencies further deteriorates the conditioning
of the matrix.

This motivates our search for a preconditioner, that is, a matrix Zh, such that,
when Zh is incorporated in an iterative solver, the reduction in the number of itera-
tions required to obtain a satisfactory approximate solution outweighs the overhead
of multiplying by Zh. It is well known that this is achieved whenever Zh is some
easily computable approximate inverse of Ah(k).

For ease of interpretation we will drop the matrix point of view and look instead
for some easily computable Zh : X�

h → Xh which approximately inverts Ah(k). How-
ever, it should be kept in mind that the method is effective only in as far as it can be
translated into a matrix manipulating algorithm.

1.3. Calderon formulas. The preconditioning technique we study in this paper
is based on the Calderon formulas which we start by recalling. They are detailed
in the electromagnetic setting in both Cessenat [14] and Nédélec [43]. We include
a derivation of them mainly because the notations adopted here are not quite the
same. Of course many of the arguments developed in this section were implicitly
assumed while we introduced the EFIE and should be placed earlier in a strictly
logical development.

Denote by B the operator on tangent fields on Γ defined by

Bu = u× n.(1.32)

Let ℘ be the orthogonal projection onto Γ, which is defined and smooth on a tubular
neighborhood of Γ. Extending n to this neighborhood by ℘, we can define at any
point x of this neighborhood, the tangential component of any vector v, by Txv =
v−(v ·n(x))n(x). Define an operator Ck on tangent fields on Γ, by taking the principal
value of the tangential component in the exterior and interior domains (with respect
to shrinking balls centered on Γ), of the following potential:

Cku = PVTcurl Φku.(1.33)

In fact, for smooth u the field curl Φku has different interior and exterior tangential
traces which are both finite. More precisely, denoting γ+

T and γ−
T the exterior and

interior trace operators one has

γ+
T curl Φku = +(1/2)Bu+ Cku,(1.34)

γ−
T curl Φku = −(1/2)Bu+ Cku.(1.35)

In particular, one has the familiar jump formula

u = [(curl Φku)× n] = B(γ− curl Φku− γ+ curl Φku).(1.36)
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We also remind the reader that for potentials of the form

(1 + (1/k2) grad div)Φku,(1.37)

the exterior and interior tangential traces are equal (and given by the EFIO), thus
there is no tangential “jump” for these.

To derive the Calderon formulas the last ingredient we need is the representation
theorem.

Theorem 1.3. Suppose (E,H) is a field whose restrictions to Ω− and Ω+ are in
H0

curl(Ω−)2 and H0
curl(Ω+)

2
loc and solve Maxwell’s equations for a given wavenumber

k. Suppose also that it verifies the Silver–Müller radiation conditions. Define the
electric and magnetic currents j and m on Γ by the jump formulas

j = [H × n] = (γ−
TH − γ+

TH)× n,(1.38)

m = [E × n] = (γ−
TE − γ+

TE)× n.(1.39)

Then in Ω− and Ω+ we have

E = (+ikZ)(1 + (1/k2) grad div)Φkj + curl Φkm,(1.40)

H = (−ik/Z)(1 + (1/k2) grad div)Φkm+ curl Φkj.(1.41)

Now the theorem we are interested in is the following.
Theorem 1.4. The following operator is a projector:[

1/2−BCk −(−ik/Z)BAk
−(+ikZ)BAk 1/2−BCk

]
.(1.42)

More explicitly, we have

BCkBCk + k2BAkBAk = 1/4,(1.43)

BCkBAk +BAkBCk = 0.(1.44)

Proof. Choose two (smooth enough) tangent fields u and v on Γ. Define fields E
and H by putting, in the exterior domain,

E = (+ikZ)(1 + (1/k2) grad div)Φku + curl Φkv,(1.45)

H = (−ik/Z)(1 + (1/k2) grad div)Φkv + curl Φku.(1.46)

Then we have

−γ+
TH × n = −(−ik/Z)BAkv + (1/2−BCk)u,(1.47)

−γ+
TE × n = −(+ikZ)BAku+ (1/2−BCk)v.(1.48)

In the interior domain put E = 0 and H = 0. Now we have

[H × n] = −γ+
TH × n,(1.49)

[E × n] = −γ+
TE × n.(1.50)

Using the representation theorem, these tangent fields give rise to new integral rep-
resentations for E and H. Now to say that the announced operator is a projector
just expresses that taking the jumps (or the appropriate exterior traces) of these new
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integral representations for the same fields (E,H) should yield the same jumps (or
exterior traces).

The operator appearing in (1.42) is called the exterior Calderon projector.
The crucial remark is now that the operator BCkBCk is a compact endomorphism

of Hsdiv(Γ), thus 4k
2BAkB inverts Ak up to a compact operator. The scalar coefficient

4k2 is unimportant for preconditioning purposes, so our aim will be to discretize the
operator BAkB. Since we deal with variational formulations we express our goal in
terms of bilinear forms, for which it is preferable to have symmetric formulations, so,
remarking that B = −B� = B�−1, we set out to discretize the map

Zk = B�−1AkB−1,(1.51)

where B is the isomorphism{
Hsdiv(Γ) → H−1−s

div (Γ)�,
u �→ 〈Bu, ·〉.(1.52)

2. Some properties of some Galerkin spaces. We recall the definition and
basic properties of the Galerkin spaces on Γ that we will use in this article, including
the null sequences relating spaces of scalar and tangent finite elements, as well as
some negative norm estimates. Of particular importance will be the approximation
of harmonic tangent fields and the structure of the discrete Helmholtz decomposition
that largely follows from it.

2.1. Surface finite element spaces. Recall that we denote by ℘ the orthogonal
projection onto Γ, which is defined and smooth on a tubular neighborhood of Γ. Let
(Th) be a family of triangulations of Γ, where for all h the largest diameter of a
triangle of Th is h. We will always suppose that (Th) is regular and most often
that it is (globally) quasi-uniform. Let Γh be the affine polyhedron determined by
Th, considered as a Lipschitz manifold. For small enough h, ℘ induces Lipschitz
isomorphisms Γh → Γ, and we denote by Ξh the inverse mappings.

Fix a nonzero m ∈ N. On Γh we consider the space S0(Th) of continuous scalar
functions whose restriction to any triangle is Pm (a polynomial of degree m), the
space S1(Th) of Raviart–Thomas H0

div-conforming vector fields of degree m, and the
space S2(Th) of scalar functions whose restriction to any triangle is Pm−1.

From these finite element spaces on Γh we deduce finite element spaces on Γ by
the transport formulas

S0
h = {x �→ u(Ξh(x)) : u ∈ S0(Th)},

S1
h = {x �→ JacΞh(x)DΞh(x)

−1u(Ξh(x)) : u ∈ S1(Th)},
S2
h = {x �→ JacΞh(x)u(Ξh(x)) : u ∈ S2(Th)}.

(2.1)

These transport formulas were chosen to make the following diagram commute. The
horizontal arrows are the differential operators rot and div, whereas the vertical ones
are the above transport formulas.

0 → S0(Th) → S1(Th) → S2(Th) → 0
↓ 0 ↓ rot ↓ div ↓ 0 ↓
0 → S0

h → S1
h → S2

h → 0
(2.2)

Of course this diagram is a realization of a corresponding diagram on differential
forms, on which the exterior derivative act, transported by the standard pull-back
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of differential forms determined by Ξh. The connection between finite elements and
differential forms, especially Whitney forms, was stressed by Bossavit [9] and further
explicitated in the affine case in Hiptmair [32]. While this is useful to keep in mind
we stick to tangent vector fields and scalar fields on Γ, since in accordance with
widespread conventions we have chosen to represent the exterior electromagnetic fields
as fields of vectors, not alternate forms. The relevance of commuting diagrams to the
study of finite elements is noted in Boffi [7].

Remark also that when studying the approximation of the boundary Γ by piece-
wise polynomial triangulations as in Nédélec [40], one is led to consider Galerkin
spaces defined by pull-backs by maps that are slightly different from Ξh.

2.2. Basic negative norm estimates. Since negative (and noninteger) Sobo-
lev norms and corresponding approximation results pervade this article, we now recall
rather informally the results needed. Of course we do not claim any originality for
these results, and we have included them mainly for the convenience of the exposition.

Let (Xh) be a family of Galerkin spaces satisfying (H0) and (H1). Let Qh be the
H0

div(Γ)-orthogonal projection onto Xh.
It is well known that

‖Qhu‖0 ≤ C‖u‖0 and ‖u−Qhu‖0 ≤ Ch‖u‖1.(2.3)

From the HDRL (section 1.1) it follows that the spaces Hsdiv(Γ) for 0 ≤ s ≤ 1 can be
obtained by interpolation. Hence interpolation on the operator I −Qh, for 0 ≤ s ≤ 1,
gives

‖u−Qhu‖0 ≤ Chs‖u‖s.(2.4)

Then one uses the regularity of the H0
div(Γ)-inner product (written (·|·)0) on various

Sobolev spaces. This technique is the familiar Aubin–Nitsche trick. That Hsdiv(Γ) and
H−s

div(Γ) are dual with respect to the H
0
div(Γ)-inner product can be deduced from the

fact that the operator I − grad div is an isomorphism Hsdiv(Γ) → Hs−1
rot (Γ) and that

this space, as already remarked, is the L2
T-dual of H

−s
div(Γ). Both of these facts can be

proved using the HDRL. For 0 ≤ s ≤ 1 we have

‖u−Qhu‖−s ≤ C sup
v∈Hs

div

|(u−Qhu|v)0|
‖v‖s(2.5)

≤ C sup
v∈Hs

div

|(u−Qhu|v −Qhv)0|
‖v‖s(2.6)

≤ C‖u−Qhu‖0 ‖I − Qh‖0,s.(2.7)

Here ‖I − Qh‖0,s is of course the norm of the induced map

I − Qh : Hsdiv(Γ)→ H0
div(Γ).(2.8)

This gives for 0 ≤ s, s′ ≤ 1

‖u−Qhu‖−s ≤ Chs+s
′‖u‖s′ .(2.9)

If in addition we have the inverse inequality (H2) we obtain

‖Qhu‖−1 ≤ ‖u‖−1 + ‖u−Qhu‖−1 ≤ ‖u‖−1 + Ch‖u‖0 ≤ C‖u‖−1.(2.10)
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This is proved first for u ∈ H0
div(Γ) and then extended to u ∈ H−1

div(Γ) by a density
argument. By interpolation on Qh one then extends this stability result to all −1 ≤
s ≤ 0:

‖Qhu‖s ≤ C‖u‖s.(2.11)

2.3. Approximation of harmonic fields. Since we deal with surfaces which
we do not require to be simply connected, a useful construct is that of the associated
cohomology groups of which we give the realizations in terms of vector and scalar
fields, the so-called harmonic fields. (This notion of harmonicity is only remotely
related to the harmonicity of the electromagnetic waves we consider.) We denote
these spaces by G

i for i = 0, 1, 2. For instance G
1 can be characterized as the L2-

orthogonal of the range of the rot operator on smooth scalar fields (or H1(Γ)), in the
kernel of the div operator on smooth tangent fields (resp., H0

div(Γ)).
Noticing that the two rows in the diagram (2.2) are null sequences, we consider,

for each horizontal pair of consecutive arrows, the L2-orthogonal of the range of the
left arrow, in the kernel of the right arrow. For the second row we denote these vector
spaces by G0

h, G1
h, and G2

h.
It is a remarkable fact that these “discrete” cohomology groups have the “right”

dimension, i.e., the dimension of their continuous analogues G
i. This is either ele-

mentary or can be deduced from the Euler–Poincaré formula. The use of this formula
should not come as a surprise, since it is one of the main reasons for the effectiveness
of simplical triangulations in algebraic topology. It has been used in finite element
theory for quite some time, even at the textbook level; see, for instance, Nédélec [42].

For each h, let N0
h be the number of vertices, N

1
h the number of edges (segments),

and N2
h the number of faces (triangles) in Th. Let NC be the number of connected

components of Γ.
We leave it as an exercise to check that for G0

h and G2
h the dimension is the

number NC of connected components of Γ. Remark also that G0
h = G

0, whereas
G2
h �= G

2. However, the elements of G
2, which are the functions that are constant on

each connected component of Γ, are of course well approximated by the elements of
G2
h.
We now turn to the more interesting case of G1

h. We have

dimG1
h =

(
dimS1

h − (dimS2
h −NC)

)− ( dimS0
h −NC

)
(2.12)

= −dimS0
h + dimS1

h − dimS2
h + 2N

C(2.13)

= −(N0
h + (m− 1)N1

h + (m− 2)(m− 1)/2N2
h

)
(2.14)

+
(
mN1

h +m(m− 1)N2
h

)− (m(m+ 1)/2N2
h

)
+ 2NC(2.15)

= −N0
h +N1

h −N2
h + 2N

C(2.16)

= dimG
1.(2.17)

To see that G1
h converges in some sense to G

1, consider the map Ωh, called a
Fortin operator in Boffi [6], which to any u0 ∈ H0

div(Γ) associates the first component
u of the solution (u, q) of{

u ∈ S1
h

q ∈ S2•
h

{ ∀u′ ∈ S1
h 〈u, u′〉+ 〈q,div u′〉 = 〈u0, u

′〉;
∀q′ ∈ S2•

h 〈q′,div u〉 = 〈q′,div u0〉.(2.18)

This saddle-point problem satisfies the LBB inf-sup conditions; therefore there is a
C > 0 such that for all h and all u ∈ H0

div(Γ) we have

‖u− Ωhu‖0 ≤ C inf{‖u− u′‖0 : u′ ∈ S1
h}.(2.19)
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Notice also that Ωh maps divergence-free fields to divergence-free fields and that if
u ∈ H0

div(Γ) is such that rotu = 0 (as elements of H
−1(Γ)), then Ωhu is L2-orthogonal

to rotS0
h. In particular, Ωh maps G

1 into G1
h. Since all norms on G

1 are equivalent,
we therefore have an estimate of the form

∀u ∈ G
1 ‖u− Ωhu‖0 ≤ Chm‖u‖0(2.20)

(m = 1 > 0 for lowest order elements1) so that, for sufficiently small h, Ωh determines
injections G

1 → G1
h which are arbitrarily close in norm to the identity mapping

on G
1. Since the spaces have the same dimension these induced maps are in fact

isomorphisms, and the inverse mappings are Chm-close to the identity mapping on G1
h.

Remark. For reasons of dimension, for the above system (2.18) to satisfy the
LBB inf-sup conditions it is necessary that, among all spaces that contain div S1

h, S
2•
h

be minimal. (Of course the LBB condition can be verified for some smaller spaces
that do not contain div S1

h.) On the other hand, for the above constructed injection
G

1 → G1
h to be onto it is necessary that S0•

h be maximal among all spaces that rot
maps into S1

h. It is remarkable that these algebraic optimality conditions (which were
our guide for the choice of spaces) are also sufficient for convergence purposes.

Given a tangent field u one may now ask how the field a0 defined by

a0 ∈ G
1 and ∀a′ ∈ G

1 〈a0, a
′〉 = 〈u, a′〉(2.21)

relates to its discrete analogue ah defined by

ah ∈ G1
h and ∀a′ ∈ G1

h 〈ah, a′〉 = 〈u, a′〉.(2.22)

Since G1
h is not a subspace of G

1 one can view this as a nonconforming Galerkin
problem. We have already proved that G1

h converges in a sense to G
1. Later, in

Proposition 4.8 we provide the necessary variant of Theorem 1.1 to deduce from this
the existence of ah and its convergence to a0.

Proposition 2.1. For the exact and approximate harmonic tangent fields a0 and
ah obtained as solutions of (2.21) and (2.22), for a given tangent field u, we have the
estimates

‖ah − a0‖0 ≤ Chm‖u‖H−1
rot(Γ).(2.23)

Another useful observation is that, parallel to the fact that all norms on the
finite-dimensional space G

1 are equivalent, we have easily obtained the following.
Lemma 2.2. There is C > 0 such that for all −1 ≤ s ≤ 0 and all h

∀u ∈ G1
h ‖u‖0 ≤ C‖u‖s.(2.24)

2.4. Discrete Helmholtz decomposition. We will frequently use the fact that
each u ∈ S1

h can be written in a unique way:

u = rot p+ a+ g,(2.25)

with p ∈ S0•
h , a ∈ G1

h, and g in the L2-orthogonal of the kernel of the divergence
operator in S1

h. Notice that this decomposition expresses that S1
h is split into a direct

1In fact, to derive the inf-sup estimates and related stability results we need, it will not be
necessary to know that higher order elements yield higher order estimates.
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sum of three subspaces which are orthogonal both for the H0
T and the H0

div scalar
products.

What makes this decomposition useful is that it has the following continuity
and approximation properties, compared with the “exact” Helmholtz decomposition,
which we write

u = rot p0 + a0 + g0,(2.26)

with p0 ∈ H1/2(Γ)•, a0 ∈ G
1, and g0 ∈ gradH3/2(Γ).

Proposition 2.3. There is C > 0 such that for all h, all u ∈ S1
h, the above

decompositions (2.25) and (2.26) are related by

‖g − g0‖0 ≤ Ch‖u‖0, ‖g‖−1 ≤ C‖u‖−1,(2.27)

‖a− a0‖0 ≤ Ch‖u‖0, ‖a‖−1 ≤ C‖u‖−1,(2.28)

‖ rot p− rot p0‖0 ≤ Ch‖u‖0, ‖ rot p‖−1 ≤ C‖u‖−1.(2.29)

Proof. (i) As already remarked, by hypothesis (H3), we have

|g − g0|0 ≤ Ch|div u|0.(2.30)

This immediately gives ‖g − g0‖0 ≤ Ch‖u‖0. Then we remark that

‖g‖−1 ≤ ‖g − g0‖−1 + ‖g0‖−1 ≤ Ch‖u‖0 + ‖u‖−1 ≤ C‖u‖−1.(2.31)

(ii) The fact that ‖a − a0‖0 ≤ Ch‖u‖0 was proved in the preceding section and
gives ‖a‖−1 ≤ C‖u‖−1 just as above.

(iii) The last part of the proposition is deduced from the two preceding ones
writing

rot p− rot p0 = −(g + a) + (g0 + a0) = (g0 − g) + (a0 − a).(2.32)

3. Stable discretizations of the Calderon formulas. First we explain why
the most natural idea (at least to us, for quite some time) is actually flawed. Then we
define the discretization which we propose to use for preconditioning. It is associated
with a subspace of the usual Galerkin space for which we prove an LBB inf-sup
condition and some basic approximation properties.

3.1. A flawed idea. Given a family of Galerkin spaces Xh in X the most
straightforward idea is to introduce the maps

Bh :
{

Xh → X�
h,

u �→ 〈Bu, ·〉(3.1)

and then to put

Zh(k) = B�−1
h Ah(k)B−1

h .(3.2)

As remarked in Christiansen and Nédélec [17], if not only Ah(k) but also Bh satisfies
a uniform discrete inf-sup condition on Xh, then the spectral condition number of
Zh(k)Ah(k) is bounded independently of h. Of course, since the operators we deal
with are not SPD, this is not enough to guarantee convergence of Krylov subspace
algorithms, but it is nevertheless a significant progress compared with the lack of a
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preconditioner. Unfortunately, for the standard Galerkin spaces, this last inf-sup con-
dition does not hold. Indeed, throughout this paragraph let Xh denote the Raviart–
Thomas spaces of degree m (with our conventions the minimal degree is m = 1) on
Γ. We will use the fact that Xh satisfies the hypotheses (H0), . . . ,(H3).

Proposition 3.1. Let Xh = S1
h. Let Kh be the space

{u ∈ S1
h : ∀v ∈ S1

h div v = 0⇒ 〈u, v〉 = 0 and

∀v ∈ S0
h 〈u, grad v〉 = 0}.(3.3)

Then we have

lim inf
h

dimKh

dimXh
≥ 1

2m+ 1
(3.4)

and

lim sup
h

sup
u∈Kh

sup
u′∈Xh

b(u, u′)
‖u‖−1/2‖u′‖−1/2

h−1/2 < +∞.(3.5)

Proof. (i). We have

dimKh ≥ (dimS2
h −NC)− (dimS0

h −NC)(3.6)

≥ (m(m+ 1)/2)N2
h

−N0
h + (m− 1)N1

h + ((m− 2)(m− 1)/2)N2
h(3.7)

≥ −N0
h − (m− 1)N1

h + (2m− 1)N2
h .(3.8)

Recall that since each segment is shared by exactly two triangles, 2N1
h = 3N

2
h , which

together with the Euler–Poincaré formula gives

N1
h ∼ 3N0

h and N2
h ∼ 2N0

h .(3.9)

This gives

−N0
h − (m− 1)N1

h + (2m− 1)N2
h ∼ mN0

h .(3.10)

One also checks that

dimXh ∼ m(2m+ 1)N0
h .(3.11)

This gives the first inequality.
(ii). To prove the second part of the theorem we use the fact that Xh satisfies

(H3). For any u ∈ Xh we denote by φu the unique φ ∈ H1(Γ)• such that ∆φ = div u.
Then (H3) asserts that if u ∈ Xh is L2-orthogonal to the kernel of the divergence
operator on Xh, then we have an estimate of the form |u − gradφu|0 ≤ Ch|div u|0.
From Proposition 2.3, using an inverse inequality, one can deduce that

‖u− gradφu‖−1/2 ≤ Ch1/2‖u‖−1/2(3.12)

and

‖ gradφu‖−1/2 ≤ C‖u‖−1/2.(3.13)
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Choose u ∈ Kh and u′ ∈ Xh. Put u
′ = rot p′ + a′ + g′ as in (2.25). Remark first

that

〈u× n, rot p′〉 = −〈div u, p′〉 = 0.(3.14)

Then write

〈u× n, g′〉 = 〈(u− gradφu + gradφu)× n, (g′ − gradφg′ + gradφg′)〉.(3.15)

Developing and using the continuity of b as well as the fact that

〈gradφu × n, gradφg′〉 = 0,(3.16)

we obtain

|〈u× n, g′〉| ≤ C‖u− gradφu‖−1/2‖g′ − gradφg′‖−1/2(3.17)

+ C‖u− gradφu‖−1/2‖ gradφg′‖−1/2(3.18)

+ C‖ gradφu‖−1/2‖g′ − gradφg′‖−1/2.(3.19)

By the above estimates (3.12) and (3.13) it follows that

|〈u× n, g′〉| ≤ Ch1/2‖u‖−1/2‖g′‖−1/2.(3.20)

Therefore

|〈u× n, g′〉| ≤ Ch1/2‖u‖−1/2‖u′‖−1/2.(3.21)

Finally, for the last part, for any ã′, 〈u× n, a′〉 equals
〈(u− gradφu)× n, ã′〉+ 〈gradφu × n, ã′〉+ 〈u× n, (a′ − ã′)〉.(3.22)

Choosing ã′ ∈ G
1 to be an approximation of a′, one immediately obtains the propo-

sition.
Thus one sees that the reason for the degeneracy is that the subspace of Xh of

elements which are in a sense discrete gradients does not have the same dimension as
the subspace of rotationals.

3.2. Auxiliary spaces. Let (S0
h,S

1
h,S

2
h), and (S′0

h ,S
′1
h ,S

′2
h ) be two triples of

spaces of the type we discussed; more precisely, they should satisfy the null sequence
condition, the discrete cohomology groups should have the “right” dimension, and S1

h

and S′1
h should satisfy the hypotheses (H0), . . . ,(H3).
Two examples to keep in mind (the first one detailed and the second one men-

tioned in Christiansen and Nédélec [19]) are
• the case where S1

h and S′1
h are equal and consist of lowest order Raviart–

Thomas fields (then S0
h consists of continuous P

1 FE and S2
h of P

0 FE);
• the case where (S0

h,S
1
h,S

2
h) corresponds to lowest order Raviart–Thomas fields,

whereas (S′0
h ,S

′1
h ,S

′2
h ) corresponds to lowest order Brezzi–Douglas–Marini fields

on the same mesh (then S′0
h consists of continuous P

2 FE and S′2
h of P

0 FE).
More generally (though it is not necessary) one might want to choose spaces

such that the L2-projections S2•
h → S′0•

h , and (kerdiv S1
h) × n → S′1

h have kernels
which are small in some sense (for instance have dimensions bounded by some small
integer independently of h). Anticipating what follows, this would guarantee that the
subspace (S1

h)
∧ of S1

h, to be defined later, is almost all of S1
h. If the first triple of
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spaces is based on Raviart–Thomas fields of any order, one can take for this purpose
Brezzi–Douglas–Marini fields of the same order on the same mesh in the second triple.

In fact, in addition to the hypothesis H0, . . . ,H3 we will use some L2 estimates
for the spaces S0

h and S2
h (in the proofs of Lemmas 3.11 and 3.12) and an additional L

2

estimate for S1
h (proof of Proposition 4.2). Therefore we require in what follows that

the spaces (S0
h,S

1
h,S

2
h) and (S

′0
h ,S

′1
h ,S

′2
h ) are the standard finite element spaces based

on Raviart–Thomas or Brezzi–Douglas–Marini finite elements. The two triples can,
however, have different orders m and m′. They can even be constructed on different
meshes (with associated parameters h and h′) as long as (1/C)h ≤ h′ ≤ Ch. The
most useful cases are m′ ≥ m and h′ ≤ h.

Other Galerkin spaces are commonly used to solve boundary integral equations,
and the method might work in the present state for such Galerkin spaces also. For
instance, finite elements based on meshes with both triangular and quadrilateral el-
ements pose no additional problem, once one has identified the appropriate null se-
quences called microlocal discretizations which are currently being developed.

3.3. Definition. Our starting point is to try to construct a preconditioner for
the variational formulation of the EFIE on S1

h. For this purpose we will use the
auxiliary spaces (S′0

h ,S
′1
h ,S

′2
h ). As it turns out, with this preconditioner the EFIE

is actually solved variationally on a subspace of S1
h. However, we shall prove that

this subspace (it will be denoted (S1
h)

∧) satisfies the hypotheses (H0), . . . ,(H3), which
ensures the well-posedness of the discrete problem.

Starting with a linear form l ∈ S1�
h , determine the solution (u, q) of{

u ∈ S1
h

q ∈ S2•
h

{ ∀u′ ∈ S1
h 〈u, u′〉+ 〈q,div u′〉 = l(u′);

∀q′ ∈ S2•
h 〈q′,div u〉 = 0.

(3.23)

Then to (u, q) associate the following element of S′1
h :

v = PS′1
h
(u× n)− rotPS′0•

h
(q),(3.24)

where for any space Xh, PXh
denotes the L2-orthogonal projections onto Xh.

Let Θh : S
1�
h → S′1

h , l �→ v be the composition of these two maps (defined by (3.23)
and (3.24)), and let Θ�h : S

′1�
h → S1��

h ≈ S1
h be its adjoint. Then we put

Zh = Θ�hA′
h(k)Θh,(3.25)

where A′
h(k) : S

′1
h → S′1�

h is the map induced by A(k).
Remark. In some cases it might be of interest to replace A′

h(k) by A′
h(k

′) for
some different, possibly complex, wavenumber k′. In particular, a small perturbation
k′ = k + iε guarantees invertibility even at resonant frequencies and is related to the
limiting absorption principle. However, we will not discuss this possibility here.

3.4. Interpretation of the system. The invertibility in the sense of Babuska–
Brezzi of the system (3.23) can be reinterpreted as the fact that the bilinear form b

satisfies a uniform LBB inf-sup estimate on the spaces S1#
h × S1

h, where we have used
the notation

S1#
h = {u× n : u ∈ S1

h and div u = 0}+ {rot q : q ∈ S0•
h }.(3.26)

To give a precise meaning to and prove this statement, notice that S1#
h is a subspace

of H−1
div(Γ) (but contains vector-valued measures concentrated on the curved lines

Ξ−1
h ([S]), where S is a segment in Th). We will also need the following lemma.



1116 SNORRE H. CHRISTIANSEN AND JEAN-CLAUDE NÉDÉLEC

Lemma 3.2. Any v ∈ H−1+s
div (Γ), can be written in a unique way:

v = u× n− rot q,(3.27)

with u ∈ Hsdiv(Γ), div u = 0, and q ∈ Hs(Γ)•, and we have the equivalence of norms2

‖v‖2−1+s ≈ |u|2s + |q|2s.(3.28)

Proof. This can be proved using the HDRL (section 1.1).
The lemma expresses that we have exhibited isomorphisms (for each s):

{u ∈ Hsdiv(Γ) : div u = 0} ×Hs(Γ)• → Hs−1
div (Γ).(3.29)

In particular, the sum appearing in the definition of S1#
h is direct. Furthermore, we

notice that

b(u× n− rot q, v′) = 〈B(u× n− rot q), v′〉 = −〈u, v′〉 − 〈q,div v′〉,(3.30)

where we have used the notation 〈·, ·〉 for the three different standard dualities on

H−1
rot ×H0

div , H0
T ×H0

T, and H0 ×H0.(3.31)

Therefore, given l ∈ S1�
h , if (u, q) solves system (3.23), then v = u× n− rot q solves

v ∈ S1#
h ∀v′ ∈ S1

h − b(v, v′) = l(v′),(3.32)

and if v solves this equation, then, writing v = u× n− rot q as in (3.26), (u, q) is also
given by the continuous inverse of the map (3.29) and solves system (3.23).

Using the well-known properties of this system, one immediately obtains the
following.

Proposition 3.3. There is C > 0 such that for all h

inf
v∈S1#

h

sup
v′∈S1

h

|b(v, v′)|
‖v‖−1‖v′‖0 ≥ 1/C.(3.33)

One also checks directly that these spaces have the same dimension.

3.5. Interpretation of the projections. According to Lemma 3.2 the projec-
tions defined by (3.24) correspond to a projection in the H−1

div(Γ)-norm. Lemma 3.16
and Proposition 3.18 further justify this interpretation.

3.6. A characterization of the kernel of Θh. In this paragraph, for any
space Xh, PXh

is the orthogonal projection onto Xh for the usual L2-inner product
(on scalar or vector fields). The symbol ⊥ is also relative to these inner products.

We introduce the following auxiliary spaces:

s0h = { p ∈ S0•
h : p ⊥ S′2•

h } and s2h = { q ∈ S2•
h : q ⊥ S′0•

h }.(3.34)

Define also

(S1
h)

∧ = {v ∈ S1
h : v ⊥ rot s0h and div v ⊥ s2h}.(3.35)

2There is an obvious misprint in [19].
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The introduction of s0h and s2h is justified by the two following lemmas, whereas that
of (S1

h)
∧ is justified by Proposition 3.7. It shows that (for h small enough—we will

not always repeat this condition—) (S1
h)

∧ is the range of Θ�h.
Lemma 3.4. There is h0 such that for all h < h0 and all divergence-free u ∈ S1

h

PS′1
h
(u× n) = 0 ⇐⇒ u ∈ rot s0h.(3.36)

Proof. We use the fact that for all ε > 0 there is h0 > 0 such that for h < h0

∀a ∈ G1
h |a× n− PG′1

h
(a× n)|0 ≤ ε|a|0.(3.37)

Choosing a h0 relative to a ε < 1 we suppose from now on that h < h0.
Pick u ∈ kerS1

h
div. Put u = rot p+ a, with p ∈ S0•

h and a ∈ G1
h.

(i). Suppose that the projection of u× n is zero. For all divergence-free a′ ∈ S′1
h ,

we have

0 = 〈PS′1
h
(− grad p+ a× n), a′〉 = 〈(− grad p+ a× n), a′〉 = 〈a× n, a′〉.(3.38)

Put a′ = PG′1
h
(a× n). Then

|a|20 = |〈a× n, a× n〉| = |〈a× n, (a× n− a′)〉| ≤ ε|a|20.(3.39)

Hence a = 0. Moreover, for all v ∈ S′1
h ,

〈rot p× n, v〉 = 〈p,div v〉.(3.40)

It follows that p ⊥ S′2•
h and u ∈ rot s0h.

(ii). Conversely, if u ∈ rot s0h, then the above equality (3.40) shows that u× n ⊥
S′1
h , and hence its projection is zero.

Lemma 3.5. For all q ∈ S2•
h we have

rotPS′0•
h
(q) = 0 ⇐⇒ PS′0•

h
(q) = 0 ⇐⇒ q ∈ s2h.(3.41)

Proof. The proof is trivial.
Lemma 3.6. The spaces PS′1

h
((kerH0

div(Γ) div)×n) and rotS′0
h are L2-orthogonal.

Proof. Indeed, if u ∈ H0
div(Γ) is divergence-free and p ∈ S′0

h , then (since rot p ∈ S′1
h )

〈PS′1
h
(u× n), rot p〉 = 〈u× n, rot p〉 = −〈div u, p〉 = 0.(3.42)

We now prove the following.
Proposition 3.7. For all l ∈ S1�

h we have

Θh(l) = 0 ⇐⇒ ∀u′ ∈ (S1
h)

∧ l(u′) = 0.(3.43)

Proof. Pick l ∈ S1�
h . Let (u, q) be the solution of{

u ∈ S1
h

q ∈ S2•
h

{ ∀u′ ∈ S1
h 〈u, u′〉+ 〈q,div u′〉 = l(u′);

∀q′ ∈ S2•
h 〈q′,div u〉 = 0.

(3.44)

With these definitions we have Θh(l) = 0 if and only if

PS′1
h
(u× n)− rotPS′0•

h
(q) = 0.(3.45)
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According to Lemma 3.6, this is in turn equivalent to

PS′1
h
(u× n) = 0 and rotPS′0•

h
(q) = 0.(3.46)

In Lemmas 3.4 and 3.5 we gave equivalent statements for these two conditions.
(i). If Θh(l) = 0, then u ∈ rot s0h and q ∈ s2h; hence, for all u

′ ∈ (S1
h)

∧,

l(u′) = 〈u, u′〉+ 〈q,div u′〉 = 0.(3.47)

That is to say, l vanishes on (S1
h)

∧.
(ii). If l vanishes on (S1

h)
∧, then

• for all u′ ∈ kerS1
h
div such that u′ ⊥ rot s0h we have (since u′ ∈ (S1

h)
∧)

〈u, u′〉 = l(u′) = 0,(3.48)

so u ∈ rot s0h ;
• for all q′ ∈ S2•

h such that q′ ⊥ s2h, picking u′ ∈ S1
h such that div u

′ = q′ and
u′ ⊥ kerS1

h
div, we have (since u′ ∈ (S1

h)
∧)

〈q, q′〉 = 〈q,div u′〉 = l(u′) = 0,(3.49)

and hence q ∈ s2h.
The proof is complete.

3.7. Approximation properties of the range of Θ�
h. We give yet another

characterization of (S1
h)

∧, which will enable us to deduce its approximation properties.
Lemma 3.8. Pick u ∈ S1

h. Put u = rot p+a+ g with p ∈ S0•
h , a ∈ G1

h, and g ∈ S1
h

such that g ⊥ kerS1
h
div. Then we have

u ∈ (S1
h)

∧ ⇐⇒ rot p ⊥ rot s0h and div g ⊥ s2h.(3.50)

Proof. The proof is trivial.
Now we give equivalent expressions for the above two conditions.
Lemma 3.9. Choose q ∈ S2•

h . We have

q ⊥ s2h ⇐⇒ ∃p ∈ S′0•
h , q = PS2•

h
(p).(3.51)

Proof. More generally, we have the following result: LetX be a Hilbert space. The
orthogonal projection onto a closed subspace Y of X is written PY , and orthogonality
is denoted by ⊥. If Y and Z are two closed subspaces of X, we put

Y⊥Z = {x ∈ Y : x ⊥ Z}.(3.52)

Let A and B be two closed subspaces of X. Then

A⊥(A⊥B) = PA(B).(3.53)

Lemma 3.10. Choose p ∈ S0•
h . We have

rot p ⊥ rot s0h ⇐⇒ ∃q ∈ S′2•
h , rot p = Prot S0•

h
(rot∆−1q).(3.54)

Proof. We apply the same technique once again. For all p ∈ S0•
h and all q ∈ S′2•

h

we have

〈p, q〉 = −〈rot p, rot∆−1q〉.(3.55)
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Hence

rot p ∈ rot s0h ⇐⇒ p ∈ s0h(3.56)

⇐⇒ p ⊥ S′2•
h(3.57)

⇐⇒ rot p ⊥ rot∆−1S′2•
h(3.58)

⇐⇒ rot p ⊥ Prot S0•
h
(rot∆−1S′2•

h ).(3.59)

So

rot p ⊥ rot s0h ⇐⇒ rot p ∈ Prot S0•
h
(rot∆−1S′2•

h ).(3.60)

We will also need the following two approximation results.
Lemma 3.11. There is C > 0 such that for all h and all φ ∈ H1(Γ)•

inf{|φ− q|0 : q ∈ PS2•
h
(S′0•
h )} ≤ Ch|φ|1.(3.61)

Proof. Notice that

|φ− PS2•
h
PS′0•

h
φ| ≤ |φ− PS′0•

h
φ|+ |PS′0•

h
φ− PS2•

h
PS′0•

h
φ|(3.62)

≤ Ch|φ|1 + Ch|PS′0•
h

φ|1(3.63)

≤ Ch|φ|1.(3.64)

Lemma 3.12. There is C > 0 such that for all h and all φ ∈ H2(Γ)•

inf{| rotφ− u|0 : u ∈ Prot S0•
h
(rot∆−1S′2•

h )} ≤ Ch| rotφ|1.(3.65)

Proof. We have

|∆−1PS′2•
h
∆φ− φ|1 ≤ C|PS′2•

h
∆φ−∆φ|−1 ≤ Ch|∆φ|0.(3.66)

So, with ψ = ∆−1PS2•
h
∆φ, we have

| rotψ − rotφ|0 ≤ Ch| rotφ|1(3.67)

and

|Prot S0•
h
rotψ − rotψ|0 ≤ Ch| rotψ|1.(3.68)

However,

| rotψ|1 ≤ C|∆−1PS′2•
h
∆φ|2 ≤ C|PS′2•

h
∆φ|0 ≤ C|∆φ|0 ≤ C| rotφ|1.(3.69)

Now combine inequalities (3.68) and (3.69) and conclude using (3.67).
From the above results we deduce the following fundamental theorem.
Theorem 3.13. The spaces Xh = (S

1
h)

∧ satisfy hypothesis (H1).
Proof. Pick u ∈ H1

div(Γ). Consider its Helmholtz decomposition

u = rotφ+ α+ gradψ.(3.70)

(i) The field rotφ is approximated using Lemma 3.12, which gives an element of
Xh according to Lemmas 3.8 and 3.10.

(ii) The field α is approximated by a = Ωhα, where Ωh is defined by system
(2.18).

(iii) The field ∆ψ is approximated by a q ∈ PS2•
h
(S′0•
h ) following Lemma 3.11.

Then we consider Ωh grad∆
−1q which is in Xh according to Lemmas 3.8 and

3.9.
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3.8. Well-posedness.
Proposition 3.14. The spaces Xh = (S

1
h)

∧ satisfy hypothesis (H3).
Proof. Choose u ∈ Xh such that

u ⊥ kerXh
div .(3.71)

Trivially we have u ∈ S1
h. Moreover, if u

′ is a divergence-free element of S1
h it can

be written rot p + u′′ with p ∈ s0h and a divergence-free u′′ ∈ Xh. (To see this just
remark that the L2-orthogonal of rot s

0
h in kerS1

h
div is a subspace of Xh.) And since

u ⊥ rot s0h and u ⊥ u′′ we therefore have

u ⊥ kerS1
h
div .(3.72)

Then the proposition follows from the result known to hold for S1
h.

We have therefore reached the main goal of this section.
Theorem 3.15. The spaces (S1

h)
∧ satisfy the four hypothesis (H0), . . . ,(H3).

If A(k) were symmetric positive definite, then ZhAh would determine an isomor-
phism (S1

h)
∧ → (S1

h)
∧, and, for a given h, the preconditioned conjugate gradients

(PCG) algorithm would converge towards the variational solution on (S1
h)

∧, which by
the above theorem is a good one.

In our indefinite case it might be that ZhAh does not determine an isomorphism
(S1
h)

∧ → (S1
h)

∧; this would be the case if the bilinear form induced by A on the range
of Θh (as opposed to Θ

�
h) were degenerate, a question we have not settled. However,

we are sure that the PCG algorithm constructs iterates that are in (S1
h)

∧, and later—
in section 3.9—we will show how to construct stopping criteria that guarantee that the
residual is small as a linear form on (S1

h)
∧. Thus one can check that the approximate

solution given by the PCG algorithm is close to the variational solution on (S1
h)

∧.
Theorem 3.15 ensures that this variational solution (exists, is unique, and) is close to
the best (for any chosen norm) approximation on (S1

h)
∧ of the exact solution and that

for small h this best approximation is a good approximation.

3.9. Stopping criterion. Proposition 3.7 shows that, for all u ∈ (S1
h)

∧, u solves
the variational problem

u ∈ (S1
h)

∧ and ∀v ∈ (S1
h)

∧ a(u, v) = l(v)(3.73)

if and only if

Θh(Ahu− lh) = 0,(3.74)

which is in turn equivalent to

‖Θh(Ahu− lh)‖ = 0,(3.75)

for any norm ‖ · ‖ on S′1
h . We now set out to define norms on S′1

h that are uniformly
equivalent to the H−1

div(Γ)-norm but more readily computable.
The following lemma should be seen in relation to Lemma 3.2.
Lemma 3.16. There is C > 0 such that for all u ∈ H−1

div(Γ), if u = rot p+ v with
v ∈ H0

T(Γ) and p ∈ H0(Γ), we have

‖u‖2−1 ≤ C
(|p|20 + |v|20).(3.76)
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Proof. It holds

‖ rot p+ v‖2−1 = | rot p+ v|2−1 + |div v|2−1.(3.77)

However,

| rot p+ v|2−1 ≤ 2
(| rot p|2−1 + |v|2−1

) ≤ C
(|p|20 + |v|2−1

)
.(3.78)

Then one immediately concludes using |div v|−1 ≤ C|v|0.
For convenience we state as a separate lemma the following fact which follows

from (H3).
Lemma 3.17. There is C > 0 such that for all u ∈ Xh, if

∀u′ ∈ Xh div u′ = 0 ⇒ 〈u, u′〉 = 0,(3.79)

then

|u|0 ≤ C|div u|−1.(3.80)

Proof. Let φ be the solution of

φ ∈ H1(Γ)• and ∆φ = div u.(3.81)

We have

|u|0 ≤ |u− gradφ|0 + | gradφ|0 ≤ Ch|div u|0 + C|div u|−1.(3.82)

The lemma then follows from an inverse inequality.
It is a particular case of Lemma 3.2 that the converse inequality of Lemma 3.16

holds whenever v is such that rot v = 0. This fact has the following discrete analogue.
Proposition 3.18. There is C > 0, such that for all h and all u ∈ S1

h, if
u = rot p+ v with p ∈ S0•

h and v ⊥ rotS0•
h , then

|p|20 + |v|20 ≤ C‖u‖2−1.(3.83)

Proof. Put v = a+ w with a ∈ G1
h and w ⊥ kerS1

h
div. We have

|v|20 = |a|20 + |w|20.(3.84)

However, by Lemma 2.2 and Proposition 2.3 we have

|a|0 ≤ C|a|−1 ≤ C‖u‖−1,(3.85)

and by Lemma 3.17 we have

|w|0 ≤ C|divw|−1 = |div u|−1 ≤ ‖u‖−1.(3.86)

So

|v|20 ≤ C‖u‖2−1.(3.87)

Moreover,

|p|20 ≤ C| rot p|2−1 ≤ C
(| rot p+ v|2−1 + |v|2−1

)
.(3.88)

The proposition follows.
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Of course the same holds true for the spaces with a prime, which is in fact what
will be of interest to us.

Let l be a linear form on S1
h, and, as in the definition of the preconditioner, let

(u, q) be the solution of system (3.23) so that

Θhl = PS′1
h
(u× n)− rotPS′0•

h
(q).(3.89)

Lemma 3.16 together with Proposition 3.18 now prove that we have the uniform (i.e.,
independent of h) equivalence of norms

‖Θhl‖2−1 ≈ |PS′1
h
(u× n)|20 + |PS′0•

h
(q)|20.(3.90)

A stopping criterion can therefore be a sufficient reduction of this norm. It is im-
portant to notice that to effectively compute these norms in the course of a conjugate
gradients algorithm is a negligible task compared with the other ones, requiring only
two sparse matrix products (at each iteration).

Another norm which is both natural and easily computable is ‖Θhl‖0. Also, the
quantity (‖Θhl‖0‖Θhl‖−1)

1/2, though not a norm, satisfies the interpolation inequality

‖Θhl‖1/2 ≤ C
(‖Θhl‖0‖Θhl‖−1

)1/2
(3.91)

and is therefore another good candidate for the construction of a stopping criterion.
We have not determined to which extent the choice between these candidates really
produces any significant differences on industrial problems.

4. Behavior of the iterates. We denote by Θ the continuous analogue of Θh,
that is, the map (H0

div(Γ))
� → H−1

div(Γ) which to l associates u×n− rot q, where u and
q are the solutions of the continuous saddle-point problem. We also have Z = Θ�AΘ.

The Krylov subspaces are defined to be

Knh = {P (ZhAh)Zhl|S1
h
: P ∈ C[X], degP ≤ n}.(4.1)

Their importance stems from the fact that—for fixed h—the PCG algorithm attempts
to determine (by short recurrences) the sequence of solutions (unh) of the problems

u ∈ Knh and ∀v ∈ Knh a(u, v) = l(v).(4.2)

For generalities about the PCG and related algorithms we refer to Barrett et al. [3] or
Kelley [36]. Since we deal with complex-symmetric matrices, see also Freund [29]. In
this section we investigate the convergence of the spaces Knh towards their continuous
analogues Kn, for fixed n as h→ 0, where naturally we have put

Kn = {P (ZA)Zl : P ∈ C[X], degP ≤ n}.(4.3)

We will deduce from this results on the convergence as h→ 0 of the iterate unh towards
the solution un of

u ∈ Kn and ∀v ∈ Kn a(u, v) = l(v).(4.4)

We emphasize that for non-SPD problems the convergence or breakdown of the
Lanczos process is as of today not completely understood. Here our point of view is
to suppose that the continuous Lanczos process is well-defined up to iteration n, and
then show that for small enough h, the discrete one is also well-defined, and yields
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arbitrarily close iterates. If the ideal Lanczos process breaks down one should not
expect the discrete one to behave well. We have not observed this pathology yet
but should it occur one can consider in addition to various restart and look-ahead
techniques perturbating the preconditioning operator.

Finally, we argue that the sequence (un) might converge superlinearly, as we show
it to be the case for SPD operators, when the preconditioner is an inverse modulo a
compact endomorphism.

4.1. Stability and convergence of Krylov subspaces.
Proposition 4.1. There is C > 0 such that for all h and all l ∈ (S1

h)
�

‖Θh(l)‖−1 ≤ C sup
v∈S1

h

|l(v)|
‖v‖0 .(4.5)

Proof. Lemma 3.16 gives

‖Θh(l)‖2−1 ≤ C
(|PS′1

h
(u× n)|20 + |PS′0•

h
(q)|20

) ≤ C
(|u|20 + |q|20).(4.6)

This gives the announced estimate.
Proposition 4.2. There is C > 0 such that for all l ∈ (H−1

div(Γ))
� and all h

‖Θhl|S1
h
−Θl‖−1 ≤ Ch‖l‖−1�.(4.7)

Proof. Let (uh, qh) be the solutions of the discrete saddle-point problem, and let
(u0, q0) be the solutions of the continuous one. The well-known properties of this
problem (in particular, Propositions 2.13 (p. 64) and 3.9 (p. 132) in Brezzi and Fortin
[12]) yield

|uh − u0|20 + |qh − q0|20 ≤ Ch2(|u0|21 + |q0|21) ≤ Ch2‖l‖2−1�.(4.8)

Denoting for simplicity the L2-orthogonal projections onto the appropriate spaces by
Ph, we have

|Ph(uh × n)− (u0 × n)|0(4.9)

≤ |Ph(uh × n)− Ph(u0 × n)|0 + |Ph(u0 × n)− u0 × n|0(4.10)

≤ |(uh × n)− (u0 × n)|0 + Ch|u0 × n|1(4.11)

≤ Ch|u0|1.(4.12)

Using the same technique, we also obtain

|Ph(qh)− q0|0 ≤ Ch|q0|1.(4.13)

This completes the proof, using Lemma 3.16.
From these two propositions we deduce stability and convergence estimates for

Θh in half-integer Sobolev norms.
Corollary 4.3. There is C > 0 such that for all h and all l ∈ H−1

div(Γ)
�

‖Θhl|S1
h
−Θl‖−1/2 ≤ Ch1/2‖l‖−1�,(4.14)

and there is C > 0 such that for all h and all l ∈ (S1
h)
�

‖Θhl‖−1/2 ≤ C sup
v∈S1

h

|l(v)|
‖v‖−1/2

.(4.15)
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Proof. Let Qh be the H0
div(Γ)-orthogonal projection onto S′1

h . The required prop-
erties of this projection were summarized in section 2.2. We have for all l ∈ H−1

div(Γ)
�

‖Θhl|S1
h
−Θl‖−1/2 ≤ ‖Θhl|S1

h
−QhΘl‖−1/2 + ‖QhΘl −Θl‖−1/2(4.16)

≤ Ch−1/2‖Θhl|S1
h
−QhΘl‖−1 + Ch1/2‖Θl‖0(4.17)

≤ Ch−1/2
(‖Θhl|S1

h
−Θl‖−1 + ‖Θl −QhΘl‖−1

)
+ · · ·(4.18)

≤ Ch1/2‖l‖−1�,(4.19)

and repeating the same sort of arguments, still supposing that l ∈ H−1
div(Γ)

�,

‖Θhl|S1
h
‖0 ≤ ‖Θhl −QhΘl‖0 + ‖QhΘl‖0(4.20)

≤ Ch−1‖Θhl −QhΘl‖−1 + ‖Θl‖0(4.21)

≤ Ch−1
(‖Θhl −Θl‖−1 + ‖Θl −QhΘl‖−1

)
+ · · ·(4.22)

≤ C‖l‖−1�.(4.23)

Combining this estimate with Proposition 4.1 by interpolation, we obtain, for l ∈
H

−1/2
div (Γ)�,

‖Θhl|S1
h
‖−1/2 ≤ C‖l‖−1/2�.(4.24)

The apparently more refined version announced can then be deduced from the exis-

tence of an extension operator with norm one (the adjoint of the H
−1/2
div (Γ)-orthogonal

projection onto S1
h) or a Hahn–Banach theorem.

We have similar estimates for Θ�h.
Corollary 4.4. There is C > 0 such that for all h and all l ∈ H−1

div(Γ)
�

‖Θ�hl|S′1
h
−Θ�l‖−1/2 ≤ Ch1/2‖l‖−1�,(4.25)

and there is C > 0 such that for all h and all l ∈ (S′1
h )

�

‖Θ�hl‖−1/2 ≤ C sup
v∈S′1

h

|l(v)|
‖v‖−1/2

.(4.26)

Proof. Using the fact that a (bounded) operator has the same norm as its adjoint
we first obtain from Proposition 4.2 that

‖Θ�hl|S′1
h
−Θ�l‖−1 ≤ Ch‖l‖−1�.(4.27)

As in the proof of Corollary 4.3 this yields the first equation. The second one follows
trivially from the second estimate of the same corollary.

From this one deduces the following.

Corollary 4.5. Let (lh) be a sequence of linear forms on H
−1/2
div (Γ) which con-

verges to l (in the norm sense in the dual of H
−1/2
div (Γ)). Then Θhlh|S1

h
converges to

Θl in H
−1/2
div (Γ). Similarly, Θ�hlh|S′1

h
converges to Θ�l.

Proof. The technique of proof is very classical (see, for instance, Folland [28,
Prop. 5.17, p. 169] for the just as easy case of constant lh) and relies on Corollary 4.3
(and Corollary 4.4 for the second part) using the density of H−1

div(Γ)
�

in H
−1/2
div (Γ)�.
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Then we immediately obtain stability and approximation properties for the pre-
conditioner Zh.

Proposition 4.6. There is C > 0 such that for all h and all l ∈ H−1/2
div (Γ)�

‖Zhl|S1
h
‖−1/2 ≤ C‖l‖−1/2�.(4.28)

If a sequence of linear forms lh ∈ H−1/2
div (Γ)� converges to l in H

−1/2
div (Γ)�, then Zhlh|S1

h

converges to Zl.
We are now ready to prove the announced theorem.

Theorem 4.7. For all l ∈ (H−1/2
div )� and all n ∈ N, (ZhAh)nZhl|S1

h
converges to

(ZA)nZl in H
−1/2
div (Γ).

Proof. This follows from the above results using a simple recursion argu-
ment.

Remark. We have not derived any optimal orders of convergence, for smoother
than necessary data and perhaps higher order finite elements, though we do not
expect this to yield any serious difficulties or require methods of proof different from
the above ones. Nor have we tried to determine the minimum hypotheses on the
regularity of the triangulations under which our conclusions hold; in particular, we
have not determined to which extent the quasi-uniformity hypothesis (which is used
for the inverse inequalities) can be relaxed. Of course also working on nonsmooth
surfaces would put severe limitations on the range of Sobolev spaces we could use.

4.2. Convergence of the iterates. Let X be a Banach space and X1, X0 two
closed subspaces. When these are nonzero, the gap fromX1 toX0, denoted δ(X1, X0),
is defined to be

δ(X1, X0) = sup
u1∈X1

inf
u0∈X0

‖u1 − u0‖/‖u1‖.(4.29)

This definition is extended straightforwardly to the case when X1 or X0 is zero. For
a thorough discussion of the gap we refer to Kato [35] but for us the definition is
enough.

Suppose that X0 splits, i.e., has a closed supplementary (for instance finite-
dimensional spaces automatically split, as do closed subspaces of Hilbert spaces),
so that we have a continuous projector P : X → X with range X0. For all u ∈ X,
one has

∀u′ ∈ X0 ‖u− Pu‖ = ‖(u− u′)− (Pu− u′)‖ = ‖(u− u′)− P (u− u′)‖.(4.30)

Hence

‖u− Pu‖ ≤ ‖I − P‖
(
inf

u′∈X0

‖u− u′‖/‖u‖
)
‖u‖.(4.31)

In particular,

∀u ∈ X1 ‖u− Pu‖ ≤ ‖I − P‖δ(X1, X0)‖u‖.(4.32)

Thus if (Xh) is a family of closed subspaces such that limh δ(Xh, X0) = 0, then for
sufficiently small h the spaces PXh are closed in X0 and P induces isomorphisms
Xh → PXh which are arbitrarily close in norm to the identity mapping on Xh.

Proposition 4.8. Let X be a reflexive Banach space and A : X → X� a
continuous linear map. Suppose X0 is a closed subspace that splits yielding a projector
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P . Suppose Xh is another closed subspace, and that the induced maps A0 : X0 → X�
0 ,

Ah : Xh → X�
h satisfy the inf-sup conditions (1.20), (1.21), with constants α0 and αh.

Also put δh = δ(Xh, X0).
Then A0 and Ah are invertible ; moreover, for any l ∈ X�, if we put uh = A−1

h l|Xh

and u0 = A−1
0 l|X0 , we have for all u′ ∈ Xh

‖uh − u0‖ ≤ α−1
h (1 + α−1

0 ‖A‖)‖I − P‖δh‖l‖+ (1 + α−1
h ‖A‖)‖u0 − u′‖.(4.33)

Proof. That A0 and Ah are invertible is part of Theorem 1.1. Concerning the
approximation property, we have (as usual we denote by a the bilinear form corre-
sponding to A)

‖uh − u0‖ ≤ ‖uh − u′‖+ ‖u′ − u0‖ ≤ α−1
h sup

v∈Xh

|a(uh − u′, v)|
‖v‖ + ‖u′ − u0‖.(4.34)

Now (for v ∈ Xh) write

a(uh − u′, v) = a(uh, v) + a(u0 − u′, v)− a(u0, Pv)− a(u0, v − Pv)(4.35)

= l(v − Pv) + a(u0 − u′, v)− a(u0, v − Pv).(4.36)

Therefore,

|a(uh − u′, v)|/‖v‖ ≤ (1 + α−1
0 ‖a‖)(‖I − P‖)δh‖l‖+ ‖a‖ ‖u0 − u′‖.(4.37)

This proves the proposition.
Remark. Just as Theorem 1.1 this proposition can easily be extended to the more

general setting of a continuous map A : X → Y � and subspaces X0 ⊂ X and Y0 ⊂ Y .
Suppose now (and this is the case for both the approximation of harmonic fields

and the approximation of Krylov subspaces we were discussing) that we have a family
(Xh) of subspaces of X and surjective linear maps Λh : X0 → Xh such that limh ‖Λh−
I‖ = 0. When ‖Λh − I‖ < 1, Λh is invertible (so Xh is closed), and ‖Λ−1

h ‖ ≤
(1− ‖Λh − I‖)−1, and Λ−1

h − I considered as a map Xh → X has norm ‖Λ−1
h − I‖ ≤

(1− ‖Λh − I‖)−1‖Λh − I‖. In particular,
δ(Xh, X0) ≤ (1− ‖Λh − I‖)−1‖Λh − I‖.(4.38)

We also trivially have

δ(X0, Xh) ≤ ‖Λh − I‖.(4.39)

Given some continuous bilinear form a on X, we define ish and is0 by

ish = inf
u∈Xh

sup
v∈Xh

|a(u, v)|
‖u‖ ‖v‖ and is0 = inf

u∈X0

sup
v∈X0

|a(u, v)|
‖u‖ ‖v‖ .(4.40)

Some tedious elementary manipulations yield (independently of the existence of the
map Λh) the inequality

ish ≥ is0
(
1− δ(Xh, X0)

)(
1 + δ(X0, Xh)

) − ‖a‖
((
1 + δ(Xh, X0)

)(
1− δ(X0, Xh)

)δ(X0, Xh) + δ(Xh, X0)

)
.(4.41)

Now if we plug estimates (4.38) and (4.39) into (4.41) we can conclude that as h→ 0,
ish becomes greater than is0 − ε for any ε > 0. Combining this fact with Proposi-
tion 4.8, we obtain the following.



PRECONDITIONING THE EFIE WITH CALDERON FORMULAS 1127

Proposition 4.9. Let X be a reflexive Banach space and A : X → X� be a
continuous linear map. Suppose that X0 is a closed linear subspace that splits yielding
a projector P and that A induces an isomorphism X0 → X�

0 , with an inf-sup estimate
α0. Suppose we have a family (Xh) of subspaces of X, equipped with surjective linear
continuous maps Λh : X0 → Xh, such that limh ‖I − Λh‖ = 0.

Then for any 0 < α < α0 there is h0 > 0 such that, for all h < h0, A induces
isomorphisms Xh → X�

h, and, for all l ∈ X�, with the notations of Proposition 4.8,
we have

‖uh − u0‖ ≤ α−1(1 + α−1‖A‖)(1 + ‖I − P‖) ‖Λh − I‖ ‖l‖.(4.42)

Applying this proposition to the discrete and continuous Krylov spaces yields the
following.

Corollary 4.10. Fix an n ∈ N. Suppose that dimKn = n+1 and that the map
Kn → Kn� induced by A is invertible. Then there is hn > 0 such that for all h < hn
the map Knh → Kn�h induced by A is invertible; moreover, given l ∈ H−1/2

div (Γ)�, the
solutions unh and un of (4.2) and (4.4) satisfy an estimate of the form

‖unh − un‖−1/2 ≤ C‖Λnh − I‖,(4.43)

where Λnh : K
n → Knh is the unique linear map that satisfies, for 0 ≤ i ≤ n,

Λnh : (ZA)iZl �→ (ZhAh)iZhl|S1
h
.(4.44)

Of course Theorem 4.7 shows that (for fixed n) ‖Λnh − I‖ → 0, and the above
mentioned question of regularity is whether for smooth l we have estimates of the
form ‖Λnh − I‖ ≤ Chs for s > 0.

It is also possible to give a slightly different and more algorithmic variant of this
corollary. Namely, define an “abstract” conjugate gradients algorithm by skipping all
the h indices in some implementation in terms of Zh and Ah of the conjugate gradient
algorithm on S1

h. (It should be checked that this is actually possible.) Then if the
abstract algorithm is well defined up to iteration n there is hn > 0 such that for all
h < hn the discrete algorithm is well defined up to iteration n. Convergence of the
iterates is described by the above corollary. Notice that it covers the case of algorithms
that can skip full rank Krylov subspaces on which A is degenerate, as long as the next
Krylov subspace is also full rank and A is nondegenerate on it, so-called Look-ahead
algorithms described in Parlett, Taylor, and Liu [46]. Abstract conjugate gradient
algorithms are common folklore even for non-Hermitian operators and described for
instance in Gutknecht [30].

Remark. We have not proved that the spectral condition number of the restriction
of ZhAh to (S1

h)
∧ is uniformly bounded, and we even suspect that this may not be true.

More precisely, the spectral radius of the endomorphism induced by ZhAh on (S1
h)

∧

is uniformly bounded but perhaps not that of its inverse. The lack of this property
(which was the guide and main focus of Steinbach and Wendland [51] and Christiansen
and Nédélec [17]) was our principal motivation for proving the convergence of the
Krylov spaces and the corresponding approximate solutions.

4.3. Evidence of superlinear convergence. The above discussion (in partic-
ular Corollary 4.10) suggests that the behavior of the approximate solutions (unh) is
similar to the behavior of (un), at least for moderate n (compared with dimS1

h ≈ h−2).
Concerning the behavior of (un), the convergence theory is more satisfactory in the
SPD case than in the non-SPD case we are dealing with.
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Here we remind the reader how, in the infinite-dimensional SPD case, the property
of inversion up to a compact operator leads to superlinear convergence. In other
words, with the proposed preconditioner for the first kind integral equation EFIE,
one recovers the kind of convergence usually associated with second kind integral
equations. Though preconditioning was not a focus at the time, such estimates seem
to date back to Hayes [31]. The theory does not directly apply to the studied case,
but (for smooth surfaces) it does give complementary convergence estimates on some
related preconditioning techniques, in particular those described in Steinbach and
Wendland [51], which were the starting point of the method we have described here.
We also believe these developments to give good indication on the behavior we can
expect for our present problem.

Suppose X is a real Hilbert space, A : X → X� is linear continuous, and induces
a symmetric positive definite bilinear form. Suppose Z : X� → X is linear continuous
and symmetric. Given l = Au� ∈ X� define the Krylov spaces as above with real
polynomials only. We suppose that we do not provide an approximate solution—other
than 0—to start the algorithm, though this can easily be accounted for.

Remark first that A induces a scalar product on X with associated norm ‖ · ‖A
and that un solves (4.4) if and only if u �→ ‖u− u�‖A is minimal on Kn at un. Thus
for all real polynomials P such that degP ≤ n,

‖un − u�‖A ≤ ‖P (ZA)ZAu� − u�‖A.(4.45)

Hence for all P such that degP ≤ n+ 1, and P (0) = 1,

‖un − u�‖A ≤ ‖P (ZA)u�‖A.(4.46)

Then remark that ZA is continuous, and symmetric with respect to the bilinear
form induced by A, and therefore has a resolution of the identity E on the spectrum
σ = σ(ZA) ⊂ R such that we can write (we refer to Rudin [50, Chap. 12] for definitions
and notations)

‖P (ZA)u�‖2A ≤
∫
σ

|P (λ)|2dEu�,u�(4.47)

≤ sup{|P (λ)|2 : λ ∈ σ ∩ supp dEu�,u�} ‖u�‖2A.(4.48)

Finally in the case were ZA − I is compact we can put σ = {1} ∪ {λi : i ∈ N},
where (|λi−1|) is a decreasing sequence converging to 0. To be sure that the algorithm
is well-defined for all n we suppose that Z is positive definite. Then λi �= 0, and we
can define polynomials Pn by

Pn : Pn(λ) = Π
n
i=0(1− λ/λi).(4.49)

Remark that for any i and any λ such that |1− λ| ≤ |1− λi|
|1− λ/λi| = |(λi − 1 + 1− λ)/λi| ≤ 2|1− 1/λi|,(4.50)

which gives

sup
λ∈σ

|Pn(λ)| ≤ 2n+1Πni=0|1− 1/λi|.(4.51)

Since |1− 1/λi| → 0, this immediately implies superlinear convergence. More gener-
ally, if (λi) is a sequence of nonzero complex numbers, such that (|λi − 1|) decreases
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to 0, the estimates (4.50) (for complex λ) and (4.51) (with the same definition of Pn,
and still with σ = {1} ∪ {λi : i ∈ N}) remain true, which might be of interest to
other Krylov-subspace algorithms applied to non-SPD operators. Moreover, if the
asymptotic behavior of the eigenvalues of the residual ZA− I is known and we have
an estimate of the form |1−λi| ≤ Ci−α for some C > 0, α > 0, we get the convergence
estimate (for a larger C and the same α)

‖un − u�‖A ≤ Cn(n!)−α‖u�‖A.(4.52)

More explicitly, returning to the case of operators on a smooth compact Riemannian
manifold Γ, if the dimension of the manifold is N and the residual is an operator
of order −s for some s > 0 (i.e., in terms of Sobolev spaces, continuous Hs

′
(Γ) →

Hs
′+s(Γ) for all s′) which commutes with the Laplacian on Γ, this holds with α = s/N .

This can be deduced from the eigenvalue asymptotics of the Laplacian, for which we
refer to Taylor [52, Vol. II, Chap. 8]. An alternative and more general approach based
on trace-class theory is exposed in Winther [56] and also gives a factor of the form
Cn(n!)−α. When Γ has symmetries an even larger α might hold in the estimate (4.52)
due to the degeneracy of eigenvalues. For the determination of the orders of different
integral operators we refer to Nédélec [43]; in particular, the order of the residual in
our preconditioning strategy for the EFIE is −2 (though we do not even claim to have
proved that the PCG does not break down in this case).

5. Numerical results. In order to evaluate the performance of the precondi-
tioner it is customary to show the convergence graphs. We use the notations of
(1.29), and we denote by Un

h the tuple of coordinates of the approximate solution unh
at iteration n in the chosen basis. The convergence graphs are then of the form

n �→ log10(‖Ah(k)Un
h − Vh‖/‖Vh‖)(5.1)

for a given choice of norms on the tuples. The standard norm is the 82 norm on
tuples. From a functional point of view this is not very natural, but on the other hand
functional norms are not readily computable—with a notable exception for those we
defined in section 3.9.

5.1. Sphere. We start by showing convergence graphs for the canonical example
of diffraction of a plane wave by the unit sphere for the wave lengths λ = 8, 4, 2, 1
(k = 2π/λ); see Figure 5.1. The discretization of the sphere has 2252 vertices and
4500 triangles, leading to 6750 degrees of freedom for lowest order Raviart–Thomas
finite elements.

We consider here the case of the preconditioner using the same Galerkin space as
the original and use a complex symmetric conjugate gradients algorithm.

Each graphic displays three curves. The thin line (upper graph) is obtained
without preconditioning for the 82 norm on tuples; the dotted line (which stagnates)
is obtained with the proposed preconditioner for the 82 norm on tuples; the third line
(the bottom graph) is obtained with the proposed preconditioner for the natural norm
defined in section 3.9.

We make the following comments:

• With the preconditioner, each iteration is a little more than twice as slow as
without any preconditioner: we apply the Galerkin matrix once more, and
do a considerable amount of sparse matrix manipulations.
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Fig. 5.1. Convergence graphs for the unit sphere at λ = 8, 4, 2, 1 (top left to bottom right).

• In the preconditioned case and in particular at λ = 1, the 82 norm (dotted
line) of the residual stagnates, whereas the natural norm continues to de-
crease, confirming that the variational problem is indeed solved on a strict
subspace.

• The preconditioner is particularly efficient at low frequencies—which is the
only really ill-conditioned case on spheres.

• Usual stopping criteria vary from 10−2 to 10−5, depending on the accuracy of
the result required; for all these the preconditioned algorithm is several times
faster than the algorithm without preconditioning.

• The auxiliary problems in the preconditioner were solved iteratively with a
tolerance of 10−7 (saddle-point problem) and 10−8 (L2 projections); accumu-
lation of such errors and other round-off errors could also partly explain the
instabilities observed at the last iterations at λ = 1.

• The far-field patterns deduced from the electric currents computed iteratively
with and without preconditioner were not graphically distinguishable from
those computed by standard factorization.

• Using the Brezzi–Douglas–Marini finite elements in the preconditioner (while
still using Raviart–Thomas for the original problem) yields slightly better
accuracy and requires slightly fewer iterations. Also the dotted line does not
stagnate, confirming that the equation is then solved variationally on a much
larger subspace. However, each iteration is much slower, since there are twice
as many degrees of freedom in the preconditioner (at the lowest level).

5.2. Cavity. We consider now diffraction by a cavity. In cavities trapped rays
create long range nontrivial interactions. This is a considerably more challenging
problem than scattering by convex objects, since, without preconditioning, it happens
that the iterates do not converge.
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Fig. 5.2. Cavity seen from outside and vertical section.
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Fig. 5.3. Convergence graphs for the cavity at λ = 8, 2 (left and right).

The particular geometry we consider can be described as follows: take two con-
centric spheres, one with radius 5/6 and one with radius 7/6; excavate a cone with
top at the origin and half-angle π/4 and join the interior surface with the exterior one
with half a torus. See Figure 5.2. The mesh of the cavity was constructed from a mesh
of the unit sphere (in fact the same one as in the preceding example) by successive
deformations.

The cavity is lit by a horizontally polarized plane wave entering the cavity tan-
gentially to its walls. (The wave vector makes an angle of 3π/4 with the vertical
direction.) The convergence graphs obtained for the cavity are displayed in Figure
5.3.

Notice that at λ = 2, the preconditioner not only speeds up convergence, it
actually enables it.

In the preconditioned case, we observe a slow-down in the convergence, which
we interpret as stemming from the fact that the Calderon formulas are less well
represented on a discrete level. (The discrete iterates depart from the continuous
ones.) It seems also that the slow-down always occurs slightly after the 82 norm of
the residual stagnates. This stagnation could be indication that the current iterate
is as close to the exact continuous solution as the exact Galerkin solution. Thus the
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Fig. 5.4. Indented cube seen from outside.

stagnation in the 82 norm of the residual would be a good stopping criterion and then
the slow-down would never be observed.

5.3. Indented cube. The Galerkin discretization of the EFIE is well known to
perform well not only on smooth surfaces but also for the polyhedral ones that often
occur in applications. Though we have justified the preconditioning technique only for
smooth surfaces, it appears to perform well also on such nonsmooth ones. However,
when the preconditioning operator Z : X ′ → X does not invert the operator A : X →
X ′ up to a compact residual, but rather is such that ZA is an automorphism of X,
one expects the ideal conjugate gradients algorithm to converge not superlinearly, but
rather linearly, as is easily proven for SPD operators.

We show numerical results for the following geometry. The scattering object
is the indented cube [−1, 1]3\]0, 1]3. The interior domain contains several types of
singularities, both convex and nonconvex. Also when a plane wave with wave-vector
σ = (σ1, σ2, σ3), with σi < 0, hits the reentrant corner, geometrical optics predicts
that it should be scattered mainly in the direction −σ, after three reflections. The
mesh used for the numerical experiments is shown in Figure 5.4. It has 2164 vertices
and 4324 triangles, leading to 6486 edges (and degrees of freedom for Raviart–Thomas
finite elements).

In Figure 5.5 we show the convergence graphs obtained for an incident plane wave
with wave-vector positively proportional to (−1,−1,−1), with wavelength λ = 8 and
λ = 4, and with horizontal polarization. Contrary to the case of smooth surfaces
there might be significant loss of accuracy when solving the Galerkin problem on
(S1
h)

∧ rather than S1
h when lowest degree Raviart–Thomas fields are used both in

the problem formulation and the preconditioner. This problem would be remedied
using Brezzi–Douglas–Marini fields in the preconditioner, since then (S1

h)
∧ has very

low codimension in S1
h. However, for the wavelengths used here the far-field patterns

were not graphically distinguishable.

Perspectives. The study of the method on nonsmooth surfaces is still ongoing.
In particular, the evaluation of the impact of singularities in the surface and corre-
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Fig. 5.5. Convergence graphs for the indented cube at λ = 8, 4 (left and right).

sponding mesh refinement strategies is important for many applications and could
perhaps be achieved using recent results from Buffa, Costabel, and Schwab [13] and
Hiptmair and Schwab [33].

As remarked on the numerical experiments, the preconditioning technique dis-
plays good stability at low frequencies. This stability can be enhanced by making the
discrete Helmholtz decompositions still more explicit. For instance, focusing on the
preconditioner, one applies separately the two terms of the operator in (1.18) to the
two terms of the vector in (3.24). We shall come back elsewhere to this point, which
is important for simulating semiconductor devices.

The method can also be extended to treat scattering by perfectly conducting
simplical complexes (including open surfaces as well as branched ones, where more
than two surfaces meet at an edge). In these cases one can no longer keep the same
type of Galerkin spaces in the preconditioner as in the variational formulation of the
EFIE, and the Calderon formulas, which require the surface to be orientable, need to
be adapted. For some generalizations of the method described here we have obtained
speed-ups comparable to the above ones, though the justifications are as of today at
best intuitive.

Acknowledgments. We thank F. Béreux for his precious help with this project.
We also thank both referees for many constructive remarks.
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−1/2
div (Γ) et nature de l’opérateur de Steklov-
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Abstract. We present practical numerical methods which produce provably second order ap-
proximations for a class of stationary first order Hamilton–Jacobi partial differential equations. Using
probabilistic methods, we derive high order asymptotic expansions for a first order method and then
use those results to design second order methods. We prove second order convergence for the solu-
tion and for its gradient on a subset of the domain where the solution is smooth. Although we limit
our attention to second order schemes, in principle the techniques in this paper can be extended to
arbitrarily high order methods. Examples illustrate the rate of convergence as well as global sharp
resolution of discontinuities. The Hamilton–Jacobi equations we consider correspond to deterministic
optimal control problems, and our rate of convergence results are valid for the value functions and
for the optimal feedback controls.
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asymptotic expansion, Markov chain approximation, finite difference approximation
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1. Introduction. This paper is concerned with the numerical solution of a class
of first order stationary Hamilton–Jacobi partial differential equations (PDEs). We
begin by specifying the PDEs of interest and giving a practical description of our pro-
posed second order numerical methods. The PDEs that we study arise in connection
with a variety of applications in computer vision, large deviations, and robust control
[3], and they can be interpreted as dynamic programming equations for a class of
deterministic optimal control problems on a finite domain. Under our assumptions,
the value function V 0(x) for a given control problem is the unique viscosity solu-
tion to the corresponding Hamilton–Jacobi PDE, and the optimal feedback control
function u0(x) is obtained by taking the argument in the optimization part of the
Hamilton–Jacobi equation on those parts of the domain where it is uniquely defined.
We exploit this connection to develop the theoretical underpinnings of the proposed
second order numerical methods. We give a detailed asymptotic analysis of a first
order Markov chain-based numerical method and use that analysis to motivate our
second order methods. Finally, we demonstrate under some assumptions that the
proposed second order methods in fact yield second order convergent results and give
several illustrative examples.

Much of the difficulty in solving equations of this type derives from the fact that
the solutions need not be smooth on the entire domain. Under our assumptions,
V 0(x) is globally Lipschitz, but it need not be differentiable at all points. The control
function u0(x) is closely related to the gradient of V 0(x). It need not be uniquely

∗Received by the editors May 28, 1999; accepted for publication (in revised form) January 7, 2002;
published electronically September 12, 2002. This research was supported in part by the National
Science Foundation grant NSF-DMS-9704426, the Army Research Office contract DAAH04-96-1-
0075, and the Office of Naval Research contract ONR-N000014-96-1-0276.

http://www.siam.org/journals/sinum/40-3/35704.html
†Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA

02420 (adam@ll.mit.edu).
‡Division of Applied Mathematics, Lefschetz Center for Dynamical Systems, Brown University,

Providence, RI 02912 (dupuis@cfm.brown.edu).

1136



SECOND ORDER NUMERICAL METHODS FOR HJB EQUATIONS 1137

defined at all points, and it is often discontinuous across those points where it is not
uniquely defined. Typically, however, there are regions of strong regularity (RSRs)
which are open and dense in the domain, and in those regions both V 0(x) and u0(x)
are as smooth as the problem data. Our asymptotic results hold on certain subsets of
the RSRs, and we propose numerical methods which provide provably second order
estimates for V 0(x) and u0(x) on those regions, without sacrificing global convergence
properties.

To our knowledge, there are no similar results which rigorously establish sec-
ond order convergence of any fully implementable numerical method for nonlinear
Hamilton–Jacobi PDEs in multiple dimensions (or for the closely related nonlinear
conservation laws). Computational examples illustrate that the proposed methods
also lead to well-behaved approximations which are second order convergent in the
regions of interest. Given the difficulty of the problem, strong assumptions are to be
expected for the theoretical analysis, and a major drawback to the current method-
ology is that one cannot determine the boundaries of the RSRs directly from the
data. In addition, a key limiting assumption is contained in Assumption 5.1. That
assumption requires that the optimal feedback controls be of fixed sign on the re-
gions of interest, a condition which is typically only satisfied on a small subset of the
domain. Nonetheless, the numerical methods appear to work well even where this
assumption is violated. Perhaps more importantly, the analysis clarifies what sort of
additional smoothness in the numerical methods would be required to obtain rigorous
convergence results without such a restrictive assumption.

The numerical methods we consider are of finite difference type. We follow Kush-
ner [24] and Kushner and Dupuis [25] and work in a probabilistic framework, beginning
with the classical first order methods and proceeding to our proposed second order
methods. The first order numerical methods can also be analyzed in a purely PDE
framework using viscosity solution techniques [1, 6]. Several approaches to obtaining
higher order approximations have been suggested in the literature, especially for the
finite time case [12, 13, 27, 28, 23, 26, 22]. Many of these are based on numerical meth-
ods for conservation laws and have produced convincing numerical results. However,
complete convergence proofs are not available, and adaptation to stationary problems
has proven challenging [20]. We also note that the numerical method for conservation
laws given in [21] is similar in philosophy to the first of our proposed second order
methods.

We specify some notation. Let R
n be the n-dimensional Euclidian space, and let

Z
n be the subset of R

n consisting of n-tuples of integers. For vectors x, y ∈ R
n, 〈x, y〉

is the scalar product, ‖x‖ =
√〈x, x〉 is the Euclidean norm, ‖x‖1 = Σn

i=0|xi| is the
l1-vector norm, and |x| = (|x1|, . . . , |xn|) is the componentwise absolute value. For
a process X(·) taking values in R

n and for S < +∞, ||| X(·) |||S = sup0≤t≤S ‖X(t)‖
is the uniform L2 norm. For any two subsets A and A′ of R

n, d(A,A′) denotes the
minimum Euclidean distance between Ā and Ā′. The positive part of a scalar is
a+ = max(a, 0), and its negative part is a− = −min(a, 0). For a vector, the positive
and negative parts are taken componentwise so that x± = (x±

1 , . . . , x±
n ). In general,

we use subscripts to denote the components of a vector, while superscripts index
possibly vector valued quantities. Thus, xi is always a scalar quantity, while xi may
denote a vector.

For a smooth function f mapping R
n to R and for a positive integer r, put

Dr
i f(x) = ∂r

∂rxi
f(x). The diagonal of the array of rth order partial derivatives is

denoted by

Dr
\f(x) = (Dr

1f(x), . . . , Dr
nf(x)).
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In the case r = 1, we use the standard notation Df(x) = D1
\f(x) for the gradient of

f . For h > 0, the operators Dh,± are one-sided finite difference approximations to
the gradient operator. The ith component of Dh,+f(x) is given by

Dh,+
i f(x) =

f(x + hei)− f(x)

h
,

while the ith component of Dh,−f(x) is given by

Dh,−
i f(x) =

f(x)− f(x− hei)

h
.

In addition, Dh,cf(x) is the centered difference approximation to the gradient vector

Df(x), while D2,h
\ f(x) is the centered difference approximation to the diagonal second

derivative vector D2
\f(x).

2. PDE and numerical methods. In this section, we describe the problem
of interest and give a practical description of the proposed numerical methods. The
remainder of the paper is concerned with a rigorous analysis of what is discussed
here. Let G ⊂ R

n be open with compact closure, and assume that G satisfies uniform
interior and exterior cone conditions (see [3] for definitions). Let b and c be C∞

functions from R
n to R, and let a be a C∞ function from R

n to the space of symmetric
positive definite n × n matrices. Notice that a is uniformly positive definite on G.
Assume that c(x) ≥ c0 > 0 on G. Define

L(x, u) =
1

2
〈(u− b(x)), a−1(x)(u− b(x))〉+ c(x),(2.1)

and consider the PDE

inf
u

[〈u,DV 0(x)〉+ L(x, u)
]

= 0,(2.2)

with the continuous boundary condition V 0(x) = 0 on ∂G. This class of PDEs is of
Hamilton–Jacobi type with Hamiltonians convex in the gradient DV 0(x) and includes
several PDEs of general interest. For example, the Eikonal equation ‖DV 0(x)‖2 =
2c(x) is obtained by letting a(x) be the identity matrix and taking b(x) = 0. Equa-
tion (2.2) may not have a classical solution, but it is proved in [2, Theorem 6.1]
to have a unique nonnegative viscosity solution V 0(x). (See the discussion around
Lemma 3.1.) The corresponding optimal control u0(x) is not uniquely defined every-
where, but it is given by u0(x) = −a(x)DV 0(x) + b(x) where V 0(x) is smooth.

In general, there is no analytical way to identify the solution V 0(x), so we are
interested in numerical approximation methods. The starting place for our discussion
is the first order method described in detail in section 3 and in a slightly more general
setting in [3] . Those discussions are in terms of a Markov chain interpretation that is
convenient for theoretical analysis. Here we restrict ourselves to a formal description
of the numerical method. For h > 0 and for u ∈ R

n we define

∆t
h
(u) =

{ h
‖u‖1

u �= 0,

h u = 0
(2.3)

and

ph(x, y|u) =

{
u±
i

‖u‖1
if y = x± hei,

0 otherwise.
(2.4)
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Then we take as a first order numerical approximation the unique solution V h(x) to

V h(x) = inf
u


∑
y∈Rn

ph(x, y|u)V h(y) + ∆t
h
(u)L(x, u)


(2.5)

on Gh = hZ
n ∩G with zero boundary condition on the complement of Gh. Addition-

ally, we define the approximate optimal control uh(x) to be the minimizing argument
in (2.5). It is easy to see that (2.5) is equivalent to an upwind first order finite differ-
ence approximation to (2.2). As discussed in [3], this discrete equation can be solved
efficiently by a Gauss–Seidel iteration, with the optimal value at each step computed
analytically; the reader interested in implementation should consult [3] for further
details. See also [30] for an interesting discussion of an alternative to Gauss–Seidel
iteration for a subclass of problems. It can be shown that V h(x) → V 0(x) on G.
Additionally, it can be shown on the RSRs that uh(x)→ u0(x) and that the conver-
gence V h(x)→ V 0(x) is first order. See sections 3 and 4 and the reference cited there
[3, 11].

Our primary interest in this paper is in second order numerical methods. Our
second order methods are motivated by the formal asymptotic expansion

V h(x) = V 0(x) + he1(x) + O(h2),(2.6)

where formally e1(x) satisfies

〈u0(x), De1(x)〉+
1

2
〈|u0(x)|, D2

\V
0(x)〉 = 0(2.7)

with zero boundary condition. A rigorous analysis of this asymptotic expansion is
given in sections 4 and 5. In this analysis, we draw liberally from ideas developed
in [15, 10]. Note also that related results are obtained using viscosity solution methods
in [17]. We observe that the asymptotic expansion motivates two distinct approaches
to obtaining a second order approximation to V 0(x).

Approximation Method I. The idea is to directly construct an approximation
e1,h(x) to e1(x). Evidently, the unknowns V 0(x) and u0(x) appear in relation (2.7),
but it is possible to use the first order approximations V h(x) and uh(x) to construct
the approximation by way of the linear equation

〈uh,+, Dh,+e1,h〉 − 〈uh,−, Dh,−e1,h〉+
1

2
〈|uh|, D2,h

\ V h〉 = 0(2.8)

with zero boundary condition. This equation can be solved iteratively using an effi-
cient Gauss–Seidel method. The second order approximations are defined to be

V h,∗(x) = V h(x)− he1,h(x)

and

uh,∗(x) = −a(x)Dh,cV h,∗(x) + b(x)

for all x in Gh.
Approximation Method II. Alternatively, (2.6) suggests Richardson extrapo-

lation as a method to obtain a second order approximation. As such, we may define
new approximations by

V h,∗(x) = 2V h(x)− V 2h(x)
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and

uh,∗(x) = 2uh(x)− u2h(x).

The form of uh,∗(x) is motivated by an asymptotic expansion for u0(x) similar in
form to (2.6). It should be noted that the V h,∗(x) obtained here is not the same as in
Method I. Both involve removing an approximation to the error term e1(x), but the
approximations used in the two methods are in general not the same.

A detailed discussion of the derivation and convergence properties of these second
order approximation methods is found in section 6, and computational examples are
given in section 7. Both methods produce consistent numerical second order approx-
imations to V 0(x) and u0(x) on the RSRs when convergence is measured in the L1

norm. Results are less consistent when measured in the L∞ norm. No spurious os-
cillations are observed in the approximations to V 0(x). Some oscillations are evident
near discontinuities in the approximations to u0(x) (which is related to the gradient
of V 0(x)), but the oscillations appear to be bounded as the grid is refined, indicating
that the second order methods are numerically stable for both V 0(x) and u0(x).

3. Connection with dynamic programming and first order numerical
approximation. We describe a deterministic optimal control problem and its con-
nection to the PDE discussed in the previous section. Then we describe in a Markov
chain framework the first order numerical method used to approximate the solution,
and we recall results which guarantee convergence of the numerical value function
and of the numerical feedback control to their respective counterparts in the problem
being approximated.

Let G ⊂ R
n, a(x), b(x), c(x), and c0 > 0 be as in the previous section. For a

control u0(t) which is in L2([0, S]; Rn) for all S < +∞ and for an initial condition
x ∈ G, we define X0(t) by the dynamics

X0(t) = x +

∫ t

0

u0(s)ds,(3.1)

up to the time when it exits from the domain G. The corresponding generator L0
u is

given by

L0
uf = 〈u,Df〉(3.2)

for any smooth function f mapping R
n to R. We define the exit time τ0 =

inf[t : X0(t) /∈ G]. For the running cost

L(x, u) =
1

2
〈(u− b(x)), a−1(x)(u− b(x))〉+ c(x),

we define the payoff functional

J0(x, u0) =

∫ τ0

0

L(X0(t), u0(t))dt.

The problem is to minimize the payoff by choosing a suitable control. Define the value
function,

V 0(x) = inf
u0

J0(x, u0),
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where the infimum is over controls u0 which are in L2([0, S]; Rn) for all S < +∞.
We employ the underscore notation here to indicate trajectories which are obtained
from an arbitrary control. The same notations, without the underscores, will be used
later to refer to trajectories which are obtained through the application of an optimal
control.

The dynamics in (3.1) involve an open loop control u0(t) which is defined for
all t > 0. It is generally desirable, from the point of view of robustness and for
convenience of implementation, to consider controls which can be represented in the
feedback form

X0(t) = x +

∫ t

0

u0(X0(s))ds.(3.3)

A key feature of the RSRs is that the optimal open loop controls for all initial condi-
tions in a region of strong regularity correspond to a unique smooth feedback function
u0(x). The following lemma is proved by elementary arguments in [11, Lemma 2.1].
We will use the T < +∞ from this lemma frequently in our analysis.

Lemma 3.1. V 0(x) is bounded and uniformly Lipschitz on G, and there exists T <
+∞ such that every optimal trajectory exits from G by time T−1. Furthermore, there
exists a compact set U ⊂ R

n such that every optimal open loop control is contained
in the interior of U for each 0 ≤ t ≤ T − 1.

The value function V 0 need not be differentiable on the entire domain G, but,
given Lemma 3.1, it follows from [2, Theorem 6.1] that it is the unique nonnega-
tive viscosity solution on G to the Hamilton–Jacobi dynamic programming equation
(DPE)

inf
u

[L0
uV

0(x) + L(x, u)
]

= 0,(3.4)

with the continuous boundary condition V 0(x) = 0 on ∂G, where the generator L0
u is

defined in (3.2). See references [1] and [16] for a thorough account of the relationship
between viscosity solutions of Hamilton–Jacobi PDEs and the value functions for
various types of optimal control problems.

It turns out that V 0 is smooth on most of the domain G. Let Q be a subset of Ḡ
which is open relative to G. We call Q an RSR if the following hold:

1. For each initial condition x ∈ Q, there is a unique optimal open loop control,
and the corresponding trajectory X0

x(t) is contained in Q up to its exit time
τ0
x . The optimal trajectory meets ∂G nontangentially at a point z0

x.
2. V 0 ∈ C∞(Q).
3. There is a unique u0 ∈ C∞(Q) such that the optimal control can be repre-

sented in feedback form and is given by u0(x) for each x ∈ Q.
4. For ξ ∈ Q∩ ∂G, let Tξ be the supremum of the exit times for optimal trajec-

tories beginning in Q and exiting at ξ. The bijective map Ξ(s, ξ) from

{(s, ξ) : ξ ∈ Q ∩ ∂G, 0 ≤ s < Tξ}
to Q given by Ξ(τ0

x − t, z0
x) = X0

x(t) is nonsingular in the sense that the
quantities

∂Ξ

∂s
(s, ξ),

∂Ξ

∂ν1
(s, ξ), . . . ,

∂Ξ

∂νn−1
(s, ξ)

are linearly independent, where the νi are linearly independent tangent vec-
tors to ∂G at the boundary point ξ.
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Fig. 1. RSRs.

The rather technical fourth condition in the above definition is the requirement that
points in the RSRs not be conjugate. The uniqueness of optimal trajectories in the
first condition is equivalent to the statement that the map Ξ(s, ξ) is one-to-one. The
nondegeneracy required in the fourth condition is a slightly stronger statement which
precludes “almost” nonuniqueness in an infinitesimal sense. The classical method of
characteristics and its application to proving the existence of RSRs for the present
problem is discussed in the appendices of references [15, 17]. Detailed information on
the structure of the regions of strong regularity for closely related problems can be
found in references [4, 5, 14]. In general, the union of the RSRs is open and dense in
the domain. We note that the C∞ smoothness is a consequence of the assumed C∞

smoothness of the data. Similar smoothness for finitely many derivatives would follow
if the assumptions on the data were commensurately relaxed, and the asymptotic
results in this paper would then be restricted to a finite order. For simplicity, we
restrict ourselves to the case of C∞ data.

Let B∗ be a subset of Ḡ such that B̄∗ ⊂ Q. Our asymptotic results will hold on
sets which include B̄∗. Let M ≥ 1 be a fixed integer. While our choice of M here is
arbitrary, it corresponds to the order of the asymptotic expansion that we will obtain
in section 5. Consider a region of strong regularity B0, and, for i = 1, . . . ,M , regions
of strong regularity Bi and Bi′ such that

B̄∗ ⊂ BM ′ ⊂ · · · ⊂ B1 ⊂ B̄1 ⊂ B0 ⊂ B̄0 ⊂ Q,(3.5)

and such that

B̄i+1 ⊂ Bi′ ⊂ B̄i′ ⊂ Bi(3.6)

for each i = 1, . . . ,M , where BM+1 is taken to be B∗ in (3.6). The existence of
such nested RSRs follows from Theorem 2.4 in reference [17]. These relationships are
illustrated in Figure 1.

Since V 0 is a classical solution to the DPE (3.4) on the RSR Q, the optimal
feedback control can be explicitly evaluated there:

u0(x) = −a(x)DV 0(x) + b(x).(3.7)

We assume the following.
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Assumption 3.2. The boundary section Q∩∂G is parallel to one of the coordinate
hyperplanes. Furthermore, the minimum distance in the outward normal direction
from Q ∩ ∂G to ∂G/Q is equal to δ̃ > 0.

We now present a first order Markov chain-based numerical approximation to
the deterministic optimal control problem discussed above, along with known conver-
gence results. The method of approximation by Markov chains was first described
by Kushner [24], and an up-to-date treatment can be found in the book of Kushner
and Dupuis [25]. Our approximation is essentially the one used in [3] and in [11]. In
the sections which follow, we will present more detailed asymptotic results for this
approximation and then describe a new numerical method which yields a qualitatively
better rate of convergence.

Let h > 0 be a discretization parameter and define the discrete domain Gh =
hZ

n ∩G. For any A ⊂ R
n, we define Ah = hZ

n ∩ Ao, where Ao is the interior of A.
We consider limits as h → 0, with the h chosen such that the hyperplane in which
the boundary section Q ∩ ∂G lies lines up with the lattice hZ

n. (See Assumption 3.2
and Figure 2.) We will construct a continuous time controlled jump Markov process
on Gh which approximates the deterministic dynamics in (3.3).

Let uh be any feedback control on Gh. Let Xh be the Markov process with
controlled generator Lhu given by

Lhuf = 〈u+, Dh,+f〉 − 〈u−, Dh,−f〉
for any smooth function f mapping R

n to R. See section 1 for the notation in this
definition. The corresponding stochastic dynamics will be called the h-dynamics. As
in the description of the limit problem, we employ the underscore notation to indicate
objects which are obtained from the application of an arbitrary possibly suboptimal
feedback control.

Since we consider only feedback controls, it is straightforward to construct Xh, as
in section 4.3 of [25] and in [7]. We define a sequence of independently and identically
distributed exponential random fields parameterized by u, with mean values specified
as follows:

∆t
h
(u) =

{ h
‖u‖1

u �= 0,

h u = 0.
(3.8)

Suppose that after m− 1 jumps, Xh(s) is defined for 0 ≤ s ≤ t and that Xh(t) = x.
Then we take Xh(s) = x for all t ≤ s < t + η, where the waiting time η is the
exponential random variable obtained by evaluating the mth random field with the
parameter value u = uh(Xh(s)). If u = 0, then Xh(t + η) = x, but otherwise it is
conditionally distributed according to the jump probabilities

ph(x, y|u) =

{
u±
i

‖u‖1
if y = x± hei,

0 otherwise.
(3.9)

It is easy to verify that the mean velocity of Xh at time t conditioned on Xh(t) = x
is equal to uh(x), so this is a consistent approximation to the limit dynamics in (3.3)
if u0(x) is replaced by uh(x) there.

We now formulate the discrete approximation to the optimal control problem
discussed above. Define the value function

V h(x) = inf
uh

Ex

∫ τh

0

L(Xh(t), uh(Xh(t)))dt,
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Fig. 2. Region for smooth extension of u0.

where the exit time is τh = inf[t : Xh(t) /∈ Gh], and the infimum is over feedback
controls uh. Using standard methods [25, section 4.3] it can be shown that V h is the
unique solution on Gh to the DPE

inf
u

[LhuV h(x) + L(x, u)
]

= 0,(3.10)

with zero boundary condition on hZ
n/Gh. It is straightforward to verify that (3.10)

is equivalent to

V h(x) = inf
u


∑
y∈Rn

ph(x, y|u)V h(y) + ∆t
h
(u)L(x, u)


(3.11)

and that the minimizing values of u are the same for these two equations. As suggested
by the form of (3.11), the fixed point and an optimal feedback control can be found
numerically using either Jacobi or Gauss–Seidel iteration schemes. We note that
(3.11) is the DPE for a different approximating control problem, where, instead of the
continuous time Markov chain described above, a discrete time Markov chain is used
to approximate the deterministic dynamics. That is the approach taken in [3], where

the time step ∆t
h
(u) is used to interpolate the Markov chain into continuous time.

As discussed in [3], the choice of one-sided transition probabilities and of a control-
dependent time step facilitates rapid convergence of the iterative schemes used to
solve (3.11), and the required infima at each step can be evaluated analytically.

The DPE (3.10) gives rise to an approximate value function V h(x) on Gh as well
as an approximate optimal feedback control uh(x) on Gh. Typical convergence results
for numerical methods dealing with optimal control problems concern the convergence
of the value functions V h(x) to the limit value V 0(x). The following theorem is proved
for the present problem in [3, Theorem 5.4].

Theorem 3.3. For any ε > 0, there exists h0 > 0 such that

|V h(x)− V 0(x)| < ε

for all 0 < h ≤ h0 and all x ∈ Gh.
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For applications it is often important to have a good numerical approximation to
the optimal feedback control u0(x). Typically, this quantity is not uniquely defined
on the entire domain, and until recently no general approximation theorems were
available. The following theorem [11, Corollary 5.6] establishes convergence of the
approximate optimal controls uh(x) to u0(x) on the RSRs for the present problem.
Aside from its intrinsic value, this result plays a pivotal role in the detailed asymptotic
analysis that we carry out in the this paper.

Theorem 3.4. For any ε > 0, there exists h0 > 0 such that

‖uh(x)− u0(x)‖ < ε

for all 0 < h ≤ h0 and for all x ∈ Bh
0 .

It is convenient to have u0(x) defined and Lipschitz on all of R
n and to have uh(x)

defined on all of hZ
n. We abuse notation by extending u0(x) to R

n and changing
its values on the complement of B̄0. Let δ > 0 be such that δ < d(B0, ∂Q ∩ G)
and such that δ ≤ δ̃, where δ̃ is as in Assumption 3.2; see Figure 2. We define a
Lipschitz function ũ0(x) on Bδ(B̄0) by setting ũ0(x) = u0(x) on Bδ(B̄0) ∩ G and by
extending it to Bδ(B̄0) ∩Gc as follows. For x ∈ Bδ(B̄0) ∩ ∂G and for 0 ≤ γ ≤ δ, let
ũ0(x+γn) = u0(x), where n is the outward normal vector at x; see Figure 2. Now let
φ(x) be a C∞ function on R

n taking values in [0, 1] such that φ(x) = 1 on Bδ/2(B̄0)
and φ(x) = 0 outside of Bδ(B̄0). Such a function can be constructed by standard
methods using a smooth convolution kernel [18, Theorem 0.17]. We can now redefine
u0(x) to be equal to φ(x)ũ0(x) on Bδ(B̄0) and zero everywhere else. This new u0(x)
is Lipschitz on R

n and satisfies (3.7) on the region B0. Finally, we put uh(x) = u0(x)
for all x ∈ hZ

n/B0. Notice that, by Lemma 3.1 and by Theorem 3.4, we have u0(x)
and uh(x) contained in the compact set U for all x at which they are defined for h > 0
sufficiently small.

For most of what follows, we will be concerned only with initial conditions x in
the RSR B0. For x ∈ B0, we define the optimal trajectory X0

x(t) for all t ≥ 0 by
applying the extended feedback control u0(x). Since B0 is an RSR, X0

x(t) is optimally
controlled until time τ0

x , which is its first exit time from G and from the interior of
B0. We also define the exit location z0

x = X0
x(τ0

x). For x ∈ Bh
0 , there is a unique

process Xh
x (t) defined for all t ≥ 0 which is optimally controlled by uh(x) until it exits

from Bh
0 . We define the exit time τhx,B0

= inf[t : Xh
x (t) /∈ Bh

0 ] and the exit location

zhx,B0
= Xh

x (τhx,B0
). We will often suppress the initial conditions in the subscripts of

all of these notations.
The following lemma is proved just like [11, Lemma 2.3]. We use it to parlay

information about convergence of trajectories into information about convergence of
the corresponding exit times and locations.

Lemma 3.5. Let M2,M1 be RSRs such that M̄1 ⊂M2 ⊂ B0. For each sufficiently
small ε > 0, there exists η > 0 such that the following holds. Let X be a function of
t that is continuous on the right with limits on the left and that has initial condition
in M2, and let τM2

and zM2
be its exit time and location from the interior of M2.

If x ∈ M2 is such that ||| X −X0
x |||T ≤ η holds, then τM2 ≤ τ0

x + ε. If, in addition,
x ∈M1, then it also follows that |τM2

− τ0
x | ≤ ε and ‖zM2

− z0
x‖ ≤ ε.

Our proofs of the detailed asymptotic results in this paper depend upon having
sharp estimates for the rate of convergence of the prelimit processes to the corre-
sponding limit trajectories. We derive exponential rates of convergence in probability
from the large deviations upper bound in Theorem B.1. For an RSR M2 ⊂ B0, con-
sider a sequence of feedback control functions ûh(x) defined on hZ

n which satisfy
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ûh(x) = u0(x) for x /∈ Mh
2 . Suppose that, for each ε > 0, there exists h0 > 0 such

that

‖ûh(x)− u0(x)‖ < ε

for all 0 < h ≤ h0 and for all x ∈Mh
2 . In particular, given Theorem 3.4, we can take

for ûh(x) either uh(x) or u0(x). For x ∈ Mh
2 , let X̂h

x (t) be the process defined for
t ≥ 0 by applying the control ûh in the h-dynamics. Define τ̂hx,M2

to be the exit time

of X̂h
x from Mh

2 , and let ẑhx,M2
be its exit location.

Lemma 3.6. Let M2, M1 be RSRs such that M̄1 ⊂ M2 ⊂ B0, and let û
h(x) and

its corresponding trajectories be as above. For any ε > 0, there exists K > 0 such
that

(i) Px
[||| X̂h −X0

x |||T ≥ ε
]
<

1

K
e−K/h,

(ii) Px
[
τ̂hM2

> τ0
x + ε

]
<

1

K
e−K/h

holds for all x ∈Mh
2 and for all sufficiently small h > 0. In addition,

(iii) Px
[|τ̂hM2

− τ0
x | ≥ ε

]
<

1

K
e−K/h,

(iv) Px
[‖ẑhM2

− z0
x‖ ≥ ε

]
<

1

K
e−K/h

holds for all x ∈Mh
1 and for all sufficiently small h > 0.

Proof. Part (i) is obtained by applying the large deviations upper bound in
Theorem B.1 with n1 = n, n2 = 0. In the lemma, we set āh(x) = 0, ā(x) = 0,
b̄h(x) = ûh(x), and b̄(x) = u0(x). We define the measure µ̄h(x) by

µ̄h(x)(y) =

{
ûh,±i (x) if y = ±hei,
0 otherwise,

(3.12)

and we define the limit measure µ̄(x) to put mass ‖u0(x)‖1 at the origin. Finally,
we take F = {φ : ||| φ−X0

x |||T ≥ ε}, and we note that Ix(φ) is uniformly bounded
away from zero for all φ ∈ F . To get parts (ii)–(iv), pick 0 < η < ε to satisfy the
conclusion of Lemma 3.5. Then pick K > 0 such that (i) holds with ε replaced by η,
and parts (ii)–(iv) follow from Lemma 3.5.

4. First term in the asymptotic expansion. In this section, we derive a first
order asymptotic expansion for V h(x) around V 0(x) in the RSR B1. Our method-
ology is essentially that employed in [10], and Theorem 3.4 plays a key role in the
proof. The first order expansion is of independent interest, as it establishes a rate
of convergence for V h(x) as an approximation to V 0(x) in the RSRs. Our primary
interest in this paper, however, is in the fact that the first order expansion suggests
that it is possible to obtain higher order convergence through a modification of the
Markov chain approximation. In the sections which follow, we prove, under some
additional assumptions, that such schemes can be implemented to yield second order
convergence.
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For each x ∈ B0 and for each u ∈ U , we define the difference between the prelimit
and the limit generators applied to V 0(x) by

rh(x, u) = LhuV 0(x)− L0
uV

0(x),

=
1

2
h 〈|u|, D2

\V
0(x)〉+ O(h2),

(4.1)

where the O(h2) term is uniform on B0 × U . We can now write the DPE (3.4) for
V 0(x) in the alternative form

inf
u

[LhuV 0(x) + L(x, u)− rh(x, u)
]

= 0.(4.2)

Equation (4.2) is the DPE for an optimal control problem with Markov chain dynamics
and with running cost equal to L−rh. A comparison with the DPE for V h(x) in (3.10)
suggests that the difference between V h(x) and V 0(x) should be approximately equal
to an integral of rh along the optimal trajectory with initial condition x. The theorem
below verifies that this intuition is correct, at least to a first order approximation. It
is useful in what follows to define a compact notation for the running cost under a
feedback control u(x) by

Lu(x) = L(x, u(x)).

Similarly, we define

rhu(x) = rh(x, u(x))

for all x ∈ B0 and for all h > 0.
For x ∈ B0, we define the error function

e1(x) =
1

2

∫ τ0
x

0

〈∣∣u0(X0
x(t))

∣∣ , D2
\V

0(X0
x(t))〉dt,(4.3)

and we note that the integrand is a scaled version of the first order approximation to
rh given in (4.1) above. Recall the region of strong regularity B1 and the relationships
specified in (3.5) and illustrated in Figure 1.

Theorem 4.1. The asymptotic expansion

V h(x) = V 0(x) + he1(x) + o(h)(4.4)

holds as h→ 0, uniformly for x ∈ Bh
1 .

Proof. We prove this theorem in two steps, first considering the upper bound on
V h(x) and then the lower bound.

Upper bound. It is useful here to identify the suboptimal trajectories obtained
by applying the limit optimal feedback control u0(x) in the h-dynamics. For an
initial condition x in Bh

1 , let Xh,0 be the process obtained by taking uh = u0 in
the Markov chain dynamics of section 3 with parameter h. Define the exit time
τh,0B0

= inf[t : Xh,0(t) /∈ Bh
0 ] and the exit location zh,0B0

= Xh,0(τh,0B0
). Since the

infimum in (4.2) is achieved at u0(x), we can use a standard verification argument to
establish for all x ∈ Bh

1 the representation

V 0(x) = Ex

[∫ τh,0
B0

0

Lu0(Xh,0)− rhu0(Xh,0)dt + V 0(zh,0B0
)

]
.(4.5)
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We use part (ii) of Lemma 3.6 and the strong Markov property to obtain the uniform

integrability of the τh,0B0
needed for the right-hand side of (4.5) to be finite. We obtain

the following series of relations holding for x in Bh
1 :

V h(x) ≤ Ex

[∫ τh,0
B0

0

Lu0(Xh,0)dt + V h(zh,0B0
)

]

= V 0(x) + Ex

[∫ τh,0
B0

0

rhu0(Xh,0)dt

]

+ Ex

[
V h(zh,0B0

)− V 0(zh,0B0
)
]

= V 0(x) +
1

2
hEx

[∫ τh,0
B0

0

〈
|u0(Xh,0)|, D2

\V
0(Xh,0)

〉
dt

]

+ Ex

[
V h(zh,0B0

)− V 0(zh,0B0
)
]

+ O(h2).

(4.6)

The first line follows from the definition of V h(x) and from the strong Markov prop-
erty; the second line is a consequence of the representation in (4.5); and the third line
is obtained from the estimate in (4.1), where the O(h2) term is uniform on Bh

1 .

Using parts (i) and (iii) of Lemma 3.6, it is straightforward to see that the integral
term in the last line of (4.6) is equal to he1(x) + o(h), uniformly for x in Bh

1 . It
remains to estimate the boundary term in the last line of (4.6). Let ε > 0 be equal
to d(B1, ∂B0 ∩G); see Figure 3 in the next section. Since z0

x ∈ Bq+1 ∩ ∂G, it follows
from the fact that h > 0 is chosen so that the lattice hZ

n lines up with Q ∩ ∂G that
if ‖zh,0B0

− z0
x‖ < ε, then zh,0B0

∈ ∂G, and in that case

V h(zh,0B0
) = V 0(zh,0B0

) = 0.

Since V 0(x) and V h(x) are uniformly bounded, part (iv) of Lemma 3.6 implies that
the boundary term in the last line of (4.6) is equal to O(e−K/h), uniformly for x in
Bh

1 . Combining these estimates, we have

V h(x) ≤ V 0(x) + he1(x) + o(h),

holding uniformly for x in Bh
1 .

Lower bound. Similarly to (4.6) in the proof of the upper bound, we obtain the
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following series of relations holding for x in Bh
1 :

V 0(x) ≤ Ex

[∫ τh
B0

0

Luh(Xh)− rhuh(Xh)dt + V 0(zhB0
)

]

= V h(x)− Ex

[∫ τh
B0

0

rhuh(Xh)dt

]

+ Ex

[
V 0(zhB0

)− V h(zhB0
)
]

= V h(x)− 1

2
hEx

[∫ τh
B0

0

〈
|uh(Xh)|, D2

\V
0(Xh)

〉
dt

]

+ Ex

[
V 0(zhB0

)− V h(zhB0
)
]

+ O(h2).

(4.7)

The first line is a consequence of the fact that uh(x) is suboptimal in the control
problem corresponding to (4.2) and of the strong Markov property; the second line
follows from the definition of V h(x); and the third line is obtained from the estimate
in (4.1), where the O(h2) term is uniform on Bh

1 .
As in the proof of the upper bound, we estimate the terms in the last line of (4.7)

to obtain

V 0(x) ≤ V h(x)− he1(x) + o(h),

holding uniformly for x in Bh
1 . This time we need to use the convergence of uh to

u0 from Theorem 3.4 in the application of Lemma 3.6 and then again to show that
the integrand in the last line of (4.7) converges to the integrand in the definition of
e1(x).

Theorem 4.1 establishes the rate of convergence of V h(x) to V 0(x) in the RSRs.
It is not surprising that the convergence is first order, since the Markov chain ap-
proximation we consider gives rise to a discrete DPE (3.10) which could be obtained
by replacing the derivatives in (3.4) with first order finite difference approximations.
In fact, all numerical methods for problems of this type which have been proved to
converge are intrinsically first order accurate.

What is promising about Theorem 4.1 is that (4.4) suggests that we can modify
the present first order Markov chain method in order to obtain second order con-
vergence in the RSRs. One approach is to approximate e1(x) and to subtract this
approximation from V h(x). For this approach to be successful, two issues need to
be addressed. First, we need to verify that the o(h) error estimate in (4.4) can be
sharpened to O(h2). Second, we need a first order approximation to e1(x). To get this
we require first order estimates to the unknown quantities u0(x) and D2

\V
0(x). Both

of these issues would be addressed if we could establish a higher order asymptotic
expansion of the form

V h(x) = V 0(x) + he1(x) + h2e2(x) + O(h3),(4.8)

where both e1(x) and e2(x) are smooth functions of x. If (4.8) holds, then we can
obtain first order approximations to the first and second derivatives of V 0(x) by
applying standard finite difference operators to V h(x). Since u0(x) is closely related
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to DV 0(x), this information can be used to obtain a first order approximation to
u0(x). Another approach to obtaining second convergence is to apply Richardson
extrapolation directly to the approximate value functions. If (4.8) is verified, then it
is trivial that

2V h/2(x)− V h(x)

differs from V 0(x) by an error which is O(h2), uniformly on the relevant RSR. In the
sections which follow, we will specify conditions under which (4.8) can be verified,
and then we will describe in detail how this information can be used to construct
global numerical methods which provide second order approximation for both V 0(x)
and u0(x) in the RSRs.

5. Full asymptotic expansion. In this section, we establish an asymptotic
expansion of V h(x) around V 0(x) to order M , where M is an arbitrary positive
integer. The results which follow require that we impose the following additional
restriction on the region B0.

Assumption 5.1. There exists κ > 0 such that

|u0
i (x)| > κ

holds for each i = 1, . . . , n and for all x ∈ B0. Since u0(x) is continuous on B0,
Assumption 5.1 implies that each component of the optimal control u0(x) has a fixed
sign in the region B0. Thus, without loss of generality, we can assume that there
exists κ > 0 such that

u0
i (x) > κ

for each i = 1, . . . , n and for all x ∈ B0. Theorem 3.4 guarantees that, for h > 0
sufficiently small, we also have uhi (x) > 0 holding for each i = 1, . . . , n and for all x ∈
Bh

0 . Thus, as long as we restrict the analysis which follows to sufficiently small h > 0,
we can deal exclusively with forward differences in the numerical approximation. As
such, we redefine the generator for the h-dynamics to be such that

Lhuf = 〈u,Dhf〉
for any smooth function f mapping R

n to R. The operator Dh is taken to be Dh,+,
the forward finite difference approximation to the gradient defined in section 1.

For convenience, we record here the DPEs for the limit problem and for the
prelimit problem, with the generators fully written out. The limit DPE (3.4) takes
the form

0 = inf
u

[〈u,DV 0〉+ L
]

= −1

2
〈DV 0, aDV 0〉+ 〈b,DV 0〉+ c,(5.1)

and it holds for all x ∈ B0, with the minimizer u0(x) given by (3.7). Similarly, the
DPE (3.10) for the problem with h-dynamics can now be written in the form

0 = inf
u

[〈u,DhV h〉+ L
]

= −1

2
〈DhV h, aDhV h〉+ 〈b,DhV h〉+ c,(5.2)
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where the minimizer uh(x) can be explicitly evaluated

uh(x) = −a(x)DhV h(x) + b(x)(5.3)

for all x ∈ Bh
0 and for all h > 0 sufficiently small.

In light of the discussion at the end of section 4, the condition in Assumption 5.1
is quite natural. In order for our approach to analyzing a second order numerical
approximation to be successful, we require that both e1(x) and e2(x) in the asymptotic
expansion (4.8) be smooth functions of x. In general, this fails to be true even for
e1(x), owing to the |u0| term in the integrand of (4.3). Under the present assumptions,
however, we can write e1(x) in the form

e1(x) =
1

2

∫ τ0
x

0

〈u0(X0
x(t)), D2

\V
0(X0

x(t))〉dt,(5.4)

which implies that e1(x) is a smooth function of x, and it satisfies the equation

〈u0, De1〉+
1

2
〈u0, D2

\V
0〉 = 0,(5.5)

for all x in B0, with zero boundary condition on ∂G ∩ B0. The increased regularity
can be accounted for by the fact that the Hamiltonian in the DPE (5.2) is smooth,
whereas the Hamiltonian in the DPE (3.10) fails to be a continuously differentiable
function of Dh,±V h(x). We remark that even in those regions where Assumption 5.1
fails to hold, our methods seem to work quite well; see the examples in section 7.

Before stating the main theorem of this section, we recall our standing assump-
tions. The domain G ⊂ R

n is open with compact closure and satisfies uniform interior
and exterior cone conditions. We assume that b and c are C∞ functions from R

n to
R with c(x) ≥ c0 > 0 on G and that a is a C∞ function from R

n to the space of sym-
metric positive definite n × n matrices. Additionally, we assume that we have RSRs
as specified by (3.5)–(3.6) such that the flat boundary condition of Assumption 3.2
and the condition on the optimal controls given in Assumption 5.1 both hold.

It is useful for what follows to introduce some notation. For h > 0, we define a
new approximate feedback control

ūh(x) =
1

2
(u0(x) + uh(x)).(5.6)

Combining (5.1) and (5.2), and noting that

ūh(x) = −1

2
a(x)DhV h(x)− 1

2
DV 0(x) + b(x)(5.7)

holds for all x in Bh
0 , we conclude that

〈ūh, Dh(V h − V 0)〉+ 〈ūh, DhV 0 −DV 0〉 = 0(5.8)

holds on the region Bh
0 .

Theorem 5.2. Recall the region B∗ from (3.5). With M ≥ 1 the arbitrary con-
stant chosen in section 3 and with the em(x) as given below, the asymptotic expansion

V h(x) = V 0(x) +

M∑
m=1

hmem(x) + o(hM )(5.9)
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holds as h→ 0, uniformly for x ∈ (B∗)h.

The following corollary establishes an analogous asymptotic expansion for the
optimal feedback control. It is a direct consequence of Theorem 5.2 and of the ex-
pressions for u0(x) and uh(x) given in (3.7) and (5.3).

Corollary 5.3. With M ≥ 1 the arbitrary constant chosen in section 3 and
with the em(x) as given below, the asymptotic expansion

uh(x) = u0(x)− a(x)

M−1∑
m=1

hmDhem(x)

− a(x)

M−1∑
m=1

hm
1

(m + 1)!
Dm+1

\ V 0(x) + o(hM−1)

(5.10)

holds as h→ 0, uniformly for x ∈ (B∗)h.

In section 4, we were able to determine the value of e1(x) by considering the for-
mal difference between the generators L0

u and Lhu, and then through the new dynamic
programming equation (4.2), considering V 0(x) as the value function for a modified
optimal control problem with the h-dynamics. We cannot use this approach to deter-
mine the form of em(x) for m ≥ 2 because, in addition to the higher order terms in the
expansion of rh(x), there are approximation effects which result from the difference
between the controls uh(x) and u0(x). Instead, we use a formal recursive procedure,
illustrated below for the case m = 2.

Assume that the expansion in (5.10) holds to first order, so it follows that

ūh(x) = u0(x)− 1

2
ha(x)De1(x)− 1

4
ha(x)D2

\V
0(x) + o(h).(5.11)

We now combine (5.5) and (5.8) to obtain

〈ūh, h−2Dh[V h − V 0 − he1]〉

+ h−2〈ūh, DhV 0 −DV 0〉 − 1

2
h−1〈u0, D2

\V
0〉

+ h−1〈ūh − u0, Dhe1〉+ h−1〈u0, Dhe1 −De1〉 = 0.

Using the expression in (5.11), along with the fact that Taylor’s theorem implies

Dhf(x) =

M∑
m=1

1

m!
hm−1Dm

\ f(x) + o(hM )(5.12)

for all smooth functions f(x), we conclude that

〈ūh, h−2Dh[V h − V 0 − he1]〉+ r2 + o(1) = 0,(5.13)

where we define r2(x) by
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r2(x) =
1

2
〈u0(x), D2

\e
1(x)〉+

1

6
〈u0(x), D3

\e
0(x)〉

− 1

2
〈De1(x), a(x)D2

\e
0(x)〉 − 1

2
〈De1(x), a(x)De1(x)〉

− 1

8
〈D2

\e
0(x), a(x)D2

\e
0(x)〉.

Heuristically, (5.13) suggests that we should set

e2(x) =
1

2

∫ τ0
x

0

r2(X0
x(t))dt.

The formal argument outlined above will be made rigorous when we prove Theorem 5.2
later in this section.

In order to record the general form of em(x) for m = 1, . . . ,M , we adopt the
convention e0(x) = V 0(x) and define

rm(x) =

m+1∑
k=2

1

k!
〈u0(x) , Dk

\ e
m+1−k(x)〉

− 1

2

m∑
l=2

m+2−l∑
k=1

1

k!l!
〈Dl

\e
0(x) , a(x)Dk

\ e
m+2−l−k(x)〉

− 1

2

m−1∑
j=1

m−j∑
l=1

m+2−j−l∑
k=1

1

k!l!
〈Dl

\e
j(x) , a(x)Dk

\ e
m+2−j−l−k(x)〉

for all x in B0. Then recursively applying the heuristic outlined above suggests that
we should define em(x) by

em(x) =
1

2

∫ τ0
x

0

rm(X0
x(t))dt(5.14)

for each m = 1, . . . ,M and for all x in B0. By the method of characteristics, we then
have that

〈u0, Dem〉+ rm = 0(5.15)

holds for each m = 1, . . . ,M and for all x in B0, with zero boundary conditions on
∂G ∩B0. Since each rm(x) depends upon the ei(x) with i < m, we define the em(x)
recursively beginning with m = 1. We note that the conclusion of Lemma 5.7 serves
to verify that we have properly defined the em(x) for the problem at hand.

An alternative heuristic method to derive (5.15) is to assume that (5.9) holds and
that the error term o(hM ) is a smooth function of x. We apply the operator Dh to
both sides of (5.9) and then use (5.12) to express DhV h(x) in terms of derivatives
of smooth functions. We substitute this expression into the DPE (5.2), formally
differentiate the resulting equation m times with respect to the parameter h, and
then set h = 0 to obtain the equation for em(x).
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The proof of Theorem 5.2 can be broken down into three lemmas to be applied
recursively. To make the notation consistent, we define a new region B0′ to be equal
to B0. See equations (3.5) and (3.6) along with Figure 1 for the relationships between
the RSRs in the following lemmas. Given an asymptotic expansion for DhV h(x) to q
terms, the first lemma establishes the expansion for V h(x) to q+1 terms. The needed
expansion for DhV h(x) with q = 0 has been established in Theorem 3.4. Although
it is not needed for the development, we also note that in section 4 we have already
proved Lemma 5.4 for the case q = 0.

Lemma 5.4. Let 0 ≤ q ≤M − 1 be an integer, and suppose that

DhV h(x) = DhV 0(x) +

q∑
m=1

hmDhem(x) + o(hq)(5.16)

holds as h→ 0, uniformly for x in Bh
q′ . Then

V h(x) = V 0(x) +

q+1∑
m=1

hmem(x) + o(hq+1)(5.17)

holds as h→ 0, uniformly for x in Bh
q+1.

G

Bq′

Bq+1

d(Bq+1, ∂Bq′ ∩G)

•(i)

•(ii)

Fig. 3. Boundary points.

The next lemma establishes the expansion for DhV h(x) to q + 1 terms but only
in a neighborhood of the boundary. The two cases in the lemma are illustrated in
Figure 3.

Lemma 5.5. Let 0 ≤ q ≤ M − 1 be an integer, and suppose that (5.16) holds.
Then, for each p = 1, . . . , n,

Dh
pV

h(x) = Dh
pV

0(x) +

q+1∑
m=1

hmDh
pe

m(x) + o(hq+1)(5.18)

holds as h→ 0, uniformly for x ∈ R
n such that either (i) x ∈ ∂G and x+hep ∈ Bh

q+1

or (ii) x ∈ Bh
q+1 and x + hep ∈ ∂G.

Finally, given the conclusion of Lemma 5.5, the third lemma carries the asymp-
totic expansion for DhV h(x) to q + 1 terms on a smaller RSR.
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Lemma 5.6. Let 0 ≤ q ≤M −1 be an integer, and suppose that (5.16) and (5.18)
hold. Then

DhV h(x) = DhV 0(x) +

q+1∑
m=1

hmDhem(x) + o(hq+1)(5.19)

holds as h→ 0, uniformly for x in Bh
(q+1)′ .

Given the nesting of the RSRs, these three lemmas complete one step of a recursive
process. We can apply Lemma 5.4 with q replaced by q + 1 and iterate until we have
established the full asymptotic series to order M . In preparation for the proofs of
these lemmas, we introduce some more notation. For q = 1, . . . ,M and for x ∈ B0,
we define

Φh,q(x) =
1

hq

[
V h(x)− V 0(x)−

q∑
m=1

hmem(x)

]
,

and, for each p = 1, . . . , n,

Ψh,q
p (x) = Dh

pΦh,q(x)

=
1

hq

[
Dh
pV

h(x)−Dh
pV

0(x)−
q∑

m=1

hmDh
pe

m(x)

]
,

and then we put Ψh,q(x) = (Ψh,q
1 (x), . . . ,Ψh,q

n (x)). The conclusions in the above
lemmas can now be formulated in terms of the convergence as h→ 0 of the Φh,q+1(x)
and the Ψh,q+1(x) to zero.

The proofs of Lemmas 5.4–5.6 involve some elementary but rather lengthy alge-
braic calculations. We summarize the results of these calculations in the following
lemma, the proof of which is deferred to Appendix A. It should be emphasized that,
while the proof of Lemma 5.7 is elementary, it is in fact the key step which confirms
that we have properly defined the em(x) for the particular numerical approximation
that we are studying. We recall our convention that subscripts refer to the components
of a vector, while superscripts act as indices for possibly vector valued quantities.

Lemma 5.7. Let 0 ≤ q ≤ M − 1 be an integer, and suppose that (5.16) holds.
Then

〈ūh, DhΦh,q+1〉+ φh,q+1 = 0,(5.20)

where φh,q+1 = o(1) as h → 0, uniformly for x in Bh
q′ . Furthermore, for each p =

1, . . . , n

〈ûh,q+1,p, DhΨh,q+1
p 〉+ 〈λh,q+1,p,Ψh,q+1〉+ ψh,q+1

p = 0,(5.21)

where ûh,q+1,p = u0 + o(1), λh,q+1,p = Dpu
0 + o(1), and ψh,q+1

p = o(1) as h → 0,

uniformly for x in Bh
q′ .

Proof of Lemma 5.4. The conclusion in (5.17) is equivalent to the statement that
Φh,q+1(x) converges to zero as h→ 0, uniformly for x in Bh

q+1. For such x, let X̄h
x (t)

be the process defined for t ≥ 0 by applying the control ūh in the h-dynamics. Define
τ̄hx,Bq′

to be the exit time of X̄h
x from Bq′ , and let z̄hx,Bq′

be its exit location. In light

of (5.20), a standard verification argument shows that Φh,q+1(x) satisfies

Φh,q+1(x) = Ex

[∫ τ̄h
B

q′

0

φh,q+1(X̄h)dt + Φh,q+1(z̄hBq′ )

]
(5.22)
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for each x in Bh
q+1. Part (ii) of Lemma 3.6 and the strong Markov property imply

that the τ̄hBq′
are uniformly integrable, which guarantees that the right-hand side in

the above expression is finite. We use that φh,q+1(x) converges to zero uniformly on
Bq′ and that the Ex[τ̄hBq′

] are uniformly bounded, along with the fact that Φh,q+1(x)

is equal to zero on ∂G, to conclude that

Φh,q+1(x) = o(1) + Px
[
z̄hBq′ /∈ ∂G

]
O(h−(q+1))

holds uniformly for x in Bh
q+1. Let ε > 0 be equal to d(Bq+1, ∂Bq′ ∩G); see Figure 3.

Since z0
x ∈ Bq+1 ∩ ∂G, it follows from the fact that h > 0 is chosen so that the lattice

hZ
n lines up with Q ∩ ∂G that if ‖z̄hx,Bq′

− z0
x‖ < ε, then z̄hx,Bq′

∈ ∂G. Thus, we can

apply the exponential bound from part (iv) of Lemma 3.6 to conclude that Φh,q+1(x)
converges to zero as h→ 0, uniformly for x in Bh

q+1. That completes the proof of the
lemma.

Proof of Lemma 5.5. For simplicity, we fix p and treat only case (ii), where
x ∈ Bh

(q+1)′ and x + hep ∈ ∂G. The proof for case (i) differs only in notation. Since

V h, V 0, and all of the em satisfy a zero boundary condition on ∂G, we have for each
x satisfying condition (ii)

1

hq+1

∣∣∣∣∣Dh
pV

h(x)−Dh
pV

0(x)−
q+1∑
m=1

hmDh
pe

m(x)

∣∣∣∣∣
=

1

hq+1

[
1

h
|V h(x)− V 0(x)−

q+1∑
m=1

hmem(x)|
]

=
1

h
|Φh,q+1(x)|.

Thus, it suffices to prove that 1
h |Φh,q+1(x)| converges to zero, uniformly for x satisfying

condition (ii). Equation (5.22) implies that the relation

1

h
|Φh,q+1(x)| = 1

h
Ex

[
τ̄hBq′

]
o(1) + Px

[
z̄hBq′ /∈ ∂G

]
O(h−(q+2))(5.23)

holds uniformly for x satisfying condition (ii). As in the proof of Lemma 5.4, the
exponential bound from part (iv) of Lemma 3.6 implies that the second term in
the right-hand side of (5.23) converges to zero as h → 0, uniformly for x satisfying
condition (ii). Thus, it remains to show that 1

hEx[τ̄hBq′
] is uniformly bounded so that

the first term in the right-hand side of (5.23) also converges to zero. We observe that

Ex

[
τ̄hBq′

] ≤ Ex

[
τ̄hBq′ ;A1

]
+ Ex

[
τ̄hBq′ ;A2

]
+ Ex

[
τ̄hBq′ ;A3

]
,

where we define the events

A1 =
[
X̄h(t) + hep ∈ ∂G , 0 ≤ t ≤ τ̄hBq′

]
,

A2 =
[
τ̄hBq′ > T

]
,

A3 =
[
τ̄hBq′ ≤ T , ∃ t ∈ [0, τ̄hBq′ ) such that X̄h(t) + hep /∈ ∂G

]
.
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Given the nontangential exit property for the limit optimal trajectories and the con-
vergence of ūh to u0, there exists η > 0 such that the following holds. For sufficiently
small h > 0, if x ∈ Bh

q+1 and if x+hep ∈ ∂G, the probability of exiting from G in one

jump is at least equal to η; see Figure 3. Furthermore, since ‖ūh‖1 is bounded away
from zero, the conditional expected value of each interjump waiting time is bounded
by δh for some fixed δ > 0. Thus,

Ex

[
τ̄hBq′ ;A1

] ≤ δhη

( ∞∑
i=0

i(1− η)i−1

)
Px [A1] = O(h),

so 1
hEx[τ̄hBq′

;A1] is uniformly bounded for all x satisfying condition (ii). It follows

from part (ii) of Lemma 3.6 and from the strong Markov property that Ex[τ̄hBq′
|A2]

is uniformly bounded. Again applying part (ii) of Lemma 3.6, we obtain the uniform
bound

Px[A2] = O(e−K/h)(5.24)

so that 1
hEx[τ̄hBq′

;A2] converges to zero uniformly for all x satisfying condition (ii).

Since Ex[τ̄hBq′
|A3] is clearly bounded by T , we can complete the proof by obtaining a

bound similar to the last display for the probability of the event A3. On account of
the fact that we use one-sided transition probabilities and given the nontangential exit
property for the limit optimal trajectories, it follows from the fact that the boundary
segment Bq′ ∩∂G is parallel to one of the coordinate hyperplanes that X̄h with initial
condition x satisfying condition (ii) must move parallel to the boundary segment
Bq′ ∩ ∂G up to the time when it exits from Bq′ ; see Assumption 3.2 and Figure 3.
Consequently, event A2 can occur only if the exit location z̄hBq′

is not in ∂G. Thus,

since z0
x ∈ Bq+1 ∩G, the fact that d(Bq+1, ∂Bq′ ∩G) > 0 implies that we can obtain

a bound for Px[A3] analogous to (5.24) by applying part (iv) of Lemma 3.6.

Proof of Lemma 5.6. The conclusion in (5.19) is equivalent to the statement that
Ψh,q+1(x) converges to zero as h → 0, uniformly for x in Bh

(q+1)′ . Our plan is to

proceed as in the proof of Lemma 5.4, first obtaining a representation for Ψh,q+1(x)
analogous to the representation for Φh,q+1(x) given in (5.22) and then using that
representation to show that Ψh,q+1(x) converges to zero. In this case, however, we
cannot use an entirely standard representation because Ψh,q+1(x) is a vector quantity,
and the equations for its components are coupled. We develop the representation fairly
carefully in order to highlight what we believe to be a novel aspect of our approach
that may prove useful in developing high order numerical methods based directly
upon the use of higher order finite difference approximations; see the discussion in
section 1. First, along the lines suggested in [19, section 5.4], we expand the state
space so that (x, p) ∈ R

n×{1, . . . , n} is the state variable, rather than just x. To that
end, we recall the quantities defined in Lemma 5.7 and abuse notation by defining

Ψh,q+1(x, p) = Ψh,q+1
p (x), ψh,q+1(x, p) = ψh,q+1,p(x),

ûh,q+1(x, p) = ûh,q+1,p(x), λh,q+1(x, p) = λh,q+1,p(x),

for each (x, p), and we note that Ψh,q+1 and ψh,q+1 are scalar valued, while ûh,q+1

and λh,q+1 are vector valued. We can now regard p as an argument rather as an index
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in (5.21) and obtain the scalar equation

〈ûh,q+1(x, p), DhΨh,q+1(x, p)〉

+

n∑
i=1

λh,q+1
i (x, p)

[
Ψh,q+1(x, i)−Ψh,q+1(x, p)

]

+

n∑
i=1

λh,q+1
i (x, p)Ψh,q+1(x, p) + ψh,q+1(x, p) = 0,

(5.25)

holding for all x ∈ Bh
q+1 and for all p = 1, . . . , n. If the λh,q+1

i (x, p) were known
to be nonnegative, it would be possible to regard them as probabilities of jumping
from (x, p) to (x, i) and then to deduce a representation for Ψh,q+1(x, p) in terms of

a Markov chain directly from (5.25). Since the signs of the λh,q+1
i (x, p) are indefinite,

however, we must further expand the state space in a novel way to eliminate the
possibility of negative transition probabilities. We consider state variable (x, p, σ) ∈
R
n × {1, . . . , n} × {−1, 1} and again abuse notation by defining

Ψh,q+1(x, p, σ) = σΨh,q+1(x, p), ψh,q+1(x, p, σ) = σψh,q+1(x, p),

λh,q+1(x, p, σ) = λh,q+1(x, p)

for each (x, p, σ). Notice that λh,q+1(x, p, σ) is actually independent of σ; we introduce
the dependence only for convenience. In light of this notation, the linear structure of
(5.25) implies that we can write

〈ûh,q+1(x, p), DhΨh,q+1(x, p, σ)〉

+

n∑
i=1

(
λh,q+1
i (x, p, σ)

)+ [
Ψh,q+1(x, i, σ)−Ψh,q+1(x, p, σ)

]

+

n∑
i=1

(
λh,q+1
i (x, p, σ)

)− [
Ψh,q+1(x, i,−σ)−Ψh,q+1(x, p, σ)

]

+‖λh,q+1(x, p, σ)‖1Ψh,q+1(x, p, σ) + ψh,q+1(x, p, σ) = 0

(5.26)

for all x ∈ Bh
q+1, p = 1, . . . , n, and σ ∈ {−1, 1}. The left-hand side of (5.26) indicates

the action on Ψh,q+1(x) of a legitimate generator with positive transition probabilities,
so we can use it to derive a representation for Ψh,q+1(x) in terms of a Markov chain
Ξh,q+1(t) taking values in R

n ×{1, . . . , n}× {−1, 1}. We construct the Markov chain
Ξh,q+1 with exponentially distributed waiting times with mean

∆t
h,q+1

(x, p, σ) =
h

Γh,q+1(x, p, σ)
,

where

Γh,q+1(x, p, σ) = ‖ûh,q+1(x, p)‖1 + h‖λh,q+1(x, p, σ)‖1,
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and with transition probabilities given by

ph,q+1(x, p, σ; ξ) =




ûh,q+1
i

(x,p)

Γh,q+1(x,p,σ)
, ξ = (x + hei, p, σ),

h
(λh,q+1

i
(x,p,σ))

+

Γh,q+1(x,p,σ)
, ξ = (x, i, σ),

h
(λh,q+1

i
(x,p,σ))

−

Γh,q+1(x,p,σ)
, ξ = (x, i,−σ),

0 otherwise.

For details on the construction of such a process, see the discussion in section 3. Let
Xh,q+1 be the first component of Ξh,q+1. For initial conditions (x, p, σ) such that x

is in B(q+1)′ , let τh,q+1
Bq+1

be the first exit time of Xh,q+1 from Bh
q+1, and let zh,q+1

Bq+1
be

equal to its exit location. Although the full Markov chain Ξh,q+1 does not converge to
a deterministic limit, Theorem B.1 implies that a large deviations upper bound holds
for the component process Xh,q+1. Combined with Lemma 3.5, the large deviations
upper bound implies the following analogue of Lemma 3.6. For any ε > 0, there exists
K > 0 such that

(i) Px,p,σ
[||| Xh,q+1 −X0

x |||T ≥ ε
]
<

1

K
e−K/h,

(ii) Px,p,σ
[
τh,q+1
Bq+1

> τ0
x + ε

]
<

1

K
e−K/h

holds for all initial conditions such that x is in Bq+1, while

(iii) Px,p,σ
[|τh,q+1

Bq+1
− τ0

x | ≥ ε
]
<

1

K
e−K/h,

(iv) Px,p,σ

[
‖zh,q+1

Bq+1
− z0

x‖ ≥ ε
]
<

1

K
e−K/h

holds for all initial conditions such that x is in B(q+1)′ . The representation for

Ψh,q+1(x) now takes the form

Ψh,q+1(x, p, σ)

=

[
Ex,p,σ

∫ τh,q+1
Bq+1

0

e

∫ t

0
‖λh,q+1(Ξh,q+1(s))‖1dsψh,q+1(Ξh,q+1(t))dt

+ Ψh,q+1(Ξh,q+1(τh,q+1
Bq+1

))

]
(5.27)

for all (x, p, σ) such that x is in Bh
(q+1)′ . Property (ii) above and the strong Markov

property guarantee that

Px,p,σ
[
τh,q+1
Bq+1

≥ kT
] ≤ ( 1

K

)k
e−kK/h
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holds for all initial conditions such that x is in Bh
(q+1)′ where h > 0 is sufficiently small

and for all integers k ≥ 1. Since the λh,q+1 are uniformly bounded, this is sufficient
to guarantee that the right-hand side of (5.27) is finite for sufficiently small h > 0 so
that a standard verification argument can be used to establish that the indicated rep-
resentation holds. In fact, since by Lemma 5.7 the ψh,q+1(x, p, σ) converge uniformly
to zero, this reasoning also implies that the first term on the right-hand side converges
to zero as h→ 0. Thus, we can complete the proof of the lemma by showing that the
second term also converges to zero. Since Ψh,q+1(x, p, σ) is equal to zero whenever
x ∈ ∂G, the second term in (5.27) is bounded by

Px,p,σ
[
zh,q+1
Bq+1

/∈ ∂G
]
O(h−(q+2)).

Let ε > 0 be equal to d(B(q+1)′ , ∂Bq+1 ∩G). As in the proof of Lemma 5.4, Assump-

tion 3.2 implies that if ‖zh,q+1
Bq+1

− z0
x‖ < ε, then zh,q+1

Bq+1
∈ ∂G. Thus, we can apply

the exponential bound from property (iv) above to conclude that the last display
converges to zero as h → 0, uniformly for all (x, p, σ) such that x is in Bq+1. This
completes the proof that Ψ(x, p, σ) converges uniformly to zero and so establishes the
lemma.

6. Second order numerical approximations. The numerical method de-
scribed in section 3 yields approximations to the value function and to the optimal
control which are first order accurate as h → 0 on the RSRs. This notion is made
precise in Theorem 4.1 and in the stronger results in Theorem 5.2 and Corollary 5.3
which hold under Assumption 5.1. In this section, we exploit the detailed asymptotic
information from section 5 to propose two different second order numerical meth-
ods. We prove in Theorem 6.1 that each of the modified numerical methods produces
approximations to V 0(x) and to u0(x) on the region B∗ which are second order con-
vergent as h → 0. While these theoretical results apply only on RSRs where each
component of the limit optimal control is bounded away from zero, in practice we do
not know the locations of such regions. As such, our methods are of necessity applied
on the entire domain. As the numerical examples in the next section illustrate, we ob-
tain second order convergence even in large parts of the domain where the theoretical
results do not apply.

Approximation Method I. For the purpose of defining a practical algorithm
on the entire domain, we abuse notation by reverting to the optimal feedback control
function uh(x) which is obtained on all of Gh by taking the maximizing argument
in the DPE (3.10) before it is redefined on hZ

n/B0 in section 3. Additionally, we
consider versions of Xh, τh, and zh which are defined using that control up to the
exit time from Gh. When we prove the convergence properties on B∗, we will again
employ the modified control and trajectories which were defined at the end of section 3
and which were used in the analysis up to now.

The first step in the present algorithm is to obtain V h(x) and uh(x) by applying
the first order method from section 3. By Theorem 5.2, we have the asymptotic result

V h(x) = V 0(x) + he1(x) + h2e2(x) + O(h3),(6.1)

holding for all x ∈ (B∗)h, where the em(x) are as defined in (5.14). For each x in Gh,
we define an approximation to e1(x) by

e1,h(x) =
1

2
Ex

[∫ τh

0

〈|uh(Xh)|, D2,h
\ V h(Xh)〉dt

]
,
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and we note that e1,h(x) can be obtained by applying an iterative method to solve
the linear equation

〈uh,+, Dh,+e1,h〉 − 〈uh,−, Dh,−e1,h〉+
1

2
〈|uh|, D2,h

\ V h〉 = 0,(6.2)

with zero boundary condition on the complement of Gh. To implement an iterative
solver, we express (6.2) in the form

e1,h(x) =
∑
y∈Rn

ph(x, y|uh(x))e1,h(y) + ∆t
h
(uh(x))

1

2
〈|uh(x)|, D2,h

\ V h(x)〉,(6.3)

which is analogous to the expression for the discrete DPE given in (3.11). Since the
value function V h(x) is finite and since the running cost is bounded away from zero,
every state in the optimally controlled Markov chain corresponding to (3.11) and (6.3)
must communicate with the boundary. Thus, the right-hand side is a contraction,
and the equation is guaranteed to have a unique fixed point. We now define a new
approximation to V 0(x) by subtracting a correction term from V h(x),

V h,∗(x) = V h(x)− he1,h(x),(6.4)

and a new approximation to the optimal control by

uh,∗(x) = −a(x)Dh,cV h,∗(x) + b(x),(6.5)

for all x in Gh, where Dh,c is the centered difference approximation to the gradient
operator. We will prove that e1,h(x) is a first order approximation to e1(x) on B∗,
so it will follow directly from (6.1) that V h,∗(x) is a second order approximation to
V 0(x). Additionally, a more detailed analysis of the asymptotic properties of e1,h(x)
will be used to establish that uh,∗(x) is a second order approximation to u0(x) on the
region B∗.

We recall that the rate of convergence results that we will prove in Theorem 6.1
apply only on RSRs where each component of the limit optimal feedback control
is bounded away from zero. A potential drawback of the method just described is
that it may degrade the convergence properties of V h(x) and of uh(x) on those parts
of the domain where second order convergence is not guaranteed. Our numerical
experiments suggest that this is largely a theoretical concern, but nonetheless we
mention here a possible approach to avoiding the problem. If we knew that the
e1,h(x) were uniformly bounded, then it would follow from the definition of V h,∗(x)
that it has convergence properties at least as good as those proved for V h(x). That is,
in addition to second order convergence on the RSRs which satisfy Assumption 5.1,
the V h,∗(x) would exhibit uniform convergence to V 0(x) on the entire domain and
first order convergence on the RSRs. In general, the e1,h(x) need not be uniformly
bounded, but a sensible approach to guaranteeing this type of robustness would be
to limit the norm of D2,h

\ V h(x) in the definition of the e1,h(x). Similarly, if we could
uniformly bound the Dh,ce1,h(x), then it would also follow that the uh,∗(x) converge
uniformly to the optimal feedback control on those parts of the RSRs where second
order convergence is not assured. In any case, our numerical experiments have been
done without any type of limiter, and we have not observed significant difficulties of
this type.

Approximation Method II. Another approach to obtaining second order con-
vergence on the RSRs is to apply Richardson extrapolation to the approximations
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V h(x) and uh(x) obtained from the first order method in section 3. As in the de-
scription of Method I, we abuse notation by considering the optimal feedback control
function uh(x) which is obtained on all of Gh by taking the maximizing argument in
the DPE (3.10). For x in the grid 2hZ

n, we define a new approximation to the value
function by

V h,∗(x) = 2V h(x)− V 2h(x)

and a new approximate optimal feedback control by

uh,∗(x) = 2uh(x)− u2h(x).

It is a trivial consequence of Theorem 5.2 and of Corollary 5.3 that these are second
order approximations to V 0(x) and u0(x) on the region B∗.

An advantage of Richardson extrapolation over Method I is that there is no
concern that the V h,∗(x) or the uh,∗(x) will exhibit qualitatively poorer convergence
than their first order counterparts on those parts of the domain where Theorem 6.1
does not apply. This is a consequence of the fact that the new approximations are
obtained by taking linear combinations of the first order approximations V h(x) and
uh(x). This does not seem to be a practical problem even for Method I, and Method I
has the advantages of producing somewhat smaller errors in our experiments and
of being more straightforward to code because it involves only a single grid. Still,
in circumstances where it is vital to maintain first order convergence outside of the
regions where second order convergence is guaranteed, the present approach may be
preferred.

Theorem 6.1. Let V h,∗(x) and uh,∗(x) be obtained by either Method I or II
above. Then the estimates

V h,∗(x) = V 0(x) + O(h2)

and

uh,∗(x) = u0(x) + O(h2)

hold uniformly for all x ∈ (B∗)h.

For the purposes of proving this theorem, we return to using the feedback control
uh(x) and the corresponding trajectories which were defined at the end of section 3 and
which were used for the analysis in the previous sections. Recall that uh(x) is defined
for all x in hZ

n but is optimal only on the region Bh
0 . Furthermore, Assumption 5.1

implies that each component of uh(x) is positive on the region Bh
0 .

Proof of Theorem 6.1. As noted above, the conclusion of the theorem for the case
of Method II is a trivial consequence of Theorem 5.2 and of Corollary 5.3. Thus, we
proceed to prove the result for the case where V h,∗(x) and uh,∗(x) are obtained by
Method I. We define the function

Θh(x) =
1

h

[
e1(x)− e1,h(x)

]
for all x in (B0)h. Then it follows from (6.1) that

V h,∗(x) = V 0(x) + h2Θh(x) + h2e2(x) + O(h3),(6.6)
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so the estimate for V h,∗(x) will be verified if we show that the Θh(x) are bounded
uniformly on (B∗)h. Define the function θh(x) by

θh =
〈 1

h
(u0 − uh), Dhe1

〉
+
〈
u0,

1

h
(De1 −Dhe1)

〉

+
1

2

〈 1

h
(u0 − uh), D2,hV h

〉
+

1

2

〈
u0,

1

h
(D2V 0 −D2,hV h)

〉
.

Given the fact that all of the components of uh(x) are assumed to be positive, (5.5)
and (6.2) imply that Θh(x) satisfies

〈uh, DhΘh〉+ θh = 0,(6.7)

for all x in (B∗)h, with a zero boundary condition on ∂G∩ (B∗)h. Thus, we have the
representation

Θh(x) = Ex

[∫ τh
B∗

0

θh(Xh)dt + Θh(zhB∗)

]
.(6.8)

The asymptotic expansions in Theorem 5.2 and in Corollary 5.3 imply that the θh(x)
are uniformly bounded on (B∗)h, so part (ii) of Lemma 3.6 implies that the integral
term in (6.8) is bounded. Since the Θh(x) are uniformly bounded by O(h−2) on Bh

0 ,
we can apply the exponential estimate from part (iv) of Lemma 3.6 to bound the
last term in (6.8). See the proof of Lemma 5.4, where details are given for a similar
argument. We have shown that the Θh(x) are uniformly bounded on (B∗)h, and this
completes the proof of the first part of the theorem.

In light of the formula for u0(x) in (3.7) and the definition of uh,∗(x), it is sufficient
for the second part of the theorem to show that Dh,cV h,∗(x) is a second order ap-
proximation to Dh,cV 0(x), which is in turn a second order approximation to DV 0(x).
Since we do not know that Θh(x) satisfies a Lipschitz-type bound, we cannot derive
such an estimate directly from (6.6). Instead, we will derive a first order asymptotic
expansion of the form

Θh(x) = Θ(x) + O(h),(6.9)

where Θ(x) is a smooth function. We can then substitute this expression into (6.6) and
apply the second order centered difference operator Dh,c to both sides of that equation
in order to verify that Dh,cV h,∗(x) is a second order approximation to Dh,cV 0(x).

We define the function

Θ(x) =

∫ τ0
x

0

θ(X0
x)dt,

for all x in B0, where θ(x) is given by

θ =
〈1

2
aD2

\V
0 + aDe1, De1

〉
+
〈
u0,−1

2
D2

\e
1
〉

+
1

2

〈1

2
aD2

\V
0 + aDe1, D2V 0

〉
+

1

2

〈
u0,−1

2
D2e1

〉
.

Thus, Θ(x) satisfies the equation

〈u0, DΘ〉+ θ = 0,(6.10)
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for all x in B∗, with a zero boundary condition on ∂G ∩B∗. In light of Theorem 5.2
and Corollary 5.3, a term by term comparison of the definitions of θh(x) and θ(x)
reveals that

θh(x) = θ(x) + O(h),

uniformly for x in (B∗)h. We can now combine (6.7) and (6.10) to obtain the relation

〈uh, Dh[Θh −Θ]〉+ O(h) = 0,

holding for all x in (B∗)h, with a zero boundary condition on ∂G ∩ (B∗)h. Just
as in the proof of the first part of the theorem, we can derive a representation for
the quantity [Θh(x) − Θ(x)] and use the exponential estimates from Lemma 3.6 to
establish that it is equal to O(h). This implies that (6.9) holds uniformly on (B∗)h

and completes the proof of the theorem.

7. Examples. In this section, we present the results of experiments which illus-
trate the rates of convergence for the numerical methods described in this paper. For
each example, we compute solutions using the first order method of section 3 and then
using the two second order methods described in section 6. We solve the DPE (3.10),
and for the second order Method I a linear version of that equation, by Gauss–Seidel
iteration with a tolerance of 10−8. Error values are indicated in the L1 and L∞ norms
on the entire domain and on regions where the solution is known to be smooth. Ap-
proximate rates of convergence are determined by taking log2(Em/2+1/Em+1), where
Ek is the error obtained using k gridpoints. In the case of the results obtained by
Method II using Richardson extrapolation, the indicated number of gridpoints corre-
sponds to the more refined of the two grids used in the calculation. In general, we
observe second order or near second order convergence of the value functions in the
L1 norm on the entire domain and in the L1 and L∞ norms on the RSRs. In the case
of the optimal controls, we generally observe second order convergence only in the L1

norm on the RSRs. Results of this type are to be expected, since Assumption 5.1 is
typically violated on some parts of the RSRs, so the theoretical rate of convergence
results in Theorem 6.1 which would guarantee second order convergence in the L∞

norm do not apply everywhere. In addition to the error values, we indicate the total
number of iterative steps required to obtain each solution. As expected with Gauss–
Seidel iteration, the number of iterations is essentially independent of the number
of gridpoints. This last observation is very important in terms of the efficiency of
practical calculations.

Example 1. One-dimensional problem. We begin with a one-dimensional
example on the domain [−1, 1]. The running cost is taken to be

L(x, u) = (2 + 3x2)2 +
1

4
u2,

and we can analytically evaluate the solution

V (x) =




2x + x3 + 3, x ≤ 0,

−2x− x3 + 3, x > 0.

Approximations to the value function and to the optimal control are shown in Figure 4.
The value function is approximated quite well by the first order method and by both
second order methods, with only a slight overshoot appearing at the singularity when
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Fig. 4. One-dimensional problem solutions.
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we use Method I. This is an apparent manifestation of our observation in section 6
that it is possible for this method to result in the loss of convergence at points of
discontinuity. The discontinuity in the optimal control is resolved quite sharply, al-
though sizable overshoots occur with both second order methods. We note, however,
that these overshoots appear to remain bounded as the grid is refined, so they do not
indicate a lack of numerical stability.

In Table 1, we indicate the errors in computing the value function using the three
numerical schemes considered in this paper. We discuss the results for the optimal
feedback control in the following paragraph. Errors are given for the entire domain
and for those points which are at least a distance of 0.1 away from the singularity.
Using the first order scheme, we obtain clear first order convergence of the value
function in both the L1 and the L∞ norms on the entire domain and on the RSRs.
Both second order schemes result in second order convergence of the value function in
the L1 norm on the entire domain as well as in the L1 and L∞ norms on the RSRs.
Results of this quality are expected for a one-dimensional problem, since the optimal
control cannot change sign within an RSR, and Theorem 6.1 is valid on every such
region. Somewhat surprisingly, Method II also yields second order convergence of the
value function in the L∞ norm on the entire domain.

The situation with the optimal feedback control is unusual due to the fact that the
problem is one-dimensional. Using the first order scheme, the approximate feedback
controls on the RSRs are exactly (to machine accuracy) equal to the optimal feedback
control for the limit problem. The following simple observation clarifies why this
behavior is to be expected. Equations (5.1) and (5.2) imply for each x in the RSRs
that

1

2
〈DV 0(x), a(x)DV 0(x)〉+ 〈b(x), DV 0(x)〉+ c(x) = 0

and

1

2
〈DhV h(x), a(x)DV h(x)〉+ 〈b(x), DV h(x)〉+ c(x) = 0.

In one dimension, these quadratic equations imply that there are only two possible
values for DV 0(x) and DhV h(x). Since Theorem 3.4 guarantees that the DhV h(x)
converge to DV 0(x), it must be that they are equal for sufficiently small h > 0. Given
the relationships between the optimal feedback controls and DV 0(x) and DhV h(x),
it follows that the approximate optimal feedback controls should be exactly correct.
This observation applies only in one dimension, and our two-dimensional examples
exhibit more typical convergence of the optimal feedback controls. For the present
problem, Method II inherits the exact convergence of the optimal feedback controls,
since it involves taking linear combinations of results obtained using the first order
method, while Method I produces second order convergence in the L1 and L∞ norms
in the RSRs.

Example 2. Perturbed escape time. Our next example is a two-dimensional
problem which is obtained by perturbing the escape time problem on the unit square.
The escape time problem has the simple running cost L̃(x, u) = 1

2‖u‖2 + 1/2, and
its value function is known analytically to be given by the shortest distance to any
of the four edges of the square. Thus, the complement of the diagonals x1 = x2

and x1 = −x2 is a maximal RSR, and the value function is linear in each connected
component of that region. As in [11], we modify the data for this problem to obtain



S
E

C
O

N
D

O
R

D
E

R
N

U
M

E
R

IC
A

L
M

E
T

H
O

D
S

F
O

R
H

J
B

E
Q

U
A
T

IO
N

S
1167

Table 1
One-dimensional problem value function errors.

L1 L∞ L1 RSR L∞ RSR
Pts Iter Error Ord Error Ord Error Ord Error Ord

1
st

o
rd

er
21 4 1.95 e − 01 − 1.45 e − 01 − 1.66 e − 01 − 1.44 e − 01 −
41 4 9.87 e − 02 1.0 7.38 e − 02 1.0 8.40 e − 02 1.0 7.31 e − 02 1.0
81 4 4.97 e − 02 1.0 3.72 e − 02 1.0 4.23 e − 02 1.0 3.68 e − 02 1.0
161 4 2.49 e − 02 1.0 1.87 e − 02 1.0 2.12 e − 02 1.0 1.85 e − 02 1.0
321 4 1.25 e − 02 1.0 9.36 e − 03 1.0 1.06 e − 02 1.0 9.26 e − 03 1.0
641 4 6.25 e − 03 1.0 4.68 e − 03 1.0 5.31 e − 03 1.0 4.64 e − 03 1.0

2
n
d

o
rd

er
I 21 8 4.02 e − 02 − 1.77 e − 01 − 2.03 e − 02 − 2.25 e − 02 −

41 8 1.06 e − 02 1.9 9.39 e − 02 0.9 5.06 e − 03 2.0 5.63 e − 03 2.0
81 8 2.73 e − 03 2.0 4.85 e − 02 1.0 1.27 e − 03 2.0 1.41 e − 03 2.0
161 8 6.93 e − 04 2.0 2.46 e − 02 1.0 3.16 e − 04 2.0 3.52 e − 04 2.0
321 8 1.75 e − 04 2.0 1.24 e − 02 1.0 7.91 e − 05 2.0 8.79 e − 05 2.0
641 8 4.38 e − 05 2.0 6.23 e − 03 1.0 1.98 e − 05 2.0 2.20 e − 05 2.0

2
n
d

o
rd

er
II

21 8 1.00 e − 02 − 1.00 e − 02 − 8.00 e − 03 − 8.00 e − 03 −
41 8 2.50 e − 03 2.0 2.50 e − 03 2.0 2.03 e − 03 2.0 2.25 e − 03 1.8
81 8 6.25 e − 04 2.0 6.25 e − 04 2.0 5.06 e − 04 2.0 5.63 e − 04 2.0
161 8 1.56 e − 04 2.0 1.56 e − 04 2.0 1.27 e − 04 2.0 1.40 e − 04 2.0
321 8 3.91 e − 05 2.0 3.91 e − 05 2.0 3.16 e − 05 2.0 3.52 e − 05 2.0
641 8 9.77 e − 06 2.0 9.77 e − 06 2.0 7.91 e − 06 2.0 8.79 e − 06 2.0
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one with smooth data and a more interesting solution that can still be determined
analytically. To that end, we introduce the C∞ double bump function defined by

χ(ξ) =




e−λ((ξ−m)2−σ2)−2

, ξ ∈ [m− σ,m + σ],

e−λ((−ξ−m)2−σ2)−2

, ξ ∈ [−m− σ,−m + σ],
0 otherwise,

where we use the parameter values m = 0.7, σ = 0.5, and λ = 0.07. Now we define a
mollifier by

Φ(x) = χ(x1 + x2)χ(x1 − x2)

for all x = (x1, x2) in the unit square and then define the value function V 0(x) by
multiplying the value function for the escape time problem by 1+Φ(x). The resulting
function has the same RSRs as the escape time problem, and it maintains the simple
structure in a neighborhood of the singularities. In a similar spirit, we define

a(x) =

[
1 0
0 1

]
+ 3 sin(2πx1)2

[
2 5
5 18

]
Φ(x)

and

b(x) =

[
0
0

]
+ 5

[
x1

x2 sin((x2
1 + x2

2)1/2 − 1/2)

]
Φ(x)

so that a(x) is the identity and b(x) is the zero vector in a neighborhood of the
singularities. Now we define c(x) on the RSRs by

c(x) = (1/2)〈DV 0(x), a(x)DV 0(x)〉 − 〈b(x), DV 0(x)〉.

Our use of a mollifier in defining all of the relevant functions ensures that the cost
function c(x) extends smoothly to c(x) = 1/2 at the singularities, and it turns out
that V 0(x) solves the limit control problem for the indicated cost structure.

In Table 2, we indicate the errors in computing the value function and the optimal
controls using the three numerical schemes considered in this paper. Errors are given
for the entire domain and for those regular points which are at least a distance of 0.1
away from the singularities. The first order method consistently produces first order
convergence of the value function and of the optimal controls, except when the control
errors are measured in the L∞ norm on the entire domain. This is expected, since
the convergence results for the optimal controls do not apply at the singular points.
The qualitative behaviors of the two second order methods are essentially the same,
although the absolute error values for the feedback control are somewhat smaller using
Method I. We obtain second order convergence of the value functions in the L1 norm
on the entire domain, while first order convergence is maintained in the L∞ norm. In
the RSRs, convergence in the L1 norm is second order, and convergence in the L∞

norm is significantly better than first order but perhaps not second order. We note
that the lack of clear second order convergence in the L∞ norm is to be expected,
since Assumption 5.1 does not hold everywhere in the RSRs for this problem.

In the case of the optimal controls, first order convergence is maintained in the L1

norm on the entire domain, and we observe second order convergence in the L1 norm
in the RSRs. The errors on the RSRs measured in the L∞ norm appear to decay only
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Table 2
Perturbed escape time problem errors.

V
a
lu

e
F
u
n
ct

io
n

L1 L∞ L1 RSR L∞ RSR
Pts Iter Error Ord Error Ord Error Ord Error Ord

1
st

o
rd

er

21 12 2.14 e − 02 − 3.80 e − 02 − 6.34 e − 03 − 1.90 e − 02 −
41 12 7.46 e − 03 1.5 1.95 e − 02 1.0 3.27 e − 03 1.0 1.02 e − 02 0.9
81 13 2.90 e − 03 1.4 1.01 e − 02 0.9 1.69 e − 03 1.0 5.28 e − 03 1.0
161 16 1.24 e − 03 1.2 5.19 e − 03 1.0 8.65 e − 04 1.0 2.72 e − 03 1.0
321 16 5.69 e − 04 1.1 2.64 e − 03 1.0 4.40 e − 04 1.0 1.38 e − 03 1.0
641 16 2.71 e − 04 1.1 1.33 e − 03 1.0 2.21 e − 04 1.0 6.91 e − 04 1.0

2
n
d

o
rd

er
I 21 24 2.71 e − 02 − 6.58 e − 02 − 7.93 e − 03 − 1.18 e − 02 −

41 28 7.28 e − 03 1.9 3.31 e − 02 1.0 1.55 e − 03 2.4 3.16 e − 03 1.9
81 36 1.92 e − 03 1.9 1.68 e − 02 1.0 4.04 e − 04 1.9 9.31 e − 04 1.8
161 39 4.96 e − 04 2.0 8.52 e − 03 1.0 1.05 e − 04 1.9 2.63 e − 04 1.8
321 35 1.26 e − 04 2.0 4.27 e − 03 1.0 2.68 e − 05 2.0 9.93 e − 05 1.4
641 35 3.18 e − 05 2.0 2.12 e − 03 1.0 6.77 e − 06 2.0 2.79 e − 05 1.8

2
n
d

o
rd

er
II

21 20 1.66 e − 02 − 1.76 e − 02 − 1.40 e − 02 − 1.76 e − 02 −
41 24 3.80 e − 03 2.1 5.23 e − 03 1.8 8.04 e − 04 4.1 2.85 e − 03 2.6
81 25 1.17 e − 03 1.7 2.79 e − 03 0.9 2.99 e − 04 1.4 1.01 e − 03 1.5
161 29 3.27 e − 04 1.8 1.40 e − 03 1.0 9.08 e − 05 1.7 3.51 e − 04 1.5
321 32 8.67 e − 05 1.9 8.01 e − 04 0.8 2.48 e − 05 1.9 1.06 e − 04 1.7
641 32 2.24 e − 05 2.0 4.07 e − 04 1.0 6.61 e − 06 1.9 3.42 e − 05 1.6
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Table 2 (CONT.).

F
ee

d
b
a
ck

C
o
n
tr

o
l

L1 L∞ L1 RSR L∞ RSR
Pts Iter Error Ord Error Ord Error Ord Error Ord

1
st

o
rd

er

21 12 5.94 e − 01 − 1.86 e − 00 − 1.03 e − 01 − 2.66 e − 01 −
41 12 3.24 e − 01 0.9 7.99 e − 01 0 5.39 e − 02 0.9 1.59 e − 01 0.7
81 13 1.73 e − 01 0.9 1.86 e − 00 0 3.09 e − 02 0.8 8.94 e − 02 0.8
161 16 8.94 e − 02 1.0 8.08 e − 01 0 1.67 e − 02 0.9 4.84 e − 02 0.9
321 16 4.56 e − 02 1.0 8.13 e − 01 0 8.73 e − 03 0.9 2.54 e − 02 0.9
641 16 2.30 e − 02 1.0 1.87 e − 00 0 4.45 e − 03 1.0 1.31 e − 02 1.0

2
n
d

o
rd

er
I 21 24 4.89 e − 01 − 1.00 e − 00 − 1.73 e − 01 − 2.46 e − 01 −

41 28 2.50 e − 01 1.0 1.00 e − 00 0 3.43 e − 02 2.3 9.58 e − 02 1.4
81 36 1.24 e − 01 1.0 1.00 e − 00 0 8.38 e − 03 2.0 2.44 e − 02 2.0
161 39 6.11 e − 02 1.0 1.00 e − 00 0 2.42 e − 03 1.8 1.22 e − 02 1.0
321 35 3.03 e − 02 1.0 1.00 e − 00 0 6.86 e − 04 1.8 6.99 e − 03 0.8
641 35 1.50 e − 02 1.0 1.00 e − 00 0 1.79 e − 04 1.9 3.85 e − 03 0.9

2
n
d

o
rd

er
II

21 20 9.88 e − 01 − 3.79 e − 00 − 3.46 e − 01 − 3.38 e − 01 −
41 24 5.07 e − 01 0.9 2.37 e − 00 0 5.72 e − 02 2.6 2.46 e − 02 3.8
81 25 2.67 e − 01 1.0 3.80 e − 00 0 1.72 e − 02 1.7 1.20 e − 01 1.0
161 29 1.29 e − 01 1.0 1.39 e − 00 0 5.12 e − 03 1.7 2.59 e − 02 2.2
321 32 6.43 e − 02 1.0 8.09 e − 01 0 1.49 e − 03 1.8 3.03 e − 02 0
641 32 3.21 e − 02 1.0 3.30 e − 00 0 4.09 e − 04 1.9 1.26 e − 02 1.3
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at a first order rate. This can be accounted for by the fact that the present problem
does not satisfy Assumption 5.1 on the maximal RSR, as the optimal controls for the
limit problem are not of fixed sign. By considering subsets of the RSRs where the
controls do not change signs, we can obtain more convincing second order convergence
in the L∞ norm for both the value function and the optimal control. The results in
Table 3 are obtained by restricting our attention to those parts of the domain where
x > 0.5 and y > 0 and where x < −0.5 and y < 0. This is a somewhat arbitrary
choice, but it singles out a set of points where the sign changes do not seem to interfere
with second order convergence.

In Figure 5, we display the exact values of V 0(x) and of the first component of
u0(x), as well as approximations obtained by using 41 points in the two second order
numerical methods. The graphs of the feedback controls illustrate that our methods
resolve discontinuities quite sharply. It is also worth noting the slight overshoot in
the center of the value function obtained by Method I. We observed in section 6 that
it is theoretically possible for convergence of the value function at singular points to
be compromised when this second order method is employed. The overshoot is the
only apparent manifestation of that possibility, and as predicted by the theory it does
not appear when we compute the approximations using Method II.

Example 3. Quadratic running cost. Our final example is a two-dimensional
problem on the unit square where the boundaries of the maximal RSR are curved.
The running cost is defined to be L(x, u) = 1

2‖u‖2 + 6x2
1 + 1. We do not have an

analytic expression for the solution, but, by looking at approximate solutions, it is
easy to visually identify the boundaries of the RSRs. In Figure 6(a), we indicate
those boundaries, as well as the subset of the domain which we utilize for the pur-
pose of calculating rates of convergence on the RSRs, and in Figure 6(b) we show
approximations to the characteristics.

In Table 4, we give relative errors for the first order scheme and for the two second
order schemes, both on the entire domain and on a subset of the RSRs. The relative
errors are computed by comparing the solution computed using m + 1 gridpoints to
the solution computed using m/2 + 1 gridpoints. These values are not as reliable as
absolute errors for determining rates of convergence, but they do give a reasonable
indication, and the results are consistent with our expectations. As in the previous
example, both second order methods produce second order convergence of the value
functions when measured in the L1 norm on the entire domain and on the RSRs.
When these errors are measured in the L∞ norm on the RSRs, Method I produces
second order convergence, while the convergence with Method II is somewhat better
than first order. In the case of the optimal controls, both methods apparently give
rise to second order convergence in the L1 norm on the RSRs, while preserving first
order convergence in the L1 norm on the entire domain and in the L∞ norm on the
RSRs. Again, since Assumption 5.1 does not appear to hold everywhere on the RSRs,
results of this type are not surprising.

Figures 6(c)–6(f) show approximations with 41 points to the value function and to
the first component of the optimal feedback control. There are no apparent qualitative
differences in the two approximations to the value function. With Method I, the
discontinuities in the control are resolved quite sharply. Method II seems to produce
large overshoots, but we note that these are bounded as the grid is refined and do not
indicate lack of numerical stability.

8. Conclusion. We have exhibited two global second order numerical methods
for the solution of a class of Hamilton–Jacobi PDE which are related to deterministic
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Perturbed escape time problem errors on partial domain.

Value function Optimal control
Method I Method II Method I Method II

Pts L∞ Error Ord L∞ Error Ord L∞ Error Ord L∞ Error Ord

21 7.87 e − 03 − 8.21 e − 03 − 1.49 e − 01 − 2.02 e − 01 −
41 2.27 e − 03 1.8 9.39 e − 04 3.1 3.27 e − 02 2.2 4.37 e − 02 2.2
81 6.45 e − 04 1.8 6.34 e − 04 0.6 1.24 e − 02 1.4 3.26 e − 02 0.4
161 1.74 e − 04 1.9 2.55 e − 04 1.3 3.49 e − 03 1.8 1.07 e − 02 1.6
321 4.55 e − 05 1.9 8.18 e − 05 1.6 9.97 e − 04 1.8 3.14 e − 03 1.8
641 1.16 e − 05 2.0 2.32 e − 05 1.8 2.65 e − 04 1.9 8.65 e − 04 1.9
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Fig. 5. Perturbed escape time problem solutions.
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Fig. 6. Quadratic running cost problem solutions.
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Table 4
Quadratic running cost problem relative errors.

V
a
lu

e
F
u
n
ct

io
n

L1 L∞ L1 RSR L∞ RSR
Pts Iter Rel error Ord Rel error Ord Rel error Ord Rel error Ord

1
st

o
rd

er

21 7 9.54 e − 02 − 9.73 e − 02 − 2.37 e − 02 − 6.05 e − 02 −
41 7 4.14 e − 02 1.2 5.47 e − 02 0.8 1.47 e − 02 0.7 3.05 e − 02 1.0
81 7 1.86 e − 02 1.2 2.90 e − 02 0.9 7.56 e − 03 1.0 1.70 e − 02 0.8
161 7 8.85 e − 03 1.1 1.50 e − 02 1.0 3.81 e − 03 1.0 8.97 e − 03 0.9
321 7 4.29 e − 03 1.0 7.67 e − 03 1.0 1.92 e − 03 1.0 4.49 e − 03 1.0
641 7 2.11 e − 02 1.0 3.89 e − 03 1.0 9.67 e − 04 1.0 2.27 e − 03 1.0

2
n
d

o
rd

er
I 21 14 1.51 e − 01 − 2.23 e − 01 − 2.61 e − 02 − 7.47 e − 02 −

41 14 4.92 e − 02 1.6 1.37 e − 01 0.7 2.59 e − 03 3.3 1.08 e − 02 2.8
81 14 1.44 e − 02 1.8 7.64 e − 02 0.8 5.17 e − 04 2.3 9.36 e − 04 3.5
161 14 3.78 e − 03 1.9 4.15 e − 02 0.9 1.43 e − 04 1.9 2.62 e − 04 1.8
321 14 9.99 e − 04 1.9 2.23 e − 02 0.9 3.78 e − 05 1.9 7.10 e − 05 1.9
641 14 2.50 e − 04 2.0 1.11 e − 02 1.0 9.71 e − 06 2.0 1.84 e − 05 1.9

2
n
d

o
rd

er
II

21 13 8.53 e − 02 − 6.14 e − 02 − 2.76 e − 02 − 4.29 e − 02 −
41 14 2.63 e − 02 1.7 5.47 e − 02 0.2 1.01 e − 03 8.1 1.76 e − 03 7.9
81 14 8.46 e − 03 1.6 4.09 e − 02 0.4 5.36 e − 04 0.9 1.26 e − 03 0.5
161 14 1.79 e − 03 2.2 2.26 e − 02 0.9 1.76 e − 04 1.6 4.28 e − 04 1.6
321 14 5.04 e − 04 1.8 9.51 e − 03 1.2 5.19 e − 05 1.8 1.24 e − 04 1.8
641 14 1.27 e − 04 2.0 6.66 e − 03 0.5 1.41 e − 05 1.9 3.52 e − 05 1.8
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Table 4 (CONT.).

F
ee

d
b
a
ck

C
o
n
tr

o
l

L1 L∞ L1 RSR L∞ RSR
Pts Iter Rel error Ord Rel error Ord Rel error Ord Rel error Ord

1
st

o
rd

er

21 7 1.20 e − 00 − 2.57 e − 00 − 1.35 e − 01 − 1.45 e − 01 −
41 7 6.37 e − 01 0.9 3.29 e − 00 0 7.52 e − 02 0.8 8.69 e − 02 0.7
81 7 3.28 e − 01 1.0 3.29 e − 00 0 3.98 e − 02 0.9 5.43 e − 02 0.7
161 7 1.49 e − 01 1.1 3.45 e − 00 0 2.08 e − 02 0.9 3.03 e − 02 0.8
321 7 8.31 e − 02 0.8 3.40 e − 00 0 1.06 e − 02 1.0 1.62 e − 02 0.9
641 7 3.76 e − 02 1.1 3.57 e − 00 0 5.33 e − 03 1.0 8.41 e − 03 0.9

2
n
d

o
rd

er
I 21 14 1.52 e − 00 − 1.33 e − 00 − 6.53 e − 01 − 1.07 e − 00 −

41 14 9.49 e − 01 0.7 1.33 e − 00 0 2.01 e − 01 1.7 1.18 e − 00 0
81 14 5.10 e − 01 0.9 1.36 e − 00 0 4.35 e − 03 5.5 6.70 e − 02 4.1
161 14 2.68 e − 01 0.9 1.35 e − 00 0 9.65 e − 04 2.2 2.03 e − 03 5.0
321 14 1.36 e − 01 1.0 1.40 e − 00 0 2.58 e − 04 1.9 7.48 e − 04 1.4
641 14 6.87 e − 02 1.0 1.39 e − 00 0 6.71 e − 05 1.9 3.68 e − 04 1.0

2
n
d

o
rd

er
II

21 13 3.79 e − 00 − 4.81 e − 00 − 6.31 e − 01 − 9.02 e − 01 −
41 14 1.07 e − 00 1.8 2.48 e − 00 0 3.10 e − 02 1.0 1.04 e − 01 3.1
81 14 7.54 e − 01 0.5 5.71 e − 00 0 6.03 e − 03 5.7 1.26 e − 02 3.0
161 14 3.12 e − 01 1.3 3.27 e − 00 0 2.02 e − 03 1.6 5.53 e − 03 1.2
321 14 2.14 e − 01 0.5 6.56 e − 00 0 6.11 e − 04 1.7 1.78 e − 03 1.6
641 14 9.85 e − 02 1.1 6.95 e − 00 0 1.67 e − 04 1.9 8.33 e − 04 1.1
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optimal control problems. Our analysis establishes that these methods produce prov-
ably second order approximations to the value function and to the optimal feedback
control on certain subsets of the RSRs. The rate of convergence results apply only on
those regions where each component of the limit optimal feedback control is bounded
away from zero so that the sign remains constant. In practice, we observe second or-
der convergence in the L1 norm on the RSRs even where this assumption is violated,
but the results are less favorable when the L∞ norm is used to measure the errors.

The reason that our theory cannot accommodate changes in the signs of the
optimal controls is that the transition probabilities given in (3.9) are singular as
functions of the control u wherever any of the components of u are equal to zero. It
is likely that we could eliminate the theoretical restrictions on the present method by
applying our techniques to a first order method with smooth transition probabilities.
In order for such an approach to be practical, however, it would be necessary that
the new transition probabilities preserve the highly desirable qualitative properties
of those considered here. The one-sided nature of the present transition probabilities
is important in terms of achieving sharp resolution of the discontinuities, and their
simple form allows us to evaluate the minima analytically at each step in the iterative
process used to solve the discrete DPE. Additionally, the control-dependent mean
jump times in (3.8) ensure that the number of Gauss–Seidel iterations needed to solve
the DPE is small and essentially bounded as the grid is refined. We do not know
of smooth transition probabilities which have these qualities, so it is not presently
possible for us to improve upon the methods in this paper.

We conclude by suggesting other possible extensions to our work. In principle,
the high order asymptotic analysis carried out in section 5 can be used to formulate
numerical methods of arbitrarily high order, either by using a more refined correction
term in Method I or by taking the linear combination of several approximate solutions
in Method II. As a practical matter, since even the second order convergence is not
as consistent as we might have hoped in the typical situation where Assumption 5.1
is violated, we do not pursue this avenue. Our analysis considers only homogeneous
boundary conditions, but this should not be an essential restriction. Homogeneity at
the boundary is used quite strongly in our proof of Lemma 5.5 and in an analogous
step in the proof of Theorem 3.4 [11], so it would be necessary to find an alternative
approach to estimating the gradient at points near the boundary. Next, the quadratic
structure of the running cost as a function of u is probably not needed for the type
of asymptotic analysis that we carry out. In practice, this structure is essential for
the efficient solution of the discrete DPE as it enables us to evaluate the minima
analytically, but it would also be interesting to construct higher order numerical
methods for problems where the running cost does not have this form. Finally, we
remark that it is worth considering the possibility of applying methods like ours
to construct higher order numerical methods for the solution of the second order
Hamilton–Jacobi PDEs which arise from stochastic control problems with dynamics
given by controlled diffusions.

Appendix A. Proof of Lemma 5.7. The purpose of this appendix is to indicate
the calculations which are used to prove Lemma 5.7. The argument essentially consists
of elementary algebraic manipulations, but they are rather involved, so it is worthwhile
to set out some of the key steps. We combine (5.8) and (5.15) with m = 1, . . . , q + 1
to obtain the following relation holding on the region Bh

0 :
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〈ūh, DhΦh,q+1〉

+

q+1∑
i=0

h−(q+1−i) 〈u0, Dhei −Dei〉

−
q+1∑
m=1

m+1∑
k=2

1

k!
h−(q+1−m)〈u0, Dk

\ e
m+1−k〉


(a)

+ h−(q+1)〈ūh − u0, Dhe0 −De0〉

+
1

2

q+1∑
m=1

m∑
l=2

m+2−l∑
k=1

1

l!k!
h−(q+1−m)〈Dl

\e
0, aDk

\ e
m+2−l−k〉


(b)

+

q+1∑
j=1

h−(q+1−j) 〈ūh − u0, Dhej〉

+
1

2

q+1∑
m=1

m−1∑
j=1

m−j∑
l=1

m+2−j−l∑
k=1

1

l!k!
h−(q+1−m)〈Dl

\e
j , aDk

\ e
m+2−j−l−k〉


(c)

= 0.

(A.1)

The first part of Lemma 5.7 will be established if we show that each of the
expressions (a)–(c) converges to zero, uniformly for x in Bh

q′ . A key observation is
that we can use (5.16) along with (3.7) and (5.7) to obtain the relation

ūh − u0 = −1

2
a

q+1∑
k=2

1

k!
hk−1Dk

\ e
0 − 1

2
a

q∑
i=1

q+1∑
k=1

1

k!
hi+k−1Dk

\ e
i + o(hq),(A.2)

holding uniformly on Bh
q′ . We indicate the details of the manipulations for (b) and

note that the calculations are similar for (a) and (c). Consider the following series of
relations which is easily seen to imply that (b) converges to zero, uniformly on Bq′ .
Each line is explained after the display.

h−(q+1)〈ūh − u0, Dhe0 −De0〉

= − 1

2

q+1∑
l=2

q+3−l∑
k=2

1

l!k!
h−(q+3−k−l)〈aDk

\ e
0, Dl

\e
0〉

− 1

2

q∑
i=1

q+2−i∑
l=2

q+3−l−i∑
k=1

1

l!k!
h−(q+3−k−l−i)〈aDk

\ e
i, Dl

\e
0〉+ o(1)
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= − 1

2

q+1∑
l=2

q+3−l∑
k=2

1

l!k!
h−(q+3−k−l)〈Dl

\e
0, aDk

\ e
0〉

− 1

2

q+1∑
l=2

q+2−l∑
k=1

q+1∑
m=l+k−1

1

l!k!
h−(q+1−m)〈Dl

\e
0, aDk

\ e
m+2−l−k〉+ o(1)

= − 1

2

q+1∑
l=2

q+3−l∑
k=2

m=l+k−2∑
m=l+k−2

1

l!k!
h−(q+1−m)〈Dl

\e
0, aDk

\ e
m+2−l−k〉

− 1

2

q+1∑
l=2

q+2−l∑
k=1

q+1∑
m=l+k−1

1

l!k!
h−(q+1−m)〈Dl

\e
0, aDk

\ e
m+2−l−k〉+ o(1)

= − 1

2

q+1∑
m=2

m∑
l=2

m+2−l∑
k=1

1

l!k!
h−(q+1−m)〈Dl

\e
0, aDk

\ e
m+2−l−k〉+ o(1).

The first equality is obtained by applying expression (A.2) and by using the Taylor
expansion for e0(x), as in (5.12); to get the second equality, we rearrange the orders
of summation and make the change of variables m = i + l + k − 2; we get the third
equality by introducing m as a dummy variable in the first summation; the final
equality is obtained by rearranging the orders of summation in each of the two terms
in the previous line and then combining them into a single summation.

We now turn to verifying the second part of Lemma 5.7. It is easy to see that the
following discrete product rule is valid for p = 1, . . . , n:

Dh
p 〈f(x), g(x)h(x)〉 = 〈Dh

pf(x), g(x + hep)h(x + hep)〉

+ 〈f(x), g(x + hep)D
h
ph(x)〉

+ 〈f(x), Dh
pg(x)h(x)〉.

Our first application of this product rule to prove the second part of Lemma 5.7
actually involves the simpler case where g(x) is the identity matrix. We state the
rule for general g(x) because it will be used later in dealing with the special case of
proving the second part of Lemma 5.7 for q = 0. For each p = 1, . . . , n, we apply the
operator Dh

p to (A.1) and obtain

〈ūh(x + hep), D
hΨh,q+1

p (x)〉+ 〈Dh
p ū

h(x),Ψh,q+1(x)〉+ · · · = 0,

where the unspecified quantities are those obtained by applying the product rule with
g(x) the identity matrix to the terms (a)–(c) in (A.1). This yields six new terms,
and, as in the treatment of (b) above, each of these can be expanded and rearranged
to obtain coefficients converging to zero. In the case q ≥ 1, the condition in (5.16)
implies that Dh

p ū
h converges to Dpu

0, so these manipulations suffice to establish the
lemma.

Unfortunately, this general calculation is not sufficiently detailed to prove the
second part of Lemma 5.7 when q = 0, so we treat that as a special case. We do
not generalize the manipulations which work for q = 0, as they are considerably
more involved than the ones indicated above. By using the product rule to apply the
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operator Dh
p directly to (5.1), (5.2), and (5.5) and then taking a linear combination

of the resulting expressions, we obtain after some manipulations〈
− a(x + hep)

(
1

2
DhV h(x + hep) +

1

2
DhV h(x)

)

+ b(x + hep)− 1

2
ha(x + hep)D

h
pDV 0(x) , DhΨh,1

p (x)
〉

+
〈
− a(x + hep)D

h
pDV 0(x)−Dh

pa(x)

(
1

2
DhV h(x) +

1

2
DV 0(x)

)

+ Dh
p b(x) , Ψh,1(x)

〉

+ o(1) = 0,

holding uniformly for x in Bh
1′ . Given the assumed convergence of the DhV h to DV 0

and the representation for u0 in (3.7), it is easy to see that the above expression is
consistent with (5.21), so it completes the proof of the lemma.

Appendix B. Large deviations upper bound. In this appendix, we state
a general large deviations upper bound for a broad class of Markov processes with
possibly discontinuous statistics. Our result is essentially an extension of [9, Theorem
1.1], and the reader interested in a proof should consult [9], as well as [29] for comments
on the extension. We carefully define the needed notation and end this appendix with
a statement of the theorem. Note that the notation in this appendix is independent
of the notation in the preceding sections.

Let R
n = Rn1+n2 , and consider a sequence of Markov processes Xh = (Xh

1 , X
h
2 )

with trajectories in D([0,∞) : R
n) and generators Lh such that, for any smooth func-

tion f(x) mapping R
n to R,

Lhf(x) = 〈b̄h(x), Df(x)〉+
h

2
tr[āh(x)D2f(x)]

+
1

h

∫
Rn

[f(x + hν)− f(x)− h〈ν,Df(x)〉]µ̄h(x)(dν).

For each h > 0, āh(x) and b̄h(x) are uniformly bounded functions from R
n to the

spaces of n× n matrices and n-vectors, respectively, and µ̄h(x) is a function from R
n

to the space of nonnegative measures on R
n such that µ̄h(x) is uniformly bounded

and has uniformly compact support for x ∈ R
n. We consider block decompositions

āh(x) =

[
āh11(x) āh12(x)
āh21(x) āh22(x)

]
, b̄h(x) =

[
b̄h1 (x)
b̄h2 (x)

]
,

where āh11(x) is an n1 × n1 matrix valued function, b̄h1 (x) is an n1-vector valued
function, and the other blocks are of appropriate sizes to complete the decompositions.
Also, we let µ̄h1 (x) be the marginal measure of µ̄h(x) on R

n1 . In general, we will employ
without comment the notation x = (x1, x2), where xi ∈ R

ni for i = 1, 2.
For the space of finite measures on R

n1 , we define a metric d(·, ·) as follows. For
two such measures η1 and η2, the distance d(η1, η2) is defined to be the supremum of∣∣∣∣

∫
Rn1

f(ξ)η1(dξ)−
∫

Rn1

f(ξ)η2(dξ)

∣∣∣∣
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over all functions f(ξ) for which ‖f‖∞ ≤ 1 and which satisfy a Lipschitz condition
with constant no greater than 1. We note that d(·, ·) metrizes weak convergence of
probability measures [8, Proposition 11.3.2]. Assume the following:

1. The āh11(x) and b̄h1 (x) are uniformly bounded for all x ∈ R
n and for all h > 0.

2. There exists a compact set K ⊂ R
n1 and a constant M < +∞ such that

µ̄h1 (x)(Kc) = 0 and µ̄h1 (x)(K) ≤M for all x ∈ R
n and for all h > 0.

3. There exist functions ā11(x) and b̄1(x) such that

āh11(x)→ ā11(x), b̄h1 (x)→ b̄1(x)

hold as h→ 0, uniformly for x in R
n with x1 in compact subsets of R

n1 .
4. There exists a measure valued function µ̄1(x) such that

d
(
µ̄h1 (x), µ̄1(x)

)
→ 0

holds as h→ 0, uniformly for x in R
n with x1 in compact subsets of R

n1 .
Notice that conditions 1 and 2 are uniform for all h > 0, and hence are more restrictive
than what is assumed earlier in the definition of Lh. We now proceed to define the
rate function for our large deviations upper bound. For each x ∈ R

n and for each
vector α ∈ R

n1 , define the convex function

H(x, α) = 〈b̄1(x), α〉+
1

2
tr[ā11(x)ααt]

+

∫
Rn1

[e〈ν,α〉 − 1− 〈ν, α〉]µ1(x)(dν),

and then for each x1 ∈ R
n1

H1(x1, α) = sup
x2∈Rn2

H((x1, x2), α).

We further define the upper semicontinuous regularization,

h1(x1, α) = lim
δ→0

h1,δ(x1, α),

where

h1,δ(x1, α) = sup
‖y1−x1‖≤δ

H(y1, α).

Consider the Legendre–Fenchel transform given by

l(x1, β) = sup
α∈Rn1

[〈β, α〉 − h1(x1, α)]

for each β ∈ R
n1 . Given T < +∞ and for each x ∈ R

n, we define the rate function
Ix1(φ1) by

Ix1
(φ1) =

∫ T

0

l(φ1(s), φ̇1(s))ds

for absolutely continuous functions φ1 taking values in R
n1 which satisfy φ1(0) = x1,

and we set Ix1
(φ1) to be +∞ otherwise.

We can now state the main large deviations theorem.
Theorem B.1. Assume conditions 1–4 above. Given a compact set C ⊂ R

n1 ,
the following hold:
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(i) Given L < +∞ and for each x1 ∈ R
n1 , define

Φx1(L) = {φ1 ∈ D([0, T ] : R
n1) : Ix1

(φ1) ≤ L}.

Then the set
⋃
x1∈C Φx1

(L) is compact.
(ii) For each closed set F ⊂ D([0, T ] : R

n1),

lim sup
h→0

h log Px{Xh
1 ∈ F} ≤ − inf

φ1∈F
Ix1

(φ1)

holds uniformly for x ∈ R
n such that x1 ∈ C.
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Abstract. We present a time discretization for the single phase Stefan problem with Gibbs–
Thomson law. The method resembles an operator splitting scheme with an evolution step for the
temperature distribution and a transport step for the dynamics of the free boundary. The evolution
step involves only the solution of a linear equation that is posed on the old domain. We prove that
the proposed scheme is stable in function spaces of high regularity. In the limit ∆t → 0 we find
strong solutions of the continuous problem. This proves consistency of the scheme, and additionally
it yields a new short-time existence result for the continuous problem.

Key words. free boundary problem, time discretization, operator splitting

AMS subject classifications. 35R35, 65M12, 80A22
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1. Introduction. The Stefan problem is a set of equations that describe the
melting of ice or the growth of ice cristals. At time t the ice (or the water) occupies
a region Ωt, and the second phase occupies the complement of Ωt. The position of
the interface ∂Ωt is not known a priori but must be determined together with the
temperature distribution Θ(t). Several sets of evolution equations can be found in
the extensive literature (see [11] for equations and further references). Commonly
used is the heat equation (2.1) in the domain Ωt (in the two phase problem another
heat equation is posed in the complement of Ωt). The latent heat relates the normal
heat flux on the free boundary (or its jump across the boundary) with the speed of
the free boundary as in (2.2). In order to determine the evolution we need one more
boundary condition. Various possibilities are studied for that: (a) fixed temperature
Θ = 0, (b) the Gibbs–Thomson relation Θ ∼ κ with κ being the mean curvature of
the boundary, and (c) kinetic undercooling: temperature plus a multiple of the speed
is proportional to the mean curvature. In the paper at hand we are interested in case
(b), the Gibbs–Thomson relation (2.3).

The aim of this paper is to introduce a stable time discretization of the two-
dimensional free boundary value problem. We consider the single phase problem for
simplicity; the two phase problem can be treated with the same method. Since the
domain changes with time, it is not clear what equations we should pose at every time
step, how to define a new domain, and how to define a temperature distribution on
the new domain. Thinking of the numerical use of the scheme it is desirable that at
each time step only a linear equation must be solved. This linear equation should be
posed on the old domain. Our scheme will provide exactly this. As a by-product of
our stability result in Theorem 2.2 we find a short-time existence result for (2.1)–(2.3)
in Corollary 2.3. Such a result (in different function spaces) was proved earlier by
Radkevich in [8]. Our approach is more elementary in the sense that it involves less
functional-analytic machinery.

∗Received by the editors May 11, 2000; accepted for publication (in revised form) March 12, 2002;
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Another time discretization for the Gibbs–Thomson law was introduced by Luck-
haus in [6]. His approach assumes only very low regularity such that solutions can
be defined past geometric singularities. For that it is necessary to use explicitly the
new domain in the definition of the time step. In this context we wish to mention the
work of Bänsch [3] dealing with a time discretization for the Navier–Stokes equations
with a free boundary. Also in these more complicated equations the new geometry is
needed in the definition of the new iterate.

Let us compare the Gibbs-Thomson law (b) with kinetic undercooling (c). The
term introduced in case (c) is regularizing; mathematically it has the effect that one
can regard the equations as a coupled system of a heat equation and an equation
for the motion of the free boundary. The regularity properties of the two evolution
equations allow us to iterate the two solution operators. The fixed point is a solution
of the original problem. Such an iteration is used by Chen and Reitich in [4] and
by Abergel et al. in [1] in order to derive an existence result in case (c). A spatial
semidiscretization was studied by Veeser in [10]. In contrast to case (c), it seems
impossible to decouple the equations in case (b).

This paper is organized as follows. In section 2 we present the operator splitting
scheme (OS) for a time discretization. Each time step consists of (1) defining an
auxiliary velocity field v, (2) solving a linear equation with transport term v · ∇, and
(3) defining the new domain and a temperature field on the new domain by advection.
In Theorem 2.2 and Corollary 2.3 we state our main result: the proposed scheme (OS)
is stable and consistent.

Within this paper we introduce three different schemes. Scheme (OS) is the
numerically applicable scheme in physical variables. The analysis of (OS) is the goal
of this paper, and the results are collected in section 2. In order to prove our results
we introduce a linear Crank–Nicolson-type scheme (CN) for unknowns (u, h). (CN)
is defined on a fixed domain and considers a given right-hand side f ; detailed a priori
estimates are derived in section 3. The next step is to consider scheme (CN) with a
right-hand side of the form f = f(u, h). Note that this is in general not a practical
numerical scheme, since f may depend on the values of the solution at later times.
The special choice of f(u, h) in section 4 is motivated by the original equations and
their transformation to a fixed domain. We prove the existence of solutions and a
priori estimates. In section 5 we conclude that the original scheme (OS) inherits
these properties.

As already mentioned, our analysis is based on the study of a linear problem.
This linear problem is obtained by transforming the equations onto a rectangle and
linearizing them. This defines an operator in the unknown quantities temperature
distribution u and height function of the free boundary h. This linear operator has
a compact inverse with regularizing properties. It allows us to solve instationary
problems with a time discretization (CN). The discretization can be proven to be
stable by a testing procedure. Since the nonlinearity requires regular solutions, we
apply the results also to discrete time derivatives and to second spatial derivatives of
the time-discrete solutions. This yields estimates in function spaces of high regularity.
In section 3 we collect estimates for (CN), the semidiscrete equations on a fixed
domain. Some care must be taken of compatibility conditions of the initial values.

Note that similar facts of the corresponding linearized problem were used in [9]
in order to treat the Navier–Stokes equations with a free boundary. Let us again
compare cases (b) and (c): in case (c) the properties of the linear operator can be
shown with an iteration that solves successively for u and h. In the case at hand one
actually has to study the coupled system.
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In section 4 we consider a time discretization of transformed equations and apply
the results of section 3. It turns out to be of importance in which point we linearize
the equations. Concerning the mean curvature operator of the Gibbs–Thomson law it
is sufficient to linearize it about the initial values. This is different for the nonlinearity
introduced by the domain transformation: it has a different structure and cannot be
treated by introducing error terms on the right-hand side (see Lemma 3.2 and remarks
thereafter). We have to use in every time step the linearization of the equations on
the current “old” domain. This introduces time-dependent coefficient matrices in the
equations, but this way the transformation respects the variational character of the
problem. As it turns out, the scheme (OS) mimics this strategy of linearization.

We encounter the fact that the solution of the discrete equations does not satisfy
maximal regularity estimates. Therefore we have to be careful in the discretization of
the nonlinearity.

In section 5 we prove Theorem 2.2 for scheme (OS). The idea is to transform the
operator splitting scheme onto a reference domain and to apply the results of section
3. It will turn out that the transformation of scheme (OS) is actually identical to the
scheme of section 4. The results of section 4 imply the stability of the transformed
scheme and therefore the stability of the original scheme. Since (OS) is consistent with
the continuous equations we can conclude that weak limits of the discrete solutions
define strong solutions of the original problem.

2. The free boundary problem and the time discretization. We denote
the domain that is covered with ice (or water) at time t by Ωt. For notational con-
venience we assume that the free boundary is given as the graph of a single function.
We study the two-dimensional case and write S := [0, 1]per for the unit interval with
identified endpoints. A function defined on S is automatically periodic; in particular,
all derivatives (if defined) coincide in the endpoints. We write the domain as

Ωt = {(x, y)|x ∈ S, 0 < y < h(t, x)} .
The height function h will be close to 1, and we can always parametrize Ωt over the
standard rectangle S × (0, 1). Again, all functions on the rectangle are automati-
cally periodic on the lateral boundaries. We introduce the time-dependent function
H(t, x) = (x, h(t, x)) to parametrize the upper boundary of Ωt. In the following we
will often omit the argument t. By a rescaling argument we can assume that the
physical constants latent heat, surface tension, and thermal diffusion are all equal to
1. The physical equations then read

∂tΘ = ∆Θ in
⋃
t>0

{t} × Ωt,(2.1)

∂th = −(n · ∇Θ) ◦H
√
1 + |∂xh|2 on {(t, x)|t > 0, x ∈ S},(2.2)

Θ ◦H = κ on {(t, x)|t > 0, x ∈ S}.(2.3)

Here

κ := −∂x
(

∂xh√
1 + |∂xh|2

)

is the mean curvature of the free boundary, n is the exterior normal of Ω, and n2 =
(1 + |∂xh|2)−1/2 the second component of n. The above equations are complemented
with a boundary condition for Θ on the lower boundary, say,

Θ(t, x, 0) = ψ(t, x).
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For notational convenience we will use ψ ≡ 0 in the following. All results remain valid
for smooth ψ. Additionally, initial values Θ(t = 0) = Θ0 and h(t = 0) = h0 > 0 are
imposed.

Later on we will use the linearization of the mean curvature operator about h =
h0,

∆h := −Dκ(h0) · h = ∂x

(
∂xh√

1 + |∂xh0|23

)
.

For smooth and small h0 the properties of ∆ are similar to those of ∆x = ∂2
x, therefore

the notation.
We now introduce a uniform discretization of the time interval (0, T ) by tk :=

k·∆t. Note that nonuniform time partitions can also be treated with our method. The
pair (Θk, hk) is meant to approximate (Θ(tk), h(tk)). We set (Θ0, h0) := (Θ0, h0). The
function hk defines the domain Ωk := {(x, y)|x ∈ S, 0 < y < hk(x)} and the normal
vector nk. We use Hk(x) := (x, hk(x)) ∈ R

2. In the following definition we need
functions Θ(−1) := Θ̃(−1) := Θ0 for the first execution of Step 1. We define H(−1)

and n(−1) via h(−1) := h0.
Let us motivate in advance (2.5): let Θ solve ∂tΘ = ∆Θ on the time-dependent

domain Ωt. We consider Θ̃(t, .) := Θ(t,Φ(t, .)), where Φ(t, .) parametrizes Ωt over the
fixed domain Ωt0 : Φ(t, .) : Ωt0 → Ωt. Then Θ̃ satisfies

∂tΘ̃ = (∂tΘ) ◦ Φ+ (∇Θ) ◦ Φ · ∂tΦ = ∆Θ|Φ + ∂tΦ · ∇Θ|Φ.
If we want to calculate on a given domain (the “old” domain Ωt0), then we have to
include a convective term in the heat equation. In the numerical scheme it remains
to choose a guess for the corresponding velocity field.

Definition 2.1. We assume that an initial domain Ω0 is given by h0 and an
initial temperature by Θ0 : Ω0 → R. Let X0 : R→ Ω0 be a parametrization of Ω0.

The operator splitting scheme (OS) for a time discretization of (2.1)–(2.3) is
defined by the following three steps; they are executed beginning with k = 0.

Step 1. We use the temperature data of the last time step in order to define a
vertical velocity field vk = (v1, v2) = (0, v2) : Ω

k → R
2 with boundary values

nk−1 ◦Hk−1 · vk ◦Hk =
(
nk−1 · ∇Θk−1 + Θ̃k−1

2

)
◦Hk−1

by the linear interpolation

vk(x, y) =
y

hk(x)
vk(x, hk(x)).(2.4)

Step 2. Find Θ̃k : Ωk → R and hk+1 : [0, 1]→ R with

Θ̃k −Θk

∆t
= ∆

(
Θk + Θ̃k

2

)
+ vk · ∇Θk + Θ̃k

2
in Ωk,(2.5)

hk+1 − hk

∆t
= −

√
1 + |∂xhk|2

(
nk · ∇Θk + Θ̃k

2

)
◦Hk in [0, 1],(2.6)

Θ̃k ◦Hk +∆(hk+1 − hk) = κ(hk) in [0, 1].(2.7)
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On the lower boundary we impose Θ̃k(x, 0) = ψ(x, tk). We slightly change the def-
inition in the first time step k = 0. There we use Θ0 instead of 1

2 (Θ
0 + Θ̃0) in the

convective term of (2.5).
Step 3. The function hk+1 defines the new domain Ωk+1. We now want to define

a temperature field Θk+1 on the new domain. We set

Xk+1(x, y) := Xk(x, y) +

(
0,
Xk2 (x, y)

hk(x)

)
· (hk+1 − hk)(x),(2.8)

Θk+1 ◦Xk+1 := Θ̃k ◦Xk in R.(2.9)

We will show that the above scheme can be used to define uniquely
(Θk, Xk)k=0,...,K . The functions Θk are defined on domains that depend on time
(on k). The domains are always parametrized by Xk = (Xk1 , X

k
2 ). In order to formu-

late estimates we introduce the pairs (uk, hk) := (Θk ◦Xk, hk). The functions uk are
then defined on the time-independent domain R.

The main result of this paper is the following theorem. It is proved together with
its corollary in section 5.

Theorem 2.2. Let the initial values (u0, h0) satisfy the regularity and compati-
bility assumption, Assumption 5.1, and let h0 − 1 be small in C0,1(S). Let the initial
domain be parametrized over the rectangle R = S × (0, 1) with a diffeomorphism
X0 ∈ H4+1/2(R) with X0 − id small in C0,1(R), X0

1 (x, y) = x and ∂2X
0
2 (., 1) = 1.

Then, on a small time interval I = (0, T ) the scheme (OS) has a unique solution
for k = 1, . . . ,K with tK < T . The scheme is stable: the linear interpolant (u, h) of
(uk, hk)k satisfies the estimate

‖h‖L∞(I;H4+1/2(S)) + ‖h‖W 1,∞(I;H2+1/2(S))

+ ‖u‖L∞(I;H3(R)) + ‖u‖W 1,∞(I;H1(R)) ≤ C.

The number C and the time interval I depend only on the initial values (Θ0, h0). They
are independent of the time-step size ∆t.

Corollary 2.3. Consider solutions (u,X)∆t as in Theorem 2.2. For a subse-
quence ∆t→ 0 there holds

(u,X)∆t −→ (ũ, X̃) for ∆t→ 0(2.10)

in the norms of L2(I;H2(R))∩H1(I;L2(R)) and of H1(I;H3(R)). The limit function
(Θ, X) := (ũ ◦ X̃−1, X̃) is a strong solution of the physical problem (2.1)–(2.3).

Note that in the above results no smallness assumption is made on Θ0; the velocity
of the boundary can be large, and convective effects must be included in the scheme.
On the other hand, we assume smallness of X0. This is not a severe restriction, since
one could parametrize all domains Ωk over a reference domain that is close to Ω0.
Then smallness of X0 is guaranteed.

A remark on implementations of the scheme. In the stability result we use the
assumption that initially the height function is almost constant. This is done in order
to simplify the proofs. It would be sufficient to have the initial domain close to a
smooth reference domain (which is no restriction if the initial values are smooth).

Running the scheme is possible only for small times. This is because one of the
following may happen: (1) The domain transformation onto the reference domain
introduces large errors. (2) Using the linearization of the mean curvature operator
about the initial values is no longer appropriate. (3) A geometric singularity makes a
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smooth parametrization impossible. Note that this is possible also for the continuous
equations.

The best we can expect of the discretization is to work well as long as there exist
continuous solutions of the system, that is, until problem (3) appears. In general, our
method will fail to work before that time, due to problem (1) or (2). In this case one
may continue with a restart: choose a new smooth reference domain, calculate the
new linearized mean curvature operator, and restart the scheme.

3. A Crank–Nicolson scheme on the reference domain. After a transfor-
mation of (2.1)–(2.3) onto the reference domain R = S × (0, 1) the equations have
a linearization of the form (3.1)–(3.3). This section is devoted to the study of these
linear equations on the rectangle.

∂tu = ∇ ·A(t)∇u+ f0 in R,(3.1)

∂th = −a(t) · ∇u(., 1) + f1 on S,(3.2)

u(., 1) = −∆h+ f2 on S.(3.3)

We assume a(t) = e2 · A(t) and A(t) : R→ R
2×2. In the following we always impose

without further mentioning the condition u = ψ = 0 (and uk = 0) on the lower
boundary {(x, y)|y = 0}. This also enables us to make use of the Poincaré inequality
in what follows. A natural time discretization of (3.1)–(3.3) is the following Crank–
Nicolson scheme.

Definition 3.1. We denote the following scheme by (CN). In every time step
we define uk+1 : R→ R, hk+1 : S → R as the solution of

uk+1 − uk

∆t
= ∇ ·Ak∇u

k + uk+1

2
+ fk0 in R,(3.4)

hk+1 − hk

∆t
= −ak · ∇

(
uk + uk+1

2

)
(., 1) + fk1 on S,(3.5)

uk+1(., 1) = −∆hk+1 + fk+1
2 on S.(3.6)

Notation. In the following we will denote the averages of solutions at intermediate

points as uk+1/2 := uk+uk+1

2 . The linear interpolant of the values (uk, hk) will always
be denoted by (u, h), and linear interpolants of fk = (fk0 , f

k
1 , f

k
2 ) are denoted by

f = (f0, f1, f2). We will once also use the linear interpolant of the values uk+1/2; it
will be denoted by ū.

In the scheme (CN) the matrices Ak will be uniformly close to the identity I2 ∈
R

2×2. Nevertheless, it will be of importance to use the coefficient matrices in (3.4)
and the corresponding oblique derivatives in (3.5). Loosely speaking, we must avoid
any error term fk1 in (3.5). This statement is made precise in the subsequent lemma.
The lemma gives a result on the resolvent problem corresponding to (3.1)–(3.3). It
introduces function spaces that are natural for the problem.

Lemma 3.2 (the resolvent problem in energy spaces). Let A : R → R
2×2 be a

field of uniformly elliptic and symmetric matrices. Then for λ > 0 the equations

λu−∇ ·A∇u = g0 in R,(3.7)

λh+ e2 ·A · ∇u(., 1) = g1 on S,(3.8)

u(., 1) + ∆xh = g2 on S,(3.9)
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together with u(., 0) = 0, have a unique solution (u, h). It satisfies the resolvent
estimate

λ2‖u‖20 + ‖∇ ·A∇u‖20 + λ2

∫
S

|∂xh|2 + λ‖h‖22+1/2

≤ C (‖g0‖20 + ‖g1‖21 + λ2‖g2‖2−1 + λ‖g2‖21/2),
(3.10)

with C independent of λ. Here ‖.‖s denotes the norm of Hs.
Proof. To prove existence we assume g2 = 0; this can be achieved by defining the

new unknown to be h−∆−1
x g2. We find u as the minimizer of

E(u) :=λ

∫
R

u2 +

∫
R

A∇u · ∇u− λ

∫
S

∆−1
x u(., 1) · u(., 1)

− 2

∫
R

g0 · u+ 2

∫
S

g1 · u(., 1)

in {u ∈ H1(R)|u(., 0) = 0,
∫
S
u(., 1) = 0}. Here the operator ∆−1

x is defined by

prescribing vanishing averages. With the function h̃ := ∆−1
x u(., 1) the pair (u, h̃)

solves (3.7), (3.9) exactly and (3.8) up to a constant function. Defining h(x) :=
h̄+ h̃(x) with an appropriate constant h̄ we obtain a solution to (3.7)–(3.9).

To find the a priori estimate we multiply (3.7) with λu−∇ · A∇u and integrate
over R. This yields

λ2

∫
R

|u|2 +
∫
R

|∇ ·A∇u|2 − 2λ

∫
R

u∇ ·A∇u =

∫
R

(λu−∇ ·A∇u)g0.

With another integration by parts we find

λ2

∫
R

|u|2 +
∫
R

|∇ ·A∇u|2 + 2λ

∫
R

∇u ·A∇u

+ 2λ

∫
S

(g2 −∆xh)(λh− g1) =

∫
R

(λu−∇ ·A∇u)g0.

The third term is positive, and in the fourth term we perform an integration by parts
over S. We find an estimate for the first three terms on the left-hand side of (3.10).
The estimate for

√
λh ∈ H2+1/2(S) then follows from regularity for (3.9).

We read the above lemma as follows: the linearized problem has a good resolvent
operator, and we can expect high regularity of solutions of the coupled problem. There
are two restrictive points. In (3.10) an estimate of λg2 is needed on the right-hand
side. This means that in the time-dependent problem the time derivative of f2 must
be controlled. The second difficulty is the regularity property that is assumed for g1.
In particular, we cannot insert an error of the form “trace of a first derivative of u.”
This is the reason why we use the oblique derivatives in (3.5).

Definition 3.3. For a solution (u, h) we define the Banach space Y := Yu × Yh
with

Yu := L∞(0, T ;H1(R)) ∩H1(0, T ;L2(R)),

Yh := L∞(0, T ;H2+1/2(S)) ∩H1(0, T ;H1(S)).

To control the right-hand side we define the Banach spaces

X0 := L2(0, T ;L2(R)),

X1 := L2(0, T ;H1(S)),

X2 := L∞(0, T ;H1/2(S)) ∩H1(0, T ;H−1(S)).
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Observe that the above are not the maximal regularity spaces of the continuous
equations. For that we would expect additional estimates for u ∈ L2(I;H2) and
h ∈ L2(I;H3+1/2). However, the above Crank–Nicolson scheme will not provide such
an estimate. It can provide it at best for the interpolant of the midpoints 1

2 (u
k+uk+1).

Lemma 3.4 (the scheme (CN) in energy spaces). Assume that the coefficient
matrices Ak in Definition 3.1 are symmetric and satisfy

sup
k
‖Ak − I2‖L∞(R) +

∑
k

∥∥∥∥Ak+1 −Ak

∆t

∥∥∥∥
L∞(R)

∆t < δ.(3.11)

We consider initial values u0 ∈ H1(R), h0 ∈ H2+1/2(S). Let (3.6) be satisfied for
the initial values (u0, h0) := (u0, h0); that is, (3.6) holds for k = −1. Given a right-
hand side (fk)k we will write estimates in terms of the linear interpolant f : I →
L2(R)2 ×L2(S)×L2(S). Let the time interval I = (0, T ) and δ > 0 be small enough.

Then for every K ∈ N with K ·∆t ≤ T the linear scheme (CN) of Definition 3.1
has a unique solution (uk, hk)k=0,...,K . The linear interpolant (u, h) of (u

k, hk)k sat-
isfies the estimate

‖(u, h)‖Y ≤ C1‖u0‖H1(R) + C2 (‖f0‖X0 + ‖f1‖X1 + ‖f2‖X2)(3.12)

with C1 and C2 independent of ∆t.
The estimate (3.12) can be improved: on the right-hand side we can replace ‖f2‖X2

by ‖f2‖H1(0,T ;H−1(S)) + C�, where C� has the property that for some C > 0 every
solution of (3.6) satisfies

‖hk+1‖H2+1/2(S) ≤ C� + C‖uk+1‖H1(R).

Proof. The proof of this lemma relies on a testing procedure; it is analogous
to the proof of the resolvent estimate of Lemma 3.2. We multiply (3.4) with −∇ ·
Ak∇(uk+uk+1

2 ). An integration over R yields

∫
R

∇u
k+1 − uk

∆t
·Ak∇u

k + uk+1

2
+

∥∥∥∥∇ ·Ak∇uk + uk+1

2

∥∥∥∥
2

L2(R)

−
∫
S

ak · ∇
(
uk + uk+1

2

)
uk+1 − uk

∆t
= −

∫
R

fk0 · ∇ ·Ak∇
uk + uk+1

2
.

(3.13)

We use the symmetry of Ak to calculate for the first term∫
R

∇u
k+1 − uk

∆t
·Ak∇u

k + uk+1

2

=
1

2∆t

∫
R

Ak∇uk+1 · ∇uk+1 − 1

2∆t

∫
R

Ak∇uk · ∇uk.

To evaluate the boundary integral we use (3.5) with index k and (3.6) with the indices
k and k + 1: ∫

S

ak · ∇
(
uk + uk+1

2

)(
uk+1 − uk

∆t

)

=

∫
S

(
hk+1 − hk

∆t
− fk1

)
·
(
∆
hk+1 − hk

∆t
− fk+1

2 − fk2
∆t

)
.
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Inserting this into (3.13) we find

1

2∆t

∫
R

Ak+1∇uk+1 · ∇uk+1 − 1

2∆t

∫
R

Ak∇uk · ∇uk

+

∥∥∥∥∇ ·Ak∇uk + uk+1

2

∥∥∥∥
2

L2(R)

−
∫
S

hk+1 − hk

∆t
·∆hk+1 − hk

∆t

= −
∫
R

fk0 · ∇ ·Ak∇
uk + uk+1

2
+

∫
R

Ak+1 −Ak

2∆t
∇uk+1 · ∇uk+1

−
∫
S

(
hk+1 − hk

∆t
− fk1

)
· f
k+1
2 − fk2

∆t
−
∫
S

fk1 ·∆
hk+1 − hk

∆t
.

Multiplication with ∆t and summing up over k = 0, . . . ,K − 1 we find

∫
R

AK∇uK · ∇uK +
∑
k

∥∥∥∥∇ ·Ak∇uk + uk+1

2

∥∥∥∥
2

L2(R)

∆t

+
∑
k

∫
S

∣∣∣∣∂x
(
hk+1 − hk

∆t

)∣∣∣∣
2

∆t ≤ 2‖∇u0‖2L2(R)

+ 2
∑
k

∥∥∥∥Ak+1 −Ak

∆t

∥∥∥∥
L∞(R)

· ∥∥∇uk+1
∥∥2

L2(R)
∆t

+ C
∑
k


‖fk0 ‖20 +

∫
S

[|∂xfk1 |2 + |fk1 |2] +
∥∥∥∥∥f

k+1
2 − fk2

∆t

∥∥∥∥∥
2

−1


∆t.

(3.14)

For the linear interpolant (u, h) of the sequence (uk, hk) we find with (3.4) the
estimate

‖u‖L∞(I;H1(R)) + ‖∂tu‖L2(I;L2(R)) + ‖∂x∂th‖L2(I;L2(S)) ≤ C.(3.15)

It remains to prove spatial regularity properties of h. Since traces of uk are
bounded in the space l∞({0, . . . ,K};H1/2(S)), (3.6) implies the regularity of h. The
improved version of the estimate mimics this argument.

The nonlinearity of the original problem requires the control of the domain in
regular norms. Estimates of higher order can be derived by considering derivatives
of solutions. They satisfy again equations of the type (3.4)–(3.6), and we can apply
Lemma 3.4.

We introduce a notation. As before we write g for the linear interpolant of a set
of functions (gk)k. We will write ∂̄tg for the linear interpolant of the discrete time

derivatives gk−gk−1

∆t . In this way we can use also time derivatives of ∂̄tg; they are

piecewise constant functions with values g
k+1−2gk+gk−1

(∆t)2 . The function ∂̄tg is defined

on the time interval (∆t, T ), and all norms are calculated on that interval.
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Proposition 3.5 (the scheme (CN) with higher regularity). Let the compatibil-
ity assumption, Assumption 3.6, on the initial values be satisfied. Assume that the
coefficient matrices are symmetric and satisfy

sup
k
‖Ak − I2‖C0(R̄) < δ,

∑
k

{
‖∇Ak‖2H2(R) + ‖∇Ak(., 1)‖2H2(S)

}
∆t < δ2,

∑
k

{∥∥∥∥Ak+1 −Ak

∆t

∥∥∥∥
2

H1(R)∩L∞(R)

+

∥∥∥∥Ak+1 −Ak

∆t
(., 1)

∥∥∥∥
2

H1(S)

}
∆t < δ2.

(3.16)

On the initial values we assume ‖h0 − 1‖C0,1(S) < δ. Let T > 0 and δ > 0 be small

enough and (uk, hk)k be a solution of scheme (CN). Then the linear interpolant (u, h)
satisfies

‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y

≤ C1

[‖∇ ·A(0)∇u0 + f0(0)‖H1(R) + ‖∂2
xu0‖H1(R)

]
+ C2

[‖∂̄tf0‖X0 + ‖∂̄tf1‖X1 + ‖∂̄tf2‖X2

]
+ C3

[‖∂2
xf0‖X0 + ‖∂2

xf1‖X1 + ‖∂2
xf2‖X2

]
+ C4δ

[‖f0‖L∞(I;H1(R)) + ‖A‖L∞(I;H2(R))

]
.

(3.17)

The linear interpolant ū of the midpoint values uk+1/2 satisfies additionally the regu-
larity estimate

‖ū‖L∞(I;H3(R)) ≤ C5(c0 + ‖f0‖L∞(I;H1(R)) + sup
k
‖Ak‖H2(R)),(3.18)

where c0 denotes the right-hand side of (3.17).
Proof. The assumptions on A are stronger than those in Lemma 3.4. In particular,

we know that a unique discrete solution exists on a small time interval and that it
satisfies the estimate (3.12).

Part I. Time derivatives. We introduce discrete derivatives

ũk :=
uk − uk−1

∆t
, h̃k :=

hk − hk−1

∆t
(3.19)

for all k = 1, . . . ,K. We now use the definition of (uk, hk) in (3.4)–(3.6). Taking the
equations with index k and subtracting the equations with index k − 1 yields for the
new functions the following set of equations:

ũk+1 − ũk

∆t
= ∇ ·Ak∇ ũ

k + ũk+1

2
+
fk0 − fk−1

0

∆t

+∇ ·
(
Ak −Ak−1

∆t
∇u

k−1 + uk

2

)
,

(3.20)

h̃k+1 − h̃k

∆t
= −ak · ∇

(
ũk + ũk+1

2

)
(., 1) +

fk1 − fk−1
1

∆t

− ak − ak−1

∆t
· ∇

(
uk−1 + uk

2

)
(., 1),

(3.21)

ũk+1(., 1) = −∆h̃k+1 +
fk+1
2 − fk2

∆t
.(3.22)
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We read these equations as follows: (ũk, h̃k)k=1,...,K is a solution of the scheme (CN)

of Definition 3.1 with initial values (ũ1, h̃1). The right-hand side is

f̃k0 :=
fk0 − fk−1

0

∆t
+∇ ·

(
Ak −Ak−1

∆t
∇u

k + uk−1

2

)
,

f̃k1 :=
fk1 − fk−1

1

∆t
− ak − ak−1

∆t
· ∇

(
uk + uk−1

2

)
(., 1),

f̃k2 :=
fk2 − fk−1

2

∆t

for k = 1, . . . ,K. We next apply Lemma 3.4 on the sequence (ũk, h̃k)k. We recall
the notation (ũ, h̃) for the linear interpolant of (ũk, h̃k)k and introduce f̃i for the
linear interpolant of (f̃ki )k. Note that the domain of definition is (∆t, T ); on this time
interval we have by Lemma 3.4

‖(ũ, h̃)‖Y ≤ c0‖ũ1‖H1(R) + c1

[
‖f̃0‖X0 + ‖f̃1‖X1 + ‖f̃2‖X2

]
.(3.23)

The discrete time derivatives ∂̄tfi of fi enter the bound (3.17) explicitly. It remains
to estimate the contributions

∇ ·
(
Ak −Ak−1

∆t
∇u

k + uk−1

2

)
∈ X0,

ak − ak−1

∆t
· ∇

(
uk + uk−1

2

)
(., 1) ∈ X1.

We find c > 0 such that

∑
k

∥∥∥∥∇ ·
(
Ak −Ak−1

∆t
∇u

k + uk−1

2

)∥∥∥∥
2

L2(R)

∆t

≤ c
∑
k

∥∥∥∥Ak −Ak−1

∆t

∥∥∥∥
2

H1(R)

∆t · sup
k

∥∥∥∥∇uk + uk−1

2

∥∥∥∥
2

H2(R)

,

∑
k

∥∥∥∥ak − ak−1

∆t
· ∇

(
uk + uk−1

2

)
(., 1)

∥∥∥∥
2

H1(S)

∆t

≤ c
∑
k

∥∥∥∥ak − ak−1

∆t
(., 1)

∥∥∥∥
2

H1(S)

∆t · sup
k

∥∥∥∥∇uk + uk−1

2
(., 1)

∥∥∥∥
2

H1(S)

.

With the assumptions on A and fi Lemma 3.4 yields for ∂̄t(u, h) = (ũ, h̃) the estimate

‖∂̄t(u, h)‖Y ≤ c0 ‖ũ1‖H1(R) + c1δ sup
k

∥∥∥∥uk + uk−1

2

∥∥∥∥
H3(R)

+ c2,(3.24)

where c2 depends only on the norms of ∂̄tfi.
In order to treat the second term on the right-hand side we now show estimate

(3.18). This is done with the help of the original equation (3.4). The elliptic equation
with the boundary condition (3.5) yields the estimate∥∥∥uk+1/2

∥∥∥
H3(R)

≤ C
(‖fk0 ‖H1(R) + ‖fk1 ‖H3/2(S)

+‖∂̄t(u, h)‖Y + ‖Ak‖H2(R)

)
.
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Here the norm of f1 is controlled by the right-hand side of (3.17). We have ∂̄tf1

bounded in L2(0, T ;H1(S)) and f1 bounded in L2(0, T ;H3(S)). An interpolation
yields an estimate in L∞(0, T ;H3/2(S)) for f1,

sup
k
‖fk1 ‖H3/2(S) ≤ C

{‖∂tf1‖X1
+ ‖∂2

xf1‖X1

}
.

Equation (3.18) is shown.
We now insert (3.18) into estimate (3.24) and find with new constants c0, c1, and

c2,

‖∂̄t(u, h)‖Y ≤ c0 ‖ũ1‖H1(R)

+ c1δ
(‖f0‖L∞(I;H1(R)) + ‖A‖L∞(I;H2(R))

)
+ c2,

(3.25)

where c2 depends only on the norms of ∂̄tfi.
Part II. Spatial derivatives. Estimate (3.25) does not suffice for the analysis

of the nonlinear problem. Note that the best spatial estimate for the boundary so far
is h ∈ Cα(I;H2+1/2). We next want to derive an estimate for h ∈ L∞(I;H4+1/2(S))
to have good control of the regularity of the boundary. This estimate could be derived
from an estimate for u ∈ L∞(I;H3(R)). A similar estimate does appear in (3.18) but
only for interpolants of 1

2 (u
k+uk+1) and not for interpolants of uk. In order to derive

the regularity estimate on h we perform an analysis of second spatial derivatives of
the semidiscrete solution. While we used discrete derivatives in Part I we can now
use classical derivatives. We introduce

ûk := ∂2
xu
k, ĥk := ∂2

xh
k.(3.26)

As in Part I we will use the fact that (ûk, ĥk)k is a solution of scheme (CN) for

an appropriate right-hand side. To be precise, (ûk, ĥk)k satisfies (3.4)–(3.6) with

(fk0 , f
k
1 , f

k
2 )k replaced by (f̂k0 , f̂

k
1 , f̂

k
2 )k, defined by

f̂k0 := ∂2
xf
k
0 +∇ ·

([
∂2
x, A

k
]∇uk + uk+1

2

)
,(3.27) [

∂2
x, A

k
]
w = (∂2

xA
k)w + 2(∂xA

k)∂xw ∀w,

f̂k1 := ∂2
xf
k
1 −

[
∂2
x, a

k
] · ∇uk + uk+1

2
,(3.28) [

∂2
x, a

k
] · w = (∂2

xa
k)w + 2(∂xa

k)∂xw ∀w,
f̂k2 := ∂2

xf
k
2 − ∂x

([
∂2
x, γ0

]
∂xh

k
)
,(3.29) [

∂2
x, γ0

]
w =

(
∂2
xγ0

)
w + 2∂xγ0∂xw ∀w,

where we introduced the abbreviation

γ0 =
1√

1 + |h′0|2
3 .

We now use Lemma 3.4. With the notation IK = {0, . . . ,K} and ūk := uk+uk+1

2 we
have to show estimates for

∇∂2
xA
k · ∇ūk, ∇∂xAk · ∇∂xūk,

∂2
xA
k ·∆ūk, ∂xAk ·∆∂xūk ∈ l2(IK ;L2(R)),

∂2
xa
k · ∇ūk(., 1), ∂xak · ∇∂xūk(., 1) ∈ l2(IK ;H1(S)),
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and additionally estimates in l2(IK ;H
−1/2(S)) for the discrete time derivatives of the

functions

∂4
xh0 · ∂xhk, ∂3

xh0 · ∂2
xh
k, ∂2

xh0 · ∂3
xh
k.

On the functions of the last line we additionally have to give an estimate in
l∞(IK ;H

1/2(S)) or we use the improved version of estimate (3.12). We use the
latter and see from the original equation (3.6) for hk+1 that we can use C� =
C‖fk2 ‖H2+1/2(S) ≤ C(‖∂2

xf2‖X2
+ ‖∂tf2‖X2

), where C depends only on ‖h0‖H4+1/2(S).
All the above error terms can be estimated by a small multiple of the solution norm
in (3.17). While the other terms can be estimated directly, the most intricate term is
the one containing second derivatives of the trace of derivatives of ūk. It suffices to
estimate for the interpolation

∂2
x∇ū(., 1) ∈ L2(I;L2(S))

by the norms of u and f in (3.17). This estimate can be derived from (3.4) if we
differentiate that equation twice with respect to x. We use ∂t∂

2
xu, ∂

2
xf0 ∈ L2(I;L2(R)),

and, for the boundary condition, ∂t∂
2
xh ∈ L2(I;H1(S)). Elliptic theory yields ∂2

xū ∈
L2(I;H2(R)) and therefore the result.

We can now apply Lemma 3.4 which yields the Y -estimates for ∂2
x(u, h). The

compatibility condition ((3.6) is satisfied for k = −1) holds, since we took only second
derivatives on both sides. Note that without the estimates of the time derivative we
could not have derived the spatial estimates on ū but only estimates on higher x-
derivatives of u.

Part III. The first time step. It remains to control the first discrete time
derivative ũ1 ∈ H1(R) of (3.25) by the first term on the right-hand side of (3.17).
This is done in the subsequent lemma which concludes the proof of the prop-
osition.

Assumption 3.6. We assume that A = A(0) is a Sym(R2)-valued function of
class H3(R), sufficiently close to the identity in L∞(R).

The compatibility conditions for the discrete scheme read

u0(., 1) = −∆h0 + f0
2 ,(3.30)

(∇ ·A∇u0 + f0
0 )(., 1) = ∆(a · ∇u0(., 1)− f0

1 ) +
f1
2 − f0

2

∆t
.(3.31)

Lemma 3.7. Let Assumption 3.6 be satisfied. Then the solution (u1, h1) for the
first time step in scheme (CN) satisfies∥∥∥∥u1 − u0

∆t

∥∥∥∥
H1(R)

≤ C ‖∇ ·A∇u0 + f0‖H1(R)(3.32)

with C independent of ∆t.
Proof. We write ∆ = ∂x(γ0∂x) with γ0 close to 1 in L∞(S). We use a = e2 · A

and study the operator

B :
(u
h

)
�→

( ∇ ·A∇u
−a · ∇u(., 1)

)

defined on

D(B) :=
{
(u, h) ∈ X0|u ∈ H2(R), u(., 1) = −∆h, u(., 0) = 0

}
,
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a subset of the space

X0 :=

{
(u, h)|

∫ 1

0

h = 0

}
⊂ X := L2(R)×H1(S).

On X0 we use the scalar product〈(u
h

)
,

(
û

ĥ

)〉
:=

∫
R

u · û+
∫
S

γ0 ∂xh · ∂xĥ.

Then the operator B is densely defined in X0, it has a compact inverse by Lemma 3.2,
and it is symmetric. By the spectral theorem we find a complete set of eigenfunctions
(σj , ηj) of B; that is,

λjσ
j −∇ ·A∇σj = 0,(3.33)

λjη
j + a · ∇σj(., 1) = 0,(3.34)

σj(., 1) + ∆ηj = 0.(3.35)

In order to have a basis (σj , ηj) of X (and not only on X0) we extend the basis by
eigenfunctions of the form σ(x, y) = U(y), h(x) = 1.

The functions (σj , ηj) can be normalized such that∫
R

σj · σl +
∫
S

γ0 ∂xη
j∂xη

l = δjl.(3.36)

Furthermore, one verifies that all eigenvalues are negative, and orthogonality also
holds with the scalar product∫

R

A∇σj · ∇σl = −λjδjl.(3.37)

This scalar product defines a norm equivalent to theH1-norm by the Poincaré inequal-
ity. We denote the Hilbert space corresponding to the product (v, w) �→ ∫

R
Av·w in the

following by L2
A. We next consider pairs (u, h) =

∑∞
j=1 cj(σ

j , ηj). For (u, h) ∈ D(B)

we can conclude with uN :=
∑N
j=1 cjσ

j that ‖∇uN‖L2
A
≤ ‖∇u‖L2

A
and∥∥∥∥∥∥∇

∞∑
j

cjσ
j

∥∥∥∥∥∥
2

L2
A(R)

=

∞∑
j

|cj |2 |λj |.(3.38)

In particular, if one side in this equality is finite, then the other is also finite.
We now expand the initial values and the right-hand side in terms of eigenfunc-

tions and write

(u0, h0 −∆−1f0
2 ) =

∑
j

aj(σ
j , ηj), (u1, h1 −∆−1f1

2 ) =
∑
j

bj(σ
j , ηj),

(
f0
0 , f

0
1 −∆−1 f

1
2 − f0

2

∆t

)
=
∑
j

dj(σ
j , ηj).

Here ∆−1 denotes any right inverse of ∆. Equations (3.4), (3.5) for the first time step
translate into

bj − aj
∆t

= λj
bj + aj

2
+ dj ∀j ∈ N.(3.39)
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We find

bj =
1

1
∆t − 1

2λj

(
aj

[
1

∆t
+

1

2
λj

]
+ dj

)
.

Therefore

bj − aj
∆t

=
λjaj + dj

1− 1
2λj∆t

.(3.40)

We have to estimate the H1-norm of the function
∑
j
bj−aj

∆t σj by the H1-norm of the

function
∑
j(λjaj + dj)σ

j . We use (3.38) for the following two pairs that are both in
D(B) by the compatibility assumption:(

u1 − u0, h1 − h0 −∆−1(f1
2 − f0

2 )
)
,

(
∇ ·A∇u0 + f0

0 ,−a · ∇u0(., 1) + f0
1 −∆−1 f

1
2 − f0

2

∆t

)
.

We can calculate∥∥∥∥∥∥∇
∑
j

bj − aj
∆t

σj

∥∥∥∥∥∥
2

L2
A(R)

=
∑
j

|λj |
∣∣∣∣bj − aj

∆t

∣∣∣∣
2

≤
∑
j

|λj | |λjaj + dj |2 =
∥∥∥∥∥∥∇

∑
j

(λjaj + dj)σj

∥∥∥∥∥∥
2

L2
A(R)

≤ C‖∇ ·A∇u0 + f0
0 ‖2H1 .

This concludes the proof.

4. A discretization of the transformed equations. We perform some el-
ementary calculations for the transformation of (2.1)–(2.3) onto a reference do-
main. Our aim is to replace the temperature Θ(t) : Ωt → R by the new unknown
u(t) : R → R. We denote the upper boundary of Ω by Γ and the upper boundary
of R by ΓR = {(x, 1) : x ∈ S}. Given a domain transformation Ψ : Ω → R we use
u ◦Ψ = Θ and, in the calculation below, also v ◦Ψ = ϕ. We define

Bij := ∇jΨi, J := det(B)−1, A := J ·B ·Bt.(4.1)

We see that the equation∫
Ω

∇Θ · ∇ϕ+

∫
Ω

f ◦Ψϕ−
∫

Γ

g ◦Ψϕ = 0 ∀ϕ ∈ C1(Ω)

transforms into ∫
R

(Bt · ∇u) · (Bt · ∇v) J +

∫
R

fv J

−
∫

ΓR

gv
√
1 + |∂xh|2 = 0 ∀v ∈ C1(R).
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We conclude that the equation

∆Θ = f ◦Ψ in Ω, n · ∇Θ = g ◦Ψ on Γ

transforms into

∇ ·A∇u = J f in R, e2 ·A∇u = g
√
1 + |h′|2 on ΓR.

Therefore the physical equations (2.1)–(2.3) transform into

J∂tu+ J∂tΨ · ∇u = ∇ ·A∇u,(4.2)

∂th = −e2 ·A∇u,(4.3)

u|h +∆h = ∆h+ κ(h).(4.4)

The equations formally coincide with (3.1)–(3.3) if we set

f0 := (1− J)∂tu− J (∂tΨ) · ∇u,(4.5)

f1 := 0, f2 := ∆h+ κ(h).(4.6)

We now want to choose a discretization of (4.2)–(4.4). The idea is to define
matrices Ak as in (4.1) and to define fki as in (4.5), (4.6). In order to proceed we
have to define domain transformations Ψk : Ωk → R that we can insert in (4.1). We
define Ψk as the inverse of functions Xk : R→ Ωk with

Xk+1(x, y)−Xk(x, y) =
Xk2 (x, y)

hk(x)
(hk+1(x)− hk(x))e2.

We choose an initial parametrization X0 as in Theorem 2.2.
To discretize formula (4.5) we have to discretize ∂tΨ. Since the definition of X is

consistent with the continuous equation

∂tΨ
−1(t, x, y) =

(Ψ−1)2(x, y)

h(x)
∂th(t, x) e2,

we find from ∂t(Ψ ◦Ψ−1) = 0 the continuous equation

∂tΨ(t, ξ, ζ) = −∂ζΨ · ζ
h
∂th(t, ξ).

Because of J = (∂ζΨ2)
−1 the right-hand side of the discrete scheme can be defined

consistently by

fk0 := (1− Jk)
uk+1 − uk

∆t
+
Xk2
hk

hk − hk−1

∆t
∂y
uk + uk+1

2
,

fk1 := 0, fk+1
2 := ∆hk + κ(hk).

(4.7)

In the definition of f0
0 , the first time step, we insert the formal time derivative of h

instead of h
0−h−1

∆t , and we use u0 instead of u
0+u1

2 . To have f2 defined on the whole
time interval we set f0

2 = ∆h0 + κ(h0) ≡ f1
2 . This defines a discrete scheme that is

consistent with (4.2)–(4.4). Note that in the above definition fk0 depends on uk+1.
An assumption concerning the compatibility of the initial values will be needed.

This is not an artifact of the discretization—the same is true for the continuous
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equations. Let (u, h) be a classical solution such that ∂t(u, h) is continuous in t = 0.
We conclude that the formal time derivative ∂̃t(u, h) defined by (4.2) and (4.3) must
satisfy on the boundary the time derivative of (4.4). We will therefore use later on
the following assumption.

Assumption 4.1. We say that the compatibility conditions for the continu-
ous equations are satisfied if for u0 ∈ H3(R) the formal time derivative ∂̃tu0 is in
H1(R) and

u0(., 1)− κ(h0) = 0,(4.8)

∂̃tu0(., 1) + ∆∂̃th0 = 0.(4.9)

Theorem 4.2. Let the initial values (u0, h0) satisfy the compatibility condition
of Assumption 4.1 and let h0−1 be small in C0,1(S). We consider scheme (CN) with
fki as in (4.7) and Ak defined by (4.1).

Then there exists T > 0 such that the scheme (CN) has a unique solution
(uk, hk)k. The linear interpolants (u, h) of (u

k, hk)k and ū of
1
2 (u

k+uk+1) satisfy the
estimate

‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y + ‖ū‖L∞(I;H3(R)) ≤ C,(4.10)

where C and T depend only on the norm of the initial values and are independent of ∆t.
Proof. The proof is given in three parts (A)–(C). Part (A) is concerned with the

initial values and their compatibility. In part (B) the crucial estimates on solutions are
derived with the help of Proposition 3.5 on the scheme (CN) with a fixed right-hand
side. In part (C) we show the existence of a bounded solution.

(A) Compatibility of initial values. We want to use Proposition 3.5. In order
to do so, we have to guarantee that the compatibility assumption, Assumption 3.6,
is satisfied. By definition of f0

2 , (3.30) holds. Concerning (3.31) we observe that

f1
2 − f0

2 = 0. In the above scheme the time derivative u1−u0

∆t appears in f0
0 . This in

general changes the compatibility condition for the scheme. However, our construction
imposed J0 = 1 on the upper boundary and therefore

f0
0 (., 1) = −∂̃th(0) ∂yu0(., 1).

Then the discrete compatibility assumption (3.31) coincides with the continuous ver-
sion (4.9).

(B) Improvement of a priori bounds. This part of the proof is based on
estimate (3.17). We use the constant C1 and the first term of the right-hand side of
that estimate and define

C0 := 2C1

[‖∇ ·A(0)∇u0 + f0(0)‖H1(R) + ‖∂2
xu0‖H1(R)

]
.

We will show that given δ > 0 we can choose a small T > 0 and a small a priori bound
for ‖h0 − 1‖C0,1(S) such that for every solution (u, h)

‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y ≤ 2C0

⇒‖∂̄t(u, h)‖Y + ‖∂2
x(u, h)‖Y ≤ C0.

(4.11)

This is shown in four steps. With a constant C independent of δ and T there
holds the following:

1. ū ∈ L∞(I;H2(R)) is bounded by C.
2. The coefficients Ak defined by (4.1) satisfy (3.16)δ.
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3. The norms of ∂̄tf and of ∂2
xf on the right-hand side of (3.17) are bounded

by Cδ.
4. The norms of f0 ∈ L∞(I;H1(R)) and of A ∈ L∞(I;H2(R)) are bounded

by C.
Once we have shown 1–4, we can choose a new δ > 0 and T > 0 and use Proposition
3.5 to obtain the implication (4.11).

Now consider a solution (u, h) with the bound 2C0 as in (4.11).
1. Regularity of ū. The function f0 is bounded in L∞(I;L2(R)) (see below).

We use the elliptic equation (3.4) for uk+1/2:

∇ ·Ak∇uk+1/2 =
uk+1 − uk

∆t
− fk0 ∈ L2(R).

The boundary condition (3.5) is smooth enough to imply the desired estimate for
supk ‖uk+1/2‖H2(R).

2. Estimates for A. By an interpolation we see that for some α > 0 the
function h is also bounded as

h ∈ Cα(I;H4(S)).

Then the matrix B = ∇Ψ satisfies

B ∈ Cα(I;H3(R)), B(., 1) ∈ Cα(I;H3(S)).

Since H3(R) is an algebra (see, e.g., [2]), the matrix A satisfies estimates in the same
spaces. Choosing T small we immediately infer the first two lines in (3.16).

In order to verify the third line we again use an interpolation: with p > 2 we find
an estimate for

∂th ∈ Lp(I;H3(S)).

This implies an estimate for

∂tB ∈ Lp(I;H2(R)).

Again, ∂tA satisfies estimates in the same space. If necessary we choose a smaller T
in order to infer the third line in (3.16).

We turn to the estimates for fi. The function f1 vanishes identically, and all
estimates are trivial.

3. and 4. Estimates for f0. We first consider the term (1−J)∂tu. The factor
(1− J) is small in L∞(I;L∞(R)) by smallness of h0 in C0,1(S). We use

∂tu ∈ Yu ⇒ ∂2
t u ∈ L2L2 ⇒ ∂t[(1− J)∂tu] ∈ L2L2,

∂2
xu ∈ Yu ⇒ ∂t∂

2
xu ∈ L2L2 ⇒ ∂2

x[(1− J)∂tu] ∈ L2L2,

∂tu ∈ Yu ⇒ ∂tu ∈ L∞H1 ⇒ [(1− J)∂tu] ∈ L∞H1.

These implications together with their corresponding estimates give the desired es-
timate for the first term in f0. Note that the smallness of, e.g., ∂t[(1 − J)∂tu] =
(1 − J)∂2

t u − ∂tJ∂tu follows for the first term by smallness of 1 − J , for the second
term by a compactness argument: ∂tJ ∈ L∞H3/2 and ∂tu ∈ L∞H1 imply (for small
T ) smallness of the second term in L2L2. The estimate of (1−J)∂2

t u is the only place
where we use the smallness of h0.
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The other term of f0 has the regularity properties of ∂̃tΨ · ∇ū. We use step 1
with the estimate for ū ∈ L∞H2. It yields

∂̃tΨ ∈ L∞(I;H2+1/2(R)), ∇ū ∈ L∞(I;H1(R)),

and we find the estimate for f0 ∈ L∞(I;H1(R)). The estimates for ∂tf0 and ∂2
xf0 are

direct. Smallness of the L2(I)-norms follows by the compactness argument.
Estimates for f2. Concerning f2 we have to take special care of the first time

step. However, let us first consider f2 as defined by f1
2 , . . . , f

K
2 : the functions fk2 are

composed from first and second derivatives of h. Remember that the operator −∆h
is the linearization of the mean curvature κ(h) in h = h0. By the 2C0-bound of (4.11)
we can estimate the differences ∂xh−∂xh0 pointwise by a small number (depending on
T ). Then f2 has the form f2 = −κ(h)−∆h = G(∂xh, ∂xh0) · (1, ∂2

xh) with G(0, 0) = 0
and G differentiable. We find the estimate

‖f2‖ ≤ C ε ‖h‖,

where the norms are those of (3.17) and of (4.11), and ε is arbitrarily small for T
small.

Let us now consider the first time step. f0
2 ∈ H2+1/2(S) by Assumption 4.1.

There holds f1
2 −f0

2 = 0, and we find the estimate for the first discrete time derivative
of f2. The second discrete time derivative is

∂̄2
t f2(0) :=

f2
2 − 2f1

2 + f0
2

(∆t)2
=

f2
2 − f1

2

(∆t)2
=

κ(h1) + ∆h1 − κ(h0)−∆h0

(∆t)2
.

We introduce T [∂xh] :=
∂xh√

1+|∂xh|2
to write

∂̄2
t f2(0) = − 1

(∆t)2
∂x

(
T [∂xh

1]− T [∂xh
0]− T ′[∂xh0] · ∂x(h1 − h0)

)
.

We find

‖∂̄2
t f2(0)‖H−1(S) ≤ C

∥∥∥∥∂x(h1 − h0)

∆t

∥∥∥∥
2

L∞(S)

≤ C

∥∥∥∥u1 − u0

∆t

∥∥∥∥
2

H1(R)

.

(C) Existence of a solution—the continuity argument. Note that a time
step of scheme (CN) with f as in (4.7) is still a linear equation for (uk+1, hk+1). We

see that the single time step can always be solved as long as 1− Jk and
Xk

2

hk
hk−hk−1

∆t

are small in L∞. Still, it could happen that on the time interval (0, tk) the solution
has norm less than C0 and on the time interval (0, tk+1) the solution has a norm larger
than 2C0. We will show that this cannot happen.

We connect the initial values (u0, h0) with a continuous path (uλ, hλ)λ∈[0,1] with
the trivial initial values (u1, h1) = 0. This can be done in such a way that (uλ, hλ)
satisfies the compatibility condition for all λ ∈ [0, 1]. If scheme (CN) with f as in (4.7)
and with initial values (uλ, hλ) has a solution on I = (0, T ) we denote this solution
by (uλ, hλ). This family of solutions has the following two properties.

1. Every weak limit limλ→λ0(u
λ, hλ) in the topology of (4.11) of bounded solutions

is again a bounded solution. This follows immediately, since we can take the limit in
all equations.
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2. If (uλ0 , hλ0) is a solution, bounded by C0, then also in a neighborhood (λ0 −
ε, λ0 + ε) of λ0 there exist solutions that are bounded by C0. This follows because
we deal with a fixed (finite) number of time steps. The norm of the solution depends
continuously on λ. In general the norm might exceed the value C0, but we can
achieve that it does not exceed 2C0. Now property (4.11) ensures that the norm
remains bounded by C0.

We combine the above facts 1 and 2 to conclude. The set

{λ ∈ [0, 1]| a solution (u, h)λ exists and ‖(u, h)λ‖ ≤ C0}
is a nonempty (λ = 1 is in the set), closed (by property 1), and open (by property 2)
subset of [0, 1]. Therefore λ = 0 is in the above set, and therefore a solution (u0, h0)
to initial values (u0, h0) exists and satisfies the estimate. This concludes the proof of
the theorem.

Corollary 4.3. Let h0, u0, and T > 0 as in the last theorem. Then, for a
subsequence ∆t → 0, the solutions (uk, hk) converge to solutions of (4.2)–(4.4). In
particular, (2.1)–(2.3) with compatible initial conditions possess a solution on a short-
time interval.

Proof. By the above theorem the solutions (u, h)∆t of the discrete problems
are uniformly bounded. Therefore there exists a subsequence with a weak limit
(u, h). The convergence is strong for u ∈ L2(I;H2(R)) ∩ H1(I;L2(R)) and for
h ∈ L2(I;H5(R)) ∩ H1(I;H3(R)). Because of consistency in the definition of A
and f we can conclude that (u, h) is a strong solution to the transformed equa-
tions (4.2)–(4.4). The transformed solution (Θ, h) is a solution of the original prob-
lem.

5. Proof of Theorem 2.2. Theorem 4.2 yields a stable discretization of the
original equations. The drawback for a use as a numerical scheme is the need to
transform all equations onto a fixed domain. It is more natural to use the operator
splitting scheme (OS). We will prove in this section the stability of scheme (OS) as it
was stated in Theorem 2.2. The proof uses a transformation of the discrete scheme
onto a fixed domain. It will turn out that scheme (OS) is in fact identical to the
scheme (CN) of section 4.

Assumption 5.1. Let n be the normal vector of the initial domain given by h0.
We introduce the formal time derivatives in t = 0 by

∂̃tΘ|t=0 := ∆Θ0,

∂̃th|t=0 := −n−1
2 (n · ∇Θ0) ◦H0.

We impose on the initial values the regularity ∂̃tΘ|t=0 ∈ H1(Ω0) and the compatibility
conditions

Θ ◦H0 = κ(h0),

∂̃tΘ|t=0(x, h0(x)) + ∂2Θ0(x, h0(x)) · ∂̃th|t=0(x) = Dκ(h0)∂̃th|t=0(x).

Proof of Theorem 2.2. We introduce the following functions:

uk := Θk ◦Xk : R→ R,

v̄k := vk ◦Xk : R→ {0} × R ⊂ R
2,

ũk := Θ̃k ◦Xk.
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We now interpret scheme (OS) as a scheme for (uk, hk). Step 3 of (OS) reads in the
new notation

ũk = uk+1.

We use this identity to write the equations of Step 2 in terms of uk+1. We use the
transformation of section 4 with corresponding Bk, Ak, Jk.

Jk
uk+1 − uk

∆t
= ∇ ·

(
Ak∇u

k + uk+1

2

)
(5.1)

+ Jk v̄k · (Bk)t · ∇u
k + uk+1

2
in R,

hk+1 − hk

∆t
= −e2 ·Ak · ∇u

k + uk+1

2
(., 1) in [0, 1],(5.2)

uk+1(., 1) + ∆hk+1 = κ(hk) + ∆hk in [0, 1].(5.3)

This is nothing but scheme (CN) with the right-hand side

fk0 := (1− Jk)
uk+1 − uk

∆t
− Jk v̄k · (Bk)t · ∇u

k + uk+1

2
,

fk1 := 0, fk+1
2 := κ(hk) + ∆hk,

where in the definition of f0
0 the convective term is calculated explicitly. The scheme

is identical to that of section 4, since

Jk e2 · (Bk)t = e2 and v̄k(x, y) =
Xk2 (x, y)

hk(x)

hk(x)− hk−1(x)

∆t
e2.

Theorem 2.2 is a consequence of Theorem 4.2.
Corollary 2.3 follows from the theorem just as Corollary 4.3 followed from Theo-

rem 4.2. Let us demonstrate without referring to section 4 that the scheme is consis-
tent. From (2.9) and (2.5) we conclude

Θk+1 ◦Xk+1 −Θk ◦Xk =
(
∆
Θk + Θ̃k

2

)
◦Xk +

(
v · ∇Θk + Θ̃k

2

)
◦Xk.

In the limit ∆t→ 0 we infer

∂t(Θ ◦X) = (∆Θ) ◦X + (v · ∇Θ) ◦X.
This yields the original equation (2.1), since by definition of v in (2.4)

∇Θ · ∂tX(x, y) = ∇Θ ·
(
X2(x, y)

h(x)
∂th

)
e2 = v · ∇Θ.
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Abstract. We introduce and study an adaptive finite element method (FEM) for the Stokes
system based on an Uzawa outer iteration to update the pressure and an elliptic adaptive inner
iteration for velocity. We show linear convergence in terms of the outer iteration counter for the
pairs of spaces consisting of continuous finite elements of degree k for velocity, whereas for pressure
the elements can be either discontinuous of degree k − 1 or continuous of degree k − 1 and k. The
popular Taylor–Hood family is the sole example of stable elements included in the theory, which in
turn relies on the stability of the continuous problem and thus makes no use of the discrete inf-sup
condition. We discuss the realization and complexity of the elliptic adaptive inner solver and provide
consistent computational evidence that the resulting meshes are quasi-optimal.
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1. Introduction. Adaptive finite element methods (FEM) have become essen-
tial tools in science and engineering for the numerical solution of multiscale phenomena
governed by partial differential equations (PDE). We refer to [1, 20] for references on
adaptivity and restrict the list of papers to those strictly related to our work.

Computational experience strongly suggests that, starting from a coarse mesh,
adaptive algorithms converge within any prescribed tolerance in a finite number of
steps, but their convergence for general—even linear—problems is largely an open
question. This issue has been recently tackled for elliptic problems, in the multidi-
mensional setting, by Morin, Nochetto, and Siebert [15, 16], exploiting an idea of
Dörfler [11]. In [11, 15, 16], the fact that the elliptic operator is positive definite (or
coercive) plays a fundamental role.

In this article we devise an adaptive finite element algorithm for the Stokes prob-
lem and prove its convergence. The essential difference with elliptic problems is that
the Stokes operator is not positive definite but rather leads to a saddle-point problem.
The role of coercivity is thus played by the weaker condition of sole invertibility given
by the inf-sup condition (1.2) below.
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To be more specific, let Ω be a polygonal (polyhedral) domain in R
d for d ≥ 2,

and let V =
(
H̊1(Ω)

)d
be the usual Sobolev space of vector-valued square integrable

functions, having also square integrable first derivatives whose trace vanishes on ∂Ω.
Let P := L̊2(Ω) be the space of square integrable functions with mean value zero.
Then, the weak form of the Stokes problem in its primitive variables reads as follows:
Find a pair (u, p) ∈ V× P such that for all (v, q) ∈ V× P,∫

Ω

∇u : ∇v −
∫

Ω

p divv =

∫
Ω

f · v and

∫
Ω

q divu = 0,(1.1)

where throughout this paper we assume f ∈ (L2(Ω)
)d
. To avoid confusion, vector-

valued functions will always be denoted with boldface characters.
The existence and uniqueness of solutions to (1.1) are equivalent to the so-called

inf-sup condition,

inf
q∈P

sup
v∈V

∫
Ω
q divv

‖q‖ ‖∇v‖ > 0,(1.2)

which holds for the pair (V,P) as defined above [3]. Hereafter, ‖·‖ = ‖·‖Ω, and for
any domain G, ‖w‖G = (

∫
G
|w|2)1/2 denotes the usual L2(G)-norm for scalar- as well

as vector- and matrix-valued functions on G.
The classical approach to solving the Stokes equations with finite elements is the

following. Let Th be a triangulation of Ω, and let Vh ⊂ V, Ph ⊂ P be finite element
spaces defined on Th. Find a pair (Uh, Ph) ∈ Vh × Ph such that∫

Ω

∇Uh : ∇Vh −
∫

Ω

Ph divVh =

∫
Ω

f ·Vh ∀Vh ∈ Vh,(1.3) ∫
Ω

Qh divUh = 0 ∀Qh ∈ Ph;(1.4)

discrete functions will always be written in capitals. Again, this discrete problem
admits a unique solution if and only if the discrete inf-sup condition

inf
Qh∈Ph

sup
Vh∈Vh

∫
Ω
Qh divVh

‖Qh‖ ‖∇Vh‖ ≥ κ > 0(1.5)

holds. Moreover, the following optimal a priori bound holds:

‖∇(u−Uh)‖+ ‖p− Ph‖ ≤ Cκ
(
inf

Vh∈Vh

‖∇(u−Vh)‖+ inf
Qh∈Ph

‖p−Qh‖
)
,(1.6)

where Cκ is a positive constant depending only on κ [3]. When a pair of finite element
spaces (Vh,Ph) satisfies (1.5), with κ independent of h, the method is called stable.

In this article, exploiting an idea introduced in [8] in the context of wavelet ap-
proximations to the Stokes problem, we propose and analyze an adaptive FEM for
the solution of the Stokes problem. This algorithm consists of an inexact Uzawa
iteration at an infinite-dimensional level, and the inner solve is based upon a conver-
gent adaptive FEM for elliptic problems. Amazingly, the convergence of our adaptive
Uzawa algorithm (AUA) does not need the discrete inf-sup condition (1.5) but rather
the continuous inf-sup condition (1.2). This allows for unstable pairs (Vh,Ph).

In section 2 we will precisely state the algorithm and prove its convergence for
the pairs of spaces consisting of continuous finite elements of degree k for velocity,
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whereas for pressure the elements can be either discontinuous of degree k − 1 or
continuous of degree k − 1 and k. These elements are all unstable, except for the
Taylor–Hood elements, which consist of continuous elements of degree k for velocity
and degree k − 1 for pressure. We stress that adaptivity is an inherently nonlinear
process, which appears to detect and exploit the stability of the underlying PDE,
namely (1.2), regardless of the finite element spaces. This is perhaps the most salient
consequence of our work, which reproduces in the finite element setting the crucial
observation made in [7, 8] for wavelets.

This may seem to contradict the celebrated theory of mixed methods [3]. How-
ever, it is important to realize that the jth iterate (Uj , Pj) of our algorithm is not
necessarily a solution of the discrete Stokes problem (1.3)–(1.4); it is just an approx-
imate solution. Therefore our notion of convergence is fundamentally different from
the customary one arising from a priori error analysis in which (1.5) plays a central
role and asymptotics is understood in the sense that the meshsize hj of partition Tj
satisfies hj → 0: we think of j →∞ rather than hj → 0. Depending on the flatness of
u and p, our algorithm may yield convergence even for hj not tending to zero globally.

Although our theory covers only the class of elements mentioned above and de-
scribed more specifically in (2.5) and (2.6), extensive computations show convergence
for other combinations of elements. Moreover, the computational rate of convergence
in terms of degrees of freedom is always optimal. This will be discussed in detail
in section 3.

The rest of the article is organized as follows. In section 2 we introduce the
AUA and prove its convergence. In section 3 we present numerical evidence showing
that the meshes obtained through the AUA are quasi-optimal for any pair of finite
element spaces. In section 4 we discuss a posteriori error estimates specially designed
for the inexact Uzawa iteration, which are used to stop the outer iterations. Finally,
we investigate the properties and complexity of the elliptic inner solver ELLIPTIC
in section 5.

In what follows, unless specified otherwise, C will represent a positive constant,
possibly depending on mesh-regularity, and the refinements will be done using bisec-
tion [2, 19], thus ensuring mesh-regularity.

2. The AUA. We start this section by describing the exact Uzawa algorithm
in infinite dimensions as an iteration to solve (1.1). Given p0 ∈ P, we seek, for j ≥ 1,

uj ∈ V :

∫
Ω

∇uj : ∇v =
∫

Ω

f · v +
∫

Ω

pj−1 divv ∀v ∈ V,

pj ∈ P :

∫
Ω

pjq =

∫
Ω

pj−1q − α
∫

Ω

q divuj ∀q ∈ P.

(2.1)

Recall that V =
(
H̊1(Ω)

)d
, V

∗ =
(
H−1(Ω)

)d
, and P = L̊2(Ω) and let us denote with

〈·, ·〉 the pairing between V and V
∗ as well as the inner product in P. Let us define

the operators −∆, ∇, and div as follows:

−∆ : V→ V
∗ 〈−∆v, w〉 :=

∫
Ω

∇v : ∇w ∀w ∈ V,

∇ : P→ V
∗ 〈∇q, w〉 := −

∫
Ω

q divw ∀w ∈ V,

div : V→ P = P
∗ 〈divv, q〉 :=

∫
Ω

q divv ∀q ∈ P.
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The Schur complement operator S : P→ P is defined by

S := −div(−∆)−1∇(2.2)

and turns out to be positive definite, self-adjoint, and bounded [6]. Moreover, the
Uzawa iteration (2.1) can be written in terms of S as

pj = (I − αS)pj−1 + αF,(2.3)

where F := −div(−∆)−1f . Therefore, if 0 < α < 2/‖S‖L(P,P), then

β :=
∥∥I − αS∥∥L(P,P)

< 1,(2.4)

where ‖·‖L(P,P) denotes the norm in the space of bounded linear operators from the

Hilbert space P into itself. Since ‖S‖L(P,P) ≤ 1 (see [17]), we could take 0 < α < 2;
we chose α = 1 in the numerical experiments of section 3.

From now on, j ≥ 0 will always denote the Uzawa iteration counter, and Tj will
be the jth shape-regular partition of Ω. If k is the polynomial degree for velocity, and
l is that for pressure, then we study the pairs of continuous finite element spaces

Vj = Pk(Tj) ∩ V, Pj = P l(Tj) ∩ P, l = k, k − 1 ≥ 1,(2.5)

as well as the discontinuous finite element spaces

Vj = Pk(Tj) ∩ V, Pj = Pk−1
d (Tj) ∩ P, k ≥ 1.(2.6)

Hereafter, Pkd (Tj) denotes the space of—scalar-valued as well as vector-valued—
(possibly discontinuous) functions that, restricted to an element T , are polynomials
of degree ≤ k for all T ∈ Tj , and Pk(Tj) denotes the subspace of continuous functions
of Pkd (Tj). We observe that l = k−1 in (2.5) corresponds to the popular Taylor–Hood
family of finite elements. Any other choice in either (2.5) or (2.6) yields an unstable
pair of spaces.

Our AUA builds upon a convergent adaptive algorithm for elliptic problems,
the procedure ELLIPTIC of section 5, which replaces the first equation in (2.1) by
an approximation. To introduce such a procedure, we first consider the following
auxiliary elliptic problem: Given f ∈ (L2(Ω))d and a pressure function Pj−1 ∈ Pj−1

for j ≥ 1, solve

uj ∈ V :

∫
Ω

∇uj : ∇v =
∫

Ω

f · v +
∫

Ω

Pj−1 divv ∀v ∈ V.(2.7)

In contrast with (2.1), we observe that Pj−1 is discrete in (2.7). If εj stands for an
adjustable error tolerance, then the procedure ELLIPTIC,

(Tj ,Uj)← ELLIPTIC(Tj−1, Pj−1, εj , f),

finds adaptively a refined mesh Tj of Tj−1 and solves the discrete elliptic problem

Uj ∈ Vj :

∫
Ω

∇Uj : ∇V =

∫
Ω

f ·V +
∫

Ω

Pj−1 divV ∀ V ∈ Vj ,(2.8)

within the prescribed error bound∥∥∇(uj −Uj)
∥∥ ≤ Cεj ,(2.9)
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with C > 0 independent of j. We point out that this estimate is not standard in
that the right-hand side f −∇Pj−1 of (2.7) may not be in L

2(Ω) when dealing with
discontinuous pressures. This issue is assessed in section 5.

In addition, let Πj : L
2(Ω)→ Pj denote the orthogonal L

2-projection into Pj . In
section 5, we will show the existence of a constant C independent of j such that the
output function Uj of ELLIPTIC satisfies

‖divUj −Πj divUj‖ ≤ Cεj .(2.10)

The pressure update is performed by the procedure

Pj ← UPDATE(Tj , Pj−1,Uj , α)

which computes, according to (2.1) with P replaced by Pj ,

Pj ∈ Pj :

∫
Ω

PjQ =

∫
Ω

Pj−1Q− α
∫

Ω

Q divUj ∀Q ∈ Pj ,

or equivalently,

Pj = Pj−1 − α Πj divUj .(2.11)

We are now in a position to introduce the AUA. This algorithm consists of an
inexact inner solve using ELLIPTIC in place of (2.1), followed by an update of pressure
given by UPDATE. A similar algorithm was first considered by Dahlke, Hochmuth,
and Urban [8, 9] in the context of adaptive wavelet methods, which builds upon Elman
and Golub [12].

Adaptive Uzawa Algorithm (AUA)

Choose parameters 0 < α < 2, 0 < γ < 1, ε0 > 0; set j = 1.
1. Select any initial mesh T0 and any function P0 ∈ P0.

2. Update εj ← γεj−1.

3. Compute (Tj ,Uj)← ELLIPTIC(Tj−1, f , Pj−1, εj).
4. Compute Pj ← UPDATE(Tj , Pj−1,Uj , α).
5. Update j ← j + 1.
6. Go to step 2.

We observe that the AUA makes sense for any pair of spaces (Vh,Ph), even
unstable pairs; this freedom is further investigated in section 3.

Theorem 2.1. Let α > 0 satisfy (2.4), and let ELLIPTIC fulfill (2.9) and (2.10).
Then, there exist positive constants C1 and δ < 1 such that the iterates (Uj , Pj)
produced by the AUA satisfy∥∥∇(u−Uj)

∥∥+ ∥∥p− Pj∥∥ ≤ C1δ
j .

Proof. Let us first observe that (2.7) implies uj = (−∆)−1(f − ∇Pj−1) for any
j ≥ 1. Hence

Pj = Pj−1 − α Πj divUj

= Pj−1 − α divuj + α div(uj −Uj) + α(I −Πj) divUj

= (I − αS)Pj−1 − α div(−∆)−1f + α div(uj −Uj) + α(I −Πj) divUj ,
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where S stands for the Schur operator (2.2). Analogously, the exact p satisfies

p = (I − αS)p− α div(−∆)−1f ,

which implies

p− Pj = (I − αS)(p− Pj−1)− α div(uj −Uj)− α(I −Πj) divUj .

Therefore, in view of (2.4), (2.9), and (2.10), together with property ‖divv‖ ≤ ‖∇v‖
[17], we get

‖p− Pj‖ ≤ β‖p− Pj−1‖+ α‖∇(uj −Uj)‖+ α‖(I −Πj) divUj‖
≤ β‖p− Pj−1‖+ Cαεj = β‖p− Pj−1‖+ Cαε0γj ,

where γ is the reduction factor used in step 2 of the AUA. By induction we obtain

‖p− Pj‖ ≤ βj‖p− P0‖+ Cαε0
j−1∑
�=0

β�γj−�,(2.12)

and setting η := max{β, γ}, we thus have

‖p− Pj‖ ≤ ‖p− P0‖ηj + αε0jηj ≤ Cδj(2.13)

for some positive constants C and η < δ < 1.
To obtain a similar bound for ‖∇(u−Uj)‖, we first observe that∫

Ω

∇(u− uj) : ∇v =
∫

Ω

(p− Pj−1) divv ≤ ‖p− Pj−1‖ ‖∇v‖ ∀v ∈ V,

whence ‖∇(u− uj)‖ ≤ ‖p− Pj−1‖. Since

‖∇(u−Uj)‖ ≤ ‖∇(u− uj)‖+ ‖∇(uj −Uj)‖ ≤ ‖p− Pj−1‖+ εj ,

(2.13) yields the desired assertion.
Several comments about the AUA and its convergence properties are now in order.
Remark 2.1. For discontinuous pressure spaces P ld(Tj), l ≥ k − 1, the procedure

UPDATE of the AUA hinges upon a pressure correction within the subspace divVj ⊂
Pk−1
d (Tj). Consequently, for l ≥ k−1, the output of the AUA is insensitive to l because
the effective pressure space is

Pj = divVj ;

this justifies the restriction l = k − 1 in (2.6). In contrast, if we enforce continuity
of pressure, as in (2.5), then UPDATE works within the subspace Πj divVj of Pj =
P l(Tj) for any l ≥ k − 1, and the output of UPDATE does depend on l.

Remark 2.2. It is remarkable that the discrete inf-sup condition (1.5) plays no
role in our analysis. In fact, the above proof hinges solely on the continuous inf-sup
condition (1.2) or, equivalently, on the stability of the infinite-dimensional problem
(property β < 1 of S). This observation was first made by Dahlke, Hochmuth, and
Urban [8, 9], and very recently exploited by Dahlke, Dahmen, and Urban [7] and
Cohen, Dahmen, and DeVore [5], in the context of wavelet approximations of the
Stokes system.
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Remark 2.3. Unstable elements such as (2.6) are known to yield checkerboard
patterns in pressure [3]. One may thus wonder whether any adaptive procedure,
which extracts discrete regularity via a posteriori error estimation, may be misled
by pressure oscillations and thus fail to produce selective local mesh refinement. A
possible cure for pressure oscillations within the classical mixed finite element context
consists of having a uniformly refined mesh for velocity [3]. In view of (2.8), it turns
out that (Uj , Pj−1) is a solution to (1.3) with Pj−1 defined on a grid Tj−1 coarser
than Tj . This may be regarded as a built-in stabilization, but different from the usual
one because Tj is never a global refinement of Tj−1 and (1.4) is never fulfilled. This is
confirmed by the numerical experiments of section 3, which show optimal meshes for
these elements. It thus seems that the nonlinear process associated with adaptivity
selects the least amount of refinement necessary to stabilize the method.

Remark 2.4. The procedure ELLIPTIC of the AUA entails an inner loop of the
form solve → estimate → refine for the symmetric and coercive elliptic problem
(2.7). To achieve the error reduction of (2.9), two ingredients are necessary. First,
we need upper and local lower a posteriori error bounds for (2.8). Second, we need
a marking strategy and associated error reduction result (2.9). These issues are dis-
cussed in section 5.

Remark 2.5. Parameters α, γ, and ε0 control the behavior of the AUA. The
convergence of the AUA, but not its rate, is independent of γ and ε0 but not of α
because it dictates the size of the reduction factor β in (2.4). Even though the AUA
converges for any choice of γ and ε0, provided 0 < γ < 1 and ε0 > 0, its performance
is greatly influenced by them, especially for unstable elements. In particular, if β <
γ < 1, then the complexity of ELLIPTIC is independent of j, as will be shown in
section 5.2.

Remark 2.6. To stop the AUA it is necessary to have a posteriori error estimators
especially designed for the pair (Uj , Pj−1), which is not a solution of the discrete
Stokes problem over Tj . This issue is further investigated in section 4.

3. Experiments and mesh optimality. In this section we focus on the com-
putational performance of the algorithm. We analyze it not only for the elements
of Theorem 2.1 but also for cases beyond this. All numerical experiments were car-
ried out using the finite element toolbox ALBERT [18, 19], which provides a flexible
programming environment for adaptive finite element computations. Some pictures
(Figures 3.2, 3.3, 3.5, 3.7) were produced with the graphics package GRAPE [13].

In order to have an appropriate test bed for the algorithm, we consider two
examples in two dimensions and one in three dimensions and run simulations with
the AUA for several pairs of elements. They can be divided into three groups, all
containing unstable elements: elements of type (2.6), elements of type (2.5)—which
include the Taylor–Hood elements—and the continuous unstable pair P1-P2 which is
not covered by our theory. We always use the following parameters and initial guess:

α = 1.0, γ = 0.95, ε0 = 2.0, P0 = 0.(3.1)

In order to compare our method with the classical adaptive approach to solving
the Stokes equations, we also run experiments with a conventional adaptive strategy
of the form solve→ estimate→ refine. For these experiments we use the Taylor–
Hood elements P2-P1 and P3-P2 and the usual residual-type error estimators. An
important difference with the AUA is that in solve we solve the saddle-point prob-
lem (1.3), (1.4).
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The comparative results for the three groups of elements as well as for the con-
ventional approach are reported below in Tables 3.1, 3.2, and 3.3. To describe the
information they contain, let us assume that we expect a relation of the form

ERRj := ‖∇(u− Uj)‖+ ‖p− Pj‖ ≈ C N−r/d
j ,

where Nj denotes the number of degrees of freedom (DOFs) at the step j of the outer
loop in the AUA, r = min{k, l + 1} is the order of the FEM, and d is the dimension.
We then define the experimental orders of convergence EOCj to be

EOCj := −d log(ERRj/ERRj−1)

log(Nj/Nj−1)
,

and EOC to be the asymptotic value of EOCj for large values of j. We also introduce
the average error decay (AED) in the energy norm for consecutive outer iterations of
the AUA, and the number of DOFs for which the relative energy error

‖∇(u− Uj)‖+ ‖p− Pj‖
‖∇u‖+ ‖p‖

is less than or equal to prescribed tolerances of 10%, 5%, 1%, and 0.1%, respectively.
To compute the errors, we integrated elementwise using a quadrature rule exact for
polynomials up to degree 17 in two dimensions and 7 in three dimensions.

We show pictures of pressure (Figures 3.2, 3.3, 3.5), the variable most sensitive to
instabilities, and corresponding meshes for several elements at 5% relative accuracy.
The velocity never exhibits oscillations, is always well approximated, and is thus not
depicted.

We also report curves depicting the relative energy error decay in terms of DOFs
and compare them with the optimal slope −r/d.

Finally, we draw some conclusions common to all the experiments.

3.1. Example: Smooth solution in two dimensions. Let Ω := (−1, 1) ×
(−1, 1) and let the velocity u and pressure p be given by

u(x, y) :=

[
2y cos(x2 + y2)
−2x cos(x2 + y2)

]
, p = e−10(x2+y2) − pm,

where pm is such that
∫
Ω
p = 0 and the forcing f is computed as f = −∆u+∇p.

We report the computational results in Table 3.1 and the error decays in Fig-
ure 3.1. The behavior of the pressure is illustrated for several pairs of elements in
Figures 3.2 and 3.3.

3.2. Example: Singular solution in two dimensions. We consider the L-
shaped domain

Ω :=
(
(−1, 1)× (−1, 1)) \ ([0, 1]× [−1, 0])

with reentrant angle ω = 3π/2 at the origin. Let α ≈ 0.544 be an approximation of
the smallest root of the nonlinear equation [10]:

sin2(αω)− α2 sin2 ω

α2
= 0.
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Table 3.1
Example 3.1: EOC, AED per outer iteration, and DOFs to reach tolerances of 10%, 5%, 1%,

0.1%. The first 7 rows correspond to the AUA and the last 2 to the saddle-point problem (compare
them with rows 5 and 6 of the AUA).

Spaces EOC AED DOFs for relative error of

10% 5% 1% 0.1%

P1-P0
d 1.075 0.948 6570 24826 448786 > 106

P2-P1
d 2.029 0.951 834 1538 6930 70578

P3-P2
d 2.997 0.950 266 1010 1754 8570

P1-P1 1.044 0.948 2715 9867 227991 > 106

P2-P1 1.994 0.950 295 403 3403 22791
P3-P2 2.878 0.952 211 211 947 4331

P1-P2 0.905 0.950 21931 109279 > 106 > 106

P2-P1 2.057 / 295 403 3403 21351
P3-P2 2.321 / 211 211 947 4331
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Fig. 3.1. Example 3.1: Relative energy error versus DOFs. Triangles showing optimal de-
cay have slopes −1/d = −1/2 (left) and −2/d = −1, −3/d = −3/2 (right), respectively. Quasi-
optimality of the resulting meshes is thus evident.

Fig. 3.2. Example 3.1: Pressures and meshes for tolerance of 5% and finite element pairs (re-
spectively, outer iteration number/DOFs); P1-P0

d (60/24826), P2-P1
d (50/1538), P1-P1 (50/9867),

P2-P1 (45/403). The oscillations for unstable pairs do not persist under further selective refinement.
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Fig. 3.3. Example 3.1: Sequence of pressures for the unstable pair P2-P1
d and outer iterations

(respectively, DOFs) j = 20 (DOFs = 482), 60 (2802), 70 (4066), 120 (40986). Oscillations are
present in the early stages of adaptivity but are cured later by selective refinement.

The exact velocity u and pressure p are given in polar coordinates by [10, 21]

u(r, ϕ) = rα
[
cos(ϕ)ψ′(ϕ) + (1 + α) sin(ϕ)ψ(ϕ)
sin(ϕ)ψ′(ϕ)− (1 + α) cos(ϕ)ψ(ϕ)

]
= rα

(
ψ′(ϕ)er − (1 + α)ψ(ϕ)eϕ

)
and

p(r, ϕ) = −rα−1 (1 + α)
2ψ′(ϕ) + ψ′′′(ϕ)
1− α ,

where ψ(ϕ) is the function

ψ(ϕ) =
sin ((1 + α)ϕ) cos(αω)

1 + α
− cos ((1 + α)ϕ)

+
sin ((α− 1)ϕ) cos(αω)

1− α + cos((α− 1)ϕ).

The forcing term is f = 0.
We report the computational results in Table 3.2 and the error decays in Fig-

ure 3.4. The behavior of the pressure is illustrated for several pairs of elements in
Figure 3.5. In contrast to Example 3.1, the singular nature of p makes selective re-
finement apparently more effective in this example, which is less prone to oscillations.

3.3. Example: Smooth solution in three dimensions. We consider the
cube Ω = (−1, 1)3, and the exact velocity u and pressure p,

u(x, y, z) =


 2y cos(x2 + y2)
−2x cos(x2 + y2)

0


 , p = µe−λ(x2+y2+z2) − pm,
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Table 3.2
Example 3.2: EOC, AED per outer iteration, and DOFs to reach tolerances of 10%, 5%, 1%,

0.1%. The first 7 rows correspond to the AUA and the last 2 to the saddle-point problem (compare
them with rows 5 and 6 of the AUA).

Spaces EOC AED
DOFs for relative error of

10 % 5% 1% 0.1%

P1-P0
d 1.116 0.946 3288 9680 164398 > 106

P2-P1
d 1.992 0.950 1058 1940 9314 85686

P3-P2
d 2.984 0.950 986 1598 5054 20882

P1-P1 1.250 0.943 1434 4971 62979 > 106

P2-P1 2.043 0.948 802 1200 3913 27387
P3-P2 3.182 0.948 1125 1757 3153 9749

P1-P2 0.907 0.948 7751 41603 > 106 > 106

P2-P1 2.087 / 668 1012 3273 26708
P3-P2 3.425 / 1125 1757 3153 9985
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Fig. 3.4. Example 3.2: Relative energy error versus DOFs. Triangles showing optimal de-
cay have slopes −1/d = −1/2 (left) and −2/d = −1, −3/d = −3/2 (right), respectively. Quasi-
optimality of the resulting meshes is thus evident.

where pm is such that
∫
Ω
p = 0. The forcing term f is computed as f = −∆u+∇p.

We report the computational results in Table 3.3 and the error decays in Fig-
ure 3.6, both for µ = 1, λ = 10. Meshes for two finite element pairs are shown in
Figure 3.7 for µ = 10, λ = 300.

3.4. Conclusions. We now collect and comment on the consistent information
about the AUA extracted from the experiments of sections 3.1–3.3.
• Tables 3.1, 3.2, and 3.3 show that error decay in each outer iteration of the

AUA is about 0.95, regardless of example and pair of elements. This is a consequence
of the choice of γ = 0.95 of (3.1) and is further discussed in Remark 5.6. Tables 3.1
and 3.2 also reveal convergence for the unstable pair P1-P2 in two dimensions, which
is not covered by our theory.
• Tables 3.1, 3.2, and 3.3 show that the EOC is optimal for all element pairs and

examples and obeys the formula r = min{k, l + 1}.
• Figures 3.1, 3.4, and 3.6 demonstrate that the relation between error and

number of DOFs is optimal for all element pairs and examples: the slopes of the
curves match those of the triangles, namely, −r/d. The resulting meshes are thus
quasi-optimal in all cases.
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Table 3.3
Example 3.3 (µ = 1, λ = 10): EOC, AED per outer iteration, and DOFs to reach tolerances

of 10%, 5%, 1%, 0.1%. The first 5 rows correspond to the AUA and the last 2 to the saddle-point
problem (compare them with rows 4 and 5 of the AUA).

Spaces EOC AED
DOFs for relative error of

10 % 5% 1% 0.1%

P1-P0
d 1.059 0.948 > 106 > 106 > 106 > 106

P2-P1
d 1.872 0.950 23799 128903 > 106 > 106

P3-P2
d 2.415 0.949 1509 57159 320815 > 106

P2-P1 2.149 0.951 3112 10472 86316 > 106

P3-P2 3.117 0.952 1154 6736 25696 136208

P2-P1 2.062 / 3112 10728 71564 > 106

P3-P2 3.239 / 1154 6736 25696 136208

Fig. 3.5. Example 3.2: Pressures and meshes for tolerance of 5% and finite element pairs (re-
spectively, outer iteration number/DOFs); P1-P0

d (50/9680), P2-P1
d (35/1940), P1-P1 (50/4971),

P2-P1 (50/1200). The oscillations for unstable elements do not persist under further selective re-
finement.

• Tables 3.1, 3.2, and 3.3 corroborate the fact that higher order elements are
superior to lower order elements for piecewise analytic solutions such as those in
Examples 3.1–3.3. For a given tolerance, they need many fewer DOFs than lower
order elements.

• Tables 3.1, 3.2, and 3.3 display very similar performance between the AUA,
with the element pairs of (2.5) and l = k− 1, and the saddle-point approach with the
Taylor–Hood families P2-P1 and P3-P2 (last 2 rows of these tables).

• The stable element pairs (2.5) with l = k − 1 exhibit a slightly better perfor-
mance than the corresponding unstable pairs (2.6). This is documented in Tables 3.1,
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Fig. 3.6. Example 3.3 (µ = 1, λ = 10): Relative energy error versus DOFs. Triangles have
slopes −1/d = −1/3 (left) and −2/d = −2/3, −3/d = −1 (right), respectively. Quasi-optimality of
the resulting meshes is thus evident.

Fig. 3.7. Example 3.3 (µ = 10, λ = 300) : Mesh for finite element pair P2-P1 at outer iteration
number j = 105, DOFs = 1063176 (left), and mesh for finite element pair P2-P1

d at j = 70, DOFs
= 2007799 (right). The first octant has been removed for visualization purposes.

3.2, and 3.3 in terms of DOFs for a given tolerance, and in Figures 3.2, 3.3, and 3.5
in terms of oscillations.

• It is important to note that oscillations tend to zero in L2, thereby giving rise
to convergence of pressure in L2. However, as suggested by Figures 3.2 and 3.3, this
might be a rather weak concept of convergence in practice, which is in contrast to
common belief.

4. A posteriori error estimators. In this section we derive a posteriori error
estimators for the pair (Uj , Pj−1), which are instrumental to stopping the outer loop
in the AUA. We start by defining the bilinear form L : (V× P)× (V× P)→ R,

L [(v, q), (w, r)] :=
∫

Ω

∇v : ∇w −
∫

Ω

q divw +

∫
Ω

r divv,

and noting that (1.1) is equivalent to finding a pair (u, p) ∈ V× P such that

L [(u, p), (v, q)] =
∫

Ω

f · v ∀(v, q) ∈ V× P.
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Moreover, the continuous inf-sup condition (1.2) is equivalent to the existence of a
constant Λ > 0 such that

‖∇v‖+ ‖q‖ ≤ Λ sup
(w,r)∈V×P

L [(v, q), (w, r)]
‖∇w‖+ ‖r‖ .(4.1)

This property alone, or equivalently, the stability of the continuous problem, is re-
sponsible for a posteriori error estimates for the Stokes system, even for unstable
elements. Therefore, the mere derivation of a posteriori error estimators is no guar-
antee of convergence of any adaptive algorithm based on them.

In what follows we derive both global upper and local lower a posteriori error
bounds for the pair (Uj , Pj−1). This pair is a solution of (2.8), but not of the discrete
Stokes problem (1.3)–(1.4) for the following two reasons:
• pressure Pj−1 is piecewise polynomial in the mesh Tj−1, which is coarser than

Tj ;
• equation (1.4) is not fulfilled.

Altogether, this makes our error analysis a bit unusual. However, since the same
techniques reported in [1, 20] apply in our context, we only sketch the proofs for
completeness. We first set eu := u − Uj and ep := p − Pj−1 and observe that,
from (1.1) and (2.8), we have

L [(eu, ep), (w, r)] =
∑
T∈Tj

(∫
T

f ·w − (∇Uj − Pj−1I) : ∇w − r divUj

)

for any w ∈ V, r ∈ P; here I ∈ R
d×d stands for the identity matrix. Since the matrix

Tj := ∇Uj − Pj−1I plays a crucial role, we introduce the jump residual,

Jj := [[Tj · n]] = [[∇Uj · n− Pj−1n]],(4.2)

which indicates the jump of the vector-valued function Tj ·n across interelement sides
S. Such a jump is independent of the choice of the normal n to S and is defined as
zero for boundary sides. We also introduce the interior residual,

Rj := f +∆Uj −∇Pj−1,(4.3)

which is computed elementwise.
Lemma 4.1 (upper bound). Let {(Uj , Pj)}∞j=1 be the sequence of solutions pro-

duced by the AUA. Then there exists a constant C∗ depending only on mesh shape-
regularity such that the following a posteriori upper bound for the error of the pair
(Uj , Pj−1) holds:

‖∇(u−Uj)‖+ ‖p− Pj−1‖ ≤ C∗


∑
T∈Tj

ζj(T )
2




1/2

,

where the local error indicators ζj(T ) are given by

ζj(T )
2 = h2

T

∥∥Rj

∥∥2

T
+ hT

∥∥Jj∥∥2

∂T
+
∥∥divUj

∥∥2

T
∀ T ∈ Tj ,

and the quantity hT represents the diameter of the element T ∈ Tj.
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Proof. Exploiting (2.8), we deduce Galerkin orthogonality L[(eu, ep), (W, 0)] = 0
for allW ∈ Vj . We then have

L [(eu, ep), (w, r)] = L [(eu, ep), (w −W, r)] ∀W ∈ Vj ,

and integrating by parts, with z = w −W we obtain

L [(eu, ep), (w, r)] =
∑
T∈Tj

(∫
T

Rjz+
1

2

∫
∂T

Jjz−
∫
T

r divUj

)
.

Finally, takingW ∈ Vj as the Clément interpolant of w, we arrive at

‖z‖T ≤ ChT ‖∇w‖Nj(T ) , ‖z‖∂T ≤ Ch1/2
T ‖∇w‖Nj(T ) ,

where Nj(T ) is the union of all elements of Tj sharing at least a vertex with T ∈ Tj .
This, together with (4.1), leads to the assertion.

Remark 4.1. The a posteriori error analysis for the Stokes system is based ex-
clusively on satisfaction of the momentum equation (1.3), or (2.8), but not of the
incompressibility equation (1.4). In fact, (1.4) is not valid in either our setting or
when stabilizing terms are added [14].

Before stating the local lower error bound, we need to introduce the concept of
data oscillation, which accounts for information missing due to the averaging process
associated with the FEM. Given a subset of elements F of Tj , we set

osc(f ,F) :=
(∑
T∈F

h2
T ‖f − fT ‖2T

)1/2

,(4.4)

where fT is the (local) L
2-projection of f into the polynomial space Pk−1(T ), and k is

the polynomial degree of the velocity space Vj . Given an element T ∈ Tj we designate
with Fj(T ) either the set of elements of Tj sharing a face with T or their union. This
abuse of notation will not lead to confusion.

Lemma 4.2 (lower bound). Let {(Uj , Pj)}∞j=1 be the sequence of solutions pro-
duced by the AUA. Then there exists a constant C∗, depending only on mesh shape-
regularity, such that the following local a posteriori lower bound for the error of the
pair (Uj , Pj−1) holds:

ζj(T ) ≤ C∗
(∥∥∇(u−Uj)

∥∥
Fj(T )

+
∥∥p− Pj−1

∥∥
Fj(T )

+ osc(f ,Fj(T ))
)
.

We omit the proof because it is the same as that in [1, 21, 20]. This result shows
that the upper bound is sharp (global efficiency), and implies that local efficiency
refining where the local indicators ζj(T ) are large is always necessary to reduce the
error. This property seems to be distinctive of finite elements and in fact is not valid
for wavelets.

5. ELLIPTIC: Realization and complexity. In this section we first define
the procedure ELLIPTIC and prove the key properties (2.9) and (2.10) for the finite
element families (2.5) and (2.6). Second, we analyze the complexity of ELLIPTIC in
terms of the number of iterations necessary to achieve (2.9).
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5.1. Realization. The study of convergence of adaptive FEM for elliptic prob-
lems in the multidimensional setting started with the seminal work by Dörfler [11] and
was further developed by Morin, Nochetto, and Siebert in [15, 16]. In this section we
will follow the approach in [15, 16] to state the algorithm and prove its convergence for
a special class of H−1 right-hand sides. This is the class of L2 vector-valued functions
plus gradients of functions in the pressure space Ph which might have discontinuities
across interelement boundaries.

In this section we drop the outer counter j and relabel the input arguments Tj−1,
Pj−1, εj of ELLIPTIC as T 0, P , ε and relabel the output Tj ,Uj as T ,U. Hence

(T ,U)← ELLIPTIC(T 0, P, ε, f).(5.1)

To avoid confusion we always use superscripts, instead of subscripts, whenever inner
iterates of ELLIPTIC are involved. Consequently, for i ≥ 1 we denote by T i a
refinement of T i−1, by V

i the corresponding finite element space for velocities, and
by Ui the solution to the following discrete elliptic problem:

Ui ∈ V
i :

∫
Ω

∇Ui : ∇V =

∫
Ω

f ·V +
∫

Ω

P divV ∀V ∈ V
i.(5.2)

This is the discretization of (2.7) or, equivalently, of the elliptic PDE −∆u = f −∇P
with u = uj ; since f − ∇P ∈ V

∗, there exists a unique solution to (2.7). We notice
that P does not change with i and that, when ELLIPTIC stops, (5.2) becomes (2.8).
According to (4.2) and (4.3), the residuals of (5.2) are

J := [[∇Ui · n− Pn]], R := f +∆Ui −∇P.(5.3)

Lemma 5.1. Let u be the solution of (2.7). For i ≥ 1, let T i be a refinement of
T i−1 and let Ui be the solution to (5.2). Let the local error indicators ηi(T ) be

ηi(T )2 := h2
T ‖R‖2T + hT ‖J‖2∂T ∀ T ∈ T i.

Then there exist two constants K∗, K∗ depending only on mesh shape-regularity, but
otherwise independent of u, f , P , and T i, such that∥∥∇(u−Ui)

∥∥2 ≤ K∗ ∑
T∈T i

ηi(T )2,(5.4)

ηi(T )2 ≤ K∗
( ∥∥∇(u−Ui)

∥∥2

Fi(T )
+ osc(f ,F i(T ))2) ∀ T ∈ T i.(5.5)

Proof. We note that the error equation can be written equivalently as∫
Ω

∇(u−Ui) : ∇v =
∫

Ω

f · v −
∫

Ω

(∇Ui − P I) : ∇v ∀ v ∈ V.

The argument now proceeds as in Lemma 4.1 with r = 0; see also [20].
Remark 5.1. Regardless of the adaptive algorithm used to reduce the error, the

estimate (5.4) allows us to measure the error u−Ui up to a factor K∗. Stopping the
inner iterations of ELLIPTIC when

∑
T∈T i ηi(T )2 < ε2 thus guarantees (2.9).

To motivate the subsequent discussion about the convergence of adaptive FEM for
elliptic problems, we observe that consecutive spaces are nested V

i ⊂ V
i+1, whence

Ui − Ui+1 ∈ V
i+1. Consequently, using the orthogonal decomposition u − Ui =

(u−Ui+1) + (Ui+1 −Ui), the Pythagoras theorem yields∥∥∇(u−Ui+1)
∥∥2
=
∥∥∇(u−Ui)

∥∥2 − ∥∥∇(Ui −Ui+1)
∥∥2
.(5.6)
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The error reduction is thus exactly
∥∥∇(Ui −Ui+1)

∥∥2
. In order to guarantee that the

error decreases a fixed proportion of the current error ‖∇(u−Ui)‖, we have to bound
‖∇(Ui −Ui+1)‖ from below by ‖∇(u−Ui)‖; this is the key idea from [11]. In view
of Lemma 5.1, this reduces to showing a local lower bound for ‖∇(Ui −Ui+1)‖Fi(T )

in terms of ηi(T ).
The following lemma states such a lower bound and is crucial for the error reduc-

tion property that leads to convergence. Its proof is different from that in [16] due to
the presence of the singular term ∇P in (5.2) and is postponed until the end of this
section. We say that an element T ∈ T i satisfies the interior node property if

the element T ∈ T i, as well as each of its faces, contains a node
of the finer mesh T i+1 in its interior.

(5.7)

Lemma 5.2. Let T i+1 be a refinement of T i, and let T ∈ T i be an element for
which every T ′ ∈ F i(T ) satisfies (5.7). Then, there exists a constant K∗, depending
only on mesh shape-regularity, such that

ηi(T )2 ≤ K∗
( ∥∥∇(Ui+1 −Ui)

∥∥2

Fi(T )
+ osc(f ,F i(T ))2).

Remark 5.2. We refer to [15] for a thorough discussion about the requirement
(5.7) and its importance for convergence.

We now present the following algorithm, which was first proposed in [15], based
on a marking strategy due to Dörfler [11].

ELLIPTIC(T 0, P, ε, f)

Choose parameters 0 < θ, θf < 1, and set i = 0.
1. Compute the discrete solution Ui ∈ V

i of (5.2) over T i.
2. Compute the local indicators ηi(T ).

3. If
(∑

T∈T i ηi(T )2
)1/2 ≤ ε, return the pair (T i,Ui) to AUA.

4. Mark a subset T̂ i ⊂ T i such that∑
T∈T̂ i ηi(T )2 ≥ θ

∑
T∈T i ηi(T )2.

5. Define T̃ i to be the set of all elements T ′ ∈ F i(T ) for T ∈ T̂ i.
6. Enlarge (if necessary) T̃ i to satisfy∑

T∈T̃ i h2
T ‖f − fT ‖2T ≥ θf

∑
T∈T i h2

T ‖f − fT ‖2T .

7. Refine T i so that every element T ′ ∈ T̃ i satisfies (5.7).
8. Update i← i+ 1 and go to step 1.

Remark 5.3. Let us note that step 6 implies the existence of a constant ρf ∈ (0, 1),
depending only on θf and mesh shape-regularity, such that

osc(f, T i+1) ≤ ρf osc(f, T i) ∀ i ≥ 0.(5.8)

This assertion has been proved in [15] for linear finite elements, but that proof remains
valid for any polynomial degree and is thus omitted.

Remark 5.4. Since (5.2) is not the ultimate goal of the AUA, but rather an
intermediate problem, we used θ = θf = 0.1 in the experiments of section 3 for the
refinement decisions of ELLIPTIC to be rather conservative. This yields a suitable
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work balance between ELLIPTIC and UPDATE. Moreover, step 6 of ELLIPTIC
plays no significant role in practice for smooth f [15].

For ELLIPTIC we have the following result, which guarantees that (2.9) can
be achieved with finite iterations. We show in Proposition 5.6 that this number of
iterations is indeed independent of the outer counter j.

Proposition 5.3. Let Ui be a sequence of finite element solutions produced by
ELLIPTIC. Then, there exist two constants C0 and ρ < 1, depending only on the
parameters θ, θf of ELLIPTIC, such that∥∥∇(u−Ui)

∥∥ ≤ ρimax{∥∥∇(u−U0)
∥∥ , C0 osc(f, T 0)

}
.(5.9)

Proof. By virtue of Lemmas 5.1, 5.2, and step 4 of ELLIPTIC, we have that

∥∥∇(u−Ui)
∥∥2 ≤ K∗

θ

∑
T∈T̂ i

ηi(T )2 ≤ 1

λ

(∥∥∇(Ui −Ui+1)
∥∥2
+ osc(f, T i)2

)
,

with λ = θ
(d+2)K∗K∗

. Combining this with (5.6) we arrive at

∥∥∇(u−Ui+1)
∥∥2 ≤ (1− λ)∥∥∇(u−Ui)

∥∥2
+ osc(f, T i)2.

If µ > 0 is sufficiently small so that ρ2
e := 1− λ+ µ2 < 1, as well as

osc(f, T i) ≤ µ∥∥∇(u−Ui)
∥∥ ,(5.10)

we then get the error reduction formula∥∥∇(u−Ui+1)
∥∥ ≤ ρe ∥∥∇(u−Ui)

∥∥ .(5.11)

To prove (5.9) we set ρ := max{ρe, ρf}, C0 := (µρ)
−1, with ρf as in Remark 5.3,

and argue by induction. Since the claim holds trivially for i = 0, we assume that it
holds for i ≥ 0. Then, we have the two alternatives∥∥∇(u−Ui)

∥∥ > ρi+1C0 osc(f, T 0),(5.12) ∥∥∇(u−Ui)
∥∥ ≤ ρi+1C0 osc(f, T 0).(5.13)

In case (5.12), we see from Remark 5.3 that osc(f, T i) ≤ ρif osc(f, T 0), whence

osc(f, T i) ≤ µρi+1 osc(f, T 0)

ρµ
= µρi+1C0 osc(f, T 0) < µ

∥∥∇(u−Ui)
∥∥ .

Consequently, (5.10) holds and, by (5.11) and the induction assumption, we deduce∥∥∇(u−Ui+1)
∥∥ ≤ ρ∥∥∇(u−Ui)

∥∥ ≤ ρi+1max
{∥∥∇(uj −U0)

∥∥ , C0 osc(f, T 0)
}
.

On the other hand, exploiting that T i+1 is a refinement of T i, and thus that the
error cannot increase ‖∇(u−Ui+1)‖ ≤ ‖∇(u−Ui)‖, we handle (5.13) as follows:∥∥∇(u−Ui+1)

∥∥ ≤ ρi+1C0 osc(f, T0) ≤ ρi+1max
{∥∥∇(u−U0)

∥∥ , C0 osc(f, T 0)
}
.

The proof is thus complete.
We now verify property (2.10) for the families (2.5) and (2.6). We note that

divPk(Tj) ⊂ Pk−1
d (Tj), whence Πj reduces to the identity for (2.6) and thus (2.10) is

trivially satisfied. The case (2.5) is more delicate and is the subject of our next result.
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Proposition 5.4. The following interpolation estimate is valid:

‖g −Πjg‖ ≤ C

∑
T∈Tj

hT ‖[[g]]‖2∂T




1/2

∀ g ∈ Pk−1
d (Tj).(5.14)

Proof. We recall that Πjg ∈ Pj is the best L
2-approximation in Pj = P l(Tj)

of g and l ≥ k − 1. To prove the assertion we could simply replace Πjg by any
interpolant of g into Pj . We now construct an interpolation operator Ij closely related
to the Clément operator [4]. Let ωi be the star of Tj corresponding to the node xi,
and let gi ∈ P l(ωi) be the L2-projection of g into the space of continuous piecewise
polynomials P l(ωi):

gi ∈ P l(ωi) :
∫
ωi

(g − gi)q = 0 ∀q ∈ P l(ωi).

We then set Ijg(xi) := gi(xi) and recall that to estimate the error g−Ijg it suffices to
bound g− gi over ωi for all i [4]. To this end, we first scale ωi to a reference situation
of unit size and then realize that, since g − gi is piecewise polynomial, all its norms
are equivalent. In particular, we claim that the seminorm

|g − gi|ωi :=

(∑
S⊂ωi

‖[[g]]‖2S
)1/2

is a norm. In fact, if |g − gi|ωi = 0 then g − gi is continuous in ωi, g − gi ∈ P l(ωi),
and thus g − gi is orthogonal to itself, whence g − gi = 0. A scaling back to ωi yields
the power of meshsize asserted in (5.14) and concludes the proof.

We point out that Proposition 5.4 remains true if Πj is an L
2-projection into any

space of continuous piecewise polynomials containing Pk−1(Tj).
Corollary 5.5. There exists a constant C > 0, depending only on mesh shape-

regularity and k, such that

‖∇V −Πj∇V‖ ≤ C

∑
T∈Tj

hT ‖[[∇V · n]]‖2∂T




1/2

∀ V ∈ Pk(Tj).

Proof. We take g ∈ Pk−1
d (Tj) to be any partial derivative of V ∈ Pk(Tj) and

observe that |[[g]]| ≤ |[[∇V · n]]| because V being continuous makes the jump [[∇V]]
vanish in any tangential direction. We now apply Proposition 5.4.

To derive (2.10) from Corollary 5.5 in case (2.5), we further note that if Pj−1 is
a space of continuous finite elements, then the jump residual of (5.3) reduces to the
jumps of ∇Uj , which are bounded by εj when ELLIPTIC stops.

Proof of Lemma 5.2. We first prove the following estimate for the interior residual
R of (5.3), provided T ∈ T i has a node of the finer mesh T i+1 in its interior:

h2
T ‖R‖2T ≤ C

( ∥∥∇(Ui+1 −Ui)
∥∥2

T
+ osc(f , T )2

)
.(5.15)

We recall that fT denotes the orthogonal L
2-projection of any vector-valued function

f into Pk−1(T ). Then, since the degree of the pressure space is 6 ≤ k, (∆Ui−∇P )T =
∆Ui −∇P , whence R−RT = f − fT .
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Now let ϕT be the canonical continuous piecewise linear basis function of the
triangulation T i+1 corresponding to the node inside T ; thus suppϕT ⊂ T . Since
RT is a polynomial, both ‖RT ‖2T and

∫
T
|RT |2ϕT are equivalent up to a constant

depending on mesh-regularity. Therefore, integrating by parts and using the fact that
RTϕT ∈ V

i+1, we get

‖RT ‖2T ≤ C
∫
T

|RT |2ϕT =
∫
T

R · (RTϕT ) +

∫
T

(RT −R) · (RTϕT )

=

∫
T

∇(Ui+1 −Ui) : ∇(RTϕT ) +

∫
T

(fT − f) · (RTϕT )

≤ C( ∥∥∇(Ui+1 −Ui)
∥∥
T
‖∇(RTϕT )‖T + ‖fT − f‖T ‖RTϕT ‖T

)
.

SinceRTϕT ∈ V
i+1, applying the inverse inequality ‖∇(RTϕT )‖T ≤ Ch−1

T ‖RTϕT ‖T ,
together with the triangle inequality ‖R‖T ≤ ‖RT ‖T + ‖f − fT ‖, results in (5.15).

We next consider a side S of T i having a node of T i+1 in its interior and prove
the following estimate for the residual J in (5.3):

hT ‖J‖2S ≤ C
(
hT ‖R‖2Fi(S) +

∥∥∇(Ui+1 −Ui)
∥∥2

Fi(S)

)
.(5.16)

Let us first observe that J is a polynomial of degree at most k − 1 on S. In fact, if
P ∈ P = Pk−1

d (Tj), then this is obvious (case (2.6)), and if P ∈ P = P l(Tj), then
P does not jump and J = [[∇Uj · n]] (case (2.5)). Therefore, J admits a piecewise
polynomial extension to F i(S) of degree at most k − 1, which is still denoted by J
(simply scale to the master element and extend J as a constant in the direction normal
to S).

Now let ϕS be the continuous piecewise linear basis function of the triangulation
T i+1 corresponding to the node inside S; thus suppϕS ⊂ F i(S). Hence JϕS ∈ V

i+1

and supp(JϕS) ⊂ F i(S). Since ‖J‖2S is equivalent to
∫
S
|J|2ϕS , integrating by parts

and using the fact that JϕS ∈ V
i+1, we obtain

‖J‖2S ≤ C
∫
S

|J|2ϕS =
∫
S

[[∇Ui · n− Pn]] · JϕS

= −
∫
Fi(S)

R · JϕS +
∫
Fi(S)

∇(Ui+1 −Ui) : ∇(JϕS)

≤ ‖R‖Fi(S) ‖JϕS‖Fi(S) +
∥∥∇(Ui+1 −Ui)

∥∥
Fi(S)

‖∇(JϕS)‖Fi(S)

≤
(
‖R‖Fi(S) +

1

hS

∥∥∇(Ui+1 −Ui)
∥∥
Fi(S)

)
‖JϕS‖Fi(S) .

Multiplying by hS and using the equivalence of ‖J‖S and 1
hT
‖J‖2Fi(S), we arrive at

the desired estimate (5.16).
To complete the proof, we let T ∈ T i satisfy the assumption that all elements

T ′ ∈ F i(T ) possess the interior node property (5.7). We realize that for all those T ′

we can apply (5.15) and next insert the bound for ‖RT ′‖T ′ into (5.16).
Remark 5.5. The above proof uncovers the need for the relation k ≥ l between

the polynomial degrees k for velocity and l for pressure. If this were not true, then ∇P
would differ from (∇P )T and we should then account for the oscillation ∇P −(∇P )T ,
which is not given data. Since procedure UPDATE reveals no accuracy gain for l ≥ k,
our assumption l ≤ k in (2.5) and (2.6) is not a serious restriction.
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5.2. Complexity. We now turn to the analysis of the complexity of ELLIPTIC.
We first observe that the lower bound (5.5), together with the rates of conver-
gence (5.9) and of oscillation reduction (5.8), implies∑

T∈T i

ηi(T )2 ≤ K∗(d+ 2)
( ∥∥∇(uj −Ui)

∥∥2
+ osc(f , T i)2)

≤ K1ρ
2i
∥∥∇(uj −U0)

∥∥2
+K2ρ

2i osc(f , T 0)2,

(5.17)

where the constants K1, K2 depend only on mesh-regularity and the parameters θ,
θf of ELLIPTIC. Therefore, the stopping criterion in step 3 of ELLIPTIC can be
fulfilled in a finite number of iterations.

A fundamental question that remains open is whether this number can be bounded
uniformly with respect to the outer iteration counter j. The answer is affirmative and
is the subject of the following statement.

Proposition 5.6. Let the tolerance reduction factor γ of the AUA satisfy γ > β,
where β =

∥∥I − αS∥∥L(P,P)
< 1 is defined in (2.4). Then, the number of iterations in

the inner loop of ELLIPTIC is bounded by a constant which depends only on f , the
initial pressure guess P0, the initial triangulation T0 of the AUA, the ratio β/γ, and
the parameters θ and θf of ELLIPTIC, but not on the outer index j.

Proof. By the preceding comment, the number of iterations of ELLIPTIC is
bounded for all outer counters j. It is thus sufficient to consider the case j > 1.

We need to prove the existence of a constant C such that for some i < C,∑
T∈T i

ηi(T )2 ≤ ε2.

We recall that the initial mesh T 0 of the inner loop is always taken to be the
mesh Tj−1 of the previous outer loop. Since the term ∆Uj − ∇Pj−1 of the interior
residual Rj−1 does not oscillate, using definition (4.4), we get

osc(f , T 0) = osc(Rj−1, Tj−1) ≤

 ∑
T∈Tj−1

h2
T ‖Rj−1‖2T




1/2

≤

 ∑
T∈Tj−1

h2
T ‖Rj−1‖2T + hT ‖Jj−1‖2∂T




1/2

=


 ∑
T∈Tj−1

ηj−1(T )
2




1/2

≤ εj−1 = ε0γ
j−1,

where the last inequality is guaranteed by the stopping criterion (step 3) of ELLIPTIC.
This accounts for the second term in (5.17).

To estimate
∥∥∇(uj −U0)

∥∥ in (5.17), we first split it into three parts:∥∥∇(uj −U0)
∥∥ ≤ ‖∇(uj − uj−1)‖+ ‖∇(uj−1 −Uj−1)‖+

∥∥∇(Uj−1 −U0)
∥∥ .

By virtue of (2.9), we have

‖∇(uj−1 −Uj−1)‖ ≤ Cεj−1 = Cε0γ
j−1.
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Fig. 5.1. Example 3.2: Number of inner iterations versus outer interations (left) and error
decay versus DOFs (right) for different values of γ. A triangle shows the optimal decay.

Since V
0 = Vj−1, both U

0 and Uj−1 belong to Vj−1 and, by (2.8), they satisfy∫
Ω

∇(U0 −Uj−1) : ∇V =

∫
(Pj−1 − Pj−2) divV ∀ V ∈ Vj−1.

Hence, taking V = U0 −Uj−1 implies∥∥∇(Uj−1 −U0)
∥∥ ≤ ‖Pj−1 − Pj−2‖ ≤ ‖Pj−1 − p‖+ ‖p− Pj−2‖ .

A similar energy argument, based on the fact that uj is the solution to (2.7), yields
the same estimate for ‖∇(uj − uj−1)‖. To derive a suitable estimate for ‖p−Pj‖, we
now improve (2.12) as follows:

‖p− Pj‖ ≤ βj‖p− P0‖+ Cαε0
j−1∑
�=0

β�γj−� ≤ βj‖p− P0‖+ Cαε0γj 1− (β/γ)
j

1− (β/γ) .

Inserting the previous estimates back into (5.17), we find a constant K, depend-
ing on f , the initial pressure guess P0, the initial triangulation T0 of the AUA, the
parameters θ, θf of ELLIPTIC, and the ratio β/γ < 1, such that(∑

T∈T i

ηi(T )2

)1/2

≤ Kρiγj .(5.18)

Therefore, Kρiγj ≤ εj = ε0γ
j whenever ρi ≤ ε0/K, and the assertion is

proved.
Remark 5.6. It might seem at first sight that γ > β is an artificial requirement

of the proof and thus that the result should still hold for any γ < 1. If γ < β, then
the above proof would also give (5.18) with β instead of γ, whence

i ≤ C1j + C2

for appropriate constants C1, C2 > 0. This linear growth is corroborated by the
simulations leading to Figure 5.1, which depicts the number of inner loops i versus
the outer loop counter j for Example 3.2 with the Taylor–Hood element P2-P1.

Remark 5.7. Since β is not known in general, the requirement β < γ < 1 may
seem restrictive in practice. On the other hand, a value of γ too close to 1 results in
a large number of outer iterations. We found a practical compromise γ = 0.95 for all
simulations of section 3 that leads to a number of inner iterations between 3 and 5.
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Abstract. In this paper an adaptive wavelet scheme for saddle point problems is developed
and analyzed. Under the assumption that the underlying continuous problem satisfies the inf-sup
condition, it is shown in the first part under which circumstances the scheme exhibits asymptotically
optimal complexity. This means that within a certain range the convergence rate which relates the
achieved accuracy to the number of involved degrees of freedom is asymptotically the same as the
error of the best wavelet N -term approximation of the solution with respect to the relevant norms.
Moreover, the computational work needed to compute the approximate solution stays proportional to
the number of degrees of freedom. It is remarkable that compatibility constraints on the trial spaces
such as the Ladyzhenskaya–Babuška–Brezzi (LBB) condition do not arise. In the second part the
general results are applied to the Stokes problem. Aside from the verification of those requirements
on the algorithmic ingredients the theoretical analysis had been based upon, the regularity of the
solutions in certain Besov scales is analyzed. These results reveal under which circumstances the
work/accuracy balance of the adaptive scheme is even asymptotically better than that resulting from
preassigned uniform refinements. This in turn is used to select and interpret some first numerical
experiments that are to quantitatively complement the theoretical results for the Stokes problem.
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1. Introduction. This paper draws on two major sources of motivation. First,
it has recently been shown in [8] that certain adaptive wavelet schemes are asymptot-
ically optimal for a wide class of self-adjoint elliptic operator equations. This means
that the achieved accuracy in the energy norm expressed in terms of the numbers of
involved degrees of freedom is asymptotically the same as the rate of the best N -term
approximation, i.e., the minimal number of basis functions needed to approximate the
solution within the given accuracy tolerance. Moreover, (up to additional log-factors
in sorting operations; see also Remark 4.10 below) it was shown that the computa-
tional work needed to compute the approximate solution stays proportional to the
number of degrees of freedom. While the class of operator equations covers boundary
value problems for partial differential equations as well as singular integral equations,
symmetry did play a crucial role in the analysis and design of the scheme. These
techniques have meanwhile been extended to noncoercive problems through wavelet
least squares formulations [9].

Second, in [14] the results of a predecessor [13] of [8] also for the symmetric
elliptic case have been extended to saddle point problems. The key idea there was
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to use an outer Uzawa iteration and to solve the interior symmetric positive definite
problems by a scheme of the type considered in [13]. However, no statements about
the efficiency of such schemes in terms of convergence rates and work count was made
in [14].

In this paper we also consider saddle point problems actually under slightly weaker
assumptions than in [14] and propose an adaptive wavelet scheme for their numerical
solution. In order to avoid (among other things) the squaring of condition numbers,
it is based as in [14] on an outer Uzawa iteration although it differs from the scheme
in [14] in several essential ways. It draws on detailed algorithmic ingredients from [8]
which allow one to quantify concrete computational steps and estimate their complex-
ity, which results in a somewhat different balance of accuracies. It also applies when
the symmetric bilinear form is only elliptic on the kernel of the constraint operator.

On a more fundamental level, in the same spirit as in [8, 9], there are two es-
sential features that distinguish the present approach from [13, 14] and more so from
classical discretization. The first one is that through appropriate wavelet bases the
original continuous problem is transformed right from the beginning into an equiva-
lent problem which is well-posed in the Euclidean metric. All essential computational
steps refer then to approximation in �2 and therefore bear a great potential of be-
ing portable to other problem classes. In fact, many of the basic routines developed
in [2, 8] in the context of elliptic problems can be used here as well. The second
important point is that the wavelet representation allows us to think of performing,
up to a controlled perturbation, an iteration on the full infinite dimensional problem
realized through the adaptive approximate application of the full infinite dimensional
operators. The tolerances have to be chosen so that the convergence speed of the
perturbed realizable iteration is indeed governed by the properties of the ideal infinite
dimensional iteration.

This offers, in particular, a first intuitive explanation for the following fact which
at first glance strikes one as a paradox; namely, compatibility constraints on the choice
of trial functions such as the Ladyzhenskaya–Babuška–Brezzi (LBB) condition do not
arise. In fact, recall that even when the infinite dimensional saddle point problem
is well-posed and hence satisfies an inf-sup condition, inappropriate choices of finite
dimensional trial spaces could lead to discrete problems with poor stability properties;
that is, the inverses of the corresponding system matrices may have arbitrarily large
norms. This fact is relevant whenever linear systems are to be solved for any such given
pair of trial spaces. In the present context this situation will never arise. Instead an
iterative process is conceptually applied to the full infinite dimensional problem, where
each iteration involves an adaptive application of the underlying infinite dimensional
operators within a certain stage dependent dynamic accuracy tolerance. This process
is inherently nonlinear. Roughly speaking, proper adaptation in the above sense
inherits the stability of the infinite dimensional problem. In this sense adaptation not
only reduces complexity but also stabilizes the computation automatically.

The paper is organized as follows. After formulating the problem in section 2 we
describe and analyze an adaptive method in section 3. It will be shown in section 4
under which conditions on the algorithmic ingredients it exhibits an asymptotically
optimal accuracy/work balance in the following sense. Whenever the exact solution
has, within a certain range of exponents s, an error of best N -term approximation with
respect to an underlying wavelet basis decaying like N−s, then the error achieved by
the adaptive scheme also decays like N−s, where N is the number of used degrees
of freedom. Moreover, the computational work stays proportional to N . A key role
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in this context is played by the compressibility range of the involved operators in
wavelet coordinates. Given this property, one can employ a certain adaptive scheme
for applying the operator to any finitely supported vector with optimal accuracy/work
balance [8].

In section 5 the general results are applied to the Stokes problem. Specifically, we
investigate in section 5.3 the compressibility range of the wavelet representation of
the Stokes operator for a certain family of wavelet bases and derive sharp estimates
for this range. This identifies the range of decay rates for which the general results
from the preceding sections apply.

It should be stressed that the scheme works without any a priori assumptions on
the solution, while its complexity is analyzed under the assumption that the solution
has a certain order of best N -term approximations and the involved operators in
wavelet coordinates have a certain compressibility range (see section 4). Certain
rates of the decay of best N -term approximation, in turn, are (almost) equivalent to a
certain regularity of the solution in a Besov scale. Roughly speaking, when the Sobolev
regularity of the solution is lower than its Besov regularity, the adaptive scheme is
expected to offer even an asymptotically better accuracy/work balance than linear
schemes. To see whether or under which circumstances the adaptive scheme can be
rigorously proven to offer even an asymptotically better accuracy/work balance than
schemes based on uniform preassigned mesh refinements, we investigate in section 5.4
the Besov regularity of singularity solutions for the Stokes problem. The results show
that in two spatial dimensions sufficiently high order wavelet bases would give rise to
adaptive schemes with arbitrarily high convergence rates.

Finally, in section 6 we present some numerical experiments essentially guided
by the above-mentioned theoretical considerations. Here we make use of the software
developed in [2] as well as in [25]. The results confirm that the adaptive scheme
performs essentially independently of the pairing of trial functions for velocities and
pressure. For instance, the rate of decay of the best N -term approximation is met
within a factor two when both velocities and pressure are approximated by piecewise
linear trial functions.

After completion of this work we became aware of related investigations in [4]
pursuing similar ideas in a finite element context. There, convergence in the sense of
[14] is proven for a similar Uzawa technique without establishing, however, rigorous
estimates for the corresponding work/accuracy balance.

2. Saddle point problems.

2.1. The setting. Let X,M denote Hilbert spaces with norms ‖ · ‖X , ‖ · ‖M ,
respectively. Dual pairings on X × X ′ and M ×M ′ (X ′,M ′ denoting the duals of
X,M , respectively) will always be denoted by 〈·, ·〉. It will be clear from the context
which spaces are referred to. Suppose that a(·, ·) is a continuous symmetric bilinear
form on X ×X and that b(·, ·) is a continuous bilinear form on X ×M ; i.e.,

|a(v, w)| <∼ ‖v‖X‖w‖X , |b(q, v)| <∼ ‖v‖X‖q‖M .

We shall often write A <∼ B to indicate the existence of an absolute constant c > 0

such that A ≤ cB. In addition, A ∼ B means A <∼ B <∼ A.

Moreover, denoting by B : X →M ′ the operator induced by b(p, v) = 〈p,Bv〉 and
setting V := kerB, assume that a(·, ·) is elliptic on V and b(·, ·) satisfies the inf-sup
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condition

a(v, v) ≥ α‖v‖2X , v ∈ V, inf
q∈M

sup
v∈X

b(q, v)

‖v‖X‖q‖M > β, α, β > 0.(2.1.1)

It is well known that then the variational problem

a(u, v) + b(p, v) = 〈f, v〉, v ∈ X,
b(q, u) = 〈q, g〉, q ∈M,

(2.1.2)

has a unique solution U = (u, p) ∈ X ×M for any f ∈ X ′, g ∈ M ′; see, e.g., [5].
Defining A : X → X ′ by a(v, w) = 〈v,Aw〉, v ∈ X, (2.1.2) is equivalent to the 2 × 2
block operator equation

LU :=

(
A B′

B 0

)(
u

p

)
=

(
f

g

)
=: F,(2.1.3)

where L is an isomorphism from X×M into its dual X ′×M ′; i.e., there exist positive
constants cL, CL such that

cL
(‖v‖2X + ‖q‖2M

)1/2 ≤ ∥∥∥∥L
(
v

q

)∥∥∥∥
X′×M ′

≤ CL
(‖v‖2X + ‖q‖2M

)1/2
.(2.1.4)

Classical examples are mixed formulations of second order elliptic boundary value
problems, the Stokes problem, or the system obtained when appending essential
boundary conditions by Lagrange multipliers.

2.2. Wavelet coordinates. Now suppose that we have wavelet bases ΨX =
{ψX,λ : λ ∈ JX}, ΨM = {ψM,λ : λ ∈ JM} for X and M at our disposal (JX and
JM being the corresponding index sets) such that for suitable diagonal matrices DX ,
DM and constants cX , CX , cM , CM one has

cX‖v‖	2(JX) ≤ ‖vTD−1
X ΨX‖X ≤ CX‖v‖	2(JX),(2.2.1)

and likewise

cM‖q‖	2(JM ) ≤ ‖qTD−1
M ΨM‖M ≤ CM‖q‖	2(JM ),(2.2.2)

where vTD−1
X ΨX :=

∑
λ∈JX

d−1
X,λvλψX,λ. The validity of such norm equivalences will

be crucial in what follows. Note that oftenM is a closed subspace of finite codimension
in a larger Hilbert space M̂ for which (2.2.2) holds. For instance, in the case of the
Stokes problem, M is the space of all L2 functions with zero mean. Thus the arrays of
wavelet coefficients of elements in M will, in general, form a closed subspace �2,0(JM )
of finite codimension in �2(JM ).

At this point we dispense with any additional technical details about the precise
nature of the basis functions but refer to [7, 15] for surveys and further references;
see also the comments in connection with numerical realizations below. A further im-
portant property is the cancellation property which entails near sparseness of wavelet
representations for many operators. This also will be detailed when necessity arises.

Defining now for any two countable arrays Θ,Φ and some inner product c(·, ·) the
matrix c(Θ,Φ) := (c(θ, φ))θ∈Θ,φ∈Φ, consider as usual the scaled wavelet representa-
tions

A := a(D−1
X ΨX ,D−1

X ΨX), B := b(D−1
M ΨM ,D−1

X ΨX),(2.2.3)
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as well as the arrays f := D−1
X 〈ΨX , f〉, g := D−1

M 〈ΨM , g〉, and F := (fT ,gT )T . Then
(2.1.2) or (2.1.3) is equivalent to the following two by two block matrix system:(

A BT

B 0

)(
u

p

)
=

(
f

g

)
.(2.2.4)

It will make things much more transparent when working from now on exclusively
in the �2 setting.

2.3. Well-posedness in �2. It follows from (2.2.1) and (2.2.2) together with
(2.1.4) that the operator

L :=

(
A BT

B 0

)
: �2(J ) := �2(JX)× �2,0(JM )→ �2(J ), J := JX × JM ,

is an isomorphism; i.e., there exist positive constants cL, CL such that for V :=
(vT ,qT )T ∈ �2(J ), ‖V‖2	2(J ) = ‖v‖2	2(JX) + ‖q‖2	2(JM )

cL‖V‖	2(J ) ≤ ‖LV‖	2(J ) ≤ CL‖V‖	2(J ), V ∈ �2(J );(2.3.1)

see, e.g., [15, 21] for further details. Clearly, cL, CL can be expressed in terms of the
constants cL, CL, cY , CY for Y ∈ {X,M}. Furthermore, there exist constants CB ,
C ′
A such that

‖Bv‖	2(JM ) ≤ CB‖v‖	2(JX), ‖BTq‖	2(JX) ≤ CB‖q‖	2(JM ),(2.3.2)

and

‖Av‖	2(JX) ≤ C ′
A‖v‖	2(JX).(2.3.3)

2.4. The Schur complement. In many cases a somewhat stronger property
than the first relation in (2.1.1) is valid; namely, that

a(v, v) ∼ ‖v‖2X , v ∈ X,(2.4.1)

which, of course means that A is invertible on all of �2(JX). In this case, block
elimination reduces (2.2.4) to the so-called reduced system

Sp = BA−1f − g,(2.4.2)

involving the (infinite dimensional) Schur complement

S := BA−1BT : �2,0(JM )→ �2,0(JM ),(2.4.3)

which is symmetric positive definite and, under the above assumptions, in fact an
automorphism on �2,0(JM ); i.e., there exist positive constants cS , CS such that

cS‖q‖	2(JM ) ≤ ‖Sq‖	2(JM ) ≤ CS‖q‖	2(JM ), q ∈ �2,0(JM ).(2.4.4)

Once p has been determined from (2.4.2) it remains to solve the positive definite
problem

Au = f −BTp.(2.4.5)
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However, under the weaker assumption (2.1.1) on the bilinear form a(·, ·) one
first has to take a precaution whose variational counterpart is sometimes referred to
as augmented Lagrangian method. In the present setting it boils down to considering
the matrix

Â := A+ cBTB,(2.4.6)

where c is some sufficiently large but fixed positive constant.
Remark 2.1. Assume that (2.1.1) hold. Let c in (2.4.6) be any fixed positive

constant, when the operator A in (2.1.3) is positive semidefinite on X, and otherwise
satisfy c > C2

BC
′
A/c

4
L, where cL, CB , C

′
A are the constants from (2.4.3), (2.3.2), and

(2.3.3), respectively. Then the matrix Â is an automorphism on �2(JX); i.e., there
exist positive constants cA, CA such that

cA‖v‖	2(JX) ≤ ‖Âv‖	2(JX) ≤ CA‖v‖	2(JX), v ∈ �2(JX).(2.4.7)

Proof. In order to identify concrete conditions on c for later purposes, we include
the proof although it is in principle standard. It follows from (2.3.2) and (2.3.3) that

Â is bounded on �2(JX). Moreover, by (2.3.1) the matrix LTL = L2 is positive
definite on �2(J ). Since BBT is a principal block of L2, it is positive definite on

�2,0(JM ). This entails that Â is also injective on �2(JX). To see this, note that by

the first relation in (2.1.1), vT Â �= 0 for v ∈ kerB. On the other hand, when v is in
the range of BT , i.e., v = BTq for some q ∈ �2,0(JM ), then one has

vT Âv = qTBABTq+ c‖BBTq‖2	2(JM ).(2.4.8)

Noting that, by (2.3.1), ‖BBTq‖2	2(JM ) ≥ c4L‖q‖2	2(JM ), (2.4.8) is readily seen to
be strictly positive under the above assumptions on c whenever q �= 0. This con-
firms the injectivity of Â on �2(JX). By symmetry, (2.4.8) also implies surjectiv-

ity. Due to the boundedness of Â, the claim follows now from the inverse mapping
theorem.

One easily verifies that (2.2.4) is equivalent to the system(
Â BT

B 0

)(
u

p

)
=

(
f̂

g

)
, f̂ := f + cBTg,(2.4.9)

where Â is given by (2.4.6). By Remark 2.1, for suitable c > 0, block elimination
can be applied to this new system (2.4.9), which then reduces to the coupled systems

(2.4.2), (2.4.5) with A and f replaced by Â and f̂ , respectively.
To simplify notation we will use the following convention throughout the remain-

der of the paper. We will always set

A := D−1
X a(ΨX ,ΨX)D

−1
X + cBTB, f := D−1

X 〈ΨX , f〉+ cBTg,(2.4.10)

with B := D−1
M b(ΨM ,ΨX)D

−1
X as in (2.2.3) and g := D−1

M 〈ΨM , g〉. When the bilinear
form a(·, ·) satisfies the stronger assumption (2.4.1), the constant c in (2.4.10) can be
chosen to be zero. Otherwise, c will always be assumed in the following to be a fixed
positive constant as specified in Remark 2.1. Thus, without loss of generality, we can
always make use of the reduced systems (2.4.3), (2.4.5) with a proper interpretation
of the matrix A according to the above convention. Consequently, A satisfies in this
sense (2.4.7).
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A standard way of formulating finite dimensional problems is to take Galerkin
discretizations for (2.1.2). As soon as one fixes a pair of finite dimensional trial spaces
in X and M , for instance, spanned by collections of wavelets, the corresponding
Galerkin discretization gives rise to a finite dimensional linear system, e.g., in terms
of a principal finite submatrix of (2.2.4). However, it is well known that stability of the
infinite dimensional problem does not guarantee the finite dimensional problems to
be uniformly stable as well. Compatibility constraints in terms of the LBB condition
come into play. It will be seen that this will not be the case in the following adaptive
framework.

3. An adaptive Uzawa strategy.

3.1. Infinite dimensional Uzawa iteration. The idea is to use a stationary
iterative scheme for the solution of the reduced system (2.4.2), which is essentially
the Uzawa strategy proposed in [14]. In contrast, we formulate it here directly for
the discrete infinite dimensional �2-problem (2.2.4). To this end, we first have to
address an issue which is somewhat hidden in the �2-setting. The spaces X,M are
always function spaces on some domain Ω. As will be explained in more detail later,
the wavelet bases ΨX and ΨM are then typically constructed as Riesz bases for the
corresponding spaces L2(Ω); i.e., in addition to the norm equivalences (2.2.1), (2.2.2),
one also has

‖v‖	2(JX) ∼ ‖vTΨX‖L2(Ω), ‖q‖	2(JM ) ∼ ‖qTΨM‖L2(Ω).(3.1.1)

This means that there exist dual bases Ψ̃X , Ψ̃M in L2(Ω) which are also Riesz bases
and satisfy

(ΨX , Ψ̃X) = id, (ΨM , Ψ̃M ) = id,(3.1.2)

where (·, ·) denotes the standard inner product in L2(Ω). In full agreement with the
fact that the operator B maps X onto M ′, one observes that for v = vTD−1

X ΨX the

array Bv represents expansion coefficients of Bv with respect to the dual basis Ψ̃M .
In fact,

(Bv)TDM Ψ̃M = vT 〈BD−1
X ΨX ,ΨM 〉D−1

M DM Ψ̃M = vT 〈BD−1
X ΨX ,ΨM 〉Ψ̃M

= B(vTD−1
X ΨX) = 〈Bv,ΨM 〉Ψ̃M = Bv.

Likewise, the array g consists by definition of the wavelet coefficients with respect to
the dual basis Ψ̃M . On the other hand, the unknown array p in the reduced system
(2.4.2) contains coefficients with respect to the primal basis ΨM . Now, as mentioned
before, in some cases the space M is actually a closed subspace of a somewhat larger
Hilbert space characterized by ΨM . Therefore the wavelet coefficients of elements of
M with respect to ΨM (orD−1

M ΨM ) satisfy certain constraints which generally depend
on the particular wavelet basis. To change representations if necessary, observe that,
in view of (3.1.2), Ψ̃M = (Ψ̃M , Ψ̃M )ΨM , so that such a change of bases is realized by
the matrix

R := (Ψ̃M , Ψ̃M )(3.1.3)

because p̃T Ψ̃M = p̃TRΨM = (Rp̃)TΨM . It immediately follows from (3.1.1) that
both R and R−1 = (ΨM ,ΨM ) are bounded on �2(JM ):

‖R‖	2(JM )→	2(JM ) ≤ CR.(3.1.4)
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Since S is positive definite and satisfies (2.4.4), there exists therefore some positive
ω (e.g., ω < 2/(CSCR)) such that

ρ := ‖id− ωRS‖	2(JM )→	2(JM ) < 1.(3.1.5)

Then the infinite dimensional version of the Uzawa scheme reads as follows.
UZAWA: Given any p0 ∈ �2,0(JM ), compute for i = 1, 2, . . .

Aui = f −BTpi−1,(3.1.6)

pi = pi−1 + ωR(Bui − g).(3.1.7)

This is known to converge when ρ < 1. In fact, since u = A−1(f − BTp), it is
easy to see that

p− pi = (id− ωRS)(p− pi−1),

so that

‖p− pi‖	2(JM ) ≤ ρi‖p− p0‖	2(JM ).(3.1.8)

Moreover, it has been shown in [14] that for p0 = 0 one has

‖p− pi‖	2(JM ) ≤ ‖A−1f‖	2(JX)‖ωRSB‖	2(JX)→	2(JM )
ρi

1− ρ
.(3.1.9)

3.2. The adaptive scheme. As in [9] the key idea is to apply the above Uzawa
iteration to the infinite dimensional problem. In view of (3.1.6) and (3.1.7), this
involves three tasks, namely, adding sequences with generally infinite support such as
the data f and g, the application of infinite matrices like B or BT to finitely supported
vectors, as well as the solution of elliptic problems involving the infinite matrix A.
Of course, in practice neither one of these tasks can be performed exactly. Therefore
one has to employ suitable approximations whose accuracy will depend on the current
stage of the algorithm and which will be described next.

To this end, we shall not distinguish formally between finitely supported vectors
and infinite sequences in �2(J ′), where in what follows J ′ ∈ {JX ,JM}, but rather
we will view both quantities as sequences (expanded by zero entries if necessary).

The first basic ingredient is the routine NCOARSE from [8] which solves the
following task.

NCOARSE [η,v] → (v̄,Λ) determines for a given finitely supported vector v a
vector v̄ with smallest possible support Λ such that

‖v − v̄‖	2(J ) ≤ η.(3.2.1)

For a detailed description of this routine and the analysis of its computational
complexity, see [8, Properties 6.1, 6.3]. In particular, NCOARSE will be used to
approximate the arrays f◦ := D−1

X 〈ΨX , f〉X and g of given data by finitely supported
vectors. The way to think about NCOARSE in this context can be formulated as
follows.

Assumption 3.1. In a preprocessing step for a given target accuracy, sufficiently
many (wavelet) coefficients in the arrays f◦ := D−1

X 〈ΨX , f〉 and g are made available
and ordered by size.
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In many applications f and g are simple and, as model data given by the user,
are considered here as completely accessible. Coarser approximations of the data are
then obtained by applying NCOARSE to these preprocessed finite arrays (see [8,
section 6.1] for a more detailed discussion).

The second basic ingredient taken from [8] is an approximate application of an
infinite matrix to a finitely supported vector. Given an infinite matrix C (as a map-
ping from �2(J ′′) to �2(J ′) for any pair (J ′,J ′′) ∈ {JX ,JM}2), we use the scheme
APPLY from [8] for serving the following purpose.

APPLY [η,C,v]→ (w,Λ) produces for any finitely supported input vector v a
vector w with finite support Λ ⊂ J ′ such that

‖Cv −w‖	2(J ′) ≤ η.(3.2.2)

A scheme with this property has been developed in [8, section 6.4]; see [2] for
implementation issues and numerical experiments. We postpone a quick description
of the relevant features along with estimates for its computational cost to a later
section.

Note that, in particular, the routines APPLY and NCOARSE allow us to
approximately evaluate the right-hand sides of (3.1.6) and (3.1.7).

So the remaining task in an approximate Uzawa iteration of the form (3.1.6),
(3.1.7) is to solve the operator equation (3.1.6) with system matrix A. This is an
elliptic problem in the sense of [8], and we will make heavy use of the results obtained
there; also see [2] for implementations and numerical tests. The scheme from [8] is
also built solely on the above routinesNCOARSE andAPPLY. There are, however,
two minor points that need to be briefly addressed.

First, in [8] the matrix A is just the wavelet representation of the underlying
elliptic operator, while in the present situation, A has the form (2.4.10) for some
positive constant c, when a(·, ·) is not elliptic on all of X. Nevertheless, once a scheme
APPLY for wavelet representations is available, a scheme for applying matrices of
the form (2.4.10) with c �= 0 is easily obtained from such a building block as follows.
To simplify notation we set A◦ := D−1

X a(ΨX ,ΨX)D
−1
X .

APPLY∗[η,A,v]→ (w,Λ):

(i) APPLY [η/2,A◦,v]→ (w1,Λ1);

(ii) APPLY [η/4cCB ,B,v]→ (w2,Λ2);

(iii) APPLY [η/4, cBT ,w2]→ (w3,Λ3) and set w := w1 +w3, Λ := Λ1 ∪Λ3.

Remark 3.2. One easily derives from (3.2.2) that the output w produced by
APPLY∗[η,A,v] satisfies for A given by (2.4.10)

‖Av −w‖	2(JX) ≤ η.(3.2.3)

Moreover, it is also clear that up to a uniform constant, the work/accuracy balance for
APPLY∗ is the same as that for APPLY. Note that the matrix BTB is, of course,
never computed.

According to (3.1.6), UZAWA requires the solution of elliptic problems. For
this purpose we shall employ here an adaptive scheme referred to as ELLSOLVE,
developed and analyzed in [8]; also see [9] for the identification of those requirements
on the routineAPPLY in this context that ensure asymptotically optimal complexity.
This will allow us, in particular, to employ the variant APPLY∗ in place of the
original scheme without changing the asymptotical work/accuracy rate.
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To explain the features of the scheme ELLSOLVE from [8], consider for A as
above the elliptic problem

Au = h(3.2.4)

for some h ∈ �2(JX), and denote its exact solution by û. The scheme ELLSOLVE
solves the following task (see Algorithm III in [8, Theorem 7.6]).

ELLSOLVE [ε,A,v,h] → (ū,Λ): Given ε > 0 and an approximate solution v
to (3.2.4), then the output ū with finite support Λ satisfies

‖û− ū‖	2(JX) ≤ ε.(3.2.5)

The second point is that in [8] the right-hand side data are assumed to be a
given array of wavelet coefficients as explained above that can be preprocessed. In
the present situation the right-hand side data are composed of such preprocessable
data like f and an additional matrix/vector product involving dynamically updated
entities. We therefore have to approximate these data by finitely supported vectors
that can then be processed as in [8, sections 7.2, 7.3]. The corresponding perturbations
can be estimated as follows.

Remark 3.3. Again consider (3.2.4) and suppose that approximate finitely sup-
ported right-hand side data hη ∈ �2(JX) are given such that

‖h− hη‖	2(JX) ≤ η.(3.2.6)

Then the output ū of ELLSOLVE [η,A,v,hη] satisfies

‖û− ū‖	2(JX) ≤ ε+ c−1
A η.(3.2.7)

Proof The claim follows from (3.2.5) combined with (2.4.7) to estimate the per-
turbation effect.

Next, we will describe the computation of a finitely supported hη when h =
f −BT p̄i−1; see (3.1.6). Recall from (2.4.10) that

f −BT p̄i−1 = f◦ −BT (p̄i−1 − cg), f◦ = D−1
X 〈ΨX , f〉,

which thus involves coarsening the given (preprocessed) data f◦,g and a multiplication
by BT . The respective concrete accuracy tolerances are given in the following routine.

RHS [p̄, η]→ (hη,Λ
h):

Given a finitely supported p̄, the routine RHS computes a vector hη with finite
support Λh satisfying

‖f −BT p̄− hη‖	2(JX) ≤ η(3.2.8)

as follows:
(i) NCOARSE [η/3, f◦]→ (f̄ ,Λf ),

NCOARSE [η/3cCB ,g]→ (ḡ,Λg), and set r := p̄− cḡ.
(ii) APPLY [η/3,BT , r]→ (w,Λw) and set hη := f̄ −w, Λh := Λf ∪ Λw.

Since by (3.2.1), ‖(p̄−cg)−r‖	2(JX) ≤ η/3CB , the estimate (3.2.8) indeed readily
follows from (3.2.2).

Our numerical realization of the ideal (infinite dimensional) Uzawa scheme (3.1.6),
(3.1.7) has the following structure. A fixed uniformly bounded number K, depending
only on the constants associated with the wavelet bases and the mapping properties
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of the involved operators, of approximate applications of (3.1.6), (3.1.7) are applied,
which is then followed by a coarsening step before the iteration is further resumed.
Such an iteration block will be arranged to advance the current approximate solutions
so as to reduce the current error bounds by a fixed factor. Before giving a precise
description, we would like to stress that the Uzawa scheme as a gradient method
for the reduced system (2.4.2) treats in some sense p ∈ �2,0(JM ) as the “preferred”
variable. In fact, the accuracy of the approximate solution to the elliptic problem
(3.1.6) need not be too high relative to the current accuracy of the approximation
of p. In order to formulate now the basic iteration block as a concrete routine, we
will use the following choice for the number K of perturbed iterations before the next
coarsening step. Let γi denote any positive summable numbers, e.g., γi = (1+i)−2. It
will be convenient to assume always that, as in this example, γi ≤ 1, i ∈ N. Moreover,
we need some control parameters. Set

C1 := ω(CRCB + 2)γ + 1,(3.2.9)

where γ :=
∑∞
i=0 γi, and let K denote the smallest integer such that

ρK max
{
C1, (ρcA)

−1CBC1 + 1
} ≤ 1/10.(3.2.10)

Note that, since cA, CB appear in lower, respectively, upper, bounds, (ρcA)
−1CB will

typically be larger than one, so that the maximum will usually be attained by the
second term in the curly brackets in the left-hand side of (3.2.10).

Now we have collected all the ingredients for composing the core of a computa-
tional version of UZAWA.
ADV [ū, p̄, δ]→ (ũ, p̃,Λu,Λq):
Given current approximations ū, p̄ of the solution to (2.2.4) such that

‖ū− u‖	2(JX) ≤ δ, ‖p̄− p‖	2(JM ) ≤ δ,(3.2.11)

ADV [ū, p̄, δ] produces new approximations ũ, p̃ as follows:
(i) Set i = 1, p̄0 := p̄, ū0 := ū.
(ii) If i ≤ K, go to (iii); else

NCOARSE [2δ/5, p̄i−1]→ (p̃,Λp);
NCOARSE [2δ/5, ūi−1]→ (ũ,Λu); STOP;

(iii) RHS [p̄i−1, cAγiρ
iδ/2]→ (hi,Λ

h
i );

(iv) ELLSOLVE [γiρ
iδ/2,A, ūi−1,hi]→ (ūi,Λ

X
i ).

(v) NCOARSE [γiρ
iδ/2CR,g]→ (ĝi, Λ̂i);

APPLY [γiρ
iδ/2,R, ĝi]→ (gi,Λ

g
i );

APPLY [γiρ
iδ/2CR,B, ūi]→ (p̂i, Λ̂i);

APPLY [γiρ
iδ/2,R, p̂i]→ (p′

i,Λ
p
i );

set p̄i = p̄i−1 + ω(p′
i − gi); and i+ 1→ i and go to (ii).

The routine ADV advances given finitely supported approximate solutions (ū, p̄)
to a new pair (ũ, p̃) by a finite number of perturbed Uzawa steps, followed by a
coarsening step. It will be shown later that the tolerances in ADV are chosen so as
to reduce the error bounds of the new approximations by at least a factor of two. The
final application of NCOARSE in step (ii) of ADV, following the iteration block,
will be seen later to play an important role with regard to asymptotically optimal
complexity. Roughly speaking, it ensures that only sufficiently significant coefficients
are propagated.
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Of course, when the characterization of the space M does not entail any con-
straints on the wavelet coefficients, R can be replaced by the identity in (3.1.7), in
which case step (v) of ADV simplifies in an obvious manner.

To formulate the main algorithm, recall that by (2.3.1)

‖u‖2	2(JX) + ‖p‖2	2(JM ) ≤ c−1
L

(
‖f◦‖2	2(JX) + ‖g‖2	2(JM )

)
.

Therefore the right-hand side gives a bound for the initial error when using 0 as the
initial guess for u,p, respectively. The complete adaptive Uzawa iteration can be
described now as follows.
UZAWAc [A,B, f ,g, ε]→ (u(ε),p(ε)):
Set Λ0 := (ΛX

0 ,ΛM
0 ) ⊂ J =: JX × JM to be empty, ΛM0 = ΛX0 = ∅, p0 = p̄0 = 0,

ū = 0, δ0 := c
−1/2
L (‖f◦‖2	2(JX)+‖g‖2	2(JM ))

1/2, J = 0, choose a target accuracy ε.

(i) ADV [ū, p̄, δJ ]→ (ũ, p̃,Λu,Λq);
(ii) Set δJ+1 := δJ/2;

If δJ+1 ≤ ε, set u(ε) := ũ,p(ε) := p̃; STOP;
Else, set ū = ũ, p̄ = p̃, J + 1→ J and go to (i).

3.3. Convergence. The convergence of UZAWAc relies on the error reduction
caused by ADV.

Proposition 3.4. Given a scheme APPLY such that (3.2.2) holds, under the
above Assumption 3.1 concerning NCOARSE on the data f◦,g, the vectors ũ, p̃
produced by ADV [ū, p̄, δ] above satisfy

‖ũ− u‖	2(JX) ≤ δ/2, ‖p̃− p‖	2(JM ) ≤ δ/2.(3.3.1)

Hence, after finitely many steps the scheme UZAWAc produces finitely supported
solutions (u(ε),p(ε)) satisfying

‖u− u(ε)‖	2(JX) ≤ ε, ‖p− p(ε)‖	2(JM ) ≤ ε.(3.3.2)

Proof. Set p0 := p̄0 = p̄, ū0 := ū and observe that

pi − p̄i = pi−1 + ωR(Bui − g)− p̄i−1 − ω(p′
i − gi)

= pi−1 − p̄i−1 + ω(RBui − p′
i −Rg + gi)(3.3.3)

= (id− ωRS)(pi−1 − p̄i−1) + ω(R(BA−1BT )(pi−1 − p̄i−1)

+ RBui − p′
i + gi −Rg).

Since Aui = f −BTpi−1, we can replace BTpi−1 by f −Aui to obtain

ω
(
R(BA−1BT )(pi−1 − p̄i−1) +RBui − p′

i + gi −Rg
)

= ω
(
R(BA−1f −Bui +Bui −BA−1BT p̄i−1)− p′

i + gi −Rg
)

= ω
(
RBA−1(f −BT p̄i−1)− p′

i + (gi −Rg)
)
.(3.3.4)

Thus

RBA−1(f −BT p̄i−1)− p′
i = RB

(
A−1(f −BT p̄i−1)− ūi

)
+ (RBūi − p′

i).(3.3.5)

Hence combining (3.3.3), (3.3.4), and (3.3.5) and recalling (3.1.5) yields

‖pi − p̄i‖	2(JM ) ≤ ρ‖pi−1 − p̄i−1‖	2(JM ) + ω
(‖RB

(
A−1(f −BT p̄i−1)− ūi

) ‖	2(JM )

+ ‖RBūi − p′
i‖	2(JM ) + ‖gi −Rg‖	2(JM )

)
≤ ρ‖pi−1 − p̄i−1‖	2(JM ) + ωCRCB‖A−1(f −BT p̄i−1)− ūi‖	2(JX)

+ 2ωγiρ
iδ,(3.3.6)
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where we have used the tolerances in step (v) of ADV. By (3.2.8) we have for the
output hi of step (iii) in ADV that ‖hi − (f −BT p̄i−1)‖	2(JX) ≤ cAγiρ

iδ/2, which,
in view of the tolerances in step (iv) of ADV and (3.2.7), implies that

‖A−1(f −BT p̄i−1)− ūi‖	2(JX) ≤ γiρ
iδ.(3.3.7)

Therefore, we deduce from (3.3.6) that

‖pi − p̄i‖	2(JM ) ≤ ρ‖pi−1 − p̄i−1‖	2(JM ) + ω(CRCB + 2)γiρ
iδ.(3.3.8)

Iterating this estimate, and bearing in mind that p0 = p̄0, provides

‖pi − p̄i‖	2(JM ) ≤ ω(CRCB + 2)ρiδ

i∑
l=1

γl.(3.3.9)

Since by (3.1.8) and the assumption ‖p − pi‖	2(JM ) ≤ ρi‖p − p0‖	2(JM ) = ρi‖p −
p̄‖	2(JM ) ≤ ρiδ, we conclude that

‖p− p̄i‖	2(JM ) ≤
(
ω(CRCB + 2)

i∑
l=1

γl + 1

)
ρiδ ≤ C1ρ

iδ,(3.3.10)

where C1 is the constant from (3.2.9). In view of (3.2.10), this gives

‖p− p̄K‖	2(JM ) ≤ δ/10.(3.3.11)

Now recall that by step (ii) of ADV, the final approximation p̃ is obtained by coars-
ening p̄K . Thus

‖p− p̃‖	2(JM ) ≤ ‖p− p̄K‖	2(JM ) + ‖p̄K − p̃‖	2(JM ) ≤
(
2

5
+

1

10

)
δ =

δ

2
,(3.3.12)

as claimed.
It remains to estimate the accuracy of ūK . Denoting by ûi the exact solution of

Aûi = f −BT p̄i−1, (3.3.7) says that ‖ûi − ūi‖	2(JX) ≤ γiρ
iδ. Writing

u− ūi = u− ûi + ûi − ūi = A−1BT (p̄i−1 − p) + ûi − ūi,(3.3.13)

one infers from (3.3.10) that

‖u− ūi‖	2(JX) ≤ (cAρ)
−1CBC1ρ

iδ + γiρ
iδ =

(
(cAρ)

−1CBC1 + γi
)
ρiδ.

Again, since γi ≤ 1, we conclude from (3.2.10) that

‖u− ūK‖	2(JX) ≤ δ/10,(3.3.14)

so that by the same reasoning as in (3.3.12), ũ produced by NCOARSE [2δ/5, ūK ]
satisfies ‖u− ũ‖	2(JX) ≤ δ/2. This completes the proof.

As an immediate consequence of the norm equivalences (2.2.1), (2.2.2) one has
the following fact.

Corollary 3.5. Let u = uTD−1
X ΨX , p = pTD−1

M ΨM be the exact solution of
(2.1.2). Then the finite expansions u(ε) := uT (ε)D−1

X ΨX , p(ε) = pT (ε)D−1
M ΨM with

terms from the finite index sets Λu(ε) ⊂ JX , Λq(ε) ⊂ JM satisfy

‖u− u(ε)‖X ≤ CXε, ‖p− p(ε)‖M ≤ CMε(3.3.15)
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uniformly in ε, where CX , CM are the constants in (2.2.1), respectively, (2.2.2).

To keep things transparent we have based the above considerations on the sim-
plest version (3.1.6), (3.1.7) of an Uzawa iteration. It will be seen below that already
this version gives rise to asymptotically optimal convergence properties. Of course,
similar results would be obtained for different accuracy tolerances as long as they dif-
fer by constants leading possibly to different values of K. Nevertheless, several more
important possibilities suggest themselves for realizing quantitative improvements,
e.g., replacing the Richardson iteration by a gradient or conjugate gradient iteration.
This avoids the need for estimating step size parameters and should speed error reduc-
tion. Note that these variants still involve only the same algorithmic tasks, namely,
approximate application of operators in the above sense. Furthermore, the number
K of subiterations is likely to be too pessimistic. Therefore it would be preferable to
monitor the error decay as follows. Note that pi−gi in step (v) ofADV approximates
R(Bui − pi) and, in view of (3.1.6), (3.1.7), the residual R(BA−1f − g − Spi−1).
By (2.4.4) and the bounded invertibility of R, this residual can be bounded from
below and above by fixed constant multiples of the current error of the approximate
solution of the reduced system (2.4.2). Thus monitoring ‖p′

i − gi‖	2(JM ) can be used
as a stopping criterion. This is expected to result in frequent early termination of
step (ii) in ADV. These points will be taken up in more detail elsewhere.

4. Complexity analysis. Of course, the central questions now are how do we
come up with an APPLY scheme with the desired properties and what is the com-
putational cost of UZAWAc for a given target accuracy ε. In the present generality,
cost will be measured by storage requirements and the number of flops required by
the scheme (being well aware of the fact that this is not the full story).

4.1. Best N-term approximation. As in [8] we will relate the performance of
the adaptive scheme to what could be achieved at best, namely, the approximation of
the solution in terms of possibly few degrees of freedom within the given discretization
context—here determined by the underlying wavelet bases. Note that, in view of
(3.3.15), it suffices to deal with the conceptually much simpler approximation in
�2(J ). To explain this, it is useful to recall first the following notion of best N -term
approximation in �2:

σN,	2(J ′)(v) := inf
w,#suppw≤N

‖v −w‖	2(J ′),(4.1.1)

where �2(J ′) stands again for �2(JX) or �2(JM ). Thus σN,	2(J ′)(v) describes the
error as a function of the number of degrees of freedom when the (possibly infinitely
supported) vector is approximated by a vector with at most N nonzero entries whose
value and position can be freely chosen. Thus the approximant is not taken from
any fixed linear space but from the nonlinear manifold of all vectors with at most
N nonzero entries. This notion is well understood for �2; see, e.g., [19]. Obviously,
σN,	2(J ′)(v) is realized by retaining the N largest coefficients in v which are, of course,
unknown when v is a solution of a system of equations. To understand how this error
behaves, denote for any v ∈ �2(J ′) by v∗ = {vλl

}l∈N =: {v∗l }l∈N its decreasing
rearrangement in the sense that |vλl

| ≥ |vλl+1
| and let

Λ(v, N) := {λl : l = 1, . . . , N}, vN := v|Λ(v,N).(4.1.2)

It is clear that vN is a best N -term approximation of v.
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In particular, it will be important to characterize the sequences in �2(J ′) whose
best N -term approximation behaves like N−s for some s > 0. The following facts are
well known [8, 19]. Let for 0 < τ < 2

|v|	wτ (J ′) := sup
n∈N

n1/τ |v∗n|, ‖v‖	wτ (J ′) := ‖v‖	2(J ′) + |v|	wτ (J ′).(4.1.3)

It is easy to see that for any τ < τ ′ ≤ 2

‖v‖	τ′ (J ′) <∼ ‖v‖	wτ (J ′) ≤ 2‖v‖	τ (J ′),(4.1.4)

so that by Jensen’s inequality, in particular, �wτ (J ′) ⊂ �2(J ′).
We shall use the following characterization of decay rates of best N -term approx-

imation in �2(J ′); see [8, Proposition 3.2].
Proposition 4.1. Let

1

τ
= s+

1

2
.(4.1.5)

Then v belongs to �wτ (J ′) if and only if σN,	2(J ′)(v) <∼ N−s, and one has the error
estimate

‖v − vN‖	2(J ′) <∼ N−s‖v‖	wτ (J ′).(4.1.6)

In complete analogy one can define ‖ · ‖	wτ (J ) for �wτ (J ) := �wτ (JX × JM ) by
forming the rearrangements from both component vectors v ∈ �2(JX), p ∈ �2,0(JM )
and regrouping the entries to both component vectors.

We will make use of the following result from [8] which interrelates best N -term
approximation in �2 with the routine NCOARSE; see [8, Property 6.3].

Proposition 4.2. Suppose that v ∈ �2(J ′) and a finitely supported w satisfies
for some tolerance η > 0

‖v −w‖	2(J ′) ≤ η/5.

Then (as has been used before), the output w̄ of NCOARSE [w, 4η/5] satisfies ‖v−
w̄‖	2(J ′) ≤ η. Moreover, when v ∈ �wτ (J ′) and 1

τ = s+ 1
2 for some s > 0, then there

exists a constant C, depending only on s when s tends to infinity, such that

‖v − w̄‖	2(J ′) ≤ C‖v‖	wτ (J ′)(# supp w̄)−s,(4.1.7)

and

‖w̄‖	wτ (J ′) ≤ C‖v‖	wτ (J ′), #supp w̄ ≤ C‖v‖1/s	wτ (J ′)η
−1/s.(4.1.8)

Best N -term approximation will be one important ingredient in the realization of
the approximate application of infinite matrices represented by APPLY. The other
one is the (a priori known) quasi sparseness of wavelet representations which can be
formalized as follows; see [8].

Definition 4.3. A matrix C belongs to the class Cs∗ if for every s < s∗ there
exists a positive summable sequence (αj)j≥0 and for every j ≥ 0 there exists a matrix
Cj with at most 2jαj nonzero entries per row and column such that

‖Cj −C‖ <∼ αj2
−sj .(4.1.9)
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A matrix in Cs∗ is called compressible or sometimes s∗-compressible.
Compressibility of a wavelet representation of certain operators follows from the

above-mentioned cancellation properties of the wavelets; see [8] as well as section 5.3
for concretizations.

Now suppose that the (possibly infinite) matrix C (defined on �2(J ′), say) is
known to be compressible in the sense of (4.1.9) for some range of s > 0. For any given
finitely supported v ∈ �2(J ′), let v[j] := v2j denote its best 2j-term approximation
in �2(J ′). We shall numerically approximate Cv by using the vector

wk := Ckv[0] +Ck−1(v[1] − v[0]) + · · ·+C0(v[k] − v[k−1])(4.1.10)

for a certain value of k determined by the desired numerical accuracy. This leads to
a practical scheme APPLY [η,C,v]→ (w,Λ), whose detailed description is given in
[8], section 6.4; see also [2]. For later use we recall its properties; see Property 6.4 in
[8].

Proposition 4.4. Assume that C ∈ Cs∗ . Given a tolerance η > 0 and a vector
v with finite support, the algorithm APPLY produces a vector w = w(v, η) which
satisfies (3.2.2).

Moreover, if v ∈ �wτ (J ′), with τ = (s+1/2)−1 and 0 < s < s∗, then the following
properties hold:

(i) The size of the output Λ is bounded by

#(Λ) ≤ C‖v‖1/s	wτ (J ′)η
−1/s,(4.1.11)

and the number of entries of C that need to be computed is ≤ C‖v‖1/s	wτ (J ′)η
−1/s.

(ii) The number of arithmetic operations needed to compute w(v, η) does not

exceed Cη−1/s‖v‖1/s	wτ (J ′) + 2N with N := #suppv.

(iii) The number of operations for sorting needed to assemble the slices v[j] of
w(v, η), j = 0, 1, . . . , �logN�, does not exceed CN logN .

(iv) The output vector w satisfies

‖w‖	wτ (J ′) ≤ C‖v‖	wτ (J ′).(4.1.12)

As for the log terms for sorting, see Remark 4.10 at the end of this section. We
shall make use of the following fact; see [8].

Remark 4.5. It follows from Proposition 4.1 and Proposition 4.4(i) that any
matrix C ∈ Cs∗ is bounded on �wτ when τ is related to s < s∗ by (4.1.5).

As mentioned above, wavelet representations of differential operators are com-
pressible. Therefore the following observation is useful.

Remark 4.6. When A◦ = D−1
X a(ΨX ,ΨX)D

−1
X and B belong to Cs∗ for some

s∗ > 0, then one easily shows that the scheme APPLY∗ inherits all the properties
described in Proposition 4.4 above; see [8, Property 6.4].

The complexity estimates in (ii) and (iii) of Proposition 4.4 hold under the as-
sumption that the entries of C are accessible during the calculation. In fact, the
subsequent developments will always be based on the following assumption.

Assumption 4.7. The entries of the matrices A◦ and B are accessible at unit
cost.

Using piecewise polynomial wavelets, this assumption can be realized for constant
coefficient operators in a relatively straightforward manner. This task becomes much
more delicate under more general circumstances, e.g., when isoparametric mappings
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are involved in the construction of the wavelets; see section 5.2 below. In [3] a fast
evaluation scheme is developed that computes sufficiently accurate approximations to
the summands on the right-hand side of (4.1.10) at a computational cost that still
satisfies the bounds in (ii), (iii) of Proposition 4.4 above. Thus Assumption 4.7 is
justified for a wide range of practically relevant situations.

With Remark 4.6 at hand, we are now in the position for estimating the complex-
ity analysis of ELLSOLVE based on the results in [8, 9] with the APPLY scheme
for compressible matrices replaced, if necessary, by the extended version APPLY∗ in-
troduced above. The fact that in the present context ELLSOLVE applies to varying
auxiliary problems with little a priori information on the corresponding intermediate
solutions prevents us from applying the results from [8] directly. Nevertheless, we can
extract from the analysis in [8, 9] some facts that will apply in the present situation
as well. This is most transparent when considering the simplified scheme in [9] which
(in the very spirit of the current approach) for the special case of an elliptic (coercive)
problem is based on a simple iteration for (3.2.4) of the form

ûn+1 = ûn + ω̄(h−Aûn).(4.1.13)

In particular, when the right-hand sides are already finitely supported as in the present
situation, the scheme consists of at most K̄ perturbed iterations of the form (4.1.13),
employing APPLY∗ and NCOARSE with judiciously chosen accuracy tolerances,
followed by a coarsening step so as to reduce a current error bound by a factor of two,
say (see the algorithm SOLVE in section 4.2 of [9]). This implies the following fact.

Proposition 4.8. Consider the problem (3.2.4) and suppose that the initial
approximation v used as input for ELLSOLVE satisfies

‖û− v‖	2(JX) ≤ ε̄(4.1.14)

for some ε̄ > ε. Moreover, assume that s and τ are related by (4.1.5) and that

ε ≤ C̄ε̄(4.1.15)

for some positive constant C̄. Then the output ū and Λ := supp ū of ELLSOLVE
[ε,A,v,h] satisfies

#(Λ) ≤ Ĉ
(
#(suppv) +

(
‖v‖1/s	wτ (JX) + ‖h‖1/s	wτ (JX)

)
ε−1/s

)
,

‖ū‖	wτ (JX) ≤ Ĉ
(‖v‖	wτ (JX) + ‖h‖	wτ (JX)

)
.(4.1.16)

Moreover, the number of arithmetic operations required for the computation of ū re-
mains bounded by

Ĉ
{
#suppv + ε−1/s

(
‖v‖1/s	wτ (JX) + ‖h‖1/s	wτ (JX)

)}
.(4.1.17)

An additional factor Ĉ log ε−1 is allowed for operations spent on sorting arrays (see
Remark 4.10). The constant Ĉ depends in all cases only on the constants in (2.4.7),
(2.2.1), on s when s tends to infinity, and on the constant C̄ in (4.1.15).

Proof. In view of (4.1.15), only a uniformly bounded number of blocks of per-
turbed iterations (4.1.13) separated by coarsening steps is needed to reduce the current
error bound from ε̄ to ε; see Proposition 4.2 in [9]. This number depends clearly on
the bound C̄ for the ratio ε̄/ε. Each block, in turn, involves a uniformly bounded
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number K̄ of perturbed applications of (4.1.13), where K̄ depends only on the con-
stants in (2.4.7) and (2.2.1). The claim follows now immediately from Propositions
4.2 and 4.4 (see also the proof of Theorem 5.7 in [9]).

The main result can now be formulated as follows.
Theorem 4.9. Assume that the scaled wavelet representations A◦, B in (2.2.4),

and R from (3.1.3) belong to Cs∗ for some s∗ > 0, where the underlying wavelet bases
ΨX , ΨM satisfy (2.2.1), (2.2.2). Moreover, assume that (2.1.2) is well-posed in the
sense of (2.1.4). If the exact solution (u, p) of (2.1.2) satisfies for some s < s∗

inf
#suppv≤N

‖u−vTD−1
X ΨX‖X <∼ N−s, inf

#suppq≤N
‖p−qTD−1

M ΨM‖M <∼ N−s, N →∞,

(4.1.18)
then the approximations (u(ε),p(ε)) produced by UZAWAc satisfy

‖u−u(ε)TD−1
X ΨX‖X <∼ (#suppu(ε))−s, ‖p−p(ε)TD−1

M ΨM‖M <∼ (#suppp(ε))−s.
(4.1.19)
Moreover, under the Assumptions 3.1 and 4.7, the computational work needed to com-
pute u(ε),p(ε) is also of the order ε−1/s (except for additional log terms for sorting).

Proof. First note that, by (2.2.1) and (2.2.2), σN,	2(JX)(u) <∼ N−s and

σN,	2(JM )(p) <∼ N−s. Proposition 4.1 says that then u ∈ �wτ (JX) and p ∈ �wτ (JM ).
It follows now from (2.2.4) and Remark 4.5 that g ∈ �wτ (JM ). Since by the same
argument BTp,Au ∈ �wτ (JX), (2.4.5) says that also f ∈ �wτ (JX), i.e.,

‖g‖	wτ (JM ) <∼ ‖u‖	wτ (JX), ‖f‖	wτ (JX) <∼ ‖u‖	wτ (JX) + ‖p‖	wτ (JM ).(4.1.20)

We proceed now estimating the computational cost of one call ofADV adhering to
the notation used in this context before. We will make frequent use of the fact that all
accuracy tolerances appearing inADV remain, in view of the uniform boundedness of
K, proportional to the current accuracy δ = δJ in the Jth call of ADV in UZAWAc.
We begin with step (ii) of ADV, since the effect of NCOARSE determines also
the properties of the input of ADV. To this end, recall that the perturbed iterate
p̄K , which forms one of the inputs of the coarsening step, is a finitely supported
approximation of p, satisfying the error estimate (3.3.11). It is important to note
that, regardless of the sizes of its support, Proposition 4.2 implies that then

#(supp p̃) ≤ Cδ−1/s‖p‖1/s	w
τ′ (JM ), ‖p̃‖	w

τ′ (JM ) ≤ C‖p‖	w
τ′ (JM ),(4.1.21)

where C depends only on s when s tends to infinity. Likewise, in view of the error
bound (3.3.14) for ūK , Proposition 4.2 ensures that

‖ũ‖	wτ (JX) ≤ C‖u‖	wτ (JX), #supp ũ ≤ Cδ−1/s‖u‖1/s	wτ (JX),(4.1.22)

where, as before, δ = δJ is the current accuracy level in the Jth call of ADV in
UZAWAc. As before in (4.1.21), the constant C is independent of ūK .

We still have to control the computational cost of the intermediate steps (iii)–(iv)
of ADV, leading to the final perturbed iterates p̄K , ūK , which are then subjected
to the coarsening step that led to the above estimates. To this end, we infer from
Remark 4.5, Propositions 4.2 and 4.4 that

(4.1.23)

#(supp p̄i) ≤ Cδ−1/s
(
‖ūi‖1/s	wτ (JX) + ‖g‖1/s	wτ (JM )

)
+#(supp p̄i−1), i = 1, . . . ,K,
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and

‖p̄i‖	w
τ′ (JM ) ≤ C

(‖p̄i−1‖	wτ (JM ) + ‖ūi‖	wτ (JX)

)
, 1, . . . ,K.(4.1.24)

Thus we have to estimate next the quantities ‖ūi‖	wτ (JX), #supp ūi, i = 1, . . . ,K.
To this end, we first have to determine the accuracy of ūi−1 as an initial guess for
ELLSOLVE [γiρ

iδ/2,A, ūi−1,hi]. In fact, a little care is needed because the right-
hand sides hi change. To this end, let ǔi denote the exact solution of Aǔi = hi; see
(iii) in ADV. Then, by (3.3.13), for δ = δJ in the Jth call of ADV in UZAWAc one
obtains for some constant C

‖ǔi − ūi−1‖	2(JX) ≤ ‖ǔi − u‖	2(JX) + ‖u− ūi−1‖	2(JX)

≤ c−1
A ‖f −BTp− hi‖	2(JX) + Cδ

≤ c−1
A

(‖f −BTp− (f −BT p̄i−1)‖	2(JX)

+ ‖f −BT p̄i−1 − hi‖	2(JX)

)
+ Cδ

≤ c−1
A CB‖p− p̄i−1‖	2(JM ) + γiρ

iδ/2 + Cδ

≤ C ′δJ ,

where we have used (3.3.10) and (3.2.8). Thus, the ratio of initial and target accuracies
in each call of ELLSOLVE remains uniformly bounded by a constant C̄ depending
on the number K in ADV, so that Proposition 4.8 applies. To this end, consider first
i = 1 in step (iv) of ADV. By the above bound (4.1.21) on p̄0 = p̃J−1, Remark 4.5,
Propositions 4.2, 4.4, and steps (i), (ii) in RHS, we conclude that

‖h1‖	wτ (JX) ≤ C(‖p‖	wτ (JM ) + ‖f‖	wτ (JX)) ≤ C(‖p‖	wτ (JM ) + ‖u‖	wτ (JX)),(4.1.25)

where we have used (4.1.20) in the last step. Here and in what follows, unless stated
otherwise, C will be a constant (that may vary from place to place) which is indepen-
dent of u,p and at most dependent on the problem constants as before. Proposition
4.8 combined with (4.1.22) now implies

‖ū1‖	wτ (JX) ≤ C(‖p‖	wτ (JM ) + ‖u‖	wτ (JX)),

#(supp ū1) ≤ C
(
#(supp ū0) + δ−1/s(‖p‖1/s	wτ (JM ) + ‖u‖1/s	wτ (JX))

)
.(4.1.26)

Again keeping (4.1.21) in mind and substituting (4.1.26) in (4.1.24) for i = 1, we
obtain

‖p̄1‖	wτ (JM ) ≤ C(‖p‖	wτ (JM ) + ‖u‖	wτ (JX)).(4.1.27)

We can now repeat this argument K times and obtain that for all i ≤ K,

‖ūi‖	wτ (JX) ≤ C(‖p‖	wτ (JM ) + ‖u‖	wτ (JX)),

#(supp ūi) ≤ C
(
#(supp ū0) + δ−1/s(‖p‖1/s	wτ (JM ) + ‖u‖1/s	wτ (JX))

)
,

‖p̄i‖	wτ (JM ) ≤ C(‖p‖	wτ (JM ) + ‖u‖	wτ (JX)),

#(supp p̄i) ≤ C
(
#(supp p̄i−1) + δ−1/s(‖p‖1/s	wτ (JM ) + ‖u‖1/s	wτ (JX))

)
.(4.1.28)

In view of the operations count given in Propositions 4.4, 4.8, estimate (4.1.28) says
that the computational cost in steps (iii)–(v) remains proportional to δ−1/s. Of course,
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the constant C of proportionality depends on the number of steps K and may build
up if the perturbed iterations were simply continued. However, the thresholding in
step (ii) of ADV produces a new constant that no longer depends on K and in this
sense sets the proportionality constant back. Thus, we conclude that, under the given
assumptions on the exact solutions u,p, the convergence rate N−s is indeed preserved
by UZAWAc within the claimed bounds for the corresponding computational work.
The assertion follows now directly from Corollary 3.5, (3.3.15).

Remark 4.10. One should note that a strict ordering of the wavelet coefficients
by size is actually not essential. What matters is to group the coefficients in binary
bins, i.e., to collect all those coefficients whose modulus falls into [a2−j , a2−j+1), say.
In this way one can avoid the logarithmic terms appearing in the work counts for
sorting; see [1].

5. Applications to the Stokes problem. In this section the above develop-
ments will be applied to a classical example, namely the Stokes problem. In particular,
we shall identify suitable wavelet bases and determine the compressibility range s∗

for which Theorem 4.9 ensures asymptotically optimal performance.

5.1. The continuous problem. We consider a Lipschitz domain Ω ⊂ R
d and

assume for simplicity homogeneous boundary conditions; i.e.,

−∆u+∇p = f, ∇ · u = 0 in Ω ⊂ R
d, u|∂Ω = 0.(5.1.1)

The standard L2 inner product on a domain G will be denoted by 〈v, w〉G :=∫
G
v(x)w(x) dx, where we will drop the subscript whenever the inner product refers

to Ω. The mixed formulation takes the form (2.1.2) with

X = H1
0 (Ω)

d, M = L2,0(Ω) :=

{
v ∈ L2(Ω) :

∫
Ω

v(x) dx = 0

}
,(5.1.2)

and

a(u, v) := (∇u,∇v), b(q, v) := −〈∇ · v, q〉.(5.1.3)

It is well known that (2.1.1) holds in this case even with the stronger relation (2.4.1),
so that (2.1.4) is true for (5.1.2). In view of the preceding discussion we have to ad-
dress the following issues. First, we identify a class of suitable wavelet bases which will
be employed later in numerical experiments. Then we determine the compressibility
range of the corresponding wavelet representations. Next, we discuss the regularity
of the solution to (5.1.1) in a certain scale of Besov spaces. Although this informa-
tion has no effect on the algorithmic realization, it will allow us to determine under
which principal circumstances the adaptive scheme offers even an asymptotically bet-
ter work/accuracy balance than discretizations based on uniform mesh refinements.
These results will guide the selection of our test examples.

5.2. Wavelet representation. When Ω can be partitioned into regular para-
metric images Ωl = κl(�) of the unit d-cube � := (0, 1)d, one can use the construc-
tions from [6, 17] yielding conforming trial spaces for the velocities and pressure. We
proceed now collecting the relevant properties of these bases in the present context.

We will reserve the notation ΨX for the wavelet basis for X = H1
0 (Ω)

d; i.e., each
wavelet ψX,λ is a vector valued function with components ψλ,i, λ ∈ JX , i = 1, . . . , d.
A wavelet ψλ,i which is supported in a single patch Ωl is then constructed as a linear
combination of tensor product B-splines of (coordinatewise) order mX (which is for
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simplicity taken to be the same for each component i) composed with κ−1
l . Wavelets

whose support intersects several domains are obtained by suitably patching together
such functions across interfaces; see [6, 17] for details. At this point a word on the
nature of the indices λ is in order. Without going into details, λ encodes the spatial
location of the wavelet ψX,λ as well as its scale denoted by |λ|. We will employ only
compactly supported wavelets whose supports then scale like diam (suppψλ) ∼ 2−|λ|.
The coarsest scale |λ| = 0 corresponds to finitely many functions, which roughly
speaking span the polynomial part in an expansion. Thus for each component i the
corresponding multiresolution spaces Si,J := span {ψλ,i : |λ| < J} can be viewed as
trial spaces on meshes of size 2−J . To have a conforming discretization the Si,J are
arranged to be contained in H1

0 (Ω). Being generated by mXth order B-splines, they
realize approximation order mX in HmX (Ω)∩H1

0 (Ω). Such a basis can be realized for
any order mX ∈ N. We will later vary this order, keeping in mind that the restrictions
to a patch Ωl satisfy

ΨX |Ωl
⊂ HmX−1/2(Ωl)

d;(5.2.1)

see [24]. Moreover, recall that a wavelet basis consists of two disjoint collections
of functions Ψ+

X and Ψ−
X (and analogously for ΨM ). As indicated above, Ψ+

X is
comprised of finitely many scaling functions of level |λ| = 0 whose preimages under
the parametric mappings span all polynomials of order mX on � (up to boundary
conditions). The infinite collection Ψ−

X contains the “true wavelets” in the following
sense. In fact, the construction of ΨX involves a second important parameter m̃X .
Given any mX , one can take any m̃X ∈ N, m̃X ≥ mX such that mX+m̃X is even and
arrange ΨX so that for any ψλ,i supported in Ωl the following mXth order moment
conditions hold:

(P, ψλ,i)Ωl
= 0 for all P ∈ Πm̃X ,κl , ψλ,i ∈ Ψ−

i ,(5.2.2)

where (·, ·)Ωl
denotes the standard inner product on the subdomain Ωl. Here Πm̃,κl :=

{P : P = glQ ◦κ−1
l , Q ∈ Πm̃}, where gl := |det ∂κ−1

l | and Πm̃ denotes the space of all
polynomials of degree less than m̃. With a slight abuse of terminology we will refer
to the elements of Πm,κl simply as polynomials. In fact, since by assumption the gl
are smooth and bounded away from zero, the local approximation properties of Πm̃,κl
are the same as those of Πm̃, which is what matters for the compression properties.

The pressure functions will be expanded in a basis ΨM = {ψM,λ : λ ∈ JM},
which is also generated by B-splines of order mM in the above sense. Likewise the
order of moment conditions will be denoted by m̃M , i.e.,

(P, ψM,λ)Ωl
= 0 for all P ∈ Πm̃M ,κl , ψM,λ ∈ Ψ−

M .(5.2.3)

Remark 5.1. There are some important distinctions between ΨX and ΨM though
(aside from the fact that ΨX is vector and ΨM is scalar valued). First, ψM,λ do not
satisfy any boundary conditions. Moreover, the moment conditions hold everywhere in
Ω since all wavelets are always fully supported in a single patch Ωl; i.e., the wavelets
need not be continuous across patch interfaces.

Since by (5.2.3) the wavelets in Ψ−
M have zero mean, an ab initio wavelet basis

for L2(Ω) can easily be transformed into one for the constrained space L2,0(Ω) by
modifying only the finitely many elements in Ψ+

M , a fact that will be important later
in the numerical realization.
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It has been shown in [6, 17] that bases ΨX and ΨM satisfy the norm equivalences
(2.2.1) and (2.2.2) with scaling weights

(DX)λ := 2|λ|, (DM )λ := 1.(5.2.4)

In fact, the alternative choice (DX)λ := a(ψX,λ, ψX,λ)
1/2 typically gives rise to quan-

titatively better results, but we will stick with (5.2.4) for simplicity.
Hence, the resulting wavelet representations A and BT are of the following form:

A = (aλ,λ′)λ,λ′∈JX
, aλ,λ′ =

d∑
i,l=1

2−(|λ|+|λ′|)
∫

Ω

∂ψλ,i
∂xl

∂ψλ′,i

∂xl
dx,(5.2.5)

BT = (bλ,λ′)λ∈JX ,λ′∈JM
, bλ,λ′ = −

d∑
i=1

2−|λ|
∫

Ω

ψM,λ′(x)
∂ψλ,i
∂xi

(x)dx.(5.2.6)

5.3. Compression properties. The matrices A, B, defined by (5.2.5) and
(5.2.6), are known to be compressible in a range that depends on the regularity of
the wavelets; see [8]. However, the special piecewise polynomial nature of the above
bases allows us to establish a somewhat larger range of compressibility compared with
the general estimates in [8]. In this subsection, we briefly discuss the compression
properties of the matrices A and B, BT . The analysis is based on the following
version of the Schur lemma which follows from interpolation between �∞ and �1.

Lemma 5.2. Let T = (Tl,l′)l∈I,l′∈I′ be a matrix and let I, I ′ be countable index
sets. Suppose that there exist sequences (>l)l∈I and (>̃l′)l′∈I′ such that∑

l′∈I′
|Tl,l′ |>̃l′ ≤ c>l and

∑
l∈I
|Tl,l′ |>l ≤ c>̃l′ , l ∈ I, l′ ∈ I ′;(5.3.1)

then ‖T‖ ≤ c.
Our numerical examples refer to the L-shaped domain Ω = (−1, 1)2 \ (−1, 0]2.

Thus Ω can be decomposed, e.g., into three subpatches Ωl, l = 1, 2, 3, each being a
simple translate of the unit square (0, 1)2. The spaces Πm,κl consist then of polyno-
mials in the classical sense. The moment conditions (5.2.2) hold then on all of Ω also
for those wavelets whose support overlaps more than one subdomain. In this case
the truncation rule that produces the compressed matrices Aj from (4.1.9) reads as
follows; see [8, 2]. In order to indicate the role of the spatial dimension we keep the
general notation although the example refers to d = 2. Given j, set

ãλ,ν :=

{
aλ,ν ,

∣∣|λ| − |ν|∣∣ ≤ j/d,
0, else.

(5.3.2)

Unless otherwise stated, we shall henceforth use the abbreviation m = mX , m̃ = m̃X .
Theorem 5.3. For the matrix A defined by (5.2.5) and any ε > 0, the following

compression estimate holds:

‖A−AJ‖ <∼ 2−J(m−3/2−ε)/d, i.e., A ∈ Cs∗ , s∗ = (m− 3/2)/d.(5.3.3)

Proof. The estimate (5.3.3) can be established by using Lemma 5.2 with I = I ′ =
JX and >λ = >̃λ = 2|λ|(1−d) for all λ ∈ JX . To this end, let Ωλ,i, Pm denote the
support of the i-component of ψλ and the space of polynomials of degree at most m.
We recall that derivatives of wavelets are again wavelets with the order of vanishing



1252 STEPHEN DAHLKE, WOLFGANG DAHMEN, AND KARSTEN URBAN

moments increased by one [22]. Exploiting this fact, and recalling that m̃ ≥ m and
|λ′| ≥ |λ|, we obtain

|(∇ψX,λ,∇ψX,λ′)| ≤
d∑

i,l=1

inf
P∈Pm

∣∣∣∣
(
∂ψλ,i
∂xl

− P,
∂ψλ′,i

∂xl

)∣∣∣∣
<∼ 2|λ

′|
d∑

i,l=1

inf
P∈Pm

∥∥∥∥∂ψλ,i∂xl
− P

∥∥∥∥
L2(Ωλ′,i)

,

where we have applied (2.2.1) with the weights from (5.2.4) to estimate the term

‖∂ψλ′,i
∂xl

‖L2
by 2|λ

′|. Setting j := |λ|, j′ := |λ′|, since ∂ψλ,i

∂xl
∈ Hs, s < m − 3/2, a

classical Whitney-type estimate therefore yields

| (∇ψλ,∇ψλ′) | <∼
d∑

i,l=1

2j
′
2−j

′(m−3/2−ε)
∣∣∣∣∂ψλ,i∂xl

∣∣∣∣
Hm−3/2−ε

<∼
d∑
i=1

2j
′
2−j

′(m−3/2−ε)|ψλ,i|Hm−1/2−ε

<∼ 2j
′
2−j

′(m−3/2−ε)2j(m−1/2−ε) <∼ 2(j−j′)(m−3/2−ε)2j+j
′
.

Thus, taking the scaling matrix DX into account and treating the case j′ ≤ j in an
analogous fashion, we derive

|aλ,λ′ | <∼ 2−||λ|−|λ′||(m−3/2−ε).(5.3.4)

In view of (5.3.3) and (5.3.1), we have to estimate
∑

|j−j′|>J/d
∑

|λ′|=j′ |aλ,λ′ |2j′(1−d).
Again consider the case j′ > j first and observe that (5.3.4) can be refined for certain
entries because in the present case the wavelets are piecewise polynomial. In fact, the
nonvanishing entries correspond only to the wavelets ψλ′ for which the support of one
component ψλ′,i intersects the corresponding singular support Sλ′,i of ψλ,i. The set
Sλ′,i can be viewed as a submanifold of dimension d − 1 with measure of the order
2−j(d−1). Consequently, for j′ > j, there are at most a fixed constant multiple of
2(j′−j)(d−1) many wavelets possessing a nontrivial intersection with Sλ′,i. Therefore
we obtain∑

|λ′|=j′
|aλ,λ′ | <∼ 2(j−j′)(m−3/2−ε)2(j′−j)(d−1) <∼ 2(j−j′)(m−3/2−ε+1−d)(5.3.5)

and hence finally

∑
j′−j>J/d

∑
|λ′|=j′

|aλ,λ′ |2j′(1−d) <∼
∞∑

j′=j+J/d

2(j−j′)(m−3/2−ε+1−d)2j
′(1−d)(5.3.6)

<∼ 2j(1−d)2−J(m−3/2−ε)/d.

The case j′ ≤ j can be treated analogously, and the second condition in (5.3.1) follows
in this case by symmetry, which confirms (5.3.3).
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Remark 5.4. By combining the results in [8] with the analysis in [13], one derives
the following bound for the range of compressibility of the wavelet representation of
an elliptic differential operator of order 2t:

s∗ := max

{
0,min

{
σ

d
− 1

2
,
2t+ 2m̃

d

}}
.

Here the parameter σ must satisfy t + σ < γ, where γ bounds the Sobolev regularity
of the wavelets. In the present case one has t = 1, γ = m − 1/2, i.e., σ = m − 3/2,
and hence s∗ = (m−3/2)/d−1/2. Therefore (5.3.3) ensures in any spatial dimension
a gain in the compression range by 1/2 when compared with the usual estimate in [8,
Proposition 3.4].

For more general domains, when the κl are no longer affine, some constructions
of wavelet bases guarantee the full order of vanishing moments (5.2.2) only for those
wavelets that are supported in a single patch Ωl. Those wavelets overlapping several
subdomains still have at least first order moments, and hence their gradients have
second order moments. Of course, this occurs only along a (d− 1) dimensional man-
ifold and can be compensated by modifying the compression rule (5.3.2). Moreover,
those entries a(ψλ, ψλ′), for which the supports overlap each other but their singular
supports (cut regions of tensor product B-splines) do not intersect, are no longer zero.
However, since one of the wavelets is arbitrarily smooth throughout the integration
domain, the order of vanishing moments increases to m̃X + 1 so that these entries
are much smaller than the remaining ones, which suffices as well. Alternatively, one
can employ the construction from [18], where vanishing moments are not constrained
through patch interfaces.

A similar result can also be established for the matrix BT defined in (5.2.6).
Theorem 5.5. Suppose that the order mX of the multiresolution spaces for the

velocity space X and the order m̃M of the vanishing moments of the pressure wavelets
defined in (5.2.3) satisfy m̃M ≥ mX − 1. Then for the matrix BT defined in (5.2.6)
and any ε > 0, the following compression estimate holds:

‖BT −BTJ ‖ <∼ 2−J(m−3/2−ε)/d, i.e., BT ∈ Cs, s < s∗ = (m− 3/2)/d.(5.3.7)

The proof of Theorem 5.5 follows the lines of the proof of Theorem 5.3 with I =
JX , I ′ = JM , >λ = 2|λ|(1−d), λ ∈ JX , and >̃λ′ = 2|λ

′|(1−d), λ′ ∈ JM .
To determine finally the compressibility of the matrixR from (3.1.3), we can apply

the same reasoning for ∂ψλ,i/∂xl and ψM,λ′ replaced by ψ̃M,λ. Since in this case no

derivatives are involved and Ψ̃M is patchwise defined just as ΨM is, the compressibility
range is again determined by the order mM of the primal basis ΨM (which limits the
order of the polynomials that can be subtracted in the inner products) and the Sobolev
regularity γ̃M of the dual basis Ψ̃ inside each patch Ωl. Combining tensor products of
the wavelet bases on [0, 1] from [16] with parametric mappings allows one to realize
therefore any desired order s∗R of compressibility for R, provided that mM and γ̃M
are chosen accordingly.

Theorems 5.3 and 5.5 tell us now in which range for a given choice of wavelet
bases the general results Theorem 4.9 and Corollary 3.5 assert asymptotically optimal
accuracy/work balance for the adaptive solution of the Stokes problem.

5.4. Regularity theory for the Stokes problem. So far we have presented
some numerical tools to serve as input for an adaptive scheme that realizes asymp-
totically optimal convergence rates in (essentially) linear time within a certain range
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of error decay orders determined by the compressibility of the involved wavelet rep-
resentations. A natural question is whether at all or under which circumstances
the corresponding accuracy/work balance is better than for technically much simpler
schemes based, e.g., on uniformly refined meshes—in brief, when does adaptivity pay?
It turns out that this question is inherently related to the regularity of the approxi-
mated solution. More precisely, while a given order of best approximation from trial
spaces for preassigned uniform meshes (referred to as linear schemes) is characterized
by the Sobolev regularity of the approximant, the order of nonlinear or best N -term
approximation is (almost) characterized by the regularity in a certain Besov scale to be
specified in a moment; see also [19]. To explain this let Ht denote a (closed subspace
of a) Sobolev space such as H1

0 (Ω), respectively, H
1
0 (Ω)

d or L2,0(Ω) for t = 0 and let
Υ denote a wavelet basis in Ht satisfying a norm equivalence of the form (2.2.1) with
suitable scaling matrix Dt. In analogy to (4.1.1), let

σN,Ht(v) := inf
w,#w≤N

‖v −wT (Dt)−1Υ‖Ht(5.4.1)

denote the error of best wavelet N -term approximation in Ht. The following fact has
been shown in [12].

Proposition 5.6. Whenever t ≤ r for some r ∈ R+ depending on the regularity
of the wavelet basis, let

1

α
=

r − t

d
+

1

2
(5.4.2)

for some r ∈ R. Then (for a sufficiently regular basis Υ) one has

∞∑
N=1

(
N (r−t)/dσN,Ht(v)

)α
<∞ if and only if v ∈ Brα(Lα(Ω)).(5.4.3)

Note thatBrα(Lα(Ω)) is the largest space of smoothness r in Lα which is still embedded
in Ht, since (5.4.2) marks the Sobolev embedding line; see the “DeVore diagram” in
[19]. Clearly, (2.2.1) says that for v = vT (Dt)−1Υ one has

σN,Ht(v) ∼ σN,	2(v).(5.4.4)

Moreover, (5.4.3), (5.4.4) mean that when v ∈ Brα(Lα(Ω)) the error of the bestN -term
approximation of its wavelet coefficients v decays at least like σN,	2(v) <∼ N−(r−t)/d.
This is sharp in the sense that the exponent s = (r− t)/d is best possible. This subtle
gap in the characterization of the Besov spaces is due to the small difference between
the classical spaces �τ (characterizing wavelet coefficients for elements in the Besov
space) and the weak-type space �wτ characterizing best N -term approximation of the
wavelet coefficient sequences in �2 [19].

These facts suggest asking for the regularity of the solution (u, p) of the Stokes
problem (5.1.1) in the relevant Besov scales.

We shall briefly review now some results from [10, 20, 23] concerning the regularity
of the solution to the Stokes problem (5.1.1) for the L-shaped domain, which are
relevant for the subsequent selection of numerical examples. In our case, one can
identify the singular part uS of the velocity which is independent of smooth right-
hand sides f and describes the influence of the domain.

In fact, by specializing the results in [10, 11], one can identify solutions uS of the
Stokes problem (referred to as singular solution) exhibiting the strongest singularity
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induced by the reentrant corner for smooth right-hand sides. The following result can
then be established.

Theorem 5.7. Any singular solution uS of the Stokes problem (5.1.1) on the
L-shaped domain satisfies

uS ∈ Brτ (Lτ (Ω))
2 for all r > 0,

1

τ
=

r − 1

2
+

1

2
.(5.4.5)

Noting that ∇p = f +∆u, one concludes (by the shift properties of the gradient
and the Laplacian in Besov spaces) that also the pressure has arbitrarily high Besov
regularity along the critical embedding line through L2; see [10]. Furthermore, one
can likewise determine (for smooth right-hand sides f) the singular parts pS of the
pressure; see also [20, 23]. The relevant conclusions for the present context can be
formulated as follows.

Remark 5.8. One can verify that

u ∈ Hr(Ω)2, r < r∗X ≈ 1.54448373678246 and
p ∈ Hr(Ω), r < r∗M ≈ 0.54448373678246

(i.e., u �∈ Hr∗X (Ω)2, p �∈ Hr∗M (Ω)), which limits the convergence rate of uniform refine-
ments. On the other hand, u and p both have arbitrary high Besov regularity. Hence,
in principle, wavelet bases with high order regularity would give rise to correspondingly
high order adaptive approximation rates.

6. Numerical results. In this section, we present some numerical experiments
for the Stokes problem on the planar L-shaped domain Ω = (−1, 1)2 \ (−1, 0]2. We
employ different versions from the family of wavelet bases ΨX and ΨM from section
5.2 for velocities and pressure, respectively.

Our objective is not to present a fully matured code but to gain additional quanti-
tative insight that complements the preceding theoretical results of primarily asymp-
totic nature. This concerns the quantitative effect of “violating” the LBB condition
and the tradeoff between larger supports and better compressibility when using higher
order wavelets as well as suggestions for further algorithmic variants and develop-
ments. For instance, the theoretical estimates, e.g., on the number K of iterations in
ADV, are presumably overly conservative. So it would be interesting to see exper-
imentally whether typically smaller numbers suffice or whether monitoring residuals
pays to realize significantly earlier terminations. Furthermore, we wish to see how
the scheme copes with highly singular cases suggested by the discussion in section 5.4
compared with more regular solutions. More extensive tests of variants derived from
first experiences will be presented elsewhere.

6.1. Discretization of the pressure. Recall from (5.1.2) that L2,0(Ω) is the
appropriate pressure space. Hence the zero mean constraint requires special care.
Here we exploit the fact that all wavelets in Ψ−

M have, according to (5.2.3), vanishing
moments of order m̃M ≥ mM ≥ 1, so that∫

Ω

ψM,λ(x) dx = 0, λ ∈ JM , |λ| > j0.

Hence for any q = qTΨM one has∫
Ω

q(x) dx =
∑

|λ|=j0
qλ

∫
Ω

ψM,λ(x) dx =:
∑

|λ|=j0
qλαλ =: IΩ(q).
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On the other hand, the scaling functions form a partition of unity, i.e.,

1 ≡
∑

|λ|=j0
α̃λ ψM,λ(x), x ∈ Ω, α̃λ :=

∫
Ω

ψ̃M,λ(x) dx = (1, ψ̃M,λ),

where {ψ̃M,λ : |λ| = j0} is the (explicitly known) dual basis for the scaling functions

in ΨM , i.e., (ψM,λ, ψ̃M,λ′) = δλ,λ′ ; see [6, 17]. Thus, denoting by µ(Ω) the Lebesgue
measure of Ω, we obtain a projection P0 : L2(Ω)→ L2,0(Ω) by

P0(q) :=
∑

|λ|=j0

(
qλ − IΩ(q)

µ(Ω)
α̃λ

)
ψM,λ +

∑
|λ|>j0

qλψM,λ

that factors out constants. Hence, realizing the zero mean constraint requires modifi-
cations only on the coarsest level, whereas the wavelet coefficients remain unchanged.
Since operators are applied only approximately, corresponding corrections are needed
after applying B and also after coarsening. Since the projection P0 depends on the
particular primal wavelet basis for L2(Ω), all arrays have to refer to the same basis so
that the Riesz map R = (Ψ̃M , Ψ̃M ) is needed in the second step (3.1.7) of the Uzawa
iteration.

Note that the present way of factoring out constants is only a first convenient
option. A drawback reflected by the experiments below is that due to the nature of
P0 always all coarse scale functions will be involved in the pressure approximations. In
particular, for higher order trial functions this number grows, so that at least for the
first few refinement steps the work/accuracy balance of the scheme is less favorable for
the pressure component. Local coarse scale basis functions would remedy this effect.

A detailed description of the routines APPLY and NCOARSE can be found in
[2, 8] combined with the above provisions with respect to the matrix B. As mentioned
before, the routine ELLSOLVE is essentially the adaptive Poisson solver from [2].
This indicates the principal potential of recycling these basic routines for the treat-
ment of problems with increasing complexity.

6.2. Description of the test cases. We wish to report below on two different
test cases. Example (I) corresponds to the most singular solution described in section
5.4. As can be seen in Figure 6.1, the pressure exhibits a strong singularity at the
reentrant corner. In order to keep the effort for computing an exact reference solution
as moderate as possible, we have computed an approximation of the exact solution by
truncating p. Of course, this limits the number of iterations of the adaptive algorithm
for which meaningful comparisons can be made.

Example (II) involves a pressure which is localized around the reentrant corner,
has strong gradients, but is smooth. More precisely, we have chosen an exact solution
for the velocity which is very similar to the one above and a pressure solution which
is constant around the reentrant corner and multiplied by a smooth cutoff function.
These functions are displayed in Figure 6.2.

6.3. Choice of the parameters. We expect that some of the constants result-
ing from the analysis are actually too pessimistic. For instance, deriving estimates for
the constants in the norm equivalences, we have estimated K to be in the range of 15,
which turned out to entail unnecessarily high accuracy in the treatment of the inner
Poisson problems while the pressure approximation and hence the right-hand side for
the Laplace problem are still poor. Several numerical experiments with different trial
functions and for different test cases indicate that K = 3 already seems to suffice
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Figure 6.1. Exact solution for the first example. Velocity components (left and middle) and
pressure (right). The pressure function exhibits a strong singularity and is only shown up to r =
0.001 in polar coordinates.
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Figure 6.2. Exact solution for the second example. Velocity components (left and middle) and
pressure (right).

and that the alternatives discussed in section 3 are in these cases not necessary. All
subsequent results are therefore based on this choice. Moreover, we have used ρ = 0.6
and ω = 1.3 in all experiments.

6.4. Rate of convergence. Table 6.1 displays the results for Example (I), em-
ploying piecewise linear trial functions for the velocity and piecewise constant func-
tions for the pressure. We are interested in the relation between the error produced
for a given number of degrees of freedom by the adaptive scheme and the error of
best N -term approximation with respect to the underlying wavelet basis. To describe
the results we denote by u1,u2 the wavelet coefficient arrays of the first and second
velocity component and for x ∈ {u1,u2,p} by

ρx :=
‖x− xΛ‖	2
‖x− x#Λ‖	2

, rx :=
‖x− xΛ‖	2
‖x‖	2

,

the ratio of the error of the adaptive approximation and the corresponding best N -
term approximation and the relative errors of the solution components xΛ, respec-
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Table 6.1
Results for Example (I). Numbers of adaptively generated degrees of freedom, ratio to best N-

term approximation, and relative errors.

It δ #Λu1 ρu1 ru1 #Λu2 ρu2 ru2 #Λp ρp rp

1 11.730947 33 1.04 0.6838 34 1.04 0.6744 768 130.35 1.0024

2 5.865474 84 1.26 0.3427 83 1.24 0.3447 768 130.40 1.0028

3 2.932737 193 1.32 0.1530 184 1.31 0.1541 768 15.37 0.5234

4 1.466368 446 1.29 0.0821 450 1.29 0.0897 929 4.15 0.2218

5 0.733184 1070 1.27 0.0434 1065 1.27 0.0456 1211 2.58 0.1034

Table 6.2
Results for Example (II). Numbers of adaptively generated degrees of freedom, ratio to best

N-term approximation, and relative error.

It δ #Λu1 ρu1 ru1 #Λu2 ρu2 ru2 #Λp ρp rp

1 15.636636 278 28.20 1.2936 364 60.31 2.1867 768 6.96 0.3329

2 7.818318 261 8.30 0.4028 295 16.10 0.7003 768 3.76 0.1800

3 3.909159 234 3.72 0.1995 274 5.63 0.2617 768 1.80 0.0863

4 1.954580 180 1.25 0.0886 249 2.08 0.1056 810 1.22 0.0452

5 0.977290 233 1.14 0.0615 267 1.29 0.0615 980 1.07 0.0231

6 0.488645 298 1.11 0.0480 321 1.17 0.0470 1276 1.05 0.0117

7 0.244322 456 1.35 0.0398 505 1.43 0.0265 1551 1.09 0.0061

8 0.122161 704 1.36 0.0250 724 1.39 0.0177 1842 1.24 0.0035

tively. Recall from Corollary 3.5 that these quantities also reflect the error in the
energy norms. We see that the velocity approximation is from the beginning very
close to its best N -term approximation. For the reasons indicated above this is dif-
ferent for the pressure. The application of P0 fills up the coarsest level, which in this
example has 768 degrees of freedom. To explain this in more detail assume that the
adaptive method picks exactly one scaling function, so that the degree of freedom
for the pressure would be 1. Since the integral of a scaling function is not zero, the
pressure projection P0 produces a nonzero constant whose expansion involves all scal-
ing function coefficients. This is the reason why at the early stage of the refinement
process the work accuracy balance for the pressure is less favorable. However, the last
two iterates shown in the table indicate that the scheme catches up with the optimal
rate. Local coarse scale bases would of course yield better results already from the
beginning of the adaptive refinements.

The results for Example (II) are shown in Table 6.2, and plots of the approxi-
mations are displayed in Figure 6.3. We see that the computed approximations differ
only by a very moderate factor from the best N -term approximation. The results
suggest the following directions for more systematic implementations. The simple
Richardson iteration should be replaced (possibly after a few initial steps) by gra-
dient or conjugate gradient steps. This should speed up convergence and avoid a
necessarily pessimistic estimation of step size parameters. Since all algorithmic in-
gredients still require the same type of (approximate) matrix/vector multiplications,
one can employ the same routines. One should then include, however, monitoring
residuals which, due to (2.3.1), should detect rapid convergence for a possible early
termination of the iterations in ADV (ii). Moreover, higher order wavelets should be
tested to exploit larger compressibility ranges.
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Figure 6.3. First, third, sixth, and eighth approximations for Example (II). First and second
velocity component (left and middle columns) and pressure (right column).

6.5. High order discretizations. Recall from section 5.3 that the compress-
ibility range of the wavelet representations grows with increasing regularity and hence
order of the wavelet bases; see Theorems 5.3, 5.5. Moreover, the regularity results
from Theorem 5.7 and Remark 5.8 indicate that the larger the compressibility range of
the wavelet representations, the more an adaptive scheme would gain at least asymp-
totically over uniform refinements. This suggests investigating the quantitative effect
of employing higher order spline wavelets.

We now compare discretizations of various orders for the pressure in the sec-
ond example. In Figure 6.4, we have shown the relative error versus the number of
unknowns in a logarithmic scale. Comparing the slopes of the best N -term approx-
imation, we obtain the expected asymptotic gain for increasing orders, again at the
end with moderate values for the ratios ρx. However, we also see that the fast decay
of the rate of the best N -term approximation is delayed more and more for an in-
creasing order of trial functions. For instance, for piecewise cubic wavelets, we obtain
an almost horizontal line until N ≈ 2000. This is, on one hand, due to some technical
restrictions of the particular patchwise tensor product wavelet bases used here that
require a certain coarsest level j0 on each patch. The values for j0 are shown in Table
6.3 for different orders. We see that j0 increases with m (the case m = 2 is somewhat
special due to the very local character of primal and dual functions). We display also
the number of unknowns for the coarsest level, i.e., the number of scaling functions
on level j = j0. On the other hand, as pointed out before, the nature of P0 keeps all
coarse scale basis functions active. This explains why the slope of the best N -term
approximation is almost horizontal until all scaling functions are used up. There are
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Figure 6.4. Relative error versus number of unknowns for spline wavelets of different order
for the discretization of the pressure in the second example.

Table 6.3
Minimal level j0 and number of scaling functions NΦ on the minimal level for different order

discretizations.

m, m̃ 1,3 2,2 3,3 4,4

j0 4 3 4 5

NΦ 705 242 587 2882

several ways to alleviate this problem also for higher order discretizations. Aside from
using local coarse scale basis functions with zero mean, one can take a fictitious do-
main approach and append the boundary conditions by Lagrange multipliers. This
allows one to use periodic wavelet bases on the fictitious domain where the minimal
level can be always chosen as j0 = 0 for all values of m and m̃. This issue will be
addressed elsewhere.

6.6. The LBB condition. At first glance it is somewhat puzzling that in the
analysis of the adaptive Uzawa method the LBB condition did not play any role.
Roughly speaking, this is due to the fact that conceptually at every stage of the
algorithm the full infinite dimensional operator is applied within a certain tolerance
that has to be chosen tight enough to inherit the stability properties of the original
infinite dimensional problem. This effect of adaptive schemes in connection with
saddle point problems and also with more complex variational problems has been
observed first in [9]; see also [14] for saddle point problems. Hence it is interesting to
study the quantitative influence of the choice of bases. Therefore, we have included
a combination of bases for which pairs of fixed finite dimensional subspaces would
violate the LBB condition, namely, piecewise linear trial functions for both velocity
and pressure. The results are displayed in Table 6.4. We see that the rate of the best
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Table 6.4
Results for the second example with piecewise linear trial functions for velocity and pressure.

Note that in this case the number of degrees of freedom for the coarsest level is 243.

It δ #Λu1 ρu1 ru1 #Λu2 ρu2 ru2 #Λp ρp rp

1 16.743449 1 1.00 0.9293 1 1.00 0.9300 243 6.27552 0.3354

2 8.371724 1 1.00 0.9304 1 1.00 0.9292 243 3.98811 0.2131

3 4.185862 5 1.00 0.7586 5 1.00 0.7588 243 2.23810 0.1196

4 2.092931 20 1.13 0.4064 24 1.45 0.3979 262 2.08107 0.0612

5 1.046466 61 1.47 0.2107 77 1.79 0.2107 324 2.72102 0.0339

6 0.523233 178 1.33 0.1060 198 1.52 0.1306 396 2.81079 0.0209

7 0.261617 294 1.19 0.0533 286 1.46 0.0744 674 2.21371 0.0108

8 0.130808 478 1.25 0.0271 531 1.46 0.0362 899 1.83271 0.0071

N -term approximation is still matched fairly well with ratios that are only slightly
larger than in Table 6.2 for the piecewise linear/piecewise constant discretization.
Note that the oscillations in the pressure approximation for unstable elements shown
by the experiments in [4] are not observed in the present context; see Figure 6.3. This
seems to result from the different pressure update.
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Abstract. A gradient recovery technique is proposed and analyzed for finite element solutions
which provides new gradient approximations with high order of accuracy. The recovery technique
is based on the method of least-squares surface fitting in a finite-dimensional space corresponding
to a coarse mesh. It is proved that the recovered gradient has a high order of superconvergence for
appropriately chosen surface fitting spaces. The recovery technique is robust, efficient, and applicable
to a wide class of problems such as the Stokes and elasticity equations.
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1. Introduction. It has been known for a long time that finite element solu-
tions of partial differential equations can have superconvergence in some subregions
of the domain [26, 23, 8, 1]. Superconvergence is a phenomenon that the numerical
solution converges to the exact solution at a rate higher than the optimal order error
estimate. To exploit superconvergence in the finite element method, several meth-
ods have been proposed in the literature in the last 30 years. The method of local
averaging has turned out to be a common and useful technique in the study of su-
perconvergence in most of the existing results; see, for example, [23, 8, 1, 7, 35, 19,
18, 20, 17, 21, 25, 26, 10, 13] and the references therein. In theory, all the existing
results require the underlying finite element mesh to have some special properties such
as uniformity [23, 7, 21], local point symmetry [25, 26], local translation invariance
[1, 26], or orthogonality (e.g., rectangular partition) [8, 10, 13, 19, 18, 20, 28, 34].

The Zienkiewicz and Zhu (ZZ) method [32, 33] is a procedure which postprocesses
the gradient of the finite element solution by using a discrete least-squares fitting on
a local patch with high order polynomials. Due to its high efficiency and robustness,
the ZZ postprocessing has been widely used for mesh adaptivity and error control in
finite element methods [32, 33, 5, 6]. For appropriately chosen discrete norms, this
procedure has been computationally justified to yield some superconvergence for the
gradient. If the underlying finite element partition is uniform or rectangular, one
can provide a theoretical proof for the ZZ method [31, 34, 30] by using some existing
superconvergent estimates [8, 23, 17, 35, 18].

Our objective of this paper is twofold. First, we modify the ZZ method by apply-
ing a global least-squares fitting to the gradient of the finite element approximation.
The surface fitting space consists of continuous or discontinuous piecewise polynomi-
als of high order on a coarse partition. Second, we provide a theoretical analysis for
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the modified ZZ (MZZ) method by establishing a superconvergence estimate for the
recovered gradient/flux on general quasi-uniform meshes. To the authors’ knowledge,
our result is the first that gives a theoretical proof for the superconvergence of the
ZZ method with some modifications under general assumptions for the finite element
partition. The essential idea behind the approach is the use of a coarser mesh and
a higher order of polynomials which can be translated to the method of “long” and
“accurate” finite difference quotients. The same idea has been applied in [15] to yield
asymptotically exact a posteriori estimators for the pointwise gradient error.

Our presentation follows a framework established in Wang [27] (see also [29]),
where the least-squares surface fitting (the projection method) was applied to the
finite element solution uh in order to produce a new and better approximation for the
original unknown function u = u(x) and its gradient ∇u. The approach of this paper
is different in that the projection will be applied directly to the numerical gradient
∇uh in order to provide a superconvergent numerical solution for ∇u. Like all the
existing results in superconvergence, our results are based on a certain regularity
assumption for the exact solution of the underlying model problem.

For simplicity of discussion, our superconvergence result will be presented only
for Dirichlet boundary value problems. The results can be extended to Neumann and
Robin boundary conditions without any difficulty.

The paper is organized as follows. In section 2, we introduce a model problem
for which the required regularity condition is satisfied. In section 3, we present an
extension of the ZZ method by using a global least-squares fitting in a high order
finite element space corresponding to a coarse mesh. Some error estimates for the
new gradient approximation will be derived in section 4. In sections 5 and 6 we
apply the error estimate to show that the projected gradient is superconvergent if
the fitting space is properly chosen. Section 7 applies the gradient recovery scheme
to mesh adaption, and section 8 gives numerical results and comparison for various
adaptive schemes.

2. A model problem. To illustrate the idea, we consider boundary value prob-
lems for the second order elliptic equation. Let Ω be an open bounded domain in
R
d, d = 2, 3. Denote by x = (x1, . . . , xd) the points in Ω. Let ∂i =

∂
∂xi

be the partial
derivative operator in the direction of xi, i = 1, . . . , d. The Dirichlet boundary value
problem seeks a function u = u(x) such that u(x) = g(x) for any x ∈ ∂Ω and

d∑
i,j=1

∂j(aij∂iu) +

d∑
i=1

bi∂iu+ cu = f in Ω,(1)

where a = (aij)
d
i,j=1 is the coefficient tensor which is symmetric, bounded, and uni-

formly positive definite in the domain Ω with measurable entries aij = aij(x). The
other coefficients b = (bi(x))

d
i=1 and c = c(x) are assumed to ensure a uniqueness of

solutions for (1).

Standard notations for Sobolev spaces and norms are adopted in this paper. For
an s ≥ 0, which may not be an integer, and a given domain Ω, Hs(Ω) denotes the
Sobolev space with norm ‖·‖s as defined in [14]. The space Hs

0(Ω) is a closed subspace
of Hs(Ω) that is the closure of Cs0(Ω) (the set of compact-supported Cs functions) in
the norm of Hs(Ω). For s < 0, Hs(Ω) is defined to be the dual space of H−s(Ω); see
[14] for details. The Sobolev space H0(Ω) coincides with L2(Ω), in which case the
norm and inner product are denoted by ‖ · ‖ and (·, ·), respectively.
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Let

a(u, v) =

d∑
i,j=1

∫
Ω

aij∂iu∂jvdx+

d∑
i=1

∫
Ω

bi∂iuvdx+

∫
Ω

cuvdx

be a bilinear form defined in H1(Ω)×H1(Ω). A weak form for the problem (1) seeks
a function u ∈ H1(Ω) such that u = g on ∂Ω and

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω).(2)

Here we have assumed that the boundary data g ∈ H1/2(∂Ω).
Let s ≥ 1 be a positive real number. Assume that the dual problem of (2) has

Hs regularity in the sense that, for any given f ∈ Hs−2(Ω), the problem

a(v, w) = (f, v) ∀v ∈ H1
0 (Ω)

has a unique solution w ∈ H1
0 (Ω) ∩Hs(Ω) such that

‖w‖s +
∥∥∥∥ ∂w∂na

∥∥∥∥
s− 3

2 ,∂Ω

≤ C‖f‖s−2,(3)

where n is the unit outward normal vector of ∂Ω and ∂w
∂na

= (a∇w) · n denotes the
normal component of the flux variable on the boundary ∂Ω for the dual solution w.
It is well known that the bilinear form a(·, ·) is bounded in H1(Ω). In other words,
there exists a constant C such that

|a(u, v)| ≤ C‖u‖1‖v‖1 ∀ u, v ∈ H1(Ω).

The finite element solution of (2) is a function uh = uh(x) from a finite element
space Sh ⊂ H1(Ω) associated with a prescribed finite element partition Ωh such that
uh(x) = gh(x) for all x ∈ ∂Ω and

a(uh, v) = (f, v) ∀v ∈ S0
h.(4)

Here S0
h = H1

0 (Ω) ∩ Sh and gh is a certain approximation of the Dirichlet boundary
data g. Let Λh be the restriction of the finite element space Sh on the boundary of
Ω. For simplicity, we shall deal with polygonal or polyhedral domain Ω so that the
boundary ∂Ω is exactly represented by the finite element partition Ωh. Among many
possibilities, we are particularly interested in two cases for the approximate boundary
data:

• gh is the standard nodal interpolation of g in Λh for sufficiently smooth g.
• gh is the L2 projection of g in Λh.

We recall that the L2 projection of g in Λh is given by solving the following system
of linear equations:

〈gh, v〉 = 〈g, v〉 ∀v ∈ Λh,(5)

where 〈·, ·〉 is the standard L2-inner product on ∂Ω.
Assume that Sh consists of continuous piecewise polynomials of order k ≥ 1. Let

h be the mesh parameter for the finite element partition Ωh. The finite element space
Sh is assumed to have the following approximation property:

inf
v∈Sh

(‖w − v‖+ h‖w − v‖1) ≤ Chm‖w‖m ∀w ∈ Hm(Ω)

for any 0 ≤ m ≤ k + 1.
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3. Gradient recovery by projections. To obtain an approximate gradient
and flux with superconvergence, we consider a new finite-dimensional space Lτ with
parameter τ � h and a higher order approximation property than Sh [15]. The
functions in Lτ are vector valued and will be employed to approximate the exact
gradient/flux variable q = a∇u. In practice, the mesh parameter τ is proportional to
hα for some α ∈ (0, 1) in order to obtain a superconvergent approximation from the
projection space Lτ . Details can be found from Wang [27].

For simplicity, assume that Lτ is a finite element space associated with another
finite element partition Ωτ and consists of piecewise polynomials of order r ≥ 0. The
finite element space Lτ is required to satisfy the following properties:

• Inverse property.

‖vτ‖[Hm(K)]d ≤ Cτ−m‖vτ‖[L2(K)]d ∀vτ ∈ Lτ , ∀K ∈ Ωτ(6)

for all nonnegative integer m ≥ 0.
• Approximation property.

inf
vτ∈Lτ

‖v − vτ‖0 ≤ Cτm‖v‖m ∀v ∈ [Hm(Ω)]d, 0 ≤ m ≤ r + 1.(7)

• Smoothness property.

Lτ ⊂ [Hs−1(Ω)]d.(8)

Here s ≥ 1 is associated with the regularity of the dual problem as indicated
in (3).

We emphasize that the space Lτ can be replaced by other finite-dimensional
spaces as trigonometric functions, B-splines, and any special functions if the domain
is of special type. In such cases the approximation property and the inverse inequality
will be different, and the forthcoming analysis must be modified accordingly.

3.1. Recovery based on a mixed formulation. Our objective here is to
provide a very accurate approximation for the flux variable q by using the finite
element solution uh. The relation between the flux q = q(x) and the original function
u = u(x) can be rewritten as follows:

a−1q = ∇u.(9)

Let

H(div; Ω) = {v : v ∈ [L2(Ω)]d, ∇ · v ∈ L2(Ω)}
be equipped with the norm

‖v‖H =
(‖v‖2 + ‖∇ · v‖2)1/2 .

By testing (9) against any v ∈ H(div; Ω) we arrive at

(a−1q,v) = −(u,∇ · v) + 〈g,v · n〉,(10)

where we have employed the integration by parts to the term on the right-hand side.
Equation (10) can be employed to provide a new flux/gradient recovery q̃τ defined

as follows:

(a−1q̃τ ,v) = −(uh,∇ · v) + 〈g,v · n〉 ∀v ∈ Lτ .(11)
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The new flux approximation q̃τ will be denoted by

q̃τ = Q̃τqh.

It is clear that Q̃τ can be regarded as a linear operator onto the fitting space Lτ .
Since (11) was obtained by using test functions in the space H(div; Ω), the fitting

space Lτ has to be constructed as a finite element subspace of H(div; Ω). In practical
computation, the standard mixed finite element spaces of Raviart and Thomas [24],
Brezzi et al. [2, 3], Brezzi, Douglas, and Marini [4], and Douglas and Wang [11] can be
employed to accomplish the goal. Of course, one can also use continuous finite element
spaces in the place of Lτ . The well-known inf-sup condition is no longer an issue in
this procedure because the flux computed is based on a Galerkin approximation of
the scalar variable.

3.2. Recovery based on L2 projections. Let Qτ be the weighted L2 projec-
tion onto the fitting space Lτ with respect to the weighted inner product (a−1·, ·).
More precisely, for any v ∈ [L2(Ω)

]d
, the projection Qτv is a function in Lτ such

that

(a−1Qτv,φ) = (a−1v,φ) ∀φ ∈ Lτ .(12)

It follows from the definition of the Galerkin approximation uh that qh = a∇uh is an
approximate solution of the exact flux variable q. In addition, it is not hard to derive
the following error estimate:

‖q − qh‖ ≤ C‖u− uh‖1
for some constant C.

With the L2-projection operator Qτ , we can provide a new flux approximation
given as follows:

q = a∇u ≈ Qτqh.(13)

From the definition of Qτ , we see that the new flux approximation Qτqh satisfies the
following system of equations:

(a−1Qτqh,φ) = (∇uh,φ) ∀φ ∈ Lτ .(14)

When the fitting space Lτ consists of discontinuous piecewise polynomials of order
k on each element of Ωτ , our flux recovery method is closely related to the ZZ [32, 33]
patch recovery technique. The difference lies on the selection of the fitting space Lτ
and the way that the projection was defined. The ZZ method uses a discrete version
of the L2-inner product, and the fitting space is based on a patch of elements from
the original finite element partition Ωh.

In practical computation, the recovery space contains polynomials of higher order
than the original finite element space. In other words, the value of the parameter r is
normally larger than k.

4. Error estimates. The objective of this section is to analyze the approxima-
tion formulas (13) and (11). The accuracy of the approximations is given in Theorem
4.1 for the case when the boundary data g is approximated by its L2 projection in
Λh. In case that gh is the nodal point interpolation or other approximations satisfying
(29), the corresponding superconvergence estimate is given in Theorem 4.2.
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For simplicity of notation, we use the following element-wise Sobolev norms:

|||v|||m,h =

( ∑
K∈Ωh

|v|2Hm(K)

)1/2

, |||v|||m,τ =

( ∑
K∈Ωτ

|v|2Hm(K)

)1/2

,

where

|v|Hm(K) =


 ∑
K∈Ωh

∑
|α|=m

∫
K

|Dαv|2dx



1/2

is the seminorm of v ∈ Hm(K). Here α = (α1, . . . , αd), αi ≥ 0 is a multi-index and
Dαv = ∂α1

1 · · · ∂αd

d v. Thus, our function v above needs only to be in the Sobolev space
Hm(K) over each element K from Ωh or Ωτ in order to guarantee that the norms
exist. If (6) and (7) are satisfied, then it is not hard to prove the following estimate:

‖v −Qτv‖0 ≤ Cτm|||v|||m,τ , 0 ≤ m ≤ r + 1.(15)

4.1. Projection space Lτ of class H(div; Ω). Let us analyze the approxi-
mation schemes (11) and (13) by assuming that the projection space Lτ is of class
H(div; Ω). The following theorem is concerned with the case when the Dirichlet
boundary data is approximated by L2 projections.

Theorem 4.1. Let u be the exact solution of (2) and uh be its finite element
approximation given by (4). Let q = a∇u be the flux/gradient with the obvious ap-
proximation qh = a∇uh and let Gτ be a postprocessing operator given by either Qτ

or Q̃τ as in the previous section. Assume that the approximate boundary value gh is
taken to be the L2(∂Ω) projection of g and (3) and (8) are valid for an s ∈ [1, k + 1].
Assume that the fitting (projection) space Lτ is constructed so that Lτ ⊂ H(div; Ω).
Then

‖q − Gτqh‖0 ≤ Cτ r+1|||q|||r+1,τ + C(hτ
−1)s−1‖u− uh‖1.(16)

Proof. First, we provide a proof for Gτ = Q̃τ . To this end, we observe that

‖Q̃τqh −Qτq‖0 ≤ C sup
φ∈Lτ ,‖φ‖L2=1

(a−1Q̃τqh − a−1Qτq,φ).(17)

For a given φ ∈ Lτ , it is true that

(a−1Q̃τqh − a−1Qτq,φ) = (a−1Q̃τ (a∇uh)− a−1Qτ (a∇u),φ)
= −(uh,∇ · φ) + 〈g,φ · n〉 − (∇u,φ) = (u− uh,∇ · φ).

Define w ∈ H1
0 (Ω) to be the solution of

a(v, w) = (v,∇ · φ) ∀v ∈ H1
0 (Ω).(18)

Applying the theory of distributions, it can be proved that

a(v, w)−
〈
∂w

∂na
, v

〉
= (∇ · φ, v) ∀v ∈ H1(Ω).
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Using (2), (4), (5), and the above equation, it is easy to see that, for any v ∈ S0
h and

ξ ∈ Λh,

(u− uh,∇ · φ) = a(u− uh, w)−
〈
∂w

∂na
, u− uh

〉

= a(u− uh, w − v)−
〈
∂w

∂na
− ξ, g − gh

〉
.

It follows that

|(u− uh,∇ · φ)| ≤ C‖u− uh‖1‖w − v‖1 + ‖ ∂w
∂na

− ξ‖− 1
2 ,∂Ω‖u− uh‖ 1

2 ,∂Ω.

Using the trace inequality

‖v‖ 1
2 ,∂Ω ≤ C‖v‖1 ∀v ∈ H1(Ω)

and the interpolation estimates

inf
v∈Sh

‖w − v‖1 ≤ Chs−1‖w‖s,(19)

inf
ξ∈Λh

∥∥∥∥ ∂w∂na
− ξ
∥∥∥∥
− 1

2 ,∂Ω

≤ Chs−1‖w‖s,(20)

we obtain

|(u− uh,∇ · φ)| ≤ Chs−1‖u− uh‖1‖w‖s(21)

for an s ∈ [1, k + 1]. Next, we use the Hs regularity assumption (3) to obtain

|(u− uh,∇ · φ)| ≤ Chs−1‖u− uh‖1‖∇ · φ‖s−2 ≤ Chs−1τ1−s‖uh − u‖1‖φ‖0,
where we have also used the inverse property (6) in the last inequality. Collecting all
the estimates we obtain

‖Q̃τqh −Qτq‖0 ≤ Chs−1τ1−s‖uh − u‖1,(22)

which, together with (15), gives the desired error estimate for Gτ = Q̃τ .
To analyze the case Gτ = Qτ , it suffices to estimate ‖Qτ (q − qh)‖0. Since

‖Qτ (q − qh)‖0 ≤ C sup
φ∈Lτ ,‖φ‖0=1

(a−1Qτ (q − qh),φ)(23)

and

(a−1Qτ (q − qh),φ) = (∇(u− uh),φ),(24)

then it is sufficient to estimate |(∇(u− uh),φ)|. Recall that, by assumption, we have
Lτ ⊂ H(div; Ω). Thus, it follows from the integration by parts that

(∇(uh − u),φ) = (u− uh,∇ · φ) + 〈uh − u,φ · n〉.(25)

Let w ∈ H1
0 (Ω) be defined as the solution of the following problem:

a(v, w) = −(∇ · φ, v) ∀v ∈ H1
0 (Ω).(26)
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It follows from (2), (4), and (5) that, for any v ∈ S0
h and ξ ∈ Λh,

(∇(uh − u),φ) = (u− uh,∇ · φ) + 〈uh − u,φ · n〉
= a(u− uh, w) +

〈
∂w
∂na

, uh − u
〉
+ 〈φ · n, uh − u〉

= a(u− uh, w − v) +
〈
∂w
∂na

+ φ · n− ξ, uh − u
〉
.

(27)

Using the standard approximation property of Λh and the trace inequality in Sobolev
spaces as in (20)–(21), we obtain

inf
ξ∈Sh

∥∥∥∥ ∂w∂na
+ φ · n− ξ

∥∥∥∥
− 1

2 ,∂Ω

≤ Chs−1τ1−s‖φ‖0.

It is also not hard to see that

inf
v∈S0

h

|a(u− uh, w − v)| ≤ Chs−1τ1−s‖u− uh‖1‖φ‖0.

Substituting the above two estimates into (27), we obtain

|(∇(uh − u),φ)| ≤ Chs−1τ1−s‖u− uh‖1‖φ‖0,
which implies that

‖Qτ (q − qh)‖0 ≤ Chs−1τ1−s‖u− uh‖1.(28)

This completes the proof of the theorem.
If the exact solution is sufficiently smooth, then we have from the estimate (16)

that

‖q − Gτqh‖0 ≤ C(u, q)
(
τ r+1 + τ1−shk+s−1

)
.

Assume that the model problem has the Hk+1 regularity (i.e., s = k + 1). Thus,

‖q − Gτqh‖0 ≤ C(u, q)
(
τ r+1 + τ−kh2k

)
.

By choosing τ = hα, the above estimate becomes

‖q − Gτqh‖0 ≤ C(u, q)
(
hα(r+1) + h(2−α)k

)
,

which is optimized when

α(r + 1) = (2− α)k ⇐⇒ α =
2k

r + k + 1
.

The corresponding error estimate is given by

‖q − Gτqh‖0 ≤ C(u, q)h
2k(r+1)
r+k+1 .

With k = 3 and r = 3, the above estimate implies an accuracy of order h
8
3 which is

much better than the optimal order h2.
In practical computation, the Dirichlet boundary data is often approximated by

a scheme different from the L2 projection. Thus, the estimate in Theorem 4.1 is
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no longer valid for such problems. Our next goal of this section is to derive some
superconvergence for general approximation schemes of the Dirichlet boundary data.

Theorem 4.2. Assume that (3) and (8) are valid for an s ∈ [3/2, k+1] and that
gh is an approximation of the Dirichlet data g on the boundary such that

‖g − gh‖0,∂Ω ≤ Chk+1‖g‖k+1,∂Ω.(29)

Assume that the projection space Lτ ⊂ H(div; Ω). Then there exists a constant C
such that

‖q − Q̃τqh‖0 ≤ Cτ r+1|||q|||r+1,τ + Ch
s−1τ1−s‖u− uh‖1 + Chk+1τ−

1
2 ‖g‖k+1,∂Ω.

Proof. The proof is similar to that of Theorem 4.1. The only modification is on
the treatment of (u− uh,∇ · φ). To this end, we observe that

(u− uh,∇ · φ) = a(u− uh, w − v)−
〈
∂w

∂na
, g − gh

〉
.

Thus,

|(u− uh,∇ · φ)| ≤ Chs−1‖u− uh‖1‖w‖s +
∥∥∥∥ ∂w∂na

∥∥∥∥
0,∂Ω

‖g − gh‖0,∂Ω

≤ Chs−1‖u− uh‖1‖∇ · φ‖s−2 + Ch
k+1‖w‖ 3

2
‖g‖k+1,∂Ω

≤ Chs−1τ1−s‖uh − u‖1‖φ‖0 + Chk+1τ−1/2‖g‖k+1,∂Ω‖φ‖0.

The rest of the proof is similar to that of Theorem 4.1 and is omitted.
Theorem 4.2 shows that if the Dirichlet boundary data is not approximated by

the L2 projection, then the superconvergence estimate for the recovered flux/gradient
approximation will suffer. In fact, our estimate of Theorem 4.2 ensures only a super-
convergence of order O(hk+1) for sufficiently smooth solution u and the projection
space Lτ .

4.2. Discontinuous projection space Lτ . The flux approximation scheme
(13) or (14) is well defined for discontinuous projection space Lτ . When discontin-
uous finite elements are employed in the projection method, the computation of the
recovered flux/gradient can be implemented locally on each element K ∈ Ωτ , which
results in a great saving of computer time and efficiency. However, due to the use of
integration by parts in (25), the superconvergence established in Theorems 4.1 and 4.2
is no longer applicable to discontinuous projection space. Our objective of this section
is to provide a superconvergent theory for the approximation scheme (13) when Lτ
contains discontinuous finite element functions.

Let K be any element from the partition Ωτ . It is not hard to show that there
exists a constant C independent of K and v such that∫

∂K

v2ds ≤ C
(
(τ−1 + ε−1)

∫
K

v2dx+ ε

∫
K

|∇v|2dx
)
,(30)

where ε > 0 is any real number.
Theorem 4.3. Let u be the exact solution of (2) and let uh be its finite element

approximation given by (4). Let q = a∇u be the flux/gradient with the obvious ap-
proximation qh = a∇uh and let Gτ be a postprocessing operator given by Qτ . Then,
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for any projection space Lτ which is a piecewise polynomial of order r, we have for
any ε > 0

‖q − Gτqh‖0 ≤ Cτ r+1|||q|||r+1,τ(31)

+Cτ−
1
2 ((τ−

1
2 + ε−

1
2 )‖u− uh‖0 + ε 1

2 ‖u− uh‖1).
Proof. Since Gτ = Qτ , then

‖q − Gτqh‖0 ≤ ‖q −Qτq‖0 + ‖Qτq −Qτqh‖0.
The error ‖q −Qτq‖0 can be estimated by using (15). To estimate ‖Qτ (q − qh)‖0,
we see from (23) and (24) that it suffices to deal with (∇(u− uh),φ) for any φ ∈ Lτ
such that ‖φ‖ = 1. To this end, using the integration by parts we obtain

(∇(u− uh),φ) =
∑
K∈Ωτ

∫
K

(uh − u)∇ · φdx+
∑
K∈Ωτ

∫
∂K

(u− uh)φ · nKds.(32)

The first term on the right-hand side of (32) can be bounded as follows:∣∣∣∣∣
∑
K∈Ωτ

∫
K

(uh − u)∇ · φdx
∣∣∣∣∣ ≤ ‖u− uh‖0 ‖∇ · φ‖0 ≤ Cτ−1‖u− uh‖0,(33)

where we have used the standard inverse estimate for ‖∇·φ‖. To estimate the second
term on the right-hand side of (32), we use the Schwarz inequality to obtain∣∣∣∣∣

∑
K∈Ωτ

∫
∂K

(u− uh)φ · nKds
∣∣∣∣∣ ≤

∑
K∈Ωτ

∫
∂K

|u− uh||φ · nK |ds

≤
∑
K∈Ωτ

‖u− uh‖0,∂K‖φ‖0,∂K(34)

≤
( ∑
K∈Ωτ

‖u− uh‖20,∂K
) 1

2
( ∑
K∈Ωτ

‖φ‖20,∂K
) 1

2

.

It follows from (30) that

‖u− uh‖20,∂K ≤ C
(
(τ−1 + ε−1)‖u− uh‖20,K + ε‖∇(u− uh)‖20,K

)
.

Similarly, from (30) with ε = τ we have

‖φ‖20,∂K ≤ C(τ−1‖φ‖20,K + τ‖∇φ‖20,K).

Substituting the above two estimates into (34) yields∣∣∣∣∣
∑
K∈Ωτ

∫
∂K

(u− uh)φ · nKds
∣∣∣∣∣

≤ C ((τ−1 + ε−1)‖u− uh‖20 + ε‖∇(u− uh)‖20
) 1

2
(
τ−1‖φ‖20 + τ‖∇φ‖20

) 1
2 .

Now using the standard inverse inequality and the fact that ‖φ‖0 = 1, we obtain

τ−1‖φ‖20 + τ‖∇φ‖20 ≤ Cτ−1.
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Thus, ∣∣∣∣∣
∑
K∈Ωτ

∫
∂K

(u− uh)φ · nKds
∣∣∣∣∣(35)

≤ Cτ− 1
2 ((τ−

1
2 + ε−

1
2 )‖u− uh‖0 + ε 1

2 ‖∇(u− uh)‖0).
The combination of (32) with (33) and (35) gives

|(∇(u− uh),φ)| ≤ Cτ− 1
2 ((τ−

1
2 + ε−

1
2 )‖u− uh‖0 + ε 1

2 ‖∇(u− uh)‖0),
which completes the proof.

The discontinuous projection space Lτ has many distinguished features in theory
and application. In practical implementation, it allows a local and parallel computa-
tion of the projected flux Qτqh. In addition, one does not need to worry about any
special treatment of the boundary condition u = g. From the analysis of Theorem 4.3,
we see that the estimate (31) does not require the regularity/smoothness assumptions
(3) and (8). However, in order to get a superconvergence from the estimate (31), the
L2 norm of the error must have a higher order of convergence than the H1 norm.
This is often accomplished via a duality argument which requires a certain regularity
for the dual problem.

For illustration, we consider a model problem where the flux q and the solution
u satisfy

C(u) = |||u|||k+1,h <∞, C(q) = |||q|||r+1,τ <∞.(36)

Assume that the H2 regularity is satisfied for the dual problem. Then the following
error estimate is well known:

‖u− uh‖0 + h‖∇(u− uh)‖0 ≤ C(u)hk+1.

Substituting the above with τ = hα and ε = h into (31) yields

‖q − Gτqh‖0 ≤ C(u, q)(hα(r+1) + hk+0.5−0.5α).

The above estimate is optimized when

α(r + 1) = k + 0.5− 0.5α⇐⇒ α =
k + 0.5

r + 1.5
,

which gives the following error estimate:

‖q − Gτqh‖0 ≤ C(u, q)h
(k+0.5)(r+1)

r+1.5 .(37)

With k = 2 and r = 3 we obtain

‖q − Gτqh‖0 ≤ C(u, q)h 20
9 ,

which is much better than the optimal order error estimate O(h2) for the straightfor-
ward gradient approximation qh = a∇uh.

For problems with reentrant corners in the domain or discontinuous data in the
coefficient tensor {aij}, the H2 regularity for the dual problem is not satisfied. The
dual problem, however, has the H1+σ(Ω) regularity for some σ ∈ (0, 1). For suffi-
ciently smooth solution u and the flux q, it is possible to show that

‖u− uh‖0 + hσ‖∇(u− uh)‖0 ≤ C(u)hk+σ.
By choosing ε properly in Theorem 4.3, one is able to determine a value of α in τ = hα

which gives a superconvergence for the gradient. Details of this analysis are omitted.
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5. A relation with ZZ patch recovery. For a given element K of Sh, the ZZ
method projects ∇uh to a covering patch K̃ consisting of K and several neighboring
elements [32, 33]. The projection space in the ZZ method is the restriction of Sh
on each patch K̃. The superconvergence of the original ZZ patch recovery has been
observed only through numerical experiments with specially defined discrete L2-inner
products.

We shall modify the ZZ patch recovery method as follows. First, we replace the
ZZ projection space by the space of polynomials of order r ≥ 0 on each patch. Second,
we assume that each patch is of size τ which is larger than the original mesh size h.
By adjusting the size τ and the fitting polynomial order r, we are able to obtain a
superconvergence for the MZZ patch recovery method.

We now present a detailed discussion on the MZZ method. Based on the finite
element partition for Sh, we shall first divide the mesh domain Ω into many nonover-
lapping and simply connected subdomains Ωi. Each subdomain is a union of finite
elements of Ωh. Assume that the partition {Ωi} is regular in the sense that each Ωi
is of diameter proportional to τ and contains a ball of diameter also proportional to
τ . The finite element space Lτ is defined as

Lτ = {v = (v1, . . . , vd) : vi|Ωi ∈ Pr ∀i} .
In other words, for v ∈ Lτ , each component of v in Ωi is the restriction of a poly-
nomial of order r. Notice that v can be discontinuous on the interface between the
subdomains. Here are some points of why discontinuous fitting functions are prefer-
able:

• Each subdomain (element) Ωi is constructed from the elements of Ωh by
regrouping. Thus, the implementation of the projection operator Qτ is com-
putationally feasible, since the corresponding numerical integration for the
matrix problem of Qτ is easy to compute.

• As the functions v can be totally discontinuous on the interfaces, the bound-
ary of the element Ωi does not need to be straight lines.
• The projection operator Qτ can be computed on each subdomain in parallel,
and the projections over the subdomains do not interact with each other.

An error estimate can be established for the MZZ scheme by using Theorem 4.3.
In fact, from the estimate (31) with ε = h we have

‖q − Gτqh‖0 ≤ Cτ r+1|||q|||r+1,τ + τ
− 1

2 (h−
1
2 ‖u− uh‖0 + h 1

2 ‖u− uh‖1),
where Gτ is given by Qτ . If the exact solution u is sufficiently smooth, then

‖q − Gτqh‖0 ≤ C(τ r+1|||q|||r+1,τ + τ
− 1

2hk+0.5‖u‖|k+1,h).(38)

For a given τ , we can choose the order of polynomials of Lτ properly such that
τ r+1 ≤

√
h
τ h

k. Hence, the gain on the convergence for the flux/gradient is of a factor√
h
τ .
In case that u has only a limited regularity, we need to choose the mesh size τ

properly to obtain the best possible superconvergence. For example, if q ∈ [H2(Ω)]d

and u ∈ H2(Ω) and Sh contains continuous piecewise linear functions, we take the
projection space Lτ to be the restriction of linear functions on each subdomain (or
patch) Ωi. For any v ∈ Lτ , we have

v|Ωi = a
i
0 +

d∑
j=1

aijxj .
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In computing the projection of the flux over each Ωi, we need only to compute the
coefficients ai0, a

i
1, . . . , a

i
d on each Ωi by using the standard least-squares method. As

k = r = 1, we have that

‖q − Gτqh‖0 ≤ Cτ2|||q|||2,τ + C(h/τ)0.5h|||u|||2,h.

By choosing τ = h
3
5 , we arrive at the following superconvergence:

‖q − Gτqh‖0 ≤ Ch 6
5 (|||q|||2,τ + |||u|||2,h).

The gain for the convergence order for the flux or gradient is then 1/5. If we use

quadratic functions for Lτ , then we need to take τ = h
3
7 , and the gain for the con-

vergence order is 2/7. In case that r = 3, the gain of the convergence order can be
1/3.

For the original ZZ method, it is typical that r = k and τ = Lh for some fixed
value L ≥ 1. Correspondingly, our estimate implies that

‖q − Gτqh‖0 ≤ CLk+1hk+1|||q|||k+1,τ + C
√
L−1 hk|||u|||k+1,h,

which does not claim any superconvergence for the recovered flux or gradient approx-
imation.

6. A remark on continuous least-squares surface fitting. Locality and
parallelization are the main features in using discontinuous finite elements to fit the
approximate flux. However, as indicated by (38), the maximum gain on the order of

convergence with discontinuous projection space is h
1
2 over the optimal order error

estimate. In fact, our convergence analysis in previous sections suggests that contin-
uous finite element fitting spaces should be used in order to achieve a high order of
superconvergence for the recovered flux/gradient approximation.

Let Lτ be a finite element space of class C0 consisting of continuous piecewise
polynomials of order r over each element. Recall that the finite element partition for
Ωh does not need to be a refinement of the elements of Ωτ . It is well known that,
for any ε ∈ (0, 1

2 ), Lτ ⊂ H
3
2−ε(Ω). In other words, assumption (8) is satisfied with

s = 2.5− ε. Assume that (3) is also valid with s = 2.5− ε. An application of Theorem
4.1 shows that the convergence for the recovered flux approximations is given by

‖q − Gτqh‖0 ≤ Cτ r+1|||q|||r+1,τ + C(h/τ)
1.5−ε‖u− uh‖1,

where Gτ is either Q̃τ or Qτ . If u is sufficiently smooth, we can choose the order of
polynomials of Lτ properly such that τ r+1 ≤ C(h/τ)1.5−ε. In such a case, the gain of
the convergence for the flux and gradient is of a factor (h/τ)1.5−ε. For simplicity of
discussion, we shall assume ε = 0 in the rest of this section. In case that u has only
a limited regularity, we need to choose r according to the regularity of u and choose
τ such that O(τ r+1) = (h/τ)

1.5
hk. In Table 1, we show some theoretical gain of the

convergence order for the flux/gradient with different values of r and k. In theory,
the computational result can only be better than this.

In a similar manner, the improvement on the convergence of the flux/gradient
would be of a factor O(h/τ)(�+1.5) if Lτ is a finite element space of class C� for
0 ≤ % ≤ k − 1.5. In case that u has only a limited regularity, we need to choose the
mesh size τ properly to get the best possible superconvergence.
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Table 1
The value of β in ‖q − Gτqh‖0 ≤ Chk+β .

r = 1 r = 2 r = 3 r = 4 r = 5

k = 1 0.4286 0.6667 0.8182 0.9231 1.0000
k = 2 0.3333 0.5455 0.6923 0.8000
k = 3 0.2727 0.4615 0.6000
k = 4 0.2308 0.4000

7. An application to mesh adaptivity. The superconvergence estimates can
be used to refine the finite element mesh adaptively. Let us note that

‖q − qh‖0 ≤ ‖q − Gτq‖0 + ‖Gτ (q − qh)‖0 + ‖Gτqh − qh‖0.

Assume that the finite element solution uh is nontrivial in the sense that

‖q − qh‖0 ∼= hk|||q|||k,h.(39)

From (15), (22), and (28), and assuming that q has the needed regularity, we obtain

‖q − Gτq‖0 + ‖Gτ (q − qh)‖0
≤ Cτ r+1|||q|||r+1,τ + ‖Gτ (q − qh)‖0

≤ C τ
r+1

hk
|||q|||r+1,τ

|||q|||k,h ‖q − qh‖0 + C
(
h

τ

)s−1

‖q − qh‖0
= α‖q − qh‖0,

where

α = C
τ r+1

hk
|||q|||r+1,τ

|||q|||k,h + C

(
h

τ

)s−1

.

The mesh parameters τ and r can be chosen properly to ensure that α → 0 when
τ → 0, h→ 0. For simplicity, let us take τ = κh. Thus,

α = C(q)κr+1hr+1−k + Cκ−(s−1).

By letting κ → ∞ and κ ≤ o(hk/(r+1)−1), we have α → 0. In fact, the choices we
have discussed for k, r, h, τ in sections 5 and 6 will all guarantee that α→ 0. Thus,

(1− α)‖q − qh‖0 ≤ ‖Gτqh − qh‖0.

We emphasize that the right-hand side of the above estimate is computable. In
practical computations, the value of α is small but not known exactly. We can produce
a mesh to guarantee that

‖Gτqh − qh‖0 ≤ ε,(40)

where ε stands for a prescribed tolerance. To this end, for a given coarse mesh Lτ , we
compute the maximum value of the error indicator over all the coarse mesh elements:

ητ = max
K∈Ωτ

‖Gτqh − qh‖0,K .
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We choose a parameter θ ∈ (0, 1). For a given coarse mesh element K ∈ Ωτ , we refine
K if

‖Gτqh − qh‖0,K ≥ θητ .

The refinement process is stopped if either (40) is satisfied or the memory limit has
been reached, or the change of the computed solution in the energy norm is less than
a given tolerance.

Under assumption (39), the error indicator ‖Gτqh − qh‖0 is in fact equivalent to
the true error due to the fact that

‖Gτqh − qh‖0 ≤ ‖Gτ (qh − q)‖0 + ‖Gτq − q‖0 + ‖q − qh‖0
≤ (1 + α)‖q − qh‖0.

Note that we refine the coarse mesh Ωτ instead of the fine mesh Ωh. The fine
mesh Ωh is always produced from Ωτ by refining each coarse mesh element into several
smaller elements. See [5] for some results about using averaging-type error estimators
and the ZZ method for mesh refinement for general unstructured meshes.

8. Numerical experiments. Two meshes Ωτ and Ωh are needed in the com-
putation. The coarse mesh Ωτ is produced by the adaptive strategy of section 7. The
fine mesh Ωh is always produced from Ωτ . To produce Ωh, each coarse mesh element
is refined into 4 elements by connecting the edge middle points or refined uniformly
twice to produce 16 elements for two-dimensional problems. Continuous piecewise
linear finite element functions over Ωτ and Ωh are used for the projection Gτ and for
the solution of the finite element approximation uh, respectively.

The proposed algorithms are tested for

−∇ · (a∇u) = f on Ω, u = g on ∂Ω(41)

with Ω = (0, 1) × (0, 1), f = 2π2 sin(πx) sin(πy), g = 0, a = 1. The exact solution is
easily seen to be u = sin(πx) sin(πy).

The global coarse mesh recovery is as described earlier, and the element-wise
coarse mesh recovery works by projecting the gradient in Sh to the fitting space Lτ
consisting of piecewise linear functions over Ωτ . Equation (14) is thus solved for
each element in Ωτ independently, and these local solutions are combined to a global
solution by an averaging procedure. As we shall see, this gives a worse convergence
rate than the global projection, but it is still superconvergent.

We use Figures 1 and 2 to show the computational results. In the plot, the x-axis
represents the degree of freedom of the mesh. The y-axis represents the L2 error of
the gradient. Note that both axes are scaled using log10. Figure 2 compares the mesh
quality produced by the superconvergence error estimator and the error estimator of
Johnson [16] and Eriksson and Johnson [12]. The error for the finite element solution
over Sh, i.e., the mesh produced by the superconvergence error estimator, is slightly
better than the error for the finite element solution for the mesh produced by the error
estimator of [16, 12]. To reach the same accuracy, we need a much smaller degree of
freedom in our new method; see also Figure 1. The projected gradient over Ωτ has a
better convergence order, as can be seen from Figure 1. The convergence rate for the
different errors are plotted in Figure 1. The convergence rate and the accuracy of the
MZZ and the ZZ methods are nearly the same.
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Fig. 1. Comparison of the mesh quality produced by different recovery methods compared to the
error estimator of Johnson [16] and Eriksson and Johnson [12]. All the errors are measured in L2

for the gradients. FEM refers to the error ‖∇uh − ∇u‖0, where uh is the finite element solution
over Sh.
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Fig. 2. The left is the mesh produced by the superconvergence estimator of this paper, and the
right is the mesh of the residual error estimator of Johnson [16] and Eriksson and Johnson [12].
The L2 error for the left mesh is 0.0094 with 2279 nodes, and the right mesh has an L2 error of
0.061 with 2497 nodes.

Our computational experiment reveals that the convergence rate of standard
Galerkin finite element solution over Sh is 1.2. For ZZ recovery the order of con-
vergence is 1.72. The MZZ method proposed earlier has a convergence order of 1.74.
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Johnson’s method gives a rate of 1.08. Finally, the L2 projection has a convergence of
order 1.84. We clearly see that the L2 projection has superior performance. The con-
vergence order is evaluated by using the formula log10 ‖∇uh−∇u‖0/ log10(

√
DoF ) as

in [6, 22], where DoF stands for the total number of nodal points in the finite element
partition. The continuous least-squares surface fitting is easy to implement and has
the best accuracy.
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Abstract. We apply Wigner transform techniques to the analysis of the Dufort–Frankel differ-
ence scheme for the Schrödinger equation and to the continuous analogue of the scheme in the case
of a small (scaled) Planck constant (semiclassical regime). In this way we are able to obtain sharp
conditions on the spatial-temporal grid which guarantee convergence for average values of observ-
ables as the Planck constant tends to zero. The theory developed in this paper is not based on local
and global error estimates and does not depend on whether or not caustics develop. Numerical test
examples are presented to help interpret the theory and to compare the Dufort–Frankel scheme to
other difference schemes for the Schrödinger equation.
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1. Introduction. We shall analyze the Dufort–Frankel discretization scheme for
the linear Schrödinger equation

εuεt = i
ε2

2
∆uε − iV (x)uε, x ∈ R

d, t ∈ R(1.1)

uε(x, t = 0) = uεI(x), x ∈ R
d.(1.2)

Here 0 < ε ≤ ε0 < 0 is the (scaled) Planck constant (generally assumed to be small
in what follows), V = V (x) is a given electrostatic potential, and uε = uε(x, t) is the
(complex valued) wave function. In classical quantum physics, this function is used to
compute observables (including the primary physical quantities), which are quadratic
functions (or functionals) of uε(t) [LL]. In this paper, we want to study the behavior of
the discretization scheme in the limit case ε→ 0, the so-called semiclassical limit. As
the Schrödinger equation propagates oscillations of wavelength ε, the wave function
uε does not converge strongly, for example, in L∞

t (L2
x), and weak convergence is

not sufficient for passing to the limit in the observables. By introducing the Wigner
measure (see [G2], [LP], [MMP], [GMMP], [Wi] or other tools of microlocal analysis
[G1], [T]) this passage to the limit in the macroscopic densities becomes possible.

The highly oscillatory nature of the solutions of (1.1) poses a problem if this
equation is solved numerically in the case of a small scaled Planck constant ε. The
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oscillations may disturb the numerical solution in such a way that the physical ob-
servables come out completely wrong. If the microlocal techniques used to analyze
the semiclassical limit for the IVP (1.1)–(1.2) are adapted to the analysis of finite
difference discretizations, sharp conditions can be found which guarantee the conver-
gence of observables. This has been done in [MPP] for other numerical schemes, in
particular for the Crank–Nicolson and Leap-Frog schemes.

For the sake of transparency we shall now set up the Dufort–Frankel scheme for
the case of one space dimension (d = 1). Also, the subsequent analysis will mainly
focus on the case d = 1. Generalizations to d > 1 are immediate for tensor product
grids, and the results remain valid without modifications.

We choose a spatial mesh size ∆x > 0 and a temporal mesh size ∆t > 0 and
denote the grid points

xj := j ∆x, tn := n ∆t, n, j ∈ Z.

The Dufort–Frankel scheme for (the one-dimensional version of) (1.1) reads

ε
un+1
j − un−1

j

2∆t
= i

ε2

2

unj+1 − (un+1
j + un−1

j ) + unj−1

(∆x)2
(1.3)

− iV (xj)
un+1
j + un−1

j

2
, n ∈ Z, j ∈ Z

u0
j = uεI(xj), j ∈ Z,(1.4)

u1
j = ũεI,j , j ∈ Z.(1.5)

Obviously, the solution unj is considered an approximation of uε(xj , tn). Observe that

if in (1.3) the time average (un+1
j +un−1

j )/2 is replaced by unj , we obtain the Leap-Frog
scheme.

Since the Dufort–Frankel scheme is a two-step scheme (in time), additional initial
data at t = ∆t (or t = −∆t) have to be prescribed. Later on we shall discuss the
choice of the values ũεI,j in detail.

Although, formally, the scheme (1.3) is implicit, the (n+1)st time level contribu-
tions on the right-hand side of (1.3) occur only on the diagonal, thus the computational
effort involved in solving (1.3) is exactly the same as for an explicit scheme (e.g., the
Leap-Frog scheme). The scheme also is time reversible and has some favorable sta-
bility properties, which make it suitable for the numerical solution of the Schrödinger
equation. This was done in [IR] and [W] for both linear and nonlinear Schrödinger
equations for the case of ε > 0 fixed, i.e., not close to the semiclassical regime. There
the authors use the classical stability-consistency method described below but do not
address the question of the behavior of the discretization in the case of the limit ε→ 0.

The classical analysis of finite difference schemes relies on the stability-consistency
concept. The local discretization error of a difference scheme is calculated by insert-
ing the “exact” solution of the differential equation into the difference scheme and
calculating the residual by, say, Taylor expansion. Replacing unj in (1.3) by uε(xj , tn)
gives

εuεt = i
ε2

2
uεxx − iV uε − i

ε2

2

(
∆t

∆x

)2

uεtt(1.6)

+ O
(
ε2(∆x)2uεxxxx

)
+O

(
ε(∆t)2uεttt

)
+ O

(
(∆t)2uεtt

)
+O

(
ε2

(
∆t

∆x

)2

(∆t)2uεtttt

)
.
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It is then clear that the scheme, for fixed ε, is consistent only if ∆t
∆x goes to zero with

∆t→ 0 and ∆x→ 0. Actually, since typically∥∥∥∥ ∂k1+k2

∂xk1∂tk2
uε(t)

∥∥∥∥
L2(R)

= O

(
1

εk1+k2

)
, k1, k2 ∈ N ∪ {0},(1.7)

the local discretization error is

lε = O

((
∆t

∆x

)2
(
1 +

(
∆t

ε

)2
)

+

(
∆t

ε

)2

+

(
∆x

ε

)2
)

.(1.8)

Even when ∆t
∆x is o(1), lε tends to zero as ε, ∆t, and ∆x tend to zero only when tempo-

ral and spatial O(ε)-wavelength oscillations are accurately resolved by the temporal-
spatial grid.

Note that the above computation of the local discretization error is highlighted
by rewriting (1.3) as

ε
un+1
j − un−1

j

2∆t
= i

ε2

2

unj+1 − 2unj + unj−1

(∆x)2
− iV (xj)u

n
j(1.9)

− i
ε2

2

un+1
j − 2unj + un−1

j

(∆t)2

((
∆t

∆x

)2

+

(
∆t

ε

)2

V (xj)

)
.

Stability then implies that the local discretization error is not amplified (enough to
ruin convergence).

We shall obtain convergence results by both the classical method and by the
Wigner measure, finding that the classical method result requires much more restric-
tions on the choice of discretization steps than the Wigner measure method. We
identify the semiclassical Wigner measure (on the scale ε) for combinations of ε and
the space and time mesh sizes and conclude convergence of all (smooth) observables in
exactly those cases for which the Wigner measure of the numerical scheme is identical
to the Wigner measure of the Schrödinger equation itself.

We remark that the analysis of the Dufort–Frankel scheme (which is frequently
used in applications) is technically much more challenging than the analysis for the
other schemes presented in [MPP]. This is mainly due to the mixing of spatial and
temporal grids in this two-step scheme.

The paper is organized as follows. In section 2, we shall give a brief presentation
of the analytical tools and calculate the Wigner measure of the modified equation
related to the form (1.9) of the scheme (in order to get a “feeling” for the analysis).
In section 3, we shall derive a conservation property of the Dufort–Frankel scheme
and from this the stability, as well as the convergence by the classical method, keeping
track explicitly of the parameter ε in the convergence estimate. In section 4, we shall
calculate the Wigner measure of the scheme, and in section 5 we present a sample of
numerical computations illustrating the theory.

2. The modified Schrödinger equation. Let µ be a positive parameter (not
necessarily small) and consider

εvε,µt = i
ε2

2
∆vε,µ − iV (x)vε,µ − i

ε2

2
µ2vε,µtt , x ∈ R

d, t ∈ R,(2.1)

vε,µ(x, t = 0) = vε,µI (x),(2.2)

vε,µt (x, t = 0) = pε,µI (x), x ∈ R
d.(2.3)
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Notice that (2.1) is a “continuous” version of (1.9). We expect to get important
asymptotic information on (1.9) by first analyzing (2.1). The superscript ε for the
solution u = uε of the Schrödinger equation (1.1) and ε, µ for the solution v =
vε,µ of the modified Schrödinger equation (2.1) were introduced to emphasize the
dependence of the solution on the parameters. Where convenient, these superscripts
will be skipped in what follows to simplify the notation.

At first we remark that the transformation zε,µ := exp(−i t
εµ2 )v

ε,µ gives the Klein–

Gordon equation with potential V (x) + 1
2µ2 :

ε2µ2

2
zε,µtt =

ε2

2
∆zε,µ −

(
V (x) +

1

2µ2

)
zε,µ, x ∈ R

d, t ∈ R(2.4)

zε,µ(x, t = 0) = vε,µI (x),(2.5)

zε,µt (x, t = 0) = pε,µI (x)− i

εµ2
vε,µI (x), x ∈ R

d.(2.6)

The IVP (2.4) does not conserve total charge (as opposed to the Schrödinger equation).
However, energy conservation is easily proven by multiplying (2.1) by vt = vε,µt

(“–” stands for complex conjugation) and integrating over R
d. We obtain

Eε,µ(t) :=

∫
Rd

(
ε2

2
|∇vε,µ|2 + ε2

2
µ2|vε,µt |2 + V (x)|vε,µ|2

)
dx(2.7)

=

∫
Rd

(
ε2

2
|∇vε,µI |2 +

ε2

2
µ2|pε,µI |2 + V (x)|vε,µI |2

)
dx

=: Eε,µ
I ∀t ∈ R.

For the sake of simplicity we shall assume from now on that

V ∈ C∞(Rd) ∀l1, . . . , ld ∈ N :
∂l1+···+ld

∂xl11 · · · ∂xldd
V ∈ L∞(Rd),(2.8)

V (x) ≥ 0 on R
d.

We conclude L2-stability in the following lemma.
Lemma 2.1. The estimate

‖vε,µ(t)‖L2(Rd) ≤ µ
√
2Eε,µ

I + ‖vε,µI ‖L2(Rd)(2.9)

holds for all t ∈ R.
Proof. Multiplication of (2.1) by the conjugate v, integration over R

d × (0, T ),
and taking real parts gives∫

Rd

|v(T )|2dx =

∫
Rd

|v(0)|2dx+ εµ2

∫
Rd

Im (vt(0)v(0)− vt(T )v(T ))dx

and, using (2.7),∫
Rd

|v(T )|2dx ≤
∫

Rd

|v(0)|2dx+ µ
√
2Eε,µ

I

(‖v(T )‖L2(Rd) + ‖v(0)‖L2(Rd)

)
.

Then (2.9) is immediate.
The L2-stability is uniform in ε and µ if the initial energy and the initial local

charge are bounded uniformly in ε and µ and if µ ≤ µ0 <∞.
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The following theory will be largely based on Wigner transforms. For functions
v, u ∈ L2(Rd) we define their Wigner transform on the scale ε > 0 as the phase space
function

wε(u, v)(x, ξ) :=
1

(2π)d

∫
Rd

u
(
x− ε

2
η
)
v
(
x+

ε

2
η
)

eiξ·η dη.(2.10)

Obviously, wε(u, v) is bilinear and wε(u, u) =: wε[u] is a real-valued function.
The mathematical (and physical) literature on Wigner transforms is substantial,

and we are not able to give a detailed review here. As basic references we recommend
[G1], [LP], [GMMP], [MPP].

Here we remark only that for a ∈ S(R2d
x,ξ) we have

Eε
a[u] :=

∫
Rd

(a(x, εD)Wu) u dx =

∫
Rd

x×Rd
ξ

a(x, ξ) wε[u](x, ξ) dxdξ,(2.11)

where a( . , εD)W denotes the Weyl operator associated with the symbol a(x, ξ), de-
fined as

a( . , εD)Wϕ(x) :=
1

(2π)m

∫
Rd

y

∫
Rd

ξ

a

(
x+ y

2
, εξ

)
ϕ(y)ei(x−y)·ξdξdy(2.12)

(see [HM3], [GMMP]). Physically, the left-hand side of (2.11) denotes the average
value of the observable a in the state u (cf. [LL]), which by (2.11) can be obtained by
testing the symbol a(x, ξ) against the Wigner transform of the function u.

Note that the average values of observables (2.11) are the physically important
quantities which can be obtained as a “postprocessing” from the wave function u = uε

after having solved the Schrödinger equation.
Also, we remark that a can be chosen independent of x in (2.11) such that

ρ(x) := |u(x)|2 =

∫
Rd

ξ

wε[u](x, ξ) dξ.(2.13)

Similarly,

J(x) := εIm (u(x)∇u(x)) =

∫
Rd

ξ

ξ wε[u](x, ξ) dξ(2.14)

and, formally,

e(x) :=
ε2

2
|∇u(x)|2 − ε2

2
Re (u(x)∆u(x)) =

∫
Rd

ξ

|ξ|2wε[u](x, ξ) dξ.(2.15)

Here ρ, J, e denote the position density, current density, and energy density of the
state u, respectively.

Also, let uε = uε(x) be a sequence, uniformly bounded in L2(Rd) as ε→ 0. Then
there exists a subsequence (εk) ⇀ 0 such that

wεk [uεk ]
εk→0
⇀ w0 = w0[uεk ] in S′(R2d

x,ξ),(2.16)

where w0 is a positive phase space measure, called the Wigner measure of uε on the
scale εk.
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It is now our goal to compute the Wigner measure(s) of the solution v = vε,µ of
(2.1) on the ε-scale with, say, µ = µ(ε) > 0. We set

wε,µ := wε[vε,µ] = wε(vε,µ, vε,µ).

Differentiation of the bilinear Wigner transform with respect to t gives

∂

∂t
wε,µ =

2

ε
Imwε

(
ε2

2
∆v − V v, v

)
− ε Imwε

(
µ2vtt, v

)
,(2.17)

using wε(f, g) = wε(g, f), ∂tw
ε(v, v) = 2 Rew(vt, v), and (2.1).

To proceed we shall use the following lemma.
Lemma 2.2. Let P ∈ C∞(Rm

x × R
m
ξ ) satisfy for some M ≥ 0, Cα ≥ 0

|∂αx,ξP (x, ξ)| ≤ Cα(1 + |ξ|)M ∀α ∈ N
m
0 × N

m
0 .(2.18)

Then, if f , g lie in a bounded subset of L2(Rm), the expansion

wε
(
P ( . , εD)W f, g

)
= Pwε(f, g) +

ε

2i
{P,wε(f, g)}+O(ε2)

holds in S′(Rm × R
m) uniformly for all symbols P = P (x, ξ) satisfying (2.18).

Here { . , . } denotes the Poisson bracket

{f, g} = ∇ξf∇xg −∇xf∇ξg.(2.19)

A proof of Lemma 2.2 can be found in [GMMP]. We can now pass to the limit in the
first term of the right-hand side setting P (x, ξ) = 1

2 |ξ|2 + V (x):

2

ε
Imwε

(
ε2

2
∆v − V v, v

)
⇀

{
1

2
|ξ|2 + V (x), w0

}
,

where

w0 := w– lim
ε→0

wε(vε,µ, vε,µ)

(after extraction of a subsequence). To pass to the limit in the second term we
multiply by a real-valued smooth test function ϕ with sufficient decay at |x| = ∞,
|ξ| =∞ and integrate by parts:

ε Im

∫
R2d

x,ξ

∫
Rt

ϕwε(µ2vtt, v) dtdxdξ(2.20)

= − ε

∫
R2d

x,ξ

∫
Rt

ϕ Imwε(µvt, µvt) dtdxdξ

− µ

∫
R2d

x,ξ

∫
Rt

ϕt Imwε(εµvt, v) dtdxdξ.

The first term is zero, since wε(f, f) is real-valued, and the second term can be
estimated using

‖wε(f, g)‖A∗ ≤ ‖f‖L2(Rd)‖g‖L2(Rd),(2.21)
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where A is a suitable Banach space of test functions (cf. [LP]) containing D(R2d
x,v).

Choosing ϕ ∈ C∞
0 (Rt;A) we obtain

ε

∣∣∣∣∣ Im
∫

R2d
x,v

ϕwε(µ2vtt, v) dtdxdv

∣∣∣∣∣
≤ µK(ϕ) sup

t∈R

∥∥∥εµvt(t)∥∥∥
L2(Rd)

∥∥∥v(t)∥∥∥
L2(Rd)

.

We have thus proven the following lemma.
Lemma 2.3. Let Eε,µ

I ≤ L for ε→ 0 and let µ→ 0. Then the Wigner measures
satisfy

w0
t +

{
1

2
|ξ|2 + V (x), w0

}
= 0,(2.22)

w0(t = 0) = w0[vε,µI ].(2.23)

Note that the possible nonuniqueness of the Wigner measures stem from the pos-
sible nonuniqueness of the initial Wigner measures w0[vε,µI ]. (Different subsequences
might give different limits.)

If µ does not tend to zero we have to proceed differently. Therefore we use (2.1)
to compute the second term on the right-hand side of (2.20). (The first term is zero!)
For µ = const we obtain

wε(µ2vt, v) = − i

ε
wε

(
µ2

(
ε2

2
∆v − V v

)
, v

)
+ i

ε

2
wε(µ4vtt, v)

= − i

ε
µ2

( |ξ|2
2

+ V (x)

)
wε

+
1

2
µ2

{ |ξ|2
2

+ V (x), wε

}
+O(εµ2)

+ i
ε

2
µ4wε(vtt, v)

such that

ε Imwε(µ2vt, v) = − µ2

( |ξ|2
2

+ V (x)

)
wε +O(ε2µ2)

+
ε2µ4

2
Rewε(vtt, v).

Since, for r, s ∈ R
d,(

v(r, t)v(s, t)
)
tt
= v(r, t)ttv(s, t) + 2vt(r, t)vt(s, t) + v(r, t)vtt(s, t)

we conclude that

Rewε(vtt, v) =
1

2
wε(v, v)tt − wε(vt, vt),

and thus

ε2µ4

2
Rewε(vtt, v) =

ε2µ4

4
wε(v, v)tt

− µ2wε

(
εµ√
2
vt,

εµ√
2
vt

)
.
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We obtain as ε→ 0

εImwε(µ2vt, v)
ε→0
⇀ −µ2

( |ξ|2
2

+ V (x)

)
w0 − µ2w(1),

where

w(1) := w– lim
ε→0

wε

(
εµ√
2
vε,µt ,

εµ√
2
vε,µt

)
.(2.24)

Clearly, w(1) exists as a positive measure if the initial energy Eε,µ
I is uniformly bounded

as ε→ 0.
Lemma 2.4. Let Eε,µ

I ≤ L for ε→ 0 and let µ > 0 be constant. Then

(
1 + µ2

( |ξ|2
2

+ V (x)

))
w0
t +

{
1

2
|ξ|2 + V (x), w0

}
+ µ2w

(1)
t = 0,

w0(t = 0) = w0[vε,µI ].

We are thus left with calculating w(1).
Therefore we shall apply the homogenization theory for systems developed in

[GMMP]. We start by defining the new variables

q := i
√

V (x)v, r :=
ε√
2
µvt, s :=

ε√
2
∇v(2.25)

and rewrite (2.1) as the system

ε


 q

r
s



t

+ i


 0 −

√
2
µ

√
V 0

−
√

2
µ

√
V − 2

µ2 i εµ divx
0 i εµ∇x 0




 q

r
s


 = 0,(2.26)

q(t = 0) = i
√

V (x)vε,µI , r(t = 0) =
ε√
2
µpε,µI , s(t = 0) =

ε√
2
∇vε,µI ,(2.27)

with the symbol matrix

Pµ(x, ξ) :=




0 −
√

2V (x)

µ 0

−
√

2V (x)

µ − 2
µ2 − 1

µξ
T

0 − 1
µξ 0


 .(2.28)

Then (2.26) reads

εψt + iPµ(x, εD)Wψ = 0, ψ(t = 0) = ψε,µI ,(2.29)

where we set ψ = (q, r, s) with ψε,µI defined by (2.27), D = −i∇x, and the superscript
“W” denotes the Weyl operator which in (2.29) agrees with the operator generated by
Pµ as left symbol matrix. Here we wrote (2.29) with the Weyl operator in accordance
with [GMMP].
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Since Pµ(x, ξ) is pointwise symmetric, Pµ(x, εD)W is formally self-adjoint (self-
adjointness is easily concluded from the assumed regularity of V (x)) and, then, eε,µ :=
|ψ|2 is an L1(Rd)-conserved quantity; in fact,

Eε,µ =

∫
Rd

eε,µ(x, t)dx,(2.30)

where Eε,µ is the total energy defined in (2.7).
We can now define the Wigner matrix

W ε(t) :=




wε(q, q) wε(q, r) wε(q, s1) · · · wε(q, sd)
wε(r, q) wε(r, r) wε(r, s1) · · · wε(r, sd)
wε(s1, q) wε(s1, r) wε(s1, s1) · · · wε(s1, sd)

...
...

...
...

wε(sd, q) wε(sd, r) wε(sd, s1) · · · wε(sd, sd)


(2.31)

and conclude, as for the scalar case,

W ε ⇀ W 0 in L∞ (
Rt; S′(Rd

x × R
d
ξ)
d+2
)
,(2.32)

where the hermitian matrix W 0 is positive definite in the sense of measures; i.e.,

ξTW 0ξ ∈ L∞ (
Rt; M+(Rd

x × R
d
ξ)
) ∀ξ ∈ R

d.

(M+ denotes the space of positive measures.)
The result from the theory in [GMMP], which we shall restate here, requires the

following assumptions on the matrix symbol Pµ(x, ξ):
(A1) (i) There exists a closed subset E of R

d
x × R

d
ξ such that, for

every (x, ξ) /∈ E, the eigenvalues of Pµ(x, ξ) can be
ordered as follows:

λ1(x, ξ) < · · · < λl(x, ξ),

where, for 1 ≤ k ≤ l, the multiplicity of λk does not depend
on (x, ξ) /∈ E.

(ii) For 1 ≤ k ≤ l, the Hamiltonian flow of λk leaves invariant
the set

Ω = (Rd
x × R

d
ξ) \ E.

(iii) E is a null set of the measure w0
I = tr (W 0

I ).

For 1 ≤ k ≤ l, we denote by Πq(x, ξ) the orthogonal projection of C
d on the eigenspace

associated with λk(x, ξ).

(A2) ∃σ ∈ R: Pµ ∈ Sσ(Rd)d+2×d+2 uniformly in ε, which means that for
all α, β ∈ N0 there exists Cα,β such that for all l, k ∈ {1, . . . , d}
and for all ε ∈ (0, ε0] we have∣∣∣∣∣ ∂α+β

∂xαk∂ξ
β
l

Pµ(x, ξ)

∣∣∣∣∣ ≤ Cα,β(1 + |ξ|)σ−β

for all (x, ξ) ∈ R
d
x × R

d
ξ .



1290 P. A. MARKOWICH, P. PIETRA, C. POHL, AND H. P. STIMMING

For the convergence of the energy density eε,µ, we also need more assumptions
on the initial data ψε,µI :
(A3) ψε,µI is bounded in L2(Rd

x)
d+2, ε-oscillatory, and compact at infinity,

which means that, for every continuous compactly supported
function ϕ on R

d,

lim
ε→0

∫
|ξ|≥R/ε

∣∣∣ϕ̂ψε,µI (ξ)
∣∣∣2 → 0 as R→ +∞,(2.33)

respectively,

lim
ε→0

∫
|x|≥R

|ψε,µI (x)|2dx→ 0 as R→ +∞.(2.34)

We state the main result of [GMMP].
Lemma 2.5. Let Pµ(x, ξ) be essentially self-adjoint on L2(Rd)d+2 and satisfy

(A1), (A2), and let ψε,µI satisfy (A3). Let {., .} denote the Poisson bracket (2.19).
(i) For 1 ≤ k ≤ l, we denote by w0

k(t) the continuously t-dependent positive scalar
measure on R

d
x × R

d
ξ defined by

∂

∂t
w0
k + {λk, w0

k} = 0 on Rt × Ω,(2.35)

w0
k(t = 0) = tr (ΠkW

0
I ) on Ω,

w0
k(t, E) = 0, t ∈ R.

Then the scalar Wigner transform of ψε(t), defined by wε(x, ξ, t) := tr W ε(t) (which
is defined in (2.31)), converges locally uniformly in t to

w0(x, ξ, t) =

l∑
k=1

w0
k(x, ξ, t),(2.36)

and nε(t, x) := |ψε,µ|2 converges locally uniform in t to

n0(t, x) =

∫
Rd

ξ

w0(t, x, dξ).(2.37)

(ii) For 1 ≤ k ≤ l, we set Fk = [Πk, {λk,Πk}] + 1
2

∑l
j=1(λk − λj)Πk{Πj ,Πj}Πk;

denote by W 0
k the continuously t-dependent positive matrix-valued measure on R

d
x×R

d
ξ

defined by

∂

∂t
W 0
k + {λk,W 0

k } = [W 0
k , Fk] on Rt × Ω,(2.38)

W 0
k (t = 0) = ΠkW

0
I Πk on Ω,

W 0
k (t, E) = 0, t ∈ R.

Then the Wigner matrix (2.31) converges in L∞(Rt, S
′) weak - * to

W 0 =

l∑
k=1

W 0
k .(2.39)
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Denoting W 0 = (W 0
ij)

d+2
i,j=1, we obtain w(1) of Lemma 2.4 as W 0

2,2 = w0(r, r) =

w(1), according to the definition in (2.31).
As already mentioned (cf. (2.30)), the energy density nε = |ψε|2 is equal to the

total energy of (2.1). Consequently, by (2.37) we also have convergence of the energy
of (2.1), provided that ψε,µI fulfills (A3).

It remains to check the above assumptions on Pµ. The eigenvalues of Pµ(x, ξ) are

λ1 = − 1

µ2

(
1 +

√
1 + µ2(|ξ|2 + 2V (x))

)
,

λ2 = 0,

λ3 = − 1

µ2

(
1−

√
1 + µ2(|ξ|2 + 2V (x))

)
,

where λ2 is of multiplicity d. If we now set E = {(x, ξ)|ξ = 0, V (x) = 0}, we have

λ1(x, ξ) < λ2(x, ξ) < λ3(x, ξ) ∀(x, ξ) ∈ R
d
x × R

d
ξ \ E.

We now assume w0
I ({(x, ξ)|ξ = 0, V (x) = 0}) = 0. Then (A1) is satisfied, since the

Hamiltonian flows of λ1, λ2, and λ3 map E into E bijectively. The corresponding
projector matrices are

Π1(x, ξ) =
µ2

2(θ2 + θ)




2V
√

2V
µ (1 + θ)

√
2V ξT√

2V
µ (1 + θ) 1

µ2 (1 + θ)2 1
µ (1 + θ)ξT√

2V ξ 1
µ (1 + θ)ξ ξ ⊗ ξ


 ,

Π2(x, ξ) =




∑d
k=1

ξ2k
ξ2
k
+2V

0 −
√

2V ξ1
ξ21+2V

. . . −
√

2V ξd
ξ2
d
+2V

0 0 0 . . . 0

−
√

2V ξ1
ξ21+2V

0 2V
ξ21+2V

. . . 0

...
...

...
. . .

−
√

2V ξd
ξ2
d
+2V

0 0 2V
ξ2
d
+2V




,

Π3(x, ξ) =
µ2

2(θ2 − θ)




2V
√

2V
µ (1− θ)

√
2V ξT√

2V
µ (1− θ) 1

µ2 (1− θ)2 1
µ (1− θ)ξT√

2V ξ 1
µ (1− θ)ξ ξ ⊗ ξ


 .

Here we denoted θ = θµ(x, ξ) :=
√
1 + µ2(|ξ|2 + 2V (x)). (A2) holds by the smooth-

ness assumption on V (x). We leave the (very tedious) explicit calculation of the
right-hand sides of the transport equations (2.38) to the interested reader.

In the case µ→∞, the transport equation (2.35) reads, for 1 ≤ k ≤ 3,

∂

∂t
w0
k = 0, w0

k(t = 0) = tr (ΠkW
0
I ),

since for the derivatives of the eigenvalues of Pµ(x, ξ)

∇xλ1,3 =
∓∇xV√

1 + µ2(|ξ|2 + 2V )
,

∇ξλ1,3 =
±ξ√

1 + µ2(|ξ|2 + 2V )
,
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∇xλ2 = ∇ξλ2 = 0

we have as µ→∞

lim
µ→∞∇xλk(x, ξ) = lim

µ→∞∇ξλk(x, ξ) = 0, k = 1, 2, 3.

Since also limµ→∞ λk(x, ξ) = 0 holds for k = 1, 2, 3, (2.38) in this case is

∂

∂t
W 0
k = 0, W 0

k (t = 0) = ΠkW
0
I Πk,

and the Wigner measure matrix remains constant in time.

3. Energy estimates and the consistency-stability method. We now con-
sider the inhomogeneous version of the scheme (1.3):

ε
un+1(x)− un−1(x)

2∆t
= i

ε2

2

un(x+∆x)− (un+1(x) + un−1(x)) + un(x−∆x)

(∆x)2
(3.1)

− iV (x)
un+1(x) + un−1(x)

2
+ ifn(x), x ∈ R, n ∈ Z

u0(x) = uεI(x), x ∈ R(3.2)

u1(x) = ũεI(x), x ∈ R.(3.3)

For the sake of convenience in the subsequent computation we extended (1.3) from
the grid {j∆x

∣∣j ∈ Z} to R; i.e., un(j∆x) = unj . fn(x) denotes an inhomogeneity on
the time level t = n∆t.

We set for the following

δ =
∆t

∆x
, γ =

ε∆t

(∆x)2
(3.4)

and define the functional

E(f, g) := (1 + γ2)
(‖f‖2L2 + ‖g‖2L2

)
(3.5)

+ δ2

∫
R

V (x)
(|f |2 + |g|2) dx

− Re

(
iγ(1− iγ)

∫
R

(f(x−∆x) + f(x+∆x))g(x+∆x)dx

)

for f, g ∈ L2(R;C). At first we prove the following lemma.
Lemma 3.1.

1

2

(‖f‖2L2 + ‖g‖2L2

) ≤ E(f, g).

Proof. The third term in E(f, g) is clearly bounded above by γ
√
1 + γ2(‖f‖2L2 +

‖g‖2L2). Therefore

E(f, g) ≥
(
1 + γ2 − γ

√
1 + γ2

) (‖f‖2L2 + ‖g‖2L2

)
,
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and the assertion follows since

1 + γ2 − γ
√
1 + γ2 =

√
1 + γ2

γ +
√
1 + γ2

≥ 1

2
.

We now show that E(un, un+1) is a “kind of energy” for (3.1).
Lemma 3.2. Let un, n = 1, 2, . . . satisfy (3.1). Then

E(un, un+1) = E(un−1, un) +
∆t

ε
Re

(∫
R

fn(x)(un+1(x) + un−1(x)) dx

)

+ γ
∆t

ε
Im

(∫
R

fn(x)(un+1(x)− un−1(x)) dx

)
.(3.6)

Proof. The assertion of the lemma follows immediately by multiplying (3.1) by
the complex conjugate of (1 + iγ)un+1 + (1− iγ)un−1 and integration over R.

In particular, for the homogeneous problem (3.1) with fn = 0 for all n ∈ N, we
conclude “energy” conservation

E(un, un+1) = E(un−1, un), n = 1, 2, . . .(3.7)

(cf. [W]) and an L2(R)-estimate from Lemma 3.1:

‖un‖2L2 + ‖un+1‖2L2 ≤ E(uεI , ũ
ε
I), n ∈ N.(3.8)

We shall now use (3.8) to derive an appropriate choice for the function ũεI . Therefore
we use the following lemma.

Lemma 3.3. E(f, g) can be rewritten as

E(f, g) = ‖f‖2L2 + ‖g‖2L2(3.9)

+ γ2

∫
R

∣∣∣∣g(x)− f(x−∆x) + f(x+∆x)

2

∣∣∣∣
2

dx

+
γ2

4

∫
R

|f(x+∆x)− f(x−∆x)|2 dx

− γIm

(∫
R

(f(x−∆x) + f(x+∆x))g(x) dx

)
.

The form (3.9) of E(f, g) is easily verified by a direct computation.
We now choose

ũεI(x) :=
uεI(x+∆x) + uεI(x−∆x)

2
.(3.10)

Then (3.9) simplifies to

E(uεI , ũ
ε
I) = ‖uεI‖2L2 +

∥∥∥∥uεI( .+∆x) + uεI( .−∆x)

2

∥∥∥∥
2

L2

+ γ2∆x2

∫
R

∣∣∣∣uεI(x+∆x)− uεI(x−∆x)

2∆x

∣∣∣∣
2

dx.

Assuming that ∥∥∥∥ dl

dxl
uεI

∥∥∥∥
L2

= O

(
1

εl

)
, l = 0, 1, . . . ,(3.11)
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we conclude that

E(uεI(x), ũ
ε
I(x)) = O

(
1 +

(
∆t

∆x

)2
)

(3.12)

and L2-stability follows for the homogeneous problem (3.1) with (3.10) by (3.8) if ∆t
∆x

is bounded, which is also required by consistency of the Dufort–Frankel scheme. We
summarize in the following proposition.

Proposition 3.1. Let (3.11) hold (for l = 0 and l = 1). Then the solution
un = un(x) of the homogeneous version (i.e., fn(x) = 0, n = 1, 2, . . .) of (3.1) with
ũεI given by (3.10) satisfies

‖un‖L2 = O

(
1 +

∆t

∆x

)
(3.13)

uniformly as ε → 0+. In particular, the scheme is L2-stable if ∆t
∆x is bounded as

∆t→ 0, ∆x→ 0.
Now we expand the recursion (3.6) in the form

E(un, un+1) = E(u0, u1) +
∆t

ε

n∑
k=1

Ak,

collecting the two last terms on the right-hand side of (3.6) as An. Rewriting the
terms corresponding to the last term in (3.6) as

n∑
k=1

fk(uk+1 − uk−1)

=

n−1∑
k=2

(fk−1 − fk+1)uk + fn−1un + fnun+1 − f1u0 − f2u1

we estimate E(un, un+1) as

E(un, un+1) ≤ E(u0, u1) + ∆t

n∑
k=1

(
1

2
‖uk+1‖2L2 +

1

2
‖uk−1‖2L2 +

∥∥∥∥fkε
∥∥∥∥

2

L2

)

+ γ
∆t

2

(
‖un‖2L2 + ‖un+1‖2L2 +

∥∥∥∥fn−1

ε

∥∥∥∥
2

L2

+

∥∥∥∥fnε
∥∥∥∥

2

L2

+ ‖u0‖2L2 + ‖u1‖2L2 +

∥∥∥∥f1

ε

∥∥∥∥
2

L2

+

∥∥∥∥f2

ε

∥∥∥∥
2

L2

)

+ γ
2∆t

ε
∆t

n−2∑
k=1

1

2

(∥∥∥∥fk − fk+2

2∆t

∥∥∥∥
2

L2

+ ‖uk‖2L2

)
.

By Lemma 3.1, and as γ∆t = εδ2, we obtain for n∆t ≤ T

E(un, un+1) ≤
(
1 +

εδ2

2

)
E(u0, u1) +

εδ2

2
E(un, un+1) + ∆t

n∑
k=1

E(uk−1, uk)

+

(
T +

εδ2

2

)
max

k=1,...,n

∥∥∥∥fkε
∥∥∥∥

2

L2

+ T δ2 max
k=1,...,n−2

∥∥∥∥fk − fk+2

2∆t

∥∥∥∥
2

L2

.
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Assuming that ∆t is small enough so δ = ∆t/∆x remains bounded, we have by the
discrete Gronwall lemma

E(un, un+1) ≤ CE(u0, u1) + C max
k=1,...,n−1

∥∥∥∥fkε
∥∥∥∥

2

L2

(3.14)

+ C max
k=1,...,n−3

∥∥∥∥fk − fk+2

2∆t

∥∥∥∥
2

L2

,

with C = C(T ).
Theorem 3.1. Let the exact solution uε of (1.1) satisfy (1.7) and let ũεI be chosen

as in (3.10). Then

‖un − uε(n∆t)‖2L2(R) = O

(
∆t2

ε3

)
+O

(
∆x2

ε3

)
+O

(
δ2

ε

)
.(3.15)

Proof. Inserting the local discretization error obtained in (1.8) as inhomogeneity
into (3.6), we obtain from (3.14):

E(un − uε(n∆t), un+1 − uε((n+ 1)∆t))(3.16)

≤ C E(u0 − uεI , u
1 − uε(∆t))

+ C

(
∆t2

ε3
+

∆x2

ε3
+

1

ε

(
∆t

∆x

)2

+
∆t2

ε3

(
∆t

∆x

)2
)

,

and the statement then follows from Lemma 3.1 and (3.12).
The estimate (3.15) implies the same bound for the errors of all observables

|Eε
a[u

ε(n∆t)] − Eε
a[u

n]|, a ∈ S. We see that in order to obtain L2(R)-convergence
of the (“discrete”) solution of the Dufort–Frankel scheme to the (“continuous”) solu-
tion of the Schrödinger equation by Theorem 3.1 we need

∆t2

ε3
→ 0,

∆x2

ε3
→ 0,

δ2

ε
→ 0.(3.17)

4. Calculation of the Wigner measure of the Dufort–Frankel scheme.
In this section we take a different approach to analyzing the convergence behavior
of the Dufort–Frankel scheme and of the associated observables. We shall calculate
its Wigner measure, as we already did with the modified equation (2.1) in section 2,
and determine conditions on the mesh such that the Wigner measure of the Dufort–
Frankel scheme is identical to the Wigner measure of the Schrödinger equation. By
this method we will see that weaker conditions on the grid than those determined in
section 3 suffice to obtain accurate observables.

To apply the Wigner measure approach to the solution of the scheme, we need
uniform (in ε) L2-stability of the scheme. We assume from now on that ∆t

∆x → δ0 <∞
as ∆t → 0 and ∆x → 0 and choose (3.10) as second initial layer ũεI . Under these
conditions the (uniform) L2-stability of the scheme is provided by Proposition 3.1.

We consider the scheme in the form (1.9). To be able to apply Lemma 2.2, we
need to rewrite the scheme in a pseudodifferential way. We formulate the x-direction
part of the finite difference operator as a discrete Weyl operator, which is, according
to (2.12), generated by the symbol

Q∆x,ε(x, ξ) := −1

2

( ε

∆x

)2 (
ei

∆x
ε ξ − 2 + e−i

∆x
ε ξ
)
+ V (x).
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With this definition (and extending unj to R as in the previous chapter), the scheme
(1.9) reads

ε
un+1
σ (x)− un−1

σ (x)

2∆t
= − iQ∆x,ε (x, εD)

W
unσ(x)

− i

2

(
ε2δ2 + V∆t2

) un+1
σ (x)− 2unσ(x) + un−1

σ (x)

∆t2
,

x ∈ R, n ∈ Z,(4.1)

u0
σ(x) = uIσ(x), x ∈ R,(4.2)

u1
σ(x) = ũIσ(x), x ∈ R.(4.3)

Here (and in what follows) we denote by σ the vector of the small parameters on
which the solution depends: σ := (ε,∆x,∆t). The Weyl operator associated with the
symbol Q∆x,ε(x, ξ) is

Q∆x,ε(x, εD)Wϕ = −ε2

2

ϕ(x+∆x)− 2ϕ(x) + ϕ(x−∆x)

∆x2
+ V (x)ϕ(x).

It was shown in [MPP] that

Q∆x,εψ
ε,∆x→0−→ Qψ ∀ ψ ∈ S(Rd

x × R
d
ξ)(4.4)

holds if and only if ∆x/ε→ 0, where Q(x, ξ) = 1
2 |ξ|2 + V is the generating symbol of

the Weyl operator of the continuous equation (1.1). If ∆x/ε → 1/ρ, for some ρ > 0,
then

Q∆x,ε → Qρ := −1

2
ρ2(e−iξ/ρ − 2 + eiξ/ρ) + V (x),

in the sense of (4.4), independently of ε and ∆x. In the case ∆x/ε → ∞, the limit
of Q∆x,ε does not approximate Q in any way and therefore no reasonable numerical
results can be expected in this case, which will not be investigated further. For a
detailed review on discrete pseudodifferential operators we refer to [MP], [M1], [M2],
[M3].

We use the Wigner transform (2.10) and define, for n,m ∈ Z, wn,m := wε(unσ, u
m
σ )

and wn := wε(unσ, u
n
σ). In order to obtain the evolution equation for the Wigner

transform, we observe that

ε
wn+1 − wn−1

2∆t
(4.5)

= wε

(
ε
un+1
σ − un−1

σ

2∆t
, un+1

σ

)
+ wε

(
un−1
σ , ε

un+1
σ − un−1

σ

2∆t

)
.

Using the identity (4.1), and applying Lemma 2.2, we obtain

wn+1 − wn−1

2∆t

= − i

(
∆t

ε
Q∆x,ε − η

)
wn,n+1 − wn−1,n

∆t
− 1

2
{Q∆x,ε, w

n,n+1 + wn−1,n}

− iη
wn+1 − wn−1

2∆t
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− 1

4
{V,wn+1 + wn−1 − 2(wn,n+1 + wn−1,n)}+O(ε)

− 1

2

{
V,

1− η2 + 2iη

1 + η2
wn−1

+
2i− 2η

1 + η2

((∆t

ε
Q∆x,ε − η

)
wn−1,n − i

∆t

2
{Q∆x,ε − V,wn−1,n}

)

− ∆t
1− η2 + 2iη

(1 + η2)2

(
{V,wn−1}

+ i

(
∆t

ε
Q∆x,ε − η

)
∂xV

(
∆t

ε
Q∆x,ε − η

)
∂ξw

n−1,n

)}
,

where we denoted

η = η(x) := γ +
∆t

ε
V (x) =

ε

∆t
δ2 +

∆t

ε
V (x)

and used (4.1) to express wn−1,n+1. Now we set an := Imwn,n+1 and bn := Rewn,n+1,
and obtain as the real part of the above equation

wn+1 − wn−1

2∆t
=

(
∆t

ε
Q∆x,ε − η

)
an − an−1

∆t
(4.6)

− 1

2
{Q∆x,ε − V, bn + bn−1} − 1

4

{
V,wn+1 + wn−1

}
− 1

2

{
V,

2

1 + η2

(
1− η2

2
wn−1

− η

(
∆t

ε
Q∆x,ε − η

)
bn−1 −

(
∆t

ε
Q∆x,ε − η

)
an−1

− ∆t

2

(
η{Q∆x,ε − V, an−1}+ {Q∆x,ε − V, bn−1})

)

− ∆t

(1 + η2)2

(
(1− η2){V,wn−1}

− (1− η2)∂xV

(
∆t

ε
Q∆x,ε − η

)
∂ξa

n−1

− 2η ∂xV

(
∆t

ε
Q∆x,ε − η

)
∂ξb

n−1

)}
+O(ε).

We denote

W 0(t) := w– lim
σ→0

wε(unσ, u
n
σ)

for t = tn fixed (where the limit is understood to hold for appropriate subsequences)
and denote by w0(t) the Wigner measure of the Schrödinger equation (1.1), (1.2) (in
one dimension):

w0(t) := w– lim
σ→0

wε(uε(t), uε(t)).
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Theorem 4.1. For the scheme (4.1) let σ → 0, ∆x
ε → 1/ρ0 < ∞, and ∆t

∆x →
δ0 <∞. Furthermore, let γ = ε∆t

∆x2 → γ0 <∞ and set ũIσ = ũεI with definition (3.10).
Case 1. ∆t/ε→ 0.
Also let ∆x/ε→ 0. Then any Wigner measure W 0 of scheme (4.1)–(4.3) satisfies

W 0
t + {Q,W 0} = 0, t ∈ R,(4.7)

W 0(t = 0) = w0[uεI ].

So the Wigner measure W 0 of scheme (4.1) is the same as the Wigner measure w0 of
the Schrödinger equation (1.1), (1.2).

If, on the other hand, ∆x/ε→ 1/ρ0 for some 0 < ρ0 <∞, then W 0 satisfies the
above equation with Q replaced by Qρ0 . Thus the Wigner measure of the scheme is
different from the Wigner measure of the continuous equation.

Case 2. ∆t/ε→ ω0 ∈ (0,∞).
Then there are initial data uεI ∈ L2(R), uniformly as ε→ 0, such that the Wigner

measure W 0 of the scheme is different from the Wigner measure w0 of (1.1), (1.2).
For the proof of Theorem 4.1 we shall use the following lemma.

Lemma 4.1. If γ → γ0 ∈ [0,∞) and ∆t
ε → 0, then ε

un+1
σ −un

σ

∆t is bounded in L2(R),
uniformly in n, as σ → 0.

Proof of Lemma 4.1. Define vn := ε
un+1
σ −un

σ

∆t . Since vn satisfies (1.3), according
to Lemma 3.1, (3.7), and (3.8)

‖vn‖L2 ≤ E(vn, vn+1) = E(v0, v1) ≤ K(γ)(‖v0‖L2 + ‖v1‖L2),

where K is bounded on compact subsets of [0,∞). We have

v0 = ε
u1
σ − u0

σ

∆t
= ε

uε
I(x+∆x)+uε

I(x−∆x)
2 − uεI(x)

∆t

by (3.10), so ‖v0‖2L2 ≤ C 1
2
ε

∆t
(∆x)2

ε2 = C/γ by assumption (3.11) on uεI . For v1 we
find

v1 = ε
u2
σ − u1

σ

∆t
= 2ε

u2
σ − u0

σ

2∆t
+ 2ε

u0
σ − u1

σ

2∆t
.(4.8)

The second term on the right-hand side is bounded (in L2) by C/γ, by the argument
above. For the first term, using the scheme gives

ε
u2
σ − u0

σ

2∆t
= i

ε2

2

u1
σ(x+∆x)− (u2

σ(x) + u0
σ(x)) + u1

σ(x−∆x)

(∆x)2

− iV (x)
u2
σ(x) + u0

σ(x)

2

= A(x)− i
ε2

2

u2
σ − u0

σ

∆x2
− iV (x)

u2
σ − u0

σ

2
,

with A(x) := i ε
2

4
u0
σ(x+2∆x)−2u0

σ(x)+u0
σ(x−2∆x)

(∆x)2 −iV (x)u0
σ(x) bounded in L2. The above

equation is equivalent to

ε
u2
σ − u0

σ

2∆t

(
1 + iε

∆t

∆x2
+ i

∆t

ε
V (x)

)
= A(x).
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So, by (4.8), ‖v1‖L2 is bounded uniformly and the result follows.
Proof of Theorem 4.1. Since the scheme is uniformly (in ε) L2-stable under the

given conditions, the measures

W 0(t) := w– lim
σ→0

wε(unσ, u
n
σ),

A0(t) := w– lim
σ→0

Im {wε(unσ, u
n+1
σ )},

B0(t) := w– lim
σ→0

Re {wε(unσ, u
n+1
σ )}

(for t = tn fixed) exist, after selection of a subsequence. Assume ∆x/ε→ 0. By (4.4),
we then have Q∆x,ε(x, ξ)→ Q(x, ξ).

Case 1. Letting σ → 0 in (4.6) we obtain

W 0
t = −γ0A

0
t − {Q,B0}+ 1

1 + γ2
0

{V,B0 −W 0 − γ0A
0}(4.9)

for some γ0 ∈ [0,∞). Now observe that

wε(unσ, u
n+1
σ ) = wε(unσ, u

n
σ) +

∆t

ε
wε

(
unσ, ε

un+1
σ − unσ

∆t

)
.(4.10)

By Lemma 4.1 and (2.21), we conclude that

wε(unσ, u
n+1
σ )− wε(unσ, u

n
σ) ⇀ 0(4.11)

in the case ∆t
ε → 0, and thus

B0 ≡W 0, A0 ≡ 0.

Then from (4.9) we conclude (4.7). Also, by the choice (3.10) for ũIσ, we have
limσ→0 w

0(uεI , ũ
I
σ) = w0[uεI ], which is real-valued, and so B0

I = w0[uεI ] and A0
I = 0.

In the case ∆x/ε → 1/ρ0, we have Q∆x,ε(x, ξ) → Qρ0(x, ξ), and the same argu-
ments hold true if Q is replaced by Qρ0

in (4.9).
Case 2. Since γ = ∆t

ε ( ε
∆x )

2, the conditions on γ and on ∆x/ε imply that ∆x/ε→
1/ρ0 for some ρ0 < ∞ such that Q∆x,ε(x, ξ) → Qρ0

(x, ξ). Assume now that the
Wigner measure W 0 of the scheme would be the same as the one of (1.1). Then it
has to satisfy B0 ≡ W 0 ≡ w0, A0 ≡ 0, as we saw in the previous case. Inserting
this into (4.6), after letting σ → 0 we find

W 0
t + {Qρ0 ,W

0} =
{
V, ω0

η0

1 + η2
0

Qρ0W
0

}
, t ∈ R,(4.12)

with η0 = γ0+ω0V (x) for γ → γ0 <∞, which is not the correct equation. Obviously,
there are data w0

I such that W 0 is different from w0, which is a contradiction.
Note that the case ∆t/ε→∞ is excluded by the assumptions, since both ∆t/∆x

and ∆x/ε have to be bounded.
W 0 is the unique Wigner measure of scheme (4.1) if the initial data uεI is chosen

such that the Wigner measure w0[uεI ] is unique.
In Case 1, for ∆x/ε → 0, the transport equation for the Wigner measure of the

scheme is identical to the one for the Wigner measure of the continuous equation,
which was derived in Lemma 2.3, and the initial conditions coincide. Therefore, the
Wigner measure of the scheme coincides with the Wigner measure of the original
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Fig. 1. γ and δ for different exponents.

equation. So, as a consequence of Theorem 4.1, we have convergence of the scheme
under the condition that ∆t/ε → 0, ∆x/ε → 0, and γ = ∆t

∆x2 ε → γ0 < ∞ (which
also imply the stability condition δ < ∞). We also have convergence of all smooth
observables, since the limit of average values of observables with symbol in S can be
obtained from the Wigner measure by using (2.11). These convergence conditions
are much weaker than the requirements (3.17) of the “classical” consistency-stability
method; however, no error estimate for the observables is provided. In all other cases,
the Wigner measure is, for general initial data, different from the Wigner measure
of the Schrödinger equation, and observables of the scheme are not guaranteed to
converge to the exact observables.

The case γ → ∞ is not covered by Theorem 4.1. Numerical evidence indicates
that there are observables which do not converge correctly (see section 5, Figures 13–
15).

To clarify the meaning of the conditions of Theorem 4.1 in terms of restrictions
on the discretization steps, we consider a choice of ∆t and ∆x as powers of ε. So let
∆t = ω0ε

α and ∆x = 1
ρ0
εβ , which means

δ =
∆t

∆x
= ω0ρ0 εα−β ,

γ =
ε∆t

∆x2
= ω0ρ

2
0 ε1+α−2β .

Figure 1 shows α versus β. We consider only the cases β ≥ 1, where the “spatial
convergence” (4.4) is given. The corresponding cases of Theorem 4.1 are the following:

• Region I. δ → 0 and γ → γ0 <∞. Case 1.
• Region II. δ → 0 and γ →∞. No assertion in Theorem 4.1.
• Region II-A. δ → 0, γ → ∞, and α, β > 1.5, α > β + 0.5. No assertion in

Theorem 4.1 but convergence according to (3.17).
• Region III. δ →∞ and γ →∞. No uniform L2-stability.
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Fig. 2. Initial condition (5.2).

Case 2 corresponds to the point α = β = 1. As already pointed out, there are choices
of the spatial-temporal mesh (corresponding to Region II) which are not included
in Theorem 4.1. However, among them there are cases for which the result (3.17)
shows convergence (corresponding to Region II-A) and, consequently, the observables
do converge correctly. Note that the mesh restrictions of (3.17) require α > 2; that
is, ∆t is O(ε2+r) for some positive r, which is computationally unaffordable.

5. Examples and numerical results. In [MPP] different numerical schemes
for the linear Schrödinger equation were analyzed by the same approach as in this
paper. Those are the forward and backward Euler, Crank–Nicolson, and Leap-Frog
schemes. In order to be able to put our results in line with the results obtained there,
we shall use the same numerical examples here as in [MPP]. We consider WKB-type
initial data in one space dimension:

uεI(x) =
√

nI(x) exp
( i
ε
SI(x)

)
, x ∈ R

m,(5.1)

with nI and SI real-valued and independent of ε.
We choose the following data, shown in Figure 2,

nI =
(
exp(−25(x− 0.5)2)

)2
,(5.2)

d

dx
SI(x) = − tanh (5(x− 0.5))(5.3)

on the interval [0, 1] (imposing periodic boundary conditions). Equation (3.10) is
chosen for u1

σ. Here the characteristics of the free Burgers equation (which is the
classical limit of the velocity equation before singularities occur; cf. [GM]), given
by x(t) = vI(s)t + s (where x(0) = s ∈ R), intersect in finite time because the
initial velocity vI(x) =

d
dxSI(x) is compressive. The curves which separate the areas

without intersection of characteristics from the area where intersection occurs are
called caustics and are given as follows (obtained from a simple calculation):

x1,2(t) = 0.5± ln

(√
t+
√
t− 0.2√
0.2

∓ t− 0.2 +
√

t(t− 0.2)

t+
√

t(t− 0.2)

)
,

emanating from the focus t = 0.2, x = 0.5.
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Fig. 3. n0 and J0 at t = 0.54.

Once the solution unj of (1.3) has been computed, we compute its discrete position
and current densities nσ, Jσ, which are (in the one-dimensional case)

nσ(xj , tn) = |unj |2, n, j ∈ Z,

Jσ(xj , tn) = ε Im

(
unj

unj+1 − unj
∆x

)
, n, j ∈ Z.

In the continuous case, the limits of the position density (2.13) and the current density
(2.14) are recovered as moments of the Wigner measure if uε is ε-oscillatory. (They
cannot be obtained by means of (2.11), since the symbols are not in S.) Under this
condition (which is defined in (2.33)), we have

nε → n0 :=

∫
Rd

ξ

w0(x, dξ, t)

and

Jε → J0 :=

∫
Rd

ξ

ξ w0(x, dξ, t).

Again we refer to [GMMP] for more details. The ε-oscillatory condition is satisfied by
the initial data (5.2)–(5.3). Although in general this property is not preserved by the
Dufort–Frankel scheme, it is preserved in the constant coefficient case (which is the

case in the examples presented). Thus, in this case we have nσ
σ→0−→ n0 and Jσ

σ→0−→ J0,
provided that the Wigner measures are identical.

n0 and J0 are L1
loc functions, assuming infinite value on the caustics. They are

shown in Figure 3. For ε > 0, the continuous observables nε and Jε are oscillating
with wavelength O(ε) in those areas where two or more characteristics intersect.

The following pictures show the computed densities nσ and Jσ at time t = 0.54,
i.e., after the caustics develop. For reference purposes the weak limits n0 and J0 are
also depicted, using dashed lines.

Figures 4–6 refer to Case 1, ∆t/ε→ 0, with ∆x/ε→ 0 and γ → 0, for ε = 2·10−3,
1·10−3, and 0.5·10−3, respectively. The discretization parameters are ∆x = ε1.2,∆t =
ε1.5. We set V = 0. In this case the transport equations for the Wigner measure of
the difference scheme and of the continuous problem coincide. The obtained solutions
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Fig. 4. ε = 2 · 10−3, ∆t = ε1.5, ∆x = ε1.2, δ = 0.155, γ = 0.54, V = 0.
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Fig. 5. ε = 10−3, ∆t = ε1.5, ∆x = ε1.2, δ = 0.126, γ = 0.50, V = 0.

oscillate around n0 and J0 with wavelength ε. It can be observed that the number
of oscillations doubles when ε is halved. The amplitude of the oscillations does not
grow (except for the first one). There is evidence that the sequences {nσ}σ and
{Jσ}σ weakly converge to n0 and J0. One can say that these solutions are good
approximations of nε and Jε for the selected ε. We remark that the constraints of the
consistency-stability analysis are not satisfied, and this choice of parameters would
be discarded, according to (3.17).

Figures 7–9 correspond to Case 1 with a constant γ. The parameters are ε =
4 · 10−4, 2 · 10−4, and 10−4, with ∆x = ε1.2, ∆t = ε1.4, and V = 0. So we have
γ = γ0 = 1, and the Wigner measure of the scheme is still correct. The figures
indicate that, as in the previous example, the sequences {nσ}σ and {Jσ}σ weakly
converge to n0 and J0.

Figures 10–12 show Case 1 in the situation ∆x/ε → 1/ρ0 > 0. Here the Wigner
measure of the scheme is different from the continuous one. nσ and Jσ converge to
functions with smaller support than n0 and J0. At fixed ε the amplitude of oscillations
is larger than in the example of Figures 4–6. In this case, there is no convergence to
n0 and J0, and nσ, Jσ are poor approximations of nε and Jε for the corresponding
fixed ε.

Figures 13–15 explore the case not covered in Theorem 4.1. The consistency
condition δ → 0 is satisfied, but the condition γ → γ0 < ∞ is violated. The param-
eters are ε = 8 · 10−4, 4 · 10−4, and 2 · 10−4 respectively, and ∆x = ε1.35, ∆t = ε1.4

(γ = ε−0.3). The results show a smaller support than the continuous limits, similarly
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Fig. 6. ε = 0.5 · 10−3, ∆t = ε1.5, ∆x = ε1.2, δ = 0.102, γ = 0.47, V = 0.

to the previous example, and there is no convergence of nσ and Jσ to n0 and J0.

The results of Theorem 4.1, being asymptotic statements, are valid only for “suf-
ficiently small” ε. Statements like “∆t/ε → 0” must be interpreted as “∆t/ε small”
when applied to a fixed ε. Since, in contrast to (1.1), the numerical scheme is not
gauge invariant, the choice of those ∆x and ∆t which guarantee a good approximation
depends on V .

Figures 16 and 17 show a situation of Case 1 with a positive constant potential V .
We show the results for ε = 10−3 and ε = 5 · 10−4 with the discretization parameters
∆t = ε1.3 and ∆x = ε1.1, and V = 3. According to the relations of the discretization
parameters, the conditions for the correct Wigner measure ∆t/ε, ∆x/ε → 0, γ <∞
as ε → 0 are satisfied. The computed densities are clearly poor approximations of
nε, respectively, Jε. Moreover, they also exhibit fast oscillations in time as well as in
space, even before caustics develop, as shown in Figure 18, where the first time layers
of nσ for 0 < t < 4.78 · 10−3 are plotted for ε = 10−3. The oscillations are of almost
the same wavelength as the discretization steps.

Figures 19–21 show results for increasing values of V . The obtained results deviate
more and more with growing V from n0 and J0.

Compared to the Crank–Nicolson scheme, in Case 1 the results are of the same
quality as in the case of convergence there. The choice of discretization parameters is
less restrictive for the Crank–Nicolson scheme, since the conditions ∆t/∆x → 0 and
γ < ∞ are not needed. That scheme also has the advantage of better conservation
properties; it conserves total charge as well as a discrete version of the energy. How-
ever, these advantages have to be traded in for an implicit computation complexity,
which is a serious disadvantage in performance critical problems.

In comparison to the Leap-Frog scheme, we also have the same quality of results
in the convergent case. The Leap-Frog scheme has similar conservation properties,
as it conserves some discrete analogon of the energy. The choice of the discretization
steps is slightly more restrictive there, since there is the stability condition

∆t

∆x2
ε+

∆t

2ε
Vmax <

1

2

to be satisfied, in comparison with the convergence condition γ = ∆t
∆x2 ε→ γ0 <∞ of

the Dufort–Frankel scheme.
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Fig. 7. ε = 4 · 10−4, ∆t = ε1.4, ∆x = ε1.2, δ = 0.209, γ = 1, V = 0.
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Fig. 8. ε = 2 · 10−4, ∆t = ε1.4, ∆x = ε1.2, δ = 0.182, γ = 1, V = 0.
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Fig. 9. ε = 10−4, ∆t = ε1.4, ∆x = ε1.2, δ = 0.159, γ = 1, V = 0.
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Fig. 10. ε = 2 · 10−3, ∆t = ε1.5, ∆x = ε, δ = γ = 0.045, V = 0.
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Fig. 11. ε = 10−3, ∆t = ε1.5, ∆x = ε, δ = γ = 0.032, V = 0.
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Fig. 12. ε = 5 · 10−4, ∆t = ε1.5, ∆x = ε, δ = γ = 0.022, V = 0.



WIGNER MEASURE OF DUFORT–FRANKEL SCHEME 1307

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Position density

0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Current density

Fig. 13. ε = 8 · 10−4, ∆t = ε1.4, ∆x = ε1.35, δ = 0.70, γ = 8.49, V = 0.
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Fig. 14. ε = 4 · 10−4, ∆t = ε1.4, ∆x = ε1.35, δ = 0.676, γ = 10.46, V = 0.
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Fig. 15. ε = 2 · 10−4, ∆t = ε1.4, ∆x = ε1.35, δ = 0.653, γ = 12.87, V = 0.
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Fig. 16. ε = 10−3, ∆x = ε1.1, ∆t = ε1.3, δ = 0.251, γ = 0.501, V = 3.
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Fig. 17. ε = 5 · 10−4, ∆x = ε1.1, ∆t = ε1.3, δ = 0.219, γ = 0.468, V = 3.
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Fig. 18. ε = 10−3, ∆t = ε1.3, ∆x = ε1.1, V ≡ 3, 0 < t < 4.78 · 10−3.
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Fig. 19. ε = 10−3,∆x = ε1.2, ∆t = ε1.5, V = 25.
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Fig. 20. ε = 10−3, ∆x = ε1.2, ∆t = ε1.5, V = 50.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

Position density

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Current density

Fig. 21. ε = 10−3, ∆x = ε1.2, ∆t = ε1.5, V = 500.
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Abstract. We consider semidiscrete and fully discrete approximations of nonlinear parabolic
equations in the limit of unbounded domains, which by a scaling argument is equivalent to the limit
of vanishing viscosity. We define the spatial density of ε-entropy, topological entropy, and dimension
for the attractors and show that these quantities are bounded. We also provide practical means of
computing lower bounds on them. The proof uses the property that solutions lie in Gevrey classes
of analyticity, which we define in a way that does not depend on the size of the spatial domain. As
a specific example we discuss the complex Ginzburg–Landau equation.
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1. Introduction. We consider the following general parabolic equation:

∂tu = ν∆u+ γu+ F (u) , x ∈ [−Lπ,Lπ]d , t ≥ 0 ,(1.1)

for a complex valued function u = u(x, t) and bounded continuous initial condition
u(x, 0) = u0(x). We restrict ourselves to L ∈ N for convenience. The coefficients of
(1.1) satisfy

ν ∈ C , Re(ν) > 0 , γ ∈ R ,

and we assume that Re(F ) and Im(F ) are real analytic functions of Re(u) and Im(u).
We are interested in the large volume limit (L→∞) of the long time dynamics (in

particular the attractor) of (1.1) and its approximation by numerical schemes. In the
latter case we are interested in the limit when the mesh size of our discretization is kept
constant while taking the limit L→∞, thereby obtaining an infinite-dimensional but
still discrete system. (See section 6 for results of upper semicontinuity of the attractors
in terms of the different parameters of the problem.)

We remark that, by a scaling transformation, the large volume limit can be in-
terpreted as a small viscosity limit. The rescaled function v(y, t) = u(Ly, t) with
y ∈ [−π, π]d satisfies the following equation:

∂tv =
ν

L2
∆v + γv + F (v) ,

with periodic boundary conditions on [−π, π]d. It is, however, easier to work with
(1.1) (with periodic boundary conditions) and take L→∞. Indeed, since the problem
on the full space R

d is well posed, we have a priori bounds for all L <∞. In fact, we
view the periodic boundary conditions on [−Lπ,Lπ]d for large L as an approximation
of the infinite volume.
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For each fixed L < ∞, (1.1) generates a semiflow Φt
L. We discretize this time

evolution spatially by truncating to a finite number of (Fourier) modes. We make this
truncation by multiplying by a smooth function in Fourier space (rather than a sharp
indicator function) to have better control as L → ∞ (when the spectrum becomes
dense). We then discretize in time using an explicit scheme inspired by [26]. This
scheme is amenable to analysis and also proves to be an efficient numerical scheme
for smooth initial conditions.

It is not the purpose of this paper to prove the existence of global attractors for
(1.1) or for the discretizations; this has been considered in different setups in a large
number of publications (see, for example, [27, 24, 3, 1, 29]). Instead, we assume the

existence of a semiflow and of a family of global attractors, Â(L), for the continuous
and discrete problems (see Definition 3.2).

We compute bounds on statistical quantities that are valid for both the discrete
and continuous systems. The first of these statistical quantities is the (Kolmogorov)
ε-entropy

Hε := lim sup
L→∞

logN (ε, Â(L))
(2Lπ)d

,

where N is the minimum number of balls of radius ε in the topology of L∞ that are
needed to cover the attractor Â(L) (see Definition 3.3). We prove that Hε is a finite
number in Theorem 4.3. We thereby get a bound on the upper density of dimension

dup = lim sup
ε→0

Hε

log ε−1
.

This is to be compared with the results of Kolmogorov and Tikhomirov [15], where
they obtain a bound of the same type for the set of all entire analytic functions
of exponential type. This result follows from a sampling result for such functions
(Proposition D.3); namely, any of these analytic functions can be reconstructed by

interpolation of a discrete set of values. Although the functions on Â are not entire
functions, they are still determined by a discrete sampling.

Remark that it is appropriate to take the L∞ topology, since the diameter of
Â(L) does not depend on L in this topology, unlike the topology of Sobolev spaces
of nonzero order. We remark that the L∞ topology is stronger than the L2 topology,
and hence our results do not follow from [9, 8, 29].

We also wish to emphasize here that the order of the limits in our definition of
dup is important. A more “naive” definition would be

d̂up = lim sup
L→∞

lim sup
ε→0

logN (ε, Â(L))
(2Lπ)d log ε−1

.

The two limits do not commute in general; see [5]. We believe our approach is more
natural from an experimental/numerical point of view, in the sense that L is a pa-
rameter that can be varied in a series of measurements/simulations made at a fixed
accuracy ε.

We also consider the density of topological entropy in section 5. We show that the
spatial densities satisfy the analogue of the following well-known inequalities [14, 22]:

V ≤ htop ≤ λdup ,

where V is the volume expansion rate, λ is the largest Lyapunov exponent, htop is the
topological entropy, and dup is the upper Hausdorff dimension.
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The paper is organized as follows. In the remainder of this section we introduce the
notation for the paper. In section 2 the semidiscrete and fully discrete approximations
to (1.1) are presented. In section 3, we define the density of ε-entropy, topological
entropy, of upper dimension and the volume growth rate and state our assumptions on
the equation and its approximations. A key result of the paper is Lemma 4.2 (proved
in Appendix A), which states that the evolution has a fast local smoothing effect, a
property which allows us to establish upper bounds on the ε-entropy (section 4). This
is then applied in section 5 to show that the topological entropy is finite. We also
show that it is bounded below by the volume expansion rate (section 5.2). We discuss
the upper semicontinuity of the attractors in section 6. Technical proofs are given at
the end of the paper: Appendix B contains a proof of analyticity for the fully discrete
scheme, Appendix C contains a lemma on analytic functions, and Appendix D recalls
some results on Gevrey and Bernstein classes.

1.1. Notation. We use the following conventions: z is the complex conjugate of
z and |z| = √zz, its modulus. A function f = f1+if2 with both f1 and f2 real analytic
is identified with the vector-valued function f = (f1, f2). Its analytic extension to the
complex plane has the form (f1+ig1, f2+ig2), and we write |f | = (|f1|2+|f2|2+|g1|2+
|g2|2

)1/2
which, on the real axis, is equal to the modulus of the complex function f .

The convolution of two functions f , g is denoted f � g(x) :=
∫
f(x− y)g(y)dy.

If u is a function of t (time) and x (space), then we consider it either as a func-
tion of two variables with values in C, written u(x, t) ∈ C, or as a function of time
with values in the functions of x, written u(t) ∈ Cb(R

d) (the set of bounded contin-
uous functions). A function in the set Cper([−Lπ,Lπ]d) of 2Lπ-periodic continuous
functions will often be identified with its lift (by periodic extension) to Cb(R

d).
The spaces Cb(R

d) and Cper([−Lπ,Lπ]d) are Banach spaces with the sup norm
‖ · ‖∞ and may be viewed as subspaces of

(
L∞(Rd), ‖ · ‖∞

)
and

(
L∞([−Lπ,Lπ]d), ‖ ·

‖∞
)
, respectively. We also make extensive use of the Gevrey class Gα(C) and the

Bernstein class Bσ(C). These are both discussed in Appendix D. If Re
(
f
)
and Im

(
f
)

belong to the Gevrey class Gα(C), we use the notation f ∈ [Gα(R)]2 (similarly for
Bσ(C)).

We denote by T the standard Fourier transform operator
(T f)(k) := 1

(2π)d

∫
eik·xf(x) dx ,

(T −1f
)
(x) :=

∫
e−ik·xf(x) dk .

The Fourier series operator for 2Lπ-periodic functions is denoted with the same sym-
bol:

(T f)
n
:=

1

(2Lπ)d

∫
|x|≤Lπ

ein·x/Lf(x) dx ,
(T −1f

)
(x) :=

∑
n∈Zd

e−in·x/Lfn .(1.2)

We introduce two different smooth cutoff functions (see Figure 1). The first of
these, ϕ, acts in real space and serves as a weight in Lp norms in order to get bounds
that do not depend on L.

Definition 1.1. Let ϕ be a real-space cutoff function satisfying

ϕ(x) > 0 ∀x ∈ R
d, ϕ(−x) = ϕ(x) ,

∫
ϕ(x) dx = 1 ,

∥∥∥∥∇ϕϕ
∥∥∥∥
∞
< ∞ ,

and, moreover, ϕ−1 is a tempered distribution, i.e.,
∫
ϕ−1f < ∞ for any Schwartz

function f .
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ϕ(x)

x

ξ̂K(k)

k

ξK(x)

x

Fig. 1. The cutoff functions of Definitions 1.1–1.2.

Examples. The function

ϕ(x) =
1

(1 + |Cϕx|2)d/2+1

satisfies all of our requirements. (Here, Cϕ is a normalization constant determined by
the equation

∫
ϕ = 1, similarly for Cψ below.) However, the function

ψ(x) =
1

cosh(Cψx1) · · · cosh(Cψxd)
,

which has a sharper decay at infinity, cannot be used because it fails the last property;
namely, cosh(x) is not a tempered distribution. The importance of this may be seen
in Lemma 4.2.

Note that for (1.1) the function ψ could be used and would provide sharper bounds
in our proofs. This does not work, however, with the truncation to a finite number of
modes (such as given by the semidiscrete system (2.3) or fully discrete system (2.5)).

Our second cutoff function, ξK , is defined in terms of its Fourier transform. It
smoothly truncates to a finite set of Fourier modes and hence produces a finite-
dimensional problem.

Definition 1.2. Let K > 1 and let ξ̂K be a C∞ function taking the following
values:

ξ̂K(k) =

{
1 if |k| ≤ K − 1 ,
0 if |k| ≥ K .

Its inverse Fourier transform ξK = T −1(ξ̂K) is an (entire) Schwartz function.
Note that if f is a Schwartz function, then ξK � f is a Schwartz function whose

Fourier transform has support in [−K,K]d, and hence it belongs to BK(C) for some
C; see [23].

2. Semidiscrete and fully discrete approximations. In this section, we
propose a spatial discretization of (1.1) and a fully discrete scheme.

2.1. Galerkin scheme. The semidiscretization we describe here is a spectral
method. Let N ∈ N; then we use the Fourier cutoff ξK of Definition 1.2 with K = N
to define the operators PN and QNf := f − PNf , where

PNf := ξN � f = T −1
(
ξ̂NT (f)

)
,(2.1)

i.e.,

PN
∑
n∈Zd

fne
−in·x/L :=

∑
|n|≤NL

ξ̂N (n/L)fne
−in·x/L .
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Notice that PN truncates to (2NL)d modes, not (2N)d. In this way, T (PNf) has
support contained in [−N,N ]d for all L. The operator PN is not a projector, since
PNPN �= PN .

The Galerkin approximation is defined as follows: the solution u(x, t) to (1.1) is
replaced by a finite Fourier series

uN (x, t) :=
∑

|n|≤NL

un(t)e
−in·x/L .(2.2)

The evolution equation is obtained by applying PN to the nonlinear term of (1.1) and
to the initial condition u0:

∂tu
N =

(
γ + ν∆

)
uN + PNF (uN ) , uN (x, 0) =

(
PNu0

)
(x) .(2.3)

2.2. Fully discrete scheme. The time discretization is an exact exponential
integrator for the linear part and a simple (order 1) quadrature for the nonlinear term
appearing in the variation of constants formula. It is similar to that considered in [26],
although they need a different definition of discrete Gevrey space, which depends on
the time step. The full discretization is obtained by applying this time discretization
to the Galerkin scheme (2.3). We use this particular scheme because it makes it
straightforward to prove that solutions are (Gevrey) analytic functions (uniformly in
the parameters of the scheme; see Appendix B), a fact that we rely on heavily in the
next sections.

Let L = γ+ν∆ and K(x, t) be the convolution kernel associated with the operator
exp(tL):

K(x, t) = 1

(2π)d

∫
e−ik·x+(γ−ν|k|2)t dk .(2.4)

Note that the operator PN commutes with K� ·, since both are convolution operators.
Let h > 0 denote the time step. Then the fully discrete approximation to u(x, t) is
defined iteratively by

uN
(
(n+ 1)h

)
= K(h) � (uN (nh) + hPNF (uN (nh))) .(2.5)

In terms of the Fourier coefficients, (2.2), we get

uNm
(
(n+ 1)h

)
= ehλm

(
uNm(nh) + hP

NT F (T −1uN (nh)
)
m

)
= ehλm(uNm(nh) + hξ̂N (m/L)T F

(T −1uN (nh)
)
m
) ,

where {λm}m∈Zd are the eigenvalues of L; namely, λm = γ − ν|m|2/L2, n is the time
index, m is the Fourier index, and T is the Fourier transform (1.2).

For the purposes of analysis, it is useful to consider this scheme in terms of
piecewise solutions of a linear differential equation. Indeed, uN (x, (n + 1)h) is the
solution at time t = h of

∂tu(x, t) = ν∆u(x, t) + γu(x, t)(2.6)

with initial condition uN (x, nh) + hPNF
(
uN (x, nh)

)
at t = 0.
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Remark. We could apply our techniques to other numerical schemes. We require
only the numerical approximation to belong to the Gevrey class Gα(C) of bounded
real analytic functions for some α > 0, C > 0 (see Appendix D). There exists
many wavelet and finite element schemes satisfying this requirement; see [7, 18]. In
particular, Propositions D.2 and D.3 provide a natural example of a different basis of
analytic functions on which our problem can be decomposed and then a truncation
applied: this basis consists of the functions

Ψj,k(x) =
3eik·x sin

(
2x− 1

3jπ
)
sin
(
6x− jπ

)
(6x− jπ)2

for j, k ∈ Z
d. These functions have the advantage of being localized both in real space,

and in Fourier space, although the numerical implementation is more involved.

3. Definitions and assumptions. Since we are interested in the large volume
limit we specify this dependence in the definitions below.

Assumption 3.1. For initial data u0 ∈ Cper([−Lπ,Lπ]d), we assume that
• (1.1) is the generator of a semiflow Φt

L : u0 �→ u(t);
• for all N > N0 the semidiscrete (2.3) is the generator of a semiflow Φt

L,N : u0 �→
u(t);

• for all N > N0 and h < h0 the fully discrete equation (2.5) is the generator of a
semiflow Φt

L,N,h : u0 �→ u(t) with t = nh, n ∈ N.
Furthermore, we assume for each of the semiflows above that there exists constants

α > 0 and R > 0, independent of L and t, such that Re
(
u(t)

)
and Im

(
u(t)

)
belong to

the Gevrey class Gα(R) for all t > T (u), and so u(t) ∈ [Gα(R)]2. In other words, the
following sets are absorbing balls for their corresponding semiflows:

B(L) := Cper([−Lπ,Lπ]d)
⋂
[Gα(R)]2 ,

BN (L) := P
NCper([−Lπ,Lπ]d)

⋂
[Gα(R)]2 ,

BN,h(L) := P
NCper([−Lπ,Lπ]d)

⋂
[Gα(R)]2 .

Throughout the paper we use Φ̂t to denote any of the semiflows (with t taken

appropriately) defined above and B̂(L) to denote the corresponding absorbing balls.
We next define the attractors of the different evolutions introduced above.
Definition 3.2. We define the following invariant attracting sets for the flows

defined in Assumption 3.1:

A(L) :=
⋂
t>0

Φt
L

(
B(L)

)
,

AN (L) :=
⋂
t>0

Φt
L,N

(
BN (L)

)
,

AN,h(L) :=
⋂
n∈N

Φnh
L,N,h

(
BN,h(L)

)
.

Throughout the paper we use Â(L) to denote any of the above attracting sets.
Clearly, finite trigonometric sums like (2.2) are entire functions. However, the

assumption that there exists a strip around the real axis where uN is bounded by the
same constant for all N is not trivial. Results of this type are known for a number of
parabolic partial differential equations of the form (1.1), under the assumption that
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F is dissipative in an appropriate sense (see, for example, [1, 25]). For numerical ap-
proximations, existence of semiflows and global attractors is a well-considered problem
(see, for example, [24]). Gevrey regularity of solutions for numerical schemes has not
been so widely considered; two different approaches are in [17, 26]. Appendix B con-
tains a sketch of how to obtain this result for the fully discrete scheme given by (2.5).
The proof relies only on an a priori L∞ bound on the solutions and the assumption
that the nonlinearity F is analytic.

We next introduce the notion of ε-entropy. The proof that this is a finite quantity
will be given in section 4. From this we define the upper density of dimension.

Definition 3.3. Let Y be a subset of a metric space X. A set U = {U1, . . . , UN}
of open sets in X is called a cover of Y if

⋃N
n=1 Un ⊃ Y . It is called an ε-cover if

maxn=1,...,N diam(Un) ≤ ε.

Let Â(L) be endowed with the metric defined by the norm ‖ · ‖∞. Let

N (ε, Â(L)) := inf{card(U) : U is an ε-cover of Â(L)} .
We define the ε-entropy Hε as the limit

Hε := lim sup
L→∞

logN (ε, Â(L))
(2Lπ)d

.

The upper density of dimension dup is defined by

dup := lim sup
ε→0

Hε

log ε−1
.

Remark. In [4, 5, 6], Hε was defined with a limit instead of a limit superior. The
existence of the limit followed from a subadditivity argument which cannot be used
here because of the boundary conditions. That is, the set Â(L) we are considering
here changes with L, whereas, in the papers [4, 5, 6], only the topology on A depended
on L, not the set itself. See also [31, 32] for similar results.

Another more classical notion of entropy is the topological entropy. It serves to
measure to complexity of a dynamical system. Similarly to the previous definition,
we consider here the spatial density of topological entropy. See section 5 for results
on the topological entropy.

Definition 3.4. For τ > 0, we define a pseudometric dm,τ on Cper([−Lπ,Lπ]d)
by

dm,τ (u, v) := max
k=0,...,m−1

‖Φ̂kτ (u)− Φ̂kτ (v)‖∞ .

An (m, ε)-cover of Â(L) is a collection of open sets whose diameter in the met-

ric dm,τ is at most ε and whose union contains Â(L). Let Mm,τ (ε, Â(L)) be the
cardinality of such a minimal (m, ε)-cover.

The (spatial density of) topological entropy is defined as follows:

htop := lim sup
ε→0

lim sup
L→∞

1

(2Lπ)d
lim

m→∞
1

mτ
logMm,τ (ε, Â(L)) .(3.1)

The existence of the first limit in (3.1) can be proved by a subadditivity argument;
see [4, 6, 14]. A useful way of computing a lower bound on the topological entropy is
by measuring the volume expansion rate (see section 5.2).
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Definition 3.5. Let L �→ D(L) be a family of .-dimensional C∞ submanifolds

of the absorbing ball B̂. We define V, the volume expansion rate, by

V := lim sup
L→∞

1

(2Lπ)d
lim sup
m→∞

1

mτ
log Vol�

(
Φ̂mτ (D(L))) ,

where Vol� is the .-dimensional (Euclidean) volume.

4. Upper bound on the ε-entropy. We now work towards proving our main
result which is a bound on the ε-entropy. First we discuss a preliminary result on the
smoothing property of the semiflow which is proved in Appendix A.

4.1. Smoothing property of the semiflow. We consider here differences w =
u−v of two orbits u and v of the semiflow Φ̂t of Assumption 3.1. We define functions
G1 and G2 in such a way that w satisfies

∂tw =
(
γ + ν∆

)
w + PN

(
G1(u, v)w +G2(u, v)w

)
(4.1)

for continuous time and

w
(
(n+ 1)h

)
= K(h) � (w(nh) + hPN(G1(nh)w(nh) +G2(nh)w(nh)

)
(4.2)

for discrete time. From now on we view G1 and G2 as functions of x and t (rather
than of u and v), and we use the following consequence of Assumption 3.1.

Lemma 4.1. There exists α > 0 and R > 0, both independent of N , L, and t,
such that w(t), G1(t), and G2(t) all belong to [Gα(R)]2 for all t > 0 (and t/h ∈ N for
(4.2)).

Remark. We may assume without loss of generality that the R and the α of
Assumption 3.1 and Lemma 4.1 are equal and that they are also equal for the fully
continuous, semidiscrete, and fully discrete equations.

We compute bounds on the weighted L2 norm of w shifted in the complex plane
over a finite time interval. Instead of taking the usual (flat) L2 norm over [−Lπ,Lπ]d,
which would not behave well in the limit L → ∞, we take a norm over the whole
of R

d weighted with the function ϕ from Definition 1.1. Therefore, L disappears
completely from our estimates. However, in Definition 3.3, we chose to work with the
L∞ topology. We therefore use the following bootstrap argument. From a bound in
L∞ at time t = 0, we get a bound in weighted L2 at time t = 0. Using the next
lemma we deduce a bound at t = 1 in a weighted L2 space on a strip of the complex
plane. This is in turn combined with Lemma C.1 and provides an L∞ bound at t = 1.

Lemma 4.2. There is a constant b > 0 such that, for any β ∈ (−α, α), any N ,
and any L, the following bound holds on w a solution of (4.1) (or (4.2)) as long as
t ≤ 1 (and t/h ∈ N in the case of a fully discrete scheme):

sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβt, t)|2 dx ≤ e2bt sup

|y|≤Lπ

∫
ϕ(x− y)|w(x, 0)|2 dx .(4.3)

The proof of Lemma 4.2 is given in Appendix A.
These L2 norms shifted in the complex plane can be understood in terms of the

classical Gevrey norms. First consider ϕ ≡ 1. Then, using Fourier series and taking
β > 0, we see that∫ (|f(x+ 2iβ)|2 + |f(x− 2iβ)|2) dx = ∥∥∥Γeβ(−∆)1/2

f
∥∥∥2

2
,(4.4)
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where Γ is the bounded invertible operator defined by(T (Γf))
n
= (1 + e−2β|n|/L)(T f)n .

This means that the left-hand side of (4.4) is equivalent to a Gevrey norm. (Similar
norms have been used in [11, 12].) We apply a nonconstant weight function ϕ to
this norm in order to get estimates which are independent of L and take the sup
over |β| ≤ α to be able to use Lemma C.1. Similar issues have been raised in the
paper [21], but our approach is different in that we never explicitly work in Fourier
space. We note also that the norms used in [21] grow with the domain size (due to
the embedding constant), a problem we avoid here by using the cutoff ϕ.

4.2. Proof of the upper bound. We next show that the ε-entropy Hε (Defi-
nition 3.3) is of order log ε−1 at most.

Theorem 4.3. There exists a constant C <∞, independent of ε, such that

Hε ≤ C log

(
R

ε

)
,

where R is the radius of the absorbing ball B̂(L) in Assumption 3.1.
The proof is based on the following lemma.
Lemma 4.4. There is a constant C > 0 such that, for all ε > 0, the following

holds:

Hε ≤ H2ε + C .

Proof. The proof is a consequence of the smoothness result of the previous section.
We give the proof for the time continuous cases (1.1), (2.3). The time discrete case
(2.5) is similar; it requires only restricting t to multiples of h.

Suppose we are given a 2ε-cover {U1, . . . , UN } of Â(L). Then by invariance of Â
the set

{Φ̂t(U1), . . . , Φ̂
t(UN )}

is a cover of Â(L) for all t > 0. Moreover, if u, v ∈ U1, by Lemma C.1 combined with
Lemma 4.2, we have

sup
|x|≤Lπ , 2|y|≤α

|(Φ̂1(u)− Φ̂1(v)
)
(x+ iy)| ≤ Cε .

That is, if we let w = Φ̂1(u)− Φ̂1(v), then w ∈ [Gα/2(Cε)]2 with C independent of L
and ε.

We now use an argument due to Tikhomirov [28], discussed in [15, section 8,
Theorem XXII]. By Proposition D.2 w can be written as

w(z) =
∑
n∈Zd

e−α|n|/2ein·zwn(z) ,(4.5)

with wn in the Bernstein class [B2(C
′ε)]2. (See Appendix D for the definition of B2.)

Thus, splitting the sum in (4.5) in two, we can find a K independent of ε and L, and
a w̃ ∈ [BK(C ′ε)]2, such that

‖w − w̃‖∞ ≤ ε

2
.
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If w̃ ∈ [BK(Cε)]2, then, by Proposition D.3,

w̃(x) =
∑
n∈Zd

w̃
(
xK(n)

)FK

(
x− xK(n)

)
,

and hence there is a δ > 0 depending only onK such that ‖w̃‖∞ ≤ ε/2 if |w̃(xK(n))| ≤
δε for all n ∈ Z

d for which xK(n) = (nπ)/(3K) ∈ [−Lπ,Lπ]d. There are c(K)(2Lπ)d
such points, and hence at most

(
Cε

δε

)c(K)(2Lπ)d

=: C
(2Lπ)d

∗

balls of radius ε/2 will be needed to cover [BK(Cε)]2. This covers all the functions w̃
obtained from the set Φ̂1(U1) by the above construction. Consequently, Φ̂

1(U1) can
be covered with the same number of balls of diameter ε.

Repeating the operation with each one of the N (2ε, Â(L)) sets of diameter 2ε of
the original cover {U1, . . . , UN }, we obtain a cover with at most

N (ε, Â(L)) ≤ N (2ε, Â(L))C(2Lπ)d

∗

elements. Taking the logarithm, dividing by (2Lπ)d, and passing to the limit L→∞,
we obtain Lemma 4.4.

Proof of Theorem 4.3. It trivially holds that HR = 0, because N (R, Â(L)) = 1
by Assumption 3.1. Let k be the smallest integer larger than log(R/ε)/ log 2; then by
Lemma 4.4 we have

Hε ≤ H2ε + C ≤ · · · ≤ H2kε + Ck ≤ C ′ logR/ε .

This proves Theorem 4.3.

5. The topological entropy.

5.1. Upper bound by the dimension. In this section, we prove that the
topological entropy of the attractors Â is bounded by a multiple of the upper density
of dimension, a quantity related to the ε-entropy. The corresponding inequality for
finite-dimensional dynamical systems is well known; see [14].

Theorem 5.1. There is a b <∞ such that

htop ≤ bdup < ∞ .(5.1)

Proof. The right-hand inequality is a direct consequence of Theorem 4.3. The
left-hand inequality follows from the arguments in [4, 14] that we summarize here.
Let ρ > 0 be such that Hε ≤

(
dup+ρ

)
log 1/ε for all ε < ε0 and then let L0 = L0(ε, ρ)

be such that, for all L > L0,

logN (ε, Â(L))
(2Lπ)d

≤ Hε + ρ ≤
(
dup + ρ

)
log
1

ε
+ ρ .

By iterating Lemma C.1 and Lemma 4.2, there is a b > 0 such that, for all L and all
(sufficiently small) ε > 0, if ‖u− v‖∞ ≤ ε, then, for t > 0,

‖Φ̂t(u)− Φ̂t(v)‖∞ ≤ ebtε .
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Let ε′ = exp(−bT )ε. Let an ε′-cover of Â(L) (in the sense of Definition 3.3) be given.
Then it is also a (T/τ, ε)-cover (in the sense of Definition 3.4), and hence

MT/τ,τ (ε, Â(L)) ≤ N (ε′, Â(L)) .

It follows that

htop = lim sup
ε→0

lim sup
L→∞

1

(2Lπ)d
lim

T→∞
1

T
logMT/τ,τ (ε, Â(L))

= lim sup
ε→0

lim sup
L→∞

1

(2Lπ)d
inf
T

1

T
logMT/τ,τ (ε, Â(L))

≤ lim sup
ε→0

lim sup
L→∞

1

T

logN (ε′, Â(L))
(2Lπ)d

≤ lim sup
ε→0

lim sup
L→∞

1

T

(
(dup + ρ) log

1

ε′
+ ρ

)
.

Since log 1/ε′ = bT + log 1/ε, the limit T → ∞ and ρ → 0 leaves only bdup on the
right-hand side above.

5.2. Lower bound by the expansion rate. We provide here a way of com-
puting a lower bound on the topological entropy (hence on the upper dimension dup

by Theorem 5.1), based on Yomdin’s theorem [30], an account of which may be found
in [22].

Theorem 5.2. Let htop be as in Definition 3.4. Then for all choices of D(L) in
Definition 3.5,

V ≤ htop .

Remark. The lower bound in [5] is in the same spirit. An adequate sequence of
submanifolds is chosen (small balls around the trivial solution). The volume expansion
rate of that sequence can be controlled, yielding a lower bound on the (ε-)entropy.

Proof. The proof follows from the argument by Yomdin [30] and Gromov [10].

By a lemma of Gromov [10], there exists a C > 0 such that if Φ̂τ is Cr, then

Vol�
(
Φ̂mτ (D(L))) ≤ Mm,τ (ε, Â(L))(C‖DΦ̂τ‖∞)m�/r , and

hence

lim sup
L→∞

1

(2Lπ)d
lim sup
m→∞

1

mτ
log Vol�

(
Φ̂mτ (D(L)))

≤ lim sup
L→∞

1

(2Lπ)d
lim sup
m→∞

1

mτ
logMm,τ (ε, Â(L))

+ lim sup
L→∞

./r

(2Lπ)d
log
(
C1/τ‖DΦ̂τ‖1/τ∞

)
.

Since τ can be arbitrarily large, the constant C drops out, and, since Φ̂τ is C∞, the
second term is arbitrarily small by letting r →∞. The first term tends to htop upon
letting ε→ 0.
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6. Upper semicontinuity of the infinite volume attractors. In this section
we discuss four different invariant sets and their mutual relationship. The first two
invariant sets are AN,h(L) and A(L) from Definition 3.2. Then we also introduce two
large volume limits:

AN,h(∞) :=
⋃
L∈N

AN,h(L) , A(∞) :=
⋃
L∈N

A(L) ,(6.1)

where the closure is taken in the uniformly local topology of [19]. We define the
distance between a point and a set and between two sets in the standard way:

dist
(
U,V) := inf

V ∈V
‖U − V ‖L∞([−Lπ,Lπ]d) ,

dist
(U ,V) := sup

U∈U
dist

(
U,V) .

We claim that

(6.2)

lim
N→∞,h→0

dist
(AN,h(L),A(L)

)
= 0 , lim

N→∞,h→0
dist

(AN,h(∞),A(∞)
)
= 0 ,

and the following relations are straightforward from (6.1):

lim
L→∞

dist
(AN,h(L),AN,h(∞)

)
= 0 ,

lim
L→∞

dist
(A(L),A(∞)) = 0 .

Hence we obtain the following diagram, in which each arrow represents a relation of
upper semicontinuity:

AN,h(L)

L→∞

N→∞
h→0

//A(L)
L→∞

AN,h(∞)N→∞
h→0

//A(∞) .

The relation (6.3) is a consequence of the following (see, e.g., [13, 17, 19, 20]).
Theorem 6.1. For all ε > 0, there is a T1, an h1, and an N1 such that if h < h1

and N > N1, then, for all L ∈ N,

ΦT
L,N,h (BN,h(L)) ⊂ Uε(A(L)) ∀T > T1 ,

where Uε(A(L)) is the ε-neighborhood of A(L) in L∞.
Proof. The proof is by induction using the attracting property of the attractor

and a finite time error estimate.
By the attraction property of A(L), there exists a T such that, for all T > T1,

ΦT
L (B(L) ∪BN,h(L)) ⊂ Uε/2(A(L))

for all L ∈ N. Hence for any u0 ∈ BN,h(L) we have

dist
(
Φnh
L,N,h(u0),A(L)

)
= inf

u∈A(L)
‖Φnh

L,N,h(u0)− u‖∞
≤ inf

u∈A(L)
‖Φnh

L (u0)− u‖∞ + ‖Φnh
L,N,h(u0)− Φnh

L (u0)‖∞

≤ ε

2
+ ‖Φnh

L,N,h(u0)− Φnh
L (u0)‖∞ ,(6.3)

provided nh > T .
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We next show that N,h can be chosen in such a way that the second term above
is smaller than ε/2 for all T ∈ (0, 2T1].

Let v(t) = Φt
L(u0) and w(nh + s) = Φs

LinΦ
nh
L,N,h(u0), where Φ

s
Lin is the solution

semiflow of (2.6). We thus have for s < h

∂t
(
v(nh+ s)− w(nh+ s)

)
=
(
γ + ν∆

)(
v(nh+ s)− w(nh+ s)

)
+ F

(
v(nh+ s)

)
=
(
γ + ν∆

)(
v(nh+ s)− w(nh+ s)

)
+ PN

(
F
(
v(nh+ s)

)− F
(
w(nh+ s)

))
−PNF (w(nh+ s))+QNF

(
v(nh+ s)

)
.

Using Proposition D.2 we see that

sup
s<h

‖QNF
(
v(nh+ s)

)‖∞ ≤ C(R)e−αN .

It is also quite easy (using Fourier transforms) to see that∥∥∥∥∥
∫ h

0

(
PNF

(
w((n+ 1)h)

)−K(s) � PNF (w((n+ 1)h− s)
))
ds

∥∥∥∥∥
∞
≤ C(R)h .

Hence, using the same analysis as in the proof of Lemma 4.2, we obtain

‖v((n+ 1)h)− w((n+ 1)h)‖∞ ≤ ech‖v(nh)− w(nh)‖∞ + C(R)h
(
1 + e−αN

)
.

By iteration, we obtain

‖v(nh)− w(nh)‖∞ ≤ ecnh‖v(0)− w(0)‖∞ + C(R)ecnhh(1 + e−αN ) .(6.4)

Taking h small enough, we can make the second term of (6.3) smaller than ε/2 for all
T ∈ (0, 2T1].

To complete the induction we note that the absorbing ball is forward invariant,
and so we can repeat the argument for T > 2T1.

7. Discussion: The complex Ginzburg–Landau equation. An interesting
example to which our results apply is the (cubic) complex Ginzburg–Landau (CGL)
equation in d = 1 space dimension

∂tu(x, t) = (1 + ia)∂
2
xu(x, t) + u(x, t)− (1 + ib)|u(x, t)|2u(x, t) .(7.1)

In terms of the notations of (1.1), we have

d = 1 , ν = 1 + ia , γ = 1 , F (u) = −(1 + ib)|u|2u .

Remark that the equation for the difference w = u− v of two solutions u and v that
we use in section 4.1 admits a simple expression:

∂tw(x, t) = (1 + ia)∂
2
xw(x, t) + w(x, t)

+

∫
ξN (x− y)(G1(y, t)w(y, t) +G2(y, t)w(y, t))dy ,

where

G1(x, t) = −(1 + ib)(|u(x, t)|2 + |v(x, t)|2) , G2(x, t) = −(1 + ib)u(x, t)v(x, t) .
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The CGL equation (7.1) arises as a “normal form” in certain types of bifurcation
with continuous spectrum; see [1, 3]. Assumption 3.1 for the continuous case follows
from the works [2, 1, 25]. In particular, the following results have been proved.

Theorem 7.1. Equation (7.1) defines a semiflow Φt on L∞(R) which has an
absorbing ball B in Gα(C) for some C > 0 and α > 0 (see Appendix D). The
attractor A = ∩t>0Φ

t(B) exists and is compact in L∞([−L,L]) for any L > 0.
Remark that these results hold on the whole space without boundary conditions,

but they obviously remain true on the set of spatially periodic solutions, which is
invariant under the time evolution.

The following rigorous upper and lower bounds on the ε-entropy in unbounded
volumes were obtained in [5].

Theorem 7.2. Let A be the attractor of (7.1) for general initial conditions in
L∞(R) and let N (ε,A) be the minimum the number of balls in an ε-cover of A in the
topology of L∞([−L,L]). There is a C > 0 for which

C−1 log(1/ε) ≤ Hε(A) = lim
L→∞

logN (ε,A)
2L

≤ C log(1/ε) .

In particular, the limit exists.
The discretization (2.5) in the particular case of the CGL equation is

uNm
(
(n+ 1)h

)
= e(1−(1+ia)m2)nh

(
1− h(1 + ib)ξ̂N (m/L)|uNm(nh)|2

)
uNm(nh) ,(7.2)

where n = 0, 1, . . . is the time index and m = −N, . . . , N is the Fourier index.
A closely related time discretization was considered in [26]. Although there is no

formal proof of existence of a semiflow and global attractor for the modified Galerkin
scheme considered here, this can be seen to be true by considering the error bound
(6.4) and the results of Theorem 7.1 over a finite time interval [0, T ]. This suffices
to prove that the discretized evolution is well defined and solutions stay bounded on
that time interval. Iterating over [qT, (q + 1)T ] for all q > 0 we obtain the existence
of a global semiflow. The proof of existence of the absorbing balls of Assumption 3.1
is sketched in Appendix B. This implies that the following theorem holds as a special
case of Theorem 4.3.

Theorem 7.3. Consider the CGL equation (7.2). There exists a constant C <∞,
independent of ε, such that

Hε ≤ C log

(
R

ε

)
,

where R is the radius of the absorbing ball B in Gevrey space for (7.2), and Hε is
defined in Definition 3.3.

Appendix A. Proof of Lemma 4.2. We first consider the time continuous
case (4.1). We write the analytic extension of w as a vector-valued function with
components wr and wi (each of which is complex-valued), and its complex argument
x+ iy is also written as a vector of reals. Namely,

w(x+ iy, t) =
(
wr(x, y; t), wi(x, y; t)

)
.

As a preparation for the proof, we estimate the following expression:

Re ν

∫
ϕ(x)(wr(x, y; t)∆xwr(x, y; t) + wi(x, y; t)∆xwi(x, y; t)) dx

+ Re iβ

∫
ϕ(x)(wr(x, y; t)∇ywr(x, y; t) + wi(x, y; t)∇ywi(x, y; t)) dx.(A.1)
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By using the Cauchy–Riemann equations (|∇yur,i| = |∇xur,i|), we obtain

Re ν

∫
ϕ
(
wr∆xwr + wi∆xwi

)
dx+Re iβ

∫
ϕ(wr∇ywr + wi∇ywi) dx

= −Re ν
∫
ϕ
(|∇xwr|2 + |∇xwi|2

)
dx− Re ν

∫
∇xϕ(wr∇xwr + wi∇xwi) dx

+ Re iβ

∫
ϕ(wr∇ywr + wi∇ywi) dx

≤ − Re ν
∫
ϕ
(|∇xwr|2 + |∇xwi|2

)
dx

+ |ν|
∥∥∥∥∇ϕϕ

∥∥∥∥
∞

∫
ϕ(|wr||∇xwr|+ |wi||∇xwi|) dx

+ |β|
∫
ϕ(|wr||∇xwr|+ |wi||∇xwi|) dx

≤ |β|2 + |ν|2‖∇ϕ/ϕ‖2∞
2Reν

∫
ϕ
(|wr|2 + |wi|2

)
dx

=: b0

∫
ϕ
(|wr|2 + |wi|2

)
dx .(A.2)

Define

ϕy(x) := ϕ(x− y) , ξ∗y(x) := ξN (x− y) ,

where ϕ and ξN are as in Definitions 1.1–1.2. We next compute the time derivative
of the left-hand side of (4.3). The expression (A.1) is the linear part of the time
derivative, and hence we simply insert the bound (A.2) and compute the nonlinear
part:

1

2
∂t sup

y

∫
ϕy(x)|w(x+ iβt, t)|2 dx ≤ 1

2
sup
y
∂t

∫
ϕy(x)|w(x+ iβt, t)|2 dx

≤ (γ + b0) sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx

+ Re sup
y

∣∣∣∫ ϕy(x)w(x+ iβt, t)

×
(∫

ξ∗x(z)(G1(z + iβt, t)w(z + iβt, t) +G2(z + iβt, t)w(z + iβt, t))dz

)
dx
∣∣∣

≤ (γ + b0) sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx

+ sup
y

∫
ϕy(x)|w(x+ iβt, t)|

×
(∫ |ξ∗x(z)|√

ϕx(z)

√
ϕx(z)(|G1(z + iβt, t)|+ |G2(z + iβt, t)|)|w(z + iβt, t)|dz

)
dx .

At this point, we apply the Cauchy–Schwarz inequality to each of the two integrals
on the right-hand side. Using Lemma 4.1 we know that

sup
|β|≤α

sup
t≤1

sup
x∈Rd

(|G1(x+ iβ, t)|+ |G2(x+ iβ, t)|
) ≤ 2R .
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This gives

1

2
∂t sup

y

∫
ϕy(x)|w(x+ iβt, t)|2 dx ≤

(
γ + b0

)
sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx

+sup
y

(∫
ϕy(x)|w(x+ iβt, t)|2 dx

)1/2(∫
ϕ(x) dx

∫
ξ2N (z)

ϕ(z)
dz

)1/2

× 2R
(
sup
x

∫
ϕx(z)|w(z + iβt, t)|2 dz

)1/2

≤
(
γ + b0 + 2R

(∫
ξ2N
ϕ

)1/2
)
sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx

=: b sup
y

∫
ϕy(x)|w(x+ iβt, t)|2 dx ,

where we used that, by Definition 1.1,
∫
ξ2N/ϕ <∞ because ξ2N is a Schwartz function

and 1/ϕ is a Schwartz distribution. Equation (4.3) now follows from Gronwall’s
lemma.

In the discrete case, we solve the linear differential equation (see (2.6))

∂tw(nh+ t) =
(
γ + ν∆

)
w(nh+ t)

for t ∈ [0, h) with initial condition w(nh)+hξN �
(
G1(nh)w(nh)+G2(nh)w(nh)

)
, and

then we iterate for n = 0 to n = [1/h] + 1. Over one time step, the same calculations
as in the continuous case give

sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβ(n+ 1)h, (n+ 1)h)|2 dx

≤ e2bh sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβnh, nh)|2 dx ,

and, similarly,

sup
|y|≤Lπ

∫
ϕ(x− y)|hξN �

(
G1((n+ 1)h)w((n+ 1)h) +G2((n+ 1)h)w((n+ 1)h)

)|2 dx
≤ (2Rh)2

(∫
ξ2N
ϕ

)
sup

|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβ(n+ 1)h, (n+ 1)h)|2

≤ eCh sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβ(n+ 1)h, (n+ 1)h)|2 ,

and hence we can iterate

sup
|y|≤Lπ

∫
ϕ(x− y)|w(x+ iβnh, nh)|2 dx ≤ e2bnh sup

|y|≤Lπ

∫
ϕ(x− y)|w(x, 0)|2 dx .

This completes the proof of Lemma 4.2.

Appendix B. Analyticity for the fully discrete scheme. The full dis-
cretization discussed in section 2.2 is similar to that introduced in [26], where Gevrey
regularity is proved. We give here another simple and direct proof that the semigroup
generated by (2.5) maps into Gα(C) (see Appendix D) for some α and C independent
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of N and L. Our proof is in the spirit of Collet [1] or Takáč et al. [25]. We assume
that the solution u(x, nh) of (2.5) has reached an absorbing ball in L∞, and hence
there is an R > 0 such that ‖u(nh)‖∞ ≤ R irrespective of u0 and n. We then use
a contraction argument to show that, for small T , for nh ∈ [0, T ], there is a unique
solution to (2.5) in the metric space of functions satisfying |||u||| ≤ R, where

|||f ||| = max
nh∈[0,T ]

sup
|x|≤Lπ

|f(x+ i
√
nh, nh)| .

Remark that, if T < h, there is nothing to prove. (The solutions are entire functions
anyway.) The purpose of this section is to provide bounds on the radius of analyticity
which are independent of h and N , and hence we may assume h to be small.

We seek a solution to the equation u(nh) = Y(u, u0

)
(nh) with Y defined by

Y(f, f0)(nh) = K(nh) � f0 +
n−1∑
j=0

hK(h(n− j)
)
� PNF (f(jh)) ,

where K is given by (2.4).
It is easy to see that, for small T > 0, Y(·, f0) is a contraction:∣∣Y(f, f0)(x+ i√nh, nh)− Y(g, f0)(x+ i√nh, nh)∣∣

≤
n−1∑
j=0

∫
h|PNK(y − z + i(

√
nh−

√
jh), h(n− j)

)|
×
∣∣∣F (f(z + i√jh, jh))− F

(
g(z + i

√
jh, jh)

)∣∣∣dz
≤ Lip(F,R) |||f − g|||

[T/h]∑
j=0

∫
h|PNK(x+ i(√nh−√jh), h(n− j)

)| dx.
Here Lip(F,R) is the Lipschitz constant of F in the ball of radius R, and hence
by taking T small enough (depending on Lip(F,R) only) the solution to the fixed
point problem exists and is unique. Since u belongs to an absorbing ball of L∞, the
argument can be iterated indefinitely, and hence u is analytic for all times thereafter.

Appendix C. Uniform bounds on complex analytic functions. In this
section we show that an Lp bound in a strip of the complex plane provides an L∞

bound in a smaller strip.
Lemma C.1. Let p ≥ 1. There is a constant C = C(ϕ, δ) such that any function

f analytic in |Im(x)| ≤ δ satisfies

|f(y + iz)|p ≤ C sup
|γ|≤δ

∫
ϕ(x− y)|f(x+ iγ)|p dx

for all y ∈ R
d and |z| ≤ δ/2.

Proof. We take y = 0 and δ = 1 for simplicity. The general case is obtained by
translation and scaling. Since analytic functions are harmonic the following mean
value property holds (see [16]). Let D be the unit ball centered at 0 in the n-
dimensional complex space; then

f(0) =
1

Vol(D)
∫
D
f(x+ iγ) dx dγ .

We apply Jensen’s inequality and use that there is a C for which

inf
|x|≤1

Cϕ(x) ≥ 1
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(see Definition 1.1) to obtain

|f(0)|p ≤ 1

Vol(D)
∫
D
|f(x+ iγ)|p dx dγ

≤ 1

Vol(D) sup|γ|≤1

∫
|x|≤1

|f(x+ iγ)|p dx

≤ C

Vol(D) sup|γ|≤1

∫
ϕ(x)|f(x+ iγ)|p dx .

Appendix D. Gevrey and Bernstein classes of analytic functions. We
introduce here the metric spaces Bσ(C) (the Bernstein class) and Gα(C) (the Gevrey
class) and recall two properties of functions belonging to these spaces (see [7, 15, 18]
for details).

Definition D.1. The Bernstein class Bσ(C) is the set of all functions f having
an analytic extension to the whole of C

d with exponential growth along the imaginary
directions:

|f(x+ iy)| ≤ Ceσ|y| ∀(x, y) ∈ R
d × R

d .

The Gevrey class Gα(C) is the set of all functions f admitting an analytic exten-
sion to a strip of width 2α around the real axes and which are uniformly bounded in
this strip:

|f(x+ iy)| ≤ C ∀(x, y) ∈ R
d × [−α, α]d .

The first result states that any function in Gα(C) can be written as a sum of
entire functions.

Proposition D.2. Let f ∈ Gα(C). Then there exists a C ′ depending on C only
such that

f(z) =
∑
n∈Zd

e−α|n|ein·zfn(z) ,

with fn ∈ B2(C
′).

The second result is a classical sampling formula (see [7] or [15] where it is called
the Cartwright formula).

Proposition D.3. For all f ∈ Bσ(C), the following identity holds:

f(z) =
∑
n∈Zd

f
(
xσ(n)

)Fσ

(
z − xσ(n)

)
,

where

xσ(n) =
nπ

3σ
, Fσ(x) =

sin(3σx) sin(σx)

3σ2x2
.
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Abstract. Turbulence enhances the speed of propagation of a premixed flame front. Accord-
ing to the Majda–Souganidis model, the procedure to predict this enhancement involves computing
the effective Hamiltonian in a small-scale nonlinear cell-problem. We first discuss how to transform
this problem into computing the steady-state solution of a system of conservation laws whose vec-
tor solution represents the gradient of the eigenfunction associated with the effective Hamiltonian.
Theoretical arguments as well as numerical evidence are presented to emphasize the importance of
enforcing the constraint that the vector solution must effectively be the gradient of a scalar function.
We introduce a scheme that satisfies this constraint exactly by relying on staggered grids for the
gradient components. Also discussed is the issue of selecting a time integrator to achieve fast con-
vergence to a steady state. Validation is performed by examining convergence under grid refinement
and by comparison with analytical results when available.

Key words. gradient-preserving scheme, essentially nonoscillatory, staggered grid, Hamilton–
Jacobi equation, conservation laws, steady state
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1. Introduction. The flamelet regime in premixed combustion is characterized
by a very thin reaction zone that separates burnt and fresh gas so that, for all prac-
tical matters, it can be viewed as an infinitely thin flame front, propagating normal
to itself due to burning and advection. The speed of propagation of that interface
can be easily predicted in the laminar case, where advection plays a trivial role. It is,
however, much more difficult to predict its enhancement due to turbulence, when the
front is wrinkled by a multiple scale advecting flow field. A rigorous asymptotic strat-
egy to predict this enhancement has been developed by Majda and Souganidis [17] for
a flow field with separate scales. According to the theory, the procedure to compute
the enhanced burning speed involves minimizing a function of the effective Hamil-
tonian for the flame; the effective Hamiltonian must be computed as the eigenvalue
of a nonlinear cell-problem. In [5], this procedure was implemented for the simple
case of a one-dimensional shear layer; for that case, the solution can be expressed
mostly through explicit formulas. The method presented in this paper extends the
procedure for more general small-scale turbulent-like flows such as steady arrays of
eddies or combinations of eddies and shears; for such cases, explicit formulas are no
longer available and the problem must be solved numerically. Solving the cell-problem
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Centre-ville, Montreal, Quebec, Canada, H3C2J7 (khouider@dms.umontreal.ca, Anne.Bourlioux@
UMontreal.ca). The first author was also partially supported as a postdoctoral researcher at the
Courant Institute by a grant from the U.S. Army Research Office (ARO-DAADI9-01-10810) during
the final stages of this work. The research of the second author was supported by the Natural Sci-
ences and Engineering Research Council of Canada and from the U.S. Army Research Office (ARO
DAAG55-98-1-0220).

1330



EFFECTIVE HAMILTONIAN OF PREMIXED FLAMES 1331

is the hardest part: it requires computing the eigenvalue of a Hamilton–Jacobi equa-
tion. Numerical methods for Hamilton–Jacobi equations (without eigenvalues) are
well known [4, 18], and so are iterative methods to compute the eigenvalues for large
linear systems. The present case combines both problems and the challenge from a
numerical point of view is to provide a scheme capable of a robust handling of the
nonlinearity of Hamilton–Jacobi equations and of an efficient search for the eigenvalue
of the resulting discretized equations (hence, a large nonlinear system). The method
presented in this paper tackles this challenge by reformulating the problem so that
the eigenvalue is effectively eliminated from the preliminary phase of the computation
by differentiation of the eigenvalue problem. This strategy leads to a very robust and
practical scheme for two main reasons: the entire eigenvalue search is replaced by a
simple algebraic postprocessing of the results instead of the typical iterative process;
the system obtained by differentiation leads to a system of conservation laws which
is a class of problems for which a well-established numerical machinery is available.

The paper is organized as follows. In section 2, the Majda–Souganidis asymptotic
model equations are stated as well as the reformulation of the eigenvalue problem as
one of finding a pseudotime steady-state solution for the eigenfunction gradient. In
sections 3 and 4, some key theoretical properties of the equations are discussed to
motivate the strategy to design the scheme. In section 3, the lack of strong hyper-
bolicity of the gradient equation is established. Yet, in section 4, convergence results
for the equivalent time marching problem for the eigenfunction itself are exploited to
formulate the principal constraint to guarantee that a discrete solution of the gradi-
ent problem will also converge to a steady state. This constraint is that the discrete
vector solution be in some sense the discrete gradient of a scalar function. In section
5, we describe a novel gradient-preserving scheme, i.e., a scheme that explicitly pre-
serves the gradient structure of the initial data throughout the computation, in some
appropriate discrete sense. The fact that the gradient-preserving property is essential
for convergence is further demonstrated by numerical experiments in section 6, where
the performance of the gradient-preserving scheme is contrasted with that of other
schemes which do not quite satisfy that constraint. A second order spatially accurate
version of the scheme is presented in section 7, along with a discussion on how to
select the time integrator to accelerate convergence to a steady state. In section 8,
the performance of the method is validated systematically by comparison with the
reference solutions for the case of a simple shear layer [5, 6].

2. Homogenization theory formulation.

2.1. The Majda–Souganidis asymptotic model. Here we simply state the
model equations to be solved numerically; details regarding the derivation of the
model can be found in [5, 17]. Assuming that the heat release due to combustion is
weak and that temperature and all the relevant chemical species diffuse at the same
rate (Lewis number unity), the flame propagation can be described using a single
advection-diffusion-reaction equation for temperature. The homogenization theory
that leads to the model equations (2.1) and (2.2) below applies under the following
additional assumptions:

• The reaction zone is thin, as a result of the balance between very weak diffu-
sion and very fast reaction.
• The incompressible advecting velocity field includes two separate scales: one
large scale and a scale intermediate between the large scale and the flame
thickness.
• The reaction rate is of the Kolmogorov–Petrovskii–Piskunov type. A typical
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example of such reaction rate is given by f(T ) = K T (1 − T ), where the
temperature T has been normalized between T = 0 on the cold (unburnt)
side and T = 1 on the hot (burnt) side and K > 0 is the reaction rate
constant.

The intermediate scale velocity field causes the flame front to wrinkle: qualitatively,
the increase in flame area due to this wrinkling leads to an overall burning speed
enhancement. The objective of the homogenization theory is to predict this enhanced
speed of propagation of the flame. The equations in the form stated below describe
how to do this assuming that, at large scales, the advecting velocity field is constant
and the flame front is planar.

Given the flame front unit normal n = (cos θ, sin θ), the flame speed F (n) in that
direction must be computed as

F (n) = min
r>0

H(rn) + K̄

r
,(2.1)

where K = f ′(0) is the positive constant used to define the reaction rate above and
H is the effective Hamiltonian of the flame, computed as the unique eigenvalue of the
following so-called cell-problem:

−|p + Dw|2 + V(y) · (p + Dw) = −H(p).(2.2)

(At least for steady flows, it is trivial from a numerical point of view to deal
with the unsteady terms—they are linear—so we will not discuss this issue in this
paper; see [14] for examples with unsteady flows.) The eigenfunction w(y) must be
of zero mean and biperiodic with respect to the spatial variables y = (x, y). (One
can always assume that the biperiodic domain has been rescaled to a unit square.)
Dw represents the spatial gradient of the eigenfunction. The velocity field V(y) is
assumed to combine a large-scale constant flow and the smaller scale “turbulent” flow:

V = v̄ + λv = λ̄(cos θ̄, sin θ̄) + λv(y).

Here, λ̄ and λ represent the magnitude of the velocity field, respectively, at large and
intermediate scales, while v(y) is the intermediate scale velocity field defined over the
unit periodic box. It is also assumed to have a zero mean and to be biperiodic as well
as to be incompressible. For example, in section 8 below and elsewhere [2, 15], we use
our procedure on velocity fields obtained from the Childress–Soward stream function
ψ(y):

ψ(y) = ψ(x, y) = sin(2πx) sin(2πy) + δ cos(2πx) cos(2πy), 0 ≤ δ ≤ 1.(2.3)

Streamlines for δ = 0, 0.5, 1 are shown in Figure 2.1.
In summary, the input data are
• the front angle θ;
• δ, λ: the parameters that define the “turbulent” velocity field responsible for
the burning speed enhancement;
• λ, θ: the parameters that define the large-scale (constant) velocity field.

Results are typically presented in terms of the flame speed enhancement Fe defined
as

Fe = F + v · n− SL(2.4)
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Fig. 2.1. Streamlines for the Childress–Soward flow. δ = 1: simple shear tilted at 45 degrees,
δ = 0.5: combination of eddies and shear layers, and δ = 0: periodic array of eddies.

with SL = 2/
√
K the laminar burning speed of the flame. In the rest of the paper,

the problem is rescaled so that SL = 1; Fe represents the increase in burning speed of
the flame compared to the laminar case. A qualitative understanding of the wrinkling
of the front can be achieved by looking at the isolevels of the eigenfunction w: they
can be related to successive realizations of the wrinkled flame front as it moves across
the periodic cell due to burning and advection.

The main challenge in performing the optimization over the variable r in (2.1) is to
provide the effective Hamiltonian H(rn), which must be computed as the eigenvalue
in (2.2.) The ultimate objective here is to design a method sufficiently efficient to
allow for the extensive tabulation of Fe as a function of all the input data. Each
entry in such a table requires iterating numerically over many values of r to perform
the minimization in (2.1), hence requiring multiple evaluations of H; the main issue
is therefore to design an efficient, robust, fully automated algorithm to compute this
effective Hamiltonian for a wide range of parameters.

Equation (2.2) is both nonlinear and contains an eigenvalue (the effective Hamil-
tonian H): it is very challenging numerically to deal simultaneously with both diffi-
culties, and it is therefore very tempting to try to avoid dealing directly with at least
one of them. One possible strategy along that line would be to linearize the problem,
hence eliminating the nonlinearity aspect and retaining the eigenvalue; this could be
done by adding a small viscous term of order ε and doing the following transformation:
T ε(x, y) = exp(Z(x, y)/ε) with Z(x, y) = p · (x, y) +w(x, y); formulating the problem
in terms of T ε instead of w basically undoes one of the steps in the homogenization
procedure in [17]. The main difficulty with this approach is that the amount of vis-
cosity ε needed to lead to a system of equations that can be safely discretized by a
centered scheme is not known a priori but is solution-dependent. Another difficulty
is that the discretized equations would lead to a very large linear eigenvalue problem,
requiring a costly iterative procedure for its numerical solution along with the need
of generating an adequate initial guess for the eigenvalue.

In that sense, the strategy to be discussed in the rest of the paper is much more
robust. It is the eigenvalue aspect that is eliminated from the formulation by differ-
entiating the cell-problem, resulting in a system of equations for the eigenfunction
gradient that is still nonlinear but that no longer contains the eigenvalue explicitly.
This strategy is described next.
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2.2. Reformulation as a gradient problem. By differentiating (2.2) with
respect to y, we eliminate the eigenvalue and obtain the following nonlinear equation
for the eigenfunction gradient Dw:

D{−|Dw|2 − 2p ·Dw + (v + λv(y)) ·Dw + λv(y) · p} = 0.(2.5)

Integrating (2.2) over one periodic cell and using the divergence theorem, one
obtains a formula that relates algebraically H and Dw:

H(p) = |p|2 + 〈|Dw|2〉 − v · p,(2.6)

where 〈·〉 represents the average over the periodic cell. Therefore, assuming that
indeed one is able to solve (2.2), the effective Hamiltonian H can be computed very
economically a posteriori by simple postprocessing of the solution for Dw, hence
avoiding entirely any eigenvalue iterative procedure.

A practical approach to compute the solution of (2.5) is to view it as the steady
state of the following system:{

∂su+ ∂xK(u, v, x, y) = 0,
∂sv + ∂yK(u, v, x, y) = 0,

(2.7)

where K is given by

K(u, x, y) = −|u|2 − 2p · u + (v + λv(x, y)) · u + λv(x, y) · p(2.8)

and u = (u, v) = Dw is the eigenfunction gradient.
The pseudotime marching method to solve (2.7) to a steady state is described

in detail in section 5 below. Before describing the numerical method, however, some
results regarding the equation before discretization are reported in section 3 (lack of
strong hyperbolicity) and section 4 (effective convergence to a steady state); those
results provide essential insight on the type of constraints to be taken into account
in order to design a successful numerical method, with a particular concern for the
convergence property of the algorithm toward a steady-state solution.

3. Lack of strong hyperbolicity. Here we prove that (2.7) is not strongly
hyperbolic. Set F = (F1, F2) with

F1(u, x, y) =

(
K(u, x, y)

0

)
and F2(u, x, y) =

(
0

K(u, x, y)

)
.

The associated system is strongly hyperbolic if for all reals α and β the matrix

A = α
∂F1

∂u
+ β

∂F2

∂u
,

where

∂F1

∂u
=

[
∂K
∂u

∂K
∂v

0 0

]

and

∂F2

∂u
=

[
0 0
∂K
∂u

∂K
∂v

]
,



EFFECTIVE HAMILTONIAN OF PREMIXED FLAMES 1335

has two real eigenvalues and two linearly independent eigenvectors [10].
The eigenvalues of the matrix A are ν = α∂K∂u + β ∂K∂v and 0. Clearly, if ∂K∂v �= 0

or ∂K
∂v �= 0 one can choose the constants α and β such that ν is zero and the matrix

A is not identically zero. This is equivalent to setting


∂K

∂u
�= 0 or

∂K

∂v
�= 0,

α
∂K

∂u
+ β

∂K

∂v
= 0.

(3.1)

In this case, the matrix A has only one free eigenvector associated with the double
eigenvalue 0; i.e., A is equivalent to a Jordan block. Thus, (2.7) is not strongly
hyperbolic. The lack of strong hyperbolicity for the pseudotime marching equation
has important consequences regarding the possibility of reaching numerically a steady
state by long time marching:

1. Without taking into account other specific properties of the system studied
here (as will be done in section 4 below), the lack of strong hyperbolicity
means that there is no guarantee that the solution will converge to a steady
state [8].

2. Standard numerical methods for conservation laws might not work, as most
rely on the strong hyperbolic nature of the equations.

Remark 1. The vector solution to be computed here is actually a gradient, a
property which was not taken into account in the discussion above. It is interesting to
notice that imposing this additional constraint on the solution is not, per se, sufficient
to recover strong hyperbolicity.

Take u = Dφ and V = v + (ψy,−ψx) for some periodic functions φ and ψ with
zero mean, a mean flow v = (v1, v2), and a mean flame gradient p = (p1, p2). The
conditions of nonhyperbolicity (3.1) are equivalent to{

2φx + 2p1 − v1 − ψy �= 0 or 2φy + 2p2 − v2 + ψx �= 0,
α(2φx + 2p1 − v1 − ψy) + β(2φy + 2p2 − v2 + ψx) = 0.

It is easy to construct examples that would satisfy those nonhyperbolicity conditions.
For example, set φ(x, y) = ψ(−y, x)/2 so that the conditions

2φx = ψy and 2φy = −ψx
are satisfied on the curve y = −x and choose the constant parameters such that

2p1 − v1 �= 0 or 2p2 − v2 �= 0

and

α(2p1 − v1) + β(2p2 − v2) = 0.

4. Convergence to a steady state. The main conclusion from section 3 is
that if one views the system of equations in (2.7) as a system of conservation laws
for a vector solution, there is no guaranty that, starting from general initial data,
convergence to a steady state can be achieved by pseudotime marching because of the
lack of strong hyperbolicity of the system of equations (2.7).
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Such a convergence result, however, can be recovered by first considering the
convergence of the following pseudotime marching equation for the eigenfunction itself:

ws − |p + Dw|2 + V(y) · (p + Dw) = −H(p),(4.1)

with H the eigenvalue of the cell-problem in (2.2). Convergence of w + Hs to a
steady solution was proved by Barles and Souganidis [1] for general initial data. This
long-time convergence property automatically implies convergence, in the weak sense,
of the gradient Dw, therefore establishing that the pseudotime iterations on (2.7)
should converge, at least theoretically (i.e., before numerical discretization). The key
implication of this remark relevant to the design of a scheme to solve those equations
numerically is that one way to recover convergence for the gradient system is to ensure
that the vector solution of (2.7) is effectively the gradient, in some appropriate discrete
sense, of a scalar function.

For smooth functions, a vector function is a gradient if it is curl-free. We state next
an equivalent definition to the curl-free condition which does not involve derivatives
and hence constitutes a useful generalization to weak derivatives. This equivalent
definition will also turn out to be very useful in dealing with discrete data, as is done
in the next section. Let (u, v) be an integrable vector function:

• (u, v) is the gradient of a function w if and only if, given a reference point
(a, b), we have the double equality

w(x, y) =

∫ x

a

u(ξ, y) dξ + w(a, y) =

∫ y

b

v(x, ξ) dξ + w(x, b)

for a.e. each point (x, y). However, similarly,

w(a, y) =

∫ y

b

v(a, ξ) dξ + w(a, b)

and

w(x, b) =

∫ x

a

u(ξ, b) dξ + w(a, b);

hence, without referring to any primitive, we can state that (u(x, y), v(x, y))
is a gradient in the weak sense if and only if for a.e. (x, y) we have∫ y

b

v(a, ξ) dξ +

∫ x

a

u(ξ, y) dξ =

∫ x

a

u(ξ, b) dξ +

∫ y

b

v(x, ξ) dξ.(4.2)

• In addition, the primitive function is biperiodic of period T if and only if for
a.e. (x, y)

∫ a+T

a

u(ξ, y) dξ = 0,(4.3)

∫ b+T

b

v(x, ξ) dξ = 0.(4.4)
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5. Gradient-preserving scheme. Brute force attempts at numerically solving
(2.5) to a steady state with standard numerical schemes for conservation laws failed
to converge, and this comes as no surprise given the considerations in sections 3 and 4
above. Instead, the results in section 4 suggest that convergence could be guaranteed
only if the discrete vector solution is actually a gradient. The method we propose here
has precisely this property: the scheme is gradient-preserving in the discrete sense of
formula (4.2) inasmuch as, given initial vector data which are a discrete gradient, the
solution will remain a discrete gradient at all later discrete times. (In practice, the
simplest such initial data are identically zero.) The scheme is actually based on a
fairly standard conservative formulation except for the staggered discretization grids
to be described first.

5.1. Staggered grids. Let h = 1/n define the mesh discretization of the interval
[0, 1] with xi = ih, xi+1/2 = xi+h/2, yj = jh, and yj+1/2 = yj +h/2 for any integers
0 ≤ i, j ≤ n. We consider the staggered grid obtained by the superposition of the two
grids (xi, yj) and (xi+1/2, yj+1/2) (see Figure 5.1).

The first component, u, of the gradient solution is defined at the nodes (xi, yj),
while the second component, v, is defined at the nodes (xi+1/2, yj+1/2). The scalar
primitive (the eigenfunction) w itself is defined at the hybrid nodes (xi+1/2, yj).

u

v

i i+1

j+1

j

j+1/2

j−1/2

i−1/2 i+1/2

wv
T

v
B

u
L u

R

Fig. 5.1. Staggered grid for a gradient-preserving scheme: u is defined on the vertices (i, j) by
its cell averages on [i−1/2, i+1/2]×[j−1/2, j+1/2] (filled circles), v on the vertices (i+1/2, j+1/2) by
its cell averages on [i, i+ 1]× [j, j+ 1] (filled squares), and the primitive w is obtained on (i+ 1/2, j)
(empty circles). The shaded squares show the control volumes for u and v, respectively, and the
arrows point out the associated Riemann problems.

5.2. Conservative formulation. Using the notation V = (V1, V2) and p =
(p1, p2), the starting point of the strategy is to notice the symmetry in the flux function
K in (2.8), which can be split into two independent parts, K(u, v, x, y) = f(u, x, y) +
g(v, x, y), with

f = f(u, x, y) = −u2 − 2p1u+ V1(x, y)u+ V1(x, y)p1
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and

g = g(v, x, y) = −v2 − 2p2v + V2(x, y)v + V2(x, y)p2.

The conservative formulation is obtained by integrating the conservation laws
over each u- and v-control volume. Taking the integral of

∂su+ ∂xf(u, x, y) + ∂xg(v, x, y) = 0

over the cell [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [sn, sn+1] and the integral of

∂sv + ∂yf(u, x, y) + ∂yg(v, x, y) = 0,

over [xi−1, xi] × [yj−1, yj ] × [sn, sn+1] and then dividing by the control volume area
h2, one obtains the following equations in conservative form:

un+1
i,j = uni,j −

1

h2

∫ sn+1

sn

∫ yj+1/2

yj−1/2

{
f(u, xi+1/2, y) + g(v, xi+1/2, y)

}
dy ds(5.1)

+
1

h2

∫ sn+1

sn

∫ yj+1/2

yj−1/2

{
f(u, xi−1/2, y) + g(v, xi−1/2, y)

}
dy ds

and

vn+1
i−1/2,j−1/2 = vni−1/2,j−1/2 −

1

h2

∫ sn+1

sn

∫ xi

xi−1

{f(u, x, yj) + g(v, x, yj)} dx ds

+
1

h2

∫ sn+1

sn

∫ xi

xi−1

{f(u, x, yj−1) + g(v, x, yj−1)} dx ds,(5.2)

where

uki,j =
1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

u(x, y, sk)dxdy

is the cell average of u with the obvious corresponding considerations for v. This can
be expressed simply as

un+1
i,j = uni,j −

∆s

h

(
Fn,1i+1/2,j − Fn,1i−1/2,j

)
(5.3)

and

vn+1
i−1/2,j−1/2 = vni−1/2,j−1/2 −

∆s

h

(
Fn,2i−1/2,j+1 − Fn,2i−1/2,j

)
,(5.4)

where the flux Fn,1i−1/2,j corresponds to the double space-time integral in (5.1) over

one time-step and over the vertical edge (of a u-cell) with the edge center located at
(xi−1/2, yj):

Fn,1i−1/2,j =
1

h∆s

∫ sn+1

sn

∫ yj+1/2

yj−1/2

{
f(u, xi+1/2, y) + g(v, xi+1/2, y)

}
dy ds,(5.5)
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while the flux Fn,2i−1/2,j corresponds to the double space-time integral in (5.2) over one

time-step and over the horizontal edge (of a v-cell) with the edge center also located
at (xi−1/2, yj):

Fn,2i−1/2,j =
1

h∆s

∫ sn+1

sn

∫ xi

xi−1

{f(u, x, yj−1) + g(v, x, yj−1)} dx ds.(5.6)

As will be shown in Proposition 5.1 below, the key in designing a gradient-preserving
scheme is to use the same numerical value for Fn,1i−1/2,j and Fn,2i−1/2,j . This can be jus-

tified as follows. In evaluating Fn,1i−1/2,j , for instance, it is clear that the f -component

of the flux (corresponding to the integration of f(u, x, y)) should be estimated using
a standard Riemann solver, with left and right states corresponding to ūni−1,j and
ūni,j , respectively (for a first order method at least). The g-component of the flux,
however, can be specified somewhat more arbitrarily because it depends only on v
and is independent of u. A second order accurate choice is to estimate that portion
of the integral by its value at the midpoint of the edge (xi−1/2, yj), in which case this
contribution can be shown to be equal to second order to the g-component of the
Fn,2i−1/2,j flux, to be estimated by resorting again to a Riemann solver, this time with

top and bottom states given by v̄ni−1/2,j and v̄ni−1/2,j−1, respectively. Specifically,

Fn,1i−1/2,j = Fn,2i−1/2,j = Fni−1/2,j = f(1
i−1/2,j , xi−1/2, yj) + g(2

i−1/2,j , xi−1/2, yj),

(5.7)

where 1
i−1/2,j is the solution of the Riemann problem for the flux f associated with

the vertical edge (i− 1/2, j) and the left and right states uL and uR (ui−1,j and ui,j
for the first order scheme) and 2

i−1/2,j is the solution for the Riemann problem for

the flux g at the horizontal edge (i− 1/2, j) for the bottom and top states vB and vT
(vi−1/2,j−1/2 and vi−1/2,j+1/2 for the first order scheme); see Figure 5.1. The scheme
can be rewritten as

un+1
i,j = uni,j −

∆s

h

{
Fni+1/2,j − Fni−1/2,j

}
,(5.8)

vn+1
i−1/2,j−1/2 = vni−1/2,j−1/2 −

∆s

h

{
Fni−1/2,j − Fni−1/2,j−1

}
.

Proposition 5.1. The scheme in (5.8) is gradient preserving in the sense that if
the numerical vector solution satisfies the condition (4.2) at some given initial time,
s0, then this condition will be satisfied at any latter time, sn > s0. Furthermore, if the
primitive function is periodic at the initial time, then it remains periodic; i.e., (4.3)
and (4.4) are also satisfied at time sn if they were satisfied at time s0.
Proof. It is straightforward to verify the second part of the proposition by ex-

ploiting the conservative formulation. To prove the first claim, recall that the dis-
crete values representing the numerical solution for (u, v) are cell averages, so, given
these values at any time, sn, we can get the solution primitive at the hybrid ver-
tices ((i− 1/2), j), without any further approximation. Taking (a, b) = (x1/2, y0) and
(x, y) = (xi−1/2, yj) in (4.2) leads to

i−1∑
k=1

uk,0 +

j∑
k=1

vi−1/2,k−1/2 =

j∑
k=1

v1/2,k−1/2 +

i−1∑
k=1

uk,j .(5.9)
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To show that the scheme is gradient preserving, we must show that if the discrete
solution at time sn verifies (5.9), then so does the solution at time sn+1 = sn +∆s,
which is equivalent to showing that the same condition is satisfied by the difference
of the two vector solutions in (5.8), i.e.,

i−1∑
k=1

Fnk+1/2,0 − Fnk−1/2,0 +

j∑
k=1

Fni−1/2,k − Fni−1/2,k−1

=

j∑
k=1

Fn1/2,k − Fn1/2,k−1 +

i−1∑
k=1

Fnk+1/2,j − Fnk−1/2,j ,

and the two sides of the equality collapse to their common value

Fni−1/2,j − Fn1/2,0;

thus, (5.8) is gradient preserving.
Remark 2. A standard von Neumann stability analysis [11, 12] applied to the

model problem {
us + aux + bvy = 0,
vs + aux + bvy = 0

(5.10)

(with a, b > 0) shows that the gradient-preserving scheme in (5.8) is linearly stable
under the CFL condition

λ1 + λ2 ≤ 1,

where λ1 = a∆s/h and λ2 = b∆s/h [13].

6. Failure of non-gradient-preserving schemes. The constraint of formu-
lating a gradient-preserving scheme was motivated theoretically in sections 3 and
4. Here, we provide more practical motivations by reporting the results from failed
numerical experiments with three schemes that do not quite satisfy that constraint.

6.1. Roe’s scheme (GNPS1). The first scheme is the standard Roe’s Riemann
solver approximation scheme for hyperbolic systems [16]. The scheme relies heavily
on hyperbolic features, so it obviously may not work for our system because of the
lack of strong hyperbolicity.

6.2. Direction-splitting on a single uniform grid (GNPS2). The second
scheme is obtained by giving up the staggered grid, instead using the same uniform
grid for the two components (u, v). The direction-splitting leads to the following
expressions for the edge fluxes:

Fn,1i−1/2,j = f(1
i−1/2,j , xi−1/2, yj) + g(vni−1/2,j , xi−1/2, yj),

Fn,2i,j−1/2 = f(uni,j−1/2, xi, yj−1/2) + g(2
i,j−1/2, xi, yj−1/2),

where one can simply estimate

vni−1/2,j = (vni−1,j + vni,j)/2

and a similar expression for uni,j−1/2. Those centered approximations are adequate
here because of the directional-splitting.
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6.3. Staggered grid without flux approximation (GNPS3). For the third
scheme, we retain the staggered grid in Figure 5.1 and the conservative formulation
in (5.1) and (5.2) but give up the centered quadrature approximation for the inte-
grals, using instead the exact integration in space-time of the corresponding Riemann
problem. For instance,

Fn,1i−1/2,j = f(1
i−1/2,j , xi−1/2, yj) +

1

h∆s

∫ sn+1

sn

∫ yj+1/2

yj−1/2

g(v�2(y, s), xi−1/2, y)dy ds,

where v�2(y, s) represents the detailed solution in space-time of the Riemann prob-
lem with initial states (vB , vT ). The gradient-preserving scheme simply replaces the
detailed expression for v(y, s) in the integral by the constant value v(y = yj , s) =
2
i−1/2,j .

Except for the fact that they do not automatically preserve gradients, the last two
test schemes are actually very similar to the gradient-preserving scheme (5.8), and
one could expect them to perform similarly. In Figure 6.1, however, the difference in
performance is striking. The eigenvalue is seen to grow indefinitely with time for each
one of the three alternative test schemes and converges to a steady state only in the
case of the gradient-preserving scheme. This confirms the theoretical intuition that,
to achieve convergence, the gradient-preserving property is essential to compensate
for the lack of strong hyperbolicity in the system of conservation laws for the gradient.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4
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GPS

GNPS3GNPS1 GNPS2

time marching
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ig
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Fig. 6.1. Effective Hamiltonian H(r) as a function of pseudotime; comparison of the per-
formance of the gradient-preserving scheme (GPS) with the three non-gradient-preserving schemes
(GNPS) described in section 6. Spatial resolution 40×40, 800 pseudotime iterations with CFL=0.45;

λ = 1, λ = 2, θ = θ = δ = 0.

7. Efficient second order scheme. A second order version of the scheme is
designed by resorting to the essentially nonoscillatory (ENO) interpolation strategy
in space, coupled with a Runge–Kutta time integrator [12, 16].

Increasing the spatial order of accuracy to second order will be shown in section 8
to improve significantly the efficiency of the method, as much less resolution is required
to achieve a given accuracy with the higher order method than with the first order
scheme. However, pseudotime accuracy is not needed here: the main consideration
for an efficient scheme is that a converged state be reached in as few pseudotime steps
as possible, so as to minimize the overall cost of the calculation.
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Fig. 7.1. Effective Hamiltonian H as a function of pseudotime, comparing the performance
of the hybrid scheme (second order in space, first order in time) compared with the overall second
order scheme and with the first order scheme. Spatial resolution 40 × 40, 3200 time iterations with
CFL = 0.45; λ = 2, θ = π/4, δ = 0.5 and λ = 0.1.

Numerical experiments such as the one reported in Figure 7.1 (a) and (c) reveal
that the ENO second order scheme coupled with a standard Runge–Kutta method of
the same order does not converge to a steady state as rapidly as the first order scheme
previously discussed. This is a serious drawback if the scheme is to be used repeatedly
for tabulation. In the rest of this section, we gain some insight on the time-convergence
properties of various two-step Runge–Kutta time integrators by studying their linear
stability for two limit versions of the ENO scheme: the two limit schemes are obtained
by artificially freezing the discretization stencils and correspond, respectively, to the
best (upwind) and worst (downwind) case scenario. We use this insight to identify
constraints on the coefficients of the Runge–Kutta integrator likely to lead to good
damping properties and fast convergence to a steady state.

7.1. Order of accuracy. To analyze the stability and accuracy properties of a
generic explicit two-step Runge–Kutta scheme for our set of equations, we introduce
first the difference operator A associated with the original first order scheme (5.8);
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i.e.,

A
(

ui,j
vi−1/2,j−1/2

)
=

1

h

(
Fi+1/2,j − Fi−1/2,j

Fi−1/2,j − Fi−1/2,j−1

)

for which the left and right states in the Riemann problems are reconstructed by the
primitive functions according to the ENO second order interpolation. Set

Un =

(
uni,j

vni−1/2,j−1/2

)

so that the Euler version of our scheme can be written

Un+1 = Un −∆sA(Un).
We consider the Runge–Kutta two-step method

Un+1/2 = Un − β0∆sA(Un),
Un+1 = α1U

n + α2U
n+1/2 −∆sβ1A(Un)−∆sβ2A(Un+1/2)

or

Un+1 = (α1 + α2)U
n − (α2β0 + β1)∆sA(Un)− β2∆sA(Un − β0∆sA(Un)).

A standard accuracy analysis by matching terms in the Taylor expansion of the exact
solution leads to the usual conditions for first order accuracy

α1 + α2 = 1,(7.1)

α2β0 + β1 + β2 = 1(7.2)

and the usual additional condition for second order accuracy

β2β0 =
1

2
.(7.3)

If the coefficients of the time integrator satisfy those constraints, the complete
scheme coupling this integrator with the second order ENO scheme in space will lead
to an overall convergent scheme with second order accuracy in smooth regions, as
long as the time-step is subjected to the appropriate CFL condition [16].

7.2. Linear stability of frozen-stencil schemes. Taking into account the
constraint for a first order accuracy in (7.1), the scheme can be written as

Un+1 = Un − (1− β2)∆sA(Un)−∆sβ2A(Un −∆sβ0A(Un)).(7.4)

We apply the discretization in (7.4) to the linear system in (5.10) where we take
the gradient-preserving scheme in (5.8) as the spatial discretization operator A, with
a second order ENO interpolation strategy at the interfaces of the associated Riemann
problems:

A




uni,j

vni+1/2,j+1/2


 =

1

h




{a(uni,j + Sni,j − uni−1,j − Sni−1,j) + b(vni+1/2,j−1/2

+ Tni+1/2,j−1/2 − vni−1/2,j−1/2 − Tni−1/2,j−1/2)}

{a(uni,j+1 + Sni,j+1 − uni,j − Sni,j) + b(vni+1/2,j+1/2

+ Tni+1/2,j+1/2 − vni+1/2,j−1/2 − Tni+1/2,j−1/2)}


 ,

(7.5)
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where Si,j and Ti+1/2,j+1/2 are the second order corrections associated with the ENO
reconstruction:

Si,j =




ui+1,j − ui,j
2

if |ui+1,j − ui,j | ≤ |ui,j − ui−1,j |,
ui,j − ui−1,j

2
otherwise,

Ti+1/2,j+1/2 =




vi+1/2,j+3/2 − vi+1/2,j+1/2

2
if |vi+1/2,j+3/2 − vi+1/2,j+1/2|
≤ |vi+1/2,j+1/2 − vi+1/2,j−1/2|,

vi+1/2,j+1/2 − vi+1/2,j−1/2

2
otherwise.

The expressions for the corrections Si,j and Ti+1/2,j+1/2 involve discretization stencils
which are solution-dependent so that the discretization operator A corresponding to
an ENO scheme has nonconstant coefficients. To gain insight into the behavior of the
time integrator, “frozen-stencil” variations will be studied next. For such schemes,
one of the two choices for the corrections S and T is systematically used for the entire
domain, for all time-iterations, regardless of the computed solution. As a result, the
corresponding operator A is linear with constant coefficients, and a standard Fourier
analysis is feasible. It is clear that such frozen-stencil schemes would not converge
numerically for a general nonlinear problem, unlike the original ENO scheme; the
motivation for studying such an unpractical scheme is given at the end of the section.
When the stencil is frozen, the discrete operator A is constant and (7.4) can be
rewritten as

Un+1 = Un −∆sA(Un) + (∆s)2β2β0A2(Un).(7.6)

Let G2 be the amplification matrix associated with the operator −∆sA and Id the
identity matrix; then the amplification matrix G associated with (7.6) is given by

G = Id +G2 + β0β2G2oG2.(7.7)

Note that µ is an eigenvalue for G2 if and only if 1+µ+β0β2µ
2 is an eigenvalue for G.

So one needs only to compute G2 and its eigenvalues. Next, we analyze the spectral
radius of G2 for two particular choices of frozen stencils.

1. Worst case scenario with frozen stencil: Downwind scheme. Intuitively, the
worst case scenario as far as stability is concerned corresponds to the case where the
stencil in both directions includes systematically downwind information. With the
advecting velocities a, b > 0, this corresponds to the choices

Si,j =
ui+1,j − ui,j

2
and Ti+1/2,j+1/2 =

vi+1/2,j+3/2 − vi+1/2,j+1/2

2
.

Replacing (ui,j , vi+1/2,j+1/2) in (7.5) by a single Fourier harmonic leads to the ampli-
fication matrix

G2 =


 −λ1I sin(φk1) −λ2I

(
sin(

φk1
+φk2

2 ) + sin(
φk1

−φk2

2 )
)

−λ1I
(
sin(

φk1
+φk2

2 )− sin(
φk1

−φk2

2 )
)

−λ2I sin(φk2)




with φk = 2πkh and I =
√−1. The eigenvalues of G2 are µ1 = 0 and µ2 =

−(λ1 sin(φk1) + λ2 sin(φk2))I = −ΦI. Hence, the spectral radius of the matrix G,
given in (7.7), is less than or equal to one if and only if

|1− ΦI − β0β2Φ
2| ≤ 1(7.8)
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⇐⇒
√
1 + (β0β2Φ2)

2 − (2β0β2 − 1)Φ2 ≤ 1(7.9)

=⇒ (2β0β2 − 1) > 0.(7.10)

Taking into account that |φ| ≤ λ1 + λ2, if this last inequality is verified, then the
stability condition for this case is given by the following CFL condition:

λ1 + λ2 ≤
√
2β0β2 − 1

β0β2
.(7.11)

2. Best case scenario with frozen stencil: Upwind scheme.

Si,j =
ui,j − ui−1,j

2
and Ti+1/2,j+1/2 =

vi+1/2,j+1/2 − vi+1/2,j−1/2

2
.

This case corresponds to a standard second order upwind scheme. A sufficient condi-
tion for stability is that each substep satisfies a classical CFL condition:

|β0|(λ1 + λ2) ≤ 1,(7.12)

(|β1α2|+ |β2|)(λ1 + λ2) ≤ 1.

A detailed analysis would lead to similar CFL conditions with less restrictive con-
stants; however, the exact expressions will not be needed here. An interesting obser-
vation at this stage is that, as to be expected, the stability condition for the downwind
scheme (7.10) and the CFL stability conditions (7.11)–(7.12) show opposite trends.
For instance, one way to stabilize the downwind scheme is to pick β0, β2 large, which
implies taking an intermediate time-step which is actually larger than the final time-
step. Such a choice, however, would lead to a very severe final time-step restriction
because of the CFL conditions, in particular those of the upwind scheme.

The motivation to study the frozen-stencil schemes is to get some insight on how
to achieve a steady state as efficiently as possible. The heuristic in selecting coefficients
for an efficient Runge–Kutta integrator is that a scheme that satisfies all the stability
constraints from the two frozen-stencil limit schemes (in addition to at least the first
order accuracy conditions (7.1)–(7.2)) must have excellent damping properties as it
stabilizes even the particularly unstable downwind scheme. Therefore, it is expected
that such an integrator would lead to an efficient pseudotime marching scheme to
a steady state by damping numerically the oscillations faster than a time-accurate
scheme would.

A first observation is that the condition in (7.10) for stability of the downwind
frozen-stencil scheme is incompatible with the condition in (7.3) for second order
accuracy in pseudotime. It is also trivial to verify that, as one should expect, the
standard one-step forward Euler scheme (with β0 = 0) cannot possibly satisfy the
frozen-stencil stability condition for the downwind scheme.

Good damping per time-step is expected to be achieved by selecting a time in-
tegrator with coefficients that minimize the spectral radius in (7.9) (with a similar
expression for the upwind scheme). One could attempt to find an optimal set of
coefficients to minimize the spectral radii in a systematic search. However, such a
procedure would be costly and probably not very useful because the results might not
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be relevant to the actual ENO scheme with variable stencil as used for the nonlinear
cell-problem. Instead, we limited the search to sampling a small number of combina-
tions for the time-integrator coefficients and compared their performance (in conjunc-
tion with the second order variable-stencil ENO scheme) in numerical experiments
for the actual cell-problem. Among the combinations we tested were the standard
explicit Runge–Kutta integrators of order one and two mentioned earlier—that they
were outperformed is consistent with the heuristic analysis above.

The best performance observed in our limited search was achieved by the following
combination, whose coefficients satisfy all the frozen-stencil stability constraints:

α1 =
1

3
, α2 =

2

3
, β0 =

3

2
, β1 = −1

2
, β2 =

1

2

with the following CFL condition:

λ1 + λ2 ≤ 2

3
.(7.13)

Even though this linearly stable scheme (in the frozen-stencil sense) is only first
order accurate with respect to the pseudotime variable, numerical experiments such
as the one reported in Figure 7.1 demonstrate that it significantly improves the con-
vergence to a steady state compared to the second order time integrator. In that
example, the eigenvalue oscillates rapidly in the pseudotime with the oscillation am-
plitude decaying to zero when the pseudotime grows, as predicted theoretically. The
oscillations are rapidly damped with the first order scheme, (a), and with the hy-
brid second order in space and first order in time scheme, but are much less so with
the overall second order scheme, (c). Because we are not interested in an accurate
prediction of the time evolution but only in the steady state, the new scheme has
the advantage of converging to a steady state almost as efficiently as the first order
scheme, while at the same time achieving second order accuracy in space (at least
in cases with smooth eigenfunctions) as will be demonstrated in the next section by
analyzing the convergence of the results under systematic mesh refinement.

8. Validation.

8.1. Small-scale shears. To validate the method, we first consider the response
of the flame to velocity fields generated with the Childress–Soward flow (see the stream
function in (2.3)) with δ = 1. Then, the velocity field is given by

v1(x, y) = v2(x, y) =
λ√
2
(− sin(2πx) cos(2πy) + cos(2πx) sin(2πy)) .

This flow field actually represents a simple sine shear titled at 45 degrees. The problem
can be reduced to a one-dimensional problem by aligning the coordinate system with
the shearing direction, and the results in [5] and [17] can be applied directly to provide
us with reference data. (Here, the stream function is scaled so that λ represents
the maximum shear intensity.) We solve the problem numerically in the original
coordinate system as a two-dimensional case using the gradient-preserving scheme.
The combustion speed enhancement is then compared with the reference value.

The numerical procedure consists of minimizing F (r) in (2.1) as a function of r,
which requires solving the cell-problem corresponding to each trial value for r. The
minimization is performed using a standard routine [3] to a specified tolerance; all
our numerical experiments showed that there were no numerical difficulties associated
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Table 8.1
Convergence of speed enhancement with δ = 1, θ = π/4, λ = 0.

λ Reference Fe Grid Fe order 1 (Error) Fe order 2 (Error)
0.4 0.4 16×16 0.24902 0.15098 0.39540 0.00460

32×32 0.31928 0.08072 0.39939 0.00060
64×64 0.35815 0.04184 0.39989 0.00011

1.6 1.6 16×16 1.06888 0.53112 1.58045 0.01955
32×32 1.30876 0.29124 1.59761 0.00239
64×64 1.44679 0.15320 1.59959 0.00040

6.4 6.4 16×16 3.39313 3.00687 6.27134 0.12866
32×32 4.69028 1.70972 6.38566 0.01434
64×64 5.50819 0.89182 6.39792 0.00208

with the minimization routine itself, the key numerical issue being able to provide a
sufficiently accurate value for the effective Hamiltonian H(r).

The test cases reported below correspond to the front angle θ = π/4 (i.e., the
front normal is aligned with the shearing direction) and no mean flow λ = θ = 0.
With those parameters, it is particularly straightforward to predict analytically the
burning speed enhancement as those set-ups are known theoretically to achieve the
upper bound Fe = λ. Table 8.1 reports the computed values of Fe for three values of
λ: small turbulence intensity λ = 0.4, medium intensity λ = 1.6, and large turbulence
intensity λ = 6.4. (Recall that in all the test cases here, velocities are normalized with
the laminar burning speed SL = 1.) Figure 8.1 shows sequences of the corresponding
wrinkled fronts: they represent a flame propagating from the right upper corner
towards the left lower corner of the domain. Both the order 1 and the order 2 methods
are seen in Table 8.1 to converge under mesh refinement, with the expected order of
convergence: in particular, the gain in accuracy going from a first order to a second
order method is significant at low resolutions—for practical purposes, it is possible,
with the hybrid second order scheme, to predict Fe within one or two percent with the
very coarse resolution of 16× 16 ! Notice that the eigenfunctions computed here are
not smooth (for instance, see the cusps in the flame fronts in Figure 8.1, corresponding
to shocks in the gradients). As a consequence, one would expect a detailed numerical
convergence study of the eigenfunction to show a reduction to first order convergence,
even with the second order method. However, we are interested here only in the
enhanced speed, obtained by processing the effective Hamiltonian, which itself is
obtained by integration of the square of the norm of the eigenfunction gradient over
the domain: this processing is sufficient to recover second order accuracy (see the last
column of Table 8.1) even if the eigenfunction is locally first order accurate in the
vicinity of the cusps.

8.2. Other flows. In the test cases with δ = 1 just described, the small-scale
flow is a simple shear aligned with the normal to the large-scale front so that the
wrinkled flame front has a very simple topology, traveling without changing shape
from the upper right corner into the unburnt mixture in the lower left corner, at a
constant velocity. Such a simple flame pattern could have been computed using ex-
plicit formulas [5] and it was considered here only for the sake of validation. However,
the gradient-preserving scheme is very robust and is designed to handle much more
complex flame fronts behaviors. For instance, selecting δ < 1 in (2.3) leads to more
interesting turbulent-like flows. For δ = 0 the flow corresponds to an array of eddies
and for δ = 0.5 we have a combination of eddies and shears; see Figure 2.1. Results
for those two cases are reported in Tables 8.2 and 8.3 as well as in Figures 8.2 and
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Fig. 8.1. Instantaneous flame fronts with δ = 1; same data as in Table 8.1. (Hybrid) second
order method, resolution 64 × 64 (an array of 2 × 2 cells is shown).
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Fig. 8.2. Same as Figure 8.1, with δ = 0.5.
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Fig. 8.3. Same as Figure 8.1, with δ = 0.0.
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Table 8.2
Convergence of speed enhancement with δ = 0.5, θ = π/4, λ = 0.

λ Reference Fe Grid Fe order 1 (Error) Fe order 2 (Error)
1.6 1.50539 16×16 1.00988 0.49551 1.45519 0.05019

32×32 1.23407 0.27132 1.49656 0.00882
64×64 1.36283 0.14255 1.50331 0.00208

128×128 1.43227 0.07311 1.50494 0.00044

Table 8.3
Convergence of speed enhancement with δ = 0.0, θ = π/4, λ = 0.

λ Reference Fe Grid Fe order 1 (Error) Fe order 2 (Error)
1.6 1.06534 16×16 0.77352 0.33186 0.99950 0.06588

32×32 0.88433 0.18106 1.04836 0.01702
64×64 0.97049 0.09485 1.06186 0.00347

128×128 1.01676 0.04858 1.06485 0.00048

8.3. Again, the data are θ = π/4, λ = θ = 0. The results of the mesh refinement
reported in the two tables for the intermediate turbulence intensity λ = 1.6 confirm
the predicted order of accuracy and the significant gain in accuracy with the second
order method. When δ �= 1, there are no analytical predictions available for Fe: in-
stead, a reference value is obtained here by extrapolation of the data with the second
order method—this should not affect the error analysis, except maybe for the esti-
mation of the error on the finest grid. At low turbulence intensity λ = 0.4, the flame
patterns at the top of Figures 8.2 and 8.3 appear to be very similar to the simple
shear case from Figure 8.1. (Notice, however, that Fe decreases with δ.) At larger
intensities, however, in particular when λ = 6.4, the flame patterns become much
more complex, some portions of the front overlap other portions, and there are even
topological changes associated with pockets of unburnt gas lagging behind the leading
front. Many more computations of this type can be found in [14, 2], along with a more
detailed analysis of the parameterization of Fe as a function of the characteristics of
the flow.

9. Conclusion. A numerical method has been introduced to solve the nonlinear
eigenvalue cell-problem arising in the homogenization theory of turbulent premixed
flame fronts [17]. The scheme allows for the efficient second order accurate compu-
tation of both the effective Hamiltonian (i.e., the eigenvalue) and the eigenfunction
(related to successive realizations of the wrinkled flame front). The eigenvalue problem
is solved using pseudotime marching to the steady state of a system of conservation
laws for the eigenfunction gradient. Theoretical arguments are presented regarding
the importance of satisfying the constraint that the steady-state vector solution be
effectively the gradient of a scalar function. Exploiting the symmetry of the problem,
a novel staggered grid formulation is shown to automatically satisfy the gradient-
structure constraint in some appropriate discrete sense if the initial data did. Nu-
merical experiments with variations of the scheme confirm the theoretical predictions
by demonstrating that (i) the gradient-preserving property is necessary to guarantee
convergence to steady state (Figure 6.1), (ii) time integrators with good damping
properties can be achieved by studying their behavior for frozen-stencil variations of
the scheme (Figure 7.1), and (iii) the scheme does achieve the predicted second order
accuracy, with a significant gain compared to the first order scheme at low resolution
(Tables 8.1, 8.2, and 8.3).

The idea of converting a multidimensional Hamilton–Jacobi equation into a sys-
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tem of conservation laws for the gradient of the solution w was also used by Jin and
Xin [9]. Their scheme also enforces to some extent the gradient condition in a for-
mulation that has many advantages for general cases. The scheme presented here
is different in several respects: it exploits the specific structure of the Hamiltonian
to enforce the gradient condition exactly, not in a relaxation sense as in [9]; the two
components of the discrete vector solution are represented on staggered grids, whereas
in [9] they are collocated, only w is staggered; the scheme presented here is geared to-
ward the efficient computation of a steady-state solution for the effective Hamiltonian,
a quantity that involves only Dw and not w itself.

The scheme presented here was used successfully in [14, 2] to study systematically
the parameterization of the turbulent enhancement of the flame speed for a variety
of small-scale flows. The numerical data were used to identify two distinct scalings
regimes, similar to those observed in experiments with real flames. The transition
between the two regimes was shown to depend essentially on a nondimensional “flame
residence time” that relates an intrinsic flame response time to a time scale related
to the flame passage-time through a periodic cell; this qualitative analysis inspired by
the numerical data was explained theoretically via a formal asymptotic analysis.

Ultimately, one objective is to use the asymptotic speed enhancement as a basis
for a subgrid-scale model in large eddy simulations of turbulent flames, where the
effect of the unresolved turbulent flow scales must be accounted for as a modelled
enhanced burning speed. The feasibility of such a strategy is demonstrated in [15] for
an idealized case: the scheme introduced in this paper is used to generate a complete
database or “flamelet library” which can then be used repeatedly as an input to a level-
set formulation for the flame front at large scales. Results of such computation are
shown in [15] to be in excellent agreement with detailed direct simulation predictions
for the wrinkled flames, with the large eddy simulations requiring only a small fraction
of the computational cost of the detailed simulations.

Another potential application for the gradient-preserving scheme described in this
paper would be to solve the quadratic nonlinear eigenvalue cell-problem arising in the
homogenization of the stationary Schrödinger equation [7]. The method described
in this paper exploits the specific structure of the quadratic flux in the cell-problem
that splits very naturally into two distinct one-dimensional Riemann problems. One
natural extension of the present scheme is to consider cases where such splitting is
not possible.

Acknowledgment. The authors are grateful to A. J. Majda for his helpful sug-
gestions regarding this project.
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Abstract. This paper establishes an equivalent relation between the convergence of a cascade
algorithm in Sobolev space and the convergence of an associated cascade algorithm in Lp space. It
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1. Introduction. Cascade algorithms give an iterative method for the genera-
tion of refinable function vectors which are the main building blocks for the construc-
tion of multiwavelets. The main purpose of this paper is to present an algorithm for
constructing cascade algorithms that converge in Sobolev space.

Suppose that a = (a(α))α∈Z is a sequence of r × r matrices and satisfies, for
a positive integer N, a(α) = 0 ∀α �∈ {0, 1, . . . , N}. A vector Φ = (φ1, . . . , φr)

T of
compactly supported distributions is said to be refinable associated with a if it satisfies
the following refinement equation:

Φ =

N∑
α=0

a(α)Φ(2 · −α).(1.1)

The sequence a is called the refinement mask. In terms of Fourier transform, we can
rewrite (1.1) as

Φ̂(2ω) = Ha(ω)Φ̂(ω), ω ∈ R,(1.2)

where Ha(ω) := 1/2
∑N

α=0 a(α)e−iαω.
It is known that if the matrix Ha(0) has 1 as a simple eigenvalue and, for any

positive integer β, 2β is not an eigenvalue of Ha(0), then there exists a unique vector Φ
of compactly supported distributions such that Φ satisfies (1.1) and the first nonzero

component of Φ̂(0) is 1. This vector is referred as to the normalized solution of the
refinement equation with mask a and denoted by Φa.

Let Wp(R) denote Lp(Rs) for 1 ≤ p < ∞ and the space Cu(R) of uniformly
continuous and bounded function on R for p = ∞. The Sobolev space W s

p (R) is
defined as

W s
p (R) := { f : Dµf ∈Wp(R), 0 ≤ µ ≤ s},
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where Dµ = dµ

dxµ is the differential operator. Throughout, s is a nonnegative integer.
The space W s

p (R) is a Banach space with the norm

||f ||W s
p (R) := max{||Dµf ||p : 0 ≤ µ ≤ s}.

Let (W s
p (R))r be the Banach space consisting of all vectors f := (f1, . . . , fr)

T with
fj ∈W s

p (R) equipped with norm

‖f‖(Wp(R))r := max{||fj ||W s
p (R) : 1 ≤ j ≤ r}.

For a vector F0 of compactly supported functions, we construct a sequence (Fk)k≥0

by iteration Fk = QaFk−1, k = 1, 2, . . . , where Qa is the cascade operator associated
with a defined as

QaF =

N∑
α=0

a(α)F (M · −α).(1.3)

We say that the cascade algorithm associated with mask a (or generated by Qa)
converges on F0 in (W s

p (R))r norm if

lim
n→∞ ‖Q

n
aF0 − Φa‖(W s

p (R))r = 0.(1.4)

Let C
r×m be the space of r ×m matrices with entries being complex numbers.

Denote by (�(Z))r×m the set of all sequences λ = (λ(α))α∈Z with λ(α) ∈ C
r×m.

Furthermore, let (�0(Z))r×m denote the set of all sequences in (�(Z))r×m with finite
supports. The subdivision operator Sa, associated with a mask a ∈ (�0(Z))r×r, is an
operator defined on the space (�(Zs))m×r as follows:

Sac(α) :=
∑
β∈Zs

c(β)a(α− 2β), α ∈ Z
s.(1.5)

For convenience, let

an = Sn−1
a a, n = 1, 2, . . . .

The iteration Qn
a is related with Sa by the equality

Qn
aF =

∑
α∈Z

an(α)F (2n · −α).

The convergence of cascade algorithms is related intimately with the properties
of refinable function vectors. There has been a comprehensive study of cascade algo-
rithms. When s = 0 and r = 1, see [1] for p = ∞, [11] for 1 ≤ p ≤ ∞ and [10] for
1 ≤ p ≤ ∞, and the dilation matrix being an arbitrary isotropic matrix. For general
r, see [14]. When s > 0, p = 2, and r = 1, see [9] and [12]. We studied this problem
in the general setting in [3]. In [4], the effect of perturbation of refinement masks to
the convergence was discussed.

While the papers mentioned above focused on the convergence in a fixed space, we
clarify in this paper the relationship between the convergence of a cascade algorithm
in Sobolev space and that of an associated cascade algorithm in Lp space. To this
end we make use of the methods for factoring masks in [16] and [18]. An equivalence
between the convergence in different spaces is established. By that equivalence we
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present an algorithm for construction of masks which generate a convergent cascade
algorithm in Sobolev space. It is somewhat like the construction of [18], of refinable
function vectors with arbitrary approximation order and smoothness order. Roughly
speaking, based on a convergent cascade algorithm in (W s

p (R))r, we can construct
a convergent cascade algorithm in (W s+1

p (R))r by one step of two scale similarity
transform.

Although it is accepted that there is a direct relation between the smoothness of
refinable function vectors and the factorization of masks, there has so far not been any
equivalence without the stability condition. The present paper is related to [6], [15],
and [17]. In [6] it was shown that the factorization of masks can lead to decay of the
Fourier transform of the refinable function vectors. For a refinable function vector,
which is a limit of a convergent cascade algorithm, its smoothness was characterized
in terms of the factorization of mask [15, Theorem 4.2]. Under the stability condi-
tion, a relation between the spectral radius concerning the factorized masks and the
smoothness of refinable function vectors is established in [15] by an approach different
from ours. A specific factorization technique based on superfunction theory was pre-
sented in [17]. The importance of that technique for the study of the smoothness lies
in determining separately the smoothness of each component of the refinable vectors.
However, our aim is to provide a method for constructing smooth refinable function
vectors by use of the factorization technique of masks in [16] and [18].

Here is a brief outline of the paper. In section 2, a formula for spectral radius of
subdivision operators concerning factorization of masks is established. Moreover, we
connect the formula with the notion of p-joint spectral radii. In section 3, an invariant
subspace associated with p-joint spectral radius is characterized explicitly in terms of
the factorization of the mask. The main results of the paper are presented in section
4. In this section we derive the equivalence between the convergence of a cascade
algorithm Qa in Sobolev norm and the convergence of another cascade algorithm
generated by Qa0 in Lp, where a0 is determined by a. As a corollary, we give an
algorithm for construction of masks which generate convergent cascade algorithms in
Sobolev space. In section 5, we illustrate our theory by two examples.

2. Factorization of masks and spectral radii of subdivision operators.
In this section we first give a formula, in terms of some limits, for spectral radii of
subdivision operators concerning the factorization of masks. Then a relation between
those limits and joint spectral radii is established.

Assume now that C
r×m is equipped with a norm || · || on C

r×m. Here and
elsewhere, all norms on a finite dimension space are denoted by ‖ · ‖. Let (�p(Z))r×m

be the normed linear space of sequences λ = (λ(α))α∈Z, λ(α) ∈ C
r×m, such that

||λ‖p <∞, where

||λ||p :=

(∑
α∈Z

‖λ(α)‖p
)1/p

, 1 ≤ p <∞,

and ‖λ‖∞ := supα∈Z ||λ(α)||. It is easily seen that, for any mask b ∈ (�0(Z))r×r,
the subdivision operator Sb is a bounded operator on (�p(Z))m×r. Clearly, the set
(�p(Z))r×m is independent of the choice of norm || · || on C

r×m, and any two norms
on C

r×m induce two equivalent norms on (�p(Z))r×m. It is easily seen that, for any
b ∈ (�0(Z))r×r, Sb is a bounded operator on (�p(Z))m×r.

The convolution of c ∗ d = (c ∗ d(α))α∈Z ∈ (�(Z))l×k, for two sequences c ∈
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(�(Z))l×m and d ∈ (�(Z))m×k, is defined by

c ∗ d(α) =
∑
β∈Z

c(α− β)d(β) ∀α ∈ Z,

provided that the series converges for any entry and any α ∈ Z.
If K ⊆ Z is a finite set, we denote (�(K))r×m the subspace consisting of all

c ∈ (�0(Z))r×m with suppc ⊆ K. Let

KN :=

{ {0, 1} for N = 1,
{0, 1, . . . , N − 1} for N ≥ 2.

(2.1)

The following interesting result concerning the spectral radius of Sb was estab-
lished in [5].

Theorem 2.1 (see [5]). Let b ∈ (�0(Z))r×r. Suppose that c ∈ (�p(Z))r×r satisfies

c ∗ t �= 0 ∀t ∈ (�(KN ))r×1\{0}.(2.2)

We have

ρp(Sb) = lim
n→∞ ||S

n
b c||

1
n
p .

We will extend the above result to the case when the mask a is factorable. This
means that Ha satisfies

HaC = C(2·)Hb(2.3)

for some mask b ∈ (�0(Z))r×r and a 2π periodic r × r matrix C(ω).
For η ∈ (�(Z))m×n, the Fourier transform η̂ of η is defined at least formally by

η̂(ω) =
∑
α∈Z

η(α)e−iαω.

If there is c ∈ (�(Z))r×r such that ĉ = C, then (2.3) is equivalent to

a ∗ c = Sbc.(2.4)

Theorem 2.1 is generalized as follows, which is the main result of this section and
will be needed in section 4.

Theorem 2.2. Suppose that a, b ∈ (�0(Z))r×r and c ∈ (�p(Z))r×r satisfy (2.4).
If c satisfies conditions of Theorem 2.1, then

ρp(Sb) = lim
n→∞ ||an ∗ c||

1
n
p .

Proof. We claim that, for any positive integer n,

Snb c = an ∗ c.(2.5)

For n = 1, (2.5) reduces to (2.4). Let us check (2.5) for n = 2. In fact, it follows from
(2.4) that

S2
b c(γ) =

∑
α∈Z

∑
β∈Z

a(β)c(α− β)b(γ − 2α) =
∑
β∈Z

a(β)Sbc(γ − 2β) ∀γ ∈ Z.
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Using (2.4) again we obtain

S2
b c(γ) =

∑
β∈Z

a(β)a ∗ c(γ − 2β) =
∑
β∈Z

a2(γ − β)c(β) ∀γ ∈ Z,

as desired. The verification of (2.5) for general n may proceed inductively. The proof
of our theorem is now complete by (2.5) and Theorem 2.1.

While Theorem 2.2 connects the spectral radius of a subdivision operator with

the limit limn→∞ ||an ∗ c||
1
n
p , in the rest of this section we shall represent the limit in

terms of the so-called p-joint spectral radius.
For p = ∞, the p-joint spectral radius, called the uniform joint spectral radius,

was introduced in [19] and was employed to investigate regularity of refinable function
in [7]. When p = 1, the p-joint spectral radius was introduced in [20] and was referred
to as the mean joint spectral radius there. For 1 < p < ∞, the p-joint spectral
radius was introduced in [11] and applied to the study of Lp convergence of cascade
algorithms. We recall from [11] the definition of p-joint spectral radius.

If V is a finite-dimensional space, let B(V ) denote the collection of linear operators
on V . Suppose that A ⊆ B(V ) is a finite set. For a positive integer n we denote by
An the Cartesian power of A:

An =
{

(A1, . . . , An) : A1, . . . , An ∈ A
}
.

Suppose that B(V ) is equipped with the operator norm || · ||. For 1 ≤ p < ∞,
define a number ||An||p by

||An||pp =
∑

(A1,...,An)∈An

||A1 · · ·An||p,

and, for p =∞, define

||An||∞ = max
{ ||A1 · · ·An|| : (A1, . . . , An) ∈ An

}
.

The p-joint spectral radius of A, for 1 ≤ p ≤ ∞, is defined to be

ρp(A) := lim
n→∞ ||A

n|| 1np .(2.6)

We know from [11] that this limit indeed exists and

lim
n→∞ ||A

n|| 1np = inf
n≥1
||An|| 1np .

For our purposes, we are mainly concerned with the operators Aε, ε = 0, 1, on
(�0(Z))r×m defined as follows:

Aεc(α) =
∑
β∈Z

a(2α + ε− β)c(β) ∀c ∈ (�0(Z))r×m and α ∈ Z.(2.7)

Let A := {A0, A1}. A subspace V ⊆ (�0(Z))r×m is called an A invariant subspace if

Aεc ∈ V ∀ε = 0, 1 and c ∈ V.
Suppose that M1 and M2 are two constants. It is easy to check that, for any

c ∈ (�0(Z))r×m,

suppc ⊆ [−M1,M2] =⇒ suppAεc ⊆
[−M1 − 1

2
,
N + M2

2

]
, ε = 0, 1.(2.8)
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For any c ∈ (�0(Z))r×m, let V (c) be the subspace spanned by

Aεj · · ·Aε1c, j = 0, 1, . . . .

Clearly, V (c) is anA invariant subspace, called theA invariant subspace generated
by c. Moreover, we know by (2.8) that V (c) is a finite-dimensional subspace. It follows
from (2.8) that, for any c ∈ (�0(Z))r×m, there exists a finite set K ⊆ Z such that
V (c) ⊆ (�(K))r×m. In particular, by (2.8), (�(KN ))r×m is an invariant subspace of
A, where KN is given as in (2.1).

For any α ∈ Z, there are unique ε1, . . . , εn ∈ {0, 1} and a γ ∈ Z such that α =
2nγ+2n−1εn · · ·+ε1. It is not difficult to check that (see, e.g., [3]), for c ∈ (�0(Z))r×m,

an ∗ c(α) = Aεn · · ·Aε1c(γ).

As is known, there is a finite set K ⊆ Z such that V (c) ⊆ (�(K))r×m. Then it
follows from the last equality that

‖an ∗ c‖p =
∑

ε1,...,εn=0,1

||Aεn · · ·Aε1c||p ∀c ∈ (�0(Z))r×m,(2.9)

where || · || in the right-hand side is a norm on (�(K))r×m. With this equality we can
derive for any c ∈ (�0(Z))r×m

lim
n→∞ ||an ∗ c||

1
n
p = ρp

({A0|V (c), A1|V (c)}
)
.

Consequently, for a finite dimension A-invariant subspace V ⊆ (�(K))r×m we have

max
{

lim
n→∞ ||an ∗ λ||

1
n
p : λ ∈ V

}
= ρp

({A0|V , A1|V }
)
.(2.10)

In fact, it was established in [10] for m = r = 1, and in [14] for m = 1 and general
r. We refer to [10] and [14] for the details. By the same methods and (2.9), we can
establish (2.10) for our setting.

For a sequence c ∈ (�0(Z))r×r, we define a subspace of (�0(Z))r×1 as follows:

V (c∗) :=
{
λ ∈ (�0(Z))r×1 : λ = c ∗ η, η ∈ (�0(Z))r×1

}
.(2.11)

With the help of (2.9) we can prove the following result.
Theorem 2.3. Recall that KN is given as in (2.1). Let c ∈ (�(KN ))r×r. If V (c∗)

is an A invariant subspace, we have

lim
n→∞ ||an ∗ c||

1
n
p = ρp

({A0|V (c∗)∩(�(KN ))r×1 , A1|V (c∗)∩(�(KN ))r×1}).
Proof. Let V := V (c∗)∩(�(KN ))r×1. As mentioned, (�(KN ))r×1 is an A invariant

subspace. Therefore, V is an A invariant subspace by the assumption.
For any λ ∈ V (c∗), there is an η ∈ (�0(Z))r×1 such that λ = c∗η. Thus, ||an∗λ||p ≤

κλ||an ∗ c||p, n = 1, 2, . . . , for some constant κλ. Thus,

lim
n→∞ ||an ∗ λ||

1
n
p ≤ lim

n→∞ ||an ∗ c||
1
n
p ∀λ ∈ V (c∗).

On the other hand, we define ηj by setting ηj(α) = 0 ∀α �= 0 and ηj(0) the jth-
column of r × r identity matrix, 1 ≤ j ≤ r. Moreover, let λj = c ∗ ηj , 1 ≤ j ≤ r.
Obviously, an ∗ λj is just the jth-column of an ∗ c, 1 ≤ j ≤ r. It follows that

lim
n→∞ ||an ∗ c||

1
n
p ≤ max

1≤j≤r
lim
n→∞ ||an ∗ λj ||

1
n
p .
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Note that λj ∈ V, 1 ≤ j ≤ r. We have by the last two inequalities

lim
n→∞ ||an ∗ c||

1
n
p = max

λ∈V
lim
n→∞ ||an ∗ λ||

1
n
p .

The proof is complete by (2.10).
Combining Theorems 2.2 and 2.3 we have the following result.
Corollary 2.4. Suppose that a, b, and c are in (�0(Z))r×r and satisfy the con-

ditions of Theorem 2.2. In addition, suppose that V (c∗) is an invariant subspace of
A0 and A1. Then

ρp(Sb) = ρp
({A0|V (c∗)∩(�(KN ))r×1 , A1|V (c∗)∩(�(KN ))r×1}).

3. Structures of some invariant subspaces. The main purpose of this section
is to represent explicitly some invariant subspaces of both A0 and A1 in terms of
convolution. These subspaces are important to the study of convergence of cascade
algorithms.

In the study of convergence of cascade algorithms and regularities of function
vectors, we usually restrict ourselves to a class of masks a satisfying some conditions
on the modulii of eigenvalues of Ha(0). The reason will soon be clear.

Suppose that s is a nonnegative integer. Recall that Ha(ω) is defined in section
1. Denote by Es+1 the set of all sequences a ∈ (�0(Z))r×r satisfying the following
conditions:

(1) 1 is a simple eigenvalue of Ha(0).
(2) The other eigenvalues of Ha(0) are of modulus less than 2−s.
It was proved in [3] that a ∈ Es+1 provided that the refinable function vector

Φa ∈ (W s
p (R))r satisfies Φ̂a(0) �= 0 and the independence condition

span
{

Φ̂a(2απ) : α ∈ Z

}
= C

r.

If a ∈ Es+1, there exists a unique, up to a constant factor, 1× r vector ta(ω) of
trigonometric polynomials with spectrum contained in {µ : 0 ≤ µ ≤ s} satisfying

Dµ
(
ta(2·)Ha

)
(0) = Dµta(0), 0 ≤ µ ≤ s.(3.1)

We say a sequence a ∈ (�0(Z))r×r satisfies sum rules of order s + 1 with ta if
there is a vector ta of trigonometric polynomials with ta(0) �= 0 such that (3.1) and
the following equalities are true:

Dµ
(
ta(2·)Ha

)
(π) = 0, 0 ≤ µ ≤ s.

Let Ss+1 denote the set of all sequences satisfying sum rules of order s+1. It is known
that there is a close relation between the order of sum rules and the approximation
order provided by the refinable function vector; see, for example, [16], [13], and [2].

For a mask a ∈ Es+1, we define

V s
a :=

{
λ : λ ∈ (�0(Z))r×1, Dµ

(
taλ̂
)
(0) = 0, 0 ≤ µ ≤ s

}
.(3.2)

The importance of V s
a lies in the following result.

Lemma 3.1 (see [3]). Let A = {A0, A1}. Assume that a ∈ Es+1 and V s
a is given

as above. Then V s
a is an A invariant subspace if and only if a satisfies sum rules of

order s + 1 with ta.
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For later use we will identify V s
a with a subspace V (c∗) for some finitely supported

sequence c determined by a. To this end, we need the results of [16] and [18] about
factorizations of masks which satisfy sum rules of appropriate order.

Let C be the set of r×r matrices C(ω) with entries being 2π periodic trigonometric
polynomials such that

(1) C(0) has a simple eigenvalue 0;
(2) detC(ω) = κ(1− e−iω)e−iγω, where κ �= 0 and γ ∈ Z are constants.
For any x ∈ C

r\{0}, we denote by Cx a matrix in C such that x is a left eigenvector
of Cx(0) with eigenvalue 0. We note that such a matrix is not unique. A special form
of such matrices can be found in [16]. Furthermore, any two matrices C1

x and C2
x

in C that have the same x as a left eigenvector with eigenvalue 0 are related by
C1
x(ω)M(ω) = C2

x(ω), where the r × r matrix M(ω) is invertible for any ω and its
entries are 2π periodic trigonometric polynomials.

By the definition of C we know there is a r×r matrix Gx(ω) with entries being 2π
periodic trigonometric polynomials such that the following conditions are satisfied:

Cx(ω)−1 =
Gx(ω)

1− e−iω
∀ω �∈ 2πZ.(3.3)

The set C plays an important role in the factorization of refinement masks. The
following result was established in [16] with special form of Cx and in [18] for the
general case.

Lemma 3.2 (see [16] and [18]). Assume that a ∈ Es+1. Then a satisfies sum
rules of order s+ 1 with ta if and only if there are nonzero vectors x0, x1, . . . , xs ∈ C

r

and a sequence ã ∈ (�0(Z))r×r such that the following conditions are satisfied:
(1) a can be factorized as follows:

âCxs
· · ·Cx0 =

1

2s+1
Cxs(2·) · · ·Cx0

(2·)̂̃a.(3.4)

(2) aµ, µ = 0, 1, . . . , s − 1, satisfies sum rules of order µ + 1, where aµ ∈
(�0(Z))r×r is defined by its Fourier transform

âµ(ω) =
1

2µ+1
Cxµ

(2ω) · · ·Cx0
(2ω) ̂̃a(ω)C−1

x0
(ω) · · ·C−1

xµ
(ω) ∀ω �∈ 2πZ.

Suppose that a ∈ Es+1 satisfies sum rules of order s+1. Then the factorization as
in Lemma 3.2 holds. It was proved in [6] that 1 is a simple eigenvalue of Haj (0), 0 ≤
j ≤ s, where as = a. Moreover, each xj , 0 ≤ j ≤ s, is a left eigenvector of Haj (0)
with the eigenvalue 1. In particular,

xs = ta(0)T .(3.5)

We recall that a ∈ (�(KN ))r×r. Suppose that a satisfies the conditions of Lemma
3.2. Without loss of generality we assume that aµ, 0 ≤ µ ≤ s − 1, determined by
condition (2) of Lemma 3.2, satisfy aµ ∈ (�(KN ))r×r as well.

For our consideration we restate a result of Plonka and Strela in the following
slightly different form. As in Lemma 3.2, it was proved in [16] with special Cx and in
[18] for the general case.

Lemma 3.3 (see [18, Theorem 2.4]). Suppose that a ∈ Es+1 and a satisfies sum
rules of order s + 1 with ta. Let as−1 and xs be given as in condition (2) of Lemma
3.2. Then as−1 satisfies sum rules of order s with tas−1 verifying

Dµtas−1(0) =
i

µ + 1
Dµ+1(taCxs)(0), 0 ≤ µ ≤ s− 1.
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We are in a position to characterize the structure of V s
a in terms of the factoriza-

tion of mask which satisfies sum rules of order s + 1.
Theorem 3.4. Suppose that a satisfies the hypotheses of Lemma 3.2 and, con-

sequently, (3.4) is true for some Cxs , . . . , Cx0 . Let Cs = Cxs · · ·Cx0 . Then a vector
λ ∈ (�0(Z))r×1 belongs to V s

a if and only if there is a ξ ∈ (�0(Z))r×1 such that

λ̂ = Csξ̂.(3.6)

Proof. Let a satisfy sum rules of order s+ 1 with ta. Recall that as−1 is given as
in (2) of Lemma 3.2. We first claim that

V s
a =

{
λ : λ̂ = Cxs η̂, η ∈ V s−1

as−1

}
.(3.7)

In fact, suppose first that λ ∈ (�0(Z))r×r satisfies λ̂ = Cxs
η for some η ∈ V s−1

as−1 .
By the definition of Cxs(ω) and equality (3.5), it is easily seen that ta(0)Cxs

(0) = 0
and, consequently,

ta(0)λ̂(0) = 0.

Moreover, it follows from this equality and Lemma 3.3 that

Dµ+1(taλ̂)(0) =
∑

ν≤µ+1

(
µ + 1

ν

)
Dµ+1−ν(taCxs

)(0)Dν η̂(0)

=
µ + 1

i

∑
ν≤µ

(
µ

ν

)
Dµ−νtas−1(0)Dν η̂(0).

We thus obtain

Dµ+1(taλ̂)(0) =
µ + 1

i
Dµ(tas−1 η̂)(0), 0 ≤ µ ≤ s− 1.(3.8)

Since η ∈ V s−1
as−1 , D

µ+1(taλ̂)(0) = 0 by (3.8), 0 ≤ µ ≤ s − 1. This proves λ ∈
V s
a . Conversely, let λ ∈ V s

a . Since rankCxs(0) = r − 1, it follows from (3.3) that
rankGxs(0) = 1. Furthermore, each row of Gxs(0) is a multiple of xTs due to the
fact that xTs is a left eigenvector of Hxs(0) with the simple eigenvalue 1. Note that

ta(0) = xTs . Consequently, we have Gxs(0)λ̂(0) = 0. This implies that there is an

η ∈ (�0(Z))r×1 such that Gxs
(ω)λ̂(ω) = (1 − e−iω)η̂(ω), ω ∈ R. It follows from (3.3)

that η̂(ω) = Cxs(ω)−1λ̂(ω), ω ∈ R. Substituting it into the right-hand side of (3.8)
and appealing to Lemma 3.3 we conclude that (3.8) is true for any 0 ≤ µ ≤ s−1. This
together with λ ∈ V s

a tells us η ∈ V s−1
as−1 . Therefore we have proved (3.7), as claimed.

By replacing V s
a with V s−1

as−1 , . . . , V
1
a1 recursively in (3.7), we know that λ ∈ V s

a if
and only if there is an η ∈ V 0

a0 such that

λ̂ = Cxs · · ·Cx1 η̂.

However, as is known, a0 ∈ E1 and a0 satisfies sum rules of order 1 with

ta0(ω) = xT0 ∀ω ∈ R.

Therefore, by the definitions of V 0
a0 and Cx0(ω), we have

V 0
a0 =

{
η ∈ (�0(Z))r×1 : η̂ = Cx0 ξ̂, ξ ∈ (�0(Z))r×1

}
.
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Thus (3.6) is true. The proof is complete.
Let cs ∈ (�0(Z))r×r be given by its Fourier transform as follows:

ĉs = Cxs · · ·Cx0 .(3.9)

Then we restate Theorem 3.4 in the following form.
Corollary 3.5. Under the conditions of Theorem 3.4 and with the notations as

above we have

V s
a = V (cs∗).

4. Convergence of cascade algorithms. In this section we establish the
equivalence between the convergence of a cascade algorithm in Sobolev space and
the convergence of an associated cascade algorithm in Lp space. Therefore, the prob-
lem of convergence of cascade algorithms in Sobolev norm may reduce to that in Lp

space. On the other hand, an algorithm for construction of refinement masks which
generate convergent cascade algorithms in Sobolev space is presented. The algorithm
is easy to implement.

Assume as before that a ∈ (�0(Z))r×r and a ∈ Es+1. As mentioned in section
3, there is a unique vector ta, up to a constant factor, such that (3.1) holds. Using
ta(ω), we define W s

a to be the set of vectors F of compactly supported functions in
W s

p (R) satisfying

ta(0)F̂ (0) = ta(0)Φ̂a(0) and Dµ(taF̂ )(2απ) = 0 ∀α �= 0, 0 ≤ µ ≤ s.(4.1)

It had been proved in [3] that if

lim
n→∞ ||Q

n
aF0 − Φa||(W s

p (R))r = 0,(4.2)

for some vector F0 of compactly supported functions, then F0 ∈ W s
a . Therefore, the

notion of convergence was defined in [3] as follows. Let a ∈ Es+1. We say that the
cascade algorithm generated by Qa converges in (W s

p (R))r norm if (4.2) holds for any
F0 ∈W s

a .
The characterization of the convergence of cascade algorithm in terms of the

p-joint spectral radius is given as follows.
Theorem 4.1 (see [3]). Assume that a ∈ Es+1. Suppose that Ha(ω) and ta(ω)

satisfy (3.1). Let V s
a be defined in (3.2). Then the cascade algorithm generated by Qa

converges in (W s
p (R))r norm if and only if the following conditions are satisfied:

(1) V s
a is invariant under Aε, ε = 0, 1.

(2) ρp
({
A0|VN

, A1|VN

})
< 2−s+1/p, where VN = V s

a ∩ (�(KN ))r×1.
We are in a position to establish an equivalence between the convergence of a

cascade algorithm in Sobolev space on one hand and the convergence of an associated
cascade algorithm in Lp norm on the other hand.

Theorem 4.2. Assume that a ∈ Es+1. Then the cascade algorithm generated by
Qa converges in (W s

p (R))r if and only if the following conditions are satisfied:
(1) There are s + 1 nonzero vectors x0, x1, . . . , xs ∈ C

r and a sequence ã ∈
(�0(Z))r×r such that a satisfies conditions (1) and (2) of Lemma 3.2.

(2) The cascade algorithm corresponding to a0 converges in (Wp(R))r, where a0

is given in (2) of Lemma 3.2.

If this is the case, then Φ̂a0(0) �= 0 and the refinable function vectors Φa and Φa0 are
related by

(iω)sΦ̂a = κCxs · · ·Cxs−1Φ̂a0 ,(4.3)
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where κ is a constant.
Proof. Suppose that the cascade algorithm generated by Qa converges in (W s

p (R))r.
Then s+ 1 ≤ N and a ∈ Ss+1 by [3]. Therefore, conditions (1) and (2) of Lemma 3.2
are true for some vectors x0, . . . , xs and a sequence ã ∈ (�0(Z))r×r.

Let cs ∈ (�0(Z))r×r be given as in (3.9). Then V (cs∗) = V s
a by Corollary 3.5 and,

consequently, V (cs∗) is invariant under Aε, ε = 0, 1, by Theorem 4.1.
On the other hand, we may rewrite (3.4) as

a ∗ cs = 2−s−1Sã.

By the requirements of C, the Fourier transform ĉs of cs is invertible for any ω �∈ 2πZ.
Consequently, cs satisfies condition (2.2) on c. It follows from Corollary 2.4 that

ρp
({A0|V s

a ∩(�(KN ))r×1 , A1|V s
a ∩(�(KN ))r×1}) = 2−s−1ρp(Sã).(4.4)

Let a0 be defined in condition (2) of Lemma 3.2. As is known, a0 ∈ E1 and
a0 satisfies sum rules of order 1 with a constant vector ta0(ω) = xT0 ∀ω ∈ R. Let
A0
ε, ε = 0, 1, be defined in (2.7) by replacing a with a0. Then V 0

a0 is invariant under
A0
ε, ε = 0, 1, where V 0

a0 , corresponding to a0, is given by (3.2). Similar to the proof of
(4.4) we can establish

ρp

({
A0

0|V 0
a0∩(�(KN ))r×1 , A0

1|V 0
a0∩(�(KN ))r×1

})
= 2−1ρp(Sã).(4.5)

Furthermore, by condition (2) of Theorem 4.1 and equality (4.4) we have

ρp(Sã) < 21+1/p.(4.6)

It in turn implies by (4.5) that

ρp

({
A0

0|V 0
a0∩(�(KN ))r×1 , A0

1|V 0
a0∩(�(KN ))r×1

})
< 21/p.(4.7)

Therefore, the cascade algorithm associated with a0 converges in (Wp(R))r norm by
Theorem 4.1. This proves the necessity of (1) and (2).

Assume now that conditions (1) and (2) are true. Then V s
a as above is an invariant

subspace of A0 and A1, thereby verifying condition (1) of Theorem 4.1. Moreover, by
applying Theorem 4.1 to the cascade algorithm generated by Qa0 and s = 0 we get
(4.7). It is easy to deduce condition (2) of Theorem 4.1 from (4.4), (4.5), and (4.7).
This proves the sufficiency of the theorem.

Finally, if the conditions of the theorem are satisfied, the relation (4.3) between

Φa and Φa0 may be found, e.g., in [18]. Moreover, Φ̂a0(0) �= 0 since it is a right
eigenvector of Ha0(0). The proof is complete.

From the proof of Theorem 4.2 we know that, when a mask a is factorized as
in condition (1) of Lemma 3.2, the cascade algorithm generated by Qa converges in
(W s

p (R))r norm if and only if the corresponding sequence ã satisfies (4.6).
While the matrices Cx are determined by a left eigenvector of Cx(0) to the eigen-

value 0, it is convenient sometimes, as observed in [18], to identity the matrices with
the help of right eigenvectors to the same eigenvalue. More precisely, we let y be
a right eigenvector of Cx(0) with eigenvalue 0, and we set My(ω) = Cx(ω). There-
fore, for any finitely supported sequence a ∈ Es+1, a ∈ Ss+1 is equivalent to the
factorization

âMys · · ·My0 =
1

2s+1
Mys(2·) · · ·My0(2·)̂̃a,(4.8)
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where yj is a right eigenvector of Haj−1(0), 0 ≤ j ≤ s, to the eigenvalue 0, the
sequences aj ∈ (�0(Z))r×r are given by

Haj (ω) =
1

2
Myj (2ω)Haj−1(ω)Myj (ω)−1, ω �∈ 2πZ, 0 ≤ j ≤ s− 1,

and a−1 = ã. We refer to Theorem 2.7 and Corollary 2.8 of [18] for the details.
At the end of this section we present an algorithm for construction of refinement

masks which generate convergent cascade algorithms in Sobolev space.
Algorithm 4.3. Start with a finitely supported sequence ã such that Hã(0) has

1 as a simple eigenvalue and ρ(Hã(0)) < 2. Suppose that ρp(Sã) < 21+1/p. Let y0 be
a right eigenvector of Hã(0) associated with eigenvalue 1. Choose a matrix My0

∈ C
satisfying My0(0)y0 = 0. Define a finitely supported sequence a0 by

Ha0(ω) =
1

2
My0(2ω)Hã(ω)My0(ω)−1 ∀ω �∈ 2πZ.(4.9)

(1) Find a right eigenvector yj+1 of Haj (0) associated with eigenvalue 1.
(2) Construct a finitely supported sequence aj+1 by

Haj+1(ω) =
1

2
Myj+1

(2ω)Haj (ω)Myj+1
(ω)−1 ∀ω �∈ 2πZ,

where Myj+1 ∈ C satisfies Myj+1(0)yj+1 = 0.
(3) Repeat steps 1 and 2 as many times as needed.
s cycles of Algorithm (steps 1, 2, and 3) yield a refinement mask as generating a

convergent cascade algorithm in Sobolev space (W s
p (R))r norm.

Let us justify our algorithm. By the assumptions on ã we know that the spectrum
of Hã(0) is {1, µ1, . . . , µr−1} with |µj | < 2, j = 1, . . . , r − 1. It follows from [6] that
the spectrum of Haj (0) is of form {1, 2−j−1µ1, . . . , 2

−j−1µr−1}. Consequently, 1 is a
simple eigenvalue of Haj (0). So step 3 is consistent. Clearly, as ∈ Es+1. Moreover,
as ∈ Ss+1 by Theorem 2.7 and Corollary 2.8 in [18].

Finally, since Sã satisfies (4.6), the cascade algorithm generated by Qas converges
in Sobolev space (W s

p (R))r norm by what is mentioned in the paragraph.

5. Examples. The following examples will illustrate our theory.
Example 5.1. We consider a refinable function vector taken from [8]. Let a ⊆

(�
({0, 1, 2, 3}))2×2. Its Fourier transform â is

(
− (t2−4t−3)(1+z)

2(t+2) 1

− 3(t−1)(t+1)((t2−3t−1)(1+z3)+(t2−t+3)(z+z2))
4(t+2)2

(3t2+t−1)(1+z2)
2(t+2) + z

)
, z = e−iω.

Then, if |t| < 1/2, the cascade algorithm generated by Qa converges in (W 1
p (R))2 norm

for 1 ≤ p <∞. If 1/2 < |t| < 1, it converges in (Wp(R))2 norm for 1 ≤ p ≤ ∞.
Proof. It is known from [6] that (3.4) holds for s = 1 with x0 = (1, 1)T , x1 =

(−3(t2 − 1)/(t + 2), 1)T , and

̂̃a(ω) =

(
2 0

(t2−3t−1)z2+(−10t2−8t+6)z+(t2−3t−1)
(t+2) 4t(1 + z)

)
, z = e−iω.

Let us first compute the spectral radius ρp(Sã) of Sã. To this end we cite the
following formula of [14]:
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ρp(Sã) = ρp

({
Ã0|(�({0,1}))2×1 , Ã1|(�({0,1}))2×1

})
,(5.1)

where Ãε is defined as in section 2 by replacing a with ã, ε = 0, 1. Moreover, we
identify any λ ∈ (�({0, 1}))2×1 with a vector(

λ(0)
λ(1)

)
∈ C

4

and, therefore, Ãε|(�({0,1}))2×1 , ε = 0, 1, with operators on C
4. Choose a basis of C

4

as follows. e1 = (0, 0, 1, 0)T , e2 = (1, 0, 0, 0)T , e3 = (0, 0, 0, 1)T , e4 = (0, 1, 0, 0)T .
Denote by Tε the representing matrix of Ãε|(�({0,1})2×1 on this basis. Then by a simple
computation we know

T0 =




4t 0 −1−3t+t2

2+t 0

0 4t −1−3t+t2

2+t
−2(−3+4t+5t2)

2+t

0 0 2 0
0 0 0 0




and

T1 =




4t 4t −2(−3+4t+5t2)
2+t

−1−3t+t2

2+t

0 0 0 −1−3t+t2

2+t

0 0 0 2
0 0 0 0


 .

Appealing to (4.3) of [14] we have

ρp

({
Ã0, Ã1

})
= 4 max{1/2, 21/p|t|}, 1 ≤ p ≤ ∞.

It follows from (5.1) that ρp(Sã) = 4 max{1/2, 21/p|t|}.
As mentioned in the paragraph following Theorem 4.2, the cascade algorithm

generated by Qa converges in (W 1
p (R))2 norm if and only if (4.6) holds. Therefore,

if |t| < 1/2, the cascade algorithm generated by Qa converges in (W 1
p (R))2 norm for

1 ≤ p <∞ and does not converge in (W 1
∞(R))2 norm.

For 1/2 < |t| < 1 and 1 ≤ p ≤ ∞, the cascade algorithm converges in (Wp(R))2

norm by Theorem 4.2.
Example 5.2. Let y1 = (

√
2, 1)T and a0 ⊆ (�

({0, 1, 2, 3}))2×2 be given by

Ha0(ω) =
1

20

(
6 + 6e−iω 8

√
2

(−1 + 9e−iω + 9e−2iω − e−3iω)/
√

2 −3 + 10e−iω − 3e−2iω

)
.

If we define a1 by

Ha1(ω) =
1

2
My1(2ω)Ha0(ω)My1(ω)−1, ω �∈ 2πZ,

then the cascade algorithm generated by Qa1 converges in (W 1
∞(R))2 norm.

Proof. It is known (see [18]) that the normalized refinable function vector Φa0 =
(φ1, φ2)T has orthogonal shifts. Furthermore, φ1 and φ2 are continuous. It follows
from [14] that the cascade algorithm generated by Qa0 converges in (W∞(R))2 norm.
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Therefore, by the proof of Theorem 4.2, a0 can be factorized as in (4.9) for some ã
and y0, and ã satisfies the requirements of Algorithm 4.3. In order to construct a
mask which generates a cascade algorithm converging in (W 1

∞(R))2 norm, we need
only to use one cycle of Algorithm 4.3.

In fact, it is easy to check that y1 = (
√

2, 1)T is a right eigenvector of Ha0(0) with
eigenvalue 1. Therefore, the conclusion is true by Algorithm 4.3.

In particular, if we set as in [18]

My1(ω) =

(
1 + e−iω −2

√
2

1− e−iω 0

)
,

then the mask a1 is given by

Ha1(ω) =
1

40

(−7 + 10e−iω − 7e−2iω 15(1− e−2iω

−4(1− e−2iω) 10(1 + e−iω)2

)
.

In this case, the components of Φa1 are symmetric [18].
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ENO-WAVELET TRANSFORMS FOR PIECEWISE SMOOTH
FUNCTIONS∗
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Abstract. We have designed an adaptive essentially nonoscillatory (ENO)-wavelet transform for
approximating discontinuous functions without oscillations near the discontinuities. Our approach
is to apply the main idea from ENO schemes for numerical shock capturing to standard wavelet
transforms. The crucial point is that the wavelet coefficients are computed without differencing
function values across jumps. However, we accomplish this in a different way than in the standard
ENO schemes. Whereas in the standard ENO schemes the stencils are adaptively chosen, in the ENO-
wavelet transforms we adaptively change the function and use the same uniform stencils. The ENO-
wavelet transform retains the essential properties and advantages of standard wavelet transforms such
as concentrating the energy to the low frequencies, obtaining maximum accuracy, maintained up to
the discontinuities, and having a multiresolution framework and fast algorithms, all without any edge
artifacts. We have obtained a rigorous approximation error bound which shows that the error in the
ENO-wavelet approximation depends only on the size of the derivative of the function away from the
discontinuities. We will show some numerical examples to illustrate this error estimate.

Key words. ENO, wavelet, image compression, image denoising, signal processing

AMS subject classifications. 65D15, 65T60, 68P30, 94A08

PII. S0036142900370915

1. Introduction. In this paper, we develop new wavelet algorithms to approx-
imate piecewise continuous functions, for instance piecewise smooth functions con-
nected by large jumps. It is well known that wavelet linear approximation (i.e., trun-
cating the high frequencies) can approximate smooth functions very efficiently: It
can achieve high order accuracy by selecting appropriate wavelet basis; it can concen-
trate the large wavelet coefficients in the low frequencies; and it has a multiresolution
framework and associated fast transform algorithms.

Standard wavelet linear approximation techniques cannot achieve similar results
for functions which are not smooth, for example piecewise smooth functions with
large jumps in function value or in its derivatives. Several problems arise near jumps,
primarily caused by the well-known Gibbs phenomenon. The jumps generate large
high frequency wavelet coefficients and thus linear approximation cannot get the same
high accuracy near the points of discontinuity as in the smooth region. In fact, the
jump points generate oscillations which cannot be removed by mesh refinement.

To overcome these problems within the standard wavelet transform framework,
nonlinear data-dependent approximations, which selectively retain certain high fre-
quency coefficients, are often used, e.g., hard and soft thresholding techniques; see
[6], [15], [19], [18], [27], and corresponding references therein. The main idea of these
thresholding approximations is to truncate both low and high frequency wavelet coef-
ficients by their magnitudes, not frequencies. For instance, hard thresholding sets all
coefficients whose magnitudes are less than a given tolerance to zero and retains the
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other coefficients unchanged. It has been verified through many research efforts that
such nonlinear processes can effectively reduce Gibbs oscillations, and therefore they
have been widely used in many applications such as image compression and denoise,
and even computation of partial differential equations. However, these techniques
often require more complicated data structure to record the location of the retained
wavelet coefficients and still cannot remove the effects of the Gibbs phenomenon com-
pletely unless all jump-related coefficients are preserved.

Another fundamental approach is to modify the wavelet transform to not generate
large high frequency wavelet coefficients near jumps. A few papers in the literature
have discussed this approach. Claypoole et al. [12] proposed an adaptive lifting scheme
which lowers the order of approximation near jumps, thus minimizing the Gibbs effect.
Consequently, this scheme suffers from reduced approximation accuracy near jumps,
and some residual Gibbs phenomenon still exists. Another way due to Donoho is to
construct orthonormal basis such as wedgelets [16] and ridgelets [7], [17] to represent
the discontinuities.

In this paper, we develop a new wavelet algorithm by borrowing the well-developed
essentially nonoscillatory (ENO) technique for shock capturing in computational fluid
dynamics (e.g., see [23] and [29]) to modify the standard wavelet transform near dis-
continuities in order to overcome the above-mentioned difficulties. ENO schemes are
systematic ways of adaptively defining piecewise polynomial approximations of the
given functions according to their smoothness. There are two crucial points in de-
signing ENO schemes. The first is to use one-sided information near jumps and never
differencing across the discontinuities. The second is to adaptively form the divided
difference table and select the smoothest stencil (the support of the basis) for every
grid point. ENO schemes lead to uniform high accuracy approximations for each
smooth piece of the function. We will use only the first point in our design of the
ENO-wavelet transforms. Preliminary results of this work have been reported in [8].

Combining the ENO idea with the multiresolution data representation is a natural
way to avoid oscillations in the approximations. In fact, it has been explored by Harten
in his general framework of multiresolution in [20], [21], and [22]. (The lifting scheme
of Sweldens [31] uses a similar idea.) Recent studies of his general framework and
its application in data compression can be found in [2], [3], [4], and [9]. Harten’s
approach is to directly blend the two ideas and to fully implement the ENO schemes
at every point. This consists of using the adaptive ENO finite difference table to select
the stencil and then compute the decomposition as well as the reconstruction process.
However, his method cannot be directly applied to the more generally used pyramidal
filtering algorithms which the standard wavelet transforms are implemented in because
in this context we have to work only with fixed size and fixed value filters, and these
rigid filters cannot be directly used to compute the adaptive divided difference tables
at each grid point.

Our goal is to design a more direct functional replacement of the standard wavelet
transforms such that there are no oscillations at the discontinuities in the approxima-
tions. We want to stick with the classical pyramidal filtering framework because they
are easy to use and have been successfully applied in many applications. Compared
to Harten’s multiresolution approach, which is more flexible and easier to adaptively
implement than the ENO idea, the standard wavelet transforms are more regular and
rigid in algorithmic structure; therefore, directly applying the ENO idea would lead
to a more drastic perturbation of the underlying pyramidal filtering algorithms. This
is the challenge we face.
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Conceptually, the ENO-wavelet transforms that we will introduce in this paper
are closely related to the ENO implementation of Harten’s multiresolution framework.
Both methods share the one-sided information idea, which computes the decompo-
sition and reconstruction from smooth data. However, we achieve this in a different
manner. The way we accomplish this is to not change the wavelet transforms or
the filter coefficients, which most data-dependent multiresolution algorithms do, but
instead locally change the function near the discontinuities in such a way that the
standard filters are applied only to smooth data. By recording how the changes are
made, the original discontinuous function can be exactly recovered by using the orig-
inal inverse filters. Indeed, by applying the idea of using one-sided information near
the discontinuities, we directly extend the functions from both sides of the disconti-
nuities, thus we can apply the standard wavelet transforms on these extended values
such that there are no large coefficients generated in the high frequencies and the
low frequency approximations are essentially nonoscillatory, and therefore the Gibbs
phenomenon can be completely avoided.

In addition, in this modified wavelet transform, the low frequency part preserves
the piecewise smoothness of the original function. In particular, the jumps in the low
frequency part is not spread widely as in the standard transform. Therefore, the same
ENO idea can be recursively used for the coarser levels of the low pass coefficients.
By doing so, the multiresolution framework also can be kept.

We show that the resulting wavelet transform retains all the desirable properties of
the standard transform: It can have uniformly maximum accuracy, maintained up to
the discontinuities (with a rigorous uniform order of the error bound); it concentrates
the large coefficients to the low frequencies; it preserves the multiresolution framework
and fast transform algorithms; and it is easy to implement. Furthermore, since we do
not fully adopt the ENO schemes, in particular we do not build the divided difference
table and compare the smoothness of all possible stencils at every point, the extra
cost (in floating point operations) required by the modified ENO-wavelet transforms is
insignificant. In fact, it is of the order O(dl), where d is the number of discontinuities
and l+1 the stencil length. Compared to the cost of the standard wavelet transform,
which is of the order O(nl), where n is the size of the data, the ratio of the extra cost
over that of the standard transform is of the order O( dn ) which is independent of l
and negligible when n is large.

Besides, since the designed ENO-wavelet transforms play the same role as the
standard wavelet transforms in the applications, in principle, any of the numerous
existing algorithms for postprocessing wavelet coefficients can also be used in con-
junction with the ENO-wavelet coefficients. For example, ENO-wavelet transforms
can be used in conjunction with the standard adaptive nonlinear techniques such
as hard and soft thresholding, tree structured (e.g., Shapiro’s EZW [28]) coders in
image compression, and Coifman and Donoho’s translation invariant algorithm [10]
in denoising. However, in this paper we focus on the construction of ENO-wavelet
transforms, and we will not discuss those applications in detail. Instead, we show
a numerical example which illustrates the advantages of using the combination of
ENO-wavelet transforms with hard thresholding in section 5.

The arrangement of the paper is as follows. In section 2 , we review the standard
continuous and discrete wavelet transforms. In section 3, we give a general algorithm
to implement the ENO-wavelet transform discretely. In section 4, we prove an error
bound for the ENO-wavelet approximation which shows that the error in the ENO-
wavelet approximation depends only on the size of the derivative of the function away
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from the discontinuities. Finally, in section 5, we give some numerical examples to
illustrate the main advantage of the ENO-wavelet transforms, including some two-
dimensional (2-D) examples.

2. Wavelet transforms. Before we introduce the adaptive ENO-wavelet
transforms, we briefly review the standard wavelet transforms; e.g., see [5], [11], [13],
[14], [25], [26], [27], and [30]. We use Daubechies orthonormal wavelets as the frame-
work in all discussion in this paper. We will go over both continuous and discrete
wavelet transforms, because we will present our ENO-wavelet transforms in the dis-
crete form and prove the approximation error bound by using the continuous form.

First, we review the standard wavelet transforms. To simplify the notation, we
assume zeros have been padded to the data at the boundaries.

The standard wavelet transforms are based on translation and dilation. Suppose
φ(x) and ψ(x) are the scaling function and the corresponding wavelet, respectively,
with finite support [0, l], where l is a positive integer. It is well known that φ(x)
satisfies the basic dilation equation

φ(x) =
√
2

l∑
s=0

csφ(2x− s)(1)

and ψ(x) satisfies the corresponding wavelet equation

ψ(x) =
√
2

l∑
s=0

hsφ(2x− s),(2)

where the cs’s and hs’s are constants called low pass and high pass filter coefficients,
respectively.

We assume that ψ(x) has p vanishing moments∫
ψ(x)xjdx = 0 for j = 0, 1, . . . , p− 1.(3)

We will use the following standard notations:

φj,i(x) = 2
j
2φ(2jx− i)(4)

and

ψj,i(x) = 2
j
2φ(2jx− i).(5)

Consider the subspace Vj of L
2 defined by

Vj = Span{φj,i(x), i ∈ Z}
and the subspace Wj of L

2 defined by

Wj = Span{ψj,i(x), i ∈ Z}.
The subspaces Vj ’s, −∞ < j <∞, form a multiresolution of L2 with the subspaceWj

being the difference between Vj and Vj+1. In fact, the L
2 space has an orthonormal

decomposition as

L2 = VJ ⊕
∞∑
j=J

Wj .(6)
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The projection of a L2 function f(x) onto the subspace Vj is defined by

fj(x) =
∑
i

αj,iφj,i(x),(7)

where

αj,i =

∫
f(x)φj,i(x)dx, i = · · · ,−1, 0, 1, . . . ,(8)

which we call low frequency wavelet coefficients. (They are often called scaling coef-
ficients in many literatures.) Similarly, we can project f(x) onto Wj by

wj(x) =
∑
i

βj,iψj,i(x),(9)

where

βj,i =

∫
f(x)ψj,i(x)dx, i = · · · ,−1, 0, 1, . . . ,(10)

which we call high frequency wavelet coefficients (often called wavelet coefficients in
many literatures). In this paper, we refer to wavelet coefficients as both low and high
frequency coefficients. Therefore, the function f(x) can be decomposed by

f(x) = fj(x) +

∞∑
t=j

wt(x).(11)

The projection fj(x) is called the linear approximation of the function f(x) in the
subspace Vj .

From (4) and (5), the projection coefficients αj,i and βj,i of f(x) in the subspaces
Vj and Wj can be easily computed by the so-called fast wavelet transform

αj,i =

l∑
s=0

csαj+1,2i+s(12)

and

βj,i =

l∑
s=0

hsαj+1,2i+s.(13)

In practice, discrete wavelet transforms are often directly used with a set of dis-
crete numbers which are the low frequency coefficients of the L2 function f(x) at a
fine level subspace Vj+1. In many applications, this set of numbers are sample values
of the function f(x) on a fine grid (although in [30] this is called a “wavelet crime”).

Let us define the following matrices:

L =



c0 c1 · · · cl

c0 c1 · · · cl
· · · · · · · · ·

c0 c1 · · · cl
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and

H =



h0 h1 · · · hl

h0 h1 · · · hl
· · · · · · · · ·

h0 h1 · · · hl


 .

We also denote �αj = (. . . , αj,i, αj,i+1, . . .)
T and �βj = (. . . , βj,i, βj,i+1, . . .)

T .
By using matrix and vector forms, the fast wavelet transform equations (12) and

(13) can be written as

�αj = L�αj+1(14)

and

�βj = H�αj+1.(15)

It is well known that the wavelet transform matrices L and H are orthogonal:

L∗L+H∗H = I.(16)

It follows that the inverse wavelet transform is simply

�αj+1 = L
∗�αj +H∗�βj .(17)

The standard linear wavelet approximation achieves maximum accuracy away
from discontinuities, but it oscillates near the jumps. The reason for the oscillations is
that some stencils cross jumps and cause the corresponding high frequency coefficients
to becoming large and therefore more information is lost when the high frequency
coefficients are discarded.

In Figure 1, we display a piecewise continuous function (left) and its DB4 wavelet
coefficients (right) with low frequencies at the left end and high frequencies at the
right end. From the right picture, we see that most of the high frequency coefficients
are zero, except for a few large coefficients which are computed near jumps. Fig-
ure 2 displays the linear approximation (solid line) compared to the initial function
(dotted line). The right picture is the zoom-in to show the approximation behavior
near a jump. In this figure, we clearly see oscillations (people call them the Gibbs
phenomenon) near discontinuities.

Since the oscillations are generated by discarding large high frequency coefficients
which are computed on the stencils crossing discontinuities, to get rid of the oscilla-
tions, we want to avoid stencils crossing discontinuities. This motivates us to apply
the ENO idea to avoid stencils crossing jumps.

Before we introduce the ENO-wavelet transforms, we give the following definition
which we will use in the later sections. Given a function f(x) which has discontinuous
set D, then

D = {xi : f(x) is discontinuous at xi}.

Denote t as the closest distance between any two discontinuous points, i.e.,

t = inf{|xi − xj | : xi, xj ∈ D}.
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Fig. 1. The initial function (left) and its DB4 coefficients (right). Most of the high frequency
coefficients (right part) are zero except for a few large coefficients computed near the jumps.
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Fig. 2. The approximation function (left) and its zoom-in (right). Oscillations are generated
near the discontinuities in the linear approximation.

Definition 1. For a given wavelet filter with stencil length l + 1, we say a
projection of f(x) in space Vj with spatial step ∆x = 2−j satisfies the discontinuity
separation property (DSP) if (l + 2)∆x < t.

A projection satisfying the DSP implies that any one discontinuity is located at
least one stencil and two data points away from other discontinuities. In other words,
there are no two consecutive stencils containing two discontinuities. We assume that
all projections we consider in this paper satisfy the DSP. Since our ENO-wavelet
transform is essentially using ENO techniques to modify the standard wavelet trans-
form near discontinuities, this property will avoid the modifications near one discon-
tinuity interacting with the modifications near other discontinuities.

Remark. For any piecewise discontinuous function, a projection will satisfy this
DSP if j is sufficiently large, i.e., if the discretization is fine enough. On the other
hand, at the place where the DSP is invalid, the approximations produced by the
ENO-wavelet transforms are comparable to that by the standard wavelet transforms.
We will show numerical examples in section 5 illustrating this point.

3. ENO-wavelet transforms. In this section, we design the ENO-wavelet
transforms. In addition to the standard wavelet transforms, our ENO-wavelet
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transforms are composed of two phases: locating the jumps and forming the ap-
proximations at the discontinuities. First, assuming that the location of the jumps
are known, we give the ENO-wavelet approximations at the discontinuities by using
one-sided information to avoid oscillations. Then we give the methods to detect the
exact subinterval on the next finer grid at which the discontinuity is located.

3.1. ENO-wavelet approximation at discontinuities. In this subsection, we
assume that the exact subintervals on the next finer grid at which the discontinuities
is located are known. We want to modify the standard wavelet transforms near the
jumps such that oscillations can be avoided in the approximation. From ENO schemes,
we borrow the idea of using one-sided information to form the approximation and
avoid applying the wavelet filters crossing the discontinuities. Since we assume the
DSP is satisfied by the given projection of the function f(x), we can just consider
the local modification near one jump. The main tool which we use to modify the
standard wavelet transforms at the discontinuities is function extrapolation in the
function spaces or in the wavelet spaces.

Direct function extrapolation. The first way is to extend the function directly
at the discontinuity by extrapolation from both sides. Then we can apply the standard
wavelet transforms on the extended functions and avoid computing wavelet coefficients
using information from both sides.

To maintain the same approximation accuracy near the discontinuity as that
for away from the discontinuity, the extrapolation has to be pth order accurate if the
wavelet functions have p vanishing moments. For instance, we use constant extrapola-
tion for Haar wavelets and (p−1)th order extrapolation for Daubechies-2p orthogonal
wavelets which have p vanishing moments.

We use the diagram in Figure 3 to show how to extend the function and compute
the ENO-wavelet coefficients.

As shown in Figure 3, the discontinuity is located between {x(2i+ l − 2), x(2i+
l − 1)}. We extend the function from both sides of the discontinuity using (p− 1)th
order extrapolation; i.e., we use the information from the left side of the jump to
extrapolate the function over x̂(2i+ l− 1), . . . , x̂(2i+2l− 2) and use the information
from the right side to extrapolate the function over x̄(2i), . . . , x̄(2i+ l− 2). And then
for i ≤ m ≤ i+ k− 2, where l = 2k− 1, we can compute the wavelet coefficients α̂j,m
and β̂j,m from the left side, and compute ᾱj,m and β̄j,m from the right side by using
the standard wavelet transforms, respectively.

In general, we have the low frequency wavelet coefficients on the finer levels instead
of knowing the function values themselves near the discontinuities. We extrapolate
these finer level coefficients from both sides of the discontinuities to obtain the values
of α̂j+1,m and ᾱj+1,m, and use the fast wavelet transforms (12) and (13) to compute

the coarser level coefficients. For instance, we can compute α̂j,i and β̂j,i by

(
α̂j,i
β̂j,i

)
=

( ∑l−2
s=0 csαj+1,2i+s + cl−1α̂j+1,2i+l−1 + clα̂j+1,2i+l∑l−2
s=0 hsαj+1,2i+s + hl−1α̂j+1,2i+l−1 + hlα̂j+1,2i+l

)

≡
(
δj,i
γj,i

)
+A

(
α̂j+1,2i+l−1

α̂j+1,2i+l

)
,(18)

where δj,i and γj,i are
∑l−2
s=0 csαj+1,2i+s and

∑l−2
s=0 hsαj+1,2i+s, respectively, and de-

pend only on the unextrapolated values of αj+1,m, and A a 2 × 2 matrix defined by
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ENO-wavelet Extrapolation Scheme
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j,i j,i+2j,i+2α
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Extrapolated values

Extrapolated values

β
j,i

Fig. 3. Coarse level extrapolation illustration. From the left side of the discontinuity, we extrap-
olate the low frequency coefficients α̂j,m to determine corresponding high frequency coefficients β̂j,m
and store them. From the right side of the discontinuity, we extend the high frequency coefficients
β̄j,m to determine and store the low frequency coefficients ᾱj,m.

the filter coefficients as

A =

(
cl−1 cl
hl−1 hl

)
.

In computing α̂j,m and β̂j,m by the fast wavelet transforms, the number of ex-
trapolated values we must use is 2 for m = i, 4 for m = i + 1, and so on. Those
extrapolated values are determined from the smooth side of the discontinuity; then
the high frequency coefficients β̂j,m remain as small values as those of the smooth
stencils.

By symmetry, we can compute ᾱj,m’s and β̄j,m’s from the right side in a similar
way.

There are many methods to extrapolate the extended values. For example, a
straightforward way is to use p-point polynomial extrapolation such as Lagrange poly-
nomials or Taylor expansion polynomials. In our numerical experiments in this paper,
we use Lagrange polynomial extrapolation. Least square extrapolation can be used
too [33], especially for noisy data.

There is a storage problem for this direct function extrapolation. Indeed, it dou-
bles the number of the wavelet coefficients near every discontinuity. To retain the
perfect invertible property, we need to store the ENO-wavelet coefficients α̂j,m and

β̂j,m from the left side, also ᾱj,m and β̄j,m from the right side. Thus, the output se-
quences are no longer the same size as the input sequences. In many applications, such
as image compression, this extra storage requirement definitely needs to be avoided.
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Remark. In the least square extrapolation case, it is possible to reduce the de-
mands of the extra storage because not all the wavelet coefficients α̂j,m, β̂j,m, ᾱj,m,
and β̄j,m are linearly independent [33]. However, this requires complicated extra
computation.

Our approach: Coarse level extrapolation. To avoid computing the wavelet
coefficients using the information from both sides of the discontinuities, to maintain
the same high order accuracy near the discontinuities as away from the discontinu-
ities, and also to keep the size of the output sequences the same as that of the input
sequences without significant extra computation, we introduce the coarse level extrap-
olation schemes. The idea is to extrapolate the coarser level wavelet coefficients near
the discontinuities instead of the function values or the finer level wavelet coefficients.

We still use Figure 3 to illustrate these schemes. We consider the left side of the
jump first.

In the direct function extrapolation case, the computation process is to directly
extrapolate the finer level wavelet coefficients α̂j+1,m, (2i+ l−1) ≤ m ≤ (2i+2l−2),
and then compute the extended coarser level wavelet coefficients α̂j,m and β̂j,m, i ≤
m ≤ (i + k − 2) using the standard filters. We reverse the order of this process
in our coarse level extrapolation. More precisely, we extrapolate the coarser level
low frequency coefficients α̂j,m using the known low frequency coefficients from the

left, and extend the coarser level high frequency coefficients β̂j,m to zero (or some
predefined values), and then determine the extended finer level wavelet coefficients.
For example, in the direct function extrapolation, we extrapolate finer level values
α̂j+1,m and then compute the coarser level coefficients α̂j,i and β̂j,i by (18). On

the contrary, we can first extend the coarser level coefficients α̂j,i and β̂j,i and then
determine the finer level values. Indeed, if the matrix A is nonsingular, we can
uniquely determine the finer level values by solving (18). In this case, we can prescribe
both the coarser level coefficients simultaneously. However, in Daubechies orthogonal
wavelet transforms, the matrix A is singular, because

hl−1

cl−1
=
hl
cl
.(19)

Thus, in order to have a solution of (18), we must extend the coarser level coefficients

α̂j,i and β̂j,i in such a way that they satisfy(
α̂j,i
β̂j,i

)
−
(
δj,i
γj,i

)
∈ R(A),

where R(A) is the range space of A. This requirement implies that(
−1 cl

hl

)[( α̂j,i
β̂j,i

)
−
(
δj,i
γj,i

)]
= 0,

which we can also rewrite as

β̂j,i = γj,i +
hl
cl
(α̂j,i − δj,i)(20)

or

α̂j,i = δj,i +
cl
hl
(β̂j,i − γj,i).(21)

Therefore, we cannot prescribe both α̂j,i and β̂j,i simultaneously. Thus we have two
choices:
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(1) We can extrapolate the low frequency coefficients α̂j,i first and then determine

the corresponding high frequency coefficients β̂j,i by (20).

(2) Or we can extend β̂j,i to zero first and then determine the corresponding α̂j,i
by (21).

Once coefficients β̂j,i and α̂j,i are obtained, we can determine the finer level coef-
ficients α̂j+1,2i+l−1 and α̂j+1,2i+l. Since A is not invertible for Daubechies wavelets,

α̂j+1,2i+l−1 and α̂j+1,2i+l cannot be uniquely determined by β̂j,i and α̂j,i. There is
one more freedom left to use. (In the case of the discontinuity being located between
αj+1,2i+l−1 and αj+1,2i+l, α̂j+1,2i+l can be uniquely determined.) Indeed, there are
many ways to completely determine the values of α̂j+1,2i+l−1 and α̂j+1,2i+l. For in-
stance, one can simply extend α̂j+1,2i+l−1 by any extrapolation technique, such as
(p− 1)th order polynomial extrapolation for smooth data or averaging extrapolation
techniques for noisy data (we use them in our numerical experiments in section 5),

and then determine α̂j+1,2i+l by β̂j,i or α̂j,i. Another possible way to uniquely ex-
tend the coefficients α̂j+1,2i+l−1 and α̂j+1,2i+l on the finer level is to leave this extra
freedom to be used in the next stencil by requiring some special desire properties in
the next extended coarser level coefficients. This involves slightly more complicated
formulation which we will not exploit further in this paper. Thereafter, the above
procedure can be repeatedly used to the next stencil to compute β̂j,i+1 and α̂j,i+1

by treating α̂j+1,2i+l−1 and α̂j+1,2i+l as known values. By the same principle, all

extended coefficients β̂j,m and α̂j,m can be calculated.

Remark. We notice that in both cases (20) and (21) the coefficients are computed
by applying the standard filters to the extended data which is smooth. This implies
that there are no large coefficients generated by them.

Again by symmetry, we have two analogous choices for the right side of the jump.

Using this coarse level extrapolation technique, we can easily solve the storage
problem which we have in the direct function extrapolation. In fact, we just need
to store the high frequency coefficients β̂j,m for choice (1) and the low frequency
coefficients α̂j,m for choice (2). In our implementation, we use choice (1) for the left
side of the jumps and choice (2) for the right side of the jumps; therefore we store

β̂j,m and ᾱj,m for every m. This satisfies the standard wavelet storage scheme, i.e.,
storing one low frequency and one high frequency coefficient for every stencil.

Remark. We select choice (1) from the left side of the jumps and choice (2) from
the right side because we want to keep half of the output sequence to be α’s and half
to be β’s. It is possible to select choice (1) or choice (2) for both sides of the jumps,
but that will not give equal number of α’s and β’s in the output sequence; also, it
may destroy the data structure for the next level decomposition.

Since we know the way we extend the data at the discontinuities, we can easily
extrapolate the low frequency coefficients α̂j,m from the left sides of the discontinuities.

Using them together with the stored high frequency coefficients β̂j,m, we can exactly
recover data at the left sides by applying the standard inverse filters. Similarly, the
data at the right sides of the discontinuities can also be exactly restored.

For each stencil crossing a jump, an extra cost (in floating point operation) is
required in the extrapolation of low frequency coefficients, which is of the order O(1)
per stencil, and in the computation of the corresponding high and low frequency
coefficients by (20) and (21), which is of the order O(l) per stencil. Overall, the extra
cost over the standard wavelet transform is of the order O(dl), where d is the number
of discontinuities. Compared to the cost of the standard wavelet transform, which is
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of the order O(nl) where n is the size of data, the ratio of the extra cost over that of
the standard transform is O( dn ), which is independent of l and negligible when n is
large.

3.2. Locating the discontinuities. In the previous subsection, we showed how
to modify the standard wavelet transforms at the discontinuities to avoid oscillations
if we know the exact subinterval on the next finer grid at which the jumps are located.
In this subsection, we introduce the methods to detect those exact subintervals for
discontinuities for piecewise smooth functions with and without noise. First we give
a method for smooth data.

Piecewise smooth functions. Our purpose is to avoid wavelet stencils crossing
discontinuities. Theoretically, a discontinuity can be characterized by comparing the
left and right limit of the derivatives f (m)(x) at the given point x; i.e., we call a point
x a discontinuity if for some m < p we have

f (m)(x−) = f (m)(x+).

We define the intensity of a jump in the mth derivative at x as

[f (m)(x)] = |f (m)(x+)− f (m)(x−)|.
It is well known that the high pass filters in wavelet transforms measure the

smoothness of functions: they produce smaller values at smoother regions and larger
values at rougher regions. In fact, it has been shown in [1], [24], and [32] that if a
function f(x) is Lipschitz γ ≤ p at x, i.e., |f(x+ δ)− f(x)| ≤ δγ for any small δ, the
corresponding high frequency wavelet coefficients are of the order of O(∆xγ). From
this, it is easy to obtain that at smooth regions the magnitudes of high frequency
coefficients |βj,i| have the order of |f (p)(x)|O(∆xp). On the other hand, if a stencil
contains a discontinuity, no matter if it is a discontinuity in function value (m = 0) or
in its mth derivative, the magnitude of the corresponding high frequency coefficient
|βj,i| is of the order of O(∆x(m)), which is at least one order lower than that at
the smooth regions. Therefore, instead of fully adopting the ENO comparison idea
which compares the magnitudes of divided differences on all possible stencils, we can
use the magnitudes of the high frequency coefficients as our criterion to identify the
discontinuities.

The obvious way, also the cheapest way, to identify the discontinuities is to com-
pare the magnitudes of the high frequency coefficients on the current standard stencils
|βj,i| with that on the previous standard stencils |βj,i−1|. Since for smooth functions
we have |βj,i| = |f (p)(x)|O(∆xp), this implies that at smooth regions, by Taylor ex-
pansion, we have

|βj,i| = (1 +O(∆x))|βj,i−1|,(22)

where the constant in the term O(∆x) depends on the size of higher order derivatives
of f(x) such as maxx |f (p+1)(x)|. In contrast, the magnitudes of high frequency coef-
ficients |βj,i| based on the stencils containing the discontinuities are at least one order
lower than that at the smooth regions. More precisely, if we assume function f(x)
has a jump in its mth derivatives at point x0 ∈ (i∆x, (i + l)∆x) for some integer i,
using Taylor expansion, in a small neighborhood of x0, we can write this function as

f(x) = g(x)+

{
f (m)(x0−)(x− x0)

m +O(x− x0)
(m+1), x ≤ x0,

f (m)(x0+)(x− x0)
m +O(x− x0)

(m+1), x0 < x,
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where g(x) is its Taylor polynomial of order m− 1 near x0. Then the wavelet coeffi-
cients βj,i is estimated by using the vanishing moments property as

|βj,i| =
∣∣∣∣
∫
f(x)ψj,i(x)dx

∣∣∣∣
=

∣∣∣∣
∫ x0

i∆x

(f (m)(x0−)(x− x0)
m +O(x− x0)

m+1)ψj,i(x)dx

+

∫ (i+l)∆x

x0

(f (m)(x0+)(x− x0)
m +O(x− x0)

m+1)ψj,i(x)dx

∣∣∣∣∣
= |[f (m)(x0)]|O(∆xm).

It depends on the ∆xm and also on the intensity of the jump.
Thus, we can design a method to detect the discontinuities as follows: For each

standard stencil, suppose we know that the previous standard stencil does not contain
any discontinuities, if we have |βj,i| ≤ a|βj,i−1|, where a > 1 is a given constant, and
then we treat the current stencil as a smooth stencil. Otherwise, we conclude that
there are discontinuities contained in it.

The choice of constant a depends on the grid size ∆x and also on the intensity of
the jumps. In fact, the ratio between a high frequency coefficient at the rough regions
and that at the smooth regions is of the order of |[f (m)(x)]|O(∆x(m−p)). When ∆x
becomes small, this ratio is large. We can choose a as any number such that

(1 +O(∆x)) ≤ a ≤ min
x
{|[f (m)(x)]|O(∆x(m−p))},(23)

provided the above minimal number is larger than 1+O(∆x). This is always true for
piecewise smooth functions with small enough grid size ∆x.

Remark. When a jump in the mth derivative has very small intensity less than
O(∆x(p−m)), this jump cannot be detected by the above-described method. However,
the error caused by missing this jump is also very small, which is at the same order
of the error bound we will give in section 4. In practice, especially when we care only
about the jumps in function values, we have a large range to select a.

To completely avoid oscillations, we also need to know the exact locations of the
discontinuities so that we can avoid computing the wavelet coefficients crossing them.
In fact, the above comparison method based on the magnitudes of high frequency
coefficients can also help us to locate the exact positions of the discontinuities. We
will use the diagram in Figure 4 to explain how to find the exact jump positions.

Assume we consider the wavelet filters with length (l + 1). We compare the
magnitude of the high frequency coefficient |βj,i| on the current stencil, which starts
at x(2i) with |βj,i−1| on the previous stencil. If we have |βj,i| > a|βj,i−1|, we identify
the discontinuity lying in the current stencil. Since there are no discontinuities in the
previous stencils, we know that this discontinuity must be located between {x(2i+ l−
2), x(2i+l)}, where it has only two possible positions: between {x(2i+l−2), x(2i+l−
1)} or between {x(2i+l−1), x(2i+l)}. In fact, we can determine the exact position of
the jump by continuing to compare the subsequent values of βj,m. As shown in Figure
4, we must have at least (k−1) consecutive “large” βj,m, i ≤ m ≤ (i+k−2), because
the subsequent (k − 1) stencils also include the discontinuity. We compute βj,i+k−1

and βj,i+k on the corresponding standard stencils, if we have |βj,i+k−1| > a|βj,i+k|,
and then we have k consecutive stencils containing the discontinuity, which implies
that the discontinuity is located between {x(2i+l−1), x(2i+2l−1)} (see Figure 4(a)).
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(a)

(b)

k consecutive stencils containing the jump which is between x(2i+l-1) and x(2i+l) 

(k-1) consecutive stencils containing the jump which is between x(2i+l-2) and x(2i+l-1)

Jump

Jump

k consecutive stencils 
containing the jump

containing the jump
k-1 consecutive stencils 

Standard Stencils

Standard Stencils

Standard Stencils

Standard Stencil

x(2i+l-1)

x(2i+l-2)

x(2i+l)

x(2i+1)x(2i)

x(2i) x(2i+1) x(2i+l-2) x(2i+l-1)

x(2i+l)

Fig. 4. Locating the exact position of the jump by counting the number of consecutive stencils
containing the jump. (a) If k stencils contain the jump, then the jump position is between x(2i+l−1)
and x(2i+ l). (b) If (k− 1) consecutive stencils contain the jump, then the jump is located between
x(2i+ l − 2) and x(2i+ l − 1).

If we have exactly (k − 1) consecutive standard stencils containing the discontinuity,
then this implies that the jump must be located between {x(2i+ l− 2), x(2i+ l− 1)}
(see Figure 4(b)). We summarize the above arguments in the following proposition.

Proposition 1. Consider the wavelet filters with length l+ 1, where l = 2k − 1.
For a given index i, assume we have |βj,i−1| ≤ a|βj,i−2| but |βj,i| > a|βj,i−1|. Then

(1) if |βj,i+k−1| > a|βj,i+k|, which means there are k consecutive standard stencils
containing the jump, then the discontinuity is located between {x(2i+ l − 1),
x(2i+ l)};

(2) or else we have |βj,i+k−1| ≤ a|βj,i+k|, which implies that there are (k − 1)
consecutive standard stencils containing the jump, and then the discontinuity
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is located between {x(2i+ l − 2), x(2i+ l − 1)}.
The extra cost introduced by this comparison jump identification method over the

standard wavelet transforms is just the comparison |βj,i| > a|βj,i−1| for each stencil.
In section 5, we use this detection method for all noise-free numerical examples.

Noisy data. The above-described detection method may not be reliable if the
function is polluted by noise, especially when the noise is “large.” This is because
the high frequency coefficients β’s may not be able to measure the correct order of
smoothness of the functions. Indeed, the high frequency coefficients have the order
‖f (p)(x)+σn(p)(x)‖O(∆xp), where n(x) is the random noise and σ a positive number
indicating the noise level. In general, the derivatives of the noise n(p)(x) have large
values. The noise term σn(p)(x) can dominate the function term f (p)(x) if the noise
level σ is large and thus the high frequency coefficients β’s may not be able to detect
certain discontinuities, e.g., if the jump is small or the discontinuity is in the higher
derivatives. In this situation, we need to use heuristics to locate the exact position of
the essential discontinuities. Here, we give a simple method to detect the significant
large jumps in function values in noisy data.

In many applications, such as in image processing, large discontinuities in function
value are the most significant features. Using the standard wavelet transforms, these
large discontinuities will generate high frequency coefficients which can be much larger
than those generated by the noise. (This is also the fundamental principle in the design
of wavelet thresholding.) A simple way to detect these kinds of discontinuities is to
look for these large magnitude high frequency coefficients and then compare the data
values in the corresponding stencils to locate the exact jump positions. For example,
we can look for the places which have the largest difference between two adjacent data
values within the stencils. In our numerical experiments, we found that this simple
way works very well in practice. In section 5, we will show an example using this
method.

Remark. Other jump detection methods can be used for noisy data. As long as the
exact subintervals of the discontinuities on the next finer grid are correctly determined,
the coarse level ENO-wavelet approximations can be formed at the discontinuities, and
our experience shows that it is not sensitive to the presence of noise.

In the ENO-wavelet transforms, to retain the perfect invertibility property, we
need to store the adaptive information near every discontinuity, i.e., the exact location
of the jump. The reason can also be illustrated by using Figure 4. If there is a jump
in the low frequency coefficients (after down sampling) on the coarser level, one can
predict a jump in the finer level coefficients. One can further identify the jump
existing, for example, between {x(2i + l − 2), x(2i + l)} due to the down sampling.
However, as shown in the diagram in Figure 4, for each identified jump, there are two
possible locations, i.e., between {x(2i+ l− 2), x(2i+ l− 1)} or between {x(2i+ l− 1),
x(2i + l)}, in the finer level coefficients. Therefore, in order to achieve the perfect
reconstruction, the exact locations of discontinuities have to be recorded. In our
implementation, we just use one extra bit for each stencil near the discontinuities to
indicate it contains a discontinuity. In the application of compression, which aims to
reduce the total storage of representing an image, these extra bits need to be taken
into account carefully. However, this is beyond the scope of this paper, and we will
not discuss it here.

3.3. Forward and inverse transform algorithms. In this subsection, we
explicitly present the complete one level forward and inverse ENO-wavelet transform
algorithms for the noise-free piecewise smooth data.
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We consider the forward transform algorithms first. We denote by {c0, . . ., cl}
and {h0, . . ., hl} the standard wavelet filter coefficients, and by {r0, . . ., rl} and
{d0, . . ., dl} the corresponding inverse filter coefficients. In this paper, since we
consider Daubechies orthonormal wavelets, these inverse filter coefficients are defined
as rs = (−1)s+1hs, and ds = (−1)scs, for s = 0, 1, . . . , l. We use a one-bit variable si
to indicate whether a stencil contains a jump in our algorithms.

Forward Transform Algorithm.
For each i,
(i) compute βj,i by (13).
(ii) If |βj,i| ≥ a|βj,i−1| and |βj,i| ≥ ε, then

• compute βj,i+k−1 and βj,i+k by (13).
• Find the exact subinterval of the jump by Proposition 1. For i ≤ m ≤
i+ k or i ≤ m ≤ i+ k − 1,
– for the left side of the jump, compute α̂j,m by extrapolation, com-

pute β̂j,m by (20), and then set

βj,m = β̂j,m, si = 1;

– for the right side of the jump, set β̄j,m = 0 and compute ᾱj,m by
(21), and set

αj,m = ᾱj,m.

(iii) Otherwise, compute αj,i by (12). Set si = 0.
In the algorithm, ε is a predefined small positive number which is used to prevent

the numerical instability caused by small βj,i. More precisely, if both βj,i and βj,i−1

are less than the given tolerance ε, we treat the current standard stencil as a smooth
stencil.

In step (ii), it is possible to use any extrapolation techniques to handle the dis-
continuities.

Here, we just described the algorithm for one level ENO-wavelet transform with
input data sequence αj+1,i, and output data αj,i and βj,i. The coefficient sequences
αj,i and βj,i have the same size, and their combined size is the same as the input
data size at level j+1. The multiresolution transform algorithms can be constructed
straightforwardly by recursively applying the one level transform to the low frequency
coefficients αj,i. This is accomplished in the same way as that of the standard mul-
tiresolution algorithms. We do not explicitly include them in this paper. Similarly,
we present the one level inverse transforms next.

Inverse Transform Algorithm.
For each i,
(i) if si = 0 and sj = 0, j = i − k, . . . , i − 1, then the standard inverse wavelet
transforms are applied:

αj+1,2i =

l∑
s=0

(r2s+1αj,i−s + d2s+1βj,i−s)(24)

and

αj+1,2i+1 =

l∑
s=0

(r2sαj,i−s + d2sβj,i−s).(25)
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(ii) If sj = 1, i− k ≤ j ≤ i or i− k + 1 ≤ j ≤ i,
• use Proposition 1 to locate the position of the jump by counting the
number of consecutive si = 1;
• extrapolate α̂j,i from the left side of the jump;
• set β̄j,i as zero for the right side of the jump;
• use α̂j,k and βj,k to restore the left side by (24) and (25);
• use αj,k and β̄j,k to restore the right side of the jump by (24) and (25).

Two simple examples. We give two simple examples in the ENO-Haar and
ENO-DB4 cases to illustrate the algorithms. First, we consider computing the trans-
form coefficients of the following initial data:(

1 1 1 2 2 2
)
.

The standard Haar produces the low and high frequency coefficients

α =
(

2√
2

3√
2

4√
2

)
, β =

(
0 − 1√

2
0
)
.

The corresponding linear approximation is(
1 1 3

2
3
2 2 2

)
,

which cannot recover the discontinuity correctly.
Using the ENO-Haar wavelet, we break the initial data sequence into two smooth

pieces as shown in the following two rows:(
y 2 2 2

1 1 1 x

)
,

where x and y are some smooth extensions of the corresponding pieces. In fact, we
extend x in a way such that the low frequency coefficient α̂2 (boxed in (26)) based on
the stencil (1, x) is the same as the previous α1, which is based on the stencil (1, 1)
giving x = 1. Similarly, we extend y in a way such that the high frequency coefficient
β̄2 (boxed in (26)) is zero giving y = 2. Therefore we compute the high frequency

coefficients β̂2 based on stencil (1, x) and the low frequency coefficients ᾱ2 based on

stencil (y, 2) by using the corresponding standard filters giving β̂2 = 0 and ᾱ2 =
4√
2
.

Thus we have the coefficients

α =


 4√

2
4√
2

2√
2

2√
2


 , β =

(
0 0

0 0

)
.(26)

Since we know how we extended α̂2 and β̄2, we do not need to store them. In fact,
we just need to store the low and high frequency coefficients as

α =
(

2√
2

4√
2

4√
2

)
, β =

(
0 0 0

)
,

which have the same storage schemes as the standard Haar wavelet transform.
When we reconstruct the linear approximation, we can first recover α̂2 and β̄2 the

same way as in the forward transform and then apply the standard inverse filters to the
smooth data to build the approximation. In fact, in this case the linear approximation
is exactly the initial data.
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In the next example, we show a similar example in which the ENO-DB4 linear
approximation is not exactly the same as the initial data, but it still preserves the
jump well. The initial data is given as

a =
(
0 1 2 3 4.1 5 20 21 22 23

)
.

To better demonstrate the coarse level extrapolation idea, we ignore the boundary
extension at two ends of the array. We leave out the coefficients based on the
boundary extension at the two ends and display only the coefficients correspond-
ing to the middle part of the array. The DB4 filters are given by the low pass fil-
ter (0.4830 0.8365 0.2241 −0.1294) and the high pass filter (−0.1294 −0.2241
0.8365 −0.4830). The standard DB4 low and high frequency coefficients (α2 to α5

and β2 to β5) are

α =
(
0.8966 3.7474 7.9280 29.1808

)
and

β =
( −0.0000 0.0837 4.9368 −0.0000 ) .

Notice that in this case we have a large high frequency coefficient β3 which corresponds
to the discontinuity between a6 = 5 and a7 = 20 in the array. If we discard the high
frequency part, the corresponding linear approximation for the central part of the
array around the jump (from a3 = 2 to a8 = 21) is(

2.0108 3.0187 4.6689 6.1470 15.8703 23.3843
)
,

and the discontinuity cannot be preserved.
Using the ENO-DB4 wavelet, we break the initial data sequence into two smooth

pieces as shown in the following two rows:(
u v 20 21 22 23

0 1 2 3 4.1 5 x y

)
,

where (x, y) and (u, v) are some smooth extensions of the corresponding pieces. In
fact, we extend (x, y) in such a way that the low frequency coefficient α̂3 = 6.5983
(boxed in (27)) based on the stencil (4.1, 5, x, y) is the linear extension of the previous
α1 and α2. Similarly, we extend (u, v) in such a way that the high frequency coefficient

β̄3 (boxed in (28)) is zero. Therefore we compute the high frequency coefficients β̂3

based on stencil (4.1, 5, x, y) by (20) giving β̂3 = −0.0259 and the low frequency
coefficients ᾱ3 based on stencil (u, v, 20, 21) by the analogy of (20) at the right side
of a jump giving ᾱ3 = 26.3524. Thus we have the coefficients

α =

(
26.3524 29.1808

0.8966 3.7474 6.5983

)
(27)

and

β =

(
0 0

0 0.0837 −0.0259
)
.(28)

Since we know how we extended α̂3 and β̄3, we do not need to store them. In fact,
we just need to store the low and high frequency coefficients as

α =
(
0.8966 3.7474 26.3524 29.1808

)
, β =

(
0 0.0837 −0.0259 0

)
,

which have the same storage schemes as the standard DB4 wavelet transform.
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The recovered linear approximation for a3 to a8 is(
2.0108 3.0187 4.0267 5.0346 20.0000 21.0000

)
.

In this case, although the linear approximation is not the same as the initial data, it
forms a much more accurate approximation than that of the standard DB4 transform.
More importantly, this approximation preserves the discontinuity sharply in contrast
to the standard DB4 wavelet which smears the discontinuity.

Remarks.
(i) The ENO-wavelet transforms are just simple modifications of the standard
wavelet transforms near discontinuities. The computational complexity of the
algorithms remains O(n), and they are relatively easy to implement.

(ii) In the transform algorithms and the corresponding inverse algorithms, the
extended low frequency coefficients α̂j,m and the high frequency coefficients
β̄j,m can be computed by other extrapolation schemes such as least square
extrapolation. This may be more robust, especially for noisy data.

(iii) The adaptive ENO-wavelet idea can also be used for other kind of wavelets.
They do not necessarily have to be orthogonal wavelets. For instance, one
can apply it to the biorthonormal wavelets.

(iv) Like other wavelet transforms, 2-D or even higher-dimensional transforms can
be formed by tensor products. In the numerical example section, we will give
a 2-D example.

(v) The adaptive ENO-wavelet idea can be recursively used even if the projections
do not satisfy the DSP. In such a case, of course we will not get the nice error
bound (see section 4), but the approximation errors are comparable to that
of the standard wavelet transforms. Also, it is easy to modify the algorithms
such that the standard wavelet transforms are applied at the place where the
DSP is invalid.

4. Approximation error. In this section, we consider the ENO-wavelet ap-
proximation error for piecewise continuous functions.

Given a function f(x) in L2, in standard wavelet theory [27], [14], [30], it can
be linearly approximated by its projection fj(x) in Vj as in (7) and (8). This linear
approximation has a standard error estimate which we state in the following theorem;
see also [30].

Theorem 1. Suppose the wavelet ψ(x) generated by scaling function φ(x) has
p vanishing moments and fj(x) is the approximation of f(x), which has bounded pth
order derivative, in Vj with basis φj,k(x); then,

‖f(x)− fj(x)‖ ≤ C(∆x)p‖f (p)(x)‖,(29)

where ∆x = 2−j and C is a constant which is independent of j.
This theorem holds for the L2 norm in general. Moreover, if the scaling function

and its wavelet have finite support, then it also holds for the L∞ norm.
In this theorem, we can see that the approximation error is controlled by two

factors. One is the pth power of the spatial step ∆x; the other is the norm of the
pth derivative of the function. This error bound does not hold if the function does
not have the finite pth derivative. This implies that the approximation could be poor
for irregular functions even if the spatial step ∆x is small. For piecewise continuous
functions, especially functions with large jumps, the approximation error cannot be
controlled as smooth functions. In fact, in the standard approximation function fj(x),
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oscillations are generated near the discontinuous points, and they will not disappear
even if the spatial step size is reduced (the Gibbs phenomenon).

In contrast, in our ENO-wavelet transforms, since no approximation coefficients
are computed using information from both sides of the discontinuities, we can obtain
a similar error estimate without taking derivatives across the jumps. In the next
theorem, we state the estimation and prove it in the rest of this section.

Theorem 2. Suppose the scaling function φ(x) and its ψ(x) have finite support
in [0, l], ψ(x) has p vanishing moments, f(x) is a piecewise continuous function in
[a, b] with bounded pth derivatives in each piece of smooth regions, and fj(x) is its
jth level ENO-wavelet projection obtained by using any one of the three extrapolation
methods given in section 2.4 with the choice of a satisfying (23). If the projection
fj+1(x) satisfies the DSP, then

‖f(x)− fj(x)‖ ≤ C(∆x)p‖f (p)(x)‖(a,b)\D,(30)

where ∆x = 2−j and D is the set where f(x) has jumps in the function value or up
to the pth derivatives. The norm ‖ · ‖ can be either the L2 or the L∞ norm.

Proof. We prove the inequality (30) under the L∞ norm, and the L2 result can
be obtained in a similar way.

According to section 3.2, with the choice of a, all jumps in set D will be detected
by the algorithms described for the piecewise smooth data unless the intensity of the
jump is less than O(∆x(p−m)), where the jump is in the mth derivative. In the latter
case, the error caused by missing the jump is of the order of O(∆xp), which can be
absorbed by the right-hand side of (30).

The DSP allows us to separate the discontinuities and individually consider a
small neighborhood around each jump. Therefore, to simplify the discussion without
loss of generality, we consider a piecewise function f(x) with one jump at the origin.
In other words,

f(x) =

{
f1(x), a ≤ x < 0,
f2(x), 0 ≤ x ≤ b,

where f1(x) ∈ Cp[a, 0] and f2(x) ∈ Cp[0, b]. Because both φj,i(x) and ψj,i(x) have sup-
port [i, (l+i)∆x], the small neighborhood affected by the ENO decision is [−l∆x, l∆x].
In fact, the ENO-wavelet coefficients depend only on one-sided information and there-
fore, by symmetry, we just need to prove (30) in [−l∆x, 0].

Before we prove that (30) holds for the three types of extrapolation methods,
namely direct function extrapolation and the two choices of coarse level extension
((1) and (2) in section 3.1), we give some notations which we will frequently use in
the proof.

Denote by g1(x) the (p − 1)th order polynomial which is the first p term of the
Taylor expansion of f1(x) at the origin, i.e.,

f1(x) = g1(x) +
f

(p)
1 (ξ)

p!
xp,(31)

where ξ is in interval [−l∆x, 0]. Also denote by αj,m and βj,m the ENO-wavelet low
and high frequency coefficients, respectively, and ᾱj,m the low frequency coefficients
of the polynomial g1(x), i.e.,

ᾱj,m =

∫
g1(x)φj,m(x)dx
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and

g1,j(x) =
∑
m

ᾱj,mφj,m(x).

As we mentioned in section 3.1, different techniques can be used for extrapo-
lation. Here we select the extrapolation by Taylor expansion as our starting point
throughout the proof because of its simplicity. For other types of extrapolation tech-
niques, the proof can be directly generalized by taking into account the difference
between that type of extrapolation and the Taylor expansion extrapolation. For in-
stance, the classical approximation result shows us that the difference between the
Lagrange extrapolation that we use in the numerical experiments in this paper and
Taylor expansion extrapolation is of the order of O(∆xp), which will be absorbed into
the right-hand side of the estimate (30).

Now we are ready to prove that (30) holds for the three types of extrapolation
methods. We first prove (30) for direct function extrapolation.

Direct function extrapolation. The direct function extrapolation extends
f1(x) to interval [0, l∆x] by defining

fd(x) =

{
f1(x), −l∆x ≤ x < 0,
g1(x), 0 ≤ x ≤ l∆x.

The corresponding ENO-wavelet low frequency coefficients αj,m are computed by

αj,m =

∫
fd(x)φj,m(x)dx,(32)

and the approximation function is defined as

fd,j(x) =
∑
m

αj,mφj,m(x), x ∈ [−l∆x, 0].(33)

For any point x0 ∈ [−l∆x, 0], by using (31) and the fact that since g1(x) is a
(p− 1)th order polynomial, g1,j(x) = g1(x), we have

|f1(x0)− fd,j(x0)| ≤ |f1(x0)− g1(x0)|+ |g1,j(x0)− fd,j(x0)|
≤ C(∆x)p‖f (p)

1 ‖+ |g1,j(x0)− fd,j(x0)|.(34)

Let q be an integer in [−l, 0] such that x0 ∈ [q∆x, (q + 1)∆x); then the last term of
(34) can be bounded by

|g1,j(x0)− fd,j(x0)| =
∣∣∣∣∣
∑
m

(ᾱj,m − αj,m)φj,m(x0)

∣∣∣∣∣
≤

∑
q−l≤m≤q

|ᾱj,m − αj,m||φj,m(x0)|

=
∑

q−l≤m≤q
|ᾱj,m − αj,m||(∆x)− 1

2φ(2jx0 −m)|.(35)

To prove (30), we now need to estimate |ᾱj,m − αj,m|. Since when m ≤ −l the
coefficients are computed in the standard manner, i.e., ᾱj,m = αj,m, we just need to
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consider all m with −l + 1 ≤ m ≤ 0. In fact, we have

|ᾱj,m − αj,m| =
∣∣∣∣
∫
(fd(x)− g1(x))φj,m(x)dx

∣∣∣∣
≤
∣∣∣∣
∫ 0

m∆x

(fd(x)− g1(x))φj,m(x)dx
∣∣∣∣

+

∣∣∣∣∣
∫ (m+l)∆x

0

(fd(x)− g1(x))φj,m(x)dx
∣∣∣∣∣ .

Because fd(x) is the same as g1(x) in [0, (m+ l)∆x], using (31), we have

|ᾱj,m − αj,m| =
∣∣∣∣
∫ 0

m∆x

(f1(x)− g1(x))φj,m(x)dx
∣∣∣∣

≤
(∫ 0

m∆x

|f1(x)− g1(x)|2dx
) 1

2
(∫ 0

m∆x

|φj,m(x)|2dx
) 1

2

≤ C(∆x)p‖f (p)‖(∆x) 1
2

≤ C(∆x)p+ 1
2 ‖f (p)‖.

Therefore, combining this with (35), we have

|g1,j(x0)− fd,j(x0)| ≤ C(∆x)p‖f (p)‖.
This and (34) complete the proof of (30) for the case of direct function extrapolation.

Coarse level extrapolation. As described in section 3.1, there are two ways
of extrapolating coefficients on the coarse level. One way is to set the extended high
frequencies to zero. The other way is to extrapolate the low frequency coefficients by
a (p− 1)th order polynomial in wavelet space. In the following part of the proof, we
consider them separately.

We consider the high frequency zero extension first.
Similar to the direct function extrapolation, we also extend f1(x) to the interval

[0, l∆x] and denote it by

fh(x) =

{
f1(x), x ∈ [−l∆x, 0],
gh(x), x ∈ (0, l∆x],

where gh(x) is implicitly defined such that it makes fh(x) satisfy∫
fh(x)ψj,m(x)dx = 0, −l + 1 ≤ m ≤ 0,(36)

and ∫
fh(x)φj,m(x)dx = αj,m, −l + 1 ≤ m ≤ 0.(37)

The difference between fd(x) and fh(x) is that in the direct function extrapolation
fd(x) we know that g1(x) is the (p− 1)th order polynomial, but in this case gh(x) is
unknown.

Formally following the proof of (30) for the direct function extrapolation, (34) and
(35) also hold for this case. Therefore, we need only to estimate |ᾱj,m−αj,m|,−l+1 ≤
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m ≤ 0. We consider m = −l + 1 first. Unlike in the direct function extrapolation,
where |ᾱj,−l+1 − αj,−l+1| can be computed directly by the Taylor expansion, here we
cannot bound |ᾱj,−l+1−αj,−l+1| in the same way. Instead, we use the following trick
to obtain the estimate we need.

From the dilation equation (1) and the wavelet equation (2), we have the following
relationships:

φj,m(x) =

l∑
s=0

csφj+1,s+2m(x)(38)

and

ψj,m(x) =

l∑
s=0

hsφj+1,s+2m(x).(39)

Using (38), ᾱj,−l+1 and αj,−l+1 can be computed by

αj,−l+1 =

∫
fh(x)φj,−l+1(x)dx =

l∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

fh(x)φj+1,s−2l+2(x)dx

and

ᾱj,−l+1 =

∫
g1(x)φj,−l+1(x)dx =

l∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

g1(x)φj+1,s−2l+2(x)dx.

Therefore, we have

|ᾱj,−l+1 − αj,−l+1| ≤
∣∣∣∣∣
l−2∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

(g1(x)− fh(x))φj+1,s−2l+2(x)dx

∣∣∣∣∣
+

∣∣∣∣∣cl−1

∫ ∆x
2

∆x
2 (−l+1)

(g1(x)− fh(x))φj+1,1−l(x)dx

+ cl

∫ ∆x

∆x
2 (−l+2)

(g1(x)− fh(x))φj+1,2−l(x)dx

∣∣∣∣∣ .(40)

We know that only the last two terms involve the value of fh(x) in [0,∆x]. The other
terms use fh(x) in [−l∆x, 0], which is f1(x). Then, by Taylor expansion and Schwartz
inequality,∣∣∣∣∣

l−2∑
s=0

cs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

(g1(x)− fh(x))φj+1,s−2l+2(x)dx

∣∣∣∣∣ ≤ C(∆x)p‖f (p)
1 ‖2

−(j+1)
2 .(41)

Thus, to bound |ᾱj,−l+1 − αj,−l+1|, the only remaining task is to estimate the last
two terms in (40).

Considering that g1(x) is a (p− 1)th order polynomial, we obtain∫
fh(x)ψj,−l+1(x)dx = 0 =

∫
g1(x)ψj,−l+1(x)dx.
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Substituting the wavelet equation (39) into the above equation, we have

l∑
s=0

hs

∫
(fh(x)− g1(x))φj+1,s−2l+2(x)dx = 0.

We can rewrite this equation in the following form:

hl−1

∫ ∆x
2

∆x
2 (−l+1)

(fh(x)− g1(x))φj+1,1−l(x)dx

+ hl

∫ ∆x

∆x
2 (−l+2)

(fh(x)− g1(x))φj+1,2−l(x)dx

= −
l−2∑
s=0

hs

∫ ∆x
2 (s−l+2)

∆x
2 (s−2l+2)

(fh(x)− g1(x))φj+1,s−2l+2(x)dx.

Notice that we have hl−1

cl−1
= hl

cl
. We find that the left-hand side contains the term

we need to estimate, whereas the right-hand side uses only fh(x) at the left side of
the origin and thus can be controlled again by Taylor expansion. This means that we
have∣∣∣∣∣cl−1

∫ ∆x
2

∆x
2 (−l+1)

(fh(x)− g1(x))φj+1,1−l(x)dx

+ cl

∫ ∆x

∆x
2 (−l+2)

(fh(x)− g1(x))φj+1,2−l(x)dx

∣∣∣∣∣
≤
∣∣∣∣ clhl
∣∣∣∣
l−2∑
s=0

|hs|
∫ ∆x

2 (s−l+2)

∆x
2 (s−2l+2)

|f1(x)− g1(x)||φj+1,s−2l+2(x)|dx

≤ C(∆x)p‖f (p)
1 ‖2

−(j+1)
2 .(42)

Combining (40), (41), and (42), we have

|ᾱj,−l+1 − αj,−l+1| ≤ C(∆x)p‖f (p)
1 ‖2−

(j+1)
2 .

Similarly, we can prove that, for all m,−l + 1 < m ≤ 0,

|ᾱj,m − αj,m| ≤ C(∆x)p‖f (p)
1 ‖2−

(j+1)
2 .

Substituting them into (35), we prove that (30) holds for the high frequency extension
case.

The last case we need to consider is the coarse level extrapolation of low fre-
quency coefficients. To prove (30), we use the result obtained for the direct function
extrapolation.

We denote by αdj,m the low frequency coefficients for fd(x). The jth level low
frequency extrapolation approximation fl,j(x) is defined as

fl,j(x) =
∑
m

αj,mφj,m(x).

For any point x0 ∈ [q∆x, (q + 1)∆x) ⊂ [−l∆x, 0], we have
|f1(x0)− fl,j(x0)| ≤ |f1(x0)− fd,j(x0)|+ |fd,j(x0)− fl,j(x0)|.(43)
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Using (30) for the direct function extrapolation case, we know that

|f1(x0)− fd,j(x0)| ≤ C(∆x)p‖f (p)
1 ‖.(44)

And the remaining term can be bounded by

|fd,j(x0)− fl,j(x0)| ≤
∑

q−l≤m≤q
|αdj,m − αj,m||2

j
2φ(2jx0 −m)|.(45)

Again, we need to estimate |αdj,m − αj,m|.
Unlike the previous two cases where the low frequency coefficients αj,m are com-

puted by integration (32) or (37), in this case αj,m are determined by the low frequency
extrapolation on the coarse level in wavelet space. So, to estimate |αdj,m − αj,m|, we
need to consider them in wavelet space. We introduce the following operator notations
first.

Define the continuous wavelet transform (WT ) of any function f(x) in space Vj
by

WT (f)(s) =

∫
f(x)φj,s(x)dx = 2

j
2

∫
f(x)φ(2jx− s)dx.

Also define the following Taylor extrapolation operator (EX) of f(x):

EX(f)(x) =

{
f(x), x ≤ 0,
g(x), x > 0,

where g(x) is the (p − 1)th order Taylor polynomial of f(x). Using these notations,
we can represent the low frequency wavelet coefficients

αj,m = EXw(WT (f1))(m), for − l + 1 ≤ m ≤ 0,
and

αdj,m =WT (EXf (f1))(m), for − l + 1 ≤ m ≤ 0,
where EXw and EXf represent the extrapolation operator EX in the wavelet and
physical space, respectively.

Instead of estimating |αdj,m − αj,m| directly, we prove the following more general
result.

Lemma 1. Given a smooth function g(x), let gwe(s) = WT (EXf (g))(s) and
gew(s) = EXw(WT (g))(s); then

|gwe(s)− gew(s)| ≤ C(∆x)p‖g(p)‖2−
j
2 .

Using this lemma, we obtain the desired bounds for |αdj,m−αj,m| easily by taking
s = m. Combining them with (44) and (45), we prove that (30) holds for the low
frequency coefficient extrapolation case.

Proof. Denote ḡ(x) = EXf (g)(x), and then

gwe(s) = 2
j
2

∫
ḡ(x)φ(2jx− s)dx

= 2−
j
2

∫
ḡ(2−j(y − s))φ(y)dy.
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By changing variable z = 2−js, and denoting

ej(z) =

∫
ḡ(2−jy − z)φ(y)dy,

we have

gwe(s) = 2
− j

2 ej(2
−js).

We also know that ej(z) is a smooth function and, by differentiating p times, we have

‖e(p)j ‖ =
∥∥∥∥
∫
(−1)pḡ(p)(2−jy − z)φ(y)dy

∥∥∥∥ ≤ C‖g(p)‖
∥∥∥∥
∫
φ(y)dy

∥∥∥∥ ≤ C‖g(p)‖.(46)

Taking the (p− 1)th order Taylor expansion of ej(z) at z = −l∆x, we have

ej(z) = êj(z) + e
(p)
j (ξ)

(z + l∆x)p

p!
,

where êj(z) is the (p−1)th order Taylor polynomial and ξ ∈ [2l, 0]. Since gew(s) is the
same as gwe(s) if s ≤ −l, it is defined as the Taylor polynomial for s > −l according
to the definition of EX; i.e., we have

gew(s) =

{
2−

j
2 ej(2

−js), s ≤ −l,
2−

j
2 êj(2

−js), s > −l.
Therefore,

|gwe(s)− gew(s)| ≤ 2−
j
2 |ej(2−js)− êj(2−js)|

≤ C(∆x)p‖g(p)‖2− j
2 .

This completes the proof of Lemma 1 and also completes the proof of Theorem 2.

5. Numerical examples. In this section, we give some one-dimensional (1-D)
and 2-D numerical examples by using the ENO-wavelet transforms. In particular, we
show results of the ENO-Haar, ENO-DB4, and ENO-DB6 wavelet transforms.

In all examples, for simplicity, we just consider functions with zero values at the
boundary. For nonzero boundary functions, we can easily extend the function by zero
and treat the boundaries as discontinuities.

To illustrate the performance of ENO-wavelet transforms, we show picture com-
parisons of the standard wavelet approximations and corresponding ENO-wavelet ap-
proximations. In addition, we compare the L∞ and L2 errors of the standard wavelet
approximations and the ENO-wavelet approximations at different levels by measuring
E∞,j = infx ‖f(x) − fj(x)‖, which is computed by finding the largest difference on
the finest grid, and E2,j = ‖f(x) − fj(x)‖2. Using them, we compute the orders of
accuracy defined by

Order∞ = log2
E∞,i

E∞,i−1

and

Order2 = log2
E2,i

E2,i−1
,
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Table 1
Comparison of the maximum error of the standard Haar and the ENO-Haar wavelet approxi-

mation for the smooth function sin(x). We see that they have the same approximation error for the
smooth functions.

Level Haar E∞ ENO-Haar E∞ Order∞
4 0.0919 0.0919
3 0.0430 0.0430 1.070
2 0.0184 0.0184 1.202
1 0.0061 0.0061 1.585

Table 2
Comparison of the maximum error of the standard DB4 and the ENO-DB4 approximations

for the smooth function f(x) = exp [−( 1
x

+ 1
1−x

)], 0 < x < 1. They have the same error and both

achieve second order accuracy which agrees with the results in Theorem 1 for the smooth functions.

Level DB4 E∞ ENO-DB4 E∞ Order∞
4 3.316e-5 3.316e-5
3 7.650e-6 7.650e-6 2.104
2 1.590e-6 1.590e-6 2.232
1 2.972e-7 2.973e-7 2.406

which indicates the order of accuracy of the approximation in the L∞ norm and L2

norm, respectively.
For all noise-free examples, we use the method described in section 3.2 to locate

the exact positions of the discontinuities. And we select a = 2 and ε = 0.0001 (as
used in the algorithms in section 3.3) for all 1-D examples.

First, we compare the approximations for smooth functions. Table 1 is the com-
parison of Haar and ENO-Haar approximations for the smooth function f(x) =
sin(x), 0 ≤ x ≤ 2π at different levels, and Table 2 is the comparison of DB4 and
ENO-DB4 approximations for the function f(x) = exp [−( 1x + 1

1−x )], 0 < x < 1.
We see from these tables that for smooth functions the ENO-wavelet transforms

have exactly the same approximation error as the standard wavelet transforms. Both
of them maintain the approximation order 1 and 2 for Haar and DB4, respectively,
which agree with the results in Theorem 1. In fact, we notice that in this situation
no singularity is detected, and the ENO-wavelet algorithms perform the standard
transforms for completely smooth functions as we expected.

Next, we consider a piecewise smooth function defined by

f(x) =




0, 0 ≤ x < 0.2,
−50x− 5, 0.2 ≤ x < 0.4,
10 sin(4πx+ 0.8π)− 1, 0.4 ≤ x < 1.1,
5e2x − 100, 1.1 ≤ x < 1.6,
0, 1.6 ≤ x ≤ 2.

We apply Haar and ENO-Haar, DB4 and ENO-DB4, and DB6 and ENO-DB6 trans-
forms to this function and compare the approximation error. Figure 5 shows the
comparison of the order of accuracy in the L∞ and L2 norm. It is clear that both
L∞ and L2 order of accuracy for ENO-wavelet transforms are of the order 1, 2, and
3 for ENO-Haar, ENO-DB4, and ENO-DB6, respectively, and they agree with the
results in Theorem 2. In contrast, standard wavelet transforms do not retain the
corresponding order of accuracy for piecewise smooth functions.
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Fig. 5. The approximation accuracy comparison of ENO-wavelet and wavelet transforms. Both
L∞ (left) and L2 (right) order of accuracy show that ENO-wavelet transforms maintain the order
1, 2, and 3 for ENO-Haar, ENO-DB4, and ENO-DB6, respectively, and they agree with the results
of Theorem 2. In contrast, standard wavelet transforms do not retain the order of accuracy for
piecewise smooth functions.
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Fig. 6. The 4-level ENO-Haar and Haar approximation. The left picture shows the origi-
nal function (dotted line), the standard Haar approximation (dash-dotted line) and the ENO-Haar
approximation (solid line). The right picture is a zoom-in near a discontinuity. We see the Gibbs
phenomenon (staircase) in the standard Haar approximation but not in the ENO-Haar approxima-
tion.

To see the Gibbs oscillations, we display the 4-level ENO-wavelet and standard
wavelet approximations in Figures 6, 7, and 8 for ENO-Haar, ENO-DB4, and ENO-
DB6 approximations, respectively. In the left column, we show the original func-
tion (dotted line), the standard wavelet linear approximations (dash-dotted), and the
ENO-wavelet approximations (solid line). The right pictures are zoom-ins of the left
pictures near a discontinuity. We clearly see the Gibbs oscillations in the standard
approximations; in contrast, the ENO-wavelet approximations preserve the jump ac-
curately.

In Figures 9, 10, and 11, we also present the standard Haar, DB4, and DB6 wavelet
coefficients (dotted line) and the ENO-Haar, ENO-DB4, and ENO-DB6 wavelet co-
efficients (solid line), respectively. The left part corresponds to the low frequency
coefficients and the right part to the high frequency coefficients. We notice that
there are some large standard high frequency coefficients near the discontinuities. On
the other hand, no large high frequency coefficients are present in the ENO-wavelet
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Fig. 7. The 4-level ENO-DB4 and the standard DB4 approximations. The original discontin-
uous function (dotted line), the standard DB4 approximation (dash-dotted line), and the ENO-DB4
approximation (solid line) are displayed. The Gibbs phenomenon is clearly seen for the standard
DB4 approximation but not for the ENO-DB4 approximation.
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Fig. 8. The 4-level ENO-DB6 (solid line) and the standard DB6 (dash-dotted line) approxima-
tion. The standard DB6 generates oscillations near discontinuities, but the ENO-DB6 does not.
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Fig. 9. The 4-level ENO-Haar (solid line) and the standard Haar coefficients (dotted line).
The left part corresponds to the low frequencies, the right part to the high frequencies. In the
standard Haar coefficients, large high frequency coefficients present near discontinuities, while in
the ENO-Haar case there are no large high frequency coefficients.



1398 T. F. CHAN AND H. M. ZHOU

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
–250

–200

–150

–100

–50

0

50

100
DB 4 wavelet coefficients,n=8192,level = 4

Fig. 10. The 4-level ENO-DB4 coefficients (solid line) and the standard DB4 coefficients (dotted
line). There are large high frequency coefficients (right part) near the discontinuities in the standard
DB4 transform but not in the ENO-DB4 transform.
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Fig. 11. The 4-level ENO-DB6 coefficients (solid line) and the standard DB6 coefficients
(dotted line). There are large high frequency coefficients near the discontinuities in the standard
DB6 transform but not in the ENO-DB6 transform.

coefficients. This illustrates that the ENO-wavelet coefficients have better distribu-
tion than standard wavelet coefficients; i.e., they have no large coefficients in the high
frequencies, and the energy is concentrated in the low frequency end.

The next 1-D example we present here (Figure 12) is a comparison of the standard
DB6 and the ENO-DB6 transforms to illustrate the performance at places where the
DSP is not valid and also at jumps in the derivative. The original data (circles)
has two discontinuities (the middle bump) which violate the DSP assumption, which
requires that there are at least eight data points between any pair of discontinuities.
Although the ENO-DB6 approximation (solid line) does not preserve this pair of
discontinuities exactly, its approximation error is still comparable (actually better in
this case) to that of the standard DB6 approximation (dotted line). At the left bump
where the DSP holds, the ENO-DB6 does preserve the discontinuities exactly as we
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Fig. 12. The level-1 approximation comparison of the ENO-DB6 and the standard DB6 wavelets
at places where the DSP is invalid (the middle bump). The initial data (circles) has two close
discontinuities. The ENO-DB6 approximation (solid line) error is comparable to that of the standard
DB6 approximation (dotted line). The left bump satisfies the DSP and therefore the ENO-DB6
exactly recovers it. The right kink is a discontinuity in the first derivative, and the standard DB6
still generates oscillations although their magnitudes are not significant. The ENO-DB6 restores it
perfectly, We display a zoom-in picture of this kink in Figure 13.

45 46 47 48 49 50 51 52 53
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 13. The zoom-in of Figure 12 at the kink where there is a discontinuity in its derivative.
The ENO-DB6 (solid line) can recover it perfectly, but the standard DB6 (dash-dotted line) generates
oscillations.

expected. In the same example, we also display the comparison of the ENO-DB6 and
the standard DB6 approximations at the right kink, which is not a discontinuity in
function values but in its first order derivative. The standard DB6 approximation
has oscillations, although their magnitudes are small, but the ENO-DB6 restores it
exactly (see Figure 13).

The last 1-D example is applying the ENO-DB6 wavelet transform to a piecewise
constant function polluted by Gaussian random noise (see Figure 14). For this exam-
ple, the jump detection method corresponding to Lemma 1 does not work. Instead,
we use the simple method given in section 3.2, which detects jumps by looking for
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Fig. 14. Left: The comparison of the 3-level ENO-DB6 approximation (solid line) with the
standard DB6 approximation (dash-dotted line) for noisy initial data (circles). The ENO-DB6
approximation retains the sharp jumps, but the standard DB6 approximation does not (right picture).
Right: A zoom-in of the left example at the discontinuities.
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Fig. 15. Original 2-D function.

stencils with significant larger high frequency coefficients than their neighbors and
then locates the exact jump locations by directly comparing the differences between
two adjacent function values within the stencil. Despite the presence of noise in the
initial data (circles), the level-3 ENO-DB6 approximation (solid line) still retains the
sharp edges (see zoom-in in the right picture in Figure 14) compared to the stan-
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Haar, level=3, keep 64x64 coefficients
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Fig. 16. The 3-level standard Haar approximation: The reconstructions are obtained from low
frequency coefficients αJ−3 only, where αJ is the original image. The edges are fuzzier than those
in the next picture.

dard DB6 approximation (dash-dotted line) which not only has oscillations at the
discontinuities but also smears them.

Finally, we give a 2-D testing image example to compare the standard Haar and
the ENO-Haar approximations. Here we use tensor products of 1-D transforms. The
original picture is shown in Figure 15. Figure 16 is the 3-level standard Haar approxi-
mation and Figure 17 is the 3-level ENO-Haar approximation. Both use low frequency
approximations (the reconstructions are obtained from low frequency coefficients αJ−3

only, where αJ is the original image) and store the same number of coefficients (
1
64

of the original data). It is clear that in the standard Haar case the function becomes
fuzzier than in the ENO-Haar case. This illustrates that the ENO-Haar approxima-
tion can reduce the edge oscillations for 2-D functions. In addition, as we mentioned
in the introduction, we designed ENO-wavelet transforms not to replace the standard
nonlinear adaptive wavelet techniques; rather we think it would be beneficial to use
them in conjunction with the standard adaptive nonlinear techniques. For instance,
we can combine ENO-wavelets with hard thresholding techniques as one can do it for
the standard wavelet transforms. We show the standard hard thresholding approxima-
tion image by retaining the largest 64× 64 coefficients in Figure 18, and we note that
sharper edges are recovered comparing to the linear approximations. Similarly, we can
apply the same thresholding techniques to the ENO-wavelet transforms. In Figure 19,
we give the approximate image by using the ENO-Haar hard thresholding technique by
keeping the largest 3506 ENO-Haar coefficients, which is 70% of number of coefficients
retained in the previous image. In this image, edges are almost perfectly recovered.
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ENO−Haar low frequency approximation, level=3, keep 64x64 coefficients
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Fig. 17. The 3-level ENO-Haar approximation: Similar to Figure 16, the reconstruction is
obtained from low frequency coefficients αJ−3 only. Both the edges and the interior of the characters
are clearer than those in the standard Haar linear approximation.

Haar, Hard Thresholding, level=3, keep 64x64 coefficients
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Fig. 18. The 3-level standard Haar hard thresholding approximation: The image is recon-
structed from the largest 64× 64 wavelet coefficients (including αJ−3, βJ−3, βJ−2, βJ−1). The edge
artifacts are less severe than the standard linear approximation. On the other hard, the picture is
comparable to the ENO-Haar low frequency approximation.
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ENO−Haar hard thresholding, level=3, keep 3506 coefficients
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Fig. 19. The 3-level ENO-Haar hard thresholding approximation: Similar to Figure
18, the image is reconstructed from the largest 64 × 64 ENO-wavelet coefficients (including
αJ−3, βJ−3, βJ−2, βJ−1). Less severe edge artifacts are generated compared to the previous im-
ages.
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Abstract. A new method for solving numerically backward parabolic problems is proposed.
As usual for this kind of ill posed problems, it is assumed that an a priori bound for the solution
is available. The algorithm consists of two basic steps. First, a standard forward integration is
performed, in order to approximate the solution at suitable future time levels. Second, a holomorphic
recovery procedure is carried out, providing the required approximations for the preceding times. The
analysis is valid in the maximum-norm setting, and rigorous estimates are derived. Among other
advantages, the method can also be applied to nonlinear problems, and it produces a continuous
output. Some numerical illustrations are presented.
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1. Introduction. The present paper is devoted to introducing and analyzing a
new numerical method for backward parabolic problems. Our main estimate relies on
an assumption (see (2.7) in section 2) that, for standard discretizations of classical
parabolic problems, holds only in the maximum-norm setting. However, in order
to outline the main difficulties associated with the kind of ill-posed problems we
have in mind, let us start by adopting an abstract point of view. Thus, let X be a
complex Banach space and let A : D(A) ⊂ X → X be the infinitesimal generator
of a holomorphic semigroup S(t), t ≥ 0, of linear and bounded operators in X. We
do not assume that A is densely defined so that S(t) might fail to be continuous at
t = 0 (see, e.g., [48]). In particular, this allows us to consider diffusion problems in
the context of X = L∞. It is well known that the forward Cauchy problem{

w′(t) = Aw(t), t ≥ 0,

w(0) = w0 ∈ X,

is well posed, being that its (generalized) solution is given by w(t) = S(t)w0, t ≥ 0.
Moreover, there exists an angle 0 < θ < π/2 such that S admits a holomorphic
extension, of exponential growth, to the sector

Σθ = { z ∈ C : | arg(z)| ≤ θ }.
Without loss of generality, after performing an appropriate shift of A if necessary, we
can assume that there exists Cθ > 0 such that

‖S(z)‖ ≤ Cθ, z ∈ Σθ.(1.1)
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We are interested in the corresponding backward Cauchy problem (BCP){
w′(t) = Aw(t), 0 ≤ t ≤ T,

w(T ) = wT ∈ RT ,
(1.2)

where T > 0 and wT are given. Here RT stands for the image of the operator
S(T ). Problems of this nature arise in different contexts. Beyond their interest in
connection with standard diffusion problems (then A is usually the laplacian operator
∆), they also appear, for instance, in some deconvolution problems, such as deblurring
processes [10, 11, 12]. (Now −A is often a fractional power of −∆.)

Fix uT ∈ RT . Certainly, problem (1.2) with wT = uT has got a unique solution
[18] which hereon is denoted by u : [0,+∞) → X. However, in practice uT is not
available but rather some approximation uT + δ uT ∈ X. This gives rise to two
difficulties: (i) for unbounded A the available final datum uT + δ uT might not belong
to RT , and (ii) the uncertainty due to δ uT might propagate uncontrolled for 0 ≤ t <
T . Therefore, problems of this nature are typically ill posed. These difficulties can be
partly overcome by incorporating some a priori information on the solution. In this
paper we assume that a number M0 > 0 is known in such a way that

‖u(t)‖ ≤M0, 0 ≤ t ≤ T.(1.3)

In the applications, the underlying physical problem usually provides reasonable val-
ues for M0. However, what really matters for our method is an a priori bound

‖u(z)‖ ≤M, z ∈ Σθ.(1.4)

Notice that (1.1) and (1.3) give (1.4) with M = CθM0, though sharper estimates of M
might be available in particular cases. This additional information renders problem
(1.2) well posed, in the sense that the difference between two solutions satisfying (1.4)
depends continuously on their difference at time T . Before stating this precisely, for
the convenience of the reader, we recall the notion of harmonic measure [19, 21, 44]:
Given a bounded, open domain Ω ⊂ C whose boundary Γ consists of two disjoint,
piecewise smooth arcs Γ1 and Γ2, the harmonic measure of Γ1 with respect to Ω is
the solution ω : Ω ∪ Γ→ R of the Dirichlet problem


∆ω = 0 in Ω,

ω = 1 on Γ1,

ω = 0 on Γ2.

Notice that, by virtue of the maximum principle, there holds 0 < ω(z) < 1 for z ∈ Ω.
Now we are in a position to state the following theorem, whose proof, based on

the two-constants theorem [44], is analogous to those of Theorem 6.2.1 in [18] and the
main result in [36]. Recall that Cθ stands for a constant fulfilling (1.1).

Theorem 1.1. Let v1, v2 : [0, T ]→ X be two mappings satisfying the differential
equation in (1.2) and assumption (1.4) for some M > 0. For 0 < θ′ ≤ θ < π/2, set

Ω = { z /∈ T +Σθ : | arg z| < θ′ }
(see Figure 1) and let Γ1 be the part of the boundary of Ω lying in the sector T +Σθ.
Then

‖v2(t)− v1(t)‖ ≤ C
ω(t)
θ (2M)1−ω(t)‖v2(T )− v1(T )‖ω(t), 0 ≤ t ≤ T,(1.5)

where ω is the harmonic measure of Γ1 with respect to Ω.
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ΩΩ

θ′

T

Γ
1

Γ
1

θ

Fig. 1. Domain Ω in Theorem 1.1 for θ′ < θ.

Thus, as we mentioned, problem (1.2) is well posed in a Hölder sense when re-
stricted to solutions satisfying (1.4). Note that the Hölder exponent ω(t) degrades as
t approaches 0+ and that the sharper estimate of M yields the better bound in (1.5).
It is also worth mentioning that the Hölder exponent ω(t), 0 < t < T , depends on
the ratio t/T rather than on t itself. Finally, notice that for a nonpositive self-adjoint
generator A in a Hilbert space we can take the limits θ′ → π/2− and θ → π/2− in
(1.5). Then, since Cπ/2 can be chosen equal to 1, we can take M = M0, and (1.5)
reads

‖v2(t)− v1(t)‖ ≤ (2M0)
1−t/T ‖v2(T )− v1(T )‖t/T , 0 ≤ t ≤ T,

a well-known result that can also be proved directly by using the logarithmic convexity
of ‖v2(t)− v1(t)‖ [18, 42].

A large variety of numerical methods have been proposed for (1.2). Some of them
[13, 17, 30, 47] are based on the idea of quasi reversibility, while others use either some
kind of regularization or filtering processes [1, 15, 16, 20, 46, 52]. Another interesting
approach is presented in [8, 9], where (1.2) is transformed into a second order in time
boundary value problem. In all these references X is assumed to be a Hilbert space
and A a nonpositive self-adjoint operator. In [24] the backward heat equation, with
constant coefficients, is dealt in Lp, 1 < p ≤ +∞, by considering an approach based on
mollification and filtering. However, the numerical aspects are not developed, and this
task does not seem to be straightforward. Pointwise estimates for this equation can
also be found in [28]. More recently, a method relying on stochastic arguments, valid
on Banach spaces, has been suggested in [7]. Nevertheless, the stochastic approach
presents the drawback that the restriction on the step-size is too demanding.

Henceforth we restrict ourselves to classical parabolic problems in the maximum-
norm setting. Thus, A is assumed to be a second order elliptic operator, D(A) in-
corporates the boundary conditions, and X is taken to be the closure of D(A) with
respect to the maximum norm. It is known [49, 50] that A generates a holomorphic
semigroup in X. Consideration of L∞ spaces is also possible [48]. Our goal is to
approximate the solution u of the problem{

u′(t) = Au(t), 0 ≤ t ≤ T,

u(T ) = uT ∈ RT
(1.6)
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from knowledge of a perturbed final datum uT + δ uT ∈ X with ‖δ uT ‖ ≤ δ and under
assumption (1.4), where δ, M > 0 are given. Notice that uT + δ uT is not expected to
belong to RT so that, in general, this datum does not correspond to any solution of
the equation in (1.2). Moreover, even in cases where uT +δ uT ∈ RT , (1.4) is likely no
longer satisfied by the solution v with final datum uT + δ uT . Therefore, even though
Theorem 1.1 provides the kind of estimates we can expect for the errors, in practice
it cannot be applied.

Our algorithm is based on the realistic assumption that (1.6) can be integrated
forward in time, i.e., for t ≥ T , and it consists of two basic steps: (i) a standard
forward integration in order to get fully discrete approximations ûnh (belonging to
discrete spaces Xh) to the values u(tn) of the solution at suitable future nodes tn ≥
T , 1 ≤ n ≤ N , and (ii) the numerical holomorphic recovery of u(t), 0 < t ≤ T ,
based on the previous approximations [33]. Let ε be the total uncertainty in the
first step, i.e., the contributions of ‖δ uT ‖ and the error of the forward integration
procedure. Our main result (see Theorem 3.1 below) essentially states that with a
fairly moderate number of future nodes N = O(| ln ε|), the solution u(t), 0 < t ≤ T , is
approximated within an order O

(
(ε| ln ε|)ω∗(t)

)
, where ω∗ is an appropriate harmonic

measure. Among other advantages, let us point out that the method can also be
applied to nonlinear problems and that it provides a continuous output Uh(t) so that
u(t) can be readily approximated at any required time 0 < t ≤ T .

2. Notation and preliminaries. Recall that we are considering classical para-
bolic problems in the maximum norm, thus A is a second order elliptic operator and X
is a Banach space formed by bounded mappings, endowed with the maximum norm.
As we mentioned in the introduction, our numerical method is based on the realistic
assumption that the forward parabolic problem{

v′(t) = Av(t), t ≥ 0,

v(0) = v0 ∈ X
(2.1)

can be fully discretized efficiently. Though the nature of this discretization is not
essential to our algorithm, for the sake of convenience we adopt the standard approach
of the method of lines. We introduce a well-known abstract setting (see, e.g., [27, 29,
40]) that covers either finite differences or finite elements, for the discretization in
space, combined with a rational method for the discretization in time.

Let Xh, 0 < h ≤ h0, be a family of finite dimensional normed spaces. All the
norms used hereon, including operator norms, are denoted by ‖ · ‖. For 0 < h ≤ h0,
let Ph : X → Xh and Ah : Xh → Xh be linear operators, with Ph bounded. First,
the solution of problem (2.1) is approximated by the solution vh : [0,+∞) → Xh of
the semidiscrete problem {

v′h(t) = Ahvh(t), t ≥ 0,

vh(0) = vh,0 := Phv0 ∈ Xh.
(2.2)

Second, problem (2.2) is integrated in time by a rational method [6, 14, 23, 26, 37, 51]
based on a rational approximation r(z) to ez of order q ≥ 1. This approximation is
assumed to be stable for variable step-sizes. This means the following:

(a) There exists k̄ > 0 (independent of h) such that the spectrum of kAh, 0 <
k ≤ k̄, does not contain any pole of r(z). Thus, for 0 < k ≤ k̄, r(kAh) is a bounded
operator in Xh, 0 < h ≤ h0.
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(b) For t̄ > 0 there exists Cs (independent of h) such that∥∥∥∥∥
L∏
l=1

r(klAh)

∥∥∥∥∥ ≤ Cs,(2.3)

for any finite sequence {kl}Ll=1 of step-sizes with 0 < kl ≤ k̄, 1 ≤ l ≤ L, and with∑L
l=1 kl ≤ t̄.
It is known that the operators Ah arising when using either finite differences or

finite elements are uniformly sectorial in h [3, 5]. Thus, by the abstract results in
[4, 38], it turns out that (2.3) is satisfied in these important situations.

Given time levels 0 = τ0 < τ1 < · · · < τL = t̄, corresponding to step-sizes
kl+1 = τl+1 − τl ≤ k̄, the rational method applied to (2.2) provides the fully discrete
approximations vlh � vh(τl) defined by

vl+1
h = r(kl+1Ah)v

l
h, 0 ≤ l ≤ L− 1, 0 < h ≤ h0.

The error is assumed to be of order ϕ(h) in space, where ϕ : (0, h0] → (0,+∞)
satisfies ϕ(h) → 0 as h → 0+, and of order q in time. To be precise, we assume
that for given t̄ > 0 there exist Cd > 0 and ν > 0 (independent of h) such that for a
smooth enough initial datum v0 ∈ D((−A)ν) the error of the fully discrete scheme is
governed by (see, e.g., [39, 51])

‖Phv(τl)− vlh‖ ≤ Cd (‖v0‖+ ‖(−A)νv0‖) · (ϕ(h) + kq) ,

where k = max1≤l≤L kl.
Let us return to problem (1.6). For the analysis of our method it will be important

to consider the forward problem{
u′(t) = Au(t), t ≥ T,

u(T ) = uT .
(2.4)

Since uT ∈ RT ⊂ D((−A)ν), given future nodes {T + τl}Ll=0, with {τl}Ll=0 as above,
the fully discrete approximations to u(T + τl), denoted by ulh, satisfy

‖Phu(T + τl)− ulh‖ ≤ Cp(ϕ(h) + kq), 1 ≤ l ≤ L, 0 < h ≤ h0,(2.5)

where Cp = Cp(uT ).

For practical calculations, suitable bases {χh,j}J(h)
j=1 of Xh, 0 < h ≤ h0, are

required. Our hypothesis is that these bases are well conditioned in the following
sense: there exist k∗, k∗ > 0, independent of h, such that, for any xh ∈ Xh,

xh =

J(h)∑
j=1

xh,jχh,j ,(2.6)

there holds

k∗ · max
1≤j≤J(h)

|xh,j | ≤ ‖xh‖ ≤ k∗ · max
1≤j≤J(h)

|xh,j |.(2.7)

The coefficients in the expansion (2.6) will be denoted by

xh,j =: 〈xh, χh,j〉, xh ∈ Xh, 1 ≤ j ≤ J(h).
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To end this section we briefly describe the numerical algorithm in [33] for the
recovery of holomorphic mappings.

Fix 0 < r < 1 and set I = [−r, r]. For N ≥ 1, let sn, 1 ≤ n ≤ N , be the
Chebyshev nodes of first kind over I:

sn = −r cos
(
(2n− 1)π

2N

)
, 1 ≤ n ≤ N.(2.8)

Let D ⊂ C be the unit disc and let f̃ : D → C be a holomorphic mapping. Set
w = {wn}Nn=1 := {f̃(sn)}Nn=1 ∈ C

N and assume that we are given perturbed nodal
values w + δ w = {wn + δ wn}Nn=1 ∈ C

N . The goal is to recover f̃ from knowledge of
the approximate values w+δ w (see [33]). We also assume that |δ wn| ≤ ρ, 1 ≤ n ≤ N ,
and that |f̃(s)| ≤ H, s ∈ D, where ρ and H are a priori known.

Let SN be the linear space generated by the Cauchy kernels

Kn(s) =
1

1− sns
, 1 ≤ n ≤ N.

The recovery of f̃ is provided by the least squares method (LSM) [33, 34] as F̃ ∈ SN ,

F̃ (s) =

N∑
n=1

γnKn(s),

by solving the constrained minimization problem


min
G∈SN

N∑
n=1

|G(sn)− (wn + δ wn)|2

subject to

‖G‖22 := sup
0<σ<1

1

2π

∫ 2π

0

|G(σeiφ)|2 dφ ≤ H2.

(2.9)

Set

τ =
r

1 +
√
1− r2

, H∗ =
4H(1 + r)

1− r2
, ξ = 1 +

ln(ρ/H∗)
ln τ

.

Corollary 2.1 in [33] shows that if ρ < H∗, then for N = [ξ] and s ∈ D we have

|f̃(s)− F̃ (s)| ≤ (2Hγ̃(s))1−ω̃(s)

(
1 +

(
1 +

2 ln ξ

π

)(
1 +

√
ξ
))ω̃(s)

ρω̃(s),(2.10)

where

γ̃(s) = (1 + |s|)(1− |s|)−1(1− ω̃(s))−1(2.11)

and ω̃ : cl (D) → [0,+∞) is the harmonic measure of I with respect to D \ I (see,
e.g., [18, 44]), i.e., the continuous mapping in cl (D) that is harmonic in D \ I and
such that ω̃(s) = 1 for s ∈ I, ω̃(s) = 0 for |s| = 1.

In the present paper we rather use the simplified bound (easily derived from
(2.10)) ∣∣∣f̃(s)− F̃ (s)

∣∣∣ ≤ (2Hγ̃(s))1−ω̃(s)(3Nρ)ω̃(s), s ∈ D.(2.12)
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In practice, to solve the constrained minimization problem (2.9) an orthonormal
basis {gn}Nn=1 of SN is employed so that the matrix for the quadratic inequality
constraint (see [22, section 12.1.1]) becomes the identity. We adopt the basis defined
by (see [41])

g1(s) =

√
1− s2

1

1− s1s

and

gn(s) =

√
1− s2

n

1− sns

n−1∏
j=1

s− sj
1− sjs

, 2 ≤ n ≤ N.

Working with this basis, problem (2.9) reduces to a matrix format which can be
efficiently solved by means of the SVD (see [22, 33]). Finally, since

max
|s|≤1

|gn(s)| ≤ Br := (1 + r)1/2(1− r)−1/2, 1 ≤ n ≤ N,

Theorem 2.2 in [33] shows that we also have

|f̃(s)− F̃ (s)| ≤ (H(1 +BrN
1/2))1−ω̃(s)(3Nρ)ω̃(s), s ∈ D,

an estimate that can be advantageous when |s| → 1−.

3. The numerical algorithm for the BCP. For given integration parameters
h and k (see section 2), set

ε = Cp (ϕ(h) + kq) + Cs‖Ph‖δ.

Fix R with T < R < +∞ and set

Σ = { z ∈ Σθ : |z| ≤ R }.

Let Ψ : Σ → cl (D) be the conformal transformation (see Figure 2) with Ψ(0) = −1,
Ψ(R) = 1, and Ψ(T ) = −r (0 < r < 1), namely

Ψ(z) =
a+ ζ − ζ−1

a− ζ + ζ−1
,

where ζ = (z/R)σ, a = b(1− r)/(1 + r), b = (T/R)−σ − (T/R)σ, σ = π/(2θ).
Once M, r, and ε are fixed, set ρ = ε/k∗ and H = M‖Ph‖/k∗ and compute (see

section 2)

N = [ξ], ξ = 1 +
ln(ρ/H∗)

ln τ
= 1 +

ln(ε/(M∗‖Ph‖))
ln τ

,(3.1)

where M∗ = 4M(1 + r)/(1− r2). Let −r < s1 < · · · < sN < r be the corresponding
Chebyshev nodes (2.8). Finally, set T ′ = Ψ−1(r) and tn = Ψ−1(sn), 1 ≤ n ≤ N .
Notice that the evaluation of t = Ψ−1(s), −r ≤ s ≤ r, reduces to solve the quadratic
equation

(s+ 1)ζ2 + a(1− s)ζ − (1 + s) = 0, ζ = (t/R)σ.
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Fig. 2. The conformal mapping Ψ.

The numerical algorithm consists of two steps:
(1) Starting from the available approximate final datum uT + δ uT , we integrate

forward the problem {
ū′(t) = Aū(t), T ≤ t ≤ T ′,
ū(T ) = uT + δ uT ,

(3.2)

with the selected parameters h and k. The time levels τl, 1 ≤ l ≤ L, must include the
future nodes tn, 1 ≤ n ≤ N ; i.e., tn = τln for some 1 ≤ l1 < l2 < · · · < lN ≤ L. For
simplicity, the discrete values ūlnh are denoted by ûnh, 1 ≤ n ≤ N . These vectors are
stored.

(2) For each 1 ≤ j ≤ J(h), the holomorphic mapping

f̃h,j(s) = 〈Phu(Ψ−1(s)), χh,j〉, s ∈ D,

is recovered by the LSM algorithm from knowledge of the approximate values

f̃h,j(sn) � 〈ûnh, χh,j〉, 1 ≤ n ≤ N.

Let F̃h,j : D → C be the resulting recovery of f̃h,j provided by the LSM (2.9).
Then the method adopts the approximations Uh(t) to Phu(t), 0 ≤ t ≤ T , defined by

Phu(t) � Uh(t) :=

J(h)∑
j=1

Fh,j(t)χh,j ,

where Fh,j = F̃h,j ◦Ψ, 1 ≤ j ≤ J(h).
The following theorem provides a rigorous estimate for the error.
Theorem 3.1. Under the above conditions, for 0 ≤ t ≤ T there holds

‖Phu(t)− Uh(t)‖ ≤
(
k∗

k∗

)
(2‖Ph‖Mγ(t))

1−ω(t)
(3Nε)ω(t),(3.3)

where γ = γ̃ ◦Ψ (see (2.11)), ω = ω̃ ◦Ψ, and k∗, k∗ satisfy (2.7).
Notice that ω is the harmonic measure of [T, T ′] relative to Σ \ [T, T ′]. Thus,

by the maximum principle, ω(t) < ωθ′(t), 0 < t < T , where now ωθ′ stands for the
harmonic measure used in Theorem 1.1. In fact, (3.3) with ωθ′ instead of ω would
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somehow be a quasi-optimal estimate. This suggests that a forward integration along
the complex segments of Γ1 in Figure 1 could provide such a quasi-optimal result,
something left for future research. Notice also that the freedom in the choice of R
and T ′ = T ′(R, r) results in different harmonic measures ω. Increasing R and T ′

provides better estimates (3.3) but requires a higher computational effort. On the
other hand, T ′ very close to T requires less computation but leads to worse estimates
(3.3). Let us also point out that the value ω(t) depends solely on the nondimensional
quantities t/T, T ′/T , and R/T (cf. Theorem 1.1). Finally, notice that, as for (1.5),
estimate (3.3) becomes useless for times t with t/T close to 0.

Before proceeding with the proof of the theorem, several remarks are in order.
Remark 3.1. Notice that only the vectors ûnh = ūlnh , corresponding to the future

nodes tn, 1 ≤ n ≤ N , must be stored. Since typically ‖Ph‖ = O(1) or ‖Ph‖ = O(| lnh|)
(see, e.g., [45]), (3.1) shows that essentially N = O(| ln ε|). Thus, the algorithm
requires a moderate amount of memory and accurately solving the required least
square problems (see [33]) is rather cheap. Therefore, the efficiency of the new method
relies on that of the numerical integration of the underlying forward problem.

Remark 3.2. Since constants Cp and Cs are unknown in most cases, it turns out
that in general neither ε nor N could be determined. Set εr = ϕ(h) + kq + δ (notice
that this is the accessible part of the error) and Cr = max{1, Cp, Cs‖Ph‖} so that
ε ≤ Cr · εr. Then it is possible to prove that (3.3) remains valid by taking N = [ξr],
where ξr is the computable quantity

ξr := 1 +
ln(εr/(M

∗‖Ph‖))
ln τ

.

Remark 3.3. The algorithm provides the coefficients Fh,j of the approximations

Uh(t) =

J(h)∑
j=1

Fh,j(t)χh,j , 0 < t ≤ T,

where Fh,j are continuous outputs; i.e., we are in a position to evaluate Uh(t) at any
0 < t ≤ T .

Remark 3.4. Notice that the different coefficients Fh,j can be obtained in parallel
from the future values ûnh. Moreover, when the basis χh,j is localized in space the
recovery can be limited to indexes j affecting a given region of interest.

Remark 3.5. In some cases the aim could be the approximation of a certain
functional of u(t)

Λ(u(t)), 0 < t ≤ T,

where Λ ∈ X∗, rather than u(t) itself. Then, denoting by Λh ∈ X∗
h a suitable

approximation to Λ, the problem is reduced to compute

fh(t) = Λh(Phu(t)), 0 < t ≤ T.

Therefore, it is enough to recover the mapping fh from knowledge of its nodal ap-
proximations

fh(tn) � Λh(û
n
h), 1 ≤ n ≤ N ;

i.e., the recovery of all the individual coefficients Fh,j of Uh is not required. Combining
this idea with the previous remark, in practice we could first approximate u on a
coarser grid and later refine up to the original grid where required.
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Remark 3.6. Usually, an extension operator Eh : Xh → X such that PhEh = I on
Xh is available. In these cases we can adopt EhUh(t) as the numerical aproximation
to u(t), rather than Uh(t). We have

‖u(t)− EhUh(t)‖ ≤ ‖(I − EhPh)u(t)‖+ ‖Eh‖ · ‖Phu(t)− Uh(t)‖.
The last term on the right-hand side has already been analyzed, while the first one
depends on the approximation properties of Xh. Typically an estimate of the form
(see, e.g., [39, 45, 51])

‖(I − EhPh)u(t)‖ ≤ Cϕ(h) (‖u(t)‖+ ‖(−A)µu(t)‖)
for some C, µ > 0 is known. Thus, when the above estimate holds, it turns out
[43] that this term behaves like O(ϕ(h)t−µ) (or even like O(ϕ(h)) in cases where
u0 ∈ D((−A)µ)). Hence, the bound (3.3) remains valid for ‖u(t)− EhUh(t)‖.

Remark 3.7. Finally, it is worth mentioning that the linearity of problem (1.2)
is not essential. In fact, as long as the solution u(t) is holomorphic in a sector Σ,
some a priori bound is available there, the errors in the forward integration behave
like ε, and the full discretization is stable, our algorithm can be applied to backward,
nonlinear evolution problems.

Usually, the infinitesimal generator of an abstract, parabolic nonlinear flux (see,
e.g., [25, 31]) is the sum of a linear operator A and a dominated, nonlinear term N .
Then, the standard approach based on the variation-of-constants formula enables us
to show that if N is holomorphic, then it is the nonlinear flux. This approach also
yields estimates for the solution on sectors Σ where ezA is holomorphic in terms of its
initial datum. Thus, this kind of problems can be solved backward in time by means
of the new method whenever a forward numerical integration can be performed.

Proof. Fix 1 ≤ j ≤ J(h). For s ∈ D we have

|f̃h,j(s)| = |〈Phu(Ψ−1(s)), χh,j〉| ≤ k−1
∗ ‖Ph‖ · ‖u(Ψ−1(s))‖ ≤ k−1

∗ ‖Ph‖M.

Moreover, by (2.5), for 1 ≤ n ≤ N

‖Phu(tn)− ulnn ‖ ≤ Cp (ϕ(h) + kq)

and by (2.3)

‖ulnh − ûnh‖ = ‖ulnh − ūlnh ‖ ≤ Cs‖Ph‖δ.
Therefore, by combining these inequalities, we get

|f̃h,j(sn)− 〈ûnh, χh,j〉| = |〈Phu(tn)− ûnh, χh,j〉|
≤ k−1

∗ ‖Phu(tn)− ûnh‖
≤ k−1

∗ Cp (ϕ(h) + kq) + k−1
∗ Cs‖Ph‖δ

= k−1
∗ ε.

Now estimate (2.12) with ρ = k−1
∗ ε and H = k−1

∗ ‖Ph‖M shows that for s ∈ D

|f̃h,j(s)− F̃h,j(s)| ≤ k−1
∗ (2‖Ph‖Mγ̃(s))

1−ω̃(s)
(3Nε)ω̃(s).

Finally, for t ∈ Σ, setting s = Ψ(t),

‖Phu(t)−Uh(t)‖ ≤ k∗ sup
1≤j≤J(h)

|〈Phu(t)−Uh(t), χh,j〉| ≤ k∗ sup
1≤j≤J(h)

|f̃h,j(s)−F̃h,j(s)|,

and the theorem is proved since ω̃(s) = ω(t).
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4. Numerical experiments. In this final section we present some numerical
experiments in order to illustrate the new method and the theoretical results.

Experiment 1. Consider the backward problem


ut(t, x) = uxx(t, x), 0 ≤ x ≤ 1, t ≥ 0,

u(t, 0) = 0, t ≥ 0,

u(t, 1) = 0, t ≥ 0,

u(T, x) = uT (x) + δ uT (x) ∈ X = C0[0, 1],

(4.1)

where C0[0, 1] stands for the space formed by all the continuous mappings f : [0, 1]→
C such that f(0) = f(1) = 0, endowed with the maximum norm.

We take T = 1/8192 and let uT ∈ C0[0, 1] be the value at time T of the exact
solution of the forward heat equation with initial datum u0(x) = sin(25πx2) and
homogeneous Dirichlet boundary conditions. Since no analytic expression for uT is
known we proceed as follows: First we integrate numerically the initial value problem,
starting from u0, in order to approximate uT as well as u(3T/4), u(T/2), u(T/4),
u(T/8) and u(T/16). (These values are used for evaluating the errors shown in Table
1.) This is performed by combining central differences over a uniform mesh xj = jh,
1 ≤ j ≤ J − 1, of size h = 1/J , for the discretization in space together with the well
known MATLAB routine ODE23s, which is based on a modified Rosenbrock method
[23], for the integration in time, in such a way that the total error is below 10−7.
Notice that in this situation Xh = R

J−1, endowed with the maximum norm. The
corresponding operator Ph brings each mapping f into the vector given by its grid
values so that k∗ = k∗ = ‖Ph‖ = 1. Consideration of L∞ spaces is also possible but
requires the formalism introduced, for instance, in [2].

The final time T has been chosen so that the size of the oscillations in uT close to
the right endpoint is below 0.1, i.e., less than 10 percent of their initial size. Despite
the fact that T is rather small, notice that it is the ratio t/T which is relevant to the
experiment. Once we have accurately computed uT , we introduce the perturbation
δ uT as a pseudorandom term, uniformly distributed on [−δ, δ] with δ = 10−6 (see
Figure 3) .

We take θ = π/2.2, R = 4.1T , and r = 0.3. An easy calculation (based on the
classical representation of the solution of the heat equation in terms of the Gaussian
kernel) shows that Cθ = sec1/2 θ so that we can set M = Cθ‖u0‖∞ = sec1/2 θ in
Theorem 3.1. Now we integrate forward (4.1) tuning h and the time step-sizes in
such a way that ε = 3 δ. We are now in a position to calculate the number of nodes
given by (3.1), which turns out to be N = [9.75] = 9. The resulting approximations
at the required future nodes tn, 1 ≤ n ≤ 9, are displayed in Figure 4. From these
approximations we construct the continuous outputs Uh(t) ∈ R

J−1, 0 < t ≤ T .
Table 1 shows the errors in the maximum norm at the past times 3T/4, T/2, T/4,

T/8, and T/16.
It is noteworthy how the solution is fairly well reproduced despite its severely

oscillatory behavior and the loss of information at time T for points x close to 1.
Note that even at T/16, i.e., about 95 percent of the way back, the relative error is
only 7.8 percent. In fact, Uh(t) and Phu(t), t = T/2, T/4, T/8, T/16, are hard to
distinguish when plotted together (see Figure 5). A zoom corresponding to t = T/16
and the zone where the worst errors occur is displayed in Figure 6.

Finally, in order to compare errors in Table 1 with those predicted by Theorem 3.1,
the corresponding harmonic measure ω must be numerically computed (for instance,
by means of the D03EAF NAG FORTRAN library routine). It turns out that in this
example the computed errors in Table 1 are smaller by a factor of 1/30 than those
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Fig. 3. Initial datum u0 and perturbed uT .
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Fig. 4. Numerical solution at future nodes.

Table 1

Evaluation time Absolute error

t = T/16 7.765457e-02

t = T/8 4.437583e-02

t = T/4 1.403523e-02

t = T/2 1.093864e-03

t = 3T/4 6.247916e-05

predicted by Theorem 3.1. (This factor is similar to the one found in the experiments
in [33] when testing the LSM (2.9).)
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Fig. 5. Numerical solution (dotted line) and exact solution (solid line) are hard to distinguish.
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Fig. 6. Zoom of the numerical solution (dotted line) and exact solution (solid line) at T/16.

Experiment 2. Let us now consider the following nonlinear problem:




ut(t, x) = uxx(t, x) + u(t, x)ux(t, x)− 1
2e

−2t sin(2x), 0 ≤ x ≤ π, t ≥ 0,

u(t, 0) = 0 t ≥ 0,

u(t, π) = 0 t ≥ 0,

u(T, x) = uT (x) + δ uT (x) ∈ X = C0[0, π].

The final time is taken to be T = 1 and uT (x) = e−1 sin(x), 0 ≤ x ≤ π. The source
term is chosen in order for u(t, x) = e−t sin(x) to be the solution, in the absence of
perturbation. For the computations we take again δ uT as a pseudorandom term of
amplitude δ = 10−6. We maintain the values of r and θ. In this example, in the
view of the solution, we take M = 1. The space and time discretizations are as in the
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Table 2

Evaluation past times Error for M = 1 (N = 8) Error for M = 7 (N = 9)

t = T/16 1.324940e-02 6.238772e-02

t = T/8 8.925938e-03 3.698770e-02

t = T/4 3.251045e-03 1.220574e-02

t = T/2 2.424795e-04 9.937696e-04

t = 3T/4 7.889683e-06 3.986467e-05

Table 3

Evaluation past times Absolute error

t = T/16 9.889366e-02

t = T/8 6.833551e-02

t = T/4 3.432584e-02

t = T/2 8.022480e-03

t = 3T/4 1.184737e-03

previous example. Now (3.1) provides N = [8.71] = 8. The errors in maximum norm
are shown in Table 2. We repeat the experiment but now with M = 7. Then it turns
out that N = 9. The corresponding errors are also shown in Table 2. This illustrates
how a sharper a priori information yields better results.

Experiment 3. Finally we consider the two dimensional backward heat equation
in the square Ω = [1, 1]× [−1, 1]:




ut(t, x, y) = (1/π)∆u(t, x, y), (x, y) ∈ Ω, t ≥ 0,

u(t, x, y) = 0, (x, y) ∈ ∂Ω, t ≥ 0,

u(T, x, y) = uT (x, y) + δ uT (x, y) ∈ X = L∞([−1, 1]× [−1, 1]),

with T = 1/4 and uT (x, y) = e−2πT sin(πx) sin(πy). The solution for the unperturbed
problem is clearly u(t, x, y) = e−2πt sin(πx) sin(πy). The term δ uT is once more
randomly generated but now with amplitude δ = 10−4. The discretization in space
is performed by linear finite elements on a quasi-regular mesh of diameter h = 10−2,
while the time integration is carried out by the MATLAB ODE23S routine with k =
10−2. Since ϕ(h) = h2| lnh| [45, 51], it turns out that εr = 6.60517 · 10−4. Moreover,
M is assigned its exact value; i.e., M = 1. Now Remark 3.2 yields N = [5.83] = 5,
and the errors at indicated times are collected in Table 3. Less accurate estimates of
M lead to higher values of N and bigger errors.
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1. Introduction. In recent years, it has been increasingly acceptable to adopt
SDE models as an essential component in the analysis of complex phenomena such as
wave propagation [19], climate change [22], turbulence [21, 24], and phase transition
[9, 16, 18]. The initial value and boundary value problems of stochastic partial differ-
ential equations (SPDEs) have been studied theoretically in, for example, [5, 6, 8, 10,
33]. Various numerical methods and approximation schemes for SDEs have also been
developed, analyzed, and tested [1, 2, 4, 7, 12, 13, 14, 15, 20, 25, 27, 29, 28, 31, 34, 35].

For a given physical system, many different stochastic perturbations may be con-
sidered. Generically speaking, noise may enter the physical system either as temporal
fluctuations of internal degrees of freedom or as random variations of some external
control parameters; internal randomness often reflects itself in additive noise terms,
while external fluctuations gives rise to multiplicative noise terms [18]. The main aim
of this paper is to study the properties of some standard numerical approximations
to the linear SPDEs for the random field u = u(x, t) driven by an additive noise:

du = Audt+ dW, x ∈ Ω, t > 0.(1.1)

Here, Ω is a bounded spatial domain and A is a linear second order elliptic operator
with deterministic coefficients, which is defined on a space of functions satisfying
certain boundary conditions. W represents an infinite dimensional Brownian motion.
We also consider the related time-independent equation

−Au = g + Ẇ, x ∈ Ω,(1.2)
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where g is a given deterministic function and Ẇ denote a one-parameter family noise.
The additive noises may appear in various forms, ranging from the space time white
noise to colored noises generated by some infinite dimensional Brownian motion with
a prescribed covariance operator [6, 28]. Once the equation is reformulated into a
weak form [5], the usual Galerkin finite element methods can be constructed and
also analyzed using standard techniques. A priori error estimates of the numerical
solution depend on the regularity of the solutions of the original SPDE. Such regularity
results are often much harder to establish than their deterministic counterpart [5, 33].
In fact, if dW corresponds to the Brownian white noise, then the regularity estimates
are usually very weak, and they lead to very low order error estimates [1, 7, 13].
On the other hand, if the noise is more regular, then it becomes possible to get
higher order of error estimates for the numerical solution. In recent years, studies of
models with colored noises and their numerical approximation have started to receive
more attention; see [28] for an example of physical application and the recent works
[26, 14] for works related to stochastic ordinary differential equations (SODEs) and
the time discretization. In the present work, we provide the connections between the
discrete realizations of noises in different formulations of some SPDEs. Moreover, we
illustrate how the error analysis of the standard finite element and finite difference
approximations depends on the noises used in the model and the approximation. In
order to present a simple analysis, in this paper we focus on the case Ω = (0, 1)
and Au = uxx− bu with the homogeneous Dirichlet boundary condition and b being a
deterministic coefficient, though much of our results can be readily extended to higher
spatial dimensions and more general second order elliptic operators. For most of the
discussion, we also try to present our results in simple finite element terminology that
is familiar to people working on the numerical approximations of deterministic PDEs
so that it is easy to be understood even for readers who are not necessarily experts
on SDEs.

The paper is organized as follows. We first describe the various forms of the
noises and their discrete representations. Next, we discuss some convergence results
for standard finite element and finite difference approximations. The models used are
one dimensional linear stochastic elliptic and parabolic equations, and the results are
established for noises given in general forms, which include the spatial or space time
white noises as special cases. Then numerical results are presented to support the
theoretical analysis. Finally, some concluding remarks are given. The details of the
proofs are provided in the appendix.

2. The representation of random noises. To study the accuracy of the dis-
crete approximations, it is useful to first consider the properties of the noises which
drive the stochastic equations and the discrete representations of the noises.

Following [1], we regularize the noise through discretization. Let {xi = ih}n0 be
a partition of [0, 1] with h = 1/n. We begin with Ẇ (x) being the standard one-
parameter family Brownian white noise that satisfies

E(Ẇ (x) · Ẇ (x′)) = δ(x− x′),(2.1)

where δ denote the usual Dirac δ-function andE the expectation. A piecewise constant
approximation of the one-parameter white noise is given by [1]

dŴn(x)

dx
= cn

n∑
j=1

ηjχj(x),(2.2)
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Fig. 2.1. Piecewise constant approximation for the noise dŴn(x)/dx = (1/
√
h)
∑n

j=1 ηjχj(x).

where cn = h−1/2 =
√
n and, for j = 1, 2, . . . , N , ηj ∈ N(0, 1) is independently and

identically distributed (iid),

√
hηj =

∫ xj+1

xj

dW (x) , and χj(x) =

{
1, xj ≤ x < xj+1,

0 otherwise.

The discrete analogue of (2.1) for the piecewise constant approximation is given by

E

(
dŴn(x)

dx
· dŴn(x

′)
dx

)
=

{
h−1 if xj ≤ x, x′ < xj+1 for some j,

0 otherwise.

Hence,

lim
n→∞E

(
dŴn(x)

dx
· dŴn(x

′)
dx

)
= δ(x− x′).

In Figure 2.1, some sample realizations of the piecewise constant approximation
of one-parameter white noise are illustrated for various values of n. (The random
numbers are generated using MATLAB.) We note that similar discussions can be
easily generalized to the space time two-parameter family white noises.

2.1. Noises in abstract forms. The SPDEs driven by the white noise often
have poor regularity estimates. In the physical world, to take into account the short
and long range correlations of the stochastic effects, both white noise and colored
noises may be considered. There are many situations where colored noises model
the reality more closely, and there are also instances where the important stochastic
effects are the noises acting on a few selected frequencies.

In general, we may use an abstract formulation of the infinite dimensional noise:
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Fig. 2.2. Noises by Fourier modes
∑n

k=1 σkηk
√
2 sin kπx with σk = 1

2k
(left) and σk = 1

k3/2

(right).

Ẇ (x) =

∞∑
k=1

σkηkψk(x),(2.3)

where the random variable ηk ∼ N(0, 1) is iid for any k, the deterministic functions
{ψk(x)} form an orthonormal basis of L2(0, 1) or its subspace, and the coefficients
{σk} are to be chosen to ascertain the convergence of the series in the mean square
sense with respect to some suitable norms.

One of the examples is given by the Fourier modes ψk(x) =
√
2 sin kπx which

forms a basis of H1
0 (0, 1). According to the different decay rates of the coefficients,

the noises may display quite different pictures. The pictures in Figure 2.2 and the
left two columns of Figure 2.3 provide sample realizations of noises having forms
(2.3) in the Fourier basis with coefficients σk = 2−k, k−3/2, and k−1/2, respectively.
Clearly, the realizations give trajectories that look smoother than the ones for the
white noise. It can also be seen that the faster the coefficients σk decay, the smoother
the noise trajectory dWn/dx looks, which reflects stronger spatial correlation since
the noises are heavily concentrated near a few low frequencies. On the other hand,
if the coefficients decay sufficiently slowly, then the trajectory can clearly resemble
that of a white noise away from the boundary. In fact, it is well known that for
spatially uncorrelated white noises, their Fourier coefficients are independent of the
frequencies, and they stay at a constant value.

In the analysis and numerical examples given in later sections, the noises given
in terms of the Fourier modes are used. The Fourier modes provide one of many
possible representations of noises where the smoothness of the noise trajectories are
related to the decay of the coefficients in the representation. Another illustrative
example is to define the noise in terms of the lowest order wavelet basis. We include
the discussion here for comparison. Let ψ be the wavelet function and φ be the scaling
function [32]. Let j denote the dilation index and k denote the translation index, and
ψj,k(x) = 2j/2ψ(2jx−k). The discrete noise formulated in the wavelet basis is given as

ẆJ(x) = cγφ(x) +

J−1∑
j=0

2j−1∑
k=0

dj,kηjkψj,k(x).(2.4)

Here, J is the highest level to be considered, and γ, ηjk ∈ N(0, 1) are iid. In the
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Fig. 2.3. Noises by
∑n

k=1
1

k1/2 ηk
√
2 sin kπx (left) and γφ(x) +

∑J−1
j=0

∑2j−1
k=0

1
2j
ηjkψj,k(x) (right).

simplest case, we may take the Haar wavelet

ψ(x) =




1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x < 1,

0 otherwise

and φ(x) =

{
1, 0 ≤ x < 1,

0 otherwise.

The right two columns of Figure 2.3 show sample realizations of noises taking the form

(2.4) with c = 1, dj,k = 2−j . The correlation of the noise (2.4) E(dWJ (x)
dx · dWJ (x′)

dx ) is
given by

E

(
dWJ(x)

dx
· dWJ(x

′)
dx

)
= c2φ(x)φ(x′) +

J−1∑
j=0

2j−1∑
k=0

d2
j,kψj,k(x)ψj,k(x

′) .(2.5)

If in (2.2) n = 2J and h = 2−J , then the piecewise constant approximation of the
white noise may also be represented using the wavelet Haar basis. In fact, let χk(x)
be characteristic function of interval [kh, (k + 1)h]; then

dŴn(x)

dx
=

1√
h

2J−1∑
k=0

ηkχk(x) = γφ(x) +

J−1∑
j=0

2j−1∑
l=0

γj,lψj,l(x).

Here, γ = 2−J/2
∑2J−1
k=0 ηk ∼ N(0, 1) and

γj,l = 2(j−J)/2


(l+1)2J−j−1∑

k=l2J−j

(−1)[k/2J−j−1]ηk


 ∼ N(0, 1)

are iid. Corresponding to (2.5), c = dj,k = 1 so that (2.5) leads again to (2.1). Nat-
urally, when higher order wavelets are used [32, 30], we may expect to have discrete
noises that are smoother spatially than the ones represented by the Haar basis when
the high frequency coefficients enjoy fast decay properties. Comparing with Fourier
modes, wavelet functions may also have compact support; thus, on the one hand,
the noises in wavelet basis can closely resemble spatially uncorrelated white noises,
while on the other hand they can also be used conveniently to simulate noise more
concentrated on certain frequencies as well as certain spatial regions.
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In summary, different forms to represent the various noises are discussed in this
section. Similar discussion can be carried out in more than one space dimension
and for noises parameterized by both time and space variables. Such discussions are
relevant to the numerical study of SDEs as the solutions of the stochastic equations
that use noises with better regularity become more regular themselves and thus may
allow higher order numerical approximations.

3. Numerical method and error analysis. In [1], approximations of SPDEs
with the additive space time white noise term discretized by the piecewise constant
random process have been studied. Here, we follow roughly the same route, though
more general types of noises are used. We show how the accuracy is affected by the
correlation or the smoothness of the noises.

We divide the discussion into two parts, starting with the simplest one dimensional
elliptic equation (boundary value problem of a SODE) and then moving to a parabolic
equation in one space dimension and in time (initial boundary value problem of a
SPDE). In the set-up of the problems, noises represented in general basis are used,
but in the analysis we specialize in using the Fourier modes as the basis of choice to
simplify the discussion.

3.1. One dimensional elliptic equation with noise. We now consider the
SDE (1.2); that is,{

−∆u(x) + bu(x) = g(x) + Ẇ (x), 0 < x < 1,

u(0) = u(1) = 0,
(3.1)

where Ẇ (x) denotes the noise, g(x) is a given deterministic term, and b = b(x) is a
given deterministic coefficient.

As in [1], we may first replace Ẇ (x) by a finite dimensional noise Ẇn(x) and let un
denote the solution of the corresponding equation. We then numerically approximate
the equation associated with Ẇn(x) and let uhn denote the numerical solution.

If the noise Ẇ (x) in (3.1) is the white noise, Ẇn(x) is the piecewise constant
approximation (2.2), and the Galerkin finite element method with piecewise constant
basis is applied to (3.1), the error estimate is given by [1]

E‖u− un‖L2
≤ C h,

E‖un − uhn‖L2 ≤ C h3/2,

E‖u− uhn‖L2
≤ C h.

Due to the poor regularity of the solution, it is seen that, even with higher order
finite elements, the order of error estimates does not improve. With colored noises,
the order of approximation may increase with better regularity on the solution and
the use of higher order elements. As an illustration, we consider the following noise:

Ẇ (x) =

∞∑
k=1

σkηkψk(x),(3.2)

where {ηk} are random variables satisfying

ηk ∼ N(0, 1) and cov(ηk, ηl) = E(ηkηl) = qkl,

with {σk} to be chosen.
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Let {σnk }∞k=1 approach {σk}∞k=1 as n → ∞ in some appropriate sense; then an

approximation of Ẇ (x) is

Ẇn(x) =

∞∑
k=1

√
2σnk ηkψk(x) sin kπx.

The definition of noise term leads to the following stochastic integral for f ∈ L2(0, 1):

S =

∫ 1

0

f(x)dW (x) =

∞∑
k=1

σkfkηk,

Sn =

∫ 1

0

f(x)dWn(x) =

∞∑
k=1

σnk fkηk,

where fk =
∫ 1

0
f(x)ψk(x)dx. That is, S and Sn are random variables having the

distribution

S ∼ N

(
0,

∞∑
k=1

∞∑
l=1

σkσlfkflqkl

)
,

Sn ∼ N

(
0,

∞∑
k=1

∞∑
l=1

σnkσ
n
l fkflqkl

)
,

provided the double sum is convergent.
For convenience, we introduce the following notation:

−→
σn = (σn1 , σ

n
2 , . . . , σ

n
k , . . . )

T ,

'σ = (σ1, σ2, . . . , σk, . . . )
T

are infinite column vectors. For two vectors
−→
σn and

−→
f , we use

−−→
σnf to denote the

componentwise product

−−→
σnf = (σn1 f1, σ

n
2 f2, . . . , σ

n
k fk, . . . )

T .

Let Q be the covariance matrix of random fields {ηk}, namely, Q is the infinite
matrix (operator) with entries Q = (qkl)

∞
k,l=1. For an integer s, let Qs be the infinite

matrix with entries Qs = ((kl)sqkl)
∞
k,l=1. It is easy to see both Q and Qs are positive

semidefinite. Define the weighted semi-inner products of the vectors 'σ and 'δ as

〈'σ, 'δ〉Q = 'σT ·Q · 'δ =
∞∑
k=1

∞∑
l=1

σkδlqkl,

〈'σ, 'δ〉Qs = 'σT ·Qs · 'δ =
∞∑
k=1

∞∑
l=1

σkδl(kl)
sqkl.

The seminorms induced by the above semi-inner products are

‖'σ‖2Q = 〈'σ, 'σ〉Q and ‖'σ‖2Qs
= 〈'σ, 'σ〉Qs .
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Note that Q0 = Q. Using the above notation,

S ∼ N
(
0, ‖−→σf‖2Q

)
, Sn ∼ N

(
0, ‖−−→σnf‖2Q

)
.

The difference between S and Sn is given by

E|S − Sn|2 = E|
∞∑
k=1

(σnk − σk)fkηk|2 =
∥∥∥−→σf −−−→σnf∥∥∥2

Q
.

Equation (3.1) can be written in a weak form or an integral form. Both forms
are equivalent as shown in [3]. In fact, the solution of (3.1) is a stochastic process
u = u(x) which satisfies the weak formulation

−
∫ 1

0

u(x)∆φ(x)dx+

∫ 1

0

bu(x)φ(x)dx =

∫ 1

0

g(x)φ(x)dx+

∫ 1

0

φ(x)dW (x)(3.3)

for φ ∈ C2(0, 1) ∩ C0(0, 1). The integral form is

u(x) +

∫ 1

0

b k(x, y)u(y)dy =

∫ 1

0

k(x, y)g(y)dy +

∫ 1

0

k(x, y)dW (y).(3.4)

Here, k(x, y) = x∧y−xy is the Green’s function associated with the elliptic equation

−∆v(x) = φ(x), v(0) = v(1) = 0 so that v(x) =
∫ 1

0
k(x, y)φ(y)dy. (x ∧ y means the

smaller one of x and y.) In the present investigation, it is assumed the coefficient b is

small enough so that λ2 =
∫ 1

0

∫ 1

0
b2k2(x, y)dxdy < 1. We note that this condition is

primarily needed in the case of b < 0; such a restriction can be lifted for b > 0, and
the conclusions given later remain valid.

We now substitute dW (y) by dWn(y) in (3.4) to obtain the following equation:

un(x) +

∫ 1

0

b k(x, y)un(y)dy =

∫ 1

0

k(x, y)g(y)dy +

∫ 1

0

k(x, y)dWn(y).(3.5)

Thus, un(x) satisfy the two-point boundary value problem

−∆un(x) + bun(x) = g(x) + Ẇn(x), un(0) = un(1) = 0.(3.6)

The following theorem shows that un indeed approximates u, the solution of
(3.4). In order to illustrate the higher order of convergence for more regular noises,
we specialize our discussion to the choice of {ψk(x) =

√
2 sin kπx}, that is, noises

represented by the Fourier modes.
Theorem 3.1. For Ẇn(x) =

∑∞
k=1 σ

n
k ηkψk(x) and ψk(x) =

√
2 sin kπx, if un

and u are the solutions of (3.5) and (3.4), respectively, then, for some constant C > 0,

E‖u− un‖L2 ≤
C

1− λ

∥∥∥−→σn − 'σ
∥∥∥
Q−1

,

where λ < 1 is defined as before.
Proof. Let en(x) = u(x)− un(x) and

F (x) =

∫ 1

0

k(x, y)dW (y)−
∫ 1

0

k(x, y)dWn(y).
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Subtracting (3.5) from (3.4), we have

en(x) = −
∫ 1

0

b k(x, y) en(y)dy + F (x).

By Hölder’s inequality, it is easy to show that

∫ 1

0

e2n(x)dx ≤ λ2

∫ 1

0

e2n(y)dy + 2λ

(∫ 1

0

F 2(x)dx

)1/2(∫ 1

0

e2n(y)dy

)1/2

+

∫ 1

0

F 2(x)dx,

where λ2 =
∫ 1

0

∫ 1

0
b2k2(x, y)dxdy and it is assumed that λ < 1. Taking expectations

on both sides, letting ên = E(
∫ 1

0
e2n(x)dx) and Ĝn = E(

∫ 1

0
F 2(x)dx) and using the

Burkholder–Gundy-type inequality (EX)2 ≤ E(X2), we get

ên(1− λ2)− 2λ
√
ên

√
Ĝn − Ĝn ≤ 0.(3.7)

This implies

√
ên ≤

√
Ĝn(1− λ).(3.8)

Now let us estimate Ĝn.

Ĝn = E

(∫ 1

0

F 2(x)dx

)
=

∫ 1

0

E

( ∞∑
k=1

(σnk − σk)fk(x)ηk

)2

dx

=

∫ 1

0

∥∥∥−−−→σf(x)−−−−−→σnf(x)
∥∥∥2
Q
dx,

where
−−→
f(x) = (f1(x), f2(x), . . . , fk(x), . . . )

T and fk(x) =
∫ 1

0
k(x, y)ψk(y)dy. Since

k(x, y) = x ∧ y − xy, direct calculation gives that, for any x ∈ [0, 1],

|fk(x)| =
∣∣∣∣
∫ 1

0

k(x, y)ψk(y)dy

∣∣∣∣ =
∣∣∣∣
∫ 1

0

k(x, y)
√
2 sin kπydy

∣∣∣∣ ≤ c

k
,

which implies that, for x ∈ [0, 1],∥∥∥−−−→σf(x)−−−−−→σnf(x)
∥∥∥
Q
≤ C

∥∥∥−→σ −−→σn∥∥∥
Q−1

for some constant C > 0. Hence,

Ĝn ≤ C
∥∥∥'σ −−→σn∥∥∥2

Q−1

.

Combining the above inequality with (3.8), we get

E‖u− un‖L2
≤
√
E‖u− un‖2L2

=
√
ên ≤ C

1− λ

∥∥∥−→σn − 'σ
∥∥∥
Q−1

.

This proves the theorem.
We now state a bound on Ẇn(x) in the following lemma.
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Lemma 3.1. For Ẇn(x) =
∑∞
k=1 σ

n
k ηkψk(x) and ψk(x) =

√
2 sin kπx, if s ≥ 0 is

an integer, then

E‖Ẇn‖Hs ≤ C

( ∞∑
k=1

(σnkk
s)2

)1/2

,

provided that the right-hand side is convergent.
Proof. First,

ds

dxs

(
dWn

dx

)
=

∞∑
k=1

√
2σnk ηk(kπ)

s sin
(
s
π

2
+ kπx

)
.

Since {sin(sπ2 + kπx)} are orthogonal on [0, 1], we have

E

∥∥∥∥ ds

dxs

(
dWn

dx

)∥∥∥∥
2

L2

= E

∫ 1

0

( ∞∑
k=1

√
2σnk ηk(kπ)

s sin
(
s
π

2
+ kπx

))2

dx

= E

∞∑
k=1

(σnk )
2η2
k(kπ)

2s ≤ c

∞∑
k=1

(σnk · ks)2

for some constant c > 0. The above inequality also implies that, for any r ≤ s,

E

∥∥∥∥ dr

dxr

(
dWn

dx

)∥∥∥∥
2

L2

≤ E

∥∥∥∥ ds

dxs

(
dWn

dx

)∥∥∥∥
2

L2

.

Hence,

E‖Ẇn‖Hs ≤
√
E‖Ẇn‖2Hs ≤ C

( ∞∑
k=1

(σnkk
s)2

)1/2

for some constant C > 0.
Concerning the above lemma, we note that similar lower bound can also be es-

tablished. Moreover, the results may be established for the case s < 0 as well.
We now consider a standard finite element approximation of un. From the weak

formulation (3.3), un satisfies∫ 1

0

u′nφ
′(x)dx+ b

∫ 1

0

un(x)φ(x)dx =

∫ 1

0

g(x)φ(x)dx+

∫ 1

0

φ(x)dWn(x)(3.9)

for φ(x) ∈ H1
0 (0, 1). By the Lax–Milgram theorem, there exists a unique solution

un ∈ H1
0 (0, 1) to (3.9). For convenience, we consider the same partition of [0, 1]:

0 = x1 < x2 < · · · < xn+1 = 1 with xi = (i−1)h and h = 1/n. If V h
0 (0, 1) denotes the

finite element subspace ofH1
0 (0, 1), and {φj(x)}Nj=1 forms a basis of V h

0 (0, 1), the finite

element solution of (3.9) is uhn ∈ V h
0 (0.1) that satisfies (3.9) for all φ(x) ∈ V h

0 (0, 1).

Thus, uhn(x) =
∑N
l=1 ulφl(x) satisfies the following linear system for j = 1, 2, . . . , N :

N∑
l=1

ul

∫ 1

0

φ′
l(x)φ

′
j(x) + b

N∑
l=1

ul

∫ 1

0

φl(x)φj(x)dx

=

∫ 1

0

g(x)φj(x)dx+

∞∑
k=1

σnk ηk

∫ 1

0

φj(x)ψk(x)dx,(3.10)
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where ηk ∈ N(0, 1). The solution uhn is clearly well defined.
The following lemma gives the standard finite element error estimates of (3.9) in

the pathwise sense.
Lemma 3.2. If V h

0 (0, 1) contain all piecewise polynomials of degree r in H1
0 (0, 1),

and un ∈ H1
0 (0, 1) ∩Hr+1(0, 1), then

‖un − uhn‖L2 + h|un − uhn|H1 ≤ Chr+1‖un‖Hr+1 ≤ Chr+1‖g + Ẇn‖Hr−1(3.11)

for some constant C > 0.
Furthermore, combining Theorem 3.1 and Lemma 3.2, an estimate on E(‖u −

uhn‖L2) follows from the triangle inequality.
Theorem 3.2. Let u and uhn be the solution of (3.3) and (3.10), respectively; if

the hypothesis in Lemma 3.2 is satisfied, then the error estimate is

E‖u− uhn‖L2
≤ C

{∥∥∥−→σn − 'σ
∥∥∥
Q−1

+ hr+1‖g‖Hr−1 + hr+1E‖Ẇn‖Hr−1

}

≤ C



∥∥∥−→σn − 'σ

∥∥∥
Q−1

+ hr+1‖g‖Hr−1 + hr+1

[ ∞∑
k=1

(σnkk
r−1)2

]1/2
(3.12)

for some generic constant C > 0.
Numerical examples are given in a later section to provide an illustration of the

specific order of error estimates one can get based on the above theorem.
Remark 3.1. The same idea can be applied to two dimensional elliptic equations in

a rectangular domain, namely, by representing the two dimensional noise as the combi-
nations of the tensor products of ψk(x), similar to how Theorem 3.2 can be obtained.

3.2. Parabolic equation in one spatial dimension. Let ∂2W
∂t∂x denote a space

time noise term and g be a deterministic function; we now consider the linear stochas-
tic equations of the form




∂u
∂t (t, x)− ∂2u

∂x2 (t, x) + bu(t, x) = ∂2W
∂t∂x (t, x) + g(t, x), t > 0,

u(0, x) = u0(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

(3.13)

where the coefficient b, for simplicity, is assumed to be a constant.
The weak formulation of (3.13) is

∫ 1

0

u(t, x)φ(x)dx−
∫ t

0

∫ 1

0

u(s, x)
d2φ

dx2
dxds+

∫ t

0

∫ 1

0

bu(s, x)φ(x)dxds

=

∫ 1

0

u0(x)φ(x)dx+

∫ t

0

∫ 1

0

φ(x)dW (s, x) +

∫ t

0

∫ 1

0

g(s, x)φ(x)dxds(3.14)

for φ ∈ C2[0, 1] ∩ C0[0, 1] . The integral formulation of (3.13) is

u(t, x) +

∫ t

0

∫ 1

0

Gt−s(x, y)bu(x, y)dyds =
∫ 1

0

Gt(x, y)u0(y)dy(3.15)

+

∫ t

0

∫ 1

0

Gt−s(x, y)dW (s, y) +

∫ t

0

∫ 1

0

Gt−s(x, y)g(s, y)dyds,
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where Gt(x, y) = 2
∑∞
m=1 sinmπx sinmπye−(mπ)2t is the fundamental solution of

vt(t, x)− vxx(t, x) = 0, v(0, x) = φ(x), v(t, 0) = v(t, 1) = 0,

so that v(t, x) =
∫ 1

0
Gt(x, y)φ(y)dy .

Using the same idea as that in the previous section, we represent the noise as

∂2W

∂t∂x
=

∞∑
k=1

σk(t)η̇k(t)ψk(x),(3.16)

where σk(t) is a continuous function, η̇k(t) is the derivative of standard Wiener
process, and ψk(x) =

√
2 sin kπx. Now define a partition of [0, T ] × [0, 1] by

rectangles [ti, ti+1] × [xj , xj+1] for i = 1, 2, . . . , I and j = 1, 2, . . . , n, where
ti = (i − 1)∆t, xj = (j − 1)h, ∆t = T/I, and h = 1/n. A sequence of noise which
approximates the noise is defined as

∂2Wn

∂t∂x
=

∞∑
k=1

σnk (t)ψk(x)

I∑
i=1

1√
∆t

ηkiχi(t),(3.17)

where χi(t) is the characteristic function for the ith time subinterval and

ηki =
1√
∆t

∫ ti+1

ti

dηk(t) ∼ N(0, 1).

Replacing σk(t) by σnk (t), we get the discretization in the x-direction, and replacing

η̇k(t) by
∑I
i=1

1√
∆t
ηkiχi(t) we get the discretization in the t-direction. Then ∂2Wn

∂t∂x is

substituted for ∂2W
∂t∂x in (3.15) to get the following equation:

un(t, x) +

∫ t

0

∫ 1

0

Gt−s(x, y)bun(s, y)dyds =
∫ 1

0

Gt(x, y)u0(y)dy(3.18)

+

∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y) +

∫ t

0

∫ 1

0

Gt−s(x, y)g(s, y)dyds;

that is, un is the solution of the equation




∂un

∂t (t, x)− ∂2un

∂x2 (t, x) + bun(t, x) =
∂2Wn

∂t∂x (t, x) + g(t, x), t > 0,

un(0, x) = u0(x), 0 ≤ x ≤ 1,

un(t, 0) = un(t, 1) = 0, t ≥ 0.

(3.19)

Now we assume that∫ T

0

∫ 1

0

∫ t

0

∫ 1

0

G2
t−s(x, y)b

2dydsdxdt = λ̄2 < 1.

Then, under proper assumptions on {σk(t)} and {σnk (t)}, un approximates u, the
solution of (3.15), as illustrated in the next theorem.

Theorem 3.3. Let {σk(t)} and its derivative be uniformly bounded by

|σk(t)| ≤ βk, |σ′
k(t)| ≤ γk ∀t ∈ [0, T ],
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and the coefficients {σnk (t)} are constructed such that
|σk(t)− σnk (t)| ≤ αnk , |σnk (t)| ≤ βnk , |σnk ′(t)| ≤ γnk ∀t ∈ [0, T ]

with positive sequences {αnk} being arbitrarily chosen, {βnk } and {γnk } being related to
{αnk βk} and {γk}. Let un(t, x) and u(t, x) be the solution of (3.18) and (3.15),
respectively; then, for some constants C > 0, independent of ∆t and h,

E‖u− un‖2L2
≤ C

(1− λ̄)2

∞∑
k=1

(
(αnk )

2

2(kπ)2
+ [k4(βnk )

2 + (γnk )
2](∆t)2

)
,(3.20)

provided that the infinite series are all convergent.
The proof of Theorem 3.3 is given in the appendix.
Remark 3.2. The assumption on λ̄ being small is not crucial; some generaliza-

tions can be made without this assumption, for example when b < 0.
Now we consider the approximation of un. In particular, we use a finite element

discretization with respect to the x variable and an implicit difference method in the
t variable. Since un satisfies the weak formulation,∫ 1

0

un(t, x)φ(x)dx+

∫ t

0

∫ 1

0

∂un
∂x

(s, x)
dφ

dx
(x)dxds+

∫ t

0

∫ 1

0

bun(s, x)φ(x)dxds

=

∫ 1

0

u0(x)φ(x)dx+

∫ t

0

∫ 1

0

φ(x)dWn(s, x) +

∫ t

0

∫ 1

0

g(s, x)φ(x)dxds(3.21)

for φ ∈ H1
0 (0, 1). Meanwhile, the semidiscretization in space leads only to the following

problem: find un(t, ·) ∈ H1
0 (0, 1), t ∈ (0, T ), such that∫ 1

0

∂un
∂t

φdx+

∫ 1

0

∂un
∂x

∂φ

∂x
dx+

∫ 1

0

bunφdx =

∫ 1

0

(
g +

∂2Wn

∂t∂x

)
φdx(3.22)

with ∫ 1

0

un(0, x)φ(x)dx =

∫ 1

0

u0(x)φ(x)dx

for all φ ∈ H1
0 (0, 1), t ∈ (0, T ).

The finite element discretization of (3.22) is to find ūhn(t, ·) ∈ V h
0 (0, 1), t ∈ (0, T ),

such that ∫ 1

0

∂ūhn
∂t

φdx+

∫ 1

0

∂ūhn
∂x

∂φ

∂x
dx+

∫ 1

0

būhnφdx =

∫ 1

0

(
g +

∂2Wn

∂t∂x

)
φdx(3.23)

with ∫ 1

0

ūhn(0, x)φ(x)dx =

∫ 1

0

u0(x)φ(x)dx

for all φ ∈ V h
0 (0, 1), t ∈ (0, T ). Here, V h

0 (0, 1) denote the finite element subspace of
H1

0 (0, 1). By using the expression

ūhn(t, x) =

n−1∑
l=1

ul(t)φl(x), t ∈ (0, T ),
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(3.23) leads to a system of ODEs for ul(t), l = 1, . . . , n−1. Using the backward-Euler
method to solve this ODE system yields the following numerical scheme:

n−1∑
l=1

(ui+1,l − ui,l)

∫ 1

0

φl(x)φj(x)dx+∆t

n−1∑
l=1

ui+1,l

∫ 1

0

φ′
l(x)φ

′
j(x)dx

+ b∆t

n−1∑
l=1

ui+1,l

∫ 1

0

φl(x)φj(x)dx

=

∫ ti+1

ti

∫ 1

0

g(s, x)φj(x)dxds+

∫ ti+1

ti

∫ 1

0

φj(x)dWn(s, x)(3.24)

for j = 1, 2, . . . , n− 1, i = 1, 2, . . . , I where ui,l ≈ ul(ti) . Let

uhn(ti, x) =

n−1∑
l=1

ui,lφl(x).

For simplicity, we now focus on the case of using the continuous piecewise linear finite
element in the spatial discretization. The following pathwise error estimate can be
found in Theorem 8.2 of [17]:

‖un(tm, ·)− uhn(tm, ·)‖L2(3.25)

≤ C

√
1 + log

tm
∆t

(
max
i≤m

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥
L2

dτ +max
t≤tm

h2‖un(t, ·)‖H2

)
.

The following lemma gives estimates of the terms on the right-hand side of (3.25).
Lemma 3.3. Let un be the solution of (3.15) with g ∈ C2([0, T ] × [0, 1]), u0 ∈

C2[0, 1], and σnk (t) has the bound given in Theorem 3.3. Let the constant b be suitably
small. Then, if δt ≤ 1/(2|b|), the following inequalities hold for some constant c,
independent of ∆t and h:

E

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥
L2

dτ ≤ c

(
(∆t)2 +∆t

∑
k

k2(βnk )
2 +
∑
k

(∆tβnk )
2

)1/2

(3.26)

and

E‖un(t, ·)‖H2 ≤ c

(
1 +

1

∆t

∑
k

k2(βnk )
2

)1/2

.(3.27)

The proof of Lemma 3.3 is given in the appendix.
Combining Lemma 3.3 and inequality (3.25), we have the following theorem.
Theorem 3.4. Assume that the conditions in Lemma 3.3 hold; then

E‖un(tm, ·)− uhn(tm, ·)‖L2
≤ c

(
1 + log

tm
∆t

)1/2

×
(
(∆t)2 +∆t

∑
k

k2(βnk )
2 +
∑
k

(∆tβnk )
2 +

h4

∆t

∑
k

k2(βnk )
2

)1/2

for some constant c.
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The error E‖u(tm, ·) − uhn(tm, ·)‖L2
can be obtained by applying the triangle

inequality to the results of Theorems 3.3 and 3.4.
Remark 3.3. Note that when applied to the case of white noise, that is, σk(t) = 1

for all k, we may take βnk = σnk = 1, αnk = 0 for k ≤ N , and βnk = σnk = 0, αnk = 1
for k > N , where N → ∞ as n → ∞; then, after simplification, the estimates in the
above theorems give

E‖u(tm, ·)− uhn(tm, ·)‖L2 ≤ c

(
1 + log

tm
∆t

)1/2{
1

N1/2
+ (∆t)1/2N3/2 +

h2N3/2

(∆)1/2

}

so that h = O(∆t)1/2 and N = O(h−1/2) = O((∆t)−1/4) give a best order of (∆t)1/8

or h1/4, up to a logarithmic factor, for E‖u(tm, ·)−uhn(tm, ·)‖L2
. This is indeed a very

low order convergence estimate as was expected [1]. In the next section, however, we
present a few examples with colored noises for which the above theorems allow much
better estimates on the order of the approximations.

Remark 3.4. The estimate on the order of convergence in the time step size is seen
to be at best O(

√
∆t), which is largely due to the fact that we restricted our attention

to the case where {η̇k(t)} in (3.16) correspond to the derivatives of the Wiener process
with t being the parameter. In many physical applications, other processes may also
be used [11]. One may also naturally consider more general formulation for the noise
terms {η̇k(t)} like what is used for dW/dx in (3.2). In the case where {η̇k} are more
regular in time, better error estimates may be obtained using similar techniques.

Discussions and extensions to higher space dimensions can be found in [36].

4. Numerical results for some model equations.

4.1. One dimensional elliptic equation. We now study two cases of the one
dimensional elliptic equation with noise described in the previous section. We demon-
strate that for different forms of coefficient {σnk }, different rates of convergence are to
be obtained.

Case 1. Let the random variables {ηk} be iid, namely,

qkl = E(ηkηl) = δkl =

{
1 if k = l,

0 if k �= l,
σk =

1

k3/2
, σnk =

{
σk, k ≤ n,

0, k > n.

Then

∥∥∥−→σn − 'σ
∥∥∥
Q−1

=

( ∞∑
k=n+1

(
1

k3/2
· 1
k

)2
)1/2

≤ 1

n2
.

From Lemma 3.1, we have, for some generic constant C > 0,

E‖Ẇn‖L2
≤ C

( ∞∑
k=1

(σnk )
2

)1/2

≤ C

( ∞∑
k=1

1

k3

)1/2

= C.

In other words, Ẇn ∈ L2(0, 1); this means that, in Theorem 3.2, r = 1. If the
piecewise linear finite element basis is used, and g ∈ L2(0, 1), the following error
estimate yields

E(‖u− uhn‖L2
) ≤ C(n−2 + h2‖g + Ẇn‖L2

) ≤ C h2 .



1436 QIANG DU AND TIANYU ZHANG

Thus, asymptotically, we have a second order convergence rate in h for the expectation
of the L2 error.

Case 2. Now let us consider using different coefficients {σnk } which yield high
order convergence results for high order finite element spaces. Still let

qkl = E(ηkηl) = δkl =

{
1 if k = l,

0 if k �= l,
σk =

1

k7/2
, σnk =

{
σk, k ≤ n,

0, k > n.

Then

∥∥∥−→σn − 'σ
∥∥∥
Q−1

=

( ∞∑
k=n+1

(
1

k7/2
· 1
k

)2
)1/2

≤ 1

n4
.

From Lemma 3.1, we have

E‖Ẇn‖H2 ≤ C

( ∞∑
k=1

(σnkk
2)2

)1/2

≤ C

( ∞∑
k=1

(
1

k7/2
k2

)2
)1/2

= C.

In other words, Ẇn ∈ H2(0, 1); this means that, in Theorem 3.2, r = 3. If we use
the cubic spline finite element basis, and assume that g is bounded in H2(0, 1), the
following error estimate yields

E(‖u− uhn‖L2) ≤ C(n−4 + h4‖g + Ẇn‖H2) ≤ C h4

for some constant C that depends only on g. Note that such a high order cannot be
achieved if we have adopted a white noise [1].

The finite element method (3.10) is implemented for (3.1) with g(x) = 2+bx−bx2

and the noise Ẇ as defined in section 3. The exact solution of (3.1) is given by
u = ud + us, where ud and us correspond to the deterministic and the stochastic
parts. Moreover, ud(x) = x(1− x) and

us(x) =

∞∑
k=1

√
2σk

b+ (kπ)2
ηk sin kπx .

The numerical solution is calculated for n = 4, 8, 16, 32, 64, 128 (h = 1/n being the
length of the subintervals). For each n, 10,000 runs are performed with different
samples of the noise, ‖u−uhn‖L2 is calculated for each sample, and the averaged value
E‖u− uhn‖L2 is calculated.

For Case 1, we let b = 0.5, σk = k−3/2, and we use the continuous piecewise
linear finite element space. The left picture in Figure 4.1 gives the decay of error.
The horizontal axis denotes log10 n, and the vertical axis denotes log10 E‖u− uhn‖L2 .
The slope of the error curve is nearly −2, in agreement with the theoretical result.

As for Case 2, we let b = 0.5, σk = k−7/2, and we use the finite element space
consisting of piecewise cubic splines. The right picture in Figure 4.1 gives the decay
of error. The slope of the error curve is now nearly −4, also in agreement with the
theoretical result.

4.2. Parabolic equation in one spatial dimension. Now consider a special
case of parabolic equation described in the previous section. Let

σk(t) =
cos t

k3
, σnk (t) =

{
σk(t), k ≤ n,

0, k > n,
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Fig. 4.1. The error decay with σk = k−3/2 and k−7/2.

and the upper bounds αnk , β
n
k , γ

n
k given in Theorem 3.3 can be chosen as

αnk =

{
0, k ≤ n,
1
k3 , k > n,

βnk = γnk =
1

k3
.

Backward-Euler in time with the piecewise linear finite element in space approxima-
tion (3.24) was tested for the numerical solution of problem (3.14) with

g(t, x) = 10(1 + b)x2(1− x)2et − 10(2− 12x+ 12x2)et .

We use b = 0.5 and T = 1 . In the absence of noise term, the exact solution is

u(t, x) = ud(t, x) = 10etx2(1− x)2 , with u0(x) = 10x2(1− x)2 .

The exact value of Eu(1, 0.5) is about 1.699.
In theory, using the above definitions, we have

∞∑
k=1

(αnk )
2

2(kπ)2
≤

∞∑
k=n+1

1

k8
≤ 1

n7
= h7,(4.1)

∞∑
k=1

k4(βnk )
2 + (γnk )

2) ≤
∞∑
k=1

(
1

k2
+

1

k3

)
≤ C,(4.2)

∞∑
k=1

(βnk )
2 ≤

∞∑
k=1

(kβnk )
2 ≤ C .(4.3)

From Theorems 3.3 and 3.4, we have

E‖u− un‖L2
≤ c(h7 + (∆t)2)1/2,

E‖un(tm, ·)− uhn(tm, ·)‖L2 ≤ c

(
1 + log

tm
∆t

)1/2(
(∆t)1/2 +

h2

(∆t)1/2

)
.

Hence,

E‖u(tm, ·)− uhn(tm, ·)‖L2
≤ c

(
1 + log

tm
∆t

)1/2(
(∆t)1/2 +

h2

(∆t)1/2

)
.(4.4)
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Table 4.1
E(uhn(1, 0.5)) and E(uhn(1, 0.5))

2 by the backward-Euler finite element scheme.

h ∆t E(uhn(1, 0.5)) E(uhn(1, 0.5))
2 E(ηn/2,I) var(ηn/2,I)

.25 .25 1.5268 2.3495 .0061 .9830

.25 .125 1.6147 2.6301 -.0217 1.0141

.25 .0625 1.6599 2.7826 -.0166 1.0079

.25 .03125 1.6821 2.8586 .0083 .9908

.25 .01563 1.6976 2.9142 -.0086 .9750

.125 .25 1.5198 2.3283 .0045 .9697

.125 .125 1.6071 2.6059 -.0014 1.0097

.125 .0625 1.6529 2.7569 -.0238 .9780

.125 .03125 1.6777 2.8432 .0002 .9829

.125 .01563 1.6912 2.8910 .0006 .9687

.0625 .25 1.5193 2.3263 -.0006 1.0182

.0625 .125 1.6043 2.5963 -.0069 .9886

.0625 .0625 1.6519 2.7539 .0124 .9852

.0625 .03125 1.6758 2.8372 -.0110 .9908

.0625 .01563 1.6888 2.8825 .0069 .9962

.03125 .25 1.5198 2.3277 -.0163 .9650

.03125 .125 1.6044 2.5971 -.0217 .9527

.03125 .0625 1.6503 2.7497 -.0071 .9984

.03125 .03125 1.6731 2.8281 .0044 .9765

.03125 .01563 1.6855 2.8724 -.0101 1.0479

.01563 .25 1.5181 2.3230 -.0166 .9918

.01563 .125 1.6067 2.6041 -.0134 .9667

.01563 .0625 1.6500 2.7482 -.0114 1.0067

.01563 .03125 1.6749 2.8336 -.0170 1.0365

.01563 .01563 1.6851 2.8704 -.0067 .9872

In the actual implementation, different values of ∆t and h were used. For each pair
{∆t, h}, 10,000 runs are performed with different sample of noise, and the ensemble
averages are calculated. The numerical results of E(uhn(1, 0.5)) and E(uhn(1, 0.5))

2

are presented in Table 4.1.
The computational results converge as ∆t and h approach to 0. From the table,

it can be observed that, for fixed h, the results converge faster as ∆t decreases, but
for fixed ∆t the convergence is less transparent as h decreases. This can be explained
by the error estimate (4.4), which is bounded by (∆t)1/2 + h2(∆t)−1/2. If ∆t and h
are of the same order, the ∆t term dominates in the estimate.

The numerical accuracy is also affected by the random number generators used
in the different realizations. (The particular generator used in our implementation
is obtained using MATLAB.) For comparison, the last two columns of Table 4.1 list
the mean and variance of ηn/2,I . We see that, for the relatively larger magnitude of

E(ηn/2,I), the error of E(uhn(1, 0.5)) turns out to be larger as well.
Additional numerical examples can be found in [36].

5. Conclusion. In this paper, the numerical approximations of SDEs with dif-
ferent noise realizations are considered. In many instances of stochastic modeling, the
noises may indeed be represented in various forms, with some emphasis on the correla-
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tion in space and time, while others exhibit the correlation in frequency or spectrum.
Our study indicates that the accuracy of the numerical approximation depends on the
form of the underlying noise. Both rigorous error estimates and experimental results
are provided in our paper.

Throughout our discussion, simple linear equations in one space dimension are
used for the purpose of illustrations. We note that much of our consideration can be
generalized to stochastic elliptic and parabolic equations in higher space dimensions.
For the case of a simple two dimensional square domain, related discussions have been
provided in [36]. By confining the theoretical analysis to the one space dimension here,
some tedious technical details and complicated expressions are avoided.

Naturally, it will be very interesting to study the similar problems for nonlinear
SDEs, which actually motivated the present investigation. It is hopeful that such
studies may lead to a better understanding of the behaviors of the discretization error
and the modeling error in conducting numerical simulations of nonlinear stochastic
dynamics for practical problems [9, 18, 28].

Appendix.
Proof of Theorem 3.3.
Step 1. First, we verify the existence of such {σnk (t)}. Since {σ′

k(t)} are continuous
on interval [0, T ], by the Weierstrass approximation theorem, for an arbitrary sequence
αnk , where n is a fixed number, k = 1, 2, . . . , there exists a sequence of polynomial
{Pnk (t)} such that

|σ′
k(t)− Pnk (t)| ≤

αnk
T
∀t ∈ [0, T ] .

Let

σnk (t) =

∫ t

0

Pnk (s)ds+ σk(0),

and we have

|σk(t)− σnk (t)| =
∣∣∣∣
∫ t

0

(σ′
k(s)− Pnk (s))ds

∣∣∣∣ ≤ αnk .

By the triangle inequality,

|σnk (t)| ≤ |σk(t)|+ αnk ≤ βk + αnk = βnk ,

|σnk ′(t)| = |Pnk (t)| ≤ |σ′
k(t)|+

αnk
T
≤ γk +

αnk
T

= γnk .

Step 2. Let ēn(t, x) = u(t, x)− un(t, x) and

F (t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y),

ēn = E

∫ T

0

∫ 1

0

ē2n(t, x)dxdt,

F̄n = E

∫ T

0

∫ 1

0

F 2(t, x)dxdt.
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Subtracting (3.18) from (3.15), and applying similar manipulation as that in section
3, we get

E‖u− un‖2L2
= ēn ≤ F̄n

(1− λ̄)2
.

To estimate F̄n, we introduce an intermediate noise form

∂2Wn

∂t∂x
=

∞∑
k=1

σnk (t)η̇k(t)ψk(x),

that is, a noise discretized only in the x-direction. Let

F1(t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)dW (s, y)−
∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y),

F2(t, x) =

∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y)−
∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y);

then

F (t, x) = F1(t, x) + F2(t, x),

F̄n = E

∫ T

0

∫ 1

0

F 2(t, x)dxdt ≤ 2

(
E

∫ T

0

∫ 1

0

F 2
1 (t, x)dxdt+ E

∫ T

0

∫ 1

0

F 2
2 (t, x)dxdt

)
.

Taking advantage of the orthogonality of {sin kπx} on the interval [0, 1], we have

F1(t, x) =

∞∑
k=1

√
2 sin kπxe−(kπ)2t

∫ t

0

(σk(s)− σnk (s))e
(kπ)2sdηk(s).

Since ηk(t) is the standard Wiener process,

E

∫ T

0

∫ 1

0

F 2
1 (t, x)dxdt =

∞∑
k=1

∫ T

0

e−2(kπ)2t

(∫ t

0

e2(kπ)2s(σk(s)− σnk (s))
2ds

)
dt

≤
∞∑
k=1

(αnk )
2

∫ T

0

e−2(kπ)2t

(∫ t

0

e2(kπ)2sds

)
dt ≤ C1

∞∑
k=1

(αnk )
2

2(kπ)2
.

Using

ηki =
1√
∆t

∫ ti+1

ti

dηk(t),

we have

F2(t, x) =

∞∑
k=1

ψke
−(kπ)2t

[∫ t

0

e(kπ)2sσnk (s)dηk(s)

−
∫ t

0

e(kπ)2sσnk (s)

I∑
i=1

1√
∆t

ηkiχi(s)ds

]

=

∞∑
k=1

ψke
−(kπ)2t

[
It−1∑
i=1

∫ ti+1

ti

(
e(kπ)2sσnk (s)−

1

∆t

∫ ti+1

ti

e(kπ)2s̃σnk (s̃)ds̃

)
dηk(s)

+

∫ t

tIt

(
e(kπ)2sσnk (s)−

1

t− tIt

∫ t

tIt

e(kπ)2s̃σnk (s̃)ds̃

)
dηk(s)

]
,
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where It is the integer such that tIt < t ≤ tIt+1 . Then

E

∫ T

0

∫ 1

0

F 2
2 (t, x)dxdt

=

∞∑
k=1

∫ T

0

e−2(kπ)2t

(∆t)2

(
It−1∑
i=1

∫ ti+1

ti

(∫ ti+1

ti

(e(kπ)2sσnk (s)− e(kπ)2s̃σnk (s̃))ds̃

)2

ds

+

∫ t

tIt

(
∆t

t− tIt
)2
(∫ ti+1

ti

(e(kπ)2sσnk (s)− e(kπ)2s̃σnk (s̃))ds̃

)2

ds

)
dt.

For s, s̃ ∈ [ti, ti+1], using the smoothness assumption on σk(t), we get

|e(kπ)2sσnk (s)− e(kπ)2s̃σnk (s̃)|
≤ |e(kπ)2s − e(kπ)2s̃|σnk (s) + e(kπ)2s̃|σnk (s)− σnk (s̃)|
≤ (kπ)2e(kπ)2ti+1σnk (s)∆t+ e(kπ)2ti+1σnk

′(ξi)∆t

≤ e(kπ)2ti+1((kπ)2βnk + γnk )∆t.

Here, ti ≤ ξi ≤ ti+1. Without loss of generality, we assume t = tIt+1; then

E

∫ T

0

∫ 1

0

F 2
2 (t, x)dxdt

≤
∞∑
k=1

∫ T

0

e−2(kπ)2t

[
It∑
i=1

∫ ti+1

ti

1

(∆t)2
(e(kπ)2ti+1((kπ)2βnk + γnk )(∆t)2)2ds

]
dt

≤ C
∞∑
k=1

∫ T

0

e−2(kπ)2t

[
It∑
i=1

∫ ti+1

ti

(e2(kπ)2ti+1((kπ)4(βnk )
2 + (γnk )

2)(∆t)2ds

]
dt

≤ C
∞∑
k=1

It∑
i=1

∫ T

0

e−2(kπ)2te2(kπ)2ti+1dt(k4(βnk )
2 + (γnk )

2)(∆t)3

≤ C

∞∑
k=1

It∑
i=1

(k4(βnk )
2 + (γnk )

2)(∆t)3

≤ C

∞∑
k=1

(k4(βnk )
2 + (γnk )

2)(∆t)2.

The last inequality comes from
∑It
i=1, 1 ≤ I = 1/∆t. The theorem is now

proved.
Proof of Lemma 3.3. In general, by applying the same technique as in the proof

of Theorem 3.1, we may first estimate

E

∫ t

0

∫ 1

0

u2
n(t, x)dxdt ≤

c

1− λ̄
E

∫ t

0

∫ 1

0

[(Gt(x, y)u0(y))
2 + (Gt−s(x, y)g(s, y))2]dyds

+
c

1− λ̄
E

∫ t

0

∫ 1

0

(∫ t

0

∫ 1

0

Gt−s(x, y)dWn(s, y)

)2

dxdt.
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Next, one may differentiate (3.18) to get

∂un
∂t

(t, x) = −
∫ t

0

∫ 1

0

∂

∂t
Gt−s(x, y)bun(s, y)dyds+

∫ 1

0

∂

∂t
Gt(x, y)u0(y)dy

+

∫ t

0

∫ 1

0

∂

∂t
Gt−s(x, y)g(s, y)dyds+

∫ t

0

∫ 1

0

∂

∂t
Gt−s(x, y)dWn(s, y).

Then one may estimate E
∫ ti
ti−1

∫ 1

0
(∂un

∂t (t, x))
2dxdt using the above equation. Simi-

larly, one may estimate E
∫ 1

0
(∂

2un

∂x2 (t, x))2dxdt.
Since we have assumed that b is a constant, we now provide a simpler estimate

which, in spirit, is similar to the estimate derived from the integral formulation.

Let g(t, x) =
∑
k gk(t)ψk(x), un(t, x) =

∑
k u

(n)
k (t)ψk(x), u0(x) =

∑
k ukψk(x);

then

∂

∂t
u

(n)
k (t) + (k2π2 + b)u

(n)
k (t) = gk(t) +

σnk (t)√
∆t

∑
i

ηkiχi(t).

Thus, for t ∈ [ti−1, ti),

u
(n)
k (t) = e−((kπ)2+b)tuk +

∫ t

0

e−((kπ)2+b)(t−s)gk(s)ds

+

i∑
j=1

∫ t

0

e−((kπ)2+b)(t−s)σ
n
k (s)√
∆t

ηkjχj(s)ds.

This leads to

u
(n)
k (t) = e−((kπ)2+b)tuk +

∫ t

0

e−((kπ)2+b)(t−s)gk(s)ds

+

i∑
j=1

ηkj√
∆t

∫ t∗j

tj−1

e−((kπ)2+b)(t−s)σnk (s)ds,

where t∗l = tl for l < i and t∗i = t. It follows that

E
[
u

(n)
k (t)

]2
≤ cu2

ke
−2((kπ)2+b)t + cT

∫ t

0

e−2((kπ)2+b)(t−s)g2
k(s)ds

+
c

∆t

i∑
j=1

(∫ t∗j

tj−1

e−((kπ)2+b)(t−s)σnk (s)ds

)2

for some constant c.
Since u0 ∈ C2[0, 1] and g ∈ C2([0, T ]× [0, 1]), we have, for some constant c > 0,

∑
k

(kπ)4
{
u2
ke

−2((kπ)2+b)t +

∫ t

0

e−2((kπ)2+b)(t−s)g2
k(s)ds

}
≤ c.
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Using the bounds on σnk and the fact that b is a small constant, we have

i∑
l=1

(∫ t∗l

tl−1

e−((kπ)2+b)(t−s)σnk (s)ds

)2

≤ c(βnk )
2

∫ t

0

e−2((kπ)2+b)(t−s)ds

≤ c(βnk )
2

(kπ)2 + b
.

Thus, for small b, we have

E‖un(τ, ·)‖H2 ≤ ( E‖un(τ, ·)‖2H2)1/2

≤ c

(
1 +

1

∆t

∑
k

k2(βnk )
2

)1/2

for some constant c > 0. This proves the inequality (3.27).
For (3.26), we have

∂

∂t
u

(n)
k (t) = −((kπ)2 + b)u

(n)
k (t) + gk(t) +

σnk (t)√
∆t

∑
i

ηkiχi(t).

So,

E

∫ ti

ti−1

(
∂

∂t
u

(n)
k (s)

)2

ds ≤ cE

∫ ti

ti−1

((k2π2+b)u
(n)
k (s))2ds+c

∫ ti

ti−1

[g2
k(s)+(σnk (s))

2]ds.

Thus,

E

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥
L2

dτ ≤
(
∆tE

∫ ti

ti−1

∥∥∥∥∂un∂t (τ, ·)
∥∥∥∥

2

L2

dτ

)1/2

≤ c

(
(∆t)2 +∆t

∑
k

k2(βnk )
2 +
∑
k

(∆tβnk )
2

)1/2

.

This proves (3.26).
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Abstract. We describe a new iterative method, dynamic iteration using reduced order models
(DIRM), for simulation of large scale modular systems using reduced order models that preserve the
interconnection structure. This method may be compared to the waveform relaxation technique;
however, unlike DIRM, waveform relaxation does not take advantage of model reduction techniques.
The DIRM method involves simulating in turn each subsystem connected to model reduced versions
of the other subsystems. The data from this simulation is then used to update the reduced model for
that particular subsystem. We provide analytical results on convergence and accuracy of the DIRM
method as well as numerical examples that demonstrate the success of DIRM and verify the analysis.

Key words. large scale systems, model reduction, dynamic iteration, proper orthogonal decom-
position
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1. Introduction. Very large scale systems of differential and differential alge-
braic equations such as the U.S. power grid, very large scale integrated (VLSI) circuits,
chemical reactors, and weather systems present challenges in computing. Usually
such large scale systems consist of many interacting subsystems, which may in some
problems be governed by very different physical laws. On such systems conventional
methods of direct numerical integration of the full system may not be feasible without
massive computing resources.

An iterative approach known as waveform relaxation (WR), where smaller subsys-
tems are simulated separately and then the couplings are accounted for through itera-
tion, was developed by researchers for the simulation of VLSI circuits. See Lelarasmee,
Ruehli, and Sangiovanni-Vincentelli [7], Miekkala and Nevanlinna [9], and Miekkala
[8] for details. The WR method is a form of dynamic iteration in the sense that the
variable being iterated is a function (the entire solution waveform for a given time
interval) and not a vector. This method has subsequently been applied by researchers
to PDEs of parabolic and hyperbolic types [2]. Such a modular approach in principle
has the advantage that it facilitates parallel computation, exploits the multirate na-
ture of some problems, and offers the potential of using different numerical techniques
for different subsystems. However, the WR technique has not become the mainstay
in application areas. This is primarily due to the poor convergence properties of WR.

Another way to deal with models that are too complex is via model reduction.
Several model reduction techniques have been studied by researchers in various fields.
Balanced truncation has been studied by the control community (see Zhou and Doyle
[15] and Lall, Marsden, and Glavaski [6], for instance), proper orthogonal decompo-
sition (POD) has been applied in the study of turbulence (see Holmes, Lumley, and
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Berkooz [5]), cascading failures in power grids (Parrilo et al. [11]), and control of
compressors (Glavaski, Marsden, and Murray [3]), etc., and selective modal analysis
has been developed by researchers in the electrical power field (Perèz-Arriaga et al.
[12]), to name a few.

In this paper we present a method that combines the idea of dynamic iteration
with the use of reduced order models. Our method also seeks to remedy some of the
shortcomings of WR. Our approach, termed dynamic iteration using reduced order
models (DIRM), involves simulation of each subsystem in turn while it is connected
to reduced order models of the rest of the subsystems. The simulation results are then
used to update the reduced order model for that particular subsystem. If the reduced
order models are small enough, then the combination of an unreduced subsystem
with the rest of the reduced subsystems results in a system small enough not to
pose insurmountable computational difficulties. In principle any model reduction
method that uses data from trajectories could be used in this iteration. In this
paper we use POD (also known as Karhunen–Loève decomposition) for the model
reduction.

Even though theoretically the WR method has good asymptotic convergence, in
practice there may be large initial overheads. For example, consider a one-dimensional
(1D) PDE with the spatial domain divided into 10 subsystems of adjacent regions.
It will take nine iterations before the first subsystem “sees” the last subsystem. In
the DIRM method, by contrast, every subsystem is connected to all other (reduced
versions of) subsystems, and one may not expect such overheads. This is possible
only because of the fact that DIRM incorporates reduced order models.

This paper is organized as follows. In section 2 we review the POD method
of model reduction and comment on its application to modular systems. In section
3 we describe DIRM in detail and also provide a brief account of the WR tech-
nique. In section 4 we provide an analysis of the DIRM method as applied to a
linear time invariant system consisting of two subsystems and present results on the
accuracy and convergence behavior of DIRM. Section 5 describes several numerical
examples. These include a nonlinear power grid simulation and some reaction dif-
fusion problems described by PDEs, with comparison to WR. We also give some
examples highlighting certain special cases, which include situations where DIRM has
difficulty converging as predicted by the analysis, and show how to modify DIRM
to fix this problem. Finally, in section 6 we present conclusions and discuss future
research.

2. Model reduction using POD. The POD technique for model reduction
consists of first finding a subspace in the full phase space of a given dynamical system
and then constructing an approximating dynamical system in that subspace. The
original dynamical system may be nonlinear, and in that case the resulting lower
dimensional model will also typically be nonlinear.

2.1. POD. POD, also known as Karhunen–Loève decomposition or principal
component analysis, provides a method for finding the best approximating subspace to
a given set of data. Originally POD was used as a data representation technique. For
model reduction of dynamical systems POD may be used on data points obtained from
system trajectories obtained via experiments, numerical simulations, or analytical
derivations. For more information see Rathinam and Petzold [13], Holmes, Lumley,
and Berkooz [5], Moore [10], Lall, Marsden, and Glavaski [6], Glavaski, Marsden, and
Murray [3], and references therein.
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Given a set of data points x(α) ∈ R
n, POD seeks a subspace S ⊂ R

n so that the
total square distance

D =

N∑
α=1

∥∥∥x(α) − ρSx(α)
∥∥∥2

,

where ρS is the orthogonal projection onto the subspace S, is minimized. The norm
considered is the 2-norm. (Thus we assume that the phase space comes equipped with
a notion of inner product.) The solution to this problem may be stated in terms of
the correlation matrix defined by

R =

N∑
α=1

x(α)
(
x(α)

)T
.

Note that R is n× n and symmetric positive semidefinite. Let λ1 ≥ λ2 · · · ≥ λn ≥ 0
be the ordered eigenvalues of R. Then the minimum value of D over all k(≤ n)
dimensional subspaces S is given by

∑n
j=k+1 λj [5]. In addition, the S that minimizes

D is the invariant subspace corresponding to the eigenvalues λ1, . . . , λk. In practice
one need not compute R. Instead, it is efficient to use the n × N matrix X whose
columns are x(α). Then

√
λ1, . . . ,

√
λn are the singular values of X (assuming n ≤ N),

and S is the span of the left singular vectors of X corresponding to k the largest
singular values. Note that R = XXT .

Often it may be best to find an affine subspace as opposed to a linear subspace.
This requires first to find the mean value of the data points

x̄ =
1

N

N∑
α=1

x(α)

and then construct the covariance matrix R̄ given by

R̄ =

N∑
α=1

(
x(α) − x̄

)(
x(α) − x̄

)T
.

Let S0 be the invariant subspace of the k largest eigenvalues of R̄. Then the best
approximating affine subspace S passes through x̄ and is obtained by shifting S0 by
x̄. Algebraically the projection onto the subspace S is given by

z = ρ(x− x̄),(2.1)

where z ∈ R
k are coordinates in the subspace S, x ∈ R

n are coordinates in the original
coordinate system in R

n, and the matrix ρ of the projection consists of row vectors
φTi (i = 1, . . . , k), where φi are the unit eigenvectors corresponding to the largest
k eigenvalues of R̄. Note that given any point p ∈ S with coordinates z ∈ R

k the
coordinates x ∈ R

n of the same point in the original coordinate system are given by

x = ρT z + x̄.
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2.2. Galerkin projection. Having found the approximating subspace for our
system data, our next task is to construct a vector-field on this subspace that repre-
sents the reduced order model. This procedure is known as Galerkin projection and
has been widely used in reducing PDEs to ODEs by projecting onto appropriate basis
functions that describe the spatial variations in the solution. The procedure is ap-
plicable to any subspace; the subspace need not be obtained from the POD method.
See [5] for more details.

Suppose the original dynamical system in R
n is given by a vector-field f ,

ẋ = f(x, t).

Let S ⊂ R
n be the best k dimensional approximating affine subspace with projection

given by (2.1). A vector-field fa in the subspace S is constructed by the following rule:
for any point p ∈ S compute the vector-field f(p, t) and take the projection ρf(p, t)
onto the subspace S to be the value of fa(p, t). If z are the subspace coordinates of
p, then fa(z, t) = ρf(ρT z + x̄, t). Thus we obtain the following reduced model:

ż = fa(z, t) = ρf(ρT z + x̄, t).(2.2)

If we are solving an initial value problem with x(0) = x0, then in the reduced model
one has the initial condition z(0) = z0, where

z0 = ρ(x0 − x̄).
Hence the approximating solution x̂(t) in the original coordinates in R

n is given by

x̂(t) = ρT z(t) + x̄.

From the above it is easy to see that the approximating solution x̂(t) is the solution
to the following initial value problem:

˙̂x = Pf(x̂, t), x̂(0) = x̂0 = P (x0 − x̄) + x̄,(2.3)

where P = ρT ρ ∈ R
n×n is the matrix of the projection expressed in the original

coordinate system in R
n. Also note that x̂0 is just the projection of x0 onto the affine

subspace S.

2.3. Modular model reduction. In this paper modular system shall mean any
system expressed in the form

ẋi = fi(x1, . . . , xm, t), i = 1, . . . ,m.(2.4)

Note that any system ẋ = f(x, t) can be written in this form. All that is involved
is a partitioning of the states x = (x1, . . . , xm), where xi ∈ R

ni are vectors. This
partitioning may arise naturally from the physical interpretation of the system, as in
the power grid example presented later, or may be introduced according to some opti-
mal criteria for the simulation problem at hand. In this paper we consider situations
where the overall system is very large; hence we modularize the system by breaking
it into manageable smaller parts. The POD method can be made to “respect” the
partitioning by forming separate covariance matrices for each of the subsystem states
xi ∈ R

ni ,

R̄i =

N∑
α=1

(
x

(α)
i − x̄i

)(
x

(α)
i − x̄i

)T
,
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and computing separate projections ρi ∈ R
ki×ni that operate within the state space

of a subsystem. Thus the reduced model will be

żi = ρifi(ρ
T
1 z1 + x̄1, . . . , ρ

T
mzm + x̄m, t), i = 1, . . . ,m.

3. DIRM. In this section we describe the DIRM method of simulating a large
scale modular system of the form (2.4). We first describe the WR method in order to
put our method in context.

The basic idea behind WR as applied to system (2.4) may be explained as follows.
Start with an initial approximation for solutions of each of the subsystem trajectories:

x
(0)
1 (t), . . . , x

(0)
m (t). At the kth iteration, simulate each subsystem separately:

ẋ
(k)
i = fi(x

(k−1)
1 (t), . . . , x

(k−1)
i−1 (t), x

(k)
i , x

(k−1)
i+1 (t), . . . , x(k−1)

m (t), t), i = 1, . . . ,m.

This is a simplified explanation of the method. For a detailed exposition and analysis
we refer to [7], [9], and [8]. It has been shown that this iteration converges for ODE
systems in finite interval simulations under some mild conditions. However, WR may
suffer from slow convergence. Overlapping techniques are often used to speed up the
convergence [8].

The DIRM method also simulates each subsystem in turn, but not in isolation.
Instead, the unreduced model of the subsystem is connected to reduced order models
of the other subsystems. If the reduced order models are small enough, then the overall
size of the resulting system is still of manageable dimensions. Consider the modular
system (2.4) with initial conditions xi(0) = xi,0 and suppose we are interested in a
simulation interval [0, T ]. The DIRM method is described as follows.

Start with some initial reduced model for each subsystem. In the POD approach
a reduced model for subsystem i is characterized by the projection matrix ρi and

the mean data value x̄i. Let the initial reduced models be (ρ
(0)
i , x̄

(0)
i ). One way to

generate these is to simulate each subsystem in isolation (in the given interval), setting
the states of the other subsystems to some constant values, for instance, the initial
conditions. In other words, simulate the following equations:

ẋi = fi(x1,0, x2,0, . . . , xi−1,0, xi, xi+1,0, . . . , xm,0, t), i = 1, . . . ,m,

with initial conditions xi = xi,0. The resulting solutions xi(t) may be used to compute
the covariance matrices R̄i:

x̄i =
1

T

∫ T

0

xi(t)dt,

R̄i =

∫ T

0

(xi(t)− x̄i)(xi(t)− x̄i)T dt.
(3.1)

At the jth step in the iteration we have the reduced models from the previous

step (ρ
(j−1)
i , x̄

(j−1)
i ). We also have the trajectories x

(j−1)
i (t), t ∈ [0, T ], which were

used in constructing these reduced models. Now for i = 1, . . . ,m connect the unre-
duced subsystem i with the reduced versions of all other subsystems and simulate the
resulting system

ẋi = fi(X, t),

żl = ρ
(j−1)
l fl(X, t), l = 1, . . . , i− 1, i+ 1, . . . ,m,

(3.2)
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where X is the following list of vector arguments:

X =
(
ρ
(j−1)
1

)T
z1 + x̄

(j−1)
1 , . . . ,

(
ρ
(j−1)
i−1

)T
zi−1 + x̄

(j−1)
i−1 ,

xi,
(
ρ
(j−1)
i+1

)T
zi+1 + x̄

(j−1)
i+1 , . . . ,

(
ρ(j−1)
m

)T
zm + x̄(j−1)

m .

Use the resulting trajectory for the ith subsystem x
(j)
i (t) to compute an updated

reduced order model for the ith subsystem (ρ
(j)
i , x̄

(j)
i ). The iteration is terminated

when

sup
t∈[0,T ]

{
‖x(j)

i (t)− x(j−1)
i (t)‖

}
≤ tol , i = 1, . . . ,m,(3.3)

where tol is some specified tolerance.

Remark 3.1. In (3.2) the trajectories z
(j)
l (t) correspond to reduced models, while

the trajectory x
(j)
i (t) corresponds to the full model. In situations when the coupling

between subsystems is “weak,” x
(j)
i (t) will be more accurate than z

(j)
l (t). Since the

reduced models are computed directly from x
(j)
i (t), the simulation for the next itera-

tion j+1 is directly affected by x
(j)
i (t) and only indirectly by z

(j)
l (t). This helps keep

the effect of errors due to model reduction small. Also note that the final solution
comes directly from x

(j)
i (t), and the z

(j)
l (t) enter only indirectly.

For any technique involving reduced order models, accuracy is an important is-
sue. Since reduced order models are computed from the trajectories obtained from
the given initial value problem, when the coupling dynamics is not very strong the
situation for DIRM is reasonably close to the circumstances under which the accuracy
of the POD method could be expected to be as good as possible as indicated by the
error analysis of POD in [13].

We have observed from various examples, linear and nonlinear, that the DIRM
method generally converges. We have also found examples where it fails to converge,
but on those occasions breaking up the time interval [0, T ] into smaller ones [ti, ti+1],
i = 0, . . .M − 1, where t0 = 0 and tM = T and running the algorithm successively in
each interval achieves convergence. It is known that WR also converges better when
the interval length is smaller. However, of course there is an optimal length beyond
which making the intervals smaller results in higher computational effort.

Remark 3.2. The method of model reduction we use in this paper is POD,
but in the overall iteration of DIRM one could in principle replace POD with any
model reduction scheme that depends on simulation data. (Methods such as balanced
truncation in their original form cannot be used, since they depend only on the model
and not on a given set of system trajectories.)

4. Analysis for linear time invariant systems with two subsystems. The
iteration operator associated with DIRM is nonlinear even if the system of ODEs
is linear. This significantly complicates the convergence analysis of DIRM. In this
section we provide an analysis of the DIRM method for linear time invariant systems
consisting of two subsystems. We also assume that in the model reduction via POD
we fit the best approximating linear subspace instead of the more general method
of fitting the best approximating affine subspace. Although these assumptions are
somewhat restrictive, the purpose of the analysis is to provide qualitative results
rather than sharp estimates of convergence rates.
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4.1. Description of Jacobi DIRM iteration operator for two subsys-
tems. Throughout the rest of section 4 we will be concerned with the case of two
subsystems each of dimension n unless stated otherwise. Suppose that the system con-
sists of states x = (x1, x2) with xi ∈ R

n for i = 1, 2, and that the system equations
are given by

ẋ1 = A1x1 +A12x2,

ẋ2 = A21x1 +A2x2,

x1(0) = x10, x2(0) = x20,

(4.1)

and that we are interested in the finite simulation interval [0, T ]. We shall also use the
compact notation ẋ = Ax, x(0) = x0 to denote the same system. We start with some
approximate solution x(0)(t) of the system as the initial (zeroth) iterate. For instance

we may use the solution of the decoupled systems given by x(0) = (x
(0)
1 , x

(0)
2 ) which

satisfies ẋ
(0)
1 = A1x

(0)
1 , x

(0)
1 (0) = x10 and ẋ

(0)
2 = A2x

(0)
2 , x

(0)
2 (0) = x20. Another

approach may be to use some reduced order model solution as x(0). Our analysis does
not depend on this initial choice.

Suppose we have trajectory x(α) at the αth iteration. Then we find best approxi-
mating k(≤ n) dimensional subspaces in R

n (k is fixed throughout the iterations) and

the corresponding orthogonal projections P
(α)
1 and P

(α)
2 (both are n × n matrices)

for the trajectories x
(α)
1 and x

(α)
2 , respectively. The next iterate x(α+1) is obtained

by forming partially reduced models. We combine unreduced system 1 with reduced

system 2 to obtain x
(α+1)
1 and similarly for x

(α+1)
2 . Then we find the projections

P
(α+1)
1 and P

(α+1)
2 corresponding to x

(α+1)
1 and x

(α+1)
2 . Thus if

P (α) =

[
P

(α)
1 0n×n

0n×n P
(α)
2

]

is the combined projection at the α th iteration, then x(α+1) is given by

ẋ
(α+1)
1 = A1x

(α+1)
1 +A12x̂

(α+1)
2 ,

˙̂x
(α+1)

2 = P
(α)
2 A21x

(α+1)
1 + P

(α)
2 A2x̂

(α+1)
2 ,

x
(α+1)
1 (0) = x10, x̂

(α+1)
2 (0) = P

(α)
2 x20

(4.2)

and

˙̂x
(α+1)

1 = P
(α)
1 A1x̂

(α+1)
1 + P

(α)
1 A12x

(α+1)
2 ,

ẋ
(α+1)
2 = A21x̂

(α+1)
1 +A2x

(α+1)
2 ,

x̂
(α+1)
1 (0) = P

(α)
1 x10, x

(α+1)
2 (0) = x20.

(4.3)

We can rewrite the above equations more compactly as

ẋ(α+1) = Adx
(α+1) +Aox̂

(α+1),

˙̂x
(α+1)

= P (α)Aox
(α+1) + P (α)Adx̂

(α+1),

x(α+1)(0) = x0, x̂(α+1)(0) = P (α)x0,

(4.4)
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where

P (α) =

[
P

(α)
1 0n×n

0n×n P
(α)
2

]
,(4.5)

Ad =

[
A1 0n×n

0n×n A2

]
,(4.6)

and

Ao =

[
0n×n A12

A21 0n×n

]
.(4.7)

Thus A = Ad +Ao.
Define the iteration operator I : L2([0, T ],R2n)→ L2([0, T ],R2n) as the one that

maps x(α) to x(α+1). We are interested in the fixed points of this operator and their
stability. It must be noted that I is essentially nonlinear and is the composition of two
operators I = S ◦ R. Here R : L2([0, T ],R2n) → P2 is the operator that maps x(α)

to P (α) ∈ P2, where P ⊂ R
n×n is the manifold of rank k ≤ n orthogonal projections,

and S : P2 → L2([0, T ],R2n) maps P (α) to x(α+1) by (4.4). Let X ∈ L2([0, T ],R2n)
be the true solution of the original system of equations,

Ẋ = AX, X(0) = x0.

Let x∗ ∈ L2([0, T ],R2n) be any fixed point of I, i.e., Ix∗ = x∗. We would like x∗

to be a good approximation for X. Our analysis will provide an upper bound on
‖x∗ −X‖. (All function norms are assumed to be 2-norms unless stated otherwise.)
We shall show that the error depends on the norm of Ao (the off-diagonal part), the
POD projection error ‖x∗ − P ∗x∗‖, and the growth/decay properties of eAt in the
time interval T .

Since I is nonlinear it is in general difficult to know if and how many fixed points
exist. It is also difficult to determine whether I is globally contractive. In fact I
is ill-defined for some trajectories x; this occurs when there are many k dimensional
subspaces that best fit x in the least-square sense. However, it is clear that when Ao
is the zero matrix, i.e., when the systems are decoupled, the iterations will converge
after one step, and in addition there is only one fixed point. Under mild regularity
conditions it can be shown that this fixed point will persist for nontrivial Ao, with
‖Ao‖ small enough, and that this fixed point will be stable. We will provide an
analysis that estimates the rate of convergence based on the linearization of I at a
fixed point x∗. We will show that the convergence rate depends on ‖Ao‖, norms of
the exponentials of A and some related matrices, the interval length T , the error
‖x∗−P ∗x∗‖, as well as on the sensitivity of P to perturbations in x at the fixed point
(x∗, P ∗) which can be related to the eigenvalues of the correlation matrix of the fixed
point trajectory x∗.

The rest of the subsections are organized as follows. In section 4.2 we summarize
all the important results of our analysis up front. In section 4.3 we derive an estimate
for the norm of the trajectory of a subsystem in a given finite time interval for a linear
time invariant system with time varying inputs. In section 4.4 we show that under
mild regularity conditions for sufficiently small values of ‖Ao‖ a fixed point exists.
In section 4.5 we derive an estimate for the error ‖x∗ − X‖, and in section 4.6 we
provide an estimate for convergence rate of I and a discussion of the various factors
that affect the convergence. Finally, in section 4.7 we study the behavior of DIRM
for arbitrarily small time intervals.
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4.2. Summary of the results of the analysis. Here we shall provide a sum-
mary of the results of the analysis from the rest of the subsections. The reader who is
not interested in mathematical details and proofs may read this subsection and then
skip to section 5 for numerical examples.

Result 1. For systems that are sufficiently diagonally dominant (‖Ao‖ small
enough), under further mild regularity conditions a fixed point x∗ of I exists. We do
not provide a quantitative bound on ‖Ao‖. This result is proven in section 4.4. See
Proposition 4.5. This result holds for an arbitrary (finite) number of subsystems with
possibly different dimensions.

Result 2. Assuming that a fixed point x∗ of I exists we obtain an upper bound
(4.21) for the error between the fixed point trajectory x∗ and the true solution tra-
jectory X of the system. This is shown in section 4.5. See Proposition 4.8.

Result 3. Assuming that a fixed point x∗ of I exists we obtain an upper bound
for ‖DI(x∗)‖ (the norm of the linearization of the iteration operator at the fixed
point). If ‖DI(x∗)‖ < 1, then DIRM will converge for all initial iterates x(0) that are
sufficiently close to x∗. See section 4.6 and Proposition 4.9.

Result 4. We show that in the case of systems for which a fixed point x∗ of DIRM
exists for all small enough T , that DIRM converges to x∗ for all sufficiently small T if
our initial iterate x(0) is sufficiently close to x∗. See section 4.7 and Proposition 4.11.

Remark 4.1. The proof of Results 2 and 3 (and hence that of 4) use the equation
(4.4) which holds for two subsystems. We expect “qualitatively” similar results to
hold for arbitrary number of subsystems but cannot make any rigorous claims without
further analysis. We have limited the analysis to two subsystems because an equation
equivalent to (4.4) is combinatorially very cumbersome for the case of more than two
subsystems.

The above results do not constitute a comprehensive convergence analysis. For
instance we cannot make conclusions about global convergence of DIRM. But these
results suggest that DIRM is likely to perform well if certain desirable conditions are
met. This has been verified by numerical experiments.

4.3. Finite horizon response of a subsystem. In our analysis of errors and
convergence rate we need to estimate the 2-norm of the trajectory of a subsystem
in a given finite time interval in response to a forcing term (input) and nontrivial
initial conditions for a linear time invariant system. In this section we introduce some
relevant notation as well as estimates that will be employed in our later analysis.

Consider the system

ẋ = Ax+ u

with input u(t) and initial condition x(0) = x0 in the interval [0, T ]. We are only
interested in u ∈ L2([0, T ],Rn). The solution is

x(t) =

∫ t

0

eA(t−τ)u(τ)dτ + eAtx0.

This may be written in the form

x = F (T ;A)u+G(T ;A)x0,(4.8)

where F (T ;A) : L2([0, T ],Rn) → L2([0, T ],Rn) and G(T ;A) : R
n → L2([0, T ],Rn)

are linear operators. It is in general very difficult to obtain sharp estimates for the
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norms of F (T ;A) and G(T ;A), and in fact this basically reduces to the problem of
estimating the norm of the matrix exponential. As such we shall not provide an
estimate, but we will remark that these norms grow exponentially with T at a rate
that is determined by the largest real part of any eigenvalue of A and in addition
depend on the nonnormality of A. See [4] for an estimate of the matrix exponential.
In our analysis we estimate ‖x‖ as

‖x‖ ≤ ‖F (T ;A)‖‖u‖+ ‖G(T ;A)‖‖x0‖,(4.9)

expressing the results in terms of ‖F (T ;A)‖ and ‖G(T ;A)‖.
Remark 4.2. Note that the norms on F (T ;A) and G(T ;A) are the appropriate

induced 2-norms.
We shall state and prove a simple lemma on F (T ;A) which will be used later.
Lemma 4.3. limT→0 ‖F (T ;A)‖ = 0.
Proof.

‖F (T ;A)u‖2 =

∫ T

0

∥∥∥∥
∫ t

0

eA(t−τ)u(τ)dτ
∥∥∥∥

2

dt

≤
∫ T

0

∫ t

0

‖eA(t−τ)‖2‖u(τ)‖2dτdt

≤ e2‖A‖T
∫ T

0

∫ T

0

‖u(τ)‖2dτdt
= Te2‖A‖T ‖u‖2.

So in fact, as T → 0, ‖F (T ;A)‖ = O(
√
T ).

Now we will focus on a system that consists of two subsystems and obtain an
estimate for one of the subsystems that relates the results with the norms of the
coupling terms (the off-diagonal blocks) as well as the subsystem properties (diagonal
blocks). Consider the coupled systems

ẋ1 = A1x1 + κA12x2 + u1,

ẋ2 = κA21x1 +A2x2 + u2,

x1(0) = x10, x2(0) = x20

(4.10)

in the interval [0, T ]. Here κ is a “coupling parameter” introduced to aid our analysis.
The final results are all evaluated at κ = 1. We will obtain an estimate for ‖x1‖.
Since xi(t) (for i = 1, 2) is a (vector-valued) entire function of κ we may write it as

xi(t;κ) =

∞∑
α=0

κα
∂αxi(t; 0)

α!
, i = 1, 2,

where ∂ = ∂
∂κ , and the series converges for all t and all κ. For α ≥ 1, ∂αxi(t; 0) are

given by the decoupled equations

∂αẋ1(t; 0) = A1∂
αx1(t; 0) + αA12∂

α−1x2(t; 0),

∂αẋ2(t; 0) = A2∂
αx2(t; 0) + αA21∂

α−1x1(t; 0),
∂αx1(0; 0) = 0, ∂αx2(0; 0) = 0.
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For the α = 0 case we have

ẋ1(t; 0) = A1x1(t; 0) + u1(t),
ẋ2(t; 0) = A2x2(t; 0) + u2(t),
x1(0; 0) = x10, x2(0; 0) = x20.

Let x1(. ;κ) denote the function, i.e., x1(. ;κ) ∈ L2([0, T ],Rn). Setting κ = 1, from
the above equations we can write x1(. ; 1) as

x1(. ; 1) =

∞∑
α=0

Fαx1(. ; 0) +

∞∑
α=0

FαF1A12x2(. ; 0),

where the operators F1, F2, F : L2([0, T ],Rn) → L2([0, T ],Rn) are defined by Fi =
F (T ;Ai), for i = 1, 2, and

F = F1A12F2A21.

Assuming ‖F‖ < 1 (which is true for sufficiently small T by Lemma 4.3) we obtain
an upper bound for ‖x1‖:

‖x1‖ ≤
∞∑
α=0

‖F‖α‖xd1‖+

∞∑
α=0

‖F‖α‖F1‖‖A12‖‖xd2‖,

where we have dropped the parameter κ altogether and xdi for i = 1, 2 denote the
solutions of the decoupled systems: ẋdi = Aixdi + ui, xdi(0) = xi0. Finally, after
simplifying the above bound, we obtain the result that, for sufficiently small T ,

‖x1‖ ≤ (‖F1‖‖u1‖+ ‖G1‖‖x10‖)
1− ‖F‖ +

‖F1‖‖A12‖(‖F2‖‖u2‖+ ‖G2‖‖x20‖)
1− ‖F‖ ,(4.11)

where we have used the estimates (4.9) for ‖xd1‖ and ‖xd2‖, and Gi = G(T ;Ai) for
i = 1, 2.

It is clear that the effect of subsystem 2 on subsystem 1 diminishes as the norm
of A12 diminishes.

Remark 4.4. It is interesting to note that the κ series expansion mentioned here
is intimately related to the Jacobi WR method. In fact the sequence of partial sums
of the series for κ = 1 is the same as the sequence of iterates obtained by applying the
Jacobi WR, i.e., WR with the splitting A = Ad + Ao, where Ad and Ao are defined
by (4.6) and (4.7), respectively, starting with isolated subsystem (couplings assumed
zero) solutions as the initial iterate.

4.4. Existence of fixed points of DIRM. In general it is hard to prove the
existence of fixed points of the operator I. However, under mild regularity conditions
we can show that a fixed point exists for sufficiently small ‖Ao‖. For this purpose
we shall consider the iteration operator J : P2 → P2 that maps P (α) to P (α+1).
Recalling that I = S ◦ R from section 4.1 we see that J = R ◦ S. It is easy to see
that x∗ is a fixed point of I if and only if P ∗ = Rx∗ is a fixed point of J (provided
Rx∗ is well defined) and similarly P ∗ is a fixed point of J if and only if x∗ = SP ∗ is
a fixed point of I.

Proposition 4.5. Consider a system with a given diagonal part Ad as defined
by (4.6). Let xd = (xd1, xd2) be the solution of the decoupled systems; ẋd = Adxd,
xd(0) = x0. Let ν

i
1 ≥ νi2 ≥ · · · ≥ νin ≥ 0 be the eigenvalues of the correlation matrices
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of xdi for i = 1, 2, respectively. If νik > νik+1, for both i = 1, 2, then the operator J
(and hence I) has a fixed point for all off-diagonal parts Ao (as defined by (4.7)) in
an open neighborhood of the origin in O ⊂ R

2n×2n. Here O is the 2n2 dimensional
subspace of all possible off-diagonal parts.

Proof. Write the system ẋ = Ax as

ẋ = Adx+Aox,

where Ad and Ao are defined according to (4.6) and (4.7), respectively. (Note that
A = Ad +Ao.) We shall treat Ad as fixed and consider Ao as variable.

A fixed point

P ∗ =

[
P ∗

1 0n×n
0n×n P ∗

2

]

of J must be such that P1 = P ∗
1 is a minimizer of e1(P1, x1) while holding x1 fixed,

and P2 = P ∗
2 is a minimizer of e2(P2, x2) while holding x2 fixed, where ei(Pi, xi) are

defined by

ei(Pi, xi) =

∫ T

0

(Pixi(t)− xi(t))T (Pixi(t)− xi(t))dt, i = 1, 2.

Hence by applying the first order optimality conditions we see that P = P ∗ must be
a root of the following system of equations:

∂e1
∂P1

(P1, S1(P2;Ao)) = 0,

∂e2
∂P2

(P2, S2(P1;Ao)) = 0,

(4.12)

where we have used the fact that x1 = x∗1 at the fixed point depends on P ∗
2 and

similarly x2 = x∗2 depends on P ∗
1 . Here the “solution operator” S1 maps P

(α)
2 to

x
(α+1)
1 according to the equations (4.2). The operator S2 is defined similarly. Note

that the operators S1 and S2 in general both depend on Ao.
Because of the coupling, it is hard to decide if the system (4.12) has a root in

general. However, when Ao = 0 ∈ O, the original system of ODEs are decoupled and
as such S1 and S2 are independent of P2 and P1, respectively. Hence the equations in
(4.12) are decoupled. Furthermore, our assumption that νik > νik+1 for both i = 1, 2
implies that the two errors e1 and e2 can be minimized uniquely and independently
according to the POD procedure. This proves the existence of a unique fixed point
P = P ∗(Ao = 0) of the operator J for Ao = 0. The second order optimality conditions

for unique minima imply that both ∂2e1
∂P 2

1
and ∂2e2

∂P 2
2

when evaluated at Ao = 0 and

P = P ∗(Ao = 0) have full rank.
Therefore it also follows that the Jacobian[

∂2e1
∂P 2

1

∂2e1
∂P1∂P2

∂2e2
∂P1∂P2

∂2e2
∂P 2

2

]

is full rank for Ao = 0 and P = P ∗(Ao = 0). Hence, by the implicit function
theorem, we conclude that a root P = P ∗(Ao) of (4.12) exists for all Ao in an open

neighborhood of 0 ∈ O. Furthermore, by continuity it follows that ∂2e1
∂P 2

1
and ∂2e2

∂P 2
2

have
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full rank for (Ao, P = P ∗(Ao)) for all Ao in some open neighborhood of 0 ∈ O. This
establishes P = P ∗(Ao) as a fixed point of J for all Ao in an open neighborhood of
0 ∈ O.

Corollary 4.6. Under similar assumptions Proposition 4.5 holds for an arbi-
trary number m of subsystems of possibly different dimensions.

Proof. Follow the same line of reasoning with (4.12) replaced by

∂ei
∂Pi

(Pi, Si(P1, . . . , Pi−1, Pi+1, . . . , Pm;Ao)) = 0, i = 1, . . . ,m.(4.13)

The key point is that the operator Si does not depend on Pi.
Remark 4.7. Ideally we would like to show that for any value of ‖Ao‖ a fixed

point exists for sufficiently small T . The intuition is that when T gets arbitrarily
small, the trajectories are increasingly well approximated by straight lines. However,
we do not have a proof yet.

4.5. Accuracy of DIRM. We will introduce a few new variables to facilitate
our analysis. Given P (α), x(α), x̂(α), and X as defined in section 4.1, define v(α), w(α),
and ξ(α) as follows:

v(α) = P (α−1)x(α) − x(α),(4.14)

w(α) = x̂(α) − P (α−1)x(α),(4.15)

and

ξ(α) = x(α) −X.(4.16)

We may think of v(α) as a “difference” trajectory that measures the gap between
x(α) and its projection P (α−1)x(α) and w(α) as a difference trajectory that measures
the gap between the reduced trajectory x̂(α) and P (α−1)x(α). The trajectory ξ(α) is
the error between the true solution and the DIRM iterate at step α.

Suppose x∗ is a fixed point of I. Assume P ∗ = Rx∗ is well defined. Let x̂∗, v∗, w∗,
and ξ∗ be the corresponding fixed point trajectories. Note that the error in using
DIRM is ξ∗. We will provide an estimate of ‖ξ∗‖. Substituting v(α) = v∗, P (α−1) =
P ∗, and x(α) = x∗ in (4.14), we obtain

v∗ = P ∗x∗ − x∗.

Similarly we obtain w∗ = x̂∗−P ∗x∗ from (4.15). Note that these two relations imply
that x̂∗ − x∗ = v∗ + w∗. Differentiating w∗ = x̂∗ − P ∗x∗ with respect to time, and
using (4.4), we obtain

ẇ∗ = P ∗Adx̂∗ + P ∗Aox∗ − P ∗Adx∗ − P ∗Aox̂∗

= P ∗(Ad −Ao)(x̂∗ − x∗).

Hence we obtain the following differential equation for w∗:

ẇ∗ = P ∗(Ad −Ao)w∗ + P ∗(Ad −Ao)v∗, w∗(0) = 0.(4.17)
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Similarly (4.16) implies ξ∗ = x∗ − X. Differentiating and using (4.4), and Ẋ =
AX = (Ad +Ao)X, we obtain

ξ̇∗ = Adx
∗ +Aox̂

∗ −AX
= A(x∗ −X) +Ao(x̂

∗ − x∗).
Using x̂∗ − x∗ = v∗ + w∗ we write the equation for ξ∗ as

ξ̇∗ = Aξ∗ +Ao(v
∗ + w∗), ξ∗(0) = 0.(4.18)

From the application of the estimate (4.9) to (4.17) we obtain that

‖w∗‖ ≤ ‖F (T ;P ∗(Ad −Ao))‖‖Ad −Ao‖‖v∗‖.(4.19)

Applying the estimate (4.9) to (4.18) and using the above equation we obtain

‖ξ∗‖ ≤ ‖F (T ;A)‖‖Ao‖ {1 + F (T ;P ∗(Ad −Ao))‖Ad −Ao‖} ‖v∗‖.(4.20)

The quantity ‖v∗‖ is the sum of the POD projection errors ‖P ∗
i xi − xi‖ of both

the subsystems. This quantity is the same as the square root of the sum of the
eigenvalues of the neglected modes summed over both the subsystems. Note that if
the POD projection error of the fixed point trajectory is zero, then the error of the
converged DIRM solution is zero. It is also clear that the error depends on the norm
of the off-diagonal blocks Ao, on the norm of the exponentials of A and P ∗(Ad−Ao),
as well as on the time interval T .

We have thus proved the following proposition.
Proposition 4.8. Let x∗ be a fixed point of I and suppose that P ∗ = Rx∗ is well

defined. Let X be the true solution: Ẋ = AX; X(0) = x0. Then the error ‖x∗ −X‖
(2-norm) satisfies

‖x∗ −X‖ ≤ ‖F (T ;A)‖‖Ao‖ {1 + F (T ;P ∗(Ad −Ao))‖Ad −Ao‖} ‖v∗‖,(4.21)

where ‖v∗‖ = ‖P ∗x∗ − x∗‖ is the projection error of the fixed point trajectory.
4.6. Rate of convergence. In this section, we will compute an upper bound

for ‖DI(x∗)‖, the norm of the linearization of the iteration I at a fixed point x∗.
First, we will compute δx(α+1) = DI(x(α))(δx(α)), which is the variation in x(α+1)

due to a variation δx(α) in x(α). The notation DI(x)(δx) denotes the directional
derivative of the operator I evaluated at x ∈ L2([0, T ],R2n) in the direction δx ∈
L2([0, T ],R2n). The variations of all quantities will be denoted by the prefix δ, except
that the variation of P (α) will be denoted by E(α). In our analysis the norm used for
the variations of trajectories will also be the 2-norm, and the norms of matrices will
be the induced 2-norm.

Again we shall make use of the difference trajectories v(α) and w(α) as defined by
(4.14) and (4.15). Taking variations of (4.14) (with α replaced by α + 1) it follows
that

δv(α+1) = E(α)x(α+1) +
(
P (α) − 1

)
δx(α+1).(4.22)

Following a procedure similar to the one that was used to obtain (4.18), we obtain
from (4.16) the following equation for ξ(α+1):

ξ̇(α+1) = Aξ(α+1) +Ao

(
v(α+1) + w(α+1)

)
, ξ(α+1)(0) = 0.
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From (4.16) we also see that δx(α) = δξ(α). Therefore, taking variations of the above
equation, we get

δẋ(α+1) = Aδx(α+1) +Aoδv
(α+1) +Aoδw

(α+1), δx(α+1)(0) = 0.(4.23)

Following a procedure similar to the one that was used to obtain (4.17), we obtain
from (4.15) the following equation for w(α+1):

ẇ(α+1) = P (α)(Ad −Ao)w(α+1) + P (α)(Ad −Ao)v(α+1),

w(α+1)(0) = 0.
(4.24)

Hence the variation δw(α+1) is given by

δẇ(α+1) = P (α)(Ad −Ao)δw(α+1) + P (α)(Ad −Ao)δv(α+1)

+ E(α)(Ad −Ao)
(
w(α+1) + v(α+1)

)
, δw(α+1)(0) = 0.

(4.25)

Substituting for δv(α+1) from (4.22) into (4.23) and (4.25) we get a coupled system
of equations for δx(α+1) and δw(α+1):

δẋ(α+1) = (A+Ao(P
(α) − 1))δx(α+1) +Aoδw

(α+1) +AoE
(α)x(α+1),

δẇ(α+1) = P (α)(Ad −Ao)
(
P (α) − 1

)
δx(α+1) + P (α)(Ad −Ao)δw(α+1)

+ P (α)(Ad −Ao)E(α)x(α+1) + E(α)(Ad −Ao)
(
w(α+1) + v(α+1)

)
,

δx(α+1)(0) = 0, δw(α+1)(0) = 0.

(4.26)

Note that the above system is driven by terms containing x(α+1), v(α+1), and w(α+1).
Since we are interested in perturbations about the fixed point x∗, we set

x(α+1) = x(α) = x∗,
v(α+1) = v(α) = v∗,
w(α+1) = w(α) = w∗.

Also we shall denote δx(α) = δx and write E(α) and δx(α+1) as

E(α) =
dP

dx
(x∗)(δx),

δx(α+1) = DI(x∗)(δx).
Note that dP

dx (x∗)(δx), which may also be written as DR(x∗)(δx), is the directional
derivative of P = R(x) at x = x∗ in the direction δx. For sufficiently small T we
apply the estimate (4.11) to (4.26) at a fixed point and obtain

‖DI(x∗)(δx)‖ ≤ ‖F1‖
(1− ‖F‖)

∥∥∥∥AoP ∗ dP
dx

(x∗)(δx)x∗
∥∥∥∥

+
‖F1‖‖F2‖‖Ao‖

(1− ‖F‖)
∥∥∥∥P ∗(Ad −Ao)dP

dx
(x∗)(δx)x∗ +

dP

dx
(x∗)(δx)(Ad −Ao)(w∗ + v∗)

∥∥∥∥,
where

F1 = F (T ;A+Ao(P
∗ − 1)),

F2 = F (T ;P ∗(Ad −Ao)),
F = F1AoF2P

∗(Ad −Ao)(P ∗ − 1).

(4.27)
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We simplify further and write

‖DI(x∗)(δx)‖ ≤ ‖F1‖‖Ao‖
(1− ‖F‖)H,

where the term H is given by

H =

∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥+ ‖F2‖‖Ad −Ao‖

(∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥+

∥∥∥∥dPdx (x∗)(δx)
∥∥∥∥‖v∗ + w∗‖

)
.

Using the estimate (4.19) one can obtain an upper bound forH which does not contain
w∗. After rearranging some terms we obtain the upper bound

‖DI(x∗)(δx)‖ ≤ ‖F1‖‖Ao‖(1 + ‖F2‖‖Ad −Ao‖)
(1− ‖F‖)

×
(∥∥∥∥dPdx (x∗)(δx)x∗

∥∥∥∥+

∥∥∥∥dPdx (x∗)(δx)
∥∥∥∥‖F2‖‖Ad −Ao‖‖v∗‖

)
.

Taking the supremum over all unit norm variations δx, we obtain the bound

‖DI(x∗)‖ ≤ ‖F1‖‖Ao‖(1 + ‖F2‖‖Ad −Ao‖)
(1− ‖F‖)

×
(

sup
‖δx‖=1

{∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥
}

+

∥∥∥∥dPdx (x∗)
∥∥∥∥‖F2‖‖Ad −Ao‖‖v∗‖

)
.

The sensitivity of the POD projection matrix P (x) to perturbations in the trajectory
x has been studied and quantified in [13]. It follows directly from the results in [13]
that

∥∥∥∥dPdx (x∗)
∥∥∥∥

F

= max
i≤k, j≤n−k

√
2

√
λ1
i + λ1

j+k

λ1
i − λ1

j+k

+ max
i≤k, j≤n−k

√
2

√
λ2
i + λ2

j+k

λ2
i − λ2

j+k

,(4.28)

sup
‖δx‖=1

{∥∥∥∥dPdx (x∗)(δx)x∗
∥∥∥∥
}

=

(
λ1
k + λ1

k+1

λ1
k − λ1

k+1

)
+

(
λ2
k + λ2

k+1

λ2
k − λ2

k+1

)
,

where λi1 ≥ λi2 ≥ · · · ≥ λin are the ordered eigenvalues of the correlation matrix of the
fixed point trajectories x∗i , for i = 1, 2, and the subscript “F” denotes the Frobenius
norm. Note that we have assumed that λik > λik+1, for i = 1, 2, in order for P ∗ to be
well defined. Also note that ‖v∗‖ is given by

‖v∗‖ =
√
λ1
k+1 + · · ·+ λ1

n + λ2
k+1 + · · ·+ λ2

n.

Since ‖dPdx (x∗)‖2 ≤ ‖dPdx (x∗)‖F, using the expression for ‖v∗‖ we may obtain an upper
bound for ‖DI(x∗)‖ which we shall state as a proposition.

Proposition 4.9. Suppose x∗ = (x∗1, x
∗
2) is a fixed point of I and assume that

P ∗ = Rx∗ is well defined. Then, for sufficiently small T , ‖DI(x∗)‖ satisfies

‖DI(x∗)‖ ≤ ‖F1‖‖Ao‖
(1− ‖F‖) (1 + ‖F2‖‖Ad −Ao‖){C1(λ) + C2(λ)‖F2‖‖Ad −Ao‖},(4.29)
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where C1 and C2 are functions of the eigenvalues λ of the correlation matrices of the
fixed point trajectories x∗1 and x

∗
2 given by

C1 =

(
λ1
k + λ1

k+1

λ1
k − λ1

k+1

)
+

(
λ2
k + λ2

k+1

λ2
k − λ2

k+1

)
,

C2 =


 max
i≤k, j≤n−k

√
2

√
λ1
i + λ1

j+k

λ1
i − λ1

j+k

+ max
i≤k, j≤n−k

√
2

√
λ2
i + λ2

j+k

λ2
i − λ2

j+k




×
√
λ1
k+1 + · · ·+ λ1

n + λ2
k+1 + · · ·+ λ2

n,

(4.30)

and F1, F2, and F are as defined in (4.27).
It can be seen from the above results that the convergence rate becomes arbitrarily

fast as ‖Ao‖ becomes arbitrarily small, which agrees with intuition. We also see that
the convergence is faster when the POD error is small. However, when the POD error
is zero (λ1

k+1 + · · ·+ λ1
n + λ2

k+1 + · · ·+ λ2
n = 0), the above expression does not predict

arbitrarily fast convergence. This may seem counterintuitive. However, one needs to
consider this more carefully. The quantity ‖v∗‖ = λ1

k+1 + · · ·+ λ1
n + λ2

k+1 + · · ·+ λ2
n

is the POD projection error of the fixed point trajectory. Even if this is zero, ‖v‖
corresponding to a nearby trajectory x need not be. Convergence depends on the
behavior of nearby trajectories as well. This is evident from the numerical example in
section 5.4. If, however, all subsystem trajectories always lie in some k dimensional
subspace, then it is clear that DIRM will converge after one iteration. In terms of the
above analysis this corresponds to P (α) being constant and v(α+1) = 0 for all α. Hence
E(α) = 0 and δv(α+1) = 0. Then from (4.24) we see that w(α+1) = 0 as well. All these
together and (4.26) imply that δx(α+1) = 0, indicating immediate convergence.

The analysis also suggests that when the eigenvalues λ1
k and λ1

k+1 (or λ2
k and

λ2
k+1) are very close to each other we may expect difficulties in convergence, since

both C1 and C2 become very large. This is numerically evident from the example of
section 5.3.

4.7. Small time interval case. In this section we consider the convergence
behavior of DIRM as T → 0. First let us state and prove the following lemma.

Lemma 4.10. Let z : [0, T0]→ R
n be a Cn-smooth trajectory. Let 0 < T < T0 and

let λ1 ≥ λ2 · · · ≥ λn ≥ 0 be the eigenvalues of the correlation matrix of z : [0, T ]→ R
n.

Hence λi are functions of T . Furthermore, suppose the values of z and its first n− 1
derivatives at t = 0 form a linearly independent set. Note that this assumption is
generically true in the sense that it holds for an open and dense subset (in R

n(n−1))
of possible values of z(t) and its first n − 1 derivatives at t = 0. Then, as T → 0,
λj+1/λj → 0 for any 1 ≤ j ≤ n− 1.

Proof. In order to keep the proof concise, we shall prove for the case when z(t) is
analytic. The proof for Cn is similar. By assumption the set

{z(0), z(1)(0), . . . , z(n−1)(0)}
is linearly independent, where z(j)(t) denotes the jth derivative of z(t). Since the

correlation matrix R =
∫ T
0
z(t)zT (t)dt is analytic in T , using Taylor expansion we

may write it as

R =
∞∑
j=1

rjT
j ,
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where after simplification

rj =
1

j

j∑
l=1

z(l−1)(0)

(l − 1)!

(z(j−l)(0))T

(j − l)! , j = 1, 2, . . . .

Note that when z(t) is Cn, R is Cn+1 smooth in T , and we should use Taylor’s
theorem with the remainder term which is O(Tn+1).

It is clear that Image(rj) = span{z(0), z(1)(0), . . . , z(j−1)(0)} and that Null(rj) =
Image(rj)

⊥. Hence by our assumption it follows that rank (rj) = j for j = 1, . . . , n.

Let µj1 ≥ µj2 ≥ · · · ≥ µjn ≥ 0 be the eigenvalues of rj for all j. Note that µjj > 0 and

µjl = 0 for l = j + 1, . . . , n, and j = 1, . . . , n.
Define partial sums

Rj =

j∑
l=1

rlT
l

for j = 1, . . . , n. Let νj1 ≥ νj2 ≥ · · · ≥ νjn ≥ 0 be the eigenvalues of Rj . Since
Image(rj−1) ⊂ Image(rj), for j = 1, . . . , n, it follows that rank(Rj) = rank(rj) = j

for j = 1, . . . , n. Hence νjj > 0 and νjl = 0 for l = j + 1, . . . , n and j = 1, . . . , n.

Since Rj = Rj−1 + T jrj , for j = 1, . . . , n, using Theorem 8.1.5 of [4] on symmetric

eigenvalue perturbations, we see that νjj ≤ νj−1
j +T jµj1. The same theorem also yields

νj−1
n + T jµjj ≤ νjj . Since νj−1

n = νj−1
j = 0, we get

0 < T jµjj ≤ νjj ≤ T jµj1, j = 1, . . . , n.(4.31)

For j = 1, . . . , n we may write R as

R = Rj + T j+1Nj+1,

where Nj+1 =
∑∞
l=1 rj+lT

l−1. Let ν̃j1 ≥ ν̃j2 ≥ · · · ≥ ν̃jn ≥ 0 be the eigenvalues of Nj
for j = 2, . . . , n+1. Application of Theorem 8.1.5 of [4] to R = Rj +T j+1Nj+1 yields

νjj + T j+1ν̃j+1
n ≤ λj ≤ νjj + T j+1ν̃j+1

1 , j = 1, . . . , n.

This together with (4.31) implies

0 < T jµjj ≤ λj ≤ T jµj1 + T j+1ν̃j+1
1 , j = 1, . . . , n.(4.32)

This yields

λj+1

λj
≤ T

(
µj+1

1

µjj
+ T ν̃j+2

1

)
, j = 1, . . . , n− 1.

Since limT→0Nj+2 = rj+2, by continuity limT→0 ν̃
j+2
1 = µj+2

1 which is finite. Hence

limT→0
λj+1

λj
= 0 for j = 1, . . . , n− 1.

Now we state the following proposition about convergence of DIRM in the limit
T → 0.

Proposition 4.11. Suppose there exists a T1 such that for all T < T1 a fixed
point x∗ of I exists and that P ∗ = Rx∗ is well defined. Further suppose x∗ satisfies the
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conditions of Lemma 4.10. Let X be the true solution. Then there exists a T0 < T1

such that DIRM converges to x∗, for all T < T0, for initial guesses x
(0) that are

sufficiently close to x∗.
Proof. Application of Lemma 4.10 immediately yields that

lim
T→0
C1 = 2

and

lim
T→0
C2 = 0.

Also, as T → 0, both ‖F1‖ and ‖F2‖ → 0 (Lemma 4.3), and hence ‖F‖ → 0 as well.
So ‖DI(x∗)‖ → 0 as T → 0, and in particular ‖DI(x∗)‖ < 1 for all small enough
T . Hence DIRM will converge for all initial guesses x(0) that are sufficiently close
to x∗.

5. Examples.

5.1. Example: Nonlinear power grid. In this section we present a power
grid model and apply the DIRM method to simulate the transient behavior. The
model has been taken from the paper [11]. The model equations we use represent the
coupling between power flows and frequency variations across power networks and are
known as the swing equations. Swing dynamics potentially interact with protection
mechanisms and may lead to cascading failures. See [11] for more details.

We used a power grid consisting of 36 nodes arranged in a 6 × 6 square grid.
Each node is either a generator or a load. For general types of load situations we
would need DAEs to represent the system. Here we assume that the loads are all
synchronous motors. In that case the swing equations involve the variables δi, where
indices i = 1, . . . , N denote the nodes (N = 36 in our example). Physically at node
i, δi stands for the generator or motor rotor angle with respect to a synchronously
rotating reference frame. The equations are then given by

Miδ̈i +Diδ̇i = Pmi − Pgi, i = 1, . . . , N,(5.1)

where Mi and Di are inertia and damping terms for the generator or motor at the
ith node and Pmi is the mechanical power input to the generator or the mechanical
power output (negative) of the motor at the ith node, and Pgi is the electrical power
output from the ith node. It is assumed that the voltage magnitudes at the nodes are
maintained fixed by regulators. The electrical power Pgi is given by

Pgi = Re(V ∗
i Ii) = Re


V ∗

i

N∑
j=1

YijVj




= −
N∑
j=1

|Vi||Vj |bij sin(δi(t)− δj(t)), i = 1, . . . , N,

(5.2)

where Vi = |Vi|eiδi , and Y = G + iB is the admittance matrix for the network
connections (with some of the i denoting

√−1). We assume that the lines are lossless
(G = 0). The bij are the terms of the susceptance matrix B. The diagonal entrees bii
are all zero. If a line is not present between nodes i and j, then bij = 0. We chose
bij = 1 for all connected lines.
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Fig. 5.1. Power grid: generators—open circles; loads—filled circles.
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Fig. 5.2. δi vs. time: reference method.

The grid we chose is shown in Figure 5.1. The generators are marked by open
circles, and all other nodes (filled circles) are motors. All physical parameters chosen
were nondimensional. We chose all the voltage magnitudes to be the same (constant)
value of 1. The mechanical powers Pmi were chosen to be −0.0880 for the motor
nodes, and generator powers were all 0.7040 so that the total sums to zero. The
parameter values Mi = 2.0 and Di = 0.8 were chosen for the generators, while values
Mi = 0.1 and Di = 0.1 were chosen for all load motors. Given these parameters the
swing equations have a nontrivial (not all δi are zero) steady state solution. We picked
a random initial condition (Gaussian with zero mean and 0.1 standard deviation for
both δi and δ̇i for all i). First, we used the MATLAB ODE solver ode15s to solve
the equations in the interval [0, 10], which indicated that the steady state was more
or less reached in that time interval. A plot of the “reference solution” for δi for four
of the nodes is shown in Figure 5.2. One motor node from each subsystem was chosen
for this plot. In order to apply the DIRM method we modularized the system so that
the square grid of 6 × 6 nodes was split into four subsystems, each consisting of a
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Fig. 5.3. Decay of POD mode energies: power grid example.
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Fig. 5.4. δi vs time: DIRM.

square subgrid of 3× 3 nodes. The broken lines in Figure 5.1 show this partitioning.
DIRM did not converge when the simulation interval was [0, 10]. However, breaking
the interval into smaller intervals achieved convergence. Using intervals of length 0.5
(i.e. [0, 0.5], [0.51], . . . , [9.5, 10]) achieved convergence. We used the same MATLAB
solver ode15s as the underlying solver. Within each interval at most seven iterations
were required. The final value of the solution from one interval was used as the initial
condition for the next interval. Initial reduced models were obtained by simulating
each subsystem in isolation (all other subsystem states were assumed to remain zero)
for the time interval under consideration. The reduced order models of all subsystems
were chosen to be of dimension 3. (The full dimension of each subsystem is 18.)
Figure 5.3 shows the largest eight eigenvalues of the DIRM solution for the first
subsystem trajectory in the final simulation interval [9.5, 10]. The decay was similar
for the other subsystems as well.

The solution obtained using DIRM is shown in Figure 5.4 for the same nodes
as in Figure 5.2. The solutions of the reference method and DIRM are visually
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indistinguishable and so we plotted them on separate figures. We also computed the
maximum relative error er defined by

er = sup
i

supt∈[0,10] |x̂i(t)− xi(t)|
supt∈[0,10] |xi(t)|

,(5.3)

where i indexed over all states (node voltage phases and velocities). It was er = 0.0037;
i.e., the relative error for any state variable was less than 0.37%.

An important point during swing dynamic transients is that large deviations of
δi and δ̇i can trigger protection mechanisms that can shut down a line or a generator,
and this changes the system parameters discontinuously (some bij change to 0, for
instance) which in turn leads to further transients and so on (see [11]). Since our
scheme predicts the solutions accurately, we expect it to predict the first failure (loca-
tion and time) accurately. However, for accurate prediction beyond the first failure,
we have to restart our iteration for a time interval beginning at the failure. Numerical
simulations done by Cao and Petzold [1] revealed that the reduced model formed from
trajectories obtained before a failure was not accurate after the failure and could not
be used to predict further failures. If we include failures in our model, our iterative
method may need to be modified. During the iterative simulations, if a subsystem
indicates failure, then the time interval of simulation may be shortened so that the
reduced models remain more accurate. We have not yet numerically investigated this
type of scenario. This is a subject of future research.

5.2. PDE Example: Comparison with WR. We considered the reaction-
convection-diffusion equation

xt = νxss + axs + bx(5.4)

in one spatial variable s in the interval s ∈ [0, 6] with spatial discretization giving
100 equally spaced interior points. Both first and second spatial derivatives were
approximated by centered differences. We used the triangular function

x(0, s) = s/3, 0 ≤ s ≤ 3,

x(0, s) = 1− (s− 3)/3, 3 ≤ s ≤ 6,
(5.5)

as initial condition, and the boundary conditions were zero. This results in a tridiag-
onal linear system (ODE) of the form

ẋ = Ax,

where x ∈ R
100.

For DIRM we divided the system into 10 subsystems each of size 10 consisting of
adjacent grid points. For WR we used the splitting A = Ad + Ao, where Ad is block
diagonal with 10 × 10 blocks and Ao the remaining off-diagonal coupling part. This
corresponds to the Jacobi version of WR. We also used overlapping for WR in order
to improve its convergence. It is known from the work of Miekkala that in the case
of tridiagonal systems the order of convergence of WR is ω = 1 (as defined by [8]),
which is very slow. However, if we overlap by o variables, then ω = 1

o+1 , and this
should improve the asymptotic convergence [8].

Simulations of three different sets of parameter values are discussed here. In all
cases we computed the solutions using the MATLAB ODE solver ode15s to provide a
benchmark. The same solver was also used within DIRM and WR. In all simulations
of DIRM and WR we used the convergence tolerance (see (3.3)) tol = 0.001 and a
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Table 5.1
Convergence and accuracy of DIRM and WR for the 1D PDE with convection and diffusion.

Parameter values ν = 0.1, a = 1, b = 0. Simulation interval [0, 10]. Subsystem reduced model
dimension k = 3.

Number of iterations Maximum error over subsystems
DIRM 3 1.3112 × 10−3

WR overlap o = 3 21 12.2107 × 10−3

WR (no overlap) > 30 (did not converge) 241.8189 × 10−3

Table 5.2
Convergence and accuracy of DIRM and WR for the 1D PDE with reaction, convection, and

diffusion. Parameter values ν = 0.1, a = 6, b = 6. Simulation interval [0, 1.2]. Subsystem reduced
model dimension k = 3.

Number of iterations Maximum error over subsystems
DIRM 11 0.5284

WR overlap o = 3 16 0.7861
WR (no overlap) > 30 39.5314

Table 5.3
Convergence and accuracy of DIRM and WR for the 1D PDE with pure diffusion. Parameter

values ν = 0.1, a = 0, b = 0. Simulation interval [0, 10]. Subsystem reduced model dimension k = 3.

Number of iterations Maximum error over subsystems
DIRM 2 0.4511 × 10−3

WR overlap o = 5 21 1.9688 × 10−3

maximum iteration count of 30. All the subsystem reduced models in DIRM were of
dimension k = 3. The convergence and error results are summarized in Tables 5.1,
5.2, and 5.3. The error is measured by sup{‖x̂i(t)−xi(t)‖2 : t ∈ [0, T ], i = 1, . . . , 10},
where xi(t) and x̂i(t) are the benchmark solution and the iterative method (DIRM or
WR) solution of the ith subsystem, respectively. The WR method in general needed
some overlapping to achieve convergence. Especially the pure diffusion case required
a greater overlap without which WR did not converge at all.

Note that couplings exist only between adjacent subsystems. This is essentially a
property of 1D PDEs. Thus for the WR method we expect at least 10 iterations before
the first subsystem “sees” the last subsystem. This is true even when overlapping is
used. Hence we may expect at least 10 iterations (initial overhead) before we see
convergence of WR. In DIRM, the entire system is always being simulated, albeit in
a partially reduced form. Hence we do not expect this adverse effect. In order to
test this hypothesis we considered the system with ν = 0.1, a = 1, and b = 0. This
gives rise to a system with diffusion as well as convection propagating towards the
decreasing s direction (a > 0). This can be seen from Figure 5.5, where the initial
condition as well as the solution (benchmark solver) at t = 5 are shown. This may
be thought of as the initial triangle diffusing and propagating to the left at the same
time. Thus there is more “information flow” from right to left than from left to right.
In order to capture the waveform for the first subsystem (the leftmost 10 grid points)
accurately we need to capture the information flow from the other subsystems. Hence
we could expect that the WR method would take at least 10 iterations for convergence
and also expect it to converge slower for the first (leftmost) subsystem than for the
last (rightmost) subsystem. We picked a simulation interval [0, 10] so that the entire
system decayed to zero. We found that WR did not converge even after 30 iterations,
and hence used overlapping by three variables, keeping the number of subsystems the
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Fig. 5.5. Plot of the benchmark solution x(t, s) versus s at time t = 0 (solid) and at time t = 5
(dashed) for the convection-diffusion case with ν = 0.1, a = 1, b = 0.
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Fig. 5.6. Convergence of subsystems 1 and 10 for WR with overlap o = 3 for the convection-

diffusion case with ν = 0.1, a = 1, b = 0. Plot of the difference sup{‖x(j)i (t)−x(j−1)
i (t)‖2 : t ∈ [0, T ]}

between successive iterates versus the iteration step j for subsystems i = 1 and i = 10.

same. This resulted in the first nine subsystems being of size 13 and the last one
being of size 10. The convergence plots for the overlapped WR for the first and last
subsystems are shown in Figure 5.6, which confirms our intuition. The DIRM method
did not experience this overhead and converged in three iterations. Figures 5.7 and
5.8 compare the convergence rates and Figure 5.9 compares the subsystem errors for
DIRM and WR.

Second, we considered the system with ν = 0.1, a = 6, and b = 6. This system
has a dominant reactive term. We picked the simulation interval [0, 1.2] in which
the system had an explosive reaction after which it decayed to zero. The benchmark
simulation showed that subsystem 1 (leftmost) underwent the most explosive change;
see Figure 5.10. DIRM and WR with overlapping (o = 3) performed comparably.
Even though the maximum error (Table 5.2) seems large for both DIRM and WR with
overlap, it occurred in subsystem 1 (which underwent the most explosive growth), and
it is small compared to the peak value of the subsystem trajectory. In fact it was hard
to visually distinguish the trajectory plots of subsystem 1 for DIRM and overlapped
WR from those of the benchmark solution in Figure 5.10.
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Fig. 5.7. Convergence of subsystem 1 for WR with overlap o = 3, WR without overlap,
and DIRM for the convection-diffusion case with ν = 0.1, a = 1, b = 0. Plot of the difference

sup{‖x(j)i (t) − x
(j−1)
i (t)‖2 : t ∈ [0, T ]} between successive iterates versus the iteration step j for the

subsystem i = 1.
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Fig. 5.8. Convergence of subsystem 10 for WR with overlap o = 3, WR without overlap,
and DIRM for the convection-diffusion case with ν = 0.1, a = 1, b = 0. Plot of the difference

sup{‖x(j)i (t) − x
(j−1)
i (t)‖2 : t ∈ [0, T ]} between successive iterates versus the iteration step j for the

subsystem i = 10.
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Fig. 5.9. Errors of each subsystem for WR with overlap o = 3, WR without overlap, and
DIRM for the convection-diffusion case with ν = 0.1, a = 1, b = 0. Plot of the error in ith subsystem
given by sup{‖x̂i(t) − xi(t)‖2 : t ∈ [0, T ]}, where x̂i is the iterative method solution and xi is the
benchmark solution versus the subsystem i.
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Fig. 5.10. Plot of the benchmark solution of all 10 of the states of subsystem 1 for the reaction-
convection-diffusion case with ν = 0.1, a = 6, b = 6.

Finally, we simulated the purely diffusive system with ν = 0.1, a = 0, and b = 0.
In this case WR performed worst, and DIRM performed best, showing a very clear
advantage over WR. Overlapping by o = 3 was not sufficient to achieve convergence
of WR. However, a bigger overlap of o = 5 achieved convergence.

In summary, DIRM seems to converge better than WR for both the convection-
diffusion and pure diffusion cases, with the pure diffusion case being the strongest
point for DIRM. For the reaction-convection-diffusion case there is no clear winner.
Since the error in the POD method is large when system trajectories undergo explosive
growth in the interval of interest ([13]), it is not surprising that DIRM performed
worst for this type of equation. In contrast, WR seems to have performed best for
the reaction-convection-diffusion case.

5.3. Example: Almost coincident eigenvalues λk ≈ λk+1 and the mod-
ified DIRM method. The convergence analysis of DIRM in section 4.6 predicts
difficulties in convergence if the eigenvalues λk and λk+1 of the covariance matrix
of the fixed point trajectory of any subsystem are very close. To generate such an
example, we employ the equation

ẋ = A(x− f(t)) + f ′(t),(5.6)

which for any choice of A has x = f(t) as the solution corresponding to the initial
condition x(0) = f(0).

Consider the following trajectory g(t) ∈ R
3 such that the covariance matrix for

the interval [0, 1] has prescribed eigenvalues λ1, λ2, and λ3:

g(t) =
(√

2λ1 sin(2πt),
√

2λ2 cos(2πt),
√

2λ3 sin(4πt)
)
.

Note that g(0) = (0,
√

2λ2, 0). We may construct a system of the form (5.6) which
is six dimensional, and when split into two subsystems (each of dimension 3) the
subsystem solution trajectories are both g(t). According to the analysis of section
4.5, if A is diagonally dominant, and its fundamental modes do not grow substantially
in the interval of simulation [0, 1], and the POD projection error is small, then we
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expect the fixed point trajectories of the subsystems to be close to the true solution
g(t). Thus for the system in (5.6), if we set f(t) = (g(t), g(t)), λ3 = λ2, and choose an
A with the above properties and the initial condition x(0) = (0,

√
2λ2, 0, 0,

√
2λ2, 0),

then we can expect difficulties in convergence.
Numerical experiments were conducted with A obtained from discretizing the

PDE in section 5.2 with ν = 1, a = b = 0, and six interior points. The choice of
λ1 = 0.5, λ2 = λ3 = 0.2 lead to eight iterations for convergence; the choice of λ1 =
0.5, λ2 = 0.2, λ3 = 0.199 required 12 iterations; and the choice λ1 = 0.5, λ2, λ3 = 0.19
converged in four iterations. In other cases, where λ2 and λ3 were further separated,
convergence took a similar number of (five or less) iterations.

Remark 5.1. Note that the λ2 = 0.2, λ3 = 0.19 case was worse than the λ2 =
λ3 = 0.2 case because the fixed point trajectory is slightly different from the true
solution trajectory. As a verification of our analysis we computed the quantities C1
and C2 of equations (4.30) for the fixed point trajectories of the above examples and
observed that the larger they were the more the iterations needed for convergence.

In order to make DIRM robust against such situations we tried the following
“modified DIRM” method. In modified DIRM, reduced models are computed from a
covariance matrix and mean value that are a weighted combination of the covariance
matrix and mean value of the current trajectory and some precomputed covariance
matrix and mean which are typically obtained from an ensemble of trajectories such
as those with initial conditions uniformly chosen from the unit sphere. Thus at the
αth iteration, given trajectory x(α) of a subsystem we compute the mean x̄(α) and
the covariance matrix R(α) of that trajectory as usual. However, instead of using x̄(α)

and R(α) to obtain the reduced model we compute

R̃(α) = βR(α) + (1− β)R0,

˜̄x
(α)

= βx̄(α) + (1− β)x̄0,

where 0 < β ≤ 1, and then compute the projection P̃ (α) corresponding to R̃(α). The

new reduced model is given by ˜̄x
(α)

and P̃ (α).
Here R0 and x̄0 are precomputed from some ensemble of trajectories with various

initial conditions and do not change from iteration to iteration. This method changes
the fixed point of DIRM. Typically if β is small you would expect the method not to
be so accurate.

When we applied the modified DIRM with β = 0.9, for the worst case above
(λ1 = 0.5, λ2 = 0.2, λ3 = 0.199), we converged in four iterations, with more or
less the same accuracy as the unmodified DIRM. It is important to note that the
precomputed covariance matrix R0 should have reasonable separation between its
kth and k + 1st eigenvalues. Then for sufficiently small β we are guaranteed to have
sufficient separation of λk and λk+1, the eigenvalues of R̃. This example confirms our
analysis, and the modified DIRM method provides a safeguard against the situation
of coincident eigenvalues.

Remark 5.2. In the modified DIRM method, it is easy to see that when β = 0
we have immediate convergence, since the reduced models do not change. However,
its accuracy is not as good as that of the regular DIRM method. When β = 1 we
have the regular DIRM method, which is more accurate, but does not always have
good convergence behavior. So one may expect that by choosing an appropriate
β we could achieve a good compromise between convergence and accuracy. How-
ever, the numerical experiments with the PDE example of section 5.2 showed that
the convergence rate did not depend monotonically on β. For the parameter values
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(ν = 0.1, a = 6, b = 6), subsystem reduced model dimension k = 2, and the time
interval [0, 0.5], convergence took 12 iterations for β = 1, 10 iterations for β = 0.8, 13
iterations for β = 0.5, and for the β = 0 case 1 iteration (as expected). This could be
because there is an intermediate regime of β values where the loss of accuracy affects
the convergence negatively. It should be noted that the WR method took more than
15 iterations.

5.4. Example: Fixed point trajectory with zero POD projection error.
For the example in section 5.3, if we choose λ1 = 0.5, λ2 = 0.2, and λ3 = 0, we have a
solution trajectory which has zero POD projection error. The fixed point trajectory
being close to the true solution also had almost zero POD projection error. Yet
DIRM took four iterations to converge, in agreement with the convergence analysis
(see section 4.6).

When trajectories of all the subsystems always lie in a k dimensional subspace
(where k is the dimension of all the reduced order models), the POD projection error
is always zero, and in this case convergence is immediate (in agreement with the
convergence analysis). This can be numerically observed from an example ẋ = Ax,
where rows of A corresponding to each subsystem are of rank k or less. When the row
rank is strictly less than k we have zero POD projection error as well as coincident
eigenvalues (λk = λk+1 = 0). In this case DIRM still converges immediately, even
though the projection matrices computed at each step may not converge.

6. Conclusions and future work. We have presented a new dynamic itera-
tion called DIRM for simulation of large scale interconnected systems. DIRM uses
reduced order models (obtained here via POD) of subsystems which are also refined
during the iterations. We provided an analysis of the DIRM method as applied to
linear time invariant systems of ODEs consisting of two subsystems, giving results on
accuracy and convergence of DIRM. We also presented numerical examples, including
some special cases chosen to test the validity of the analysis and to illustrate some
special situations, and two realistic examples: a nonlinear power grid model and a
discretized linear reaction-convection-diffusion type PDE in one dimension. Both the
power grid and the PDE examples demonstrated the success of DIRM. In the PDE
example we also provided comparisons with WR. This example showed that DIRM
has clear advantages over WR for pure diffusion and convection-diffusion-type equa-
tions. DIRM performed worst for systems showing explosive reactions, for which WR
performed best.

Future work will include DAEs as well as hybrid systems such as the power grid
with failure models resulting in discontinuous changes in system parameters. The
complementary nature of DIRM and WR seen in the PDE example suggests that the
development of an approach that combines the two methods in an optimal manner
might prove valuable in parallel computation of large scale systems. The framework of
DIRM allows for the use of model reduction techniques other than POD provided that
they are data driven. Since the POD reduced models may not achieve considerable
savings for nonlinear banded Jacobian systems [13], it might be advantageous to
explore the use of other model reduction methods.

Acknowledgments. We would like to thank John C. Doyle for suggesting the
general notion of iterating reduced order models of subsystems. We would also
like to thank Pablo Parrilo for providing us with the software for the power grid
generation.
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1. Introduction. Consider the initial boundary value problem

ut −
∫ t

0

β(t− s)∇ · (a(x)∇u(s)) ds = f(x, t), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],(1.1)

u(x, 0) = u0(x), x ∈ Ω,

where ut = ∂u/∂t, Ω is a bounded domain inRd (d = 1, 2, 3) with boundary ∂Ω, and
a1 ≥ a(x) ≥ a0 > 0, x ∈ Ω, for positive constants a1 and a0. The kernel β is assumed
to be positive definite, i.e., for each t ∈ (0, T ], β ∈ L1

loc(0,∞), and∫ t

0

(∫ s

0

β(s− τ)v(τ)
)
v(s) dτ ds ≥ 0, v ∈ C[0, t].(1.2)

(Note that (1.2) holds if and only if

�β̂(iy) =

∫ ∞

0

β(t) cos(yt) dt ≥ 0, y ∈R,

because, for any ψ ∈ L2(R+),∫ ∞

0

ψ(t)

∫ t

0

β(t− s)ψ(s) ds dt = 1

2π

∫ ∞

−∞
�β̂(iy)|ψ̂(iy)|2 dy,
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where ψ̂ is the Laplace transform of ψ.) Problems of the type (1.1) and a nonlinear
version thereof occur in viscoelasticity and heat conduction in materials with memory;
see, for example, [8, 18].

Over the last decade, various numerical methods have been applied to (1.1) for
both smooth and nonsmooth kernels. In [19], a spectral method is employed for the
one dimensional form of (1.1) with a weakly singular kernel, while a finite difference
scheme is used to discretize the spatial variable in [7]. Error estimates for meth-
ods based on an orthogonal spline collocation discretization in space combined with
backward Euler or Crank–Nicolson-type time stepping schemes for (1.1) with a = 1
are derived in [3], where a modified spline collocation method for a one dimensional
problem is also discussed. In [22], the Laplace transform is used in time with orthog-
onal spline collocation in space. In [9] and [10], finite element Galerkin methods are
applied to discretize (1.1) in space, with finite difference schemes in time for both
smooth and nonsmooth kernels. Convergence is discussed for smooth initial data and
constant time step size in [9], and variable time stepping schemes are examined in
[10]. In all of these papers, the positivity of the kernel plays a key role in the stability
and convergence analyses.

To approximate both u and its flux σ := a∇u accurately, we reformulate (1.1) as
the first order system

σ = a∇u, ut −
∫ t

0

β(t− s)∇ · σ(s) ds = f.(1.3)

A standard procedure is to apply a classical mixed method to this system, but for this
method it has not been possible to obtain an error estimate for the flux. The purpose
of the present paper is to apply to (1.3) an H1-Galerkin mixed method based on that
proposed in [14] and to derive optimal error estimates for u in L∞(L2) and L∞(H1)
and for σ in L∞(L2). It is observed that, compared to the results proved for problem
(1.1) in one space variable, the L∞(L2)-norm estimate of the flux is not optimal for
the problem in two or three space variables. Therefore, a modification is considered
in which a term containing the curl of the flux is added. This modification leads to a
strong coercivity property of σ and facilitates the derivation of an optimal estimate
in L∞(L2) for the flux.

As a consequence of our analysis, we obtain a maximum norm estimate for u in
one and two space variables. We note that this has not been derived previously for
the standard Galerkin method.

The proposed methods have several attractive features. First, they are not subject
to the LBB consistency condition. The finite element spaces Vh (for approximating
u) and Wh (for approximating the flux σ) may be of differing polynomial degrees.
Moreover, the L2- and H1-error estimates do not require the finite element mesh to be
quasi-uniform. Related studies on least squares mixed methods for elliptic equations
can be found in [4, 6, 11, 12, 13, 16] and references therein.

In the past, attempts have been made to circumvent the LBB-consistency condi-
tion by adding least square like terms, which are generally mesh dependent, to the
classical mixed formulations for elliptic problems (see, for example, [1, 5]). These
methods are known as stabilizing mixed finite element methods. In contrast to the
stabilizing methods, the present formulation deals directly with the original equation
and is not based on classical methods. In fact, it is not possible to apply even the
classical mixed methods to derive any estimate of the flux for problem (1.1). The
approach proposed in this article is not a stabilizing procedure and does not use mesh
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dependent parameters. The reason for adding the curl term is simply to obtain a
strong coercivity property.

A brief outline of this paper is as follows. In section 2, error estimates are derived
for the semidiscrete case in one space variable, while in section 3 error bounds are
obtained for (1.1) in two and three space variables, again for the semidiscrete case.
Since the estimates are not sharp compared to the one dimensional case, in section 4, a
modified H1-Galerkin mixed finite element method is formulated, and error estimates
are established for the semidiscrete case. In section 5, a discrete time backward Euler
scheme is considered for the time discretization of the modified H1-Galerkin mixed
method, and error estimates are derived. Finally, in section 6, the key results of the
paper are summarized and a possible extension of them indicated.

Throughout this paper, C denotes a generic positive constant which does not
depend on the spatial and time discretization parameters h and ∆t but may depend
on T and ‖β‖L1(0,T ). Also, we make use of the following: for a function φ ∈ H1(0, T ),

φ(t) = φ(0) +

∫ t

0

φt(s) ds.(1.4)

2. Error estimates for the semidiscrete case in one space variable. Con-
sider the one dimensional form of (1.1),

ut −
∫ t

0

β(t− s)(a(x)ux(s))x ds = f(x, t), (x, t) ∈ Ω× (0, T ],

u(0, t) = u(1, t) = 0, t ∈ (0, T ],(2.1)

u(x, 0) = u0(x), x ∈ Ω,

where Ω = (0, 1), 0 < T < ∞, a1 ≥ a(x) ≥ a0 > 0, x ∈ Ω, for positive constants a1

and a0. Setting σ = aux, we rewrite (2.1) as the first order system

a(x)ux = σ, ut −
∫ t

0

β(t− s)σx(s) ds = f.(2.2)

We denote the natural inner product in L2(Ω) by (·, ·) and the norm by ‖ · ‖, and
let H1

0 = {v ∈ H1(Ω) : v(0) = v(1) = 0}. Further, we use the classical Sobolev spaces
Wm,p(Ω), 1 ≤ p ≤ ∞, denoted by Wm,p, with norm ‖ · ‖m,p. When p = 2, we simply
write Wm,p as Hm with norm ‖ · ‖m. To derive the H1-Galerkin mixed finite element
method, we consider the following weak formulation of (2.2): find {u, σ} satisfying

(aux, vx) = (σ, vx) , v ∈ H1
0 ,

(2.3)

(ασt, w) +

∫ t

0

β(t− s) (σx(s), wx) ds = − (f, wx) , w ∈ H1,

where

α =
1

a
.(2.4)

Let Vh and Wh be finite dimensional subspaces of H1
0 and H1, respectively, with

the following approximation properties: for 1 ≤ p ≤ ∞ and positive integers k and r,

inf
vh∈Vh

{‖v − vh‖Lp + h‖v − vh‖W 1,p} ≤ Chk+1‖v‖Wk+1,p , v ∈ H1
0 ∩W k+1,p,
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and

inf
wh∈Wh

{‖w − wh‖Lp + h‖w − wh‖W 1,p} ≤ Chr+1‖w‖W r+1,p , w ∈W r+1,p.

With the finite element spaces Vh and Wh, we define the semidiscrete H1-Galerkin
mixed finite element approximation {uh, σh} : [0, T ] �→ Vh ×Wh by

(auhx, vhx) = (σh, vhx) , vh ∈ Vh,
(2.5)

(ασht, wh) +

∫ t

0

β(t− s) (σhx(s), whx) ds = − (f, whx) , wh ∈Wh,

with uh(0) and σh(0) specified later. Since Vh and Wh are finite dimensional sub-
spaces, the problem (2.5) leads to a linear system of integro-differential equations
combined with algebraic equations of index one, as the stiffness matrix associated
with (αuhx, vhx) is invertible. Using Picard’s iteration, it is easy to prove the exis-
tence of a unique pair of solutions to the system (2.5).

For use in the error analysis, we introduce the projections {ũh, σ̃h} defined by

(a(ux − ũhx), vhx) = 0, vh ∈ Vh,
(2.6)

A(σ − σ̃h, wh) = 0, wh ∈Wh,

where A(φ, χ) = (φx, χx) + (φ, χ).
With η = u− ũh and ρ = σ− σ̃h, the following estimates are well known [20]: for

j = 0, 1,

‖η‖j ≤ Chk+1−j‖u‖k+1(2.7)

and

‖ρ‖j + ‖ρt‖j ≤ Chr+1−j (‖σ‖r+1 + ‖σt‖r+1) .(2.8)

Moreover, for j = 0, 1, and 1 ≤ p ≤ ∞, we have

‖η‖W j,p ≤ Chk+1−j‖u‖Wk+1,p .(2.9)

For the maximum norm estimate (i.e., when p = ∞), the finite element mesh is
required to be quasi-uniform.

Using the projections {ũh, σ̃h}, we write u− uh = (u− ũh) + (ũh − uh) := η + ζ
and σ − σh = (σ − σ̃h) + (σ̃h − σh) := ρ + ξ. From (2.3), (2.5), and (2.6), we then
obtain

(aζx, vhx) = (ρ, vhx) + (ξ, vhx) , vh ∈ Vh,(2.10)

and

(αξt, wh) +

∫ t

0

β(t− s) (ξx(s), whx) ds

= − (αρt, wh) +

∫ t

0

β(t− s) (ρ,wh) , wh ∈Wh.(2.11)
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Theorem 2.1. Assume that σ0 = au0x and σh(0) = σ̃h(0). Then

‖(σ − σh)(t)‖ ≤ Chr+1
[‖σ0‖r+1 + ‖σt‖L1(Hr+1)

]
, t ∈ (0, T ].

Moreover, for 1 < p ≤ ∞,

‖(u− uh)(t)‖Lp ≤ Chmin(k+1,r+1)
[‖σ0‖r+1 + ‖u‖L∞(Wk+1,p) + ‖σt‖L1(Hr+1)

]
and

‖(u− uh)(t)‖1 ≤ Chmin(k,r+1)
[‖σ0‖r+1 + ‖u‖L∞(Hk+1) + ‖σt‖L1(Hr+1)

]
.

Proof. Since estimates of η and ρ are given by (2.7) and (2.8), respectively, it is
sufficient to estimate ζ and ξ. To this end, set vh = ζ in (2.10) and use a ≥ a0 > 0 to
obtain

‖ζx‖ ≤ C(‖ρ‖+ ‖ξ‖).(2.12)

Further, choose wh = ξ(t) in (2.11) and apply the Cauchy–Schwarz inequality with
boundedness property of α to obtain

d

dt
‖α 1

2 ξ‖2 + 2

∫ t

0

β(t− s) (ξx(s), ξx(t)) ds

≤ C

[
‖ρt‖+

∫ t

0

β(t− s)‖ρ(s)‖ ds
]
‖ξ(t)‖.(2.13)

On integrating (2.13) with respect to time, and using (1.2), the positive definiteness
of β, and the fact that from (2.4) α is bounded below, we obtain

‖ξ(t)‖2 ≤ C

[
‖ξ(0)‖+

∫ t

0

‖ρt(s)‖ ds+
∫ t

0

∫ s

0

β(s− τ)‖ρ(τ)‖ dτ ds
]

max
0≤s≤t

‖ξ(s)‖.

Since σh(0) = σ̃h(0), it follows that ξ(0) = 0. Then, taking the maximum of both
sides over [0, t], we have

‖ξ(t)‖ ≤ max
0≤s≤t

‖ξ(s)‖ ≤ C

[
‖ξ(0)‖+

∫ t

0

‖ρt(s)‖ ds+
∫ t

0

B(t− s)‖ρ(s)‖ ds
]
.

Here

B(t) =

∫ t

0

β(s) ds,(2.14)

and we have used∫ t

0

∫ s

0

β(s− τ)‖ρ(τ)‖ dτ ds =

∫ t

0

B(t− s)‖ρ(s)‖ ds.

From (2.8), the first estimate follows. Using the Sobolev embedding theorem and
Poincaré inequality, it follows that ‖ζ(t)‖Lp ≤ C‖ζx(t)‖, ζ(t) ∈ H1

0 . Finally, us-
ing (2.7)–(2.9), (2.12), and (1.4) appropriately, we apply the triangle inequality to
complete the proof.

Remark 2.1. (i) From the proof of Theorem 2.1, it is clear that we can choose
σh(0) as the L2 projection of σ0 into Wh instead of the elliptic projection σ̃h(0). Note
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that the results presented in Theorem 2.1 are optimal with respect to the approxima-
tion property but not with respect to the regularity of the solution.

(ii) The estimates in Theorem 2.1 are also valid for a weakly singular kernel β(t),
i.e.,

β(t) =
tµ−1

Γ(µ)
, 0 < µ < 1.

When k = r, the regularity results needed for optimal L∞(L2) estimates of u and σ
are u0 ∈ Hr+2, u ∈ L∞(Hr+1)∩W 1,1(Hr+2), and these results can be easily derived
under some compatibility conditions following the analysis of [9] (see Lemmas 5.1–5.6
of [9]).

3. Error estimates for problems in two and three space variables. Let
W =

{
q ∈ (L2(Ω))d : ∇ · q ∈ L2(Ω)

}
with norm

‖q‖H(div,Ω) = (‖q‖2 + ‖∇ · q‖2) 1
2 .

Then the weak formulation of (1.1) for d = 2, 3 is the following: find {u(t),σ(t)} ∈
H1

0 ×W satisfying

(a∇u,∇v) = (σ,∇v) , v ∈ H1
0 ,

(3.1)

(ασt,w) +

∫ t

0

β(t− s) (∇·σ(s),∇·w) ds = − (f,∇·w) , w ∈W.

In the analysis of this problem, we employ the classical Hilbert Sobolev spacesHm(Ω),
denoted byHm, with norm ‖·‖m. Let (Hm)d = Hm denote the corresponding product
space with the usual product norm.

To define the semidiscrete H1-Galerkin mixed finite element procedure, let Th be
a partition of Ω into a finite number of elements called simplices; i.e., Ω = ∪K∈Th

K
with h = max {diam(K) : K ∈ Th}. Let Vh and Wh be finite dimensional subspaces
of H1

0 and W, respectively, satisfying the following approximation properties: for
nonnegative integers k and r,

inf
vh∈Vh

{‖v − vh‖+ h‖v − vh‖1} ≤ Chk+1‖v‖k+1, v ∈ Hk+1 ∩H1
0(3.2)

and

inf
qh∈Wh

{‖q− qh‖+ h‖q− qh‖H(div;Ω)
} ≤ Chr+1‖q‖r+1, q ∈ Hr+1.(3.3)

Standard examples of such spaces are

Vh =
{
vh ∈ C0(Ω) : vh|K ∈ Pk(K) ∀K ∈ Th, vh = 0 on ∂Ω

}
(3.4)

and

Wh = {qh ∈W : (qh)i|K ∈ Pr(K), i = 1, 2, . . . , d ∀K ∈ Th} ,
where Ps(K) is the space of polynomials of degree ≤ s on K. Other examples of
approximating spaces can be found in [2] and [17]. Note that we also allow the use of
isoparametric elements.
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The semidiscrete H1-Galerkin mixed finite element approximation {uh,σh} :
[0, T ] �→ Vh ×Wh for (3.1) is determined by

(a∇uh,∇vh) = (σh,∇vh) , vh ∈ Vh,(3.5)

and

(ασht,wh) +

∫ t

0

β(t− s) (∇·σh(s),∇·wh) ds = − (f,∇·wh) , wh ∈Wh,(3.6)

with uh(0) and σh(0) specified later.
Corresponding to (2.6), we define the projections ũh ∈ Vh and σ̃h ∈Wh by

(∇(u− ũh),∇vh) = 0, vh ∈ Vh,(3.7)

and

A (σ − σ̃h,wh) = 0, wh ∈Wh,(3.8)

where A (w,wh) = (∇ ·w,∇ ·wh) + (w,wh).
With ρ = σ− σ̃h and η = u− ũh, the following estimates are easy to obtain (cf.,

[21]):

‖η(t)‖+ h‖∇η(t)‖ ≤ Chk+1‖u(t)‖k+1(3.9)

and

‖ρ(t)‖H(div,Ω) + ‖ρt(t)‖H(div,Ω) ≤ Chr (‖σ‖r+1 + ‖σt‖r+1) .(3.10)

To determine the desired error estimates, we write u−uh := (u−ũh)+(ũh−uh) =
η+ ζ and σ−σh := (σ− σ̃h)+(σ̃h−σh) = ρ+ξ. From (3.1), (3.5)–(3.8), we obtain

(a∇ζ,∇vh) = ((ρ+ ξ),∇vh) , vh ∈ Vh,(3.11)

and

(αξt,wh) +

∫ t

0

β(t− s) (∇ · ξ(s),∇ ·wh) ds

= − (αρt,wh) +

∫ t

0

β(t− s) (ρ(s),wh) ds, wh ∈Wh.(3.12)

Theorem 3.1. With σ0 = a∇u0, assume that

‖σ0 − σ0h‖H(div,Ω)
≤ Chr‖σ0‖r+1.

Then

‖(σ − σh)(t)‖ ≤ Chr
[‖σ0‖r+1 + ‖σt‖L1(Hr+1)

]
(3.13)

and

‖(u− uh)(t)‖+ h‖(u− uh)‖1
≤ Chmin(k+1,r)

[‖σ0‖r+1 + ‖u‖L∞(Hk+1) + ‖σt‖L1(Hr+1)

]
.
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Proof. Choose vh = ζ in (3.11) to obtain

‖∇ζ‖ ≤ C(‖ρ‖+ ‖ξ‖).(3.14)

Next, set wh = ξ(t) in (3.12) and use the Cauchy–Schwarz inequality to obtain

1

2

d

dt
‖α 1

2 ξ‖2 +

∫ t

0

β(t− s) (∇ · ξ(s),∇ · ξ(t)) ds

≤
[
‖ρt‖+

∫ t

0

β(t− s)‖ρ(s)‖ ds
]
‖ξ(t)‖.

On integrating from 0 to t and using the positivity property (1.2) of β, the second
term on the left-hand side of the resulting equation is nonnegative. As in the one
dimensional case, on taking the maximum over [0, t], we have

‖ξ(t)‖ ≤ C

[
‖ξ(0)‖+

∫ t

0

‖ρt(s)‖ ds+
∫ t

0

B(t− s)‖ρ(s)‖ ds
]
.

For the L2-norm estimate of ζ, we use the Poincaré inequality, ‖ζ‖ ≤ C‖∇ζ‖.
Since the L2 norm is dominated by the H(div,Ω) norm, the use of the triangle in-
equality with (3.9)–(3.10) and (3.14) completes the proof.

Remark 3.1. (i) In Theorem 3.1, the estimate (3.13) does not depend on the
approximation properties of Vh, and hence the degree k of Vh does not influence the
estimate of σ − σh.

(ii) When r = k + 1, we obtain the optimal order of convergence for u − uh in
the L2 norm, that is, optimality with respect to the approximation property, but not
with respect to the regularity of the solution.

(iii) Estimate (3.13) indicates that the error estimate ‖(σ−σh)(t)‖ is not optimal
in the L2 norm. This is primarily due to the fact that the bounds in the L2 norm for
ρ and ρt are not of optimal order. Note that, for optimal L2 estimates, the use of the
Aubin–Nitsche trick requires an H2 regularity result for the adjoint operator

−∇(∇ ·Φ) +Φ

associated with the bilinear form A(·, ·). In general, this is difficult to obtain as the
operator is not coercive in the H1 norm. Since −∆Φ = −∇(∇ · Φ) + ∇ × ∇ × Φ,
we therefore add a curl term to modify the formulation, and that is the theme of the
next section.

4. Modified H1-Galerkin mixed finite element method. Compared to the
estimates obtained for the one dimensional case in section 2, the L2 estimates derived
in section 3 for σ − σh and u − uh are not optimal. Therefore, in this section, we
propose a modification of the H1-Galerkin mixed finite element method (3.5)–(3.6) so
that optimal error estimates in the L2 norm can be determined. In order to accomplish
this, we use the fact that ∇×∇v = 0, and hence we add ∇× (ασ) = 0 to the first
order system (1.3). More precisely, with ασ = ∇u, we write (1.1) as

ut −
∫ t

0

β(t− s)∇·σ(s) ds = f(x, t), x ∈ Ω, t ∈ (0, T ],

∇× (ασ) = 0, (x, t) ∈ Ω× (0, T ],

n ∧ ασ = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,
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where n is the outward normal and ∧ denotes the exterior product. If

W = {w ∈ (H1(Ω))d : n ∧ αw = 0 on ∂Ω}, d = 2, 3,

then the weak formulation of (1.1) is the following: find {u,σ} : [0, T ] �→ H1
0 ×W

such that

(∇u,∇v) = (ασ,∇v) , v ∈ H1
0 ,

(4.1)

(ασt,w) +

∫ t

0

β(t− s)A (σ(s),w) ds = (−f,∇ ·w) , w ∈ H1,

where

A (φ,w) = (∇ · φ,∇ ·w) + (∇× αφ,∇× αw) .

For the modified H1-Galerkin mixed finite element method, we take Vh as in (3.4)
and define

Wh = {wh ∈ C(Ω̄)d : (wh)i |K∈ Pr(K), i = 1, . . . , d ∀K ∈ Th,
(n ∧ αwh) = 0 at the nodes on ∂Ω}.

Since n ∧ αwh = 0 only at the boundary nodes, the finite element space Wh is not
a subspace of W, and hence we have a mildly nonconforming method. Note that the
finite dimensional spaces Vh and Wh have the approximation properties (3.2) and
(3.3), respectively. The modified H1-Galerkin mixed finite element method consists
of determining the pair {uh,σh} : [0, T ] �→ Vh ×Wh such that

(∇uh,∇vh) = (ασh,∇vh) , v ∈ Vh,
(4.2)

(ασht,wh) +

∫ t

0

β(t− s)A (σh,wh) ds = (−f,∇ ·wh) , wh ∈Wh,

with uh(0) and σh(0) specified later.
For the error analysis, we define the projections {ũh, σ̃h} : [0, T ] �→ Vh ×Wh by

(∇(u− ũh),∇vh) = 0, vh ∈ Vh,
(4.3)

A1 (σ − σ̃h,wh) = 0, wh ∈Wh,

where

A1 (σ − σ̃h,wh) = A (σ − σ̃h,wh) + (σ − σ̃h,wh) .

When the domain Ω is convex or the boundary ∂Ω is of class C1,1 or Ω is a curvilinear
polygon (or polytope) of class C1,1 with no concave angles, then there is a positive
constant µ0, independent of h, such that

‖qh‖2H(div,Ω)
+ ‖∇ × (αqh)‖2 ≥ µ0‖qh‖2H1(Ω)(4.4)

for all qh ∈Wh and for small h; see pp. 509–510 of [15]. Thus, A1(·, ·) satisfies the
coercivity condition

A1 (φh,φh) ≥ µ0‖φh‖21, φh ∈Wh.
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Let u− ũh = η and σ− σ̃h = ρ. With an appropriate modification of the analysis
of [15] (see also [11, 12, 13]), it is easy to obtain the following estimates for ρ and ρt:

‖ρ‖j + ‖ρt‖j ≤ Chr+1−j [‖σ‖r+1 + ‖σt‖r+1], j = 0, 1.(4.5)

Note that the difficulties due to nonconformity enter the error analysis of ρ and
ρt. As before, we write u − uh := (u − ũh) + (ũh − uh) = η + ζ and σ − σh :=
(σ − σ̃h) + (σ̃h − σh) = ρ+ ξ. From (4.1)–(4.3), we have

(∇ζ,∇vh) = (α(ρ+ ξ),∇vh) , vh ∈ Vh,(4.6)

and

(αξt,wh) +

∫ t

0

β(t− s)A (ξ,wh) ds

= − (αρt,wh) +

∫ t

0

β(t− s) (ρ(s),wh) ds, wh ∈Wh.(4.7)

We now prove the main theorem in this section.
Theorem 4.1. Assume that σh(0) = σ̃h(0) with σ0 = a∇u0. Then

‖(σ − σh)(t)‖ ≤ Chr+1
[‖σ0‖r+1 + ‖σt‖L1(Hr+1)

]
(4.8)

and

‖(u− uh)(t)‖+ h‖(u− uh)(t)‖1
≤ Chmin(k+1,r+1)

[‖u‖L∞(Hk+1) + ‖σ0‖r+1 + ‖σt‖L1(Hr+1)

]
.

Proof. Choose vh = ζ(t) in (4.6) to obtain

‖∇ζ‖ ≤ C (‖ρ‖+ ‖ξ‖) .(4.9)

Further, setting wh = ξ(t) in (4.7) gives

d

dt
‖α 1

2 ξ‖2 + 2

∫ t

0

β(t− s)A (ξ(s), ξ(t)) ds ≤
(
‖ρt‖+

∫ t

0

β(t− s)‖ρ(s)‖ ds
)
‖ξ‖.

Integrate from 0 to t and use (1.2) to obtain

‖ξ(t)‖2 ≤ C[‖ξ(0)‖+
∫ t

0

‖ρt(s)‖ ds+
∫ t

0

B(t− s)‖ρ(s)‖ ds] max
0≤s≤t

‖ξ(s)‖,

where B is given by (2.14). Taking the maximum over [0, t], it is easy to see that

‖ξ(t)‖ ≤ max
0≤s≤t

‖ξ(s)‖ ≤ C[‖ξ(0)‖+
∫ t

0

‖ρt(s)‖ ds+
∫ t

0

B(t− s)‖ρ(s)‖ ds].

Since σ(0) = σ̃h(0), then ξ(0) = 0. Using the triangle inequality and (4.5), we obtain
(4.8). On substituting ‖ξ(t)‖ in (4.9), it follows that

‖∇ζ(t)‖ ≤ Chr+1
(‖σ‖L∞(Hr+1) + ‖σt‖L1(Hr+1)

)
.(4.10)
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Using (3.9), (1.4) with φ replaced by σ and the triangle inequality, we complete the
proof.

Remark 4.1. (i) With r = k, we have ‖u− uh‖L∞(L2) = O(hk+1).
(ii) The present analysis yields better results than those of section 3 for the L2

estimate of σ −σh but with additional regularity assumptions on the exact solution.
Note that, from Theorem 4.1, ‖σ − σh‖ = O(hr+1) even if k < r, and hence the
degree of Vh does not influence the estimate of σ − σh.

Corollary 4.2. Assume that d = 2, that is, Ω ⊂R2, and σh(0) = σ̃h(0). Then

‖(u− uh)(t)‖L∞

≤ C

(
log

1

h

)
hmin(k+1,r+1)[‖u‖L∞(Hk+1) + ‖σ0‖r+1 + ‖σt‖L1(Hr+1)],

provided the finite element mesh is quasi-uniform.
Proof. Using the Sobolev imbedding theorem for d = 2, the inverse hypothesis,

and the superconvergence estimate (4.10) for ‖∇ζ‖, we obtain

‖ζ(t)‖L∞

≤ Chmin(k+1,r+1)

(
log

1

h

) 1
2

[‖u‖L∞(Hk+1) + ‖σ0‖r+1 + ‖σt‖L1(Hr+1)].

From [2, 20], it follows that the error η in the elliptic projection satisfies

‖η(t)‖L∞ ≤




C

(
log

1

h

)
h2‖u‖L∞(Wk+1,∞), k = 1,

Chk+1‖u‖L∞(Wk+1,∞), k > 1.

The use of the triangle inequality completes the proof.

5. The backward Euler method for the modified method. In this section,
we briefly describe the backward Euler method for approximating {u,σ} of (4.1) and
discuss the related error estimates. Since the error analysis for higher order time
stepping schemes such as the Crank–Nicolson and second order backward difference
methods is similar, we shall not pursue these methods further in this paper (see [9]
for related results).

To describe the backward Euler method, let ∆t = T/M , for some positive integer
M , and set tn = n∆t, n = 0, . . . ,M . For a smooth function φ on [0,T], define

φn = φ(tn), ∂tφ
n =

φn − φn−1

∆t
.

To approximate the integral, we introduce the right rectangle quadrature rule

qn(φ) = ∆t

n∑
j=1

βn−jφj ≈
∫ tn

0

β(tn − s)φ(s) ds,

where βn−j = β(tn − tj). This quadrature rule is positive [3, 9] in the sense that

J∑
n=1

qn(φ)φn = ∆t

J∑
n=1

n∑
j=1

βn−jφjφn ≥ 0, J = 1, . . . ,M.
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The quadrature error

εn(φ) := qn(φ)−
∫ tn

0

β(tn − s)φ(s) ds

satisfies

|εn(φ)| ≤ C∆t

∫ t0

0

(|φ(s)|+ |φt(s)|) ds,

provided β, φ ∈ C1[0, T ].
Let Un and Zn be approximations to u and σ at t = tn, respectively, defined as

follows. Given {Un−1,Zn−1} ∈ Vh ×Wh, determine {Un,Zn} in Vh ×Wh satisfying

(∇Un,∇vh) = (αZn,∇vh) , v ∈ Vh,
(α∂tZ

n,wh) + qnA(Z)(wh) = (−fn,∇ ·wh) , wh ∈Wh,

with U0 = u0,h specified later. Here,

qnA(Z)(wh) = ∆t

n∑
j=1

βn−jA
(
Zj ,wh

)
.

To determine the desired error estimates, we write un−Un := (un− ũnh) + (ũnh −
Un) = ηn + ζn and σn − Zn := (σn − σ̃nh) + (σ̃nh − Zn) = ρn + ξn. Since estimates
of ηn and ρn are given by (3.9) and (4.5) at t = tn, it is sufficient to estimate ζn and
ξn. Note that the equations for ζn and ξn may be written as

(∇ζn,∇vh) = (α(ρn + ξn),∇vh) , vh ∈ Vh,(5.1)

and

(α∂tξ
n,wh) + qnA(ξ)(wh) = − (α∂tρ

n + ατn,wh)

+εnA(σ)(wh) + (qn(ρ),wh) , wh ∈Wh,(5.2)

where τn = σt(tn)− ∂tσ(tn) and

εnA(σ)(wh) = qnA(σ)(wh)−
∫ tn

0

β(tn − s)A (σ,wh) ds.

Theorem 5.1. Assume that Z0 = σ̃h(0) with σ0 = a∇u0 and β ∈ C1[0, T ].
Then

‖σJ − ZJ‖ ≤ C

{
hr+1

[‖σ0‖r+1 + ‖σt‖L1(Hr+1)

]
+∆t

∫ tJ

0

(‖σtt(s)‖+ ‖σ(s)‖2 + ‖σt(s)‖2) ds
}
.

Further,

‖uJ − UJ‖+ h‖uJ − UJ‖1
≤ C

{
hmin(k+1,r+1)

[‖u‖L∞(Hk+1) + ‖σ0‖r+1 + ‖σt‖L1(Hr+1)

]
+ ∆t

∫ tJ

0

(‖σtt(s)‖+ ‖σ(s)‖2 + ‖σt(s)‖2) ds
}
.



AN H1-GALERKIN MIXED FINITE ELEMENT METHOD 1487

Proof. Choose vh = ζn in (5.1) to obtain, for n = 0, 1, . . . ,M,

‖∇ζn‖ ≤ C(‖ρn‖+ ‖ξn‖).(5.3)

Set wh = ξn in (5.2) and use the Cauchy–Schwarz inequality and Young’s inequality
to obtain

1

2
∂t‖α 1

2 ξn‖2 + qnA(ξ)(ξ
n) ≤ C [‖∂tρn‖+ ‖εnA(σ)‖+ ‖τn‖+ ‖qn(ρ)‖] ‖ξn‖.(5.4)

Note that

∆t

J∑
n=1

‖∂tρn‖ ≤ Chr+1

∫ tJ

0

‖σt(s)‖r+1 ds,

∆t
J∑
n=1

‖εnA(σ)‖ ≤ C∆t

∫ tJ

0

(‖σ(s)‖2 + ‖σt(s)‖2) ds,

∆t

J∑
n=1

‖τn‖ ≤ C∆t

∫ tJ

0

‖σtt(s)‖ ds.

On substituting these estimates in (5.4) after summing from n = 1, . . . , J , the second
term on the left-hand side of the resulting inequality is nonnegative. Thus, we obtain

‖ξJ‖ ≤ max
1≤n≤J

‖ξn‖ ≤ C

{
‖ξ0‖+ hr+1

(
‖σ‖L∞(Hr+1) +

∫ tJ

0

‖σt(s)‖r+1 ds

)

+ ∆t

∫ tJ

0

(‖σtt(s)‖+ ‖σ(s)‖2 + ‖σt(s)‖2) ds
}
.(5.5)

Note that ξ0 = 0. Using (5.5) in (5.3), we obtain the superconvergence result

‖∇ζJ‖ ≤ C

{
hr+1[‖σ‖L∞(Hr+1) +

∫ tJ

0

‖σt(s)‖r+1 ds]

+ ∆t

∫ tJ

0

(‖σtt(s)‖+ ‖σ(s)‖2 + ‖σt(s)‖2) ds]
}
.

The use of the triangle inequality with the estimates of ρJ and ηJ completes the
proof.

In the remainder of the section, we relax the regularity assumptions on the kernel,
requiring only β ∈ L1(0, T ). We still assume that β is positive definite in the sense of
(1.2). We now consider the backward Euler method using product integration [7, 9]
to approximate the integral:

qn(φ) =

n∑
j=1

∫ tj

tj−1

β(tn − s)φj ds =

n∑
j=1

κn−jφj ≈
∫ tn

0

β(tn − s)φ(s) ds,(5.6)

where

κj =

∫ tj+1

tj

β(s) ds.
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When

β ∈ L1
loc(0,∞) ∩ C2(0,∞) and (−1)jβ(j)(t) ≥ 0, for t > 0, j = 0, 1, 2,(5.7)

the product rule (5.6) is positive and the quadrature error satisfies [9]

|εn(φ)| ≤ C∆t

∫ tn

0

|φt(s)| ds, tn ≤ T.(5.8)

For the commonly occurring kernel β(t) = tµ−1/Γ(µ), 0 < µ < 1, (5.7) is
satisfied, and the proof of the following theorem may be obtained by modifying the
arguments used in the proof of Theorem 5.1 and by using (5.8).

Theorem 5.2. Assume that β(t) = tµ−1/Γ(µ), 0 < µ < 1, and that the quadra-
ture qn is the product rule of (5.6). Then, for k = 1, r = 1, and J = 0, 1, . . . ,M ,

‖σJ − ZJ‖≤ C

{
h2
[‖σ‖L∞(H2) + ‖σt‖L1(H2)

]
+ ∆t

∫ tJ

0

(‖σtt(s)‖+ ‖σ(s)‖2 + ‖σt(s)‖2) ds
}
.

Further,

‖uJ − UJ‖+ h‖uJ − UJ‖1 ≤ C

{
h2
[‖u‖L∞(H2) + ‖σ‖L∞(H2) + ‖σt‖L1(H2)

]
+ ∆t

∫ tJ

0

(‖σtt(s)‖+ ‖σ(s)‖2 + ‖σt(s)‖2) ds
}
.

6. Concluding remarks. In this paper, a priori error estimates are derived for
an H1-Galerkin mixed finite element method without the LBB consistency condition
and also without a quasi-uniformity assumption on the finite element mesh. Since
the estimate for ‖σ − σh‖ derived in section 3 is not optimal in two and three space
dimensions, a modification of the method is proposed and analyzed in section 4 to
establish an optimal estimate in the L2 norm as in the one dimensional case of section
2. Another notable advantage of the present method is that it allows the use of two
different finite element spaces for approximating u and its flux σ. In particular, use
of piecewise linear polynomial spaces yields O(h2) of convergence in both u− uh and
σ − σh in the L2 norm. Moreover, in two dimensions, we obtain a quasi-optimal
maximum norm estimate for u− uh.

The results presented in this paper can be easily extended to the initial and
boundary value problem

ut −
∫ t

0

β(t− s) [∇ · (a(x)∇u(s))− b(x)u(s)] ds = f(x, t), (x, t) ∈ Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

where b = b(x) ≥ 0, x ∈ Ω. For the mixed formulation, this equation is rewritten as

σ = a∇u,
ut −

∫ t

0

β(t− s) (∇ · σ(s)− bu(s)) ds = f.
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The corresponding H1-Galerkin mixed finite element method is based on the weak
formulation

(a∇u,∇v) = (σ,∇v) , v ∈ H1
0 ,

(6.1)

(ασt,w) +

∫ t

0

β(t− s) [(∇·σ(s),∇·w) + (bσ(s),w)] ds

= − (f,∇·w)−
∫ t

0

β(t− s) (u(s)∇b,w) , w ∈W.

Unlike (3.1), the system (6.1) is now strongly coupled with unknowns (u,σ). Since
the error estimates closely follow the proof techniques of the present paper, we shall
not pursue these further.
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Abstract. We consider characteristics-based finite element methods for solving nonlinear, de-
generate, advection-diffusion equations. These equations have applications in the simulation of
petroleum reservoirs and groundwater aquifers and in the modeling of free boundary problems.
Standard finite element Galerkin methods have been studied for these equations. In this paper,
we analyze the characteristics-based finite element methods for them. The main difficulty in the
analysis is that the equations are degenerate and the solution lacks regularity. Here we develop a
technique that respects the degeneracy and the known minimal regularity. This technique is based
on the Green operator for standard elliptic equations and is developed directly for the degenerate
advection-diffusion equations. We concentrate our analysis on the modified method of characteris-
tics (MMOC) and one of its variants, the modified method of characteristics with adjusted advection
(MMOCAA), which conserves mass. We derive error estimates in various norms. The extension to
other variants is discussed. The present technique is also applied to nondegenerate problems; error
estimates previously obtained for the MMOC are derived under much weaker regularity assumptions
on the solution, and the error estimates for the MMOCAA appear new even in the nondegenerate
case. Finally, numerical results are presented to show the sharpness of the error estimates derived.

Key words. degeneracy, advection-diffusion equations, characteristics-based finite elements,
error estimates
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1. Introduction. Let Ω ⊂ �d, d ≤ 3, be a bounded domain and J = (0, T ],
with T > 0. We consider and analyze characteristics-based finite element methods for
the advection-diffusion equation in u(x, t):

c∂tu+ b · ∇u−∇ · (a(u)∇u) = f in Ω× J,(1.1)

where c = c(x, t), b = b(x, t) (a vector), a(u) = α(x, t)β(u), and f = f(x, t), with α
being a d× d symmetric, positive-definite matrix and β a nonnegative function in u.
Because β can be zero in u, (1.1) is generally degenerate in this variable.

Problem (1.1) arises in many applications. It appears in petroleum reservoir sim-
ulation that often requires the numerical solution for similar problems of multiphase
fluid flow in porous media [6, 38], in groundwater aquifer modeling for the transport
of a solute in porous media with an equilibrium adsorption reaction [26, 29, 31], and
in the solution of parabolic free boundary problems [30, 35], for example. Standard
finite element Galerkin methods have been studied for these applications with the
degeneracy taken into account; see [11, 14, 15, 16, 17, 28, 34, 40, 43] in the reservoir

∗Received by the editors April 11, 2000; accepted for publication (in revised form) March 29,
2002; published electronically October 23, 2002. This work was supported in part by National
Science Foundation grants DMS-9626179, DMS-9972147, and INT-9901498 and by a gift grant from
Mobil Technology Company.

http://www.siam.org/journals/sinum/40-4/37068.html
†Department of Mathematics, Box 750156, Southern Methodist University, Dallas, TX 75275-0156

(zchen@mail.smu.edu, qjiang@mail.smu.edu).
‡Department of Mathematics and Institute for Scientific Computation, Texas A&M University,

College Station, TX 77843-3404 (ewing@isc.tamu.edu, annas@math.tamu.edu).

1491



1492 CHEN, EWING, JIANG, AND SPAGNUOLO

simulation, [5, 13, 19] for the groundwater modeling, and [32, 36] for the free boundary
problems, for instance.

In the petroleum and groundwater areas, finite difference methods are most often
used to solve equations analogous to (1.1). It is known [42] that certain finite difference
methods are actually equivalent to mixed finite element methods of the lowest order
on rectangles [7], combined with special quadrature rules. The mixed finite element
methods for equations similar to (1.1) have been analyzed in [3].

It is well known that advection-diffusion equations often present serious numer-
ical difficulties. Standard finite element and finite difference methods usually ex-
hibit some combination of nonphysical oscillation and excessive numerical dispersion
[27, 33]. Many numerical methods have been developed to overcome these difficul-
ties. In this paper, we consider and analyze the modified method of characteristics
(MMOC) (or the Eulerian–Lagrangian method) [25, 39] for (1.1). Because of the La-
grangian nature of the advection term, this method treats this term by a characteristic
tracking scheme. It has many advantages and one fundamental flaw, the failure to
preserve as an algebraic identity a desired conservation law associated with the under-
lying physical problem. Recently, a variant of the MMOC, called the modified method
of characteristics with adjusted advection (MMOCAA) has been introduced [22]. The
MMOCAA does preserve the desired conservation property and also the conceptual
and computational advantages of the MMOC. For this reason, we also carry out a
formal analysis for the MMOCAA procedure. The extension of the analysis to other
recently developed characteristics-based methods, such as the Eulerian–Lagrangian
localized adjoint method (ELLAM) [8] and the characteristic-mixed finite element
method [2], is discussed.

The main difficulty in the error analysis is that problem (1.1) is degenerate and
its solution lacks regularity. Here we develop a technique that respects the degeneracy
and the known minimal regularity. This technique is based on the Green operator
for standard elliptic equations and is developed directly for the degenerate advection-
diffusion equation. We first establish sharp error estimates in various norms for the
MMOC and MMOCAA in the degenerate case. We then use the present technique to
obtain optimal error estimates for nondegenerate problems. The degenerate case is an-
alyzed for the first time for these two characteristic methods, while the error estimates
for the nondegenerate case are derived under much weaker regularity assumptions on
the solution than those previously used.

The rest of the paper is outlined as follows. In the next section, we review
the theoretical results available for (1.1). The MMOC and MMOCAA procedures
are analyzed in the third and fourth sections, respectively. Numerical results are
presented in the final section.

2. Preliminaries. The usual Sobolev spaces W l,π(Ω) with the norm ‖ ·‖W l,π(Ω)

will be used, where l is a nonnegative integer and 0 ≤ π ≤ ∞. When π = 2, we
simply write H l(Ω) = W l,2(Ω). When l = 0, we have L2(Ω) = H0(Ω). The spaces
L2(J ;W l,π(Ω)) and L∞(J ;W l,π(Ω)) will also be used, with the norms ‖·‖L2(J;W l,π(Ω))

and ‖ · ‖L∞(J;W l,π(Ω)), respectively. Below (·, ·)Q denotes the L2(Q) inner product (or
sometimes the duality pairing); Q is omitted if Q = Ω. Finally, set ΩT = Ω× J .

It follows from [1] that under appropriate boundary and initial conditions and
reasonable assumptions on the data problem (1.1) has at least the regularity results

u ∈ L∞(J ;L1(Ω)), ∂tu ∈ L2(J ;H−1(Ω)), β(u)∇u ∈ L2(J ; (L2(Ω))d),(2.1)

where H−1(Ω) is the dual to H1(Ω). In general, we can only expect the above
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regularity to hold for ∂tu. Under the assumption that (1.1) is physically consistent
so that a maximum principle holds, u can be shown to be bounded [1]:

u ∈ L∞(ΩT ).(2.2)

With (2.2), we introduce the Kirchhoff transformation

θ =

∫ u

ur

β(ξ)dξ,

where ur is any reference element in a neighborhood of the solution u. For notational
convenience later, take ur = 0; i.e., θ is defined by

θ =

∫ u

0

β(ξ)dξ.(2.3)

A main assumption in the later analysis is that there is a constant β∗, independent
of time, such that

‖θ1 − θ2‖2L2(Ω) ≤ β∗(θ1 − θ2, u1 − u2), u1, u2 ∈ L2(Ω),(2.4)

where θi corresponds to ui through (2.3), i = 1, 2. A sufficient condition for (2.4) to
hold is

0 ≤ β(v) ≤ β∗ <∞ in a neighborhood of u.(2.5)

This assumption will be tacitly made later and is physically reasonable [14].
Also, we rewrite the advection-diffusion equation (1.1) in the form

c(x)∂tu+ b(x) · ∇u−∇ · (α(x)∇θ) = f(x, t) in ΩT ,(2.6)

with θ given in (2.3). By lagging the coefficients in time in the first and second terms of
(1.1), we easily obtain (2.6). Also, in physical applications (1.1) is often coupled with
other equations that determine the coefficients c and b. In the petroleum application,
for example, c is the porosity and b is a velocity field. These coefficients can be
calculated independent of u, so (1.1) reduces to (2.6). Finally, the present analysis
can be easily extended to the case where b and c explicitly depend on t. Note that
(2.6) is still degenerate and nonlinear in u since ∇θ = β(u)∇u.

Next, to avoid the difficulty associated with the boundary conditions, we assume
that (2.6) is Ω-periodic; i.e., all functions in (2.6) are spatially Ω-periodic. This is
physically reasonable because no-flow boundaries are usually handled by reflection
and interior flow behavior is often much more important than boundary effects.

Finally, we focus on the two space dimensions; i.e., d = 2. An analysis can be
done in the same fashion for the three dimensions [41]. Therefore, we give an analysis
of error estimates in the case where Ω is a rectangular domain.

3. Analysis for the MMOC.

3.1. The MMOC procedure. We assume that the coefficients c and b satisfy

0 < c∗ ≤ c(x) ≤ c∗ <∞,
∣∣∣∣b(x)c(x)

∣∣∣∣+
∣∣∣∣∇ ·

(
b(x)

c(x)

)∣∣∣∣ ≤ C, x ∈ Ω.(3.1)
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We also assume that α(x) is a 2 × 2 symmetric matrix that is uniformly positive
definite with respect to x ∈ Ω̄; i.e., with α = (αij),

0 < α∗ ≤ |ξ|−2
d∑

i,j=1

αij(x)ξiξj ≤ α∗ <∞, x ∈ Ω̄, ξ �= 0 ∈ �2.(3.2)

Let

ψ(x) =
(
c2(x) + |b(x)|2)1/2 ,

and let the characteristic direction associated with the operator c∂tu + b · ∇u be
denoted by τ(x), where

∂τ =
c(x)

ψ(x)
∂t +

b(x)

ψ(x)
· ∇.

Then (2.6) can be written as follows:

ψ(x)∂τu−∇ · (α(x)∇θ) = f(x, t) in ΩT ,(3.3)

where u is related to θ through (2.3): u = U(θ), with U being the inverse of (2.3).
The initial condition is given by

u(x, 0) = u0(x) in Ω.(3.4)

For 0 < h, let Mh ⊂ H1(Ω) be a standard C0-finite element space such that the
approximation property holds:

inf
vh∈Mh

‖v − vh‖H1(Ω) ≤ Ch‖v‖H2(Ω),(3.5)

where and below C (with or without a subscript) indicates a generic constant inde-
pendent of h, which will probably take on different values in different occurrences. In
this paper, we consider only lowest-order C0-finite elements such that (3.5) is satis-
fied; due to lacking regularity on the true solution, no improvement in the asymptotic
convergence rate results from taking higher-order finite element spaces. We denote
by Ph the L2-projection into Mh, which satisfies that

‖v − Phv‖H−1(Ω) ≤ Ch‖v‖L2(Ω) ∀v ∈ L2(Ω).(3.6)

For each positive integer N , let 0 = t0 < t1 < · · · < tN = T be a partition of J
into subintervals Jn = (tn−1, tn], with length ∆tn = tn − tn−1, 1 ≤ n ≤ N , and let
∆t = max1≤n≤N ∆tn. Also, set vn = v(·, tn) and v̄n−1 = v(x − b(x)∆tn/c(x), tn−1).
The standard MMOC procedure is the determination of the map θh : {t1, . . . , tN} →
Mh satisfying(

c
unh − ūn−1

h

∆tn
, v

)
+ (α∇θnh ,∇v) = (fn, v) ∀v ∈Mh, 1 ≤ n ≤ N,(3.7)

where unh = U(θnh), 1 ≤ n ≤ N , and

u0h = Phu0.(3.8)

It can be shown that (3.7) determines {θh} and {uh} uniquely in terms of the data
u0 and f [12].
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3.2. The Green operator. We introduce the bilinear form a(·, ·) on H1(Ω),

a(v, w) = (α∇v,∇w) + (v, w) ∀v, w ∈ H1(Ω),

and define the Green operator G : H−1(Ω)→ H1(Ω) by

a(Gv,w) = (cv, w) ∀w ∈ H1(Ω), v ∈ H−1(Ω).(3.9)

We assume that G is regular; i.e.,

‖Gv‖H2(Ω) ≤ C‖v‖L2(Ω) ∀v ∈ L2(Ω).(3.10)

This assumption is satisfied with (the boundary of Ω) ∂Ω ∈ C1,1 (or, optionally, Ω
being polygonal and convex). The norm in H−1(Ω) can be represented in terms of G:

‖v‖H−1(Ω) = a
1/2(Gv,Gv) = (cv,Gv)1/2 ∀v ∈ H−1(Ω).(3.11)

The discrete Green operator Gh : H−1(Ω)→Mh is given by

a(Ghv, w) = (cv, w) ∀w ∈Mh, v ∈ H−1(Ω).(3.12)

By the regularity of G and (3.5), we have the approximation property [18]

‖(G−Gh)v‖Hl(Ω) ≤ Ch2−(l+π)‖v‖B−π(Ω), 0 ≤ l, π ≤ 1,(3.13)

where B−π(Ω) = [L2(Ω), H−1(Ω)]π is the interpolation space. Moreover, it follows
from (3.12) that

a(Ghv,Ghv) ≤ C‖v‖2H−1(Ω) ∀v ∈ H−1(Ω).(3.14)

3.3. Stability. In addition to assumptions (2.5), (3.1), and (3.2), we also assume
that the norms

‖f‖L∞(J;H−1(Ω)) and ‖u0‖L2(Ω) are bounded.(3.15)

The proof of the next lemma can be found in [25] (see also Lemma 3.4 below).
Lemma 3.1. If η ∈ L2(Ω) is Ω-periodic and η̄ = η(x−g(x)∆t), where g and ∇·g

are bounded, then

‖η − η̄‖H−1(Ω) ≤ C∆t‖η‖L2(Ω).

We now establish some stability results, which will be utilized in the subsequent
error analysis. Note that inequality (2.5) needs to hold in the range of the numerical
solution, so we extend β in some reasonable way [14].

Lemma 3.2. Under assumptions (2.5), (3.1), (3.2), and (3.15), we have

max
1≤n≤N

{‖unh‖2L2(Ω) + ‖θnh‖2L2(Ω)}+
N∑
n=1

‖∇θnh‖2L2(Ω)∆t
n ≤ C.

Proof. Take v = θnh in (3.7) to see that

(
c
unh − ūn−1

h

∆tn
, θnh

)
+ (α∇θnh ,∇θnh) = (fn, θnh);



1496 CHEN, EWING, JIANG, AND SPAGNUOLO

after summing over n from 1 to N , this equation can be put in the form

N∑
n=1

{
(c[unh − un−1

h ], θnh) + (α∇θnh ,∇θnh)∆tn
}

(3.16)

=
N∑
n=1

{
(fn, θnh)∆t

n + (c[ūn−1
h − un−1

h ], θnh)
}
.

Define

Φ(s) =

∫ s

0

θ(ξ)dξ,

where

θ(ξ) =

∫ ξ

0

β(ζ)dζ,

as defined in (2.3). Then we see that

(unh − un−1
h )θnh ≥ Φ(unh)− Φ(un−1

h ),

so

N∑
n=1

(c[unh − un−1
h ], θnh) ≥

N∑
n=1

(
c[Φ(unh)− Φ(un−1

h )], 1
)
=
(
c[Φ(uNh )− Φ(u0h)], 1

)
.

Using (2.5), we have

Φ(uNh ) ≥
1

2β∗
(θNh )2 and Φ(u0h) ≤

β∗

2
(u0h)

2.

Thus, by (3.1), we obtain

N∑
n=1

(c[unh − un−1
h ], θnh) ≥

c∗
2β∗
‖θNh ‖2L2(Ω) −

c∗β∗

2
‖u0h‖2L2(Ω).

With this, (3.2), and the Schwarz inequality, (3.16) can be written as

c∗
2β∗
‖θNh ‖2L2(Ω) −

c∗β∗

2
‖u0h‖2L2(Ω) + α∗

N∑
n=1

‖∇θnh‖2L2(Ω)∆t
n

≤ C
N∑
n=1

{‖fn‖H−1(Ω)∆t
n + ‖ūn−1

h − un−1
h ‖H−1(Ω)

} ‖θnh‖H1(Ω),

which, together with Lemma 3.1, the discrete Gronwall inequality, the fact that
|U(s)| ≤ C1|s|+ C2, and a kick-back argument, yields the desired result.

Lemma 3.3. With the same assumptions as in Lemma 3.2, if h = O(∆t), we
have

N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
2

H−1(Ω)

∆tn ≤ C.
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Proof. Choose v = Gh(u
n
h − ūn−1

h )/∆tn in (3.7) to see that

(
c
unh − ūn−1

h

∆tn
,
Gh(u

n
h − ūn−1

h )

∆tn

)
+

(
α∇θnh ,∇

Gh(u
n
h − ūn−1

h )

∆tn

)

=

(
fn,
Gh(u

n
h − ūn−1

h )

∆tn

)
.

By the definition of Gh in (3.12), this equation becomes

(
c
unh − ūn−1

h

∆tn
,
Gh(u

n
h − ūn−1

h )

∆tn

)
+

(
c
unh − ūn−1

h

∆tn
, θnh

)
−
(
Gh(u

n
h − ūn−1

h )

∆tn
, θnh

)

=

(
fn,
Gh(u

n
h − ūn−1

h )

∆tn

)
.

(3.17)

Using (3.14), we have

(3.18)∣∣∣∣
(
c
unh − ūn−1

h

∆tn
, θnh

)
−
(
Gh(u

n
h − ūn−1

h )

∆tn
, θnh

)∣∣∣∣ ≤ C
∥∥∥∥unh − ūn−1

h

∆tn

∥∥∥∥
H−1(Ω)

‖θnh‖H1(Ω),∣∣∣∣
(
fn,
Gh(u

n
h − ūn−1

h )

∆tn

)∣∣∣∣ ≤ C‖fn‖H−1(Ω)

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
H−1(Ω)

.

Also, note that

(
c
unh − ūn−1

h

∆tn
,
Gh(u

n
h − ūn−1

h )

∆tn

)

=

(
c
unh − ūn−1

h

∆tn
,
G(unh − ūn−1

h )

∆tn

)
+

(
c
unh − ūn−1

h

∆tn
,
(Gh −G)(unh − ūn−1

h )

∆tn

)
,

so, by (3.13),

(
c
unh − ūn−1

h

∆tn
,
Gh(u

n
h − ūn−1

h )

∆tn

)

≥ C
(∥∥∥∥unh − ūn−1

h

∆tn

∥∥∥∥
2

H−1(Ω)

− 1

(∆tn)2
‖(Gh −G)(unh − ūn−1

h )‖2H1(Ω)

)

≥ C
(∥∥∥∥unh − ūn−1

h

∆tn

∥∥∥∥
2

H−1(Ω)

− h2

(∆tn)2
‖unh − ūn−1

h ‖2L2(Ω)

)
.

(3.19)

Substitute (3.18) and (3.19) into (3.17) and use Lemma 3.2 to obtain the desired
result.

3.4. Error analysis I. For the next lemma, we need the assumption

c ∈W 1,∞(Ω) and
b

c
∈ (W 1,∞(Ω)

)2
.(3.20)

The proof of the following lemma follows a similar treatment of Lemma 3.1 in [20].
However, the argument is simpler and the assumptions are weakened.
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Lemma 3.4. With assumptions (3.1) and (3.20), we have, for ∆t sufficiently
small,

(cv̄, Gv̄)− (cv,Gv) ≤ C∆t(cv,Gv) ∀v ∈ L2(Ω),

where v̄ = v(x− b(x)∆t/c(x)).
Proof. Let y = x − b(x)∆t/c(x) ≡ H(x) for each x ∈ Ω. The Jacobian of this

transformation is

J(H(x)) =




1− ∂x1

(
b1
c

)
∆t −∂x2

(
b1
c

)
∆t

−∂x1

(
b2
c

)
∆t 1− ∂x2

(
b2
c

)
∆t


 ,

so its determinant equals

|J(H(x))| = 1−∇ ·
(
b

c
(x)

)
∆t+O

(
(∆t)2

)
.

Note that, for ∆t sufficiently small, |J(H(x))| > 0. Also, since H maps the periodic
domain Ω onto itself, a change of variable leads to

(cv̄, Gv̄) =

∫
Ω

c(x)v(y)Gv(y)dx

=

∫
Ω

c(x)v(y)Gv(y)
1

|J(H(x))|dy

=

∫
Ω

c(x)v(y)Gv(y)

(
1 +∇ ·

(
b

c
(x)

)
∆t+O

(
(∆t)2

))
dy.

Subtracting (cv,Gv) from both sides of this equation, we see that

(cv̄, Gv̄)− (cv,Gv) =

∫
Ω

[c(x)− c(y)]v(y)Gv(y)
(
1 +∇ ·

(
b

c
(x)

)
∆t+O

(
(∆t)2

))
dy

+

∫
Ω

c(y)v(y)Gv(y)

(
∇ ·
(
b

c
(x)

)
∆t+O

(
(∆t)2

))
dy

≡ A1 +A2.

Note that

|c(x)− c(y)| ≤ ‖∇c‖L∞(Ω)|x− y| ≤ ‖∇c‖L∞(Ω)

∥∥∥∥bc
∥∥∥∥
L∞(Ω)

∆t,

so that, by (3.1) and (3.20),

A1 ≤ C∆t(cv,Gv).

Also, by (3.1), it is obvious that

A2 ≤ C∆t(cv,Gv).

The bounds for A1 and A2 complete the proof.
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3.4.1. Case A: Under assumption (2.5). We first derive error estimates un-
der assumption (2.5); i.e., (2.6) is degenerate. Note that, by the periodicity assump-
tion, (3.3) (or (2.6)) can be written in the weak form

(ψ(x)∂τu, v) + (α(x)∇θ,∇v) = (f, v) ∀v ∈ H1(Ω).(3.21)

Set

uh(·, t) = unh(·) and θh(·, t) = θnh(·) for t ∈ Jn, n = 1, . . . , N.

Also, let

eu(t) = u(t)− uh(t), eθ(t) = θ(t)− θh(t), and enu = eu(t
n).

Below ε is a positive constant independent of h and ∆t, as small as we please. Also,
whenever Lemma 3.4 is used, we will implicitly require that ∆t be sufficiently small.

Theorem 3.5. Under assumptions (2.1), (2.2), (2.5), (3.1), (3.2), (3.10), (3.15),
(3.20), and h = O(∆t), we have the error estimate

(3.22)

max
1≤n≤N

‖un − unh‖2H−1(Ω) +

N∑
n=1

‖θn − θnh‖2L2(Ω)∆t
n ≤ C∆t(1 + ∆t ‖∂ττu‖2L2(J;H−1(Ω))).

Proof. Take v = Genu in (3.21) with t = tn and v = Ghe
n
u in (3.7), subtract the

resulting two equations, use (3.9) and (3.12), and sum over n from 1 to N to have the
error equation

(3.23)
N∑
n=1

(
c[enu − ēn−1

u ], Genu
)
+

N∑
n=1

(cenθ , e
n
u)∆t

n

=

N∑
n=1

(fn, Genu −Ghe
n
u)∆t

n +

N∑
n=1

{(Genu, θn)− (Ghe
n
u, θ

n
h)}∆tn

−
N∑
n=1

(
ψ∂τu

n − cu
n − ūn−1

∆tn
, Genu

)
∆tn −

N∑
n=1

(
c
unh − ūn−1

h

∆tn
, Genu −Ghe

n
u

)
∆tn.

With the obvious definition of Ii, i = 1, . . . , 6, we express (3.23) simply by

I1 + I2 = I3 + I4 + I5 + I6.

First, by (3.9) and (3.11), note that

I1 =

N∑
n=1

a
(
G[enu − ēn−1

u ], Genu
)

≥ 1

2

N∑
n=1

{
a(Genu, Ge

n
u)− a(Gēn−1

u , Gēn−1
u )

}

=
1

2

N∑
n=1

{‖enu‖2H−1(Ω) − ‖en−1
u ‖2H−1(Ω)}+

1

2

N∑
n=1

{‖en−1
u ‖2H−1(Ω) − ‖ēn−1

u ‖2H−1(Ω)},
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so that, using Lemma 3.4,

I1 ≥ 1

2
‖eNu ‖2H−1(Ω) −

1

2
‖e0u‖2H−1(Ω) − C

N∑
n=1

‖en−1
u ‖2H−1(Ω)∆t

n−1.

Second, by (2.5) (i.e., (2.4)) and (3.1), we see that

I2 ≥ C
N∑
n=1

‖enθ ‖2L2(Ω)∆t
n.

Third, apply (3.13) to have

|I3| ≤
N∑
n=1

‖fn‖H−1(Ω)‖Genu −Ghe
n
u‖H1(Ω)∆t

n

≤ Ch
N∑
n=1

‖fn‖H−1(Ω)‖enu‖L2(Ω)∆t
n

≤ Ch
(

N∑
n=1

‖fn‖2H−1(Ω)∆t
n +

N∑
n=1

‖enu‖2L2(Ω)∆t
n

)
.

Fourth, it follows from (3.13) and (3.14) that

|I4| ≤ ε
N∑
n=1

‖enθ ‖2L2(Ω)∆t
n + C

N∑
n=1

(‖enu‖2H−1(Ω) + h
2‖θn‖2L2(Ω))∆t

n.

Fifth, exploit the standard backward (in the characteristic direction) difference anal-
ysis [25] and (3.11) to see that

|I5| ≤
N∑
n=1

∥∥∥∥ψ∂τun − cun − ūn−1

∆tn

∥∥∥∥
H−1(Ω)

‖Genu‖H1(Ω)∆t
n

≤ C
(
(∆t)2 ‖∂ττu‖2L2(J;H−1(Ω)) +

N∑
n=1

‖enu‖2H−1(Ω)∆t
n

)
.

Sixth, by (3.13), we have

|I6| ≤
N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
H−1(Ω)

‖Genu −Ghe
n
u‖H1(Ω)∆t

n

≤ Ch
N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
H−1(Ω)

‖enu‖L2(Ω)∆t
n

≤ Ch
(

N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
2

H−1(Ω)

∆tn +

N∑
n=1

‖enu‖2L2(Ω)∆t
n

)
.

Finally, apply the bounds of Ii, i = 1, . . . , 6, to (3.23) and use Lemmas 3.2 and 3.3,
the discrete Gronwall lemma, (3.6), and (3.8) to obtain the desired result.
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Note that if the norm

‖∂ττu‖L2(J;H−1(Ω)) is bounded,(3.24)

the left-hand side of (3.22) is bounded by C∆t. Assumption (3.24) appears physically
reasonable, since the solution is much smoother along the characteristic direction. An
error estimate without this assumption will be obtained in section 3.5. To check the
optimality of the error estimate in Theorem 3.5, notice that we have utilized the whole
regularity at our disposal. The estimate seems sharp under the present assumptions
(2.5), (3.1), and (3.15) on the data; see the numerical example in section 5. Finally,
we have derived an estimate for the error u − uh in the H−1(Ω) norm. With the
present assumption and technique, we are not able to obtain it in the L2(Ω) norm
due to the minimum regularity on the solution and the degeneracy of (1.1). For an
estimate in this norm, see the next two subsections.

3.4.2. Case B: A nondegenerate case. For completeness, we also consider a
nondegenerate case and derive error estimates under the minimal regularity on the
solution. That is, instead of (2.5), (only) in this subsection we assume that

0 < β∗ ≤ β(v) ≤ β∗ <∞ ∀ v ∈ �.(3.25)

As mentioned before, (3.25) needs to hold only in a neighborhood of the solution.
With this assumption, we now prove the next result.

Theorem 3.6. Under assumptions (2.1), (2.2), (3.1), (3.2), (3.10), (3.15), (3.20),
(3.25), and h = O(∆t), we have

max
1≤n≤N

‖un − unh‖2H−1(Ω) +

N∑
n=1

{‖un − unh‖2L2(Ω) + ‖θn − θnh‖2L2(Ω)}∆tn

≤ C(∆t)2(1 + ‖∂ττu‖2L2(J;H−1(Ω))).

Proof. The proof of Theorem 3.5 can be modified as follows. The error equation
(3.23) and the estimate on I1 and I5 are the same as before. I2, I3, I4, and I6 are
now estimated in a different manner:

I2 ≥ C
N∑
n=1

‖enu‖2L2(Ω)∆t
n,

|I3| ≤ Ch2
N∑
n=1

‖fn‖2H−1(Ω)∆t
n + ε

N∑
n=1

‖enu‖2L2(Ω)∆t
n,

|I4| ≤ ε
N∑
n=1

‖enu‖2L2(Ω)∆t
n + C

N∑
n=1

(‖enu‖2H−1(Ω) + h
2‖θn‖2L2(Ω))∆t

n,

|I6| ≤ Ch2
N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
2

H−1(Ω)

∆tn + ε

N∑
n=1

‖enu‖2L2(Ω)∆t
n,

where (3.25) has been used. With these modifications, the desired result follows in
the same fashion as for Theorem 3.5.

The error estimate in the L2(Ω) norm in this theorem in the nondegenerate case
has been previously obtained in [25]; it is derived here, however, under much weaker
regularity assumptions on the solution. Also, note that the estimate for u − uh in
L2(J ;H1(Ω)) is optimal.
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3.4.3. Case C: Another degenerate case. Note that assumption (2.5) implies
that the diffusion coefficient in (2.6) (or in (3.3)) can be zero in the unknown u. We
now consider another case where the following inequality holds:

0 ≤ ∂θU(η) ≤ U∗ <∞ ∀ η ∈ �.(3.26)

Recall that U is the inverse of (2.3). Again, (3.26) needs to hold only in a neighborhood
of θ. This assumption says that the coefficient in the time differentiation term of (2.6)
(or (3.3)) can be zero in θ. This case is sometimes referred to as the singular case
[30, 35].

In this subsection we derive the error estimate under (3.26). Toward that end,
we need another assumption. Let V be a subspace of H1(Ω), and assume that

‖∇v‖L2(Ω) is a norm in V and is equivalent to ‖v‖H1(Ω).(3.27)

In turn, this requires that the Poincare inequality holds in V . For example, if (2.6)
is equipped with the Dirichlet boundary condition on the part of the boundary that
has a positive Hausdorff measure, then we can define V in an appropriate way so that
(3.27) holds. With (3.27), we can define the Green operator G : H−1(Ω) → V in
terms of the bilinear form

a(v, w) = (α∇v,∇w) ∀v, w ∈ V.

For future use (see the discussion on the extension of the present analysis for the
characteristics-based methods to other boundary conditions later), we now state a
result under assumptions (3.26) and (3.27).

Theorem 3.7. Under assumptions (2.1), (2.2), (3.1), (3.2), (3.10), (3.15), (3.20),
(3.26), (3.27), h = O(∆t), and Mh ⊂ V , we have

max
1≤n≤N

‖un − unh‖2H−1(Ω) +

N∑
n=1

‖un − unh‖2L2(Ω)∆t
n ≤ C(∆t)2(1 + ‖∂ττu‖2L2(J;H−1(Ω))).

Because of the definition of a(·, ·) in the present case, I4 ≡ 0 in the error equation
(3.23). Then the proof of Theorem 3.6 applies here.

3.5. Error analysis II. In this subsection, we derive error estimates without
assumption (3.24).

Lemma 3.8. For v ∈ H1(Ω), let v̄(x) = v(x̄), where x̄ = x− b(x)∆t/c(x). Then,
under (3.1) and (3.20), we have

‖v − v̄‖L2(Ω) ≤ C∆t‖∇v‖L2(Ω).

Proof. Let z(x) be the unit vector in the direction of x−x̄; i.e., z(x) = x−x̄/|x−x̄|.
Then

v(x)− v̄(x) =
∫ 1

0

|x− x̄|∂zv(x+ ζz)dζ,

so

∫
Ω

|v(x)− v̄(x)|2dx =
∫

Ω

|x− x̄|2
(∫ 1

0

∂zvdζ

)2

dx.
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Applying the facts that |x − x̄| ≤ C∆t and the determinant of the Jacobian of the
transformation x→ x̄ is 1 +O(∆t) by (3.1) and (3.20), we see that∫

Ω

|v(x)− v̄(x)|2dx ≤ C(∆t)2‖∇v‖2L2(Ω).

Consequently, the desired result follows.
In the present case, we need a slightly stronger assumption on the data:

b,
b

c
∈ (H2(Ω))2.(3.28)

Also, whenever we use 1/|b(x)| below, we will assume that |b(x)| �= 0 there.
Lemma 3.9. Under assumptions (2.1), (2.2), (3.1), (3.10), (3.20), and (3.28), we

have∫
Jn

(
b · ∇u− cu

n−1 − ūn−1

∆tn
, Genu

)
dt ≤ C∆tn(‖∂tu‖2L2(Jn;H−1(Ω))+∆t

n), 1 ≤ n ≤ N.

Proof. Let z(x) be the unit vector in the direction of b(x); i.e., z(x) = b(x)/|b(x)|.
Then we see that

c(x)
un−1 − ūn−1

∆tn
=

∫ 1

0

|b(x)|∂zu
(
x− b(x)
c(x)

∆tnζ, tn−1

)
dζ =

∫ 1

0

b(x) ·∇yu
n−1(y)dζ,

where y = x− b(x)∆tnζ/c(x). We denote this transformation by y = Hζ(x) for each
fixed ζ ∈ [0, 1]. Its Jacobian and determinant are, respectively,

J(Hζ(x)) =




1− ∂x1

(
b1
c

)
∆tnζ −∂x2

(
b1
c

)
∆tnζ

−∂x1

(
b2
c

)
∆tnζ 1− ∂x2

(
b2
c

)
∆tnζ




and

|J(Hζ(x))| = 1−∇ ·
(
b

c
(x)

)
∆tnζ +O

(
(∆tn)2

)
.

Let

Fζ(x) = 1 +∇ ·
(
b

c
(x)

)
∆tnζ +O

(
(∆tn)2

)
.

Then, as in the proof of Lemma 3.4, we have∫
Ω

b(x) · ∇yu
n−1(y)Genu(x)dx =

∫
Ω

b(x) · ∇yu
n−1(y)Genu(x)Fζ(x)dy,

so, by the periodicity assumption and the Green formula,∫
Ω

b(x) · ∇yu
n−1(y)Genu(x)dx = −

∫
Ω

∇y · b(x)un−1(y)Genu(x)Fζ(x)dy

−
∫

Ω

b(x) · ∇y (Ge
n
u(x))u

n−1(y)Fζ(x)dy

−
∫

Ω

un−1(y)Genu(x)b(x) · ∇yFζ(x)dy.
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Apply the periodicity assumption and the Green formula again to see that∫
Ω

b(y)·∇yu(y)Ge
n
u(y)dy = −

∫
Ω

∇y ·b(y)u(y)Genu(y)dy−
∫

Ω

b(y)·∇y (Ge
n
u(y))u(y)dy.

Subtract these two equations to obtain∫
Ω

b(y) · ∇yu(y)Ge
n
u(y)dy −

∫
Ω

b(x) · ∇yu
n−1(y)Genu(x)dx

= −
{∫

Ω

∇y · b(y)u(y)Genu(y)dy −
∫

Ω

∇y · b(x)un−1(y)Genu(x)Fζ(x)dy

}

−
{∫

Ω

b(y) · ∇y (Ge
n
u(y))u(y)dy −

∫
Ω

b(x) · ∇y (Ge
n
u(x))u

n−1(y)Fζ(x)dy

}

+

∫
Ω

un−1(y)Genu(x)b(x) · ∇yFζ(x)dy

≡ II1 + II2 + II3.
Observe that

II1 = −
∫

Ω

∇y · b(y)Genu(y)[u(y)− un−1(y)]dy

−
{∫

Ω

∇y · b(y)un−1(y)Genu(y)dy −
∫

Ω

∇y · b(x)un−1(y)Genu(y)Fζ(x)dy

}

−
{∫

Ω

∇y · b(x)un−1(y)Genu(y)Fζ(x)dy −
∫

Ω

∇y · b(x)un−1(y)Genu(x)Fζ(x)dy

}
≡ II11 + II12 + II13.

For t ∈ Jn, apply the Schwarz inequality, (2.1), (3.1), and (3.10) to have

|II11| =
∣∣∣∣
∫

Ω

{∫ t

tn−1

∂tu(y, ξ)dξ

}
∇y · b(y)Genu(y)dy

∣∣∣∣
≤ C(‖∂tu‖2L2(Jn;H−1(Ω)) +∆tn).

With a similar argument as in Lemma 3.4 and an application of Lemma 3.8 on ∇ · b
and Genu, we can show that

|II12|+ |II13| ≤ C∆tn.
Analogously, with the expression

II2 = −
∫

Ω

b(y) · ∇yGe
n
u(y)[u(y)− un−1(y)]dy

−
{∫

Ω

b(y) · ∇yGe
n
u(y)u

n−1(y)dy −
∫

Ω

b(x) · ∇yGe
n
u(y)u

n−1(y)Fζ(x)dy

}

−
{∫

Ω

b(x) · ∇yGe
n
u(y)u

n−1(y)Fζ(x)dy −
∫

Ω

b(x) · ∇yGe
n
u(x)u

n−1(y)Fζ(x)dy

}
,

we see that

|II2| ≤ C(‖∂tu‖2L2(Jn;H−1(Ω)) +∆tn).
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Obviously, by (3.28), we have

|II3| ≤ C∆tn.
Finally, note that∫

Jn

(
b · ∇u− cu

n−1 − ūn−1

∆tn
, Genu

)
dt

=

∫
Jn

∫ 1

0

{∫
Ω

b(y) · ∇yu(y)Ge
n
u(y)dy −

∫
Ω

b(x) · ∇yu
n−1(y)Genu(x)dx

}
dζdt.

Consequently, the desired result comes from the bounds for IIi, i = 1, 2, 3.
We are now in a position to derive error estimates. As an example, we consider

only Case A; i.e., we derive the error estimates under assumption (2.5). Cases B and
C can be similarly handled.

For each 1 ≤ n ≤ N , we integrate (3.21) over Jn:∫
Jn

(ψ(x)∂τu, v)dt+

∫
Jn

(α(x)∇θ,∇v)dt =
∫
Jn

(f, v)dt ∀v ∈ H1(Ω).(3.29)

Theorem 3.10. Under assumptions (2.1), (2.2), (2.5), (3.1), (3.2), (3.10), (3.15),
(3.20), (3.28), and h = O(∆t), we have the error estimate

max
1≤n≤N

‖un − unh‖H−1(Ω) + ‖θ − θh‖L2(ΩT ) ≤ C(∆t)1/2,

provided that ‖∂tf‖L2(J;H−1(Ω)) is bounded.

Proof. Choose v = Genu in (3.29) and v = Ghe
n
u in (3.7), subtract the resulting

two equations, use (3.9) and (3.12), and sum over n from 1 to N to have the error
equation

N∑
n=1

(
c[enu − ēn−1

u ], Genu
)
+

N∑
n=1

∫
Jn

(c[θ(t)− θnh ], enu) dt

=

N∑
n=1

{∫
Jn

(f − fn, Genu)dt+ (fn, Genu −Ghe
n
u)∆t

n

}

+

N∑
n=1

{∫
Jn

(θ,Genu)dt− (θnh , Ghe
n
u)∆t

n

}

−
N∑
n=1

∫
Jn

(
b · ∇u− cu

n−1 − ūn−1

∆tn
, Genu

)
dt

−
N∑
n=1

(
c
unh − ūn−1

h

∆tn
, Genu −Ghe

n
u

)
∆tn.

(3.30)

Again, with the obvious definition of Ii, i = 1, . . . , 6, we express (3.30) simply by

I1 + I2 = I3 + I4 + I5 + I6.

The term I1 is estimated as in Theorem 3.5:

I1 ≥ 1

2
‖eNu ‖2H−1(Ω) −

1

2
‖e0u‖2H−1(Ω) − C

N∑
n=1

‖en−1
u ‖2H−1(Ω)∆t

n−1.
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I2 is written as

I2 =

N∑
n=1

∫
Jn

(c[θ(t)− θnh ], u(t)− unh)dt+
N∑
n=1

∫
Jn

(c[θ(t)− θnh ], un − u(t))dt,

so, by (2.1), (2.5), (3.1), and Lemma 3.2,

I2 ≥ C{‖θ − θh‖2L2(ΩT ) −∆t}.
Next, by (3.13), we see that

|I3| ≤
N∑
n=1

{(∆tn)1/2 ‖∂tf‖L2(Jn;H−1(Ω)) ‖Genu‖H1(Ω) + ‖fn‖H−1(Ω)‖Genu −Ghe
n
u‖H1(Ω)}∆tn

≤ C
N∑
n=1

{(∆tn)1/2 ‖∂tf‖L2(Jn;H−1(Ω)) ‖enu‖H−1(Ω) + h‖fn‖H−1(Ω)‖enu‖L2(Ω)}∆tn

≤ C
{
(∆t)2 ‖∂tf‖2L2(J;H−1(Ω)) +

N∑
n=1

(‖enu‖2H−1(Ω) + h‖fn‖2H−1(Ω) + h‖enu‖2L2(Ω))∆t
n

}
.

Also, it follows from (3.13) and (3.14) that

|I4| ≤ ε‖eθ‖2L2(ΩT ) + C

{
N∑
n=1

‖enu‖2H−1(Ω)∆t
n + h2‖θ‖2L2(ΩT )

}
.

Apply Lemma 3.9 to I5 to see that

|I5| ≤ C∆t(1 + ‖∂tu‖2L2(J;H−1(Ω))).

Finally, by (3.13), I6 is bounded as follows:

|I6| ≤
N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
H−1(Ω)

‖Genu −Ghe
n
u‖H1(Ω)∆t

n

≤ Ch
N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
H−1(Ω)

‖enu‖L2(Ω)∆t
n

≤ Ch
(

N∑
n=1

∥∥∥∥unh − ūn−1
h

∆tn

∥∥∥∥
2

H−1(Ω)

∆tn +

N∑
n=1

‖enu‖2L2(Ω)∆t
n

)
.

The rest of the proof is completed as in Theorem 3.5.
We remark that the error estimate in Theorem 3.10 appears sharp under the

present assumptions on the data, as mentioned before. Also, the present analysis can
be extended to the more general nonlinear problem

c(u)∂tu+ b(u) · ∇u−∇ · (a(u)∇u) = f(u) in Ω× J,(3.31)

where c(u) = c(x, t;u), b(u) = b(x, t;u), and f(u) = f(x, t;u). By linearizing b, c,
and f , we can simply reduce (3.31) to (2.6). To be more accurate, we can use an
extrapolation technique in the linearization of these coefficients [21].

4. Analysis for the MMOCAA. In this section, we carry out an analysis for
the MMOCAA procedure.
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4.1. The MMOCAA procedure. To introduce this procedure, we assume
that

∇ · b = 0 in Ω.(4.1)

That is, b is divergence-free. This is physically reasonable, since b is typically a velocity
field and (4.1) corresponds to the incompressibility condition. Note that, by (4.1),
the periodicity assumption, and the divergence theorem, (2.6) with f = 0 yields the
conservation law ∫

Ω

c(x)u(x, t)dx =

∫
Ω

c(x)u0(x)dx, t ∈ J.(4.2)

In real applications, it is desirable to maintain at least a discrete form of this law in
any numerical approximation of (2.6). However, in general, the MMOC procedure
does not satisfy this property, and it creates an imbalance in mass [22].

Let Mh be defined as in the previous section, and let the initial approximation
u0h be defined as in (3.8). For 1 ≤ n ≤ N , given un−1

h ∈Mh, set

Qn−1
h =

∫
Ω

c(x)un−1
h (x)dx, Q̄n−1

h =

∫
Ω

c(x)ūn−1
h (x)dx.

As mentioned above, Qn−1
h �= Q̄n−1

h in general. Define

ũn−1
h (x) =




max

{
un−1
h

(
x̄− γ b(x)

c(x)
(∆tn)

2

)
, un−1

h

(
x̄+ γ

b(x)

c(x)
(∆tn)

2

)}

if Q̄n−1
h < Qn−1

h ,

min

{
un−1
h

(
x̄− γ b(x)

c(x)
(∆tn)

2

)
, un−1

h

(
x̄+ γ

b(x)

c(x)
(∆tn)

2

)}

if Q̄n−1
h > Qn−1

h ,

and

Q̃n−1
h =

∫
Ω

c(x)ũn−1
h (x)dx,

where γ is a fixed constant, normally chosen to be less than one [22], and x̄ = x −
b(x)∆tn/c(x). If Q̄n−1

h = Q̃n−1
h , we must accept that mass cannot be conserved;

otherwise, find Λn−1 ∈ � such that

Qn−1
h = Λn−1Q̄n−1

h + (1− Λn−1)Q̃n−1
h .(4.3)

Define

ûn−1
h = Λn−1ūn−1

h + (1− Λn−1)ũn−1
h(4.4)

and

Q̂n−1
h =

∫
Ω

c(x)ûn−1
h (x)dx.(4.5)

Clearly, Q̂n−1
h = Qn−1

h , so the conservation law is preserved. Now, continue in n with
ûn−1
h in place of ūn−1

h in the original MMOC procedure (3.7); i.e.,(
c
unh − ûn−1

h

∆tn
, v

)
+ (α∇θnh ,∇v) = (fn, v) ∀v ∈Mh,(4.6)

where unh = U(θnh). Note that Λn−1 is bounded; 0 ≤ Λn−1 ≤ 1 for small ∆tn−1 [22].
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4.2. Stability. The next lemma can be found in [44].
Lemma 4.1. Let η ∈ L2(Ω) be Ω-periodic, and let gi ∈ (W 1,∞(Ω))2, i = 1, 2. For

Λ ∈ �, define
η̂(x) = Λη̄(x) + (1− Λ)η̃(x) = Λη(x− g1(x)∆t) + (1− Λ)η(x− g2(x)∆t),

where

‖g1 − g2‖L∞(Ω) ≤ C∆t.
Then

‖η − η̂‖H−1(Ω) ≤ C(Λ)∆t‖η‖L2(Ω).

Lemma 4.2. Under assumptions (2.5), (3.1), (3.2), and (3.15), the solution
(uh, θh) produced by the above MMOCAA procedure satisfies

max
1≤n≤N

{‖unh‖2L2(Ω) + ‖θnh‖2L2(Ω)}+
N∑
n=1

‖∇θnh‖2L2(Ω)∆t
n ≤ C.

The proof of this lemma can be carried out as for Lemma 3.2. Namely, with
v = θnh in (4.6), we have

N∑
n=1

{
(c[unh − un−1

h ], θnh) + (α∇θnh ,∇θnh)∆tn
}

=
N∑
n=1

{
(fn, θnh)∆t

n + (c[ûn−1
h − un−1

h ], θnh)
}
.

Now, applying Lemma 4.1 and the same argument as for Lemma 3.2, we can obtain
the desired result.

Lemma 4.3. With the same assumptions as in Lemma 4.2, if h = O(∆t), we
have

N∑
n=1

∥∥∥∥unh − ûn−1
h

∆tn

∥∥∥∥
2

H−1(Ω)

∆tn ≤ C.

Note that, with v = Gh(u
n
h − ûn−1

h )/∆tn in (4.6), this equation becomes(
c
unh − ûn−1

h

∆tn
,
Gh(u

n
h − ûn−1

h )

∆tn

)
+

(
α∇θnh ,∇

Gh(u
n
h − ûn−1

h )

∆tn

)

=

(
fn,
Gh(u

n
h − ûn−1

h )

∆tn

)
,

so the proof of this lemma can be completed as in Lemma 3.3.

4.3. Error analysis I. The next lemma is similar to Lemma 3.8.
Lemma 4.4. For v ∈ H1(Ω), let v̄(x) = v(x̄) and ṽ(x) = v(x̃), where x̄ =

x − b(x)∆t/c(x) and x̃ = x̄ − γb(x)(∆t)2/c(x) or x̃ = x̄ + γb(x)(∆t)2/c(x). Then,
under (3.1) and (3.20),

‖v̄ − ṽ‖L2(Ω) ≤ C(∆t)2‖∇v‖L2(Ω).
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Note that |x̄ − x̃| ≤ C(∆t)2 by (3.1), so that this lemma can be shown as in
Lemma 3.8.

Lemma 4.5. With assumptions (3.1) and (3.20), we have

(cv̂, Gv̂)− (cv,Gv) ≤ C(Λ)∆t{(cv,Gv) + ∆t(v, v)1/2(cv,Gv)1/2} ∀v ∈ L2(Ω),

where, for Λ ∈ �, v̂(x) = Λv̄(x) + (1−Λ)ṽ(x), with x̄ and x̃ given as in Lemma 4.4.
Proof. As in the proof of Lemma 3.4, we can show that, for v ∈ L2(Ω),

(cv̄, Gv̄)− (cv,Gv) ≤ C∆t(cv,Gv) and (cṽ, Gṽ)− (cv,Gv) ≤ C∆t(cv,Gv).
By the definition of v̂, we see that

(cv̂, Gv̂)− (cv,Gv) = Λ2 {(cv̄, Gv̄)− (cv,Gv)}+ (1− Λ)2 {(cṽ, Gṽ)− (cv,Gv)}
+ Λ(1− Λ) {(cv̄, Gṽ) + (cṽ, Gv̄)− 2(cv,Gv)} .(4.7)

Consequently, it suffices to bound

Λ(1− Λ) {(cv̄, Gṽ) + (cṽ, Gv̄)− 2(cv,Gv)} .
Observe that

(cṽ, Gv̄)− (cv,Gv) =

∫
Ω

c(x)v(x̃)Gv(x̄)dx−
∫

Ω

c(x̃)v(x̃)Gv(x̃)dx̃

=

∫
Ω

c(x)v(x̃)[Gv(x̄)−Gv(x̃)]dx

+

∫
Ω

[c(x)− c(x̃)]v(x̃)Gv(x̃)
(
1 +∇ ·

(
b

c
(x)

)
∆t+O

(
(∆t)2

))
dx̃

+

∫
Ω

c(x̃)v(x̃)Gv(x̃)

(
∇ ·
(
b

c
(x)

)
∆t+O

(
(∆t)2

))
dx̃

≡ T1 + T2 + T3.

By Lemma 4.4, (3.1), and (3.11), we see that

|T1| ≤ C‖v‖L2(Ω)‖Gv̄ −Gṽ‖L2(Ω)

≤ C(∆t)2‖v‖L2(Ω)‖∇Gv‖L2(Ω)

≤ C(∆t)2‖v‖L2(Ω)‖v‖H−1(Ω).

By (3.20), it is clear that

|T2 + T3| ≤ C∆t(cv,Gv).
Thus we have

(cṽ, Gv̄)− (cv,Gv) ≤ C∆t{(cv,Gv) + ∆t(v, v)1/2(cv,Gv)1/2}.(4.8)

In the same manner, we see that

(cv̄, Gṽ)− (cv,Gv) ≤ C∆t{(cv,Gv) + ∆t(v, v)1/2(cv,Gv)1/2}.(4.9)

Therefore, the lemma follows by combining (4.7)–(4.9).
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4.3.1. Case A: Under assumption (2.5). As in the last section, we first derive
the error estimate under assumption (2.5).

Theorem 4.6. Under assumptions (2.1), (2.2), (2.5), (3.1), (3.2), (3.10), (3.15),
(3.20), and h = O(∆t), we have the error estimate for the MMOCAA procedure:

max
1≤n≤N

‖un − unh‖2H−1(Ω) +

N∑
n=1

‖θn − θnh‖2L2(Ω)∆t
n ≤ C∆t(1 +∆t ‖∂ττu‖2L2(J;H−1(Ω))).

Proof. Take v = Genu in (3.21) with t = tn and v = Ghe
n
u in (4.6), subtract the

resulting two equations, use (3.9) and (3.12), and sum over n from 1 to N to have the
error equation

N∑
n=1

(
c[enu − ên−1

u ], Genu
)
+

N∑
n=1

(cenθ , e
n
u)∆t

n

=

N∑
n=1

(fn, Genu −Ghe
n
u)∆t

n +

N∑
n=1

{(Genu, θn)− (Ghe
n
u, θ

n
h)}∆tn

−
N∑
n=1

(
ψ∂τu

n − cu
n − ûn−1

∆tn
, Genu

)
∆tn −

N∑
n=1

(
c
unh − ûn−1

h

∆tn
, Genu −Ghe

n
u

)
∆tn.

As in Theorem 3.5, we express this equation by

I1 + I2 = I3 + I4 + I5 + I6.

The terms I2–I4 are estimated in the same way as in Theorem 3.5; I1, I5, and I6 are
bounded as follows. First,

I1 ≥ 1

2

N∑
n=1

{‖enu‖2H−1(Ω) − ‖en−1
u ‖2H−1(Ω)}+

1

2

N∑
n=1

{‖en−1
u ‖2H−1(Ω) − ‖ên−1

u ‖2H−1(Ω)},

so, by Lemma 4.5,

I1 ≥ 1

2
‖eNu ‖2H−1(Ω)−

1

2
‖e0u‖2H−1(Ω)−C

N∑
n=1

(‖en−1
u ‖2H−1(Ω)+‖en−1

u ‖2L2(Ω)∆t
n−1)∆tn−1.

Second, note that

ψ∂τu
n − cu

n − ûn−1

∆tn

= Λn−1ψ∂τu
n − Λn−1c

un − ūn−1

∆tn
+ (1− Λn−1)ψ∂τu

n − (1− Λn−1)c
un − ũn−1

∆tn
;

consequently, as in Theorem 3.5 and by the boundedness of Λn−1,

|I5| ≤ C
(
(∆t)2 ‖∂ττu‖2L2(J;H−1(Ω)) +

N∑
n=1

‖enu‖2H−1(Ω)∆t
n

)
.

Finally, we see that

|I6| ≤ Ch
(

N∑
n=1

∥∥∥∥unh − ûn−1
h

∆tn

∥∥∥∥
2

H−1(Ω)

∆tn +

N∑
n=1

‖enu‖2L2(Ω)∆t
n

)
.
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Apply the bounds of Ii, i = 1, . . . , 6, Lemmas 4.2 and 4.3, the discrete Gronwall
lemma, (3.6), and (3.8) to obtain the desired result.

Again, the error estimate in Theorem 4.6 for the MMOCAA procedure seems
sharp under the present assumptions on the data; see section 5.

4.3.2. Case B: A nondegenerate case. We now obtain the error estimate
under assumption (3.25); i.e., we present the error analysis for the MMOCAA in the
nondegenerate case. This case was analyzed in [23], but here a reduced regularity on
solution is employed, as noted earlier.

Theorem 4.7. Under assumptions (2.1), (2.2) (3.1), (3.2), (3.10), (3.15), (3.20),
(3.25), and h = O(∆t), we have

max
1≤n≤N

‖un − unh‖2H−1(Ω) +

N∑
n=1

{‖un − unh‖2L2(Ω) + ‖θn − θnh‖2L2(Ω)}∆tn

≤ C(∆t)2(1 + ‖∂ττu‖2L2(J;H−1(Ω))).

This theorem can be shown as in Theorem 3.6 with an exception that I1 is esti-
mated by

I1 ≥ 1

2
‖eNu ‖2H−1(Ω)−

1

2
‖e0u‖2H−1(Ω)−C

N∑
n=1

‖en−1
u ‖2H−1(Ω)∆t

n−1−ε
N∑
n=1

‖en−1
u ‖2L2(Ω)∆t

n−1.

As for the MMOC, the estimate for u− uh in L2(J ;H1(Ω)) is optimal.

4.3.3. Case C: Another degenerate case. We finally state the error estimate
under assumptions (3.26) and (3.27) for the MMOCAA procedure.

Theorem 4.8. Under assumptions (2.1), (2.2), (3.1), (3.2), (3.10), (3.15), (3.20),
(3.26), (3.27), h = O(∆t), and Mh ⊂ V , for the MMOCAA we have

max
1≤n≤N

‖un − unh‖2H−1(Ω) +

N∑
n=1

‖un − unh‖2L2(Ω)∆t
n ≤ C(∆t)2(1 + ‖∂ττu‖2L2(J;H−1(Ω))).

The proof is given as in Theorem 3.7.

4.4. Error analysis II. We now treat the case without assumption (3.24). As
an example, we state only the result corresponding to Case A; the other two cases can
be handled in a similar fashion. Also, the proof of the next theorem can be completed
as in Theorems 3.10 and 4.6.

Theorem 4.9. Under assumptions (2.1), (2.2), (2.5), (3.1), (3.2), (3.10), (3.15),
(3.20), (3.28), and h = O(∆t), we have the error estimate for the MMOCAA procedure

max
1≤n≤N

‖un − unh‖H−1(Ω) + ‖θ − θh‖L2(ΩT ) ≤ C(∆t)1/2,

provided that ‖∂f/∂t‖L2(J;H−1(Ω)) is bounded.
Remark. Another variant of the MMOC procedure has been recently introduced

in [8]. It is referred to as the ELLAM there. This method globally conserves mass as
well. The error analysis for the ELLAM (with the degeneracy taken into account) can
be done similarly as in this section for the MMOCAA. We mention that the analysis
for the ELLAM in a nondegenerate case has been given in [45].
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A similar variant to the ELLAM scheme has been developed in [2]; it is called
the characteristic-mixed finite element method (also see [24]). In this method, the
diffusion term of (2.6) is treated using the classical mixed finite element method [7],
where the diffusion coefficient is assumed to be positive. The present techniques
have been developed primarily for degenerate problems. For the characteristic-mixed
method to be able to treat the degenerate case, we can exploit the so-called expanded
mixed finite element method [9, 10] for the discretization of the diffusion term. The
development and analysis of the characteristic-expanded mixed finite element method
will be our future work.

5. Numerical results. In this section, we present numerical results to show
the sharpness of the error estimates derived in the earlier sections. We consider the
so-called porous medium equation

∂tu−∆um = 0, m > 1.

This equation can be equivalently rewritten in form (1.1):

∂tu−∇ · (mum−1∇u) = 0, m > 1,(5.1)

so we see that the diffusion coefficient a(u) is mum−1 and the variable θ equals um.
Obviously, (5.1) is degenerate at zero. Equation (5.1) often arises in the flow of a gas
in porous media. To see this, ignoring certain constants, the gas flow is governed by

∂tρ+∇ · (ρv) = 0, v = −∇p, ρ = pγ ,(5.2)

where ρ is the density, p the pressure, v the velocity, and γ a (constant) ratio of
specific heats. These equations are the mass conservation, Darcy’s law, and equation
of state [6, 27, 29, 38], respectively. Eliminating v and p in (5.2), we see that

∂tρ− 1

1 + γ
∆(ρ1+1/γ) = 0.

Rescaling t by 1/(1 + γ) leads to (5.1) with u = ρ.
Beginning from a delta function of integral Γ at the original, the exact solution

to (5.1) is of the form [4, 37]

u(|x|, t) = max

{
0, t−α

(
Γ− α(m− 1)

2dm

|x|2
t2α/d

)1/(m−1)
}
,

where α = 1/(m − 1 + 2/d). This function is radially symmetric and has compact
support. Figure 1 shows an example of this solution in two dimensions.

The finite element procedure (3.7) is utilized to solve (5.1). Since we are solely
interested in checking the sharpness of the error estimates in Theorem 3.5, we con-
centrate on the one-dimensional case, d = 1. Also, we take m = 2 in (5.1). Note
that b = 0 in the present case, so (3.7) reduces to the standard finite element method
with a backward Euler procedure for ∂tu. Further, with the present choice of the ini-
tial datum, (5.1) corresponds to the flow case with a point source. The approximate
solutions with different mesh sizes and at different times are presented in Figure 2.
This figure shows convergence of the approximate solutions. The error bounds and
convergence rates in the L2(ΩT ) norm for u and θ with T = 0.01, Γ = 1.0, and m = 2
are given in Table 1. From this table, we observe the sharpness of the error estimates
in Theorem 3.5. Similar observations can be made for Theorems 3.10, 4.6, and 4.9.
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Table 1
The convergence rates for u and θ.

h error for u rate for u error for θ rate for θ

0.2 8.189736e-01 - 9.541634e+01 -
0.1 5.796918e-01 0.49853 6.746879e+01 0.50002
0.05 4.109090e-01 0.49647 4.770738e+01 0.50001
0.025 2.920137e-01 0.49278 3.373394e+01 0.50001
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Abstract. In this paper we construct predictor-corrector (PC) methods based on the trivial
predictor and stochastic implicit Runge–Kutta (RK) correctors for solving stochastic differential
equations. Using the colored rooted tree theory and stochastic B-series, the order condition theorem
is derived for constructing stochastic RK methods based on PC implementations. We also present
detailed order conditions of the PC methods using stochastic implicit RK correctors with strong
global order 1.0 and 1.5. A two-stage implicit RK method with strong global order 1.0 and a four-
stage implicit RK method with strong global order 1.5 used as the correctors are constructed in this
paper. The mean-square stability properties and numerical results of the PC methods based on these
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1. Introduction. Runge–Kutta (RK) methods are one of the most efficient
classes of methods for solving ordinary differential equations (ODEs). Certain classes
of implicit RK methods have excellent stability properties and are widely used to
solve stiff ODEs. In the last decade, predictor-corrector (PC) methods have been one
of the major classes of methods for solving nonstiff ODEs on parallel computers (see
[2], [3], [4], [5], [6], [10], [15], [25], [27], and [28]).

By comparing the Taylor series expansion of the approximation solution to the
Taylor series expansion of the exact solution over one step assuming exact initial
values, Butcher [13] introduced the rooted tree theory that is the key to constructing
RK methods for ODEs. As the RK-type PC methods can be represented as a special
class of block explicit RK methods, the rooted tree theory has been applied to RK-
type PC methods. Burrage [2], [6] has developed a comprehensive theory based on
the use of Butcher series which allows the analysis of the local error of any RK-type
PC method and has also applied this theory to an analysis of the local behavior of
two classes of PC methods, including one which is based on the trivial predictor and
an implicit RK corrector.

For solving stochastic differential equations (SDEs), stochastic RK methods are an
important class of numerical methods. Rümelin [22] introduced the use of traditional
RK methods for SDEs. These methods resemble in their structure deterministic
RK methods for ODEs. Burrage and Burrage [7], [8] and Burrage [12] established
the colored rooted tree theory and stochastic B-series which is generalized from the
corresponding rooted tree theory and B-series for constructing numerical methods for
ODEs. Based on these theories, Burrage and Burrage present order conditions for
constructing a general class of stochastic RK methods for solving Stratonovich SDEs
and also construct an explicit strong global order 1.0 two-stage RK method with
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minimum principal error constants [17] and an explicit five-stage RK method with
strong global order 1.5 [8]. Tian and Burrage [26] consider diagonally semi-implicit
and implicit strong order 1.0 two-stage RK methods with good stability properties or
good accuracy. In addition, in order to avoid the unboundedness of numerical solutions
of the implicit stochastic RK methods, composite RK methods are constructed which
are a combination of semi-implicit RK methods and implicit RK methods. Further
research has been done by Komori, Mitsui, and Sugiural [18], in which they use the
tree expansions of the true and numerical solutions to construct ROW-type schemes
for SDEs.

For solving SDEs, the PC technique has been already applied to linear multistep
implicit methods [1]. For weak solutions of SDEs, Kloeden and Platen [17] and Platen
[21] consider families of PC methods with weak order 1.0 and 2.0. In this paper we
consider PC methods using stochastic RK methods as correctors for strong solutions
of SDEs. In section 2, we first give a brief review of the rooted tree theory for
constructing RK methods and RK-type PC methods for ODEs and then give order
conditions for constructing stochastic RK-type PC methods after a brief review of
the colored rooted tree theory for constructing stochastic RK methods. In section
3, we give the detailed order conditions for two-stage RK-type PC methods with
strong global order 1.0 and then construct a two-stage implicit RK method with
strong global order 1.0. Similar work is done for four-stage RK-type PC methods
with strong global order 1.5 in section 4. The mean-square stability properties of the
RK-type PC methods using these two-stage and four-stage implicit RK correctors are
considered in section 5. Numerical results are reported in section 6.

2. Order conditions for RK-type PC methods. In this section, a brief
review is first given for the rooted tree theory and order conditions for constructing
RK-type PC methods for ODEs. For solving the ODE

y′(t) = f(y(t)), y(t0) = y0, t ∈ [t0, T ], y ∈ R
m,

the class of s-stage RK methods is given by

Yi =yn + h

s∑
j=1

aijf(Yj), i = 1, 2, . . . , s,

(2.1)

yn+1 =yn + h

s∑
j=1

bjf(Yj),

which can be represented by the so-called Butcher tableau

c A

b�
, c = Ae, e = (1, . . . , 1)� ∈ R

s.(2.2)

In order to express derivatives of f(y) systematically, Butcher [13] introduced the
rooted tree theory which provides a general framework for studying order conditions
of RK methods. Let T be the set of rooted trees and t = [t1, . . . , tm] be the tree
formed by joining subtrees t1, . . . , tm each by a single branch to a common root. In
addition, let φ denote the empty tree and τ the unique tree with one node. For each
t, denote ρ(t) as the number of nodes (vertices) of t, h(t) as the height of t, with the
height of the unique tree τ being 1, respectively. Then the elementary differential
associated with t = [t1, . . . , tm] is given by

F (t)y = f (m)(F (t1)y, . . . , F (tm)y), F (φ) = y.
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With these definitions, the following order theorem holds for RK methods (see
Burrage [6]).

Theorem 2.1. A RK method is of order w if and only if

e(t) = 0 ∀ρ(t) ≤ w,

where for any tree t = [t1, . . . , tm]

e(φ) = 0, e(t) = 1− ρ(t)b�
m∏
j=1

k(tj),

with

k(φ) = e, k(t) = ρ(t)

m∏
j=1

(Ak(tj)) .

Now consider a RK-type PC method which uses a RK corrector (2.1) and the
trivial predictor based on the update value yn, given by

Y (0) = (e⊗ I)yn,

Y (k) = (e⊗ I)yn + h(A⊗ I)f(Y (k−1)), k = 1, 2, . . . , l,

yn+1 = yn + hb�f(Y (l)),

where Y = (Y �
1 , . . . , Y �

s )� and f(Y ) = (f(Y1)
�, . . . , f(Ys)�)�. This method can be

represented by a (l + 1)s-stage explicit RK method, whose Butcher tableau is given
by

0 0
c A 0
c 0 A 0
...

...
. . .

. . .
. . .

c 0 · · · 0 A 0 .

0 · · · 0 0 b�

Applying the order conditions for RK methods (Theorem 2.1) to this (l + 1)s-
stage explicit RK method, Burrage [2], [3], [6] presents a theoretical tool for measuring
the error behavior of this RK-type PC method and gives the order conditions of this
method.

Theorem 2.2. If a RK corrector is applied to the trivial predictor with l correc-
tions, then the local error is given by

ln+1 =
∑
t∈T∗

e(t) [F (t)] y(tn)
hρ(t)

ρ(t)!
,

where for t = [t1, . . . , tm]

e(t) = 1− ρ(t)b�
m∏
i=1

kl(ti),(2.3)
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with

k0(φ) = e, k0(t) = 0, ρ(t) > 0,
(2.4)

kj+1(t) = ρ(t)

m∏
i=1

(Akj(ti)) , j = 0, 1, . . . , l − 1.

By studying the behavior of the local errors of a RK-type PC method, Burrage [2],
[6] has shown that each application of a corrector increases the order of the overall
method by one until the order of the corrector is reached. In addition, when the
number of corrections is such that the order cannot increase further, then the effect
of more corrections is to shift the errors due to the predictor further away from the
principal error terms.

Now we consider the order conditions of stochastic RK-type PC methods for the
Stratonovich SDE driven by d-dimensional Wiener processes

dy(t) = g0(y(t))dt+

d∑
j=1

gj(y(t)) ◦ dWj(t), y(t0) = y0, y ∈ R
m,(2.5)

where the deterministic term g0(y(t)) is the drift coefficient, the stochastic term
gj(y(t)) (j = 1, . . . , d) are the diffusion coefficients, and Wj(t) is the Wiener pro-
cess, whose increment ∆Wj(t) = Wj(t +∆t) −Wj(t) is a Gaussian random variable
N(0,∆t).

The solution of (2.5) can be written in integral form as

y(t) = y(t0) +

∫ t

t0

g0(y(t))dt+

d∑
j=1

∫ t

t0

gj(y(t)) ◦ djW (t),

and can also be expressed as a stochastic Taylor series, given by

y(t) = y0 +

d∑
j1=0

gj1(y0)Jj1,t +

d∑
j1,j2=0

Lj1gj2(y0)Jj1j2,t

(2.6)

+

d∑
j1,j2,j3=0

Lj1Lj2gj3(y0)Jj1j2j3,t + · · · ,

where the Stratonovich operator is defined by

Lj =

m∑
k=1

gkj
∂

∂yk
, j = 0, 1, . . . , d

and Jj1,... ,jk,t represents the Stratonovich multiple integral which is defined recursively
by (see [16] and [17])

J0,t =

∫ t

t0

dt = t− t0,

Jj,t =

∫ t

t0

◦dWj(t) = ∆Wj(t),

Jj1j2···jk−1jk,t =

∫ t

t0

Jj1j2···jk−1,tdt, jk = 0,

Jj1j2···jk−1jk,t =

∫ t

t0

Jj1j2···jk−1,t ◦ dWj(t), jk = j, j = 1, . . . , d.
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In order to express the stochastic Taylor series more precisely, Burrage and Bur-
rage present the colored rooted tree theory [7] and stochastic B-series [8] which have
the same structure as the corresponding rooted tree theory and B-series.

Definition 2.3. The (d+ 1)-colored rooted trees can be defined recursively by
(i) the elementary rooted tree is τk which represent the deterministic elementary

rooted tree τ0 if k = 0 and a stochastic one τk if k ∈ {1, 2, . . . , d};
(ii) if t1, . . . , tm are (d+ 1)-colored rooted trees, then [t1, . . . , tm]k is the (d+ 1)-

colored rooted tree in which t1, . . . , tm are each joined by a single branch to τk (k ∈
{1, 2, . . . , d}).

Similar to the rooted tree theory for ODEs, denote T1 as the set of all (d + 1)-
colored rooted trees, ρ(t) as the number of vertices of t, α(t) as the number of ways
of labelling the vertices of t so that the labels increase outwardly along the arcs, h(t)
as the height of t where the height of the elementary tree is 1, and γ(t) as the density
of t = [t1, . . . , tm]k, defined by

γ(t) = ρ(t)
m∏
j=1

γ(tj)

and where J(t) represents the corresponding J-integral associated with tree t which
is defined by

J(t)(h) =

∫ h

0

m∏
j=1

J(tj)(s) ◦ dWk(s), J(τk)(h) = Wk(h).

In a similar manner to the deterministic case, an elementary differential can be
associated with any t ∈ T1 such that

F (τk)(y) = gk(y),

F (t)(y) = g
(m)
k (y)[F (t1)(y), . . . , F (tm)(y)], t = [t1, . . . , tm]k.

With the definitions of (d + 1)-colored rooted trees, Burrage and Burrage [7] and
Burrage [12] have given the Taylor series expansion of the exact solution of an SDE.

Theorem 2.4. The Stratonovich–Taylor series for the actual solution of the SDE
given by (2.5) (together with initial value y(t0) = y0) is

y(t0 + h) =
∑
t∈T1

γ(t)

ρ(t)!
J(t)α(t)F (t)(y(t0)),

where F (t)(y) is the elementary differential defined by the structure of tree t, and J(t)
represents the corresponding J-integral associated with tree t.

For solving the SDE (2.5), a general class of s-stage stochastic RK method derived
by Burrage and Burrage [7] and Burrage [12] is given by

Yi = yn +

d∑
k=0

s∑
j=1

Z
(k)
ij gk(Yj), i = 1, . . . , s,

(2.7)

yn+1 = yn +

d∑
k=0

s∑
j=1

z
(k)
j gk(Yj),



PREDICTOR-CORRECTOR METHODS FOR SDEs 1521

where Z
(k)
ij and z

(k)
j are random variables, which are functions of h, to be determined

based on order and stability analysis. Note that in the case of the deterministic
parameters Z(0) and z(0), h is included implicitly in these terms.

The numerical solution obtained by the stochastic RK method (2.7) can be written
as a Taylor series expansion [7], given by

y(t0 + h) =
∑
t∈T

γ(t)

ρ(t)!
a(t)α(t)F (t)(y(t0)),

where, for t = [t1, . . . , tm]k, a(t) is defined by

a(t) = z(k)�Φ(t),

Φ(t) =

m∏
i=1

(Z(k)Φ(ti)), Φ(τk) = e.

In designing numerical schemes for solving SDEs, some criteria are needed to
measure the efficiency of a numerical scheme by means of its order of convergence.
There are two criteria to measure the convergence order: strong convergence and weak
convergence. For problems involving direct simulations of paths, it is required that
the simulated sample paths be close to the exact solution of the original SDE. This
consideration leads to the strong convergence criterion (for example, see Burrage [12]).

Definition 2.5. Let yN be the numerical approximation to y(tN ) at time T =
Nh+ t0 after N steps with constant stepsize h; then y is said to converge strongly to
y with order p if ∃C > 0 (independent of h but dependent on the length of the time
interval T − t0) and δ > 0 such that

E(|yN − y(tN )|) ≤ Chp, h ∈ (0, δ).
The local truncation error at t = tn+1 of the stochastic RK method (2.7) can be

written as

Ln =
∑
t∈T1

γ(t)

ρ(t)!
α(t) (J(t)− a(t))F (t)(y(tn)).

Burrage and Burrage [8] have given the following definition to measure the accuracy
of the RK methods

Definition 2.6. This stochastic RK method will have strong local order p if

E[|Ln|] = O(hp+
1
2 )

and will have mean local order p if

E(Ln) = O(hp+1).

In addition they have proven the following theorem concerning the relationship be-
tween the local error behavior and the global error behavior (see also Milstein [19]),
given by the following theorem.

Theorem 2.7. Let the gj possess all necessary partial derivatives for all y ∈ R
m;

then if

(
E
[||ln||2])1/2 = O(hp+1/2) ∀n
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and

E[ln] = O
(
hp+1

) ∀n,
then (

E
[||εN ||2])1/2 = O (hp) ,

where εN is the global error at step point tN with the assumption of the exact initial
solution of y0 = y(t0).

Thus the stochastic RK method (2.7) is of strong global order p if it has strong
local order p and mean local order p.

For solving the SDE (2.5), the stochastic RK-type PC method, which is based on
a stochastic RK corrector (2.7) and the trivial predictor, is given by

Y (0) = (e⊗ I)yn,

Y (i) = (e⊗ I)yn +

d∑
k=0

(Z(k) ⊗ I)gk(Y
(i−1)), i = 1, 2, . . . , l,(2.8)

yn+1 = yn +

d∑
k=0

(z(k) ⊗ I)gk(Y
(l)),

where Y (i) = (Y
(i)�
1 , . . . , Y

(i)�
s )�, Z(k) = (Z

(k)
ij )s×s, and z(k) = (z

(k)
1 , . . . , z

(k)
s ),

(k = 0, 1, . . . , d). This stochastic RK-type PC method can be represented by an
(l + 1)s-stage block explicit stochastic RK method characterized by the tableau

0 · · · · · · 0
Z(0) 0 · · · · · · Z(d) 0
0 Z(0) 0 · · · · · · 0 Z(d) 0
...

. . .
. . .

. . . · · · · · · ...
. . .

. . .
. . .

0 · · · 0 Z(0) 0 · · · · · · 0 · · · 0 Z(d) 0 .
0 · · · 0 0 z(0) · · · · · · 0 · · · 0 0 z(d)

Applying the order theorem for stochastic RK methods to (2.8), we have the main
theorem on order conditions for constructing stochastic RK-type PC methods (2.8)
in this paper.

Theorem 2.8. If a stochastic RK corrector is applied to the trivial predictor with
l corrections, then the strong local error of the stochastic RK-type PC method is given
by

ln+1 =
∑
t∈T1

γ(t)

ρ(t)!
e(t)α(t)[F (t)]y(tn),

where for t = [t1, . . . , tm]k e(t) = J(t)− al(t) and al(t) is given by

al(t) = z(k)Φl(t),

and

Φ0(τk) = e, Φ0(t) = 0, ρ(t) ≥ 2,

Φj+1(t) =

m∏
i=1

(Z(k)Φj(ti)).
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As a special case the expressions of al(t) are considered with a different number
of corrections. When no correction is performed (l = 0), then

t1 = τj , a0(t1) = z(j)e,

t2 = τ0, a0(t2) = z(0)e,

h(t) ≥ 2, a0(t) = 0.

Here for t1, j = 1, 2, . . . , d. This notation is also valid for trees t3 ∼ t18 in the
following discussion.

If one correction is performed (l = 1), the expressions for a1(t) associated with
trees t1 and t2 are the same as the corresponding a0(t), namely a1(ti) = a0(ti) (i =
1, 2). For trees with more vertices, then, assuming that the ji are nonzero,

t3 = [τj1 ]j2 , a1(t3) = z(j2)Z(j1)e,

t4 = [τ0]j1 , a1(t4) = z(j1)Z(0)e,

t5 = [τj1 ]0, a1(t5) = z(0)Z(j1)e,

t6 = [τ0]0, a1(t6) = z(0)Z(0)e,

t7 = [τj1 , τj2 ]j3 , a1(t7) = z(j3)(Z(j1)e)(Z(j2)e),

t8 = [τj1 , τj2 ]0, a1(t8) = z(0)(Z(j1)e)(Z(j2)e),

t9 = [τj1 , τ0]j2 , a1(t9) = z(j2)(Z(j1)e)(Z(0)e),

t10 = [τ0, τj1 ]j2 , a1(t10) = z(j2)(Z(0)e)(Z(j1)e),

t11 = [τj1 , τj2 , τj3 ]j4 , a1(t11) = z(j4)(Z(j1)e)(Z(j2)e)(Z(j3)e),

h(t) ≥ 3, a1(t) = 0.

If two corrections are performed (l = 2), the expressions for a2(t) associated
with trees t1, . . . , t11 are the same as the corresponding a1(t), namely a2(ti) = a1(ti)
(i = 1, . . . , 11). For trees with more vertices, then

t12 = [[τj1 ]j2 ]j3 , a2(t12) = z(j3)Z(j2)Z(j1)e,

t13 = [[τ0]j1 ]j2 , a2(t13) = z(j2)Z(j1)Z(0)e,

t14 = [[τj1 ]0]j2 , a2(t14) = z(j2)Z(0)Z(j1)e,

t15 = [[τj1 ]j2 ]0, a2(t15) = z(0)Z(j2)Z(j1)e,

t16 = [[τj1 ]j2 , τj3 ]j4 , a2(t16) = z(j4)(Z(j2)Z(j1)e)(Z(j3)e),

t17 = [[τj1 , τj2 ]j3 ]j4 , a2(t17) = z(j4)Z(j3)((Z(j1)e)(Z(j2)e)),

h(t) ≥ 4, a2(t) = 0.

When a stochastic RK-type PC method is corrected three times, the expressions
for a3(t) associated with trees ti (i = 1, . . . , 17) are the same as the corresponding
a2(t), namely

a3(ti) = a2(ti), i = 1, . . . , 17.

For the analysis of the stochastic RK-type PC methods in this paper, we need only
consider additionally the expression a3(t) for the tree [[[τj1 ]j2 ]j3 ]j4 , where none of the
ji is zero, given by

t18 = [[[τj1 ]j2 ]j3 ]j4 , a3(t18) = z(j4)Z(j3)Z(j2)Z(j1)e.

In the following sections the order conditions associated with trees t1, . . . , t18 are
used to construct stochastic RK-type PC methods.
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3. Strong order 1.0 RK methods. The order theory developed in section 2
will apply to the very general class of problems (2.5) with d > 1. However, due to
spatial constraints and the extreme difficulty in solving the order conditions for the
arbitrary d case, we will focus on constructing effective PC methods for d = 1.

The s-stage RK methods with one stochastic variable J1 ∼ N(0, h) are given by

Y =(e⊗ I)yn + h(A⊗ I)g0(Y ) + J1(B ⊗ I)g1(Y ),
(3.1)

yn+1 =yn + h(α� ⊗ I)g0(Y ) + J1(β
� ⊗ I)g1(Y ),

where A and B are s×s matrices, while α and β are s-dimensional vectors. According
to the theorems given by Rümelin [22] and Burrage, Burrage, and Belward [9], the
maximum strong global order of these stochastic RK methods is 1.0.

For the trivial predictor, the stochastic RK-type PC method using (3.1) as the
corrector is given by

(3.2)

Y (0) = (e⊗ I)yn,

Y (i) = (e⊗ I)yn + h(A⊗ I)g0(Y
(i−1)) + J1(B ⊗ I)g1(Y

(i−1)), i = 1, · · · , l,
yn+1 = yn + h(α� ⊗ I)g0(Y

(l)) + J1(β
� ⊗ I)g1(Y

(l)).

Now consider the order conditions of the RK-type PC method (3.2). If no cor-
rection is performed, the local truncation error of this method is given by

l10 = h(1− α�e)F (τ0)(y(tn)) + J1(1− β�e)F (τ1)(y(tn)) +
∑
ρ(t)≥2

J(t)F (t)(y(tn)).

Assuming that

α�e = 1, β�e = 1,(3.3)

this method will have strong local order 0.5, namely E(l210) = O(h2). In this case the
PC method (3.2) is equivalent in strong order to the Euler–Maruyama method, given
by

yn+1 = yn + hg0(yn) + J1g1(yn).

It is well known that the numerical solution of the Euler–Maruyama method converges
to the exact solution of the corresponding Itô SDE. Thus the numerical solution of
method (3.2) without any correction may not converge to the exact solution of the
Stratonovich SDE (2.5).

If one correction is performed (l = 1), method (3.2) will have strong local order
1.0 if, in addition to (3.3),

e(t3) = J(t3)− a(t3) =

(
1

2
− β�Be

)
J2

1 = 0,

which is equivalent to

β�Be =
1

2
.(3.4)
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At the same time this method will have mean local error 1.0 as

E(e(ti)) = 0, i = 4, 5, 7, 12,

where trees t4, t5, t7, and t12 are those associated with terms corresponding to h1.5.
Thus the stochastic RK-type PC method (3.2) will have strong global order 1.0 if one
correction is applied and the order conditions (3.3) and (3.4) are satisfied at the same
time.

The order conditions (3.3) and (3.4) of the stochastic RK-type PC method with
strong global order 1.0 are the same as those of the stochastic RK methods (3.1)
with strong global order 1.0, given in [12]. Thus the strong global order of the RK-
type PC method (3.2) is 1.0 if the strong global order of the original stochastic RK
method (3.1) is 1.0 and one correction is applied.

Now we construct a two-stage implicit RK method. As there are only three order
conditions in (3.3) and (3.4) and 12 coefficients in this method, additional conditions
can be considered. For example, we can consider the stochastic order conditions
on which the terms corresponding to h1.5 have minimum coefficients, namely the
stochastic order conditions for minimum principal error coefficients. The principal
error coefficients are minimized if [12]

α�Be =
1

2
, β�Ae =

1

2
, β�(Be)2 =

1

3
, β�B(Be) =

1

6
.

These four conditions are called the minimum principal error conditions.
Combining the order conditions (3.3) and (3.4) and the minimum principal error

conditions together and assuming that A = B and α = β, we have the following
two-stage implicit RK corrector method with strong global order 1.0, called IRK2,
given by

1
3

1−√
3

6
1
3

1−√
3

6
1+

√
3

6
1
3

1+
√

3
6

1
3 .

1
2

1
2

1
2

1
2

(3.5)

4. Strong order 1.5 RK methods. The second special class of the stochastic
RK methods (2.7) that will be discussed is those with two stochastic variables J1 and
J10/h, for solving problems of the form (2.5) with d = 1, given by

Y = (e⊗ I)yn + h(A⊗ I)g0(Y ) +

(
J1(B1 ⊗ I) +

J10

h
(B2 ⊗ I)

)
g1(Y ),

(4.1)

yn+1 = yn + h(α� ⊗ I)g0(Y ) +

(
J1(β

�
1 ⊗ I) +

J10

h
(β�

2 ⊗ I)

)
g1(Y ),

where A, B1, and B2 are s× s matrices and α, β1, and β2 are s-dimensional vectors.
Here we remind readers that on the interval [tn, tn+1], J1 and J10/h are closely related.
In particular, if u and v are two independent N(0, 1) random variables, then

J1 = u
√
h,

J10

h
=

√
h

2

(
u+

v√
3

)
.

Burrage and Burrage [7], [8] and Burrage [12] first present this class of stochastic
RK methods and study the order conditions of these methods based on the colored
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rooted tree theory and stochastic B-series. A five-stage explicit stochastic RK method
with strong global order 1.5 is presented in [8].

For the trivial predictor, the stochastic RK-type PC method using (4.1) as a
corrector is given by

(4.2)

Y (0) =(e⊗ I)yn,

Y (i) =(e⊗ I)yn + h(A⊗ I)g0(Y
(i−1)) +

(
J1(B1 ⊗ I) +

J10

h
(B2 ⊗ I)

)
g1(Y

(i−1)),

i = 1, . . . , l,

yn+1 =yn + h(α� ⊗ I)g0(Y
(l)) +

(
J1(β

�
1 ⊗ I) +

J10

h
(β�

2 ⊗ I)

)
g1(Y

(l)).

Now consider the order conditions for this RK-type PC method. When one cor-
rection is performed, the order conditions necessary for strong order 1.5 associated
with trees t1, . . . , t11 are given by

E
(
e2(ti)

)
= 0, i = 1, . . . , 11.

Let c = Ae, b = B1e, and d = B2e; the above order conditions are equivalent to
(see [7] and [12])

(4.3)

α�(e, c, d, b) =
(
1,
1

2
, 1, 0

)
,

β�
1 (e, c, b, d, b

2, d2) =

(
1, 1,

1

2
,−β�

2 b,
1

3
,−2β�

2 bd

)
,

β�
2 (e, c, d, b

2, d2) = (0,−1, 0,−2β�
1 bd, 0).

When method (4.2) is corrected twice, the order condition associated with tree
t12 is E(e2(t12)) = 0, which is equivalent to (see [7] and [12])

β�
1 B1b =

1
6 , β�

2 B1b+ β�
1 (B2b+B1d) = 0,

β�
2 B2d = 0, β�

1 B2d+ β�
2 (B2b+B1d) = 0.

(4.4)

In order to get mean local order 1.5, it is necessary that the following mean order
conditions should be satisfied:

E (e(ti)) = 0, i = 8, 9, 11, 13, 14, 15, 16, 17,

which are equivalent to (see [8])

0 = α�B1b+
1

2
α� (B1d+B2b) +

1

3
α�B2d,

0 = α�
(
b2 + bd+

1

3
d2

)
,

0 = β�
1 Ab+

1

2

(
β�

1 Ad+ β�
2 Ab

)
+

1

3
β�

2 Ad,

0 = β�
1

(
cb+

1

2
cd

)
+ β�

2

(
1

2
cb+

1

3
cd

)
,
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0 = β�
1

(
B1c+

1

2
B2c

)
+ β�

2

(
1

2
B1c+

1

3
B2c

)
,

3

8
= β�

1 Diag(b)

(
3B1b+

3

2
(B1d+B2b) +

5

6
B2d

)
(4.5)

+ β�
2 Diag(d)

(
5

6
B1b+

1

2
(B1d+B2b) +

1

3
B2d

)

+
(
β�

1 Diag(d) + β�
2 Diag(b)

)(3
2
B1b+

5

6
(B1d+B2b) +

1

2
B2d

)
,

1

4
= β�

1

(
B1

(
3b2 + 3bd+

5

6
d2

)
+B2

(
3

2
b2 +

5

3
bd+

1

2
d2

))

+ β�
2

(
B1

(
3

2
b2 +

5

3
bd+

1

2
d2

)
+B2

(
5

6
b2 + bd+

1

3
d2

))
,

3

4
= β�

1

(
3b3 +

9

2
b2d+

5

2
bd2 +

1

2
d3

)
+ β�

2

(
3

2
b3 +

5

2
b2d+

3

2
bd2 +

1

3
d3

)
.

It should be noticed that, for expectation in the mean, trees t9 and t10 are equivalent.
However, when two corrections are performed and all of the order conditions

(4.3)∼(4.5) are satisfied, the strong local order of the RK-type PC method (4.2) is
1.5, but the mean local order of this method is still 1.0 as the mean order condition
associated with tree t18 is not satisfied, since the height of t18 is 4 and so a2(t18) = 0.
In order to get a RK-type PC method with strong global order 1.5, a third correction
is needed. When a third correction is performed, the mean order condition associated
with tree t18 is given by E (e(t18)) = 0, which is equivalent to [8]

1

8
=β�

1

(
B2

1

(
3b+

3

2
d

)
+B2

2

(
5

6
b+

1

2
d

)
+ (B1B2 +B2B1)

(
3

2
b+

5

6
d

))
(4.6)

+ β�
2

(
B2

1

(
3

2
b+

5

6
d

)
+B2

2

(
1

2
b+

1

3
d

)
+ (B1B2 +B2B1)

(
5

6
b+

1

2
d

))
.

The order conditions (4.3)∼(4.6) of the stochastic RK-type PC method with
strong global order 1.5 are the same as those of the stochastic RK method (4.1) with
strong global order 1.5, given in [8]. Thus the strong global order of the RK-type PC
method (4.2) with three corrections is 1.5 if the strong global order of the original RK
method (4.1) is 1.5.

Now an implicit four-stage RK method with strong global order 1.5 is constructed.
In order to have small error coefficients for the deterministic terms, the following
additional order conditions are considered here, given by

α�Ac =
1

6
, α�Ac2 =

1

12
, α�Diag(c)Ac =

1

8
, α�A2c =

1

24
.(4.7)

Using Maple to solve all of the order conditions (4.3)∼(4.7), we have the following
strong global order 1.5 RK corrector method, which is called IRK4, with matrices A,
B1, and B2:

A =




1.00436335789 −0.56006282797 −0.41253045082 −0.03177007950
−0.04300768840 −0.12902306500 −0.04300768833 −0.04300768833
2.26132980150 −2.30000000000 0.11987418760 −0.33925011871
3.51937593150 −2.30000000000 0.11987418760 −0.33925011871


 ,
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B(1) =




0.10566243265 0.03522081088 0.03522081088 0.03522081088
0.19716878372 0.19716878372 0.19716878372 0.19716878372
−0.19879713087 0.53213046420 0.50000000000 0.16666666667
0.16666666667 0.16666666667 0.16666666667 0.50000000000


 ,

B(2) =




6.2322500476 −3.7052829175 −3.7979991039 1.2710319739
−4.6564739362 2.8209539211 3.0265200151 −1.1910000000
−8.0122402257 3.2818190506 3.4496446680 −1
−9.7304211738 5 5 −2.5503553321


 ,

and weight vectors α�, γ(1)�, and γ(2)�:

α� = (1.205542599, 0.2329045687, −0.7937286771, 0.3552815092),
γ(1)� = ( 0.5, 0.5, −0.8974417060, 0.8974417060),
γ(2)� = ( 0, 0, 0.7948834118, −0.7948834118).

Remark. This method requires only four parallel stages and three sequential
stages (cf. the strong order 1.5 explicit stochastic RK method G5 of [8] which requires
five sequential stages) and so is implemented efficiently on a four processor computer.

5. Stability properties of RK-type PC methods. In this paper the follow-
ing linear test equation of Stratonovich type, given by

dy = aydt+ by ◦ dW (t), y(0) = y0,(5.1)

is used to discuss the stability properties of stochastic RK-type PC methods.
Applying a one-step numerical scheme to (5.1), this numerical scheme is repre-

sented by

yn+1 = R(h, a, b)yn.

Saito and Mitsui [24] introduced the definition of mean-square (MS) stability.
Definition 5.1. A numerical scheme is said to be MS-stable for h, a, and b if

R(h, a, b) = E(|R(h, a, b)|2) < 1.

R(h, a, b) is called the MS-stability function of the numerical scheme.
Another important stability definition is that of asymptotic stability. Saito and

Mitsui [23] introduced the definition of T-stability to measure asymptotic stability
and give two examples on the T-stability properties of numerical methods for weak
solutions. Burrage and Tian [11] present a method to measure the T-stability for
strong solutions and give the definition of T(A)-stability. Here we just consider the
MS-stability properties of the stochastic RK-type PC methods presented in this paper.

Applying the stochastic RK-type PC methods (2.8) to (5.1) gives

Y (0) = eyn,

Y (i) = eyn + aZ(0)Y (i−1) + bZ(1)Y (i−1)

=
[
I + Z + Z

2
+ · · ·+ Z

i
]
eyn, i = 1, 2, . . . , l,

yn+1 = yn + az(0)Y (l) + bz(1)Y (l)

=
(
1 + z

[
I + Z + Z

2
+ · · ·+ Z

l
]
e
)
yn,
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where

z = az(0) + bz(1), Z = aZ(0) + bZ(1).

Let

R(l) = 1 + z
[
I + Z + Z

2
+ · · ·+ Z

l
]
e;(5.2)

then the stochastic RK-type PC methods (2.8) are MS-stable for h, a, and b if

R
(l)

= E

(∣∣∣R(l)
∣∣∣2) < 1.

Now we consider the MS-stability properties of the stochastic RK-type PC meth-
ods (3.2) with strong global order 1.0. Applying these methods to (5.1) gives

R
(l)
1 (p, q, J1) = 1 + (pα� + qJ1β

�)

(
l∑
i=0

(pA+ qJ1B)
i

)
e,

where p = ah, q = b
√
h, and J1 = J1√

h
∼ N(0, 1). For the stochastic RK-type PC

method based on the two-stage implicit RK corrector IRK2 (3.5), the expressions for

R
(l)
1 are given by

R
(1)
1 = 1 + p+ qJ1 +

1

2
(p+ qJ1)

2,

R
(2)
1 = 1 + p+ qJ1 +

1

2
(p+ qJ1)

2 +
1

6
(p+ qJ1)

3,

R
(3)
1 = 1 + p+ qJ1 +

1

2
(p+ qJ1)

2 +
1

6
(p+ qJ1)

3 +
1

36
(p+ qJ1)

4,

and the MS-stability functions are given by

R
(1)

1 = 1 + 2p+ 2p2 + p3 +
1

4
p4 + 2q2 + 3pq2 +

3

2
p2q2 +

3

4
q4,

R
(2)

1 = 1 + 2p+ 2p2 +
4

3
p3 +

7

12
p4 +

1

6
p5 +

1

36
p6 + 2q2 + 4pq2 +

7

2
p2q2

+
5

3
p3q2 +

5

12
p4q2 +

7

4
q4 +

5

2
pq4 +

5

4
p2q4 +

5

12
q6,

R
(3)

1 = 1 + 2p+ 2p2 +
4

3
p3 +

23

36
p4 +

2

9
p5 +

1

18
p6 +

1

108
p7 +

1

1296
p8

+ 2q2 + 4pq2 +
23

6
p2q2 +

20

9
p3q2 +

5

6
p4q2 +

7

36
p5q2 +

7

324
p6q2

+
23

12
q4 +

10

3
pq4 +

5

2
p2q4 +

35

36
p3q4 +

35

216
p4q4

+
5

6
q6 +

35

36
pq6 +

35

108
p2q6 +

35

432
q8.

Here denote R
(0)

1 as the MS-stability function of this method without any correc-
tion, namely the explicit Euler method, given by

R
(0)

1 = (1 + p)2 + q2.
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Fig. 1. MS-stable regions of the two-stage stochastic RK-type PC method.

Figure 1 gives the MS-stability regions of the stochastic RK-type PC method (3.2)
based on IRK2 (3.5). The MS-stable regions are the areas under the plotted lines and
are symmetric about the p-axis. The MS-stability properties of this method with two
corrections are better than those with one correction. The MS-stability properties of
this method are much improved when the third correction is performed.

6. Numerical results. Numerical results for solving SDEs driven by oneWiener

process are reported in this section. Denoting y
(i)
N as the numerical approximation to

y(i)(tN ) at step point tN in the ith simulation of all K simulations, we use means of
MS errors MS, strong order 1 rate R1 and strong order 1.5 rate R1.5, defined by

MS =

√√√√ 1

K

K∑
i=1

(y
(i)
N − y(i)(tN ))2, R1 =

MS

h
, R1.5 =

MS

h
√
h
,

to measure the accuracy and the convergence properties of the stochastic RK-type
PC methods. All of the data in this section are based on 1000 simulated trajectories.

The first test equation is a nonlinear problem, whose Stratonovich form is

dy = −α(1− y2)dt+ β(1− y2) ◦ dW (t), y(0) = 0.5, t ∈ [0, 1],

with α = −1 and β = 1. The exact solution of this equation is [17]

y(t) =
(1 + y0)exp(−2αt+ 2βW (t)) + y0 − 1

(1 + y0)exp(−2αt+ 2βW (t))− y0 + 1
.

Figure 2 gives the MS errors of the two stochastic RK-type PC methods based
on IRK2 and IRK4, respectively, for solving the first test equation. For the two-stage
PC method based on IRK2, the implicit corrector (3.5) is applied with a different
number of corrections l = 0, 1, 2, 3, 4. From the left figure in Figure 2, the numerical
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Fig. 2. MS errors for solving the first test equation.

solution when no correction is performed, denoted as l = 0, does not converge to the
exact solution of the corresponding Stratonovich SDE. The strong convergence rates
of this method with l = 1, 2, 3, or 4 are all equal to 1.0, as predicted by our theory.
The averaged errors are smaller if more corrections are performed. The difference
between the averaged errors of this method with three corrections and those with
four corrections is small.

For the four-stage PC method based on IRK4, the implicit corrector is applied
with a different number of corrections l = 1, 2, 3. From the right figure of Figure 2,
the strong convergence rates of this method with l = 1 is equal to 1.0. When two
corrections are performed, the strong convergence rate is between 1.0 and 1.5. The
strong convergence rate of this method is 1.5 if three corrections are performed, which
is again consistent with our theory.

It should be noticed that the accuracy of the stochastic RK-type PC method
based on IRK4 with strong order 1.5 is not as good as that of the method based on
IRK2 with strong order 1.0 when 2−10 ≤ h ≤ 2−6. The reason for this phenomenon is
due to the eigenvalues of the method matrices. For IRK2, the eigenvalues of matrices
A and B are

λ(A) = λ(B) =
1

3
±
√
2

6
i,

while for IRK4 the eigenvalues of the method matrices are

λ(A) = 0.400± 0.622i, −0.072± 0.253i,

λ(B1) = 0.096, 0.333, 0.878, −0.0053,
λ(B2) = 11.528, −0.335, −0.620± 0.035i.

The large eigenvalue of matrix B2 causes amplifications in the errors of the PC method
based on IRK4. This effect was well known in the deterministic case; see the work of
Sommeijer [25].

In order to test out this supposition, we construct two methods, MIRK2 and
MIRK4, which have strong order 1 and 1.5, respectively, and whose defining matrices
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have smaller spectral radius. The MIRK2 method is given by

1067
3000

933
3000

1067
3000

933
3000

− 67
1000

67
1000 − 67

1000
67

1000 .

3
4

1
4

3
4

1
4

(6.1)

The eigenvalues of the defined method matrices are

λ(A) = λ(B) =
317±√11

1500
.

The MIRK4 method is different from the IRK4 method just in the method matrices

B
(1)
M and B

(2)
M , given by

B
(1)
M =



−0.4103843710 0.2113248635 0.2566537645 0.1537306083
1.1990595100 0 −0.300000000 −0.1103843746
0.2807539857 0.4849084469 0.3943375673 −0.16000000
0.2807539819 0.4849084506 0.3943375673 −0.160000000


 ,

B
(2)
M =




0 0 0 0
0 0 0 0

−0.7602588353 −0.7602588353 −0.7602588353 0
−0.7602588353 −0.7602588353 −0.7602588353 0


 ,

whose eigenvalues are

λ(B
(1)
M ) = −0.36± 0.038i, 0.55, 0, λ(B

(2)
M ) = −0.76, 0, 0, 0.

Using the PC methods based on the correctors MIRK2 and MIRK4, we then
repeated the calculations for solving the first test equation, and the numerical results
are given in Figure 3. It is clear that the MIRK2 method is more effective than
the IRK2 method, whose computational results are given by Figure 2. For four-stage
correctors, the accuracy of the numerical results of MIRK4 is better than that of IRK4
with stepsize h = 2−6, 2−7, 2−8. When h = 2−9 and 2−10, the accuracy of MIRK4 is
just slightly better than that of IRK4.

The second test equation is also a nonlinear SDE, given by

dy = a(1 + y2) ◦ dt, y(0) = 1, t ∈ [0, 1],

with a = 0.1. The exact solution is given in [17], namely

y = tan(aW (t) + arctan y0).

Figure 4 gives the MS errors of the four PC methods for the second test equation.
In this case the implicit corrector is applied with a different number of corrections
l = 2, 3. It is clear that the MIRK2 and MIRK4 methods with three corrections are
much more effective than the IRK2 and IRK4 methods for the second test equation.

In order to discuss the relationship between the accuracy of the numerical methods
and the computational cost, we use the following explicit two-stage RK methods to
solve the first test equation:
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Fig. 3. MS errors for solving the first test equation.
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Fig. 4. MS errors for solving the second test equation.

(1) The Heun method [12].

Y = yn + hf(yn) + ∆Wng(yn),
(6.2)

yn+1 = yn +
1

2
h (f(yn) + f(Y )) +

1

2
∆Wn (g(yn) + g(Y )) .

(2) The Burrages scheme [12].

Y = yn +
2

3
hf(yn) +

2

3
∆Wng(yn),

(6.3)

yn+1 = yn + h

(
1

4
f(yn) +

3

4
f(Y )

)
+∆Wn

(
1

4
g(yn) +

3

4
g(Y )

)
.
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Table 1
Accuracy and computational cost of some stochastic RK methods.

Heun Burrages Method 1 IRK2 (l = 3) MIRK2 (l = 3)
Accuracy 4.9E-3 3.5E-3 4.7E-3 3.3E-3 5.6E-3
cost-flops 7.2E+6 7.9E+6 4.1E+6 3.0E+6 3.0E+6
Accuracy 5.9E-4 4.3E-4 5.2E-4 3.6E-4 2.2E-4
cost-flops 5.7E+7 6.4E+7 3.3E+7 2.4E+7 2.4E+7

(3) Method 1 in [26].

Y = yn +
3

10
hf(yn) +

58

100
∆Wng(yn),

(6.4)

yn+1 = yn + h

(
56

100
f(yn) +

44

100
f(Y )

)
+∆Wn

(
4

29
g(yn) +

25

29
g(Y )

)
.

Table 1 gives the accuracy and the computional cost, in terms of flops obtained by
Matlab, of these explicit RK methods and those of the IRK2 and MIRK2 methods with
three corrections. Clearly, both the IRK2 and MIRK2 methods with three corrections
can achieve better accuracy than the other explicit methods with substantially reduced
computation costs.

The third test equation is given by

dy1 = y2dt+ θy2 ◦ dW (t),
(6.5)

dy2 = µ
(
(1− y2

1)y2 − y1

)
+ θ

(
(1− y2

1)y2 − y1

) ◦ dW (t).

This equation is the ordinary Van der Pol equation [14] when θ = 0. The Van der Pol
equation is stiff when µ is large.

We use IRK2 with l = 3 to solve this equation. In Figure 5 we give four simulations
of this equation. The top two simulations in Figure 5 are obtained with parameters
µ = 1, θ = 0.1, and θ = 1 and stepsize h = 0.01. The bottom two simulations are
obtained with parameters µ = 10, θ = 0.1, and θ = 0.5 and stepsize h = 0.001. The
numerical simulations with θ = 0.1 are similar to those of the deterministic Van der
Pol equation with the same µ.

In order to discuss the efficiency of the two-stage PC methods, we use IRK2
(l = 3) with stepsize h = 0.0001 to get a numerical solution which is regarded as the
“accurate” solution in the case of µ = 1 and different θ. We compare this “accurate”
solution with the numerical simulations obtained by the explicit RK methods (6.2),
(6.3), and (6.4) and those obtained by IRK2 (l = 3) and MIRK2 (l = 3). Numerical
results presented in Figure 6 are based on 100 simulations. The left figure of Figure
6 gives the accuracy of numerical solutions with µ = 1 and 0.1 ≤ θ ≤ 1.0. The
accuracy of numerical simulations of IRK2 (l = 3) and MIRK2 (l = 3) is considerably
better than those of the other methods. In the right figure of Figure 6, we present the
proportions of “acceptable” solutions with the standard that the averaged error is less
than 1.0. It should be noticed that the proportions are dependent on the standard.
We can get more “acceptable” simulations by IRK2 (l = 3) and MIRK2 (l = 3) than
with the other explicit RK methods. The explicit RK methods are not suitable for
solving this equation with values for θ > 1.

Similar numerical results about the accuracy and the proportions of acceptable
solutions can be also obtained for the case µ = 10 and θ ∈ [0.1, 1.0]. In this case a
smaller stepsize, for example h = 0.00001, should be used for the “accurate solution.”
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Fig. 5. Numerical simulations of the stochastic Van der Pol equation with IRK2 (l = 3).

7. Conclusions. In this paper we have constructed PC methods based on the
trivial predictor and stochastic implicit RK correctors for solving SDEs. Using the
colored rooted tree theory and stochastic B-series, we present an order condition
theorem for constructing stochastic RK-type PC methods. We also present detailed
order conditions of the stochastic RK-type PC methods with strong convergence order
1.0 and 1.5. Two two-stage implicit RK methods with strong global order 1.0 and
two four-stage implicit RK methods with strong global order 1.5 are constructed in
this paper. The following conclusions can be made from the stability analysis and
numerical behavior of the RK-type PC methods presented in this paper.

(1) As the number of parameters is larger than the number of order conditions,
additional conditions can be used to determine the coefficients of stochastic RK meth-
ods in order to get better stability properties and numerical behavior. For example,
we may consider a two-stage implicit RK method which has good stability properties
at infinity. Applying this method (3.1) to the linear test equation (5.1) gives

yn+1 = R(p, q)yn,
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Fig. 6. Proportions and MS accuracy of stable solutions for solving the Van der Pol problem
with µ = 1 and θ varying.

where

R(p, q) = 1 + (pα� + qJ1β
�)(I − pA− qJ1B)

−1e.

This method will have damping stability properties at infinity if

α�A−1e = 1, β�B−1e = 1.

The implicit two-stage RK method (3.5) satisfies these conditions.
(2) Another possible way to improve the stability properties and the numerical

behavior of stochastic RK-type PC methods is to reduce the magnitude of the eigen-
values of the matrices in the stochastic RK methods. The cue is in the expression of
R(l) (5.2). In order to verify this supposition, we construct two methods, MIRK2 and
MIRK4. Compared with IRK2 and IRK4, the eigenvalues of the method matrices in
MIRK2 and MIRK4 are small in magnitude. Numerical results of the MIRK2 and
MIRK4 methods are more accurate than those of IRK2 and IRK4. The effect has
also been observed in the deterministic case.

(3) The stochastic RK-type PC methods are more effective than other explicit
stochastic RK methods. For two-stage RK methods with strong order 1.0, the su-
periority of the PC method based on IRK2 or MIRK2 is due to the better stability
properties (shown in Figures 1 and 6), the better accuracy, and the less computational
cost (shown in Table 1 and Figure 6). For the RK methods with strong order 1.5, the
PC method will be more effective than the explicit RK methods with the same order
if it is implemented on a parallel computer.

Thus we may consider stochastic RK-type PC methods which have better stability
properties and numerical behavior by adding additional conditions or by reducing
the magnitude of the eigenvalues of the matrices in the stochastic RK methods. In
addition, we can apply splitting techniques [20] to implicit RK methods to construct
numerical schemes which are suitable for solving stiff SDEs. Finally, we note that
these concepts can be applied to SDE problems driven by more then one Wiener
process. However, spatial constraints for this work means that all of these are topics
for future work.
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[22] W. Rümelin, Numerical treatment of stochastic differential equations, SIAM J. Numer. Anal.,
19 (1982), pp. 604–613.

[23] Y. Saito and T. Mitsui, T-stability of numerical scheme for stochastic differential equations,
World Sci. Ser. Appl. Anal., 2 (1993), pp. 333–344.

[24] Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential
equations, SIAM J. Numer. Anal., 33 (1996), pp. 2254–2267.

[25] B. P. Sommeijer, Parallelism in the Numerical Integration of Initial Value Problems, CWI
Tract, Amsterdam, The Netherlands, 1993.

[26] T. H. Tian and K. Burrage, Two-stage stochastic Runge-Kutta methods for stochastic dif-
ferential equations, BIT, 42 (2002), pp. 625–643.

[27] P. J. van der Houwen and N. huu Cong, Parallel block predictor-corrector methods of Runge-
Kutta type, Appl. Numer. Math., 13 (1993), pp. 109–123.

[28] P. J. van der Houwen, B. P. Sommeijer, and J. J. B. de Swart, Parallel predictor-corrector
methods, J. Comput. Appl. Math., 66 (1996), pp. 53–71.



SHARP L2-ERROR ESTIMATES AND SUPERCONVERGENCE OF
MIXED FINITE ELEMENT METHODS FOR NON-FICKIAN FLOWS

IN POROUS MEDIA∗

RICHARD E. EWING† , YANPING LIN‡ , TONG SUN§ , JUNPING WANG¶, AND

SHUHUA ZHANG‖

SIAM J. NUMER. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 4, pp. 1538–1560

Dedicated to Professor Zhichun Piao on the occasion of his 68th birthday

Abstract. A sharper L2-error estimate is obtained for the non-Fickian flow of fluid in porous
media by means of a mixed Ritz–Volterra projection instead of the mixed Ritz projection used in
[R. E. Ewing, Y. Lin, and J. Wang, Acta Math. Univ. Comenian. (N.S.), 70 (2001), pp. 75–84].
Moreover, local L2 superconvergence for the velocity along the Gauss lines and for the pressure at
the Gauss points is derived for the mixed finite element method via the Ritz–Volterra projection,
and global L2 superconvergence for the velocity and the pressure is also investigated by virtue of an
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1. Introduction. As mentioned in [18, 19], the non-Fickian flow of fluid in
porous media is complicated by the history effect which characterizes various mixing
length growth of the flow and can be modeled by an integro-differential equation:
Find u = u(x, t) such that

ut = ∇ · σ + cu + f in Ω× J,

σ = A(t) · ∇u−
∫ t

0

B(t, s) · ∇u(s)ds in Ω× J,

u = g on ∂Ω× J,
u = u0(x) x ∈ Ω, t = 0,

(1.1)
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where Ω ⊂ Rd (d = 2, 3) is an open bounded domain with smooth boundary ∂Ω,
J = (0, T ) with T > 0, A(t) = A(x, t) and B(t, s) = B(x, t, s) are two 2 × 2 or
3 × 3 matrices, and A is positive definite, and c, f , g, and u0 are known smooth
functions. This kind of model can arise, e.g., from the transport of contaminants in
the subsurface, which is of great interest for engineers, physicists, and mathematicians
involved in porous media flows modeling. The evolution of a reactive chemical within
a velocity field exhibits excitement on many scales, typically represented by using
the classical Fickian dispersion theory. For instance, the evolution in such a velocity
field, when modeled with Fickian-type constitutive laws, leads to a dispersion tensor
dependent upon the timescales of observation. Hence, to avoid this difficulty, nonlocal
Fickian models have been recently proposed, in which the dispersion term arising from
integration with respect to time makes the flow non-Fickian, since it is not a pure
diffusion term. For example, Chen, Ewing, and Lazarov [4, 5], Cushman [6], Cushman,
Hu, and Deng [7], Cushman, Hu, and Ginn [8], and Hu, Deng, and Cushman [23]
have developed a nonlocal theory and some applications for the flow of fluid in porous
media. Furtado et al. [21], Glimm et al. [22], Neuman and Zhang [29], and Ewing
[12, 13, 14] also studied the history effect of various mixing length growth for flow
in heterogeneous porous media. In a recent laboratory experimental investigation of
contaminant transport in heterogeneous porous media [32], some nonlocal behavior
of dispersion tensors have been observed.

There is now sizeable literature on the numerical approximations of the problem
(1.1). In [31], the method of backward Euler and Crank–Nicolson combined with
a certain numerical quadrature rule is employed to deal with the time direction,
which aims at reducing the computational cost and storage spaces due to the memory
effect. Finite element methods have been also developed for the problem (1.1) during
the past ten years [2, 3, 25, 26, 27, 28, 34], in which optimal and superconvergence
can be found for the corresponding finite element approximations in various norms,
such as Lp with 2 ≤ p ≤ ∞. In particular, the method of using the Ritz–Volterra
projection, discovered by Cannon and Lin [2], proved to be a powerful technique
behind the analysis. In fact, in [28] the concept of Ritz–Volterra projection is proposed
to unify much of the analysis of standard finite element methods for different types of
problems, such as parabolic and hyperbolic integro-differential equations and Sobolev-
and viscoelasticity-type equations. See [16, 17] for recent developments on finite
volume element approximations, where the Ritz–Volterra projection is also employed.

However, to the best of our knowledge, there are few results except [18, 19, 24]
available concerning the mathematical formulation and analysis of the mixed finite
element method for (1.1). Unlike the standard finite element method, the mixed
finite element method can give the numerical approximations of the velocity field and
the pressure field at the same time, and also maintains the physical conservation, so
that it is more favorable. Certainly, its theoretical analysis is more complicated than
that of the standard finite element method. In [18, 19] the authors dealt with the
general setting of the problem. However, the formulation and analysis given in [24]
are valid for only a special case; i.e., the operator B is proportional to the operator
A. The reader is referred to [24] for this special case. The mathematical difficulty
associated with the analysis of numerical approximations to the solution of (1.1)
lies on the integral term added to standard parabolic equations [33, 34]. In order to
overcome this difficulty, the so-called mixed Ritz–Volterra projection will be proposed
in section 2.

In the present paper we are concerned with the approximate solutions of (1.1)
by mixed finite element methods. Sharper L2-error estimates than those in [18, 19]
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are obtained by employing a mixed Ritz–Volterra projection rather than the Ritz
projection used in [18, 19]. In addition, local L2 superconvergence for the velocity
along the Gauss lines and for the pressure at the Gauss points is derived, and with
the aid of an interpolation postprocessing method global L2 superconvergence is also
considered for the velocity and the pressure.

The paper is organized in the following way. In section 2, we give some necessary
preparations, introduce the mixed Ritz–Volterra projection, and analyze its approxi-
mation properties. In section 3, we derive a sharper error estimate for the mixed finite
element approximations in the L2-norm. Sections 4 and 5 are devoted to the local and
global superconvergence analysis of the mixed finite element method, respectively.

2. The mixed Ritz–Volterra-type projection. In this section, we give the
mixed finite element approximate formula for the parabolic integro-differential equa-
tion (1.1) and the mixed Ritz–Volterra projection. For simplicity, the method will be
presented on plane domains.

Let W := L2(Ω) be the standard L2 space on Ω with norm ‖ · ‖0. Denote by

V := H(div,Ω) =
{
σ ∈ (L2(Ω))2 : ∇ · σ ∈ L2(Ω)

}
the Hilbert space equipped with the following norm:

‖σ‖V :=
(‖σ‖20 + ‖∇ · σ‖20

) 1
2 .

There are several ways to discretize the problem (1.1) based on the variables σ and
u; each method corresponds to a particular variational form of (1.1) [18, 19].

Let Th be a finite element partition of Ω into triangles or quadrilaterals which
is quasi-uniform. Let Vh ×Wh denote a pair of finite element spaces satisfying the
Brezzi–Babus̆ka condition. For example, the elements of Raviart and Thomas [30]
would be a good choice for Vh and Wh. Although our results are based on the use
of Raviart–Thomas elements of any order k, their extension to other stable elements
can be discussed without any difficulty.

Let us recall from [18] that the weak mixed formulation of (1.1) is given by finding
(u, σ) ∈W ×V such that

(ut, w)− (∇ · σ,w)− (cu, w) = (f, w) ∀w ∈W,

(ασ,v) +

∫ t

0

(M(t, s)σ(s),v)ds + (∇ · v, u) = 〈g,v · n〉 ∀v ∈ V,

u(0, x) = u0(x) in L2(Ω),

(2.1)

where α = A−1(t), M(t, s) = R(t, s)A−1(s), and R(t, s) is the resolvent of the matrix
A−1(t)B(t, s) and is given by

R(t, s) = A−1(t)B(t, s) +

∫ t

s

A−1(t)B(t, τ) R(τ, s)dτ, t > s ≥ 0.

Here 〈·, ·〉 indicates the L2-inner product on ∂Ω.
The corresponding semidiscrete version seeks a pair (uh, σh) ∈Wh×Vh such that

(uh,t, wh)− (∇ · σh, wh)− (cuh, wh) = (f, wh) ∀wh ∈Wh,

(ασh,vh) +

∫ t

0

(M(t, s)σh(s),vh)ds + (∇ · vh, uh) = 〈g,n · vh〉 ∀vh ∈ Vh.
(2.2)
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The discrete initial condition uh(0, x) = u0,h, where u0,h ∈Wh is some appropriately
chosen approximation of the initial data u0(x), should be added to (2.2) for starting.
The pair (uh, σh) is a semidiscrete approximation of the true solution of (1.1) in the
finite element space Wh ×Vh [1, 18, 19, 31], where σh(0, x) is chosen to satisfy (2.2)
with t = 0; namely, it is related to u0,h as follows:

(ασh(0),vh) + (u0,h,∇ · vh) = 〈g0,n · vh〉,(2.3)

where g0 = g(0, x) is the initial value of the boundary data.
In [18], utilizing the mixed Ritz projection we have obtained for the Raviart–

Thomas element of the lowest order that

||u− uh||20 + ||σ − σh||20 ≤ Ch2

[
||u0||21 + ||σ0||21 +

∫ t

0

(||u(s)||22 + ||ut(s)||22)ds
]
.

Also, we can extend easily the result to the case of any order k (≥ 1) to get

||u−uh||20 + ||σ−σh||20 ≤ Ch2r

[
||u0||2r + ||σ0||2r +

∫ t

0

(||u(s)||2r+1 + ||ut(s)||2r+1)ds

]
,

(2.4)
for 2 ≤ r ≤ k + 1. In fact, we can improve the error estimate by extending the idea
from [2, 3] to introduce a new nonlocal projection incorporated with the memory
effects, which allows us to obtain a sharper error estimate in regularity than that
indicated in (2.4). This new projection is a natural extension of the standard Ritz–
Volterra projection in the standard finite element method to the case of the mixed
finite element approximations with memory. We refer the readers to [2, 3] and [28]
for the analysis and applications of the Ritz–Volterra projection for standard finite
element approximations to parabolic and hyperbolic integro-differential equations.

Before the mixed Ritz–Volterra projection is given, we need the following Raviart–
Thomas projection [30]:

Πh × Ph : V ×W → Vh ×Wh,

which has the following properties:
(i) Ph is the local L2(Ω) projection.
(ii) Πh and Ph satisfy

(∇ · (σ −Πhσ), wh) = 0, wh ∈Wh and (∇ · vh, u− Phu) = 0, vh ∈ Vh.(2.5)

(iii) The following approximation properties hold:

||σ −Πhσ||0 ≤ Chr||σ||r, 1 ≤ r ≤ k + 1,
||∇ · (σ −Πhσ)||−s ≤ Chr+s||∇ · σ||r, 0 ≤ r, s ≤ k + 1,
||u− Phu||−s ≤ Chr+s||u||r, 0 ≤ r, s ≤ k + 1.

(2.6)

Definition 2.1. For (u, σ) ∈W×V we define a pair (ūh, σ̄h) : [0, T ]→Wh×Vh

such that(
α(σ − σ̄h) +

∫ t

0

M(t, s)(σ − σ̄h)(s)ds,vh

)
+ (∇ · vh, u− ūh) = 0, vh ∈ Vh,

(∇ · (σ − σ̄h), wh) + (c(u− ūh), wh) = 0, wh ∈Wh,
(2.7)

where α = A−1. The pair (ūh, σ̄h) is called the mixed Ritz–Volterra projection
of (u, σ).
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Let

ξ := σ − σ̄h, η := u− ūh, ν := Πhσ − σ̄h, τ := Phu− ūh, ρ := u− Phu.

Then (2.7) becomes(
αξ +

∫ t

0

M(t, s)ξ(s)ds,vh

)
+ (∇ · vh, η) = 0, vh ∈ Vh,

(∇ · ξ, wh) + (cη, wh) = 0, wh ∈Wh,

(2.8)

or, according to (2.5),

(αξ,vh) + (∇ · vh, τ) = f(vh), vh ∈ Vh,
(∇ · ξ, wh) + (cτ, wh) = g(wh), wh ∈Wh,

(2.9)

where

f(vh) := −
(∫ t

0

M(t, s)ξ(s)ds,vh

)
and g(wh) := −(cρ, wh).

In order to analyze (ξ, η), let us recall from [10] the following results.
Lemma 2.2. Let the index k of Vh ×Wh be at least one and let 0 ≤ s ≤ k − 1.

Assume that Ω is (s+2)-regular [10]. Let ξ ∈ V, g ∈W ′ = L2(Ω) and f = {f0, f1} ∈
V′ with f0 ∈ (L2(Ω))2, f1 ∈ L2(Ω) and

f(v) = (f0,v) + (f1,∇ · v), v ∈ V.

If z ∈Wh satisfies the relations

(αξ,vh) + (∇ · vh, z) = f(vh), vh ∈ Vh,
(∇ · ξ, wh) + (cz, wh) = g(wh), wh ∈Wh,

(2.10)

then there exists h0 > 0 sufficiently small such that, for all 0 < h ≤ h0,

||z||−s ≤ C
{
hs+1||ξ||0 + hs+2||∇ · ξ||0 + ||f0||−s−1 + hs+1||f0||0

+ ||f1||−s + hs||f1||0 + ||g||−s−2 + hs+2||g||0
}
.

Lemma 2.3. Let the index k of Vh ×Wh be nonnegative, and let Ω be (k + 2)-
regular [10]. Let ξ ∈ V, g ∈ W ′ = L2(Ω) and f = {f0, 0} ∈ V′. If z ∈ Wh satisfies
(2.10), then there exists h0 > 0 sufficiently small such that, for all 0 < h ≤ h0,

||z||−k ≤ C
{
hk+1 (||ξ||0 + ||∇ · ξ||0 + ||f0||0 + ||g||0) + ||f0||−k−1 + ||g||−k−2

}
.

Moreover, we also need the following lemma.
Lemma 2.4. Assume that the matrix A(t) is positive definite. Then the norms

||σ||20 := (σ, σ) and ||σ||2A−1 := (A−1σ, σ) are equivalent.
We are now ready to state and prove our main result in this section.
Theorem 2.5. For (u, σ) ∈ W ×V its mixed Ritz–Volterra projection (ūh, σ̄h)

defined by (2.7) exists and is unique. Moreover, there is a positive constant C > 0,
independent of h > 0 small, such that the error (u− ūh, σ − σ̄h) can be estimated by

||u− ūh||0 ≤ C

{
h|||u(t)|||2 if k = 0,
hr|||u(t)|||r if k ≥ 1 and 2 ≤ r ≤ k + 1,

||σ − σ̄h||0 ≤ Chr|||u(t)|||r+1 if 1 ≤ r ≤ k + 1,

||∇ · (σ − σ̄h)||0 ≤ Chr|||u(t)|||r+2 if 0 ≤ r ≤ k + 1,
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where

|||u(t)|||r = ||u(t)||r +
∫ t

0

||u(s)||rds, r ∈ R, t ≥ 0.

Proof. We first prove the existence and uniqueness of the mixed Ritz–Volterra
projection. If M = 0, then it follows from [1] that (ūh, σ̄h) exists uniquely. If M is
nonzero, we see that (2.7) in fact can be written as a Volterra system for (ūh, σ̄h), i.e.,

Ah

(
ūh
σ̄h

)
= Fh +

∫ t

0

Bh(t, s)

(
ūh
σ̄h

)
ds,

where Ah and Bh are matrices with Ah nonsingular and Fh is a vector associated
with the solution (u, σ). Hence, the theory of Volterra equations implies that (ūh, σ̄h)
exists uniquely.

Next we turn our attention to error estimates. It follows from (2.6) and (2.9) that

||f ||0 ≤ C

∫ t

0

||ξ||0ds, ||f ||−1 ≤ C

∫ t

0

||ξ||−1ds,

||g||0 ≤ C||ρ||0, ||g||−1 ≤ C||ρ||−1,

||g||−2 ≤ ||g||−1 ≤ C||ρ||−1, ||ρ||−1 + h||ρ||0 ≤ Chr+1||u||r.
Now we apply either Lemma 2.2 with s = 0 or Lemma 2.3 with k = 0 to (2.9).

Then, for h small and for Ω 2-regular we have for 0 ≤ r ≤ k + 1 that

||τ ||0 ≤ C
{
h||ξ||0 + h2−δk0 ||∇ · ξ||0 + ||f ||−1 + h||f ||0 + ||g||−2 + h||g||0

}
≤ C

{
h||ξ||0 + h2−δk0 ||∇ · ξ||0 +

∫ t

0

(||ξ||−1 + h||ξ||0)ds + (||ρ||−1 + h||ρ||0)
}

≤ C

{
h|||ξ|||0 + h2−δk0 ||∇ · ξ||0 +

∫ t

0

||ξ||−1ds + hr+1||u||r
}

,

(2.11)
where

δk0 =

{
1, k = 0,
0, k �= 0.

Letting ϕ ∈ (H1(Ω)
)2

, then we derive from (2.5) and (2.8) that(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ

)
+ (∇ · ϕ, η)

=

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ−Πhϕ

)
+ (∇ · (ϕ−Πhϕ), η)

+

(
αξ +

∫ t

0

M(t, s)ξ(s)ds,Πhϕ

)
+ (∇ ·Πhϕ, η)

=

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ−Πhϕ

)
+ (∇ · (ϕ−Πhϕ), u)

or

(αξ, ϕ) = −
∫ t

0

(M(t, s)ξ(s), ϕ)ds− (∇ · ϕ, η)

+

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ϕ−Πhϕ

)
+ (∇ · (ϕ−Πhϕ), u)
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which, together with (2.6), indicates that

|(αξ, ϕ)| ≤ C

∫ t

0

||ξ(s)||−1ds||ϕ||1 + ||η||0||ϕ||1

+ Ch|||ξ|||0||ϕ||1 + Ch||u||1||∇ · (ϕ−Πhϕ)||−1

≤ C

(∫ t

0

||ϕ||−1ds + ||η||0 + Ch|||ξ|||0 + Ch||u||1
)
||ϕ||1;

that is,

||ξ||−1 ≤ C

{∫ t

0

||ξ(s)||−1ds + ||η||0 + Ch(|||ξ|||0 + ||u||1)
}

.

This, together with Gronwall’s lemma, implies that

||ξ||−1 ≤ C {||η||0 + Ch(|||ξ|||0 + ||u||1)} .(2.12)

Substitute (2.12) into (2.11) to obtain

||τ ||0 ≤ C

{∫ t

0

||η(s)||0ds + h|||ξ|||0 + h2−δk0 ||∇ · ξ||0 + hr+1||u||r
}

.(2.13)

Therefore, for 0 ≤ r ≤ k + 1 we have

||η||0 ≤ ||ρ||0 + ||τ ||0
≤ C

{∫ t

0

||η(s)||0ds + h|||ξ|||0 + h2−δk0 |||∇ · ξ|||0 + hr||u||r
}

,

and applying Gronwall’s lemma leads to

||η||0 ≤ C
{
h|||ξ|||0 + h2−δk0 ||∇ · ξ||0 + hr||u||r

}
.(2.14)

Since, by (2.5), (∇ · ν, wh) = (∇ · ξ, wh) for wh ∈ Wh, it follows from (2.8) and the
choice wh = ∇ · ν ∈Wh that

(∇ · ν,∇ · ν) = (∇ · ξ,∇ · ν) = −(cη,∇ · ν)
or

||∇ · ν||0 ≤ C||η||0(2.15)

so that

(2.16)

||∇ · ξ||0 ≤ ||∇ · ν||0 + ||∇ · (σ −Πhσ)||0 ≤ C(||η||0 + hq||∇ · σ||q), 0 ≤ q ≤ k + 1.

Also, according to (2.8) ν satisfies(
αν +

∫ t

0

M(t, s)ν(s)ds, ν

)

=

(
αξ +

∫ t

0

M(t, s)ξ(s)ds, ν

)
+

(
α(Πhσ − σ) +

∫ t

0

M(t, s)(Πhσ − σ)(s)ds, ν

)

= −(∇ · ν, η) +
(
α(Πhσ − σ) +

∫ t

0

M(t, s)(Πhσ − σ)(s)ds, ν

)
≤ ||∇ · ν||20 + ||η||20 + C|||Πhσ − σ|||0||ν||0.
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Then we find from Lemma 2.4, (2.15), and the ε-type inequality that

||ν||20 − C

∫ t

0

||ν(s)||20ds ≤ C(||η||0 + |||Πhσ − σ|||0)

which, together with Gronwall’s lemma and (2.6), implies

||ν||0 ≤ C(||η||0 + |||Πhσ − σ|||0) ≤ C(||η||0 + hm|||σ|||m), 1 ≤ m ≤ k + 1,(2.17)

and

||ξ||0 ≤ ||ν||0 + ||Πhσ − σ||0 ≤ C(||η||0 + hm|||σ|||m), 1 ≤ m ≤ k + 1.(2.18)

If (2.16) and (2.18) are substituted into (2.14), then for 0 ≤ r ≤ k + 1, 0 ≤ q ≤
k + 1, and 1 ≤ m ≤ k + 1 it follows that

||η||0 ≤ C
{
h|||η|||0 + hr||u||r + hm+1|||σ|||m + h2−δk0+q||∇ · σ||q

}
.

Thus, for small h we obtain via Gronwall’s inequality that

||η||0 ≤ C
{
hr||u||r + hm+1|||σ|||m + h2−δk0+q||∇ · σ||q

}
,

0 ≤ r, q ≤ k + 1, 1 ≤ m ≤ k + 1.

Choose r = m + 1 = 2 + q − δk0 to gain that

||η||0 =

{
Ch|||u|||2 if k = 0,

Chr|||u|||r if k ≥ 1 and 2 ≤ r ≤ k + 1,

since ||σ||r−1 + ||∇ · σ||r−2 ≤ C||u||r.
It then follows immediately that

||ξ||0 ≤ Chr|||u|||r+1, 1 ≤ r ≤ k + 1,

||∇ · ξ||0 ≤ Chr|||u|||r+2, 0 ≤ r ≤ k + 1.

Therefore, the proof of Theorem 2.5 is completed.
Theorem 2.6. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) ∈

W × V defined by (2.7). Then there is a positive constant C > 0, independent of
h > 0 small, such that the error (u − ūh, σ − σ̄h) can be estimated for any positive
integer m by

||Dm
t (u− ūh)||0 ≤ C

{
h|||u(t)|||2,m if k = 0,
hr|||u(t)|||r,m if k ≥ 1 and 2 ≤ r ≤ k + 1,

||Dm
t (σ − σ̄h)||0 ≤ Chr|||u(t)|||r+1,m if 1 ≤ r ≤ k + 1,

||Dm
t (∇ · (σ − σ̄h))||0 ≤ Chr|||u(t)|||r+2,m if 0 ≤ r ≤ k + 1,

where

|||u(t)|||r,m =

m∑
j=0

||Dj
tu(t)||r +

∫ t

0

m∑
j=0

||Dj
tu(s)||rds, r ∈ R, t ≥ 0.

Proof. Differentiate (2.7), and then the result for m = 1 follows from the same
arguments as those for Theorem 2.5.
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The proof is completed by treating m ≥ 2 inductively, using the further differen-
tiation of (2.7).

Corollary 2.7. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) ∈
W ×V defined by (2.7). Then

||u− ūh||∞ ≤ Chr (||u||r,∞ + |||u|||r+1) , k ≥ 1, and 1 ≤ r ≤ k.

Proof . We easily see from (2.13) and Theorem 2.5 that

||τ ||0 ≤ Chr+1|||u|||r+1 for k ≥ 1 and 1 ≤ r ≤ k

and by the inverse inequality that

||τ ||∞ ≤ Ch−1||τ ||0 ≤ Chr|||u|||r+1.

Thus, we have for k ≥ 1 and 1 ≤ r ≤ k that

||u− ūh||∞ ≤ ||u− Phu||∞ + ||τ ||∞
≤ Chr(||u||r,∞ + |||u|||r+1).

Remark 2.1. For k = 0 we do not have any estimate for the quantity ||u− ūh||∞.
However, using the superconvergence analysis to be presented in Corollary 5.4, we
have for the rectangular Raviart–Thomas elements of the lowest order,

||u− uh||∞ ≤ Ch,

where (u, σ) and (uh, σh) are the solutions of (2.1) and (2.2), respectively.
Theorem 2.8. Assume that (ūh, σ̄h) is the mixed Ritz–Volterra projection of

(u, σ) ∈W×V defined by (2.7). Then there is a positive constant Cm > 0, independent
of h > 0 small, such that for m ≥ 0

||Dm
t ūh||W + ||Dm

t σ̄h||V ≤ Cm




m∑
j=0

(||Dj
tσ||V + ||Dj

tu||W ) +

∫ t

0

(||σ||V + ||u||W )ds


.

(2.19)
Proof. Rewrite (2.7) as

(ασ̄h,vh) + (∇ · vh, ūh) = F (vh), vh ∈ Vh,
(∇ · σ̄h, wh) + (cūh, wh) = G(wh), wh ∈Wh,

where

F (vh) =

(
ασ +

∫ t

0

M(t, s)(σ − σ̄h)(s)ds,vh

)
+ (∇ · vh, u),

G(wh) = (∇ · σ,wh) + (cu, wh).

F (vh) and G(wh) can be considered as linear functionals of vh and wh defined on Vh

and Wh, respectively. Thus, we have from the stability result of [1] that

||σ̄h||V + ||ūh||W ≤ C

{
supvh∈Vh

|F (vh)|
||vh||V + sup

wh∈Wh

|G(wh)|
||wh||W

}

≤ C

{
||σ||V +

∫ t

0

||σ||V ds + ||u||W +

∫ t

0

||σ̄h||Vds

}
,
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or, by Gronwall’s inequality,

||σ̄h||V + ||ūh||W ≤ C

{
||σ||V +

∫ t

0

||σ||Vds + ||u||W
}

,

which demonstrates that (2.19) is true for m = 0.

We can also prove (2.19) for m ≥ 1 by differentiating (2.7) with respect to time
t and repeating the same arguments above with mathematical induction.

Remark 2.2. This stability result (2.19) is needed in the analysis of the backward
Euler time-discretization scheme. See [19] for details.

3. Sharp L2-error estimates. In this section, we shall show a sharper L2-error
estimate than the one indicated in (2.4) for the time-continuous approximation scheme
(2.2), where the regularity requirement is one order lower than in (2.4), by means of
the mixed Ritz–Volterra-type projection instead of the mixed Ritz projection used
in [18] to obtain (2.4). Here, let us consider the Raviart–Thomas elements of higher
order k ≥ 1 (see [18] for the lowest-order case).

Theorem 3.1. Assume that (u, σ) and (uh, σh) are the solutions of (2.1) and
(2.2), respectively, ||Phu0−uh(0)|| ≤ Chr||u0||r and ||Πhσ(0)−σh(0)|| ≤ Chr||u0||r+1.
Then we have for k ≥ 1 that

||u(t)− uh(t)||20
≤ Ch2r

{
||u0||2r +

∫ t

0

[||u(s)||2r + ||ut(s)||2r]ds
}

, 2 ≤ r ≤ k + 1,

||σ(t)− σh(t)||20
≤ Ch2r

{
||u0||2r+1 +

∫ t

0

[||u(s)||2r+1 + ||ut(s)||2r+1]ds

}
, 1 ≤ r ≤ k + 1.

Proof. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) defined by
(2.7), and we rewrite the errors as

u− uh = (u− ūh) + (ūh − uh) := ρ + ρh,

σ − σh = (σ − σ̄h) + (σ̄h − σh) := θ + θh.

Then we know from Theorems 2.5 and 2.6 that

||ρ||0 ≤ Chr|||u(t)|||r, k ≥ 1, and 2 ≤ r ≤ k + 1,

||ρt||0 ≤ Chr (|||u(t)|||r + |||ut(t)|||r) , k ≥ 1, and 2 ≤ r ≤ k + 1
(3.1)

and

||θ(t)||0 ≤ Chr|||u|||r+1, 1 ≤ r ≤ k + 1.(3.2)

Thus, only ||ρh||0 and ||θh||0 need to be estimated.

It follows from (2.1)–(2.2) and (2.7) that (ρh, θh) satisfies

(
αθh +

∫ t

0

M(t, s)θh(s)ds,vh

)
+ (∇ · vh, ρh) = 0, vh ∈ Vh,

(ρh,t, wh)− (∇ · θh, wh)− (cρh, wh) = −(ρt, wh), wh ∈Wh.

(3.3)
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Therefore, setting wh = ρh and vh = θh in (3.3) we obtain from their sum that

1

2

d

dt
||ρh||20 − (cρh, ρh) + ||θh||2A−1 = −

(∫ t

0

M(t, s)θh(s)ds, θh

)
− (ρt, ρh)

≤ C

∫ t

0

||θh(s)||0ds||θh||0 + ||ρt||0||ρh||0

and by means of Lemma 2.4 that

1

2

d

dt
||ρh||20 + ||θh||2A−1 ≤ C

(
||ρh||20 +

∫ t

0

||θh||2A−1ds

)
+

1

2

(||θh||2A−1 + ||ρt||20
)
.

Integrating from 0 to t leads to

||ρh||20 +

∫ t

0

||θh||2A−1ds ≤ ||ρh(0)||20 +

∫ t

0

[
||ρh||20 +

∫ s

0

||θh(s)||2A−1ds

]
+

∫ t

0

||ρt||20ds

which, together with Gronwall’s lemma, implies

||ρh||20 +

∫ t

0

||θh(s)||2A−1ds ≤ C

{
||ρh(0)||20 +

∫ t

0

||ρt||20ds
}

.(3.4)

It follows from (2.6), Theorem 2.5, and our initial approximation assumption that

||ρh(0)||20 = ||ūh(0)− uh(0)||20 ≤ ||ūh(0)− u0||20
+ ||u0 − Phu0||20 + ||Phu0 − uh(0)||20

≤ Ch2r||u0||2r.
(3.5)

Combining (3.1) and (3.5) with (3.4) we gain

||ρh||20 ≤ Ch2r

{
||u0||2r +

∫ t

0

[||u(s)||2r + ||ut(s)||2r]ds
}

.(3.6)

In order to get the estimate for θh(t), we first differentiate (3.3) to obtain

(
αtθh + αθh,t + M(t, t)θh +

∫ t

0

Mt(t, s)θh(s)ds,vh

)
+ (∇ · vh, ρh,t) = 0, vh ∈ Vh,

and then by setting vh = θh in the above equation and wh = ρh,t in (3.3) we have
that

(3.7)

||ρh,t||20 + (αθh,t, θh) + (αtθh, θh) = −
(
M(t, t)θh +

∫ t

0

Mt(t, s)θh(s)ds, θh

)
+ (cρh, ρh,t)− (ρt, ρh,t).

Since

α(θ2
h)t = (αθ2

h)t − αtθ
2
h,
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then

(αθh,t, θh) =

∫
Ω

αθh,tθh =
1

2

∫
Ω

α
d

dt
(θ2
h)

=
1

2

∫
Ω

d

dt
(αθ2

h)−
1

2

∫
Ω

αtθ
2
h

=
1

2

d

dt
||θh||2A−1 − 1

2
(αtθh, θh).

Hence, (3.7) can be rewritten as

||ρh,t||20 +
1

2

d

dt
||θh||2A−1 +

1

2
(αtθh, θh) = −

(
M(t, t)θh +

∫ t

0

Mt(t, s)θh(s)ds, θh

)
+ (cρh, ρh,t)− (ρt, ρh,t).

Thus, from the ε-inequality we derive that

||ρh,t||20 +
d

dt
||θh||2A−1 ≤ C

{
||θh||20 +

∫ t

0

||θh(s)||20ds + ||ρh||20 + ||ρt||20
}

and then via integrating from 0 to t, Lemma 2.4, and Gronwall’s lemma that

||θh||20 ≤ C

{
||θh(0)||20 +

∫ t

0

[||ρh(s)||20 + ||ρt(s)||20]
}

.(3.8)

It follows from (2.6), Theorem 2.5, and our initial approximation assumption that

||θh(0)||20 = ||σ̄h(0)− σh(0)||20 ≤ ||σ̄h(0)− σ(0)||20
+ ||σ(0)−Πhσ(0)||20 + ||Πhσ(0)− σh(0)||20

≤ Ch2r||u0||2r+1.

(3.9)

If (3.1), (3.6), and (3.9) are substituted into (3.8), then we can obtain

||θh||20 ≤ Ch2r

{
||u0||2r+1 +

∫ t

0

[||u(s)||2r + ||ut(s)||2r]ds
}

.

Then the proofs of Theorem 3.1 are complete via the triangle inequality.
Remark 3.1. The assumption in the above theorem ‖Phu0−uh(0)‖0 ≤ Chr||u0||r

and ||Πhσ(0) − σh(0)||0 ≤ Chr||u0||r+1 is available. In fact, from (2.1) and (2.3) we
know that

(α(0)(σ − σh)(0),vh) + ((u− uh)(0),∇ · vh) = 0, vh ∈ Vh.(3.10)

When we choose uh(0) = Phu0, (3.10) becomes

(α(0)(σ − σh)(0),vh) = 0, vh ∈ Vh,

since (u0−Phu0,∇·vh) = 0 according to (2.5). Thus, we have by virtue of (2.6) that

(σ(0)(σh(0)−Πhσ(0)),vh) = (α(0)(σ(0)−Πhσ(0)),vh) ≤ Chr||u0||r+1||vh||0
which, together with Lemma 2.4, indicates that

||σh(0)−Πhσ(0)||0 ≤ Chr||u0||r+1.

Remark 3.2. Compared with (2.4) the result presented in Theorem 3.1 is sharper,
since the regularity requirement in Theorem 3.1 is one order lower for the pressure
field than that in (2.4), which demonstrates that the mixed Ritz–Volterra projection
is more favorable for the mixed finite element method of (2.1) than the mixed Ritz
projection used to obtain (2.4).
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4. Local L2 superconvergence on rectangular elements. In the last decade
considerable attention has been given to the analysis of superconvergence of mixed
finite element approximations to elliptic [11, 15, 35, 36] and parabolic [4, 5] problems
under various norms associated with the Gauss lines for the gradient and the Gauss
points for the solution itself. In this section, we will extend these superconvergence
results in mixed finite element approximations to our problem of parabolic integro-
differential equations.

Following [15] we assume that Ω ⊂ R2 is a rectangle and define seminorms on V
and W as follows. Letting e = [a, b]× [c, d] ∈ Th, we denote by (g1, g2, . . . , gk+1) the
Gauss points in [a, b] and (ĝ1, ĝ2, . . . , ĝk+1) the Gauss points in [c, d], and define

|||v1|||21,e :=

k+1∑
j=1

Aj
d− c

2

∫ b

a

|v1(s, ĝi)|2ds,

|||v2|||22,e :=

k+1∑
j=1

Aj
b− a

2

∫ d

c

|v2(s, gi)|2ds,

where Aj > 0, j = 1, 2, . . . , k + 1, are the coefficients of the Gauss quadrature rule in
[−1, 1]. Thus, for v = (v1, v2) ∈ V and w ∈W , we define

|||v|||2∗ := |||v1|||21 + |||v2|||22, |||vi|||2i :=
∑
e∈Th

|||vi|||2i,e, i = 1, 2,

|||w|||2∗ :=
1

4

∑
e∈Th

k+1∑
i,j=1

AiAj area(e)|w(gi, ĝj)|2.

Clearly, these two seminorms are equal to the L2-norm of functions from Vh and Wh,
respectively [11, 15], where Vh ×Wh is the Raviart–Thomas finite element space of
index k (≥ 0). Moreover, let uI represent the interpolation function of u of degree k
with respect to x and y, respectively, on each element associated with the (k + 1)2

Gauss points. First of all, we need the following lemmas.

Lemma 4.1. Assume that σ ∈ (Hk+2(Ω)
)2 ∩ V, u ∈ Hk+2(Ω), and uI is the

interpolation function of u defined by (k + 1)2 Gauss points. Then we have for some
constant C > 0 that

|||σ −Πhσ|||∗ ≤ Chk+2||σ||k+2,

||Phu− uI ||0 ≤ Chk+2||u||k+2.

Proof. The proof can be found in [11, 15].

Lemma 4.2. Assume that σ ∈ (Hk+2(Ω)
)2 ∩V, u ∈ Hk+1(Ω), c and β are two

W 1,∞(Ω) functions. Then we have for some constant C > 0 that

|(c(Phu− u), wh)| ≤ Chk+2||u||k+1||wh||0, wh ∈Wh,

|(β(Πhσ − σ),vh)| ≤ Chk+2||σ||k+2||vh||0, vh ∈ Vh.

Proof. Let ĉ :=

∫
Ω

c/|Ω|dx, where |Ω| is the measure of Ω. Then

|c(x, t)− ĉ(x, t)| ≤ Ch||c||1,∞
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which, together with the definition of the L2-projection operator Ph, yields

|(c(Phu− u), wh)| = |((c− ĉ)(Phu− u), wh)|
≤ Ch||Phu− u||0||wh||0
≤ Chk+2||u||k+1||wh||0.

Thus, we obtain the first estimate in Lemma 4.2.
The proof for the second estimate is referred to in [11].
Theorem 4.3. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ) defined

by (2.7). Then there exists a positive constant C > 0, independent of h, such that, for
any 0 ≤ t ≤ T ,

|||u− ūh|||∗ + |||σ − σ̄h|||∗ ≤ Chk+2

(
||u||k+2 + ||σ||k+2 +

∫ t

0

||σ||k+2ds

)
.

Proof . We first observe by the equality of the norms ||| · |||∗ and || · ||0 for the
functions in the finite element spaces Wh and Vh that

|||u− ūh|||∗ ≤ ||||u− Phu|||∗ + ||Phu− ūh||0,
|||σ − σ̄h|||∗ ≤ |||σ −Πhσ|||∗ + ||Πhσ − σ̄h||0.

Since u−uI = 0 at the (k+1)2 Gauss points in each element e, we have according
to Lemma 4.1 that

|||Phu− u|||∗ = |||Phu− uI |||∗ = ||Phu− uI ||0 ≤ Chk+2||u||k+2.

In addition, from Lemma 4.1 we also know

|||σ −Πhσ|||∗ ≤ Chk+2||σ||k+2.

Hence, it is sufficient to bound ||Phu− ūh||0 and ||Πhσ − σ̄h||0 to complete the proof
of Theorem 4.3.

Let ξ := Πhσ − σ̄h and τ := Phu− ūh. Then we see from (2.5) and (2.7) that

(αξ,vh) + (∇ · vh, τ) = F0(vh) + F1(vh), vh ∈ Vh,

(∇ · ξ, wh) + (cτ, wh) = G0(wh), wh ∈Wh,
(4.1)

where

F0(vh) = −
(
α(σ −Πhσ) +

∫ t

0

M(t, s)(σ −Πhσ)(s)ds,vh

)
, vh ∈ Vh,

F1(vh) = −
(∫ t

0

M(t, s)ξ(s)ds,vh

)
, vh ∈ Vh,

G0(wh) = −(c(u− Phu), wh), wh ∈Wh.

Since the terms F0, F1, and G0 can be regarded as linear functionals of vh and wh
defined on Vh and Wh, respectively, we then know from the stability result of [1] that
for any fixed time 0 ≤ t ≤ T

||ξ||V + ||τ ||W ≤ C

{
sup

vh∈Vh

|F0(vh) + F1(vh)|
||vh||V + sup

wh∈Wh

|G0(wh)|
||wh||W

}
.(4.2)
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Let

F0(t) = sup
vh∈Vh

|F0(vh)|
||vh||V and G0(t) = sup

wh∈Wh

|G0(wh)|
||wh||W

and notice that

sup
vh∈Vh

|F1(vh)|
||vh||V = sup

vh∈Vh

∣∣∣∣
(∫ t

0

M(t, s)ξ(s)ds,vh

)∣∣∣∣
||vh||V ≤ C

∫ t

0

||ξ(s)||Vds.

Therefore, we find from (4.2) that

||ξ||V + ||τ ||W ≤ C

(
F0(t) + G0(t) + C

∫ t

0

||ξ(s)||Vds

)

and by Gronwall’s inequality that

||ξ||V + ||τ ||W ≤ C(F0(t) + G0(t)).(4.3)

Now we apply Lemma 4.2 to F0(t) and G0(t) to obtain

F0(t) ≤ Chk+2

(
||σ||k+2 +

∫ t

0

||σ(s)||k+2ds

)
and G0(t) ≤ Chk+2||u||k+1

which, together with (4.3), indicates

||ξ||V + ||τ ||W ≤ Chk+2(||u||k+1 + |||σ|||k+2).

Corollary 4.4. Let (ūh, σ̄h) be the mixed Ritz–Volterra projection of (u, σ).
Then

|||Dt(u− ūh)|||∗ + |||Dt(σ − σ̄h)|||∗
≤ Chk+2

{
||u||k+1 + ||ut||k+2 + ||σ||k+2 + ||σt||k+2 +

∫ t

0

[||u(s)||k+1 + ||σ(s)||k+2]ds

}
.

Proof. Differentiating (4.1) with respect to time t, then we see that ξt and τt
satisfy the same equations with the right-hand sides replaced by

F ′
0(vh) = −(α(σt −Πhσt) + (αt + M(t, t))(σ −Πhσ),vh)

+

(∫ t

0

Mt(t, s)(σ −Πhσ)(s)ds,vh

)
, vh ∈ Vh,

F ′
1(vh) = −

(
M(t, t)ξ +

∫ t

0

Mt(t, s)ξ(s)ds,vh

)
, vh ∈ Vh,

G′
0(wh) = −(ct(u− Phu + τ), wh)− (c(u− Phu)t, wh), wh ∈Wh.

Thus, Corollary 4.4 follows from the same argument above.
In order to obtain superconvergence results for mixed finite element approxi-

mations for our parabolic integro-differential equations we choose our initial data
approximation (uh(0), σh(0)) ≈ (u0(x), A(0)∇u0(x)) as the mixed elliptic projection:

(α(0)(σh(0)− σ(0)),vh) + (∇ · vh, uh(0)− u0) = 0, vh ∈ Vh,

(∇ · (σh(0)− σ(0)), wh) + (c(0)(uh(0)− u0), wh) = 0, wh ∈Wh.
(4.4)
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Theorem 4.5. Let (u, σ) and (uh, σh) be the solutions of (2.1) and (2.2), respec-
tively, and (uh(0), σh(0)) is chosen according to (4.4). Then there exists a positive
constant C > 0 such that, for any 0 ≤ t ≤ T ,

|||u− uh|||∗ + |||σ − σh|||∗

≤ Chk+2

{
||u||k+2 + ||σ||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||ut||2k+1 + ||σt||2k+2)ds

]1/2}
.

Proof. First, the errors are decomposed as

u− uh = (u− ūh) + (ūh − uh) := ρ + ρh,

σ − σh = (σ − σ̄h) + (σ̄h − σh) := θ + θh,

and then by Theorem 4.3 we have that

|||ρ|||∗ + |||θ|||∗ ≤ Chk+2(||u||k+2 + |||σ|||k+2).

Moreover, from (2.7) and (4.4) we derive that

(α(0)θh(0),vh) + (∇ · vh, ρh(0)) = 0, vh ∈ Vh,

(∇ · θh(0), wh) + (c(0)ρh(0), wh) = 0, wh ∈Wh,

which, together with the uniqueness of the solution to (2.7), implies

θh(0) = ρh(0) = 0.(4.5)

Furthermore, from the proof for Corollary 4.4 we know that

||τt||0 ≤ Chk+2 {|||u|||k+1 + |||σ|||k+2 + ||ut||k+1 + ||σt||k+2}

which, together with the definition of the local L2-projection operator Ph, demon-
strates that

|(ρt, ρh)| = |(τt, ρh)|
≤ Chk+2 {|||u|||k+1 + |||σ|||k+2 + ||ut||k+1 + ||σt||k+2} ||ρh||0.

Noticing that |||ρh|||∗ = ||ρh||0 and |||θh|||∗ = ||θh||0 as well as (4.5), we can obtain
the desired estimates for ρh and θh in L2-norm through the same procedure as that
in Theorem 3.1 for ρh and θh.

5. Global L2 superconvergence on quadrilaterals. In [20, 25] superconver-
gence has been obtained in mixed finite element methods on quadrilaterals for elliptic
equations. Here we shall extend these results to our parabolic integro-differential
equations. The strategy employed here is that we first examine the superclose ac-
curacy between the interpolation function of the exact solution and the mixed finite
element solution of (1.1) by means of integral identities, and then we use a suitable
interpolation postprocessing method to obtain global superconvergence approxima-
tions [25, 26]. As by-products, these superconvergence results can be utilized to form
a class of useful a posteriori error estimators to assess the accuracy of the mixed finite
element solutions in applications.



1554 R. E. EWING, Y. LIN, T. SUN, J. WANG, AND S. ZHANG

Let V̂h(ê) × Ŵh(ê) be the standard local Raviart–Thomas rectangular space on
the reference element ê := [−1, 1]× [−1, 1] of order k (≥ 0); i.e.,

V̂h(ê) := Qk+1,k(ê)×Qk,k+1(ê),

Ŵh(ê) := Qk,k(ê),

where Qm,n(ê) indicates the space of polynomials of degree no more than m and n
in x and y on ê, respectively. On arbitrary convex quadrilateral element e ∈ Th, the
local Raviart–Thomas space is defined by

Vh(e) := {q = Gq̃ ◦ F̂−1
e : q̃ ∈ V̂h(ê)},

Wh(e) := {w = ŵ ◦ F̂−1
e : ŵ ∈ Ŵh(ê)},

where F̂e is the affine map which takes ê onto e and G := |det(M0)|−1M0 with M0

being the Jacobian matrix (derivative) of F̂e. Of course, Vh(e) ⊂ (C∞(e))2 and
Wh(e) ⊂ C∞(e) are no longer of polynomials on e unless e is a parallelogram.

The global Raviart–Thomas finite element space over the partition Th is defined
in the standard way as follows:

Vh := {v ∈ H(div; Ω) : v|e ∈ Vh(e) ∀e ∈ Th},
Wh := {w ∈ L2(Ω) : w|e ∈Wh(e) ∀e ∈ Th}.

Let σ̃ and ũ be two vector-valued and scalar-valued functions, respectively, on the
reference element ê. Recall that the interpolation functions (or the Raviart–Thomas
projection) Π̂hσ̃ and P̂hũ over ê are defined by the following linear systems:∫

l̂i

(σ̃ − Π̂hσ̃) · nqds = 0 ∀q ∈ Pk(l̂i), i = 1, 2, 3, 4,∫
ê

(σ̃ − Π̂hσ̃) · φ = 0 ∀φ ∈ Qk−1,k(ê)×Qk,k−1(ê), and∫
ê

(ũ− P̂hũ)q = 0 ∀q ∈ Qk,k(ê), respectively,

(5.1)

where l̂i (i = 1, 2, 3, 4) is one of the four sides of ê, n is the outward normal vector to
ê, and Pr denotes the set of polynomials of total degree no more than r. If e ∈ Th
is an arbitrary quadrilateral element, and σ and u are two vector-valued and scalar-
valued functions defined on e, then their interpolation functions Πhσ and Phu on e
are defined by

Πhσ := G(Π̂h(G
−1σ̂)) and Phu := P̂hû, respectively,(5.2)

where σ̂ := σ ◦ F̂e and û := u ◦ F̂e. Then we have [20]

(∇ · (σ −Πhσ), wh) = 0 ∀wh ∈Wh,
(∇ · vh, u− Phu) = 0 ∀vh ∈ Vh.

(5.3)

The semidiscrete mixed finite element method for (1.1) is now defined as follows:
Find (uh, σh) ∈Wh ×Vh satisfying

(uh,t, wh)− (∇ · σh, wh)− (cuh, wh) = (f, wh), wh ∈Wh,

(ασh,vh) +

∫ t

0

(M(t, s)σh(s),vh)ds + (uh,∇ · vh) = 〈g,n · vh〉, vh ∈ Vh,

uh(0) = Phu0, σh(0) = Πhσ(0).

(5.4)
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From (2.1) and (5.4) we derive the following error equation:

(ut − uh,t, wh)− (∇ · (σ − σh), wh)− (c(u− uh), wh) = 0, wh ∈Wh,

(α(σ − σh),vh) +

∫ t

0

(M(t, s)(σ − σh)(s),vh)ds + (u− uh,∇ · vh) = 0, vh ∈ Vh.

(5.5)
From [20, 25] we recall the following lemmas.
Lemma 5.1. If Phu is the interpolation function of u defined as in (5.2), and

c ∈W 1,∞(Ω), then there exists a constant C such that

|(c(u− Phu), wh)| ≤ Chk+2||u||k+1||wh||0, wh ∈Wh.

Lemma 5.2. If the finite element partition Th is h2-uniform [20] or a generalized
rectangular mesh [25], and Πhσ is the interpolation function of σ defined as in (5.2),
then there exists a constant C such that for sufficiently smooth β

|(β(σ −Πhσ),vh)| ≤ Chk+2||σ||k+2||vh||0, vh ∈ Vh.

We are now ready to get our main theorem in this section.
Theorem 5.3. Assume that the finite element partition Th is h2-uniform or gen-

eralized rectangular and (uh, σh) is the approximate solution of (1.1) defined in (5.4)
by using quadrilateral elements of Raviart–Thomas of order k. If the exact solution u
and σ satisfies u ∈ Hk+1(Ω), and σ, σt ∈ (Hk+2(Ω))2, then we have

||uh − Phu||0 + ||σh −Πhσ||0 ≤ Chk+2

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2
.(5.6)

Proof. Let ρ∗h := uh − Phu and θ∗h := σh − Πhσ. Then it follows from (5.3) and
(5.5) that

(αθ∗h,vh) +
∫ t

0

(M(t, s)θ∗h(s),vh)ds + (ρ∗h,∇ · vh)

=

(
α(σ −Πhσ) +

∫ t

0

M(t, s)(σ −Πhσ)(s)ds,vh

)
, vh ∈ Vh,

(ρ∗h,t, wh)− (∇ · θ∗h, wh)− (cρ∗h, wh) = −(c(u− Phu), wh), wh ∈Wh.

(5.7)

Thus, letting wh = ρ∗h and vh = θ∗h in (5.7) we obtain from Lemmas 2.4, 5.1, and 5.2
as well as the ε-type inequality that

1

2

d

dt
||ρ∗h||20 + ||θ∗h||20 ≤ C

{∫ t

0

||θ∗h||20ds + ||ρ∗h||20 + Ch2k+4(||u||2k+1 + |||σ|||2k+2)

}
.

Integrating from 0 to t and noticing ρ∗h(0) = 0 yield according to Gronwall’s lemma
that

||ρ∗h||20 +

∫ t

0

||θ∗h||20ds ≤ Ch2k+4

∫ t

0

(||u||2k+1 + |||σ|||2k+2)ds

or

||ρ∗h||0 ≤ Chk+2

[∫ t

0

(||u||2k+1 + ||σ||2k+2)ds

]1/2
.(5.8)
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Following the same steps to get the estimate for θh := σ̄h−σh in Theorem 3.1 we
can also obtain

||θ∗h||0 ≤ Chk+2

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2
.(5.9)

Combining (5.8) with (5.9) implies (5.6).

As a by-product of (5.6), we immediately gain the following corollary from the
inverse property of the finite element space and the approximation property of the
local L2-projection operator Ph.

Corollary 5.4. Assume that Th is h2-uniform or a generalized rectangular
mesh and the exact solution u and σ satisfies u ∈ W k+1,∞(Ω) and σ ∈ (Hk+2(Ω))2.
Then we have for the mixed finite element solution uh defined by (5.4) that

||u− uh||∞ ≤ Chk+1

{
||u||k+1,∞ +

[∫ t

0

(||u||2k+1 + ||σ||2k+2)ds

]1/2}
.

In order to improve the accuracy of the finite element approximation to the exact
solution on a global scale, a reasonable postprocessing method is proposed according
to (5.1) and Theorem 5.3 [25, 26]. For this end, we need to define two postprocessing
interpolation operators Π2h and P2h to satisfy

Π2hΠh = Π2h,

||Π2hvh||0 ≤ C||vh||0 ∀vh ∈ Vh,

||Π2hσ − σ||0 ≤ Chk+2||σ||k+2 ∀σ ∈ (Hk+2(Ω))2,

P2hPh = P2h,

||P2hwh||0 ≤ C||wh||0 ∀wh ∈Wh,

||P2hu− u||0 ≤ Chk+2||u||k+2 ∀u ∈ Hk+2(Ω).

(5.10)

For easy exposition, we demonstrate our idea mainly for the case of k = 2.
Thus, we assume that the standard rectangular partition T̂h has been obtained from
T̂2h = {τ̂} with mesh size 2h by subdividing each element of T̂2h into four small

congruent rectangles. Let τ̂ :=
⋃4
i=1 êi with êi ∈ T̂h. Thus, we can define two

interpolation operators Π̂2h and P̂2h associated with T̂2h of degree at most 3 in x and
y on τ̂ , respectively, according to the following conditions:

Π̂2hσ̃|τ̂ ∈ (Q3,3(τ̂))
2
, P̂2hũ|τ̂ ∈ Q3,3(τ̂),∫

l̂i

(σ̃ − Π̂2hσ̃) · nqds = 0 ∀q ∈ P1(l̂i), i = 1, 2, . . . , 12,∫
êi

(σ̃ −Π2hσ̃) = 0, i = 1, 2, 3, 4, and∫
êi

(ũ− P̂2hũ)q = 0 ∀q ∈ Q1,1(êi), i = 1, 2, 3, 4, respectively,

(5.11)

where l̂i (i = 1, 2, . . . , 12) is one of the 12 sides of the four small elements êi (i =
1, 2, 3, 4).
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Obviously, the following properties can be easily checked by (5.1) for k = 2
and (5.11):

Π̂2hΠ̂h = Π̂2h,

||Π̂2hv̂h||0 ≤ C||v̂h||0 ∀v̂h ∈ V̂h,

||Π̂2hσ̃ − σ̃||0 ≤ Ch4||σ̃||4 ∀σ̃ ∈ (H4(Ω))2,

P̂2hP̂h = P̂2h,

||P̂2hŵh||0 ≤ C||ŵh||0 ∀ŵh ∈ Ŵh,

||P̂2hũ− ũ||0 ≤ Ch4||ũ||4 ∀ũ ∈ H4(Ω).

(5.12)

Then we can define two interpolation operators Π2h and P2h associated with T2h by

Π2hσ := G(Π̂2h(G
−1σ ◦ F̂e)) and P2hu := P̂2h(u ◦ F̂e), respectively,(5.13)

which satisfy (5.10) by (5.2) and (5.12). Similarly, we can also define Π2h and P2h for
the case of k �= 2.

By virtue of the two interpolation operators Π2h and P2h we immediately gain
the following global superconvergence theorem.

Theorem 5.5. If there is, besides the conditions of Theorem 5.3, u ∈ Hk+2(Ω),
then we have

||P2huh − u||0 + ||Π2hσh − σ||0

≤ Chk+2

{
||u||k+2 + ||σ||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2}
.

Proof . From one of the properties of the operator P2h in (5.10) we find that

P2huh − u = P2h(uh − Phu) + (P2hu− u).

Therefore, it follows from Theorem 5.3 and (5.10) that

||P2huh − u||0 ≤ C||uh − Phu||0 + ||P2hu− u||0

≤ Chk+2

{
||u||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2)ds

]1/2}
.

Analogously, we can obtain

||Π2hσh−σ||0 ≤ Chk+2

{
||σ||k+2 +

[∫ t

0

(||u||2k+1 + ||σ||2k+2 + ||σt||2k+2)ds

]1/2}
.

It is of great importance for a mixed finite element method to have a computable
a posteriori error estimator by which we can assess the accuracy of the mixed finite
element solution in applications. One way to construct error estimators is to employ
certain superconvergence properties of the finite element solutions. In fact, we have
the following theorem.

Theorem 5.6. We have under the conditions of Theorem 5.5 that

||u− uh||0 = ||P2huh − uh||0 + O(hk+2),(5.14)
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||σ − σh||0 = ||Π2hσh − σh||0 + O(hk+2).(5.15)

In addition, if there exist positive constants C1, C2 and small ε1, ε2 ∈ (0, 1) such that

||u− uh||0 ≥ C1h
k+2−ε1 ,(5.16)

||σ − σh||0 ≥ C2h
k+2−ε2 ,(5.17)

then there hold

lim
h→0

||u− uh||0
||P2huh − uh||0 = 1,(5.18)

lim
h→0

||σ − σh||0
||Π2hσh − σh||0 = 1.(5.19)

Proof. It follows from Theorem 5.5 and

u− uh = (P2huh − uh) + (u− P2huh)

that

||u− uh||0 = ||P2huh − uh||0 + O(hk+2).

Thus, from (5.16) we know

||P2huh − uh||0
||u− uh||0 + Chε1 ≥ 1

or

lim
h → 0

||P2huh − uh||0
||u− uh||0 ≥ 1.(5.20)

Similarly, it follows from (5.16) and

||P2huh − uh||0 = ||u− uh||0 + O(hk+2)

that

lim
h→0

||P2huh − uh||0
||u− uh||0 ≤ 1

which, together with (5.20), leads to (5.18).
Analogously, we can obtain (5.15) and (5.19).
We know from (5.14) that the computable error quantity ||P2huh − uh||0 is the

principal part of the mixed finite element error ||u − uh||0 and can be used as a
reliable a posteriori error indicator to assess the accuracy of the mixed finite element
solution under the condition (5.16). Also, (5.16) seems to be a reasonable assumption,
since O(hk+1) is the optimal convergence rate of the mixed finite element solution in
L2-norm. The same comments are also valid for (5.15) and (5.17).
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Abstract. We are interested here in the Reissner–Mindlin model for a bending thin plate
with physical boundary conditions. It is well known that this problem depends singularly upon the
plate’s thickness ε. By decomposing the bending moment and by dualizing its symmetry, we ob-
tain an equivalent mixed formulation of the initial problem whose unknowns now belong to classical
Sobolev spaces. We then propose a low-order conforming finite element method for which we obtain
optimal error estimates independently upon the small parameter ε. Thus, the discrete method is un-
conditionally convergent and locking-free. It directly gives an approximation of the bending moment
and allows us to recover the two other variables, which are the deflection and the rotation vector.

Key words. mixed formulation, finite element, error estimates, locking-free
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1. Introduction and notations. This paper is devoted to the study of the
Reissner–Mindlin model for a bending thin plate satisfying physical boundary condi-
tions.

We have already analyzed in [1] the simpler case of the Kirchhoff–Love problem
for a bending plate with natural boundary conditions. We proposed there a con-
forming piecewise linear finite element method which is unconditionally convergent
and which gives an optimal convergence rate whenever the exact solution is suffi-
ciently smooth. One thus gets an approximation of the bending moment in the space
(L2(Ω))4, while the plate’s deflection is approximated in the space H1(Ω). To do that,
the main idea consists of associating with the symmetric bending tensor a unique vec-
tor function, which is not a physical variable but which belongs to a classical Sobolev
space (H1(Ω))2, and then obtaining and discretizing an equivalent formulation in this
new unknown.

The aim of the present work is to generalize to the Reissner–Mindlin case the
approach that was used in [1] for the Kirchhoff–Love model.

The equations of the Reissner–Mindlin model depend upon a small parameter ε
characterizing the plate’s thickness. It is well known that this is a singular problem
with respect to ε; in the limit case ε = 0 one obtains the Kirchhoff–Love model
previously studied in [1]. One of the major difficulties in discretizing the Reissner–
Mindlin problem consists of finding a finite element approximation which does not
suffer from numerical locking as the plate’s thickness becomes very small. For a
general presentation of this phenomenon, one may see [3], for instance.

The physical boundary conditions imposed in this paper represent an additional
difficulty from both the theoretical and the numerical point of view. Indeed, even
if there are many papers in the literature dealing with the approximation of the
Reissner–Mindlin model, the great majority of them consider simple Dirichlet bound-
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ary conditions for the deflection and the rotation. That means that the plate is
supposed to be clamped and in this case one usually eliminates the bending moment
from the equations and computes only the deflection and the rotation. This approach
is clearly no longer possible when dealing with complex boundary conditions like ours.
Moreover, we are interested in obtaining a good approximation of the bending tensor,
since in practice it usually represents the quantity of interest for the engineers. Thus,
our formulation is new and explicitly takes into account the boundary conditions
satisfied by the bending moment.

The approach developed here is based on the same idea as in [1], which is the
decomposition of the bending moment by the means of Tartar’s lemma (see, for in-
stance, [8]). However, its symmetry is no longer imposed but is dualized by the means
of a Lagrange multiplier. Therefore, we now associate with the bending tensor a cou-
ple of functions belonging to (H1(Ω))2 ×H1(Ω). This finally allows us to obtain an
equivalent mixed formulation of the initial problem, whose operator can be written
as follows: 

A+ ε2A0 B C
BT O O
CT O O


 ,(1.1)

where A and B are the same as in the Kirchhoff–Love case. The bilinear form B takes
into account the boundary conditions imposed on the bending moment, A0 takes into
account the additional unknown of the Reissner–Mindlin model, that is, the rotation
vector, and C dualizes the symmetry of the bending tensor.

Let us remark here that this kind of operator is not typical for such a singularly
perturbed problem. Indeed, the mixed formulations usually employed (cf., for in-
stance, [5], and references therein) are obtained by dualizing the constraint imposed
in the limit case ε = 0 (that means, in our case, the constraint r = ∇u imposed in
the Kirchhoff-Love model). Their operator then writes as(A B

BT ε2C
)
,

so our approach in order to avoid the shear locking phenomenon is different.
Before proposing our approximation method, let us first point out the solutions

generally proposed in the literature in order to get a locking-free discretization of the
Reissner–Mindlin model. However, let us specify that all these methods are introduced
for clamped plates and they do not apply to complex boundary conditions. For
an exhaustive presentation of the existing results and for recent references on the
Reissner–Mindlin model, the reader may see [7].

One of the most commonly used approach consists of writing a mixed formulation
as above. But generally it is difficult to find simple and cheap finite element spaces for
which the theory of Babuška–Brezzi holds. In practice, this leads to modifying certain
operators by the means of reduced integration techniques, or to adding a stabilization
term, or to using nonconforming finite elements (eventually enriched with bubble
functions). Another solution is to write an equivalent formulation by the means of
the Helmholtz decomposition and of two additional unknowns, as in [2] and in [5].
One may also work with the standard variational formulation and employ for the
discretization more expensive continuous finite elements (see [11]) or nonconforming
elements. Finally, one may employ p or hp methods (see, for instance, [11]), which
are known to work well for problems concerned with locking, or use least squares
methods, as in [4].
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An outline of the paper is as follows. We begin by introducing the boundary
value problem and by giving a mathematical framework in which it is well-posed. In
section 3 we state a mixed variational formulation whose operator writes as in (1.1)
and we show, thanks to the Babuška–Brezzi theory, that this problem is well-posed.
Moreover, its main unknown is exactly the bending moment, while the dual unknowns
are the displacement’s trace and the rotation’s normal trace (corresponding to the bi-
linear form B), respectively, an additional multiplier which dualizes the symmetry of
the bending moment (corresponding to C). However, the test-functions corresponding
to A + ε2A0 have to satisfy the constraint divdiv(·) = 0. In order to avoid its dis-
cretization, we associate with the bending moment a unique couple of functions now
belonging to classical spaces, and we study an equivalent mixed formulation in these
new variables. This is done in section 4, while in section 5 we rigorously establish the
link between the two formulations of the problem. Finally, section 6 is devoted to the
numerical approximation. We discretize the last saddle point problem by classical fi-
nite elements (continuous P1 and P2, discontinuous P0), for which we prove a discrete
inf-sup condition uniformly with respect to both h and ε. This insures the uncondi-
tional convergence of the method independently of the small parameter ε as well as
optimal error estimates. Next, one gets uniform approximations of the initial physical
variables in the following spaces: the bending moment in (H(div; Ω))2 endowed with
the weighted-norm ‖·‖0,Ω + ε ‖div(·)‖0,Ω, the transverse displacement in H1(Ω), and

the rotation rε in L2(Ω)2, with also an approximation of curlrε in L2(Ω). Let us also
notice that the discrete bending moment and rotation are given by simple formulae,
while the discrete deflection is obtained by solving a Laplace problem.

As a conclusion, we propose here a well-posed formulation which takes into ac-
count the physical boundary conditions imposed in the Reissner–Mindlin model. For
any fixed ε, its discretization by simple low-order finite elements is shown to be uncon-
ditionally convergent and, moreover, locking-free. If the exact solution is sufficiently
smooth, then an optimal convergence rate O(h) is obtained.

2. Physical Reissner–Mindlin model. Let us begin this paragraph by intro-
ducing some notations which will be used in what follows. We note that n = (ni)1≤i≤2,
the unit outward normal vector along Γ, and that t = (ti)1≤i≤2, the unit tangent vec-
tor to Γ oriented such that t1 = n2, t2 = −n1. We also employ in this paper the
summation convention of Einstein, and we denote by the letter c any positive con-
stant independent upon both the discretization parameter h and the plate’s thickness
ε. We agree to write the vectors in bold letters and the tensors in underlined letters.
Let us also recall here some classical notation: for any vector function v and any
scalar function v we note that

curl v = ∂1v2 − ∂2v1, divv = ∂ivi,

curl v =

(
∂2v
−∂1v

)
, curl v =

(
∂2v1 −∂1v1

∂2v2 −∂1v2

)
, divτ =

(
∂1τ11 + ∂2τ12
∂1τ21 + ∂2τ22

)
,

and we equally put that

∇v =
(
∂1v1 ∂2v1

∂1v2 ∂2v2

)
, ε(v) =

1

2
(∇v+T ∇v), I =

(
1 0
0 1

)
, J =

(
0 1
−1 0

)
.

We denote the tangential and the normal derivative on the boundary of a scalar
function v by, respectively,

∂tv = ∇v · t and ∂nv = ∇v · n.
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As usual, let us denote by Ω the medium surface of the plate and by 2ε the
plate’s thickness. In view of the finite element discretization, we suppose that Ω is
a connected polygonal domain of R

2. The hypothesis of connectivity is not essential
but permits an easier presentation of the method. We also suppose that its boundary
Γ is decomposed into three disjoint parts Γ = Γ0 ∪ Γ1 ∪ Γ2, and on each one different
boundary conditions are imposed. We consider here the case of linear elasticity and,
for the sake of simplicity, the constitutive material is taken as homogeneous and
isotropic. For technical reasons, we suppose that Ω has no cuts and that m(Γ0) > 0,
where m(Γ0) represents the measure of Γ0.

Let us first recall the equations describing the Kirchhoff–Love problem analyzed
in [1], which write as below:



div(divσ) = f in Ω,
u = ∂nu = 0 on Γ0,
u = 0, σn · n = 0 on Γ1,
σn · n = ∂t(σn · t) + divσ · n = 0 on Γ2,
σij = (1− ν)∂iju+ ν∆uδij in Ω,

(2.1)

where ν is Poisson’s coefficient. The function f represents the force density of the
applied transverse loading and belongs to the space L2(Ω). The boundary conditions
mean that the plate is clamped on Γ0, simply supported on Γ1, while Γ2 is a free
boundary.

Then we consider, cf. [6], the following equations for the Reissner–Mindlin prob-
lem: 



− 1

1− ν
divσε +

1

ε2
(rε −∇uε) = 0 in Ω,

1− ν

ε2
div(rε −∇uε) = f in Ω,

uε = 0, rε = 0 on Γ0,
uε = 0, rε · t = 0, σεn · n = 0 on Γ1,
rε · t = ∂tu

ε, σεn · n = ∂t(σ
εn · t) + divσε · n = 0 on Γ2,

σεij = (1− ν) εij (r
ε) + ν(divrε)δij in Ω.

(2.2)

The unknowns of the problem are the transverse displacement of the plate uε, the
rotation rε of the unit normal to the medium surface, and the bending moment σε.
Obviously, they depend upon the small parameter ε, which characterizes the plate’s
thickness.

Let us notice that (2.2) is a singular problem with respect to the small parameter
ε. We remark here that, in the simpler case of a clamped plate (i.e., Γ = Γ0) whose
medium surface Ω is a convex domain, one has the following regularity result (see, for
instance, [5]):

rε ∈ (H2(Ω))2, uε ∈ H2(Ω),
‖rε‖2,Ω + ‖uε‖2,Ω + ε ‖divσε‖1,Ω ≤ c ‖f‖0,Ω .

One cannot improve the above estimate for the term divσε, even for a smoother
domain and a smoother loading f : indeed, divσε is not uniformly bounded in (H1(Ω))2

because of boundary layers in the Reissner–Mindlin model. This represents another
source of difficulties in obtaining an approximation method uniformly convergent with
respect to ε.

Let us now come back to the above two models of plate, and particularly to the
boundary conditions considered in (2.2). With this choice, it is known (cf. Destuynder
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and Salaun [6]) that as ε tends towards 0, the Reissner–Mindlin model (2.2) tends
towards the Kirchhoff–Love model (2.1) in the following sense:

uε
H1(Ω)−→ u, rε

H1(Ω)−→ r = ∇u,
σε

L2(Ω)−→ σ, divσε
H−1(Ω)−→ divσ.

Remark 2.1. One may consider other boundary conditions in the Reissner–
Mindlin case, for instance, cf. [6]:


uε = 0, rε = 0 on Γ0,
uε = 0, rε · t = 0, σεn · n = 0 on Γ1,
σεn · n = σεn · t = 0 on Γ2.

In this way, the Reissner–Mindlin model is obtained from the Kirchhoff–Love one by
a penalty method. But then, due to the fact that the conditions on the free boundary
Γ2 are different in the two plate models, the convergence of the rotation vector r

ε

towards ∇u will hold only with respect to the L2(Ω)-norm.
In order to write the variational formulation of (2.2), we introduce the Hilbert

spaces

X =
{
τ ∈ L2 (Ω)

4
; D(τ) ∈ L2 (Ω)

}
,

Xε =
{
τ ∈ L2 (Ω)

4
; εdivτ ∈ (L2 (Ω))2, D(τ) ∈ L2 (Ω)

}
endowed with their natural norms

‖ τ ‖X= (‖ τ ‖20,Ω + ‖D(τ)‖20,Ω)1/2,
‖ τ ‖Xε= (‖ τ ‖20,Ω +ε2 ‖divτ ‖20,Ω + ‖D(τ)‖20,Ω)1/2.

We recall that X is the space introduced in [1] for the analysis of the Kirchhoff–
Love model, and the operator D is defined as follows: D(τ) = div(divτ) = ∂ijτij .
Then one can establish (see [1] for a complete proof) that (D(Ω))4 is a dense subspace
of X and the trace operators

γ0 : ((D(Ω))4, ‖·‖X) −→ H−1/2 (Γ) , γ0(τ) = τn · n,
γ1 : ((D(Ω))4, ‖·‖X) −→ H−3/2 (Γ) , γ1(τ) = ∂t(τn · t) + divτ · n,

are linear and continuous, so they can be extended by continuity on X. Moreover, for
any v ∈ H2 (Ω) and any τ ∈ X, one has the following Green’s formula:∫

Ω

D(τ)v dΩ =

∫
Ω

τij∂ijv dΩ− 〈γ0(τ), ∂nv〉− 1
2 ,

1
2 ,Γ
+ 〈γ1(τ), v〉− 3

2 ,
3
2 ,Γ

.

It is now obvious, since Xε ⊂ X, that the operators γ0 and γ1 are well defined on Xε

by simply taking their restriction.

Remark 2.2. One clearly has Xε = Xε′ algebraically when ε �= 0, ε′ �= 0. We
choose this notation in order to preserve a parallelism between the formulations of
the Reissner–Mindlin and Kirchhoff–Love models, respectively. We also have

Xε ⊂ (H(div; Ω))2, divXε ⊂ H(div; Ω).

For any f ∈ L2 (Ω) , we introduce

Xε,f = {τ ∈ Xε; D(τ) = f} ,
and we can easily show that Xε,f �= ∅.
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3. First formulation with respect to the bending moment. We derive in
this section a mixed variational formulation of problem (2.2), whose main unknown
will be the bending moment σε which is a symmetric second-order tensor.

Let us put

M =
{
v ∈ H3/2 (Γ) ; v = 0 on Γ0 ∪ Γ1

}
,

N =
{
v ∈ H1/2 (Γ) ; v = 0 on Γ0

}
,

and let us introduce the bilinear forms aε (·, ·) , b (·, ·), and c(·, ·), defined on Xε×Xε,
on Xε × (M ×N), and on Xε × L2(Ω), respectively, by the following relations:

aε(σ, τ) = a(σ, τ) + ε2 a0(σ, τ),

b(τ , (ζ, η)) = 〈γ1(τ), ζ〉− 3
2 ,

3
2 ,Γ
− 〈γ0(τ), η〉− 1

2 ,
1
2 ,Γ

,

c(τ , µ) =

∫
Ω

(τ12 − τ21)µ dΩ,

where

a(σ, τ) =
1

1− ν

∫
Ω

σ : τ dΩ− ν

1− ν2

∫
Ω

(trσ)(trτ) dΩ,

a0(σ, τ) =
1

1− ν

∫
Ω

divσ · divτ dΩ.

The forms a(·, ·) and b(·, ·) as well as the spaces M, N are exactly the same as
the ones employed in the Kirchhoff–Love formulation; see [1]. One can immediately
notice that if σ ∈ Xε is symmetric, then

∀µ ∈ L2 (Ω) , c(σ, µ) = 0.

So, the role of the new term c(·, ·) is to dualize the symmetry of the bending tensor,
while the bilinear form ε2 a0(·, ·) takes into account the new variable which is the
rotation vector.

We now propose the following variational formulation for the Reissner–Mindlin
problem: 


find σε ∈ Xε,f , (uε0, r

ε
0) ∈M ×N, λε ∈ L2 (Ω) such that

∀τ ∈ Xε,0, aε(σε, τ) + b(τ , (uε0, r
ε
0)) + c(τ , λε) = 0,

∀(ζ, η) ∈M ×N, b(σε, (ζ, η)) = 0,
∀µ ∈ L2 (Ω) , c(σε, µ) = 0,

(3.1)

which is a generalization of the one introduced in the Kirchhoff–Love case.
In a quite similar way, we show the following theorem.
Theorem 3.1. Problem (3.1) has a unique solution.
Proof. It comes from the Babuška–Brezzi theory (see, for instance, [5]). Indeed,

the bilinear form a(·, ·) is (L2(Ω))4-elliptic since (trτ)2 ≤ 2τ : τ . Therefore, for all
τ ∈ Xε,0, one deduces the Xε,0-ellipticity of aε(·, ·):

aε(τ , τ) ≥ c(‖ τ ‖20,Ω +ε2 ‖ divτ ‖20,Ω) = c ‖ τ ‖2
Xε .

It suffices now to establish the inf-sup condition for the bilinear form d(·, ·) ob-
tained by adding the last two equations of (3.1):

∀τ ∈ Xε,0, ∀(ζ, η, µ) ∈M ×N × L2 (Ω) , d(τ , (ζ, η, µ)) = b(τ , (ζ, η)) + c(τ , µ).
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We apply a classical idea, that is, we associate with any (ζ, η, µ) ∈ M ×N × L2 (Ω)
a tensor τ ∈ Xε,0 such that{

d(τ , (ζ, η, µ)) ≥ c(‖µ‖0,Ω + ‖η‖1/2,Γ + ‖ζ‖3/2,Γ)2
‖ τ ‖Xε≤ c(‖µ‖0,Ω + ‖η‖1/2,Γ + ‖ζ‖3/2,Γ).

(3.2)

However, the construction of such a tensor τ is quite technical.
We begin by finding τ1 such that the inf-sup condition for b(·, ·) holds. For that,

with any couple (ζ, η) ∈ M ×N we associate the function q = (∂tζ) t+ η n. Clearly,
we have that q ∈ (H1/2(Γ))2 and also, since m(Γ0) �= 0, that

‖q‖1/2,Γ ≤ c(‖η‖1/2,Γ + ‖ζ‖3/2,Γ).
Indeed, this comes by noticing that q = ∇w on Γ, where w is the unique solution of


∆2w = 0 in Ω,
w = ζ on Γ,
∂nw = η on Γ.

Let us next consider the following auxiliary problem:{
∆ω = 0 in Ω,
ω = q on Γ,

whose solution ω ∈ (H1(Ω))2 verifies |ω|1,Ω ≤ c ‖q‖ 1
2 ,Γ

. By choosing τ1 = −∇ω,
one obviously has divτ1 = 0 as well as D(τ1) = 0, so one can write, thanks to an
integration by parts, that

b(τ1, (ζ, η)) = 〈∂t(τ1n · t), ζ〉− 3
2 ,

3
2 ,Γ
− 〈τ1n · n, η〉− 1

2 ,
1
2 ,Γ

= −〈τ1n · t, ∂tζ〉− 1
2 ,

1
2 ,Γ
− 〈τ1n · n, η〉− 1

2 ,
1
2 ,Γ

= −〈τ1n, ω〉− 1
2 ,

1
2 ,Γ
= |ω|21,Ω .

So we obtained, for this choice of the tensor τ1 ∈ Xε,0, that

b(τ1, (ζ, η)) ≥ c(‖η‖1/2,Γ+‖ζ‖3/2,Γ)2 and ‖ τ1 ‖Xε= |ω|1,Ω ≤ c(‖η‖1/2,Γ+‖ζ‖3/2,Γ).

Next, we define τ2 ∈ Xε,0 such that τ = τ1 + τ2 satisfies the relations (3.2). The
idea is to construct a tensor τ2 with vanishing traces such that b(τ2, (ζ, η)) = 0, so
we will only have to check the inf-sup condition for c(·, ·) now. For any µ ∈ L2(Ω),
let us put

P (µ) =
1

m(Ω)

∫
Ω

µ dΩ

and consider λ = µ− P (µ)− curlω. The fact that∫
Ω

curlω dΩ = −
∫

Γ

ω · t dΓ = −
∫

Γ

∂tζ dΓ = 0

implies that λ belongs to L2
0 (Ω) =

{
v ∈ L2 (Ω) ;

∫
Ω
v dΩ = 0

}
and, moreover, that

‖λ‖0,Ω ≤ c ‖µ‖0,Ω + |ω|1,Ω ≤ c(‖µ‖0,Ω + ‖η‖1/2,Γ + ‖ζ‖3/2,Γ).
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Then there exists, cf. [8], a function v ∈ (H1
0 (Ω))

2 such that

divv = λ in Ω and |v|1,Ω ≤ c ‖λ‖0,Ω .

Therefore, the new function

ϕ = v +
P (µ)

2

(
x
y

)

satisfies the two conditions

divϕ = µ− curlω in Ω,

|ϕ|1,Ω ≤ |v|1,Ω + c ‖µ‖0,Ω
≤ c(‖µ‖0,Ω + ‖η‖1/2,Γ + ‖ζ‖3/2,Γ).

The boundary Γ being polygonal, one has that ∂tϕ = ct, with c = P (µ)
2 , which implies

that

∂tϕ · n = 0, ∂t(∂tϕ · t) = 0 on Γ.

By next choosing that τ2 = −curl ϕ ∈ Xε,0, one gets

c(τ2, µ) =

∫
Ω

divϕµ dΩ = ‖µ‖20,Ω − c(τ1, µ) dΩ,

γ0(τ2) = −∂tϕ · n = 0,
γ1(τ2) = −∂t(∂tϕ · t) = 0.

Finally, for the tensor τ = τ1 + τ2 ∈ Xε,0 with divτ = 0, we get (3.2), which means
that the inf-sup condition for d(·, ·) uniformly holds with respect to ε.

The next result gives the interpretation of the solution of (3.1) in terms of the
Reissner–Mindlin boundary value problem (2.2).

Theorem 3.2. Let (σε, (uε0, r
ε
0), λ

ε) be the solution of (3.1). Then σε represents
the bending moment calculated by the Reissner–Mindlin model (2.2), and one equally
has that 


rε0 = rε · n on Γ,
uε0 = uε on Γ,
λε = − 1

2curlr
ε in Ω,

(3.3)

where (σε, rε, uε) satisfies the equations in (2.2).
Proof. The third equation of the variational problem (3.1) gives that σε is sym-

metric, while the second equation implies that γ1(σ
ε) = 0 and γ1(σ

ε) = 0.
We introduce, as in the Kirchhoff–Love model, the symmetric tensor

χε =
1

1− ν

(
σε − ν

1 + ν
(trσε)I

)
.

We next show, by choosing τ = curl(curlϕ) with ϕ ∈ D(Ω) as a test-function in the
first equation of (3.1), that χε = ε(rε), which translates into the constitutive law of
the plate according to (2.2):

σε = (1− ν) ε (rε) + ν(divrε)I.
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One clearly obtains, since τ is symmetric, divergence-free, and with null traces, that

a(σε, τ) = 0 ⇔
∫

Ω

χε : τ dΩ = 0.

This leads to

curl

(
∂1χ

ε
12 − ∂2χ

ε
11

∂1χ
ε
22 − ∂2χ

ε
21

)
= 0,

so there exists a function θε such that

curl

(
χε11

χε12 − θε

)
= curl

(
χε21 + θε

χε22

)
= 0.

One can still write this as(
χε11

χε12 − θε

)
= ∇rε1,

(
χε21 + θε

χε22

)
= ∇rε2

or, equivalently,

χε = ∇rε + θεJ.

The symmetry of χε next gives that χε = ε(rε), where the vector rε ∈ (H1(Ω))2 is

unique up to ε (rε) = 0, i.e., up to a polynomial ( cy+a−cx+b )
Let us now take in (3.1) as test-function τ = curl ϕ+ 1

2 (divϕ)J with ϕ ∈ (D(Ω))2.
Obviously, τ is symmetric and its traces vanish on Γ, so that

a(σε, τ) + ε2a0(σ
ε, τ) = 0

⇔
∫

Ω

∇rε : τ dΩ+
ε2

1− ν

∫
Ω

divσε · divτ dΩ = 0

⇔
〈

ε2

1− ν
divσε − rε, curl(divϕ)

〉
D′ (Ω),D(Ω)

= 0

⇔
〈
∇
(
curl

(
ε2

1− ν
divσε − rε

))
, ϕ

〉
D′ (Ω),D(Ω)

= 0 ∀ϕ ∈ (D(Ω))2.

Since curlrε is unique up to a constant, we conclude that we can take

curl

(
ε2

1− ν
divσε − rε

)
= 0,

where rε now belongs to (H1(Ω)|R)2. Thus, one finds a unique uε ∈ H1(Ω)|R such
that

ε2

1− ν
divσε − rε = −∇uε.

We already know that σε ∈ Xε,f , which implies that D(σε) = f. So, we have
actually shown that the functions σε, rε, uε satisfy the equations in Ω of the Reissner–
Mindlin problem (2.2).
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On the other hand, considering as a test-function τ = ρJ with ρ ∈ D(Ω) arbitrary
gives

ε2a0(σ
ε, τ) + c(λε, τ) = 0

⇔ ε2

1− ν

∫
Ω

divσε · curl ρ dΩ+ 2

∫
Ω

λερ dΩ = 0

⇔
〈
curl

(
ε2

1− ν
divσε

)
+ 2λε, ρ

〉
D′ (Ω),D(Ω)

= 0

⇔ λε = −1
2
curlrε.

We still have to check the boundary conditions for rε and uε. For that, let us
consider an arbitrary tensor τ ∈ Xε,0. By Green’s formula,

aε(σε, τ) + c(λε, τ)

=

∫
Ω

ε (rε) : τ dΩ+
ε2

1− ν

∫
Ω

divσε · divτ dΩ− 1
2

∫
Ω

curlrε(τ12 − τ21) dΩ

=

∫
Ω

∇rε : τ dΩ+

∫
Ω

(rε −∇uε) · divτ dΩ = 〈τn, rε〉− 1
2 ,

1
2 ,Γ
− 〈divτ · n, uε〉− 1

2 ,
1
2 ,Γ

.

In particular, for τ = ρJ with ρ ∈ D(Ω), we have, since b(τ , (uε0, rε0)) = 0, that
〈τn, rε〉− 1

2 ,
1
2 ,Γ
− 〈divτ · n, uε〉− 1

2 ,
1
2 ,Γ
= 0.

We decompose rε in the orthogonal basis {n, t} and thus
〈τn · t, rε · t〉− 1

2 ,
1
2 ,Γ
+ 〈γ0(τ), r

ε · n〉− 1
2 ,

1
2 ,Γ

−〈γ1(τ), u
ε〉− 1

2 ,
1
2 ,Γ
+ 〈∂t(τn · t), uε〉− 1

2 ,
1
2 ,Γ
= 0

⇔ 〈ρ, rε · t〉− 1
2 ,

1
2 ,Γ
− 〈∂tuε, ρ〉− 1

2 ,
1
2 ,Γ
= 0

⇔ rε · t = ∂tu
ε on Γ.

The above equality holds in H−1/2(Γ), but the fact that rε belongs to the space
(H1/2(Γ))2 implies an equality in H1/2(Γ); consequently, uε ∈ H3/2(Γ). Next taking
τ = curl ϕ with an arbitrary ϕ ∈ (D(Ω))2, we obtain, according to the first equation
of (3.1), that

〈τn, rε〉− 1
2 ,

1
2 ,Γ
− 〈divτ · n, uε〉− 1

2 ,
1
2 ,Γ
+ 〈γ1(τ), u

ε
0〉− 3

2 ,
3
2 ,Γ
− 〈γ0(τ), r

ε
0〉− 1

2 ,
1
2 ,Γ
= 0.

Since one has divτ = 0 and

〈τn, rε〉− 1
2 ,

1
2 ,Γ
= −〈∂tϕ · n, rε · n〉− 1

2 ,
1
2 ,Γ
+ 〈∂t(∂tϕ · t), uε〉− 3

2 ,
3
2 ,Γ

,

〈γ1(τ), u
ε
0〉− 3

2 ,
3
2 ,Γ
= −〈∂t(∂tϕ · t), uε0〉− 3

2 ,
3
2 ,Γ

,

〈γ0(τ), r
ε
0〉− 1

2 ,
1
2 ,Γ
= −〈∂tϕ · n, rε0〉− 1

2 ,
1
2 ,Γ

,

one deduces the following relationship:

∀ϕ ∈ (D(Ω))2, −〈∂tϕ · n, rε · n− rε0〉− 1
2 ,

1
2 ,Γ
+ 〈∂t(∂tϕ · t), uε − uε0〉− 3

2 ,
3
2 ,Γ
= 0.

By a density argument of D(Ω) into H1(Ω), it actually turns out that

∀τ ∈ X0, b(τ , (rε · n− rε0, u
ε − uε0)) = 0
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with (rε · n − rε0, u
ε − uε0) ∈ H1/2(Γ) × H3/2(Γ) by now. The same idea as in the

Kirchhoff–Love case [1] leads us to |w|2,Ω = 0, where w satisfies the following bihar-
monic problem: 


∆2w = 0 in Ω,
w = uε − uε0 on Γ,
∂nw = rε · n− rε0 on Γ.

So w is a first-order polynomial. Since ∂nw = c · n with c ∈ R
2 and rε is unique up

to a constant, we choose it such that rε · n = rε0 on Γ and ∇w = 0. We finally obtain
that uε = uε0 on Γ, because u

ε is unique up to a constant, which we take equal to w.
We conclude that rε and uε satisfy the boundary conditions of the Reissner–

Mindlin model, and, moreover, we have the equivalence stated in (3.3).
From now on, we write σε ∈ Xε,f as

σε = σε,0 + φfI,

where φf is the unique solution of

∆φ = f in Ω,
φ = 0 on Γ0 ∪ Γ1,
∂nφ = 0 on Γ2

(3.4)

and where σε,0 ∈ Xε,0. By the means of this decomposition, we get a variational
formulation in σε,0 equivalent to (3.1), which we will study in what follows:


find σε,0 ∈ Xε,0, (uε0, r

ε
0) ∈M ×N, λε ∈ L2 (Ω) such that

∀τ ∈ Xε,0, aε(σε,0, τ) + b(τ , (uε0, r
ε
0)) + c(τ , λε) = −aε(φfI, τ),

∀(ζ, η) ∈M ×N, b(σε,0, (ζ, η)) = 〈φf , η〉− 1
2 ,

1
2 ,Γ

,

∀µ ∈ L2 (Ω) , c(σε,0, µ) = 0.

(3.5)

Remark 3.1. In order to obtain the transverse displacement uε, one can now
solve, thanks to (3.3), the second-order elliptic problem


∆uε = 1

1+ν trσ
ε − ε2

1−ν f in Ω,

uε = 0 on Γ0 ∪ Γ1,
uε = uε0 on Γ2,

(3.6)

while the rotation vector rε is given by the relation

rε =
ε2

1− ν
divσε +∇uε.(3.7)

4. New mixed variational formulation. The previous formulation (3.5) of
the problem is written on the space Xε,0, whose tensors satisfy the constraint D(τ) =
div(divτ) = 0. In order to avoid its discretization, we introduce in this section an
equivalent formulation, obtained by decomposing the elements of Xε,0. This new
variational problem has the advantage of using only classical Sobolev spaces (like
H1(Ω), H1/2(Γ), L2(Ω)) which are easy to approximate by conforming finite ele-
ments.

In a similar manner as for the Kirchhoff–Love model [1], one can show (by applying
Tartar’s lemma twice) that for any τ ∈ Xε,0 there exist unique functions ρ ∈ H1 (Ω)|R
and ϕ ∈ (H1(Ω)|R)2 such that τ writes as

τ = curl ϕ+ ρJ.(4.1)
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Let us consider the spaces

H =

{
ϕ ∈ (H1 (Ω))2;

∫
Ω

ϕ dΩ = 0

}
,

W ε =

{
ρ ∈ L2 (Ω) ;

∫
Ω

ρ dΩ = 0, ε curlρ ∈ L2 (Ω)
2

}

endowed, respectively, with the norms |·|1,Ω and ‖·‖0,Ω+ ε |·|1,Ω , and let us define the
Hilbert space Yε = H×W ε.

We do not impose here, like in [1], the symmetry of the bending moment because
this would lead us to consider a function ϕ too regular, difficult to approximate
by continuous low-order finite elements. For this reason, with any σ, τ ∈ Xε,0 we
associate by means of (4.1) the corresponding couples (ψ, ξ) , (ϕ, ρ) ∈ Yε and we
introduce the following bilinear form on Yε ×Yε:

Aε((ψ, ξ) , (ϕ, ρ)) = A((ψ, ξ) , (ϕ, ρ)) + ε2A0((ψ, ξ) , (ϕ, ρ)),

where

A((ψ, ξ) , (ϕ, ρ)) = a(σ, τ) =
1

1− ν

∫
Ω

[(ξ − ∂1ψ1) (ρ− ∂1ϕ1)

+ (ξ − ∂2ψ2) (ρ− ∂2ϕ2)] dΩ

+
1

1− ν

∫
Ω

(∂2ψ1∂2ϕ1 + ∂1ψ2∂1ϕ2) dΩ

− ν

1− ν2

∫
Ω

(∂2ψ1 − ∂1ψ2) (∂2ϕ1 − ∂1ϕ2) dΩ,

A0((ψ, ξ) , (ϕ, ρ)) = a0(σ, τ) =
1

1− ν

∫
Ω

curlξ · curlρ dΩ.

We also define the bilinear continuous forms B (·, ·) , C (·, ·) on Yε × Z and on Yε ×
L2 (Ω), respectively, by putting

B((ϕ, ρ) ,q) = −〈∂tq, ϕ〉− 1
2 ,

1
2 ,Γ

,

C ((ϕ, ρ) , λ) = c(τ , λ) =

∫
Ω

λ (2ρ− divϕ) dΩ,

where the space Z is given by

Z =

{
q ∈ H1/2 (Γ)

2
; q = 0 on Γ0, q · t = 0 on Γ1,

∫
Γ

q · t dΓ = 0
}
.

Remark 4.1. The forms A(·, ·) and B(·, ·) correspond to the equations of the
Kirchhoff–Love model, while C(·, ·) dualizes the symmetry of the bending tensor and
A0(·, ·) takes into account the contribution of the rotation. The space Z is the same
as the one employed in [1]. Let us also notice that with any q ∈ Z one can associate
a unique couple (ζ, η) ∈ M × N such that q = (∂tζ)t + ηn; then B((ϕ, ρ) ,q) =
b(τ , (ζ, η)); see [1] for more details.

Finally, let us introduce the linear continuous forms F ε (·) and G (·) defined on
Yε and on Z, respectively, by the relationship

F ε((ϕ, ρ)) = −aε(φfI, τ), G(q) =

∫
Γ

φfq · n dΓ.
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Then we state the following result.
Theorem 4.1. The variational problem



find (ψε, ξε) ∈ Yε, pε ∈ Z, λε ∈ L2 (Ω) such that

∀((ϕ, ρ)) ∈ Yε, Aε((ψε, ξε), (ϕ, ρ)) +B((ϕ, ρ),pε) + C((ϕ, ρ), λε) = F ε((ϕ, ρ)),

∀q ∈ Z, B((ψε, ξε),q) = G(q),

∀µ ∈ L2 (Ω) , C((ψε, ξε), µ) = 0
(4.2)
has a unique solution.

Proof. The existence and the uniqueness are obtained by the means of the
Babuška–Brezzi theory. For that, it is sufficient to check the Yε-ellipticity of the
bilinear form Aε(·, ·) and the inf-sup condition for D(·, ·) = B(·, ·) + C(·, ·).

Concerning the ellipticity, one has for any (ϕ, ρ) ∈ Yε that

A((ϕ, ρ) , (ϕ, ρ)) = a(τ , τ) ≥ c‖ τ ‖20,Ω,

where we have put τ = curl ϕ+ ρJ . We show next that

|ϕ|21,Ω + ‖ρ‖20,Ω ≤ c‖ τ ‖20,Ω,(4.3)

which leads to the Yε-ellipticity of Aε(·, ·) uniformly with respect to ε:

Aε((ϕ, ρ) , (ϕ, ρ)) ≥ c(|ϕ|21,Ω + ‖ρ‖20,Ω + ε2 |ρ|21,Ω).

One has

‖ τ ‖20,Ω = |ϕ1|21,Ω + |ϕ2|21,Ω + 2 ‖ρ‖20,Ω − 2
∫

Ω

ρ (∂1ϕ1 + ∂2ϕ2) dΩ.

According to Girault and Raviart [8], there exists a positive constant k such that the
following statement holds, for any ρ ∈ L2

0 (Ω):

k ‖ρ‖0,Ω ≤ ‖∇ρ‖−1,Ω =‖ divτ ‖−1,Ω ≤ k1 ‖ τ ‖0,Ω .(4.4)

Next, let δ be a positive real number. Young’s inequality implies that

2

∫
Ω

ρ (∂1ϕ1 + ∂2ϕ2) dΩ ≤ δ2 ‖ρ‖20,Ω +
1

δ2
|ϕ|21,Ω ,

so

(2− δ2) ‖ρ‖20,Ω +
(
1− 1

δ2

)
|ϕ|21,Ω ≤ ‖ τ ‖20,Ω,

and, consequently, by means of (4.4), it holds for δ ≥ 1 that

|ϕ|21,Ω ≤ c‖ τ ‖20,Ω.

So we obtain the estimate (4.3).
We still have to establish the inf-sup condition for the bilinear form D(·, ·) on

Yε × (Z× L2(Ω)), where

D((ϕ, ρ), (q, µ)) = B((ϕ, ρ),q) + C((ϕ, ρ), µ).
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To do that, we fix an arbitrary couple (q, µ) ∈ Z×L2(Ω) and we construct (ϕ, ρ) ∈ Yε

such that D((ϕ, ρ), (q, µ)) ≥ c(‖q‖21/2,Γ + ‖µ‖20,Ω) and

|ϕ|1,Ω + ‖ρ‖0,Ω + ε |ρ|1,Ω ≤ c(‖q‖1/2,Γ + ‖µ‖0,Ω).

We will actually take ρ = 0, so we have only to construct ϕ ∈ H.
Exactly as in the Kirchhoff–Love case [1], with any q ∈ Z we associate the solution

w of the following boundary problem:{
∆w = 0 in Ω,
w = q on Γ,

and we take ϕ1 ∈ (H1 (Ω)|R)
2 such that ∇ϕ1 = curlw. Then one has, for any ρ ∈W ε,

that

B((ϕ1, ρ),q) ≥ c ‖q‖21/2,Γ and |ϕ1|1,Ω ≤ c ‖q‖1/2,Γ .

We equally have that divϕ1 ∈ L2
0 (Ω), since∫

Ω

divϕ1 dΩ =

∫
Γ

q · t dΓ = 0.

Next, let us consider an arbitrary µ ∈ L2 (Ω) and put

λ = µ− P (µ)− divϕ1 with λ ∈ L2
0 (Ω) .

According to [8], one knows that there exists ϕ2 ∈ (H1
0 (Ω))

2 such that

divϕ2 = λ and | ϕ2 |1,Ω≤ c ‖λ‖0,Ω .

Finally, we set

ϕ = ϕ1 + ϕ2 +
P (µ)

2

(
x
y

)

and choose ϕ1 (which is unique up to a constant) such that
∫
Ω
ϕ dΩ = 0. Then we

notice that ϕ ∈ H and, moreover,{
divϕ = µ in Ω,
|ϕ|1,Ω ≤ c(‖q‖1/2,Γ + ‖λ‖0,Ω + ‖P (µ)‖0,Ω) ≤ c(‖q‖1/2,Γ + ‖µ‖0,Ω).

The boundary Γ being polygonal, one has that ∂tϕ = ∂tϕ1 + ct, with c = P (µ)
2 ,

which implies that

∂tϕ · n = ∂tϕ1 · n, ∂t(∂tϕ · t) = ∂t(∂tϕ1 · t) on Γ,

so it turns out that

D((ϕ, 0),q) = B((ϕ1, 0),q) + C((ϕ, 0), µ) ≥ c(‖q‖21/2,Γ + ‖µ‖20,Ω).

Finally, this gives us the desired inf-sup condition, which obviously uniformly holds
with respect to ε.
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5. Equivalence with the initial Reissner–Mindlin model. We establish in
this paragraph the link between the solution of the previous variational formulation
and the solution of (2.2). This is given by the following result.

Theorem 5.1. Let ((ψε, ξε),pε, λε) be the unique solution of (4.2). Then we
have 


σε = curl ψε + ξεJ + φfI in Ω,

rε = pε on Γ,

−1
2
curlrε = λε in Ω,

(5.1)

where (σε, uε, rε) is the solution of the initial Reissner–Mindlin problem (2.2).
Proof. We present here the steps of the proof, since it is similar to the one given

in [1].
We note σ̃ε = curl ψε + ξεJ + φfI, for which we obviously have D(σ̃ε) = f .

Moreover, the second equation of (4.2) implies that γ0(σ̃
ε) = γ1(σ̃

ε) = 0, while the
third equation gives that σ̃ε is symmetric.

By taking as a test-function a couple (curlϕ, 0) ∈ Yε with an arbitrary ϕ ∈ D(Ω),
which corresponds to the tensor τ = curlcurlϕ, we get according to the proof of
Theorem 3.2 the constitutive law of the plate. More precisely, we show that there
exists a function r̃ε ∈ (H1(Ω))2 unique up to ε(r̃ε) = 0 such that

σ̃ε = (1− ν) ε(r̃ε) + ν(divr̃ε)I.

Another choice of the test-function, i.e., (ϕ−P (ϕ), 1
2divϕ) ∈ Yε with ϕ ∈ (D(Ω))2

(which means that the associated tensor is τ = curlϕ+ 1
2divϕ), allows us to obtain,

exactly as in Theorem 3.2, the existence of a unique ũε ∈ H1(Ω)|R satisfying

ε2

1− ν
divσ̃ε = r̃ε −∇ũε.

We next take as a test-function in (4.2) a couple (0, ρ0) ∈ Yε, with ρ0 = ρ−P (ρ)
and ρ ∈ D(Ω) arbitrary. This leads us to∫

Ω

(curl r̃ε + 2λε)ρ0 dΩ = 0 ⇔ curl r̃ε + 2λε = k, k ∈ R.

We have thus obtained that λε = − 1
2curl r̃

ε + k, and we shall next show that k = 0.
Let us study for the moment the boundary conditions satisfied by the functions r̃ε

and ũε. The same choice as above, that is, (0, ρ0), gives us the following relationship,
where τ = ρ0J :∫

Ω

ε(r̃ε) : τ dΩ+
ε2

1− ν

∫
Ω

divσ̃ε · divτ dΩ+

∫
Ω

(
k − 1

2
curlr̃ε

)
(τ12 − τ21) dΩ = 0

⇔
∫

Ω

(r̃ε −∇ũε) · curlρ0 dΩ−
∫

Ω

curl r̃ε ρ0 dΩ+ 2k

∫
Ω

ρ0 dΩ = 0

⇔ 〈r̃ε · t− ∂tũ
ε, ρ0〉− 1

2 ,
1
2 ,Γ
= 0.

(5.2)
For ρ ∈ D(Ω) with ∫

Ω
ρ dΩ �= 0, the above equality implies 〈r̃ε ·t−∂tũ

ε, 1〉− 1
2 ,

1
2 ,Γ
= 0,

so (5.2) now writes as

∀ρ ∈ D(Ω), 〈r̃ε · t− ∂tũ
ε, ρ〉− 1

2
, 1
2
,Γ
= 0,
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which means r̃ε · t = ∂tũ
ε on Γ. In order to obtain the other boundary conditions, we

consider in the first equation of (4.2) the test-function (ϕ̂, 0) ∈ Yε with

ϕ̂ = ϕ′ − P (ϕ′), where ϕ′ = ϕ− P (divϕ)

2

(
x
y

)
,

and where ϕ ∈ (D(Ω))2 is arbitrary. Then one has∫
Ω

ε(r̃ε) : curl ϕ′ dΩ− 〈∂tpε, ϕ′〉− 1
2 ,

1
2 ,Γ
+

∫
Ω

(
1

2
curl r̃ε − k

)
divϕ′ dΩ = 0

⇔
∫

Ω

ε(r̃ε) : curl ϕ dΩ− 〈∂tpε, ϕ〉− 1
2 ,

1
2 ,Γ

+
1

2

∫
Ω

curl r̃ε divϕ dΩ+

〈
r̃ε · t, P (divϕ)

2

〉
− 1

2 ,
1
2 ,Γ

= 0

⇔
∫

Ω

∇r̃ε : curl ϕ dΩ− 〈∂tpε, ϕ〉− 1
2 ,

1
2 ,Γ
= 0

⇔ 〈∂t(r̃ε − pε), ϕ〉− 1
2 ,

1
2 ,Γ
= 0.

We used here the following relationships, which are true for any c ∈ R
2 and any c ∈ R:

〈∂tpε, c〉− 1
2 ,

1
2 ,Γ
= 0,

〈
∂tp

ε, c

(
x
y

)〉
− 1

2 ,
1
2 ,Γ

= 0, 〈r̃ε · t, c〉− 1
2 ,

1
2 ,Γ
= 0.

Since r̃ε is unique up to a constant, we first get that r̃ε = pε on Γ. So we have that

r̃ε = 0 on Γ0, r̃ε · t = 0 on Γ0 ∪ Γ1,

and, since r̃ε · t = ∂tũ
ε on Γ with ũε unique up to a constant, we obtain ũε = 0 on

Γ0 ∪ Γ1.
Now, for the test-function (ϕ̂, 0) ∈ Yε with ϕ̂ = ϕ− P (ϕ) where ϕ ∈ (D(Ω))2 is

arbitrary, it comes from (4.2) that∫
Ω

ε(r̃ε) : curl ϕ dΩ− 〈∂tpε, ϕ〉− 1
2 ,

1
2 ,Γ
+

∫
Ω

(
1

2
curl r̃ε − k

)
divϕ dΩ = 0

⇔
∫

Ω

∇r̃ε : curl ϕ dΩ− 〈∂tr̃ε, ϕ〉− 1
2 ,

1
2 ,Γ
− k

∫
Ω

divϕ dΩ = 0

⇔ k

∫
Ω

divϕ dΩ = 0 ∀ϕ ∈ (D(Ω))2,

which means that k = 0. Therefore, (σ̃ε, ũε, r̃ε) satisfies the relationships in (5.1) as
well as the Reissner–Mindlin equations (2.2). The uniqueness of the solution of (2.2)
ends our proof.

Remark 5.1. We can now calculate the solution (σε, uε, rε) of the Reissner–
Mindlin model by means of the solution ((ψε, ξε),pε, λε) of problem (4.2). Indeed,
the bending moment is given by (5.1), the transverse displacement is obtained as
solution of the elliptic problem


∆uε =

1

1 + ν
trσε − ε2

1− ν
f in Ω,

uε = 0 on Γ0 ∪ Γ1,
∂tu

ε = pε · t on Γ2,

(5.3)

and the rotation is obtained thanks to the relationship (3.7).
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6. Finite element approximation. We are interested here in the conform-
ing discretization of the variational formulation (4.2) which describes the Reissner–
Mindlin problem (2.2).

For that, let (Th)h>0 be a regular family of triangulations of the polygonal domain
Ω, each Th consisting of triangles K—Ω =

⋃
K∈Th

K. We employ classical notations:
for every triangle K of Th, we denote by hK its diameter and by h = maxK∈Th

hK the
discretization parameter. We also introduce the set ∂Th of edges of the triangulation
Th situated on Γ.

6.1. Discrete variational formulation. In order to approximate pε, we shall
use the same finite elements as in the Kirchhoff–Love case, that is,

Zh =
{
qh ∈ Z; qh ∈ (C0 (Γ))2 and ∀T ∈ ∂Th, qh|T ∈ (P1 (T ))

2
}
.

The approximation of the additional unknowns ξε ∈ W ε and λε ∈ L2 (Ω) will be
achieved in the following finite dimensional spaces:

Wh =
{
ρh ∈ H1(Ω); ∀K ∈ Th, ρh|K ∈ P1 (K)

}
,

Lh =
{
λh ∈ L2 (Ω) ; ∀K ∈ Th, λh|K ∈ P0 (K)

}
,

while for ψε we employ the finite element space Hh = H ∩ (H1
h)

2, where

H1
h =

{
ϕh ∈ H1(Ω); ∀K ∈ Th, ϕh|K ∈ P2 (K)

}
.

Remark 6.1. For ε �= 0, the space W ε coincides algebraically with H1(Ω) so
Wh is a subspace of W

ε. The norm considered on Wh is obviously the weighted one
previously defined on W ε.

For the sake of simplicity, we denote

Yh = Hh ×Wh ⊂ Yε

and we put

∀(ϕh, ρh) ∈ Yh, F εh((ϕh, ρh)) = −aε(φfhI, curl ϕh + ρhJ)

∀qh ∈ Zh, Gh(qh) =

∫
Γ

φfh qh · n dΓ.

The discrete function φfh is a P1-continuous finite element approximation of φ
f ∈ V ,

the solution of the auxiliary problem (3.4). In order to calculate it explicitly, one can
discretize the variational formulation of (3.4) and solve


find φfh ∈ Vh such that

∀vh ∈ Vh,

∫
Ω

∇φfh · ∇vh dΩ =

∫
Ω

fvh dΩ,
(6.1)

where

V =
{
v ∈ H1(Ω); v = 0 on Γ0 ∪ Γ1

}
, Vh =Wh ∩ V.

It is then obvious that

| φf − φfh |1,Ω= inf
vh∈Vh

| φf − vh |1,Ω .
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Then we consider the discrete version of (4.2) written as below:


find (ψεh, ξ
ε
h) ∈ Yh, p

ε
h ∈ Zh, λεh ∈ Lh such that

∀(ϕh, ρh) ∈ Yh, Aε((ψεh, ξ
ε
h), (ϕh, ρh)) +B((ϕh, ρh),p

ε
h) + C((ϕh, ρh), λ

ε
h)

= F εh((ϕh, ρh)),

∀qh ∈ Zh, B((ψεh, ξ
ε
h),qh) = Gh(qh),

∀µh ∈ Lh, C((ψεh, ξ
ε
h), µh) = 0.

(6.2)
We prove in what follows that the discrete inf-sup condition of Babuška–Brezzi

for the above mixed problem uniformly holds with respect to both the discretization
parameter h and the plate’s thickness ε.

Theorem 6.1. There exists a positive constant c, independent of h and ε, such
that, for any (qh, µh) ∈ Zh × Lh,

sup
(ϕh,ρh)∈Yh

B((ϕh, ρh),qh) + C((ϕh, ρh), µh)

|ϕh|1,Ω + ‖ρh‖0,Ω + ε |ρh|1,Ω
≥ c(‖qh‖1/2,Γ + ‖µh‖0,Ω).

Proof. We apply Fortin’s trick. For that, we will use the continuous inf-sup
condition established in Theorem 4.1 and the interpolation operator Ph : (H

1(Ω))2 ∩
(C0(Ω))2 → (H1

h)
2 defined hereafter.

Let us note by P1h the classical Lagrange interpolation operator which satisfies,
for any ϕ ∈ (H1(K))2 ∩ (C0(K))2,

P1hϕ ∈ (P1(K))
2 and P1hϕ(S) = ϕ(S) ∀S vertex of K ∈ Th.

We introduce the operator P2h defined by P2hϕ ∈ (P2(K))
2, and

P2hϕ(S) = 0 for every vertex S of K,∫
T

(ϕ− P2hϕ) dΓ = 0 for every edge T of K.

Then we put on every triangle K ∈ Th
Phϕ = P1hϕ+ P2h(ϕ− P1hϕ),

which clearly satisfies the properties

∀T ∈ ∂Th,
∫
T

Phϕ dΓ =

∫
T

ϕ dΓ,(6.3)

∀K ∈ Th,
∫
K

div(Phϕ) dΩ =

∫
K

divϕ dΩ.

If ϕ ∈ H ∩ (C0(Ω))2, then we have only that Phϕ belongs to (H1
h)

2 and not to the
space H.

Let us now come back to the proof of the uniform inf-sup condition for problem
(6.2).

With any qh ∈ Zh, we associate, exactly as in Theorem 4.1, a function ϕ1 ∈
(H1 (Ω)|R)

2 such that

B((ϕ1, 0),qh) ≥ c ‖qh‖21/2,Γ and |ϕ1|1,Ω ≤ c ‖qh‖1/2,Γ .
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We recall that ∇ϕ1 = curlw, where w ∈ (H1(Ω))2 is the unique function satisfying
∆w = 0 in Ω and w = qh on Γ. We also have, by construction, that divϕ1 ∈
L2

0 (Ω) . Since qh ∈ (H1(Γ))2, we obtain by classical results of regularity of the Laplace
operator (see [9], [10]) that w ∈ (H1+a(Ω))2 with a ∈]0, 1

2 ]. We deduce that ϕ1 ∈
(H1+a(Ω))2 ↪→ (C0(Ω))2, so we can define Phϕ1.

Then by considering the discrete function ϕ1h = Phϕ1 ∈ (H1
h)

2, we have, thanks
to (6.3), that

B((ϕ1, 0),qh) = B((ϕ1h, 0),qh).

On the other hand, we obtain, by passing to the reference finite element and using
the Bramble–Hilbert lemma, that |ϕ1 − P2hϕ1|1,K ≤ c |ϕ1|1,K . This implies that

∀K ∈ Th, |ϕ1 − ϕ1h|1,K ≤ c |ϕ1 − P1hϕ1|1,K ≤ c |ϕ1|1,K ,

so by the triangle inequality, |ϕ1h|1,Ω ≤ c |ϕ1|1,Ω . We now have that

B((ϕ1h, 0),qh)

| ϕ1h |1,Ω ≥ c
B((ϕ1, 0),qh)

|ϕ1|1,Ω
≥ c ‖qh‖1/2,Γ .

Next, following the proof of Theorem 4.1, let us consider an arbitrary µh ∈ Lh
and put

λ = µh − P (µh)− divϕ1h with λ ∈ L2
0 (Ω) .

According to Girault and Raviart [8], one knows that there exists ϕ2 ∈ H1
0 (Ω)

2
such

that

divϕ2 = λ with | ϕ2 |1,Ω≤ c ‖λ‖0,Ω .

Finally, we put ϕ′
h = ϕ1h + Phϕ2 +

P (µh)
2

(
x
y

)
, which belongs to (H1

h)
2, and next

consider

ϕh = ϕ′
h − P (ϕ′

h).

This last function now belongs to Hh, and it obviously satisfies

|ϕh|1,Ω ≤ c(‖qh‖1/2,Γ + ‖λ‖0,Ω + ‖µh‖0,Ω) ≤ c(‖qh‖1/2,Γ + ‖µh‖0,Ω).

Then we notice that we have, thanks to (6.3),

C((ϕh, 0), µh) = ‖µh‖20,Ω .

The boundary Γ being polygonal, one gets ∂tϕh = ∂tϕ1h + ct with c = P (µh)
2 , which

implies that

∂tϕh · n = ∂tϕ1h · n, ∂t(∂tϕh · t) = ∂t(∂tϕ1h · t) on Γ,

so we have that

B((ϕh, 0),qh) = B((ϕ1h, 0),qh).
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Finally, this gives us

sup
(ψh,ρh)∈Yh

B((ψh, ρh),qh) + C((ψh, ρh), µh)

|ψh|1,Ω + ‖ρh‖0,Ω + ε |ρh|1,Ω
≥ B((ϕh, 0),qh) + C((ϕh, 0), µh)

|ϕh|1,Ω
≥ c(‖qh‖1/2,Γ + ‖µh‖0,Ω),

which ends the proof.
Remark 6.2. It is equally possible to approximate ψε by the same finite element

as in the Kirchhoff–Love case (whose degrees of freedom are the values at the nodes of
the triangulation, to which we add the values at the midpoints of the edges situated
on Γ1

⋃
Γ2) and λε by piecewise linear elements, and thus one will get a cheaper

method. However, the discrete inf-sup condition will not be uniform with respect to
h this time, and the convergence of the method will depend upon ε.

The previous result immediately gives, by using the Babuška–Brezzi theory, the
following.

Theorem 6.2. Problem (6.2) admits a unique solution for any positive h and ε.
Moreover, the following error bound holds:

|ψε − ψεh|1,Ω + ‖ξε − ξεh‖0,Ω + ε |ξε − ξεh|1,Ω + ‖pε − pεh‖1/2,Γ + ‖λε − λεh‖0,Ω
≤ c{ inf

ϕh∈Hh

|ψε − ϕh|1,Ω + inf
ρh∈Wh

(‖ξε − ρh‖0,Ω + ε |ξε − ρh|1,Ω)

+ inf
qh∈Zh

‖pε − qh‖1/2,Γ + inf
µh∈Lh

‖λε − µh‖0,Ω + inf
vh∈Vh

| φf − vh |1,Ω}

with a positive constant c independent of both h and ε. Therefore the proposed ap-
proximation method is unconditionally convergent for any fixed ε.

6.2. Approximation of the physical variables. In order to obtain the ap-
proximated bending moment, we set (according to Theorem 5.1)

σεh = curl ψεh + ξεhJ + φfhI,(6.4)

while a P1-continuous finite element discretization of the boundary value problem
(5.3) will give us an approximation uεh of the transverse displacement u

ε. For that,
we write that uε satisfies the variational formulation



find uε ∈ H1(Ω) with uε = gε on Γ, such that

∀v ∈ H1
0 (Ω),

∫
Ω

∇uε · ∇v dΩ

=
−1
1 + ν

∫
Ω

(trσε)v dΩ+
ε2

1− ν

∫
Ω

fv dΩ,

(6.5)

where the function gε ∈ H3/2(Γ) is defined on the boundary Γ by the relationships

gε = 0 on Γ0 ∪ Γ1, ∂tg
ε = pε · t on Γ2.

In order to calculate uεh, we consider the next discrete version of (6.5):

find uεh ∈Wh with uεh = Ih(g

ε
h) on Γ, such that

∀vh ∈W 0
h ,

∫
Ω

∇uεh · ∇vh dΩ =
−1
1 + ν

∫
Ω

(trσεh)vh dΩ+
ε2

1− ν

∫
Ω

fvh dΩ,
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where σεh is given by (6.4), of course, and where W 0
h = Wh ∩ H1

0 (Ω). Numerical
integration has also been employed on the function gε, which has been replaced by
an approximation Ih(g

ε
h). The operator Ih denotes the P1-continuous interpolation

operator on the boundary Γ, and the function gεh is taken as follows:

gεh = 0 on Γ0 ∪ Γ1, ∂tg
ε
h = pεh · t on Γ2.

Since gεh ∈ H3/2(Γ) ↪→ C0(Γ), one can clearly define Ih(gεh).
Then we get the following error bound:

|uε − uεh|1,Ω ≤ c{ inf
vh∈W 0

h

| uε,0 − vh |1,Ω + ‖ σε − σεh ‖0,Ω + ‖gε − Ih(g
ε
h)‖1/2,Γ},

where we have put uε,0 = uε − uε,g ∈ H1
0 (Ω) and uε,g ∈ H1(Ω), a continuous lifting

satisfying uε,g = gε on Γ and ∆uε,g = 0 in Ω.
The discrete rotation vector rεh will then be recovered by the means of (3.7):

rεh =
ε2

1− ν
divσεh +∇uεh.

We used here the fact that divσεh = curlξεh+∇φfh belongs to L2(Ω), since ξεh ∈ H1(Ω),

φfh ∈ H1(Ω), and ψεh ∈ (H1(Ω))2, so the function curl ψεh belongs to (H(div; Ω))
2.

Let us finally notice that the finite element method employed gives us low-order
approximations of the physical quantities in the following spaces: σεh ∈ (H(div; Ω))2,
uεh ∈ H1(Ω), and rεh ∈ L2(Ω)2, with also an approximation of curlrε in L2(Ω) thanks
to the multiplier λε. Moreover, the described method uses classical finite element
spaces (continuous P1 and P2, discontinuous P0). The preprocessing of φ

f
h and post-

processing of the displacement uεh are very simple—one has to solve only twice, by
P1-continuous elements, a Laplacian problem. Let us remark that these two discrete
problems have the same matrix, which is computed only once.

So, thanks to Theorem 6.2, we are now able to state the main result of the section.
Theorem 6.3. The above finite element method for the Reissner–Mindlin prob-

lem is unconditionally convergent. The next error estimate holds, with c independent
of h and ε:

‖ σε − σεh ‖0,Ω

+ ε ‖ div(σε − σεh) ‖0,Ω + ‖ D(σε)−D(σεh) ‖−1,Ω + |uε − uεh|1,Ω + ‖rε − rεh‖0,Ω
≤ c{ inf

ϕh∈Hh

|ψε − ϕh|1,Ω + inf
ρh∈Wh

(‖ξε − ρh‖0,Ω + ε |ξε − ρh|1,Ω)

+ inf
qh∈Zh

‖pε − qh‖1/2,Γ + inf
µh∈Lh

‖λε − µh‖0,Ω
+ inf

vh∈Vh

| φf − vh |1,Ω + inf
vh∈W 0

h

| uε,0 − vh |1,Ω + ‖gε − Ih(g
ε
h)‖1/2,Γ}.

6.3. Convergence rate. In what follows, we are looking for an upper bound of
each right-hand side term of the previous inequality.

We first recall that the function φf ∈ H1(Ω) satisfies the boundary value problem
(3.4). Then the regularity results for the Laplace operator ensure that there exists
b ∈] 12 , 1] such that

φf ∈ H1+b(Ω) and || φf ||1+b,Ω≤ c ‖f‖0,Ω ,
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with b = 1 if Ω is convex. Then we get

inf
vh∈Vh

| φf − vh |1,Ω≤ chb ‖f‖0,Ω .

Next, let us notice that we have by construction of gεh that

‖ gεh − Ih(g
ε
h) ‖ 1

2 ,Γ
≤ ch ‖ gεh ‖ 3

2 ,Γ
≤ ch ‖ pεh ‖ 1

2 ,Γ
≤ ch ‖f‖0,Ω .

We equally know by classical results on the Laplace operator (see [9], [10]) that
there exists a ∈]0, 1] such that uε,g ∈ H1+a(Ω). Moreover, we have that∥∥uε,0∥∥

1+a,Ω
≤ ‖uε‖1+a,Ω + c ‖pε‖−1/2+a,Γ ≤ c ‖f‖0,Ω .

In order to obtain the convergence rate of the discretization method, let us assume
the following regularity for the exact solution of (2.2):

rε ∈ H1+a(Ω)2, uε ∈ H1+a(Ω),
‖rε‖1+a,Ω + ‖uε‖1+a,Ω + ε ‖ divσε ‖a,Ω≤ c ‖f‖0,Ω .

(6.6)

This hypothesis is verified in convex domains with a = 1, at least for clamped
plates (cf., for instance, [5]). Now, the previous inequality implies that

|ψε|1+a,Ω + ‖ξε‖a,Ω + ε |ξε|1+a,Ω + ‖pε‖1/2+a,Γ + ‖λε‖a,Ω ≤ c ‖f‖0,Ω ,

which, together with Theorem 6.3, allows us to deduce the following theorem.
Theorem 6.4. Under the regularity assumption (6.6), the discretization method

for the Reissner–Mindlin model is convergent to order O(hmin{a,b}):

‖ σε−σεh ‖0,Ω + ε ‖ div(σε−σεh) ‖0,Ω + |uε − uεh|1,Ω+ ‖rε − rεh‖0,Ω ≤ chmin{a,b} ‖f‖0,Ω
independently of the plate’s thickness ε.

Therefore, our method uses simple conforming finite elements of low degree, is
unconditionally convergent and locking-free and, in the case of a convex polygon, for
instance (when a = b = 1), it is also optimal of order O(h).
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Abstract. Stochastic Hamiltonian systems with multiplicative noise, phase flows of which
preserve symplectic structure, are considered. To construct symplectic methods for such systems,
sufficiently general fully implicit schemes, i.e., schemes with implicitness both in deterministic and
stochastic terms, are needed. A new class of fully implicit methods for stochastic systems is proposed.
Increments of Wiener processes in these fully implicit schemes are substituted by some truncated
random variables. A number of symplectic integrators is constructed. Special attention is paid to
systems with separable Hamiltonians. Some results of numerical experiments are presented. They
demonstrate superiority of the proposed symplectic methods over very long times in comparison with
nonsymplectic ones.
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1. Introduction. Consider the following Cauchy problem for the system of
stochastic differential equations (SDEs) in the sense of Stratonovich:

dP = f(t, P,Q)dt+

m∑
r=1

σr(t, P,Q) ◦ dwr(t), P (t0) = p,(1.1)

dQ = g(t, P,Q)dt+

m∑
r=1

γr(t, P,Q) ◦ dwr(t), Q(t0) = q,

where P, Q, f, g, σr, γr are n-dimensional column vectors with the components P
i,

Qi, f i, gi, σir, γ
i
r, i = 1, . . . , n, and wr(t), r = 1, . . . ,m, are independent standard

Wiener processes. The diffusion coefficients σr, γr depend on P, Q (i.e., (1.1) is a
system with multiplicative noise), in contrast to [3], where stochastic systems with
additive noise are treated.

We suppose that all the coefficients of considered systems are sufficiently smooth
functions defined for (t, p, q) ∈ [t0, t0+T ]×Rd, d = 2n, and they provide the property
of extendability of solutions to the interval [t0, t0+T ]. (Additional conditions in con-
nection with considered methods consist of appropriate behavior of partial derivatives
of the coefficients on infinity.)

We denote by X(t; t0, x) = (P
�(t; t0, p, q), Q�(t; t0, p, q))�, t0 ≤ t ≤ t0 + T, the

solution of problem (1.1). A more detailed notation is X(t; t0, x;ω), where ω is an
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elementary event. It is known that X(t; t0, x;ω) is a phase flow (diffeomorphism) for
almost every ω. See its properties in, e.g., [1, 2].

If there are functions Hr(t, p, q), r = 0, . . . ,m, such that (see [1] and [3])

f i(t, p, q) = −∂H0/∂q
i, gi(t, p, q) = ∂H0/∂p

i,(1.2)

σir(t, p, q) = −∂Hr/∂qi, γir(t, p, q) = ∂Hr/∂p
i, i = 1, . . . , n, r = 1, . . . ,m,

then the phase flow of (1.1) preserves the following symplectic structure:

dP ∧ dQ = dp ∧ dq;(1.3)

i.e., the sum of the oriented areas of projections onto the coordinate planes (p1, q1), . . . ,
(pn, qn) is an integral invariant [4]. To avoid confusion, we note that the differentials
in (1.1) and (1.3) have different meanings. In (1.1) P, Q are treated as functions of
time and p, q are fixed parameters, while differentiation in (1.3) is made with respect
to the initial data p, q.

Let Pk, Qk, k = 0, . . . , N, tk+1 − tk = hk+1, tN = t0 + T, be a method for (1.1)
based on the one-step approximation P̄ = P̄ (t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q). We
say that the method preserves symplectic structure if

dP̄ ∧ dQ̄ = dp ∧ dq .(1.4)

The present paper deals with symplectic integration of the Hamiltonian system
with multiplicative noise (1.1), (1.3). It is a continuation of [3], where symplectic
methods for Hamiltonian systems with additive noise were proposed. For symplectic
integration of deterministic Hamiltonian systems see, e.g., [5, 6, 7, 8, 9] and references
therein.

As is known [5], in the case of deterministic general Hamiltonian systems sym-
plectic Runge–Kutta (RK) methods are all implicit. Hence it is natural to expect that
to construct symplectic methods for general Hamiltonian systems with multiplicative
noise fully implicit methods are needed. The known implicit methods for stochastic
systems with multiplicative noise (see [10, 11]) contain implicitness in deterministic
terms only. In [12] an implicitness is introduced in stochastic terms as well. However,
the methods of [12] are of a very special form. In section 2 a new class of fully implicit
methods for general stochastic systems is proposed. Increments of Wiener processes
in these implicit schemes are substituted by some truncated random variables. They
are important for both theory and practice of numerical integration of SDEs. We use
these fully implicit methods in section 3 to construct symplectic methods for gen-
eral Hamiltonian systems with multiplicative noise. Section 4 is devoted to a special
case of separable Hamiltonians. Explicit symplectic integrators are constructed for
such systems. In addition, symplectic methods for Hamiltonian systems with small
multiplicative noise can be found in the preprint [13]. There one can also find some
Liouvillian methods for stochastic systems preserving phase volume. Let us recall
that the mean-square methods of higher order contain repeated Ito integrals which
are difficult for simulation. In this paper, we prefer to derive methods which are
efficient with respect to simulation of the used random variables. That is why orders
of the methods derived are not too high. In the last section of the paper we present
numerical tests. They clearly demonstrate superiority of the proposed symplectic
methods over very long times in comparison with nonsymplectic ones.

2. Fully implicit methods. Construction of implicit methods for stochastic
systems with additive noise does not cause any difficulties in principle. However, all
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is much more intricate in the case of stochastic systems with multiplicative noise. The
known implicit methods for such systems (see [10, 11]) contain implicitness restricted
to deterministic terms, e.g., to the drift terms in the implicit Euler scheme. In [12],
an implicitness is introduced in stochastic terms as well. However, methods of [12]
are of a very special form. In particular, this form does not allow us to construct
symplectic methods for stochastic Hamiltonian systems with multiplicative noise. In
this section we construct a sufficiently large class of fully implicit methods of mean-
square order 1/2 for general stochastic systems. These results are of independent
and general interest. That is why in this section we consider SDEs in the Ito sense,
following the traditional way of developing numerical methods. At the same time
we should note that the Stratonovich form is preferable for SDEs preserving integral
invariants.

2.1. The main idea and an example. Let us start with an example. Consider
the Ito scalar equation

dX = σXdw(t).(2.1)

The one-step approximation of the Euler method X̂ for (2.1) is

X̂ = x+ σx∆w(h).(2.2)

We can represent this approximation in the form

X̂ = x+ σX̂∆w + σ(x− X̂)∆w = x− σ2x(∆w)2 + σX̂∆w.

As h is small, (∆w)2 ∼ h, and we obtain the following “natural” implicit method:
X̃ = x− σ2xh+ σX̃∆w(h).(2.3)

However, this method cannot be realized since 1 − σ∆w(h) can vanish for any
small h. Further, for the formal value of X̃ from (2.3)

X̃ =
x(1− σ2h)

1− σ∆w(h) ,

we have E|X̃| =∞. (See [10].) Clearly, the method (2.3) is not suitable. The reason
for this is the unboundedness of the random variable ∆w(h) for any arbitrarily small
h.

Our basic idea consists of replacement of ∆w(h) = ξ
√
h, where ξ is an N (0, 1)-

distributed random variable, by another random variable ζ
√
h = ζh

√
h such that ζ

√
h

is bounded and the Euler type method

X̌ = x+ σxζ
√
h(2.4)

is of the mean-square order 1/2 as well. To achieve this, it is sufficient to require

E(X̌ − X̂) = O(h3/2), E(X̌ − X̂)2 = O(h2).(2.5)

We take a symmetric ζ. Then E(X̌− X̂) = 0. To satisfy the second equation in (2.5),
the condition E(ζh − ξ)2 = O(h) is sufficient.

We shall require a stronger inequality,

E(ζh − ξ)2 ≤ hk, k ≥ 1.(2.6)
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For Ah > 0 let

ζh =




ξ, |ξ| ≤ Ah,
Ah, ξ > Ah,
−Ah, ξ < −Ah.

(2.7)

Since

E(ζh − ξ)2 =
2√
2π

∫ ∞

Ah

(x−Ah)2e−x2/2dx

=
2√
2π
e−A

2
h/2

∫ ∞

Ah

y2e−y
2/2e−Ahydy < e−A

2
h/2,

the inequality (2.6) is fulfilled if e−A
2
h/2 ≤ hk, i.e., A2

h ≥ 2k| lnh|. Thus, if

Ah =
√
2k| lnh|, k ≥ 1,

then the method based on the one-step approximation (2.4) has the mean-square
order 1/2.

Lemma 2.1. Let Ah =
√
2k| lnh|, k ≥ 1, and ζh be defined by (2.7). Then the

following inequality holds:

0 ≤ E(ξ2 − ζ2h) = 1− Eζ2h ≤
(
1 + 2

√
2k| lnh|

)
hk.(2.8)

Proof. We have

1− Eζ2h =
2√
2π

∫ ∞

Ah

(x2 −A2
h)e

−x2/2dx

=
2√
2π

∫ ∞

Ah

[
(x−Ah)2 + 2Ah(x−Ah)

]
e−x

2/2dx

≤ e−A2
h/2 +

4Ah√
2π

∫ ∞

Ah

xe−x
2/2dx = e−A

2
h/2

(
1 +

4Ah√
2π

)
≤ (1 + 2Ah)e−A2

h/2,

whence (2.8) follows.
Now consider the following implicit method (for definiteness we put k = 1 and

Ah =
√
2| lnh|):

X̄ = x− σ2xh+ σX̄ζh
√
h,(2.9)

X̄ =
x(1− σ2h)

1− σζh
√
h
.

Since |ζh| ≤
√
2| lnh|, this method is realizable for all h satisfying the inequality

2h| lnh| < 1

σ2
.(2.10)

Proposition 2.2. The method (2.9) is of the mean-square order 1/2.
Proof. Let us compare method (2.9) with the Euler method (2.2). We get

EX̄ = x(1− σ2h)E

∞∑
m=0

σmζmh h
m/2 = x(1− σ2h)E

∞∑
m=0

σ2mζ2mh hm.
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It is obvious from here that the principal term in the expansion of E(X̄ − X̂) is equal
to xσ2h(Eζ2h − 1). Due to Lemma 2.1, we obtain for all sufficiently small h

|E(X̄ − X̂)| ≤ C|x|σ2
(
1 + 2

√
2| lnh|

)
h2,(2.11)

where C is a positive constant.
Further,

E(X̄ − X̂)2 = E
(
−σ2xh+ σX̄ζh

√
h− σxξ

√
h
)2

(2.12)

≤ 2σ4x2h2 + 2E
(
σX̄ζh

√
h− σxξ

√
h
)2

= 2σ4x2h2 + 2E
(
σ ·
(
x− σ2xh+ σX̄ζh

√
h
)
ζh
√
h− σxξ

√
h
)2

≤ 2σ4x2h2 + 2σ2x2hE(ζh − ξ)2 + C1x
2h2 ≤ C2x

2h2

for all sufficiently small h and some positive constants C1 and C2. The inequalities
(2.11) and (2.12) imply the mean-square convergence of implicit method (2.9) with
order 1/2.

Introduction of implicitness in the stochastic term leads to the appearance of
the compensating term −σ2xh in (2.9). This can be explained in the following way.
Since X̄ must be close to x + σxζh

√
h, the expression x + σX̄ζh

√
h is close to x +

σxζh
√
h + σ2xζ2hh. Consequently, making use of the compensating term results in

x + σX̄ζh
√
h − σ2xh = x + σxζh

√
h + σ2x(ζ2h − 1)h ≈ x + σxζh

√
h; i.e., we get the

correct result.
Now let us consider the expression σ((1−β)x+βX̄)ζh

√
h which introduces implic-

itness in the stochastic term with the parameter 0 ≤ β ≤ 1. Clearly, the compensating
term in this case is equal to −σ2βxh. Thus, we derive the following method:

X̄ = x− σ2βxh+ σ((1− β)x+ βX̄)ζh
√
h, 0 ≤ β ≤ 1.(2.13)

The following proposition can be proved analogously to Proposition 2.2.
Proposition 2.3. The method (2.13), as well as the methods

X̄ = x− σ2βxζ2hh+ σ((1− β)x+ βX̄)ζh
√
h, 0 ≤ β ≤ 1,(2.14)

X̄ = x− σ2β((1− α)x+ αX̄)h+ σ((1− β)x+ βX̄)ζh
√
h, 0 ≤ α, β ≤ 1,(2.15)

are of the mean-square order 1/2.

2.2. Convergence theorem. Now we are in position to introduce fully implicit
methods for general systems of SDEs. For simplicity in writing we deal here with the
following scalar Ito SDE:

dX = a(t,X)dt+ b(t,X)dw(t).(2.16)

We suppose that a(t, x), b(t, x), ∂b∂x (t, x) are continuous for t0 ≤ t ≤ T, x ∈ R,
and there exists a positive constant L such that

|a(t, y)− a(t, x)| ≤ L|y − x|,
∣∣∣∣ ∂b∂x (t, x)

∣∣∣∣ ≤ L, t0 ≤ t ≤ T, x, y ∈ R.(2.17)

Note that below the same letter L (or K, or C) is used for various constants.
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Consider the implicit one-step approximation (cf. (2.9))

X̄ = x+ a(t, X̄)h− b(t, x) ∂b
∂x
(t, x)h+ b(t, X̄)ζh

√
h,(2.18)

where ζh is defined by (2.7) with Ah =
√
2| lnh| for definiteness.

Lemma 2.4. There exist constants K > 0 and h0 > 0 such that for any h ≤
h0, t0 ≤ t ≤ T, x ∈ R (2.18) has a unique solution X̄ which satisfies the inequality

|X̄ − x| ≤ K(1 + |x|)
(
|ζh|
√
h+ h

)
.(2.19)

The solution X̄ of (2.18) can be found by the method of simple iteration with x
as the initial approximation.

Proof. For any fixed t, x, and h, let us introduce the function

ϕ(z) = x+ a(t, z)h− b(t, x) ∂b
∂x
(t, x)h+ b(t, z)ζh

√
h.

Then (2.18) can be written as

X̄ = ϕ(X̄).

There is a positive constant C such that for any z ∈ R
|ϕ(z)− x| ≤ |a(t, x)|h+ |a(t, z)− a(t, x)|h+ |b(t, x)||ζh|

√
h+ |b(t, z)− b(t, x)||ζh|

√
h

+

∣∣∣∣b(t, x) ∂b∂x (t, x)
∣∣∣∣h ≤ C(1 + |x|)(|ζh|√h+ h)+ L|z − x|(|ζh|√h+ h) .

Further, for any z1, z2 ∈ R

|ϕ(z2)− ϕ(z1)| ≤ L|z2 − z1|
(
|ζh|
√
h+ h

)
.

Clearly, there exist positive constants K and h0 such that for any h ≤ h0, x ∈ R

L
(
|ζh|
√
h+ h

)
< 1,

and if

|z − x| ≤ K(1 + |x|)
(
|ζh|
√
h+ h

)
,

then

|ϕ(z)− x| ≤ K(1 + |x|)
(
|ζh|
√
h+ h

)
.

Let us note that the constants K in the last two inequalities are the same. Now the
lemma follows from the contraction mapping principle.

In addition to (2.17) suppose that there exist continuous ∂a/∂t, ∂b/∂t, and
∂2b/∂x2 and the inequalities∣∣∣∣∂a∂t (t, x)

∣∣∣∣ ≤ L(1 + |x|),
∣∣∣∣∂b∂t (t, x)

∣∣∣∣ ≤ L(1 + |x|), t0 ≤ t ≤ T, x ∈ R(2.20)

hold.
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Theorem 2.5. Assume (2.17) and (2.20). Let there exist δ > 0 such that if
|y − x| ≤ δ(1 + |x|), then the inequality∣∣∣∣b(t, x) ∂2b

∂x2
(t, y)

∣∣∣∣ ≤ L, t0 ≤ t ≤ T(2.21)

holds.
Then the implicit method based on the one-step approximation (2.18) converges

in mean-square with the order 1/2.
Proof. Let X̂ be the Euler approximation for (2.16):

X̂ = x+ a(t, x)h+ b(t, x)∆w(h).

Using the condition (2.17) only, we get

E|X̄ − X̂|2 ≤ E
∣∣∣∣a(t, X̄)h− a(t, x)h+ b(t, X̄)ζh√h− b(t, x)∆w(h)− b(t, x) ∂b∂x (t, x)h

∣∣∣∣
2

≤ LE|a(t, X̄)− a(t, x)|2h2 + LE|b(t, X̄)− b(t, x)|2ζ2hh

+Lb2(t, x)E(ζh − ξ)2h+ L
∣∣∣∣b(t, x) ∂b∂x (t, x)

∣∣∣∣
2

h2

≤ LE|X̄ − x|2h2 + LE|X̄ − x|2ζ2hh+ L(1 + |x|)2E(ζh − ξ)2h+ L(1 + |x|)2h2.

It follows from here, Lemma 2.4, the inequality Eζ4 < Eξ4 = 3, and (2.6) that

E|X̄ − X̂|2 ≤ L(1 + |x|)2h2.(2.22)

Now let us proceed to the evaluation of E(X̄ − X̂). We have

|E(X̄ − X̂)| ≤ |Ea(t, X̄)− a(t, x)|h+
∣∣∣∣E(b(t, X̄)− b(t, x))ζh√h− b(t, x) ∂b∂x (t, x)h

∣∣∣∣ .
(2.23)

Due to Lemma 2.4, E|X̄ − x| ≤ K(1 + |x|)(E|ζh|
√
h+ h). Then

|Ea(t, X̄)− a(t, x)|h ≤ C(1 + |x|)h3/2.(2.24)

We have

(b(t, X̄)− b(t, x))ζh
√
h− b(t, x) ∂b

∂x
(t, x)h(2.25)

=
∂b

∂x
(t, x+ θ(X̄ − x)) · (X̄ − x)ζh

√
h− b(t, x) ∂b

∂x
(t, x)h

=
∂b

∂x
(t, x+ θ(X̄ − x)) ·

(
a(t, X̄)h+ b(t, X̄)ζh

√
h− b(t, x) ∂b

∂x
(t, x)h

)
ζh
√
h

− b(t, x) ∂b
∂x
(t, x)h

=
∂b

∂x
(t, x+ θ(X̄ − x)) ·

(
a(t, X̄)− b(t, x) ∂b

∂x
(t, x)h

)
ζhh

3/2

+
∂b

∂x
(t, x+ θ(X̄ − x)) · b(t, X̄)ζ2hh− b(t, x)

∂b

∂x
(t, x)h,
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where 0 ≤ θ ≤ 1.
Since |X̄ − x| ≤ ρ(1 + |x|), where ρ → 0 as h → 0, we get |X̄| ≤ |x|+ |X̄ − x| ≤

K(1 + |x|) for all sufficiently small h. Therefore∣∣∣∣E ∂b∂x (t, x+ θ(X̄ − x)) · a(t, X̄)ζhh3/2

∣∣∣∣ ≤ KE|a(t, X̄)ζh|h3/2(2.26)

≤ KE(1 + |X̄|)|ζh|h3/2 ≤ K(1 + |x|)h3/2.

Clearly, ∣∣∣∣E ∂b∂x (t, x+ θ(X̄ − x)) · b(t, x) ∂b∂x (t, x)ζhh3/2

∣∣∣∣ ≤ K(1 + |x|)h3/2.

Let us estimate the last two terms in (2.25). We obtain

∂b

∂x
(t, x+ θ(X̄ − x)) · b(t, X̄)ζ2hh− b(t, x)

∂b

∂x
(t, x)h

=

(
∂b

∂x
(t, x+ θ(X̄ − x))− ∂b

∂x
(t, x)

)
b(t, X̄)ζ2hh

+
∂b

∂x
(t, x)(b(t, X̄)− b(t, x))ζ2hh+

∂b

∂x
(t, x)b(t, x)(ζ2h − 1)h

=
∂2b

∂x2
(t, x+ θ1(X̄ − x)) · θ(X̄ − x) · b(t, X̄)ζ2hh

+
∂b

∂x
(t, x)

∂b

∂x
(t, x+ θ(X̄ − x)) · (X̄ − x)ζ2hh+

∂b

∂x
(t, x)b(t, x)(ζ2h − 1)h,

where 0 ≤ θ, θ1 ≤ 1. Due to Lemma 2.4, we get |x + θ1(X̄ − x) − X̄| ≤ |X̄ − x| ≤
K(|ζh|

√
h + h)(1 + |x|). For all sufficiently small h we have K(|ζh|

√
h + h) < δ and

consequently due to (2.21)∣∣∣∣ ∂2b

∂x2
(t, x+ θ1(X̄ − x)) · b(t, X̄)

∣∣∣∣ ≤ L.(2.27)

Using (2.27), the conditions (2.17), and Lemmas 2.1 and 2.4, we obtain for the
last two terms in (2.25)∣∣∣∣E ∂b∂x (t, x+ θ(X̄ − x)) · b(t, X̄)ζ2hh− b(t, x) ∂b∂x (t, x)h

∣∣∣∣ ≤ K(1 + |x|)h3/2.(2.28)

Thus, (2.23)–(2.28) give

|E(X̄ − X̂)| ≤ K(1 + |x|)h3/2.(2.29)

It follows from (2.22) and (2.29) (see [10]) that the method based on (2.18) is of
the mean-square order 1/2.

Remark 2.1. The condition (2.21) is satisfied if, for instance,

|b(t, x)| ≤ L,
∣∣∣∣ ∂2b

∂x2
(t, x)

∣∣∣∣ ≤ L, t0 ≤ t ≤ T, x ∈ R(2.30)

or ∣∣∣∣ ∂2b

∂x2
(t, x)

∣∣∣∣ ≤ L

1 + |x| , t0 ≤ t ≤ T, x ∈ R(2.31)
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holds.
Let us underline that the conditions of Theorem 2.5 are not necessary and the

method is applicable more widely. This is true for other methods proposed in the
paper as well.

Remark 2.2. Let the function c(t, x) := b(t, x) ∂b∂x (t, x) satisfy the condition

|c(t, y)− c(t, x)| ≤ L|y − x|.(2.32)

Consider the implicit one-step approximation

X̄ = x+ a(t, X̄)h− b(t, X̄) ∂b
∂x
(t, X̄)h+ b(t, X̄)ζh

√
h.(2.33)

It is not difficult to prove that Theorem 2.5 is true for the implicit method based
on (2.33) provided (2.32) is fulfilled.

2.3. General construction. Let

dXi = ai(t,X)dt+

m∑
r=1

bir(t,X)dwr(t), i = 1, . . . , d.(2.34)

Introduce the following one-step approximation:

X̄i = xi +

l∑
k=1

λika
i(t+ νikh, (1− αik1)x1 + αik1X̄

1, . . . , (1− αikd)xd + αikdX̄d)h

(2.35)

+

m∑
r=1

l∑
k=1

µirkb
i
r(t+ ν

i
rkh, (1− βirk1)x1 + βirk1X̄

1, . . . , (1− βirkd)xd + βirkdX̄d)ζrh
√
h

+Ai,

where 0 ≤ ν, α, β ≤ 1, λ, µ ≥ 0, ∑l
k=1 λ

i
k = 1,

∑l
k=1 µ

i
rk = 1, i = 1, . . . , d, l is a

positive integer, and Ai are some expressions to be found. Substituting the Euler-type
approximation

X̂j = xj + aj(t, x)h+

m∑
s=1

bjs(t, x)ζsh
√
h

instead of X̄j , j = 1, . . . , d, in bir, we obtain

bir(t+ ν
i
rkh, (1− βirk1)x1 + βirk1X̄

1, . . . , (1− βirkd)xd + βirkdX̄d)

≈ bir(t, x) +
d∑
j=1

∂bir
∂xj

(t, x)βirkj

m∑
s=1

bjs(t, x)ζsh
√
h.

It is clear from here that either

Ai = −
m∑
r=1

l∑
k=1

µirk

d∑
j=1

∂bir
∂xj

(t, x)βirkj

m∑
s=1

bjs(t, x)ζsh
√
hζrh
√
h(2.36)

or

Ai = −
m∑
r=1

l∑
k=1

µirk

d∑
j=1

∂bir
∂xj

(t, x)βirkjb
j
r(t, x)h(2.37)
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can be put in (2.35).
Substituting one of these expressions in (2.35), we obtain a multiparameter family

of implicit methods. It is also possible to introduce implicitness in Ai by changing t, x
as it was done in the terms connecting with ai. Moreover, the family can be extended
if some ai or bir are represented as sums of terms. In this case the coefficients λ,
ν, α, µ, β can differ for different terms.

It can be proved that under appropriate conditions of smoothness and bound-
edness on the coefficients of (2.34) the method based on the one-step approximation
(2.35) with Ai as in (2.36) or (2.37) is of the mean-square order 1/2. The proof is
analogous to the proof of Theorem 2.5.

Here and below we will not precisely indicate conditions on the coefficients a and
br assuming that appropriate conditions on the coefficients hold. These conditions
can be restored using the general theory [10] and Theorem 2.5. (See also Remarks 2.1
and 2.2.)

Let us give an example of fully implicit methods:

X̄ = x+ a(t, X̄)h−
m∑
r=1

d∑
j=1

∂br
∂xj

(t, X̄)bjr(t, X̄)h+

m∑
r=1

br(t, X̄)ζrh
√
h.

Further, in the case of SDEs in the sense of Stratonovich,

dX = a(t,X)dt+

m∑
r=1

br(t,X) ◦ dwr(t),(2.38)

we construct the following derivative-free fully implicit method (midpoint method):

Xk+1 = Xk + a

(
tk +

h

2
,
Xk +Xk+1

2

)
h+

m∑
r=1

br

(
tk,
Xk +Xk+1

2

)
(ζrh)k

√
h.

(2.39)

For bir = 0, this method coincides with the well-known deterministic midpoint
scheme, which has the second order of convergence.

In the general case the method (2.39) is of the mean-square order 1/2. In the
commutative case, i.e., when Λibr = Λrbi (here the operator Λr := (br, ∂/∂x)), or in
the case of a system with one noise (i.e., m = 1), the midpoint method (2.39) has the
first mean-square order of convergence which is stated in the next theorem. (Its proof
is available in the preprint [13].)

Theorem 2.6. Suppose that the commutative conditions Λibr = Λrbi, i, r =
1, . . . ,m, are fulfilled. Let ζrh be defined by (2.7) with Ah =

√
4| lnh|. Then the

method (2.39) for the system (2.38) has the first mean-square order of convergence.

3. Symplectic methods for the general Hamiltonian system. Here, using
the results of the previous section, we construct symplectic methods for the general
Hamiltonian system with multiplicative noise (1.1), (1.3). Its Ito form reads

dP = fdt+
1

2

m∑
r=1

n∑
j=1

∂σr
∂pj

σjrdt+
1

2

m∑
r=1

n∑
j=1

∂σr
∂qj

γjrdt+

m∑
r=1

σrdwr(t),(3.1)

dQ = gdt+
1

2

m∑
r=1

n∑
j=1

∂γr
∂pj

σjrdt+
1

2

m∑
r=1

n∑
j=1

∂γr
∂qj

γjrdt+

m∑
r=1

γrdwr(t).
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Introduce the following implicit method:

Pk+1 = Pk + fh− 1
2

m∑
r=1

n∑
j=1

(
∂σr
∂pj

σjr −
∂σr
∂qj

γjr

)
h+

m∑
r=1

σr · (ζrh)k
√
h,(3.2)

Qk+1 = Qk + gh− 1
2

m∑
r=1

n∑
j=1

(
∂γr
∂pj

σjr −
∂γr
∂qj

γjr

)
h+

m∑
r=1

γr · (ζrh)k
√
h,

where all the functions have t, Pk+1, Qk as their arguments.
Theorem 3.1. The implicit method (3.2) for the system (3.1), (1.3) (or for

system (1.1), (1.3)) is symplectic and of the mean-square order 1/2.
Proof. The method (3.2) belongs to the family (2.35) and, consequently, the

assertion about its order of convergence follows from the previous section. Let us prove
symplecticness of the method. It is convenient to write the one-step approximation
corresponding to (3.2) in the form

(3.3)

P̄ i = pi − ∂H0

∂qi
h− 1

2

m∑
r=1

n∑
j=1

∂2Hr
∂qi∂pj

∂Hr
∂qj

h− 1
2

m∑
r=1

n∑
j=1

∂2Hr
∂qi∂qj

∂Hr
∂pj

h−
m∑
r=1

∂Hr
∂qi

ζrh
√
h,

Q̄i = qi +
∂H0

∂pi
h+

1

2

m∑
r=1

n∑
j=1

∂2Hr
∂pi∂pj

∂Hr
∂qj

h+
1

2

m∑
r=1

n∑
j=1

∂2Hr
∂pi∂qj

∂Hr
∂pj

h+

m∑
r=1

∂Hr
∂pi

ζrh
√
h,

where i = 1, . . . , n and all the functions have t, P̄ , q as their arguments.
Introduce the following function F (t, p, q) (h, ζrh are fixed here):

F (t, p, q) = H0(t, p, q)h+
1

2

m∑
r=1

n∑
j=1

∂Hr
∂qj

(t, p, q)
∂Hr
∂pj

(t, p, q)h+

m∑
r=1

Hr(t, p, q)ζrh
√
h.

Then (3.3) can be written as

P̄ i = pi − ∂F
∂qi
(t, P̄ , q),(3.4)

Q̄i = qi +
∂F

∂pi
(t, P̄ , q).

We have (the arguments everywhere are t, P̄ , q)

n∑
i=1

dP̄ i ∧ dQ̄i =
n∑
i=1

dP̄ i ∧

dqi + n∑

j=1

F ′′
pipjdP̄

j +

n∑
j=1

F ′′
piqjdq

j




=
n∑
i=1

dP̄ i ∧ dqi +
n∑
i=1

n∑
j=1

F ′′
pipjdP̄

i ∧ dP̄ j +
n∑
i=1

n∑
j=1

F ′′
piqjdP̄

i ∧ dqj .

Since dP̄ i ∧ dP̄ j = −dP̄ j ∧ dP̄ i, we get
n∑
i=1

dP̄ i ∧ dQ̄i =
n∑
i=1

dP̄ i ∧ dqi +
n∑
i=1

n∑
j=1

F ′′
piqjdP̄

i ∧ dqj(3.5)

=

n∑
i=1

dP̄ i ∧ dqi +
n∑
i=1

n∑
j=1

F ′′
qipjdP̄

j ∧ dqi.
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Further,

dP̄ i = dpi −
n∑
j=1

F ′′
qipjdP̄

j −
n∑
j=1

F ′′
qiqjdq

j .

Substituting
∑n
j=1 F

′′
qipjdP̄

j from here in (3.5), we obtain

n∑
i=1

dP̄ i ∧ dQ̄i =
n∑
i=1

dP̄ i ∧ dqi +
n∑
i=1


dpi − dP̄ i − n∑

j=1

F ′′
qiqjdq

j


 ∧ dqi

=

n∑
i=1

dpi ∧ dqi −
n∑
i=1

n∑
j=1

F ′′
qiqjdq

j ∧ dqi =
n∑
i=1

dpi ∧ dqi.

A more general symplectic method for the Hamiltonian system (1.1), (1.3) has
the form

Pk+1 = Pk + f(tk + βh, αPk+1 + (1− α)Pk, (1− α)Qk+1 + αQk)h(3.6)

+

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂σr
∂pj

σjr −
∂σr
∂qj

γjr

)
h+

m∑
r=1

σr · (ζrh)k
√
h,

Qk+1 = Qk + g(tk + βh, αPk+1 + (1− α)Pk, (1− α)Qk+1 + αQk)h

+

(
1

2
− α

) m∑
r=1

n∑
j=1

(
∂γr
∂pj

σjr −
∂γr
∂qj

γjr

)
h+

m∑
r=1

γr · (ζrh)k
√
h,

where σr, γr, r = 1, . . . ,m, and their derivatives are calculated at (tk, αPk+1 + (1−
α)Pk, (1− α)Qk+1 + αQk), and α, β ∈ [0, 1] are parameters.

Using arguments similar to ones in the proof of Theorem 3.1, we obtain the
following theorem.

Theorem 3.2. The implicit method (3.6) for the system (1.1), (1.3) (or for
system (3.1), (1.3)) is symplectic and of the mean-square order 1/2.

The method (3.2) is a particular case of (3.6) when α = 1, β = 0. If α = β = 1/2
the method (3.6) becomes the midpoint method (cf. (2.39)):

Pk+1 = Pk + f

(
tk +

h

2
,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
h(3.7)

+
m∑
r=1

σr

(
tk,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
(ζrh)k

√
h,

Qk+1 = Qk + g

(
tk +

h

2
,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
h

+
m∑
r=1

γr

(
tk,
Pk + Pk+1

2
,
Qk +Qk+1

2

)
(ζrh)k

√
h.

Remark 3.1. In the commutative case, i.e., when Λibr = Λrbi, or in the case of
a system with one noise (i.e., m = 1), the symplectic method (3.7) for (1.1), (1.3) has
the first mean-square order of convergence.

Remark 3.2. In the case of Hamiltonians that are separable in the noise part,
i.e., when Hr(t, p, q) = Ur(t, q) + Vr(t, p), r = 1, . . . ,m, we can obtain symplectic
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methods for (1.1), (1.3) which are explicit in stochastic terms and do not need trun-
cated random variables. For instance, (3.2) acquires the form

Pk+1 = Pk + f(tk, Pk+1, Qk)h(3.8)

+
h

2

m∑
r=1

n∑
j=1

∂σr
∂qj

(tk, Qk) · γjr(Pk+1) +

m∑
r=1

σr(tk, Qk)∆kwr,

Qk+1 = Qk + g(tk, Pk+1, Qk)h

− h
2

m∑
r=1

n∑
j=1

∂γr
∂pj

(Pk+1) · σjr(tk, Qk) +
m∑
r=1

γr(tk, Pk+1)∆kwr.

Of course, if it is necessary, fully implicit methods which require truncated random
variables can be used in the case of separable Hamiltonians as well.

Remark 3.3. It is possible to construct fully explicit symplectic methods for the
following partitioned system:

dP = f(t, Q)dt+
m∑
r=1

σr(t, Q) ◦ dwr(t), P (t0) = p,(3.9)

dQ = g(P )dt+

m∑
r=1

γr(t)dwr(t), Q(t0) = q,

with f i = −∂U0/∂q
i, gi = ∂V0/∂p

i, σir = −∂Ur/∂qi, r = 1, . . . ,m, i = 1, . . . , n.
For instance, the explicit partitioned Runge–Kutta (PRK) method (cf. (4.5)–

(4.6))

Q1 = Qk + αhg(Pk),(3.10)

P1 = Pk + hf(tk + αh,Q1) +
h

2

m∑
r=1

n∑
j=1

∂σr
∂qj

(tk,Q1) · γjr(tk),

Q2 = Q1 + (1− α)hg(P1),

Pk+1 = P1 +

m∑
r=1

σr(tk,Q2)∆kwr,(3.11)

Qk+1 = Q2 +

m∑
r=1

γr(tk)∆kwr, k = 0, . . . , N − 1,

with the parameter 0 ≤ α ≤ 1, is symplectic and of the mean-square order 1/2.
A particular case of the system (3.9) is considered in the next section, where

explicit symplectic methods of a higher order are proposed.

4. Explicit symplectic methods in the case of separable Hamiltonians.
Consider a special case of the Hamiltonian system (1.1), (1.3) such that

H0(t, p, q) = V0(p) + U0(t, q), Hr(t, p, q) = Ur(t, q), r = 1, . . . ,m.(4.1)

In this case we get the following system in the sense of Stratonovich:

dP = f(t, Q)dt+

m∑
r=1

σr(t, Q) ◦ dwr(t), P (t0) = p,(4.2)

dQ = g(P )dt, Q(t0) = q,
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with

f i = −∂U0/∂q
i, gi = ∂V0/∂p

i, σir = −∂Ur/∂qi, r = 1, . . .m, i = 1, . . . , n.

(4.3)

We note that it is not difficult to consider a slightly more general separable Hamilto-
nian H0(t, p, q) = V0(t, p) + U0(t, q), but we restrict ourselves to H0 from (4.1).

It is obvious that the system (4.2) has the same form in the sense of Ito.
For V0(p) =

1
2 (M

−1p, p) with M a constant, symmetric, invertible matrix, the
system (4.2) takes the form

dP = f(t, Q)dt+

m∑
r=1

σr(t, Q)dwr(t), P (t0) = p,(4.4)

dQ =M−1Pdt, Q(t0) = q.

This system can be written as a second-order differential equation with multiplicative
noise. Some physical applications of stochastic symplectic integration for such systems
are discussed in [14].

Due to specific features of the system (4.2), (4.3) we have succeeded in construc-
tion of explicit partitioned Runge-Kutta (PRK) methods of a higher order.

4.1. First-order methods. A PRK method for (4.2) has the form (cf. (3.10)–
(3.11)):

Q1 = Qk + αhg(Pk), P1 = Pk + hf(tk + αh,Q1),(4.5)

Q2 = Q1 + (1− α)hg(P1),

Pk+1 = P1 +

m∑
r=1

σr(tk,Q2)∆kwr, Qk+1 = Q2, k = 0, . . . , N − 1,(4.6)

where 0 ≤ α ≤ 1 is a parameter.
Theorem 4.1. The explicit method (4.5)–(4.6) for the system (4.2) with (4.3) is

symplectic and of the first mean-square order.
Proof. In the case of the system (4.2) the operators Λr take the form Λr =

(σr, ∂/∂p). Since σr do not depend on p, we get Λiσj = 0. It is known [10] that in
such a case the Euler method has the first mean-square order of accuracy. Comparing
the method (4.5)–(4.6) with the Euler method, it is not difficult to get that the method
(4.5)–(4.6) is of the first mean-square order as well.

Due to (4.3), ∂σir/∂q
j = ∂σjr/∂q

i. Using this, we obtain dPk+1 ∧ dQk+1 = dP1 ∧
dQ2. It is easy to prove that dP1 ∧ dQ2 = dP1 ∧ dQ1 = dPk ∧ dQk. Therefore the
method (4.5)–(4.6) is symplectic.

Remark 4.1. By swapping the roles of p and q, we can propose the following
symplectic method of the first mean-square order for the system (4.2) with (4.3):

P = Pk + αhf(tk, Qk), Q = Qk + hg(P),(4.7)

Pk+1 = P + (1− α)hf(tk+1,Q) +
m∑
r=1

σr(tk,Q)∆kwr, Qk+1 = Q.(4.8)
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4.2. Methods of order 3/2. Consider the relations

Pi = p+ h
s∑
j=1

αijf(t+ cjh,Qj) +
s∑
j=1

m∑
r=1

σr(t+ djh,Qj)
(
λijϕr + µijψr

)
,(4.9)

Qi = q + h
s∑
j=1

α̂ijg(Pj), i = 1, . . . , s,

P̄ = p+ h

s∑
i=1

βif(t+ cih,Qi) +
s∑
i=1

m∑
r=1

σr(t+ dih,Qi) (νiϕr + κiψr) ,(4.10)

Q̄ = q + h

s∑
i=1

β̂ig(Pi),

where ϕr, ψr do not depend on p and q, the parameters αij , α̂ij , βi, β̂i, λij , µij , νi,
κi satisfy the conditions

βiα̂ij + β̂jαji − βiβ̂j = 0,(4.11)

νiα̂ij + β̂jλji − νiβ̂j = 0, κiα̂ij + β̂jµji − κiβ̂j = 0, i, j = 1, . . . , s,

and ci, di are arbitrary parameters.
If σr ≡ 0 the relations (4.9)–(4.10) coincide with a general form of s-stage PRK

methods for deterministic differential equations. (See, e.g., [5, p. 34].) It is known
[9, 5] that the symplectic condition holds for P̄ , Q̄ from (4.9)–(4.10) with (4.11) in
the case of σr ≡ 0. By a generalization of the proof of Theorem 6.2 from [5], we prove
the following lemma. (Another generalization is given in [3].)

Lemma 4.2. The relations (4.9)–(4.10) with conditions (4.11) preserve symplectic
structure, i.e., dP̄ ∧ dQ̄ = dp ∧ dq.

Proof. Denote for awhile: fi = f(t + cih,Qi), gi = g(Pi), σri = σr(t + dih,Qi).
We get

dP̄ ∧ dQ̄ = dp ∧ dq + h
s∑
j=1

β̂jdp ∧ dgj + h
s∑
i=1

βidfi ∧ dq + h2
s∑
i=1

s∑
j=1

βiβ̂jdfi ∧ dgj

(4.12)

+

s∑
i=1

m∑
r=1

(νiϕr + κiψr) dσri ∧ dq + h
s∑
i=1

s∑
j=1

m∑
r=1

(νiϕr + κiψr) β̂jdσri ∧ dgj .

Then we express dp ∧ dgj from

dPj ∧ dgj = dp ∧ dgj + h
s∑
i=1

αjidfi ∧ dgj +
s∑
i=1

m∑
r=1

(
λjiϕr + µjiψr

)
dσri ∧ dgj

and substitute it in (4.12). Analogously, we act with dfi ∧ dq and dσri ∧ dq finding
them from the expressions for dfi ∧ dQi and dσri ∧ dQi. As a result, using (4.11), we
obtain

dP̄ ∧ dQ̄ = dp ∧ dq + h
s∑
i=1

β̂idPi ∧ dgi + h
s∑
i=1

βidfi ∧ dQi

+

s∑
i=1

m∑
r=1

(νiϕr + κiψr) dσri ∧ dQi.
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Taking into account that the wedge product is skew-symmetric, the vector func-
tions f, g, σr are gradients, f, σr do not depend on p, and g does not depend on q, it
is not difficult to see that each of the terms dPi ∧ dgi, dfi ∧ dQi, dσri ∧ dQi vanishes.
Therefore dP̄ ∧ dQ̄ = dp ∧ dq.

Introduce the following 2-stage explicit PRK method for the system (4.2), (4.3):

Q1 = Qk, P1 = Pk +
h

4
f(tk,Q1) +

1

2

m∑
r=1

σr(tk,Q1) (3(Jr0)k −∆kwr) ,(4.13)

Q2 = Q1 +
2

3
hg(P1),

P2 = P1 +
3

4
hf

(
tk +

2

3
h,Q2

)
+
3

2

m∑
r=1

σr

(
tk +

2

3
h,Q2

)
(−(Jr0)k +∆kwr) ,

Pk+1 = P2, Qk+1 = Q2 +
h

3
g(P2), k = 0, . . . , N − 1,(4.14)

where

Jr0 :=
1

h

∫ t+h

t

(wr(ϑ)− wr(t)) dϑ.(4.15)

Theorem 4.3. The explicit PRK method (4.13)–(4.14) for system (4.2), (4.3)
preserves symplectic structure and has the mean-square order 3/2.

Proof. The method (4.13)–(4.14) has the form of (4.9)–(4.10), and its parameters
satisfy the conditions (4.11). Then, Lemma 4.2 implies that this method preserves
symplectic structure.

Now let us prove mean-square order of convergence of (4.13)–(4.14). To this end,
introduce the one-step approximation for (4.2):

P̃ = p+

m∑
r=1

σr∆wr + hf +

m∑
r=1

[
∂σr
∂t

+
n∑
i=1

gi
∂σr
∂qi

]
I0r +

h2

2

[
∂f

∂t
+

n∑
i=1

gi
∂f

∂qi

]
,

(4.16)

Q̃ = q + hg +

m∑
r=1

n∑
i=1

σir
∂g

∂pi
Ir0 +

h2

2


 n∑
i=1

f i
∂g

∂pi
+
1

2

m∑
r=1

n∑
i,j=1

σirσ
j
r

∂2g

∂pi∂pj


 ,

where

I0r =

∫ t+h

t

(ϑ− t) dwr(ϑ), Ir0 =

∫ t+h

t

(wr(ϑ)− wr(t)) dϑ = hJr0,(4.17)

and all the coefficients are calculated at (t, p, q). We note that

(∆wr − Jr0)h = I0r.
Using the general theory of numerical integration of SDEs [10], it is not difficult

to show that the method based on (4.16) is of the mean-square order 3/2. Our nearest
aim is to prove that the one-step approximation P̄ , Q̄ corresponding to the method
(4.13)–(4.14) is such that

∣∣∣∣E
[
P̄ − P̃
Q̄− Q̃

]∣∣∣∣ = O(h3),

(
E

[
P̄ − P̃
Q̄− Q̃

]2)1/2

= O(h2).(4.18)
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Expanding the right-hand sides of the approximation P̄ , Q̄ about (t, p, q), we
obtain

P̄ = p+ hf +
h2

2

∂f

∂t
+
3

4
h

n∑
i=1

∆Qi2
∂f

∂qi
+

m∑
r=1

σr∆wr(4.19)

+
3

2

m∑
r=1

n∑
i=1

∆Qi2
∂σr
∂qi

(∆wr − Jr0) + h
m∑
r=1

∂σr
∂t

(∆wr − Jr0) + ρ1,

Q̄ = q + hg +
h

3

n∑
i=1

(
2∆Pi1 +∆Pi2

) ∂g
∂pi

+
h

6

n∑
i,j=1

(2∆Pi1∆Pj1 +∆Pi2∆Pj2)
∂2g

∂pi∂pj
+ ρ2,

∆P1 := P1 − p = h

4
f +

1

2

m∑
r=1

σr (3Jr0 −∆wr) ,

∆Q2 := Q2 − q = 2

3
hg +

2

3
h

n∑
i=1

∆Pi1
∂g

∂pi
+
h

3

n∑
i,j=1

∆Pi1∆Pj1
∂2g

∂pi∂pj
+ r1,

∆P2 := P2 − p = hf +
m∑
r=1

σr∆wr + r2,

where all the coefficients are calculated at (t, p, q).
Due to properties of the Wiener process and Ito integrals, we have

E∆wi = 0, E∆wi∆wj = δijh, E∆wi∆wj∆wk = 0, E (∆wi)
4
= 3h2,(4.20)

EJi0 = 0, EJi0Jj0 = δij
h

3
, EJi0Jj0Jk0 = 0, E (Ji0)

4
=
h2

3
,

E∆wiJj0 = δij
h

2
, E∆wi∆wjJk0 = 0, E∆wiJj0Jk0 = 0.

Then, under appropriate conditions on smoothness and boundedness of the coef-
ficients of (4.2), we get

|Eρi| = O(h3), E (ρi)
2
= O(h5), i = 1, 2,(4.21)

|Er1| = O(h3), E (r1)
2
= O(h5), |Er2| = O(h2), E (r2)

2
= O(h3).

In addition to (4.20) we note that

E (∆wr − Jr0) (3Jr0 −∆wr) = 0, E (3Jr0 −∆wr)2 = h.(4.22)

Using (4.20)–(4.22), we obtain from (4.19)

P̄ = p+

m∑
r=1

σr∆wr + hf +

m∑
r=1

[
∂σr
∂t

+
n∑
i=1

gi
∂σr
∂qi

]
I0r +

h2

2

[
∂f

∂t
+

n∑
i=1

gi
∂f

∂qi

]
+R1,

Q̄ = q + hg +

m∑
r=1

n∑
i=1

σir
∂g

∂pi
Ir0 +

h2

2

[
n∑
i=1

f i
∂g

∂pi
+
1

2

m∑
r=1

n∑
i,j=1

σirσ
j
r

∂2g

∂pi∂pj

]
+R2
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with Ri, i = 1, 2, such that

|ERi| = O(h3), E (Ri)
2
= O(h4), i = 1, 2.

This implies (4.18). It follows from (4.18) that the method (4.13)–(4.14) is of the
mean-square order 3/2.

Remark 4.2. The random variables ∆kwr(h), (Jr0)k have a Gaussian joint dis-
tribution, and they can be simulated at each step by 2m independent N (0, 1)-distributed
random variables ξrk and ηrk, r = 0, . . . ,m :

∆kwr(h) = ξrk
√
h, (Jr0)k =

(
ξrk/2 + ηrk/

√
12
)√

h .

As a result, the method (4.13)–(4.14) takes the constructive form.
Remark 4.3. It is very unusual that the direct expansion of (4.13)–(4.14) does

not contain the habitual term h2

4

∑m
r=1

∑n
i,j=1

∂2g
∂pi∂pj σ

i
rσ
j
r. The similar term in the

expansion contains some combinations of ∆wr and Jr0 instead of h. (See a similar
remark in [3].)

Remark 4.4. In the case of σr = 0, r = 1, . . . ,m, the method (4.13)–(4.14)
coincides with the well-known deterministic symplectic PRK method of the second
order. Adapting other explicit deterministic second-order PRK methods from [5, 9],
it is possible to construct other explicit symplectic methods of the order 3/2 for the
system (4.2), (4.3).

Remark 4.5. In the case of a more general system than (4.2) methods of the
order 3/2 require simulation of repeated Ito integrals which is a laborious problem from
the computational point of view. We do not consider such methods in the paper. (See
also the introduction.)

Lemma 4.2 can be generalized for the general separable case, i.e., for the system
(1.1), (1.3) with Hr = Vr(p) + Ur(t, q), r = 0, 1, . . . ,m, and it can also be generalized
for the general stochastic Hamiltonian system (1.1), (1.3). In the case of systems with
one noise repeated Ito integrals can effectively be simulated, and generalizations of
Lemma 4.2 can be used for constructing high-order symplectic methods for Hamilto-
nian systems with one noise (i.e., when m = 1).

5. Numerical tests.

5.1. Kubo oscillator. The system of SDEs in the sense of Stratonovich (Kubo
oscillator)

dX1 = −aX2dt− σX2 ◦ dw(t), X1(0) = x1,(5.1)

dX2 = aX1dt+ σX1 ◦ dw(t), X2(0) = x2,

is often used for testing numerical methods. (See, e.g., [15], where some nonsymplectic
stochastic methods based on deterministic symplectic methods are used.) Here a and
σ are constants, and w(t) is a one-dimensional standard Wiener process.

The phase flow of this system preserves symplectic structure. Moreover, the

quantity H(x1, x2) =
(
x1
)2
+
(
x2
)2
is conservative for this system; i.e.,

H(X1(t), X2(t)) = H(x1, x2) for t ≥ 0.

This means that a phase trajectory of (5.1) belongs to the circle with the center at
the origin and with the radius

√H(x1, x2).
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We test here three methods. In application to (5.1) the symplectic PRK method
(3.8) takes the following form:

X1
k+1 = X

1
k − aX2

kh−
σ2

2
X1
k+1h− σX2

k∆kw,(5.2)

X2
k+1 = X

2
k + aX

1
k+1h+

σ2

2
X2
kh+ σX

1
k+1∆kw.

This method is implicit in the deterministic part only.
The midpoint method (3.7) applied to the system with one noise (5.1) reads

X1
k+1 = X

1
k − a

X2
k +X

2
k+1

2
h− σX

2
k +X

2
k+1

2
(ζh)k

√
h,(5.3)

X2
k+1 = X

2
k + a

X1
k +X

1
k+1

2
h+ σ

X1
k +X

1
k+1

2
(ζh)k

√
h.

This is a fully implicit method. Note that due to specific features of the system (5.1),
the formula (5.3) is valid (solvable) not only in the case of the truncated random
variable ζh but also if we put ∆kw instead of (ζh)k

√
h.

The method (5.3) is of the first mean-square order. The method (5.2) is of the
mean-square order 1/2 as well as the Euler method:

X1
k+1 = X

1
k − aX2

kh−
σ2

2
X1
kh− σX2

k∆kw,(5.4)

X2
k+1 = X

2
k + aX

1
kh−

σ2

2
X2
kh+ σX

1
k∆kw,

which, of course, is not symplectic.
Figure 1 gives approximations of a sample phase trajectory of (5.1) simulated by

the symplectic methods (5.2) and (5.3) and by the Euler method (5.4). The initial
condition is x1 = 1, x2 = 0. The corresponding exact phase trajectory belongs to the
circle with the center at the origin and with the unit radius.

We see that the Euler method is not appropriate for simulation of the oscilla-
tor (5.1) on long time intervals, while the symplectic methods preserve conservative
properties of the Kubo oscillator.

These experiments also demonstrate that the midpoint method is much more
accurate than the other methods applied. It is not difficult to check that H(x1, x2)
is conserved by the midpoint method (5.3), but it is not conserved by the symplectic
PRK method (5.2). This is similar to the deterministic case. Indeed, it is known [8, 5]
that symplectic deterministic RK methods (e.g., the midpoint scheme) conserve all
quadratic functions that are conserved by the Hamiltonian system being integrated,
while deterministic PRK methods do not possess this property.

5.2. A model for synchrotron oscillations of particles in storage rings.
In [14] a model describing synchrotron oscillations of particles in storage rings under
the influence of external fluctuating electromagnetic fields was considered. This model
can be written in the following form:

dP = −ω2 sin(Q)dt− σ1 cos(Q)dw1 − σ2 sin(Q)dw2,(5.5)
dQ = Pdt.

P and Q are scalars here. The system (5.5) is of the form (4.2), and therefore its
phase flow preserves symplectic structure.
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Fig. 1. A sample phase trajectory of (5.1) with X1(0) = 1, X2(0) = 0 obtained by the sym-
plectic method (5.2) (top left), the midpoint method (5.3) (top right), and by the Euler method (5.4)
(bottom) for a = 2, σ = 0.3, h = 0.02 on the time interval t ≤ 200.

The Euler method for (5.5) takes the form

Pk+1 = Pk − hω2 sin(Qk)− h1/2(σ1 cos(Qk)∆kw1 + σ2 sin(Qk)∆kw2),(5.6)

Qk+1 = Qk + hPk.

In application to (5.5) the explicit symplectic method (4.5)–(4.6) with α = 1 is written
as

Q = Qk + hPk,(5.7)

Pk+1 = Pk − hω2 sin(Q)− h1/2(σ1 cos(Q)∆kw1 + σ2 sin(Q)∆kw2), Qk+1 = Q.

Both methods are of the first mean-square order.
Approximations of a sample trajectory of (5.5) simulated by the symplectic

method (5.7) and the Euler method (5.6) are plotted on Figure 2. The trajectory
obtained by the symplectic method with h = 0.02 (solid line) visually coincides with
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0

4

8

0 20 40 60 t

Q

Fig. 2. A sample trajectory of (5.5) for ω = 2, σ1 = 0.2, σ2 = 0.1, h = 0.02. Solid line—the
symplectic method (5.7), dashed line—the Euler method (5.6).

the one obtained for a smaller step, e.g., for h = 0.002, using the same sample paths
for the Wiener processes; i.e., this trajectory visually coincides with the exact solu-
tion of (5.5). This figure clearly demonstrates that the Euler method (dashed line) is
unacceptable for simulation of the solution to (5.5) on a long time interval, while the
symplectic method (5.7) produces quite accurate results despite both methods having
the same mean-square order of accuracy.
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A ROBUST FINITE ELEMENT METHOD FOR
DARCY–STOKES FLOW∗

KENT ANDRE MARDAL† , XUE-CHENG TAI‡ , AND RAGNAR WINTHER§

SIAM J. NUMER. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 5, pp. 1605–1631

Abstract. Finite element methods for a family of systems of singular perturbation problems of a
saddle point structure are discussed. The system is approximately a linear Stokes problem when the
perturbation parameter is large, while it degenerates to a mixed formulation of Poisson’s equation
as the perturbation parameter tends to zero. It is established, basically by numerical experiments,
that most of the proposed finite element methods for Stokes problem or the mixed Poisson’s system
are not well behaved uniformly in the perturbation parameter. This is used as the motivation for
introducing a new “robust” finite element which exhibits this property.

Key words. singular perturbation problems, Darcy–Stokes flow, nonconforming finite elements,
uniform error estimates

AMS subject classifications. 65N12, 65N15, 65N30

PII. S0036142901383910

1. Introduction. Let Ω ⊂ R
2 be a bounded and connected polygonal domain

with boundary ∂Ω. In this paper we shall consider finite element methods for the
following singular perturbation problem:

(I − ε2∆)u− grad p = f in Ω,
divu = g in Ω,

u = 0 on ∂Ω.
(1.1)

Here ε ∈ (0, 1] is a parameter, while∆ = diag(∆,∆) is the Laplace operator on vector
fields. The vector field f and scalar field g represent the data. The problem (1.1)
admits only a solution if the function g has mean value zero on Ω and “the pressure” p
is determined only up to addition of a constant.

We note that when ε is not too small, and g = 0, this problem is simply a stan-
dard Stokes problem but with an additional nonharmful lower order term. However,
if f = 0 and ε approaches zero, then the model problem formally tends to a mixed for-
mulation of the Poisson equation with homogeneous Neumann boundary conditions.

When ε = 0 the first equation in (1.1) has the form of Darcy’s law for flow in
a homogeneous porous medium, where u is a volume averaged velocity. In fact, the
system (1.1) can be regarded as a macroscopic model for flow in an “almost porous
media,” where u and p represent volume averaged velocity and pressure, respectively.
The zero order velocity term in the first equation of (1.1) then typically represents
a Stokes drag. An attempt to derive Darcy’s law from volume averaged Stokes flow
is, for example, discussed in [16]. Generalizations of the system (1.1) have also been
proposed in the modeling of macrosegregation formation in binary alloy solidification;
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cf. [13]. Systems of the form (1.1) may also arise from time discretizations of the
Navier–Stokes equation, where the parameter ε corresponds to the square root of the
time step; cf. [4]. However, the study of such time discretizations is not the motivation
for the present paper.

The purpose of the present paper is to discuss a finite element method for the
model problem (1.1) with convergence properties that are uniform with respect to
the perturbation parameter ε. In section 2 we will introduce some notations and
discuss various properties of the model (1.1). Discretizations of the model problem
by the finite element method is described in section 3. In particular, we will state
stability conditions which are uniform with respect to the parameter ε and show, by
numerical experiments, that the standard discretizations, proposed either for ε = 1 or
ε = 0, do not satisfy these stability conditions. A new nonconforming finite element
discretization is then proposed in section 4. We show that this new discretization
is uniformly stable, and, as a consequence, we establish in section 5 error estimates
which are uniform in ε under the assumption that proper regularity estimates hold for
the solution. In section 6 we then study the asymptotic smoothness of the solution
of (1.1) as ε tends to zero. Based on these regularity results we show that, for fixed
data f and g, a uniform O(h1/2) error estimate in a suitable energy norm can be
derived.

In the final section of this paper we study an elliptic system which formally is a
generalization of (1.1). This system is given by

(I − ε2∆)u− δ−2 grad(divu− g) = f in Ω,
u = 0 on ∂Ω,

(1.2)

where ε, δ ∈ (0, 1]. By introducing p = δ−2(divu−g) this system can be alternatively
written on the mixed form

(I − ε2∆)u− grad p = f in Ω,
divu− δ2p = g in Ω,

u = 0 on ∂Ω.
(1.3)

Note that this system also has meaning when δ = 0, and in this case the system
reduces to (1.1).

The symmetric and positive definite system (1.2) is discretized by a straightfor-
ward finite element approach, utilizing the new nonconforming velocity space con-
structed earlier in this paper; i.e., the mixed system (1.3) is not introduced in the
discretization. We show, by numerical experiments and theory, that under the as-
sumption of sufficiently regular solutions we obtain error estimates which are uniform
both in ε and δ.

2. Preliminaries. We will use Hm = Hm(Ω) to denote the Sobolev space of
scalar functions on Ω with m derivatives in L2 = L2(Ω), with norm ‖ · ‖m. Further-
more, the notation ‖·‖m,K is used to indicate that the norm is defined with respect to
a domain K different from Ω. The seminorm derived from the partial derivatives of
order equal m is denoted | · |m, i.e., | · |2m = ‖ · ‖2m−‖ · ‖2m−1. The space Hm

0 = Hm
0 (Ω)

will denote the closure in Hm of C∞
0 (Ω). The dual space of Hm

0 with respect to the
L2 inner product will be denoted by H−m. Furthermore, L2

0 will denote the space of
L2 functions with mean value zero. A space written in boldface denotes a 2-vector
valued analogue of the corresponding scalar space. The notation (·, ·) is used to denote
the L2 inner product on scalar, vector, and matrix valued functions.
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Below we shall encounter the intersection and sum of Hilbert spaces. We therefore
recall the basic definitions of these concepts. If X and Y are Hilbert spaces, both
continuously contained in some larger Hilbert spaces, then the intersection X ∩Y and
the sum X + Y are themselves Hilbert spaces with the norms

‖z‖X∩Y = (‖z‖2X + ‖z‖2Y )1/2

and

‖z‖X+Y = inf
z=x+y

x∈X, y∈Y
(‖x‖2X + ‖y‖2Y )1/2.

Furthermore, if X ∩Y is dense in both X and Y , then (X ∩Y )∗ = X∗+Y ∗. We refer
the reader to [3, Chapter 2] for these results.

If q is a scalar field, then grad q will denote the gradient of q, while div v denotes
the divergence of a vector field v. We shall also use the differential operators

curl q =

(−∂q/∂x2

∂q/∂x1

)
and rotv = ∂v1/∂x2 − ∂v2/∂x1.

Note that, due to Green’s theorem, these definitions lead to the following “integration
by parts formula”:∫

Ω

curl q · v dx =

∫
Ω

q rotv dx+

∫
∂Ω

q(v · t) dτ,(2.1)

where t is the unit tangent vector in the counterclockwise direction on ∂Ω, and τ is
the arclength.

The gradient of a vector field v is denoted Dv; i.e., Dv is the 2× 2 matrix with
elements

(Dv)i,j = ∂vi/∂xj , 1 ≤ i, j ≤ 2.

Hence, for any u ∈H2 and v ∈H1
0 we have

−(∆u,v) = (Du,Dv) ≡
∫

Ω

Du :Dv dx,

where the colon denotes the scalar product of matrix fields. Recall also the identity

∆ = graddiv− curl rot,(2.2)

which can be verified by a direct computation. As a consequence, we obtain the
identity

(Du,Dv) = (divu,div v) + (rotu, rotv) ∀u ∈H1, v ∈H1
0 .(2.3)

In addition to the function spaces introduced above we will also use the space
H(div) =H(div; Ω) consisting of all vector fields in L2 with divergence in L2, i.e.,

H(div) = {v ∈ L2 : div v ∈ L2}.
Similarly,

H(rot) = {v ∈ L2 : rotv ∈ L2},
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and the norms of these spaces are denoted by ‖·‖div and ‖·‖rot, respectively. Further-
more,H0(div) is the closed subspace ofH(div) consisting of functions with vanishing
normal components on the boundary; i.e.,

H0(div) = {v ∈H(div) : v · n = 0 on ∂Ω},
where n is the unit outward normal vector.

Throughout this paper aε(·, ·) :H1 ×H1 �→ R will denote the bilinear form

aε(u,v) = (u,v) + ε2(Du,Dv).

A weak formulation of problem (1.1) is given by the following:
Find (u, p) ∈H1

0 × L2
0 such that

aε(u,v) + (p,div v) = (f ,v) ∀v ∈H1
0 ,

(divu, q) = (g, q) ∀q ∈ L2
0.

(2.4)

Here we assume that data (f , g) is given in H−1 × L2
0.

The problem (2.4) has a unique solution (u, p) ∈ H1
0 × L2

0. This follows from
standard results for Stokes problem; cf., for example, [11]. However, the bound on
(u, p) ∈ H1

0 × L2
0 will degenerate as ε tends to zero. In fact, for the reduced prob-

lem (2.4) with ε = 0 the spaceH1
0 ×L2

0 is not a proper function space for the solution.
However, the theory developed in [6] can be applied in this case if we seek (u, p) either
in H0(div)×L2

0 or in L2× (H1 ∩L2
0), and with data (f , g) in the proper dual spaces.

These results are, in fact, consequences of standard results for the Poisson equation.
The fact that the regularity of the solution is changed when ε becomes zero

strongly suggests that ε-dependent norms and function spaces are required in order to
obtain stability estimates independent of ε. Furthermore, since the reduced problem
is well posed for two completely different choices of function spaces, this indicates that
there are at least two different choices of ε-dependent norms. In the present paper
we will study the problem (1.1) with respect to an ε-dependent norm which reduces
to the norm in H0(div)× L2

0 when ε = 0. Our goal is to derive discretizations which
are uniformly stable with respect to ε in this norm. This appears to be the proper
choice if we want to study discretizations which also can be generalized to nonmixed
approximations of elliptic problems of the form (1.2).

Remark. When we refer to the reduced system corresponding to (1.1) we refer to
the system (1.1) with ε = 0 and the boundary condition u = 0 replaced by u ·n = 0.
This system has a weak formulation given by (2.4) but with the solution space H1

0

replaced by H0(div).
The space H0(div) ∩ ε ·H1

0 , with norm ||| · |||ε given by

|||v|||2ε = ‖v‖20 + ‖div v‖20 + ε2‖Dv‖20,
is equal to H1

0 as a set for ε > 0 but equal to H0(div) for ε = 0. The system (2.4)
can alternatively be written as the system

Aε
(
u
p

)
=

(
f
g

)
,

where the coefficient operator Aε is given by

Aε =
(
I − ε2∆ −grad

div 0

)
.(2.5)
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Let Xε be the product space (H0(div) ∩ ε ·H1
0 )×L2

0 and X∗
ε the corresponding

dual space with respect to the L2 inner product. This space can also be expressed as

X∗
ε = (H−1(rot) + ε−1H−1)× L2

0.

Here the + sign has the interpretation as the sum of Hilbert spaces, and the space
H−1(rot) is given by

H−1(rot) = {v ∈H−1 : rotv ∈ H−1}.

The operator Aε can be seen to be an isomorphism mapping Xε into X∗
ε . Further-

more, the corresponding operator norms

||Aε||L(Xε,X∗
ε ) and ||A−1

ε ||L(X∗
ε ,Xε)

are independent of ε. In fact, with the definitions above, this is also true for ε ∈ [0, 1];
i.e., the endpoint ε = 0 can be included.

The uniform boundedness of Aε is straightforward to check from the definitions
above, while the uniform boundedness of the inverse can be verified from the two
Brezzi conditions; cf. [6]. For the present problem these conditions read as follows:

There are constants α0, β0 > 0, independent of ε, such that

sup
v∈H0(div)∩ε·H1

0

(q,div v)

|||v|||ε ≥ α0‖q‖0 ∀q ∈ L2
0(2.6)

and

aε(v,v) ≥ β0|||v|||2ε ∀v ∈ Z,(2.7)

where Z = {v ∈H1
0 : div v = 0}.

Since it is well known (cf., for example, [11, Chapter 1, Corollary 2.4]) that
condition (2.6) holds for ε = 1, it also holds for all ε ∈ [0, 1] with the same constant α0.
Furthermore, condition (2.7) holds trivially with β0 = 1 for ε ∈ [0, 1].

3. Uniformly stable discretizations. The purpose of this section is to discuss
finite element discretizations of the system (1.1). In particular, we shall be interested
in discretizations which are stable uniformly in the parameter ε ∈ (0, 1].

Let Vh ⊂ H1
0 and Qh ⊂ L2

0 be finite element spaces, where h ∈ (0, 1] is a
discretization parameter. The weak formulation (2.4) leads to the following corre-
sponding finite element discretization:

Find (uh, ph) ∈ Vh ×Qh such that

aε(uh,v) + (ph,div v) = (f ,v) ∀v ∈ Vh,
(divuh, q) = (g, q) ∀q ∈ Qh.

(3.1)

Remark. Below we shall also encounter several examples of nonconforming ap-
proximations of (2.4), i.e., the space Vh � H1

0 . In all these examples the bilinear
form aε(·, ·) is understood to be the sum of the corresponding integrals over each
element. No extra jump terms are added. The same remark applies to the energy
norm, ||| · |||ε.

The discretization (3.1) is stable in the sense of [6] if proper discrete analogues of
the conditions (2.6) and (2.7) hold. These conditions are the following.
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Stability conditions. The discretization (3.1) is said to be uniformly stable if there
exist constants α, β > 0, independent of ε and h, such that

sup
v∈Vh

(q,div v)

|||v|||ε ≥ α‖q‖0 ∀q ∈ Qh(3.2)

and

aε(v,v) ≥ β|||v|||2ε ∀v ∈ Zh,(3.3)

where Zh = {v ∈ Vh : (div v, q) = 0 ∀q ∈ Qh}.
For the case ε = 1, or more precisely for ε bounded away from zero, the second

condition is obvious. In this case there are several choices of pairs of finite element
spaces which satisfy (3.2) with α independent of h. We mention, for example, the Mini
element proposed in [1] or the P2 − P0 element; i.e., we choose continuous quadratic
velocities for Vh and the corresponding space of piecewise constants for Qh; cf. [10].
For a general review of stable Stokes elements we refer the reader to [8].

However, most of these spaces do not lead to discretizations which are stable
uniformly in ε. The main reason for this is that when ε approaches zero the second
condition is no longer obvious. In fact, for the reduced problem with ε = 0 the
condition (3.3) requires

‖v‖20 ≥ β‖v‖2div ∀v ∈ Zh.
Hence, we must have

‖div v‖0 ≤ c‖v‖0 ∀v ∈ Zh(3.4)

for a suitable constant c independent of h, and this condition does not hold for the
common conforming stable Stokes elements.

Example 3.1. We consider the problem (1.1) with Ω taken as the unit square.
The domain is triangulated by first dividing it into h× h squares. Then, each square
is divided into two triangles by the diagonal with a negative slope. The system is then
discretized using the P2−P0 element with respect to this triangulation; i.e., Vh ⊂H1

0

consists of piecewise quadratic functions, while Qh ⊂ L2
0 is the space of discontinuous

piecewise constants. This discretization is known to be stable when ε > 0 is fixed;
cf. [10]. However, our purpose here is to investigate how the convergence behaves as
ε becomes small.

We consider the system (1.1) with the function g chosen to be identical zero,
while f = u− ε2∆u− grad p, where u = curl sin2(πx1) sin

2(πx2) and p = sin(πx1).
Hence, in this example the solution is independent of ε.

In Table 3.1 we have computed the relative L2 error in the velocity u; i.e., e(h) =
‖u − uh‖0/‖u‖0 for different values of ε and h. A third order Gauss–Legendre rule
(cf. [17]) was used here, and in all the other examples of this section, to perform the
necessary integrations. For each fixed ε the convergence rate with respect to h, γ
is estimated by assuming e(h) = chγ and by computing a least squares fit to this
log-linear relation.

When ε = 1 the convergence seems to be at least quadratic with respect to h in
this case. However, the convergence deteriorates as ε becomes smaller, and for ε = 0
there is no convergence.

Table 3.2 is based on the corresponding relative errors in the energy norm, i.e.,
the norm ||| · |||ε for velocity and the L2 norm for pressure. For simplicity only the
estimated convergence rates are given.
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Table 3.1
The relative L2 error in velocity obtained by the P2 − P0 element.

ε\ h 2−2 2−3 2−4 2−5 2−6 Rate

1 3.84e-2 4.75e-3 6.41e-4 1.04e-4 2.11e-5 2.72

2−2 6.15e-2 1.73e-2 4.65e-3 1.20e-3 3.05e-4 1.92

2−4 4.55e-1 2.10e-1 6.78e-2 1.86e-2 4.79e-3 1.67

2−8 9.31e-1 9.68e-1 9.43e-1 8.14e-1 5.32e-1 0.19

0 9.35e-1 9.84e-1 1.00 1.01 1.02 -0.03

Table 3.2
Estimated convergence rates for the velocity and pressure, measured in the energy norm, for

the P2 − P0 element.

ε 1 2−2 2−4 2−8 0

rate, velocity 1.84 1.01 0.70 -0.79 -1.03

rate, pressure 1.06 1.01 1.09 0.13 -0.20

These results indicate a similar degenerate behavior with respect to ε. In fact,
when ε = 0 the norm, |||uh|||ε, seems to grow like h−1 as h approaches zero. This
must be due to the fact that only the projection of divuh into piecewise constants is
controlled by the method in this case.

Example 3.2. We repeat the experiment above but with the difference that we
use the nonconforming Crouzeix–Raviart element instead of the P2−P0 element; i.e.,
Vh consists of piecewise linear vector fields which are continuous at the midpoint of
each edge of the triangulation, while Qh ⊂ L2

0 is the space of piecewise constants. It
is well known that for any fixed ε > 0 this element leads to a stable discretization;
cf. [10].

In Table 3.3 we have again computed the relative L2 error in the velocity u for
different values of ε and h.

Table 3.3
The relative L2 error in velocity obtained by the nonconforming Crouzeix–Raviart element.

ε\ h 2−2 2−3 2−4 2−5 2−6 Rate

1 1.83e-1 4.89e-2 1.26e-2 3.19e-3 8.02e-4 1.96

2−2 2.19e-1 6.89e-2 1.91e-2 4.96e-3 1.26e-3 1.87

2−4 6.42e-1 3.86e-1 1.53e-1 4.58-2 1.21-3 1.45

2−8 9.51e-1 1.00 1.01 9.43e-1 7.44e-1 0.08

0 9.53e-1 1.01 1.04 1.05 1.06 -0.04

The L2 convergence appears to be quadratic when ε is large. However, also in
this case the convergence deteriorates as ε decreases, and for the reduced problem,
with ε = 0, the observed values for the relative error is monotonically increasing.

The corresponding estimates of the convergence rates in the energy norm decreases
from approximately linear convergence to no convergence as is shown by Table 3.4.

In fact, the divergence of the Crouzeix–Raviart element in the case ε = 0 is
not surprising. Since the divergence-free vector fields in this case can be realized as
the curl operator applied to the corresponding Morley space, this behavior of the
Crouzeix–Raviart element is closely tied to the divergence of the Morley element for
the Poisson equation; cf. [14].
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Table 3.4
Estimated convergence rates for the velocity and pressure, measured in the energy norm, for

the Crouzeix–Raviart element.

ε 1 2−2 2−4 2−8 0

rate, velocity 0.98 0.97 0.74 0.03 -0.03

rate, pressure 1.00 0.93 0.98 0.12 -0.03

The two examples above show that the P2 − P0 element and the nonconforming
Crouzeix–Raviart element, which both are known to be stable for ε = 1, fail to give
methods which converge uniformly in ε. The divergence of the P2 − P0 element for
ε = 0 is basically due to the fact that the estimate (3.4) does not hold, and therefore
the method is unstable, while the divergence of the Crouzeix–Raviart method is caused
by the inconsistency of the method.

Example 3.3. We repeat the experiment above once more, but this time the
system (1.1) is discretized by using the Mini element; i.e., Vh ⊂H1

0 consists of linear
combinations of piecewise linear functions and cubic bubble functions with support on
a single triangle, while Qh ⊂ L2

0 is the space of continuous piecewise linear functions.
In Table 3.5 we have computed the relative error in the velocity, with respect to

the energy norm ||| · |||ε, for different values of ε and h.

Table 3.5
The relative error in velocity, measured in the energy norm, for the Mini element.

ε\ h 2−2 2−3 2−4 2−5 2−6 Rate

1 3.01 1.65 8.42e-1 4.22e-1 2.11e-1 0.96

2−2 2.70 1.55 7.80e-1 3.90e-1 1.95e-1 0.96

2−4 3.71 1.67 7.89e-1 3.87e-1 1.92e-1 1.07

2−8 7.32 4.28 2.79 1.64 6.51e-1 0.84

0 7.44 4.76 3.70 3.39 3.30 0.28

When ε = 1 the convergence seems to be linear with respect to h. This agrees
with the theoretical results given in [1]. The convergence deteriorates as ε becomes
smaller, and for ε = 0 there seems to be essentially no convergence in the energy
norm.

An interesting observation can be made for the Mini element if we consider the
corresponding errors for the pressure p. In Table 3.6 we study the relative error given
by ‖p− ph‖0/‖p‖0.

Table 3.6
The relative L2 error in the pressure obtained by the Mini element.

ε\h 2−2 2−3 2−4 2−5 2−6 Rate

1 8.78 2.81 8.85e-1 2.95e-1 1.02e-1 1.61

2−2 6.09e-1 1.84e-1 5.62e-2 1.85e-2 6.40e-3 1.64

2−4 6.08e-2 1.51e-2 3.88e-3 1.21e-3 4.07e-4 1.81

2−8 3.58e-2 9.93e-3 2.34e-3 4.10e-4 6.00e-5 2.30

0 3.59e-2 1.02e-2 2.75e-3 7.23e-4 1.87e-4 1.90

The surprising observation is that for the pressure the convergence seems to be
uniform with respect to ε. In fact, the convergence rate seems to improve as ε tends
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to zero, and for ε small the convergence with respect to h appears to be quadratic.
This is a striking difference to what we observed in Examples 3.1 and 3.2. In both
these cases the error in the pressure diverges as ε tend to zero; cf. Tables 3.2 and 3.4.

What we have observed here is not special to the present example. The Mini
element leads to a discretization which is uniformly stable with respect to ε in a
proper ε-dependent norm different from ||| · |||ε. If we define the solution space Xε by

Xε = (L2 ∩ ε ·H1
0 )× ((H1 ∩ L2

0) + ε−1 · L2),(3.5)

then it can be shown that the Mini element will in fact produce a uniformly stable
discretization in the corresponding energy norm. This norm degenerates to the norm
of L2 ×H1 as ε tends to zero; cf. the discussion in section 2. In order to confirm this
behavior we computed the relative error in velocity once more, but this time we used
the L2 norm instead of ||| · |||ε. The results are given in Table 3.7.

Table 3.7
The relative L2 error in velocity obtained by the Mini element.

ε \h 2−2 2−3 2−4 2−5 2−6 Rate

1 3.54e-1 1.03e-1 2.64e-2 6.60e-3 1.65e-3 1.95

2−2 3.16e-1 8.79e-2 2.20e-2 5.48e-3 1.37e-3 1.97

2−4 1.90e-1 4.60e-2 1.07e-2 2.59e-3 6.42e-4 2.06

2−8 1.81e-1 7.23e-2 2.87e-2 8.70e-3 1.74e-3 1.64

0 1.82e-1 7.66e-2 3.59e-2 1.76e-2 8.75e-3 1.09

We observe that as ε decreases from one to zero the corresponding convergence
rate decreases from approximately two to one. However, there is no sign which in-
dicates that the behavior will deteriorate below linear convergence. To complete the
picture we have also computed the estimated convergence rates for the pressure in H1.
The results are given in Table 3.8.

Table 3.8
Estimated convergence rates for the H1 error of the pressure obtained by the Mini element.

ε 1 2−2 2−4 2−8 0

rate 0.61 0.64 0.86 0.99 0.99

The estimated convergence rate is clearly below one when ε = 1, while it improves
towards one as ε is decreased. This is consistent with the fact that the norm of the
pressure component of the product space (3.5) is weaker than the H1 norm for each
ε > 0 but approaches the H1 norm as ε approaches zero.

The results above seem to confirm that the Mini element leads to a uniformly
convergent discretization as long as the error is properly measured. However, as
motivated in section 2, in the present paper we are interested in a discretization
of the system (1.1) which has a uniform behavior when the error is measured in
(H0(div) ∩ ε ·H1

0 ) × L2
0. Therefore, for our purpose here, the Mini element should

not be regarded as a uniformly stable element.
Let us recall that if a standard conforming Stokes element is not uniformly stable

with respect to ε, then this instability must be caused by the failure of the second
stability condition (3.3) or, equivalently, (3.4). Note that the stability condition (3.4)
will be trivially satisfied if the spaces Vh ×Qh are constructed such that all elements
of Zh are divergence-free, i.e., Zh ⊂ Z. In fact, nearly all proposed finite element
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methods for the reduced problem will have this property. This is, for example, true
for the Raviart–Thomas spaces (cf. [15]) and for the Brezzi–Douglas–Marini spaces
of [7]. However, in all these cases the spaces Vh will be only a subspace of H0(div)
and not ofH1

0 , due to the fact that only the normal components of the elements of Vh
are required to be continuous across element edges. It is therefore not clear that these
spaces will be useful for problems of the form (1.1) with ε > 0.

Example 3.4. We repeat the calculation done in the three examples above, but
now we use the lowest order Raviart–Thomas space for the discretization. Hence, for
ε = 0 we will expect to obtain linear convergence with respect to h. On the other
hand, for ε > 0 the method is nonconforming and there seems to be no reason to
expect that the method is convergent in this case. In Table 3.9 we have computed
the estimated convergence rates with respect to h for the relative L2 errors of the
velocity u and the pressure p for different values of ε.

Table 3.9
Estimated convergence rates for the L2 errors of the velocity and pressure for the Raviart–

Thomas element.

ε 1 2−2 2−4 2−8 0

rate, velocity -0.07 -0.07 0.28 0.97 0.97

rate, pressure -0.04 0.08 0.86 1.01 1.01

As expected, the method appears to be divergent for ε > 0.

4. A robust nonconforming finite element space. The four examples pre-
sented above illustrate that none of the standard elements proposed for the case ε = 1
or ε = 0 will lead to a discretization of the problem (1.1) with uniform convergence
properties with respect to ε, when the error is measured in the norm of the space
(H0(div)∩ε ·H1

0 )×L2
0. The purpose of the rest of this paper is therefore to construct

and analyze a new finite element space which has this property.

4.1. The finite element space. In order to describe the new finite element
space we will first define the proper polynomial space, or shape functions, on a given
triangle. Let T ⊂ R

2 be a triangle and consider the polynomial space of vector fields
on T given by

V (T ) = {v ∈ P
2
3 : div v ∈ P0, (v · n)|e ∈ P1 ∀e ∈ E(T )}.

Here Pk denotes the set of polynomials of degree k and E(T ) denotes the set of the
edges of T . Furthermore, n is the unit normal vector on the edge e. Below we will also
use t to denote the unit tangent vector on e, while τ denotes the arc length along e.

The space P
2
3 is a vector space of dimension 20. Furthermore, the conditions

div v ∈ P0 and (v · n)|e ∈ P1 ∀e ∈ E(T )

represent at most 11 linearly independent constraints on this space. Therefore we
must have

dimV (T ) ≥ 9.

In fact, we shall show that dimV (T ) = 9.
Lemma 4.1. The space V (T ) is a linear space of dimension nine. Furthermore,

an element v ∈ V (T ) is uniquely determined by the following degrees of freedom:
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• ∫
e
(v · n)τk dτ , k = 0, 1, for all e ∈ E(T ).

• ∫
e
(v · t) dτ for all e ∈ E(T ).

Proof. Since V (T ) is a vector space of dimension ≥ 9 it is enough to show that
elements of V (T ) are uniquely determined by the given nine degrees of freedom.
Assume that v ∈ V (T ) with all the degrees of freedom equal zero. In particular, this
implies that

(v · n)|∂T ≡ 0.

As a consequence of this ∫
T

div v dx =

∫
∂T

v · n dτ = 0.

Hence, since div v ∈ P0, we conclude that v is divergence-free.
However, since v ∈ P

2
3 is divergence-free we must have v = curlw for a suitable

scalar function w ∈ P4. Furthermore, since

(gradw · t)|e = (v · n)|e = 0

for each edge e, we conclude that gradw ·t ≡ 0 on ∂T . Since w is uniquely determined
only up to a constant, we can therefore assume that w ≡ 0 on ∂T .

Hence, w is of the form w = pb, where p ∈ P1 and b is the cubic bubble function
with respect to T ; i.e., b = λ1λ2λ3, where λi(x) are the barycentric coordinates of x
with respect to the three corners of T . In particular, ∂b

∂n |e does not change sign on e.
Furthermore,

∂w

∂n

∣∣∣∣
∂T

= p
∂b

∂n

∣∣∣∣
∂T

and ∫
e

p
∂b

∂n
dτ =

∫
e

∂w

∂n
dτ =

∫
e

v · t dτ = 0 ∀e ∈ E(T ).

We can therefore conclude that p has a root in the interior of e. However, if p ∈ P1

with a root in the interior of each edge of T , then p ≡ w ≡ 0.
Let {Th} be a shape regular family of triangulations of Ω, where h is the maximal

diameter. Furthermore, let Eh be the set of edges of Th. Define a finite element space
of vector fields Vh, associated with the triangulation Th, as all functions v ∈ Vh such
that

• v|T ∈ V (T ) for all T ∈ Th,
• ∫

e
(v · n)τk dτ is continuous for k = 0, 1 for all e ∈ Eh,

• ∫
e
(v · t) dτ is continuous for all e ∈ Eh.

Here we assume that v is extended to be zero outside Ω; i.e., if e is an edge on the
boundary of Ω, then we require∫

e

(v · n)τk dτ = 0, k = 0, 1, and

∫
e

(v · t) dτ = 0.

It follows from Lemma 4.1 that any function v ∈ Vh is uniquely determined by the
two lowest order moments of v ·n and by the mean value of v · t for all interior edges;
cf. Figure 4.1.
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Fig. 4.1. The degrees of freedom of the new nonconforming element.

If v ∈ Vh, then the normal component v · n is continuous for all interior edges.
Therefore, Vh ⊂H0(div). However, the tangential component of v is not continuous;
only the mean value with respect to each edge is continuous. Therefore, Vh � H1

0 . In
addition to the space Vh we let Qh ⊂ L2

0 denote the space of scalar piecewise constants
with respect to the triangulation Th.

In the rest of this paper Vh and Qh will always refer to the finite element spaces
just introduced. The corresponding nonconforming finite element approximation of
the system (1.1) is defined by the system (3.1).

4.2. Properties of the new finite element space. It follows from the defini-
tion of Vh that divVh ⊂ Qh. Hence, if we define Zh ⊂ Vh as the weakly divergence-
free elements of Vh, i.e.,

Zh = {v ∈ Vh : (div v, q) = 0 ∀q ∈ Qh},
then these elements are in fact divergence-free.

Remark. It can be seen that

Zh = curlWh,(4.1)

where Wh is an associated nonconforming H2-element. Locally, on each triangle,
Wh consists of all P4 polynomials which reduce to a quadratic on each edge. In
addition, Wh ⊂ H1

0 and the average of the normal derivatives of functions in Wh

are continuous on each edge. The finite element space Wh is precisely described
and analyzed in [14]. The identity (4.1) was actually the main motivation for the
construction of the space Vh. More precisely, the spaces Wh, Vh, and Qh are related
such that the sequence

0 −−−−→ Wh/R
curl−−−−→ Vh

div−−−−→ Qh −−−−→ 0

is exact. In particular, divVh = Qh.
Define an interpolation operator Πh :H1

0 �→ Vh by∫
e

(Πhv · n)τk dτ =

∫
e

(v · n)τk dτ, k = 0, 1,∫
e

(Πhv · t) dτ =

∫
e

(v · t) dτ

for all e ∈ Eh. In addition, let Ph : L2
0 �→ Qh be the L2 projection. From the definition

of the operator Πh we easily verify the commutativity property

divΠhv = Ph div v ∀v ∈H1
0 .(4.2)
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In fact, for all T ∈ Th∫
T

divΠhv dx =

∫
∂T

(Πhv · n) dτ =

∫
∂T

(v · n) dτ =

∫
T

div v dx,

and hence (4.2) follows.
Since Qh is the space of piecewise constants the L2 projection Ph onto Qh satisfies

‖w − Phw‖0 ≤ ch‖w‖1(4.3)

for all w ∈ H1 ∩ L2
0, where c > 0 is independent of h and w. The operator Πh

is well defined on H1
0 , it is locally defined on each triangle, and it preserves linear

functions locally. Furthermore, the polynomial space V (T ) is invariant under affine
Piola transformations. More precisely, let T ∈ Th and let φ(x) = Bx+ c be an affine
map of T onto a reference triangle T̂ . Then the Piola transform, v �→ v̂, where

v̂(x̂) = (detB)−1Bv(x), x̂ = φ(x),

maps V (T ) onto V (T̂ ). Therefore, approximation estimates for the operator Πh can
be derived from standard scaling arguments utilizing the shape regularity of {Th}. In
particular, there exists a constant c > 0, independent of h, such that

‖Πhv‖div ≤ ‖Πhv‖1,h ≤ c‖v‖1.(4.4)

In addition, from the Bramble–Hilbert lemma, using the fact thatΠh preserves linears
locally, we can further conclude that

‖Πhv − v‖j,h ≤ chk−j |v|k for 0 ≤ j ≤ 1 ≤ k ≤ 2(4.5)

and for all v ∈H1
0 ∩Hk. Here ‖ · ‖j,h denotes the piecewise Hj-norm

‖v‖2j,h =
∑
T∈Th

‖v‖2j,T .

In fact, if T̂ is a reference triangle, and Π̂ : H1(T̂ ) �→ V (T̂ ) the corresponding
interpolation operator, then for all v ∈ H1(T̂ )

‖Π̂v‖0,T̂ ≤ c1‖v‖0,∂T̂ ≤ c2‖v‖1/20,T̂
‖v‖1/2

1,T̂
,

where c1 and c2 depend only on T̂ . Hence, from a scaling argument we also obtain
the low order estimate

‖Πhv − v‖0 ≤ ch1/2‖v‖1/20 ‖v‖1/21(4.6)

for all v ∈H1
0 .

Next we will verify the stability conditions (3.2) and (3.3) for the product space
Vh × Qh. However, due to the fact that we are considering a nonconforming finite
element approximation of the system (1.1), where Vh � H1

0 , the norm ||| · |||ε has to
be properly modified. For each v ∈ Vh we define

|||v|||2ε,h = ‖v‖2div + ε2
∑
T∈Th

‖Dv‖20,T .
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Note that for ε = 0 this norm is simply equal to ‖·‖div, while for ε = 1 it is equivalent,
uniformly in h, to the piecewise H1-norm ‖ · ‖1,h.
Lemma 4.2. There exists a constant α1 > 0, independent of h, such that

sup
v∈Vh

(q,div v)

‖v‖1,h ≥ α1‖q‖0 ∀q ∈ Qh.

Proof. This follows by a standard argument from the properties of the interpo-
lation operator Πh and the corresponding continuous result (2.6). In fact, since for
any v ∈H1

0 and q ∈ Qh we have

(q,divΠhv) = (q,div v)

and

‖Πhv‖1,h ≤ c1‖v‖1,

we can take α1 = α0/c1.
The following uniform stability result is an immediate consequence of the previous

lemma.
Theorem 4.1. The pair of spaces (Vh, Qh) satisfies the uniform stability condi-

tions (3.2) and (3.3) but with the norm ||| · |||ε replaced by ||| · |||ε,h.
Proof. The norms ||| · |||1,h and ‖ · ‖1,h are equivalent on Vh, and ||| · |||ε,h decreases

as ε decreases. It follows from Lemma 4.2 that condition (3.2) holds. Since Zh ⊂ Z
the second condition (3.3) holds with β = 1.

5. Error estimates for smooth solutions. Since our new finite element space
(Vh, Qh) satisfies the proper stability conditions (3.2) and (3.3), uniformly with re-
spect to ε, it seems probable that the corresponding finite element method will in fact
have uniform convergence properties. In the present section we shall investigate this
question under the assumption that the solution (u, p) of the continuous problem is
sufficiently smooth, while the effect of the ε-dependent boundary layers will be taken
into account in the next section.

We will start the discussion here with a numerical example which is completely
similar to Examples 3.1–3.3.

Example 5.1. We redo the computations done in Examples 3.1–3.3, but this time
we use the finite element spaces constructed above. In all the numerical examples with
the new element we used a fifth order Gauss–Legendre method (cf. [17]) as integration
rule.

In Table 5.1 we have computed the estimated convergence rates with respect to h
for the velocity and the pressure.

Table 5.1
Estimated convergence rates for the velocity and the pressure for the new nonconforming element.

ε 1 2−2 2−4 2−8 0

rate, velocity in L2 1.93 1.94 1.94 1.90 1.92

rate, velocity in ||| · |||ε 0.98 0.99 1.05 1.72 1.92

rate, pressure in L2 0.98 1.00 1.00 1.00 1.00

We observe that the convergence rates in L2 appear to be close to quadratic
in velocity and linear in pressure uniformly with respect to ε ∈ [0, 1], while the



ROBUST FINITE ELEMENTS FOR DARCY–STOKES FLOW 1619

2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

10
1

P
2
−P

0
Mini
New element
Crouzeix−Raviart

2 3 4 5 6
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Fig. 5.1. The errors in velocity, measured in the L2 norm and the energy norm, as functions
of σ = − log(h)/ log(2).

convergence in the energy norm appears to be at least linear for each ε > 0. In fact,
as ε approaches zero the convergence rate tends to two. This improved convergence
is partly due to the fact that the exact solution u is divergence-free in this case.

To make a direct comparison between the P2−P0 element, the Crouzeix–Raviart
element, the Mini element, and the new element when ε is small compared to h, we
have plotted the errors in velocity for the different methods as functions of σ, where
h = 2−σ. Here we have chosen ε = 2−8. The errors are plotted, in a logarithmic scale,
in Figure 5.1.

To the left the L2 errors are plotted, while the errors in the energy norm are
depicted to the right. We observe that the Mini element and the new element behave
comparably with respect to the L2 norm, while the new element clearly is superior to
all the other methods with respect to the energy norm.

The rest of this section will be devoted to establishing error estimates for the new
nonconforming finite element method. Throughout this section we will assume that
u ∈ H2 ∩H1

0 , where (u, p) is the weak solution of (2.4). For convenience we also
introduce the notation ‖ · ‖a for the norm on Vh associated with the bilinear form aε,
i.e.,

‖v‖2a = ‖v‖20 +
∑
T∈Th

‖Dv‖20,T .

For any v ∈ Vh, we define the consistency error Eε,h(u,v) by

Eε,h(u,v) = ε2
∑
e∈Eh

∫
e

(rotu) [v · t] dτ.

Here, if T− and T+ are two triangles, sharing an edge e, then [w] = [w]e = w|T+
−w|T−

denotes the jump of w across e, while t is the unit tangent vector along e corresponding
to the clockwise direction on T+. Since [v · n]e = 0 for any v ∈ Vh it follows from
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(2.2) and Green’s theorem, in particular from (2.1), that

aε(u,v) + (p,div v) = (f ,v) + Eε,h(u,v) ∀v ∈ Vh,
(divu, q) = (g, q) ∀q ∈ L2

0,
(5.1)

where the term Eε,h appears due to the fact that Vh � H1
0 .

In the error analysis below we will need proper estimates on the consistency
error Eε,h. The following bounds are therefore useful.
Lemma 5.1. If u ∈H2 ∩H1

0 , then

sup
v∈Vh

|Eε,h(u,v)|
‖v‖a ≤ c ε

{
h‖ rotu‖1,
h1/2‖ rotu‖1/21 ‖ rotu‖1/20 ,

where c > 0 is independent of ε and h.
Proof. Let e ∈ Eh and v ∈H1

0 +Vh. Since the mean value with respect to e of v ·t
is zero, it follows from a standard scaling argument (cf., for example, [5, section 8.3]
or [14, section 4] for similar arguments) that for any φ ∈ H1

∫
e
φ[v · t]dτ ≤ infλ,µ∈R ‖φ− λ‖0,e‖[v · t− µ]‖0,e

≤
{

ch|φ|1,Ωe(|v|1,T− + |v|1,T+),

ch1/2|φ|1/21,Ωe
‖φ‖1/20,Ωe

(|v|1,T− + |v|1,T+
).

(5.2)

Here T− and T+ denote the two triangles meeting the edge e and Ωe = T−∪T+. Since

|Eε,h(u,v)| ≤ ε2
∑
e∈Eh

∣∣∣∣
∫
e

(rotu) [v · t] dτ
∣∣∣∣ ,

the desired estimate follows by applying the estimate (5.2) with φ = rotu, summing
over all edges, and using the fact that∑

e∈Eh

|v|21,T ≤ ε−2aε(v,v).

Let (uh, ph) ∈ Vh ×Qh be the approximation of (u, p) derived from the discrete
system (3.1). From (3.1) and (5.1) we obtain

aε(u− uh,v) + (p− ph,div v) = Eε,h(u,v)(5.3)

for all v ∈ Vh. Furthermore,

divuh = Ph divu = divΠhu.

Therefore, taking v = Πhu− uh in (5.3) we obtain

aε(u− uh,Πhu− uh) = Eε,h(u,Πhu− uh).

Since aε is an inner product we further have

‖Πhu− uh‖2a ≤ ‖u−Πhu‖2a + 2aε(u− uh,Πhu− uh)
≤ ‖u−Πhu‖2a + 2Eε,h(u,Πhu− uh).
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Hence, we conclude that

‖u− uh‖a ≤ 2

(
‖u−Πhu‖a + sup

v∈Vh

|Eε,h(u,v)|
‖v‖a

)
.(5.4)

From this basic bound we easily derive the following error estimate.
Theorem 5.1. If u ∈ H2 ∩H1

0 and p ∈ H1 ∩ L2
0, then the following estimates

hold:

‖u− uh‖0 + ε‖ rot(u− uh)‖0 ≤ c(h2 + εh)‖u‖2,
‖div(u− uh)‖0 ≤ ch‖divu‖1,

‖p− ph‖0 ≤ ch(‖p‖1 + (ε+ h)‖u‖2).
Here c > 0 is a constant independent of ε and h.

Remark. Here, and below, the differential operators D and rot, applied to vector
fields in Vh, are defined locally on each triangle of the triangulation Th.

Proof. The first estimate is a direct consequence of (4.5), (5.4), and Lemma 5.1.
The second estimate follows from the bound (4.3) and the fact that divuh = Ph divu.

In order to establish the third estimate we first observe that (4.3) implies that

‖p− Php‖0 ≤ ch‖p‖1.(5.5)

Hence, it remains only to estimate Php − ph. However, from the modified inf-sup
condition (3.2) (cf. Theorem 4.1) we obtain

‖Php− ph‖0 ≤ α−1 sup
v∈Vh

(Php− ph,div v)

|||v|||ε,h .

Furthermore, for any v ∈ Vh we have

(Php− ph,div v) = (p− ph,div v)

= −aε(u− uh,v) + Eε,h(u,v),

which implies that

|(Php− ph,div v)| ≤
(
‖u− uh‖a + sup

v∈Vh

|Eε,h(u,v)|
‖v‖a

)
|||v|||ε,h

or

‖Php− ph‖0 ≤ α−1

(
‖u− uh‖a + sup

v∈Vh

|Eε,h(u,v)|
‖v‖a

)
.(5.6)

From the previous estimates we therefore obtain

‖Php− ph‖0 ≤ c(h2 + εh)‖u‖2,
and together with (5.5) this establishes the desired estimate on the error ‖p −
ph‖0.

Remark. As an alternative to the estimates given in Theorem 5.1 we can also
obtain

‖u− uh‖0 + ε‖ rot(u− uh)‖0 ≤ ch(‖u‖1 + ε‖u‖2)(5.7)
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and

‖p− ph‖0 ≤ ch(‖p‖1 + ‖u‖1 + ε‖u‖2).(5.8)

These modifications are obtained if we use the estimate

‖u−Πhu‖0 ≤ ch‖u‖1,

obtained from (4.5), in (5.4) instead of the corresponding quadratic estimate. Even if
the modified estimates are weaker for uniformly smooth solutions, they are sometimes
preferable for more singular solutions.

6. Boundary layers and uniform error estimates. In general, we cannot
expect that the norm ‖u‖2 of the solution of (1.1) is bounded independently of ε. In
fact, as ε approaches zero even ‖ rotu‖0 should be expected to blow up. Hence, the
convergence estimates given in Theorem 5.1 will deteriorate as ε becomes small. The
following example shows that this behavior of the error is in fact real.

Example 6.1. In this example we study the convergence for an ε-dependent
solution. Let u = ε curl e−x1x2/ε, p = εe−x1/ε, f = u− ε2∆u− grad p, and let g be
identical zero. In fact, u is not the solution of the corresponding system (1.1), since
the boundary conditions are not satisfied. However, the adaption of the new method
to nonhomogeneous boundary conditions is straightforward.

The significance of the solution u just given is related to the fact that the quan-
tities ‖ rotu‖0 and ε‖ rotu‖1 both are of order ε−1/2 as ε tends to zero. As we will
see in Lemma 6.1, this behavior is typical for solutions of the singular perturbation
problem (1.1). For solutions with this singular behavior the estimates (5.7) and (5.8)
lead to error bounds of the form

|||u− uh|||ε, ‖p− ph‖0 ≤ chε−1/2,(6.1)

where c is a constant independent of ε and h. In Table 6.1 we have computed the ab-
solute error |||u−uh|||ε for different values of ε and h. For each fixed ε the convergence
rate with respect to h is estimated.

Table 6.1
The absolute error in velocity, measured in the energy norm, obtained by the new nonconforming

element.

ε\ h 2−2 2−3 2−4 2−5 2−6 Rate

2−2 7.29e-2 3.60e-2 1.77e-2 8.75e-3 4.36e-3 0.98

2−6 8.89e-2 5.88e-2 3.71e-2 2.06e-2 1.05e-2 0.77

2−8 1.12e-1 6.89e-2 4.07e-2 2.66e-2 1.73e-2 0.67

2−10 1.17e-1 8.16e-2 5.48e-2 3.34e-2 1.93e-2 0.65

2−12 1.17e-1 8.20e-2 5.74e-2 4.02e-2 2.71e-2 0.52

We observe that for ε sufficiently large the convergence rate is approximately
one, but the estimated rate decreases when ε approaches zero. These results seem to
confirm the claim that the convergence is linear with respect to h for each fixed ε.
However, when h is sufficiently large compared to ε we do not observe this linear rate.

In Table 6.2 we give the corresponding absolute L2 errors for the pressure.
Again the estimated convergence rate is approximately one for ε large. Then it

starts to decrease with ε as in Table 6.1. However, in this case the convergence rate
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Table 6.2
The absolute L2 error in the pressure obtained by the new nonconforming element.

ε\ h 2−2 2−3 2−4 2−5 2−6 Rate

2−2 2.32e-2 1.11e-2 5.36e-3 2.64e-3 1.31e-3 1.04

2−6 9.00e-3 5.33e-3 2.62e-3 1.15e-3 4.61e-4 1.07

2−8 5.28e-3 3.24e-3 2.18e-3 1.23e-3 5.97e-4 0.77

2−10 4.93e-3 2.54e-3 1.33e-3 7.93e-4 5.32e-4 0.81

2−12 4.92e-3 2.51e-3 1.24e-3 6.22e-4 3.27e-4 0.98

increases roughly back to one when ε is superclose to zero. We will comment on this
phenomenon for the error of the pressure at the end of this section.

The estimate (6.1) does not imply uniform convergence with respect to ε for our
new finite element method. However, as a consequence of the theory below, we will
obtain an improved estimate of the form

|||u− uh|||ε, ‖p− ph‖0 ≤ cmin(h1/2, hε−1/2)(6.2)

for solutions with a singular behavior similar to the solution u studied here. Note
that this is in fact consistent with the results of Tables 6.1 and 6.2, where we never
observe a convergence rate below a half.

The main purpose of this section is to establish error estimates which are uniform
with respect to the perturbation parameter ε. We shall show a uniform O(h1/2) error
estimate in the energy norm. We observe that if g ∈ H1 ∩L2

0, then it follows directly
from Theorem 5.1 that

‖div(u− uh)‖0 ≤ c h‖g‖1,(6.3)

where the constant c is independent of ε and h. Hence, we have uniform linear
convergence for the error of the divergence. In contrast to this, the remaining part
of the error will be affected by boundary layers as ε becomes small. However, the
following uniform convergence estimate will be derived.
Theorem 6.1. If f ∈H(rot) and g ∈ H1

+, then there is a constant c, independent
of f , g, ε, and h, such that

‖u− uh‖0 + ε‖ rot(u− uh)‖0 + ‖p− ph‖0 ≤ c h1/2(‖f‖rot + ‖g‖1,+).

Here the Sobolev space H1
+ is a space contained in H1, with an associated norm,

‖ · ‖1,+, slightly stronger than ‖ · ‖1. This space will be precisely defined below.
The derivation of the uniform error estimate above will depend heavily on cer-

tain regularity estimates for the solution of the system (1.1). For example, we shall
estimate the blowup of ‖ rotu‖1 as ε approaches zero. We shall therefore first derive
these regularity estimates.

For convenience of the reader we repeat the system (1.1):

(I − ε2∆)u− grad p = f in Ω,
divu = g in Ω,

u = 0 on ∂Ω.
(6.4)

We also repeat that the domain Ω is a polygonal domain in R
2. In fact, in the

discussion of this section we shall assume that Ω in addition is convex. If ε ∈ (0, 1],
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f ∈ L2, and g = 0, then the corresponding weak solution admits the additional
regularity that (u, p) ∈ (H1

0 ×L2
0)∩ (H2×H1). This regularity result follows directly

from the result for the corresponding Stokes problem on a convex domain which can
be found in [12, Corollary 7.3.3.5]. In fact, the same regularity holds for g �= 0 if we
restrict the data g to the space H1

+.
In order to define this space let x1, x2, . . . , xN ∈ ∂Ω denote the vertices of Ω. The

space H1
+ is given by

H1
+ =

{
g ∈ H1 ∩ L2

0 :

∫
Ω

|g(x)|2
|x− xj |2 dx <∞, j = 1, 2, . . . , N

}
,

with associated norm

‖g‖21,+ = ‖g‖21 +
N∑
j=1

∫
Ω

|g(x)|2
|x− xj |2 dx.

Hence, functions in H1
+ vanish weakly at each vertex of Ω.

It is established in [2] that

div(H2 ∩H1
0 ) = H1

+.

Furthermore, the divergence operator has a bounded right inverse,R : H1
+ �→H2∩H1

0 ;
i.e., divRg = g for all g ∈ H1

+ and

‖Rg‖2 ≤ c‖g‖1,+.

Note that if (u, p) solves (6.4), then (u − Rg, p) solves a corresponding problem
with g = 0. From the result in the case g = 0 we can therefore conclude that
(u, p) ∈ (H1

0 × L2
0) ∩ (H2 ×H1) for any (f , g) ∈ L2 ×H1

+.
The following result gives an upper bound for the blowup of the norm ‖ rotu‖1

as ε tends to zero.
Lemma 6.1. Assume that f ∈H(rot), g ∈ H1

+, and let (u, p) be the correspond-
ing solution of (6.4). There exists a constant c > 0, independent of ε, f and g, such
that

ε1/2‖ rotu‖0 + ε3/2‖ rotu‖1 ≤ c (‖ rotf‖0 + ‖g‖1,+).(6.5)

Proof. We first construct a function û ∈H2 ∩H1
0 such that

div û = g and rot∆û = 0.(6.6)

In fact, the function û can be constructed by defining

û = Rg + curlψ,

with ψ ∈ H2
0 being the weak solution of the biharmonic equation

∆2ψ = rot∆Rg in Ω,

ψ =
∂ψ

∂n
= 0 on ∂Ω.

We observe that, since Rg ∈ H2, the right-hand side is in H−1. Therefore, from
the regularity of solutions of the biharmonic equation on convex domains (cf. [12,
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Theorem 7.2.2.3]), we have that ψ ∈ H3, and ‖ψ‖3 ≤ c‖ rot∆Rg‖−1. Hence, û ∈
H2 ∩H1

0 , and

‖û‖2 ≤ c ‖g‖1,+.(6.7)

Furthermore, clearly div û = divRg = g, and for any µ ∈ C∞
0 we have

(∆û, curlµ) = (∆Rg, curlµ)− (∆ψ,∆µ) = 0.

Hence, the second property in (6.6) also holds.
Define v = u− û. Then (v, p) ∈ (H1

0 × L2
0) ∩ (H2 ×H1) is the weak solution of

the problem

(I − ε2∆)v − grad p = f̂ in Ω,
div v = 0 in Ω,

v = 0 on ∂Ω,
(6.8)

where f̂ = f + ε2∆û− û. Clearly, f̂ ∈ L2. In fact, f̂ ∈H(rot), since

rot f̂ = rotf − rot û.

Furthermore, there is a constant c, independent of ε, f and g, such that

‖ rot f̂‖0 ≤ c (‖ rotf‖0 + ‖g‖1,+).(6.9)

Since v ∈ L2 and div v = 0 there exists φ ∈ H1, uniquely determined up to a constant,
such that v = curlφ [11, Theorem I.3.1]. Hence, since v ∈H2 ∩H1

0 , we can choose
φ ∈ H3 ∩H2

0 . In fact, by applying the rot operator, as a map from L2 to H−1, to the
first equation of (6.8) we obtain

−∆φ+ ε2∆2φ = rot f̂ in Ω,

φ =
∂φ

∂n
= 0 on ∂Ω.

The function φ is uniquely determined by this problem. This singular perturbation
problem was in fact studied in [14], where it was established that [14, Lemma 5.1]

ε1/2‖φ‖2 + ε3/2‖φ‖3 ≤ c‖ rot f̂‖0,

and as a consequence

ε1/2‖ rotv‖0 + ε3/2‖ rotv‖1 ≤ c‖ rot f̂‖0.

Therefore, since u = v + û, (6.7) and (6.9) imply

ε1/2‖ rotu‖0 + ε3/2‖ rotu‖1 ≤ c‖ rot f̂‖0 + ε1/2(‖ rot û‖0 + ε‖ rot û‖1)
≤ c(‖ rotf‖0 + ‖g‖1,+).

This completes the proof.
In addition to the ε-dependent bound on the solution (u, p) of (6.4) derived above,

we shall also need convergence estimates on how fast these solutions converge to the
solution of the reduced system.
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The reduced system corresponding to (6.4) is of the form

u0 − grad p0 = f in Ω,
divu0 = g in Ω,
u0 · n = 0 on ∂Ω.

(6.10)

A precise weak formulation of this system is given by the following:
Find (u0, p0) ∈H0(div)× L2

0 such that

(u0,v) + (p0,div v) = (f ,v) ∀v ∈H0(div),
(divu0, q) = (g, q) ∀q ∈ L2

0.
(6.11)

If (f , g) ∈ H−1(rot) × L2
0, then this system admits a unique solution. In fact, if

f ∈H(rot), then u0 ∈H(rot) with rotu0 = rotf . Therefore,

u0 ∈H0(div) ∩H(rot),

and hence (cf. [11, Proposition 3.1, Chapter 1]) u0 ∈ H1. As a consequence, p0 ∈
H1. Furthermore, the corresponding solution map is continuous; i.e., there exists a
constant c, independent of f and g, such that

‖u0‖1 + ‖p0‖1 ≤ c (‖f‖rot + ‖g‖0).(6.12)

Lemma 6.2. Assume that f ∈H(rot), g ∈ H1
+, and let (u, p) be the correspond-

ing solution of (6.4). There exists a constant c > 0, independent of ε, f and g, such
that

‖u− u0‖0 + ‖p− p0‖1 ≤ c ε1/2(‖f‖rot + ‖g‖1,+).
Proof. It follows from (2.2), the weak formulation of (6.4), and Green’s theorem

that for any v ∈H1 ∩H0(div) the solution (u, p) satisfies

(u,v) + ε2(divu,div v) + ε2(rotu, rotv) + ε2

∫
∂Ω

(rotu)(v · t)dτ
+ (p,div v) = (f ,v).

By subtracting from this the first equation of (6.11), we obtain

(u− u0,v) + ε2(rotu, rotv) + ε2

∫
∂Ω

(rotu)(v · t)dτ = 0

for any v ∈H1 ∩H0(div) with div v = 0. Hence, if we take v = u−u0, and observe
that rotu0 = rotf and div(u− u0) = 0, we derive the identity

‖u− u0‖20 + ε2‖ rotu‖20 = ε2

∫
∂Ω

(rotu)(u0 · t)dτ + ε2(rotu, rotf),

which immediately leads to the bound

‖u− u0‖20 +
ε2

2
‖ rotu‖20 ≤ ε2 ‖ rotf‖20 + ε2

∫
∂Ω

(rotu)(u0 · t)dτ.(6.13)

In order to estimate the boundary integral we note that it follows from Lemma 6.1
and [12, Theorem 1.5.1.10] that

‖ rotu‖0,∂Ω ≤ c‖ rotu‖1/20 ‖ rotu‖1/21 ≤ cε−1 (‖ rotf‖0 + ‖g‖1,+).
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Together with the estimate (6.12) this leads to

ε2

∫
∂Ω

(rotu)(u0 · t)dτ ≤ ε2‖ rotu‖0,∂Ω‖u0‖1
≤ c ε(‖f‖2rot + ‖g‖21,+).

Hence, the estimate

‖u− u0‖0 + ε2‖ rotu‖20 ≤ c ε1/2(‖f‖rot + ‖g‖1,+)(6.14)

follows.
The estimate for ‖p− p0‖1 is now a direct consequence of the identity

grad(p− p0) = u− u0 − ε2∆u

= u− u0 + ε2(curl rotu− grad g)

and the previously established bounds. In fact, it follows from Lemma 6.1 and (6.14)
that

‖grad(p− p0)‖0 ≤ ‖u− u0‖0 + ε2(‖ rotu‖1 + ‖g‖1)
≤ c ε1/2(‖f‖rot + ‖g‖1,+).

Since p−p0 ∈ L2
0, an application of the Poincaré inequality completes the proof.

The regularity bounds derived above will now be used to prove the uniform con-
vergence estimates.

Proof of Theorem 6.1. Recall that since u ∈ H1
0 it follows from [11, Proposi-

tion 3.1, Chapter 1] that

‖u‖1 ≤ c(‖divu‖0 + ‖ rotu‖0).

Furthermore, by the standard H2-regularity for solutions of the Poisson equation on
convex domains, and (2.2), we obtain

‖u‖2 ≤ c‖∆u‖0 ≤ c(‖divu‖1 + ‖ rotu‖1).

Hence, from the estimates given in Lemmas 6.1 and 6.2 we conclude that

ε2‖u‖2 + ε‖u‖1 + ‖u− u0‖0 + ‖p− p0‖1 ≤ cε1/2(‖f‖rot + ‖g‖1,+).(6.15)

The desired estimate on the velocity error will be derived from (5.4). We will first
establish the interpolation estimate

‖u−Πhu‖0 + ε‖D(u−Πhu)‖1 ≤ c h1/2(‖f‖rot + ‖g‖1,+).(6.16)

From (4.6), (6.12), and (6.15) we have

‖u−Πhu‖0 ≤ ‖(I −Πh)(u− u0)‖0 + ‖u0 −Πhu
0‖0

≤ ch1/2 (‖u− u0‖1/20 ‖u− u0‖1/21 + h1/2 ‖u0‖1)
≤ ch1/2(‖f‖rot + ‖g‖1,+).
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Furthermore, from (4.4), (4.5), and (6.15),

ε‖D(u−Πhu)‖0 ≤ cε‖u‖1/21 ‖u−Πhu‖1/21 ≤ cεh1/2‖u‖1/21 ‖u‖1/22

≤ ch1/2(‖f‖rot + ‖g‖1,+).

The estimate (6.16) is therefore verified.

Similarly, since ‖u‖1/21 ‖u‖1/22 ≤ cε−1(‖f‖rot+‖g‖1,+), we obtain from Lemma 5.1
that

sup
v∈Vh

|Eε,h(u,v)|
‖v‖a ≤ ch1/2(‖f‖rot + ‖g‖1,+).(6.17)

However, by combining (5.4), (6.3), (6.16), and (6.17), this implies

‖u− uh‖0 + ε‖ rot(u− uh)‖0 ≤ ch1/2(‖f‖rot + ‖g‖1,+).(6.18)

In order to establish the estimate for the ‖p− ph‖0 note that (4.3) and (6.15) imply

‖Php− p‖0 ≤ ch‖p‖1 ≤ ch(‖f‖rot + ‖g‖1,+).

Finally, by (5.6), (6.17), and (6.18),

‖Php− ph‖0 ≤ ch1/2(‖f‖rot + ‖g‖1,+).

This completes the proof of Theorem 6.1.
Remark. Even if Lemma 6.2 states that ‖p‖1 is uniformly bounded with respect

to ε, we are not able to prove that ‖p − ph‖0 converges linearly in h uniformly in ε.
The convergence rate is polluted by the blowup of u. This seems to agree with what
we observed in Example 6.1; cf. Table 6.2.

7. An associated elliptic system. In this section we shall study the elliptic
system (1.2) given by

(I − ε2∆)u− δ−2 grad(divu− g) = f in Ω,
u = 0 on ∂Ω,

(7.1)

where ε, δ ∈ (0, 1]. Recall that by introducing p = δ−2 divu this system can be
alternatively written on the mixed form (1.3). Hence, as δ approaches zero the system
formally reduces to (1.1).

The system (7.1) will be discretized by a standard finite element approach; i.e.,
the mixed system (1.3) is not introduced in the discretization. Let the bilinear
form bε,δ(·, ·) be defined by

bε,δ(u,v) = aε(u,v) + δ−2(divu,div v)

= (u,v) + ε2(Du,Dv) + δ−2(divu,div v).

For a given finite element space Vh, the corresponding standard finite element dis-
cretization of (7.1) is given by the following:

Find a uh ∈ Vh such that

bε,δ(uh,v) = (f ,v) + δ−2(g,div v) ∀v ∈ Vh.(7.2)
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Our purpose here is to discuss this discretization when the finite element space Vh
is the space introduced in section 4. Since this space is not a subspace of H1

0 this
will lead to a nonconforming discretization of the system (7.1). However, before we
analyze this discretization, we will present some numerical experiments based on the
system (7.1).

Example 7.1. In all the examples presented in this section we consider the sys-
tem (7.1) with u = curl sin2(πx1) sin

2(πx2), g = 0, and f = u − ε2∆u. Hence, the
solution is independent of ε and δ.

We consider the problem (7.1) with Ω taken as the unit square. The domain is
triangulated as described in Example 3.1. The system is then discretized by solving
the system (7.2), where the space Vh is the standard space of continuous piecewise
linear functions with respect to this triangulation.

In the present example we have used ε = 1, while δ and h vary. In Table 7.1 we
have computed the relative error in the L2 norm for different values of δ and h.

Table 7.1
The relative L2 error using piecewise linear elements, ε = 1.

δ\h 2−2 2−3 2−4 2−5 2−6 Rate

1.00 3.87e-1 1.32e-1 3.69e-2 9.52e-3 2.39e-3 1.85

0.10 9.19e-1 7.28e-1 4.34e-1 1.88e-1 6.20e-2 0.97

0.01 1.00 9.96e-1 9.82e-1 9.32e-1 7.88e-1 0.08

As expected we observe approximately quadratic convergence with respect to h
for δ = 1. However, the convergence clearly deteriorates as δ tends to zero.

Example 7.2. We repeat the experiment above, but we extend the finite element
space and use the corresponding velocity space of the Mini element instead of the
piecewise linear space. It is interesting to note that the L2 convergence deteriorates,
as δ gets small, also in this case, in contrast to what we have observed in Table 3.7.
The relative L2 error is given in Table 7.2.

Table 7.2
The relative L2 error using the Mini element, ε = 1.

δ\h 2−2 2−3 2−4 2−5 2−6 Rate

1.00 3.80e-1 1.30e-1 3.62e-2 9.34e-3 2.35e-3 1.85

0.10 9.19e-1 7.28e-1 4.34e-1 1.88e-1 6.20e-2 0.97

0.01 9.99e-1 9.96e-1 9.82e-1 9.33e-1 7.88e-1 0.08

We observe that the results are almost identical to the ones we obtained in the
piecewise linear case. Hence, the extra bubble functions have almost no effect. Of
course, the main reason for the difference between the results given here, for δ small,
and the results given in Example 3.3, where δ = 0, is that the second equation of
the mixed method used previously implicitly introduces a reduced integration in the
divergence term.

Example 7.3. We repeat the experiment above once more, but this time we use
the new nonconforming element. In Table 7.3 we have computed the relative error
in the energy norm, i.e., the norm generated by the form bε,δ, for different values of
δ and h.

In contrast to the other examples above, in this case the convergence seems to be
linear with respect to h, uniformly in δ. We also observe that the errors are almost
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Table 7.3
The relative error in energy norm for the new nonconforming element, ε = 1.

δ\h 2−2 2−3 2−4 2−5 2−6 Rate

1.00 1.84 9.83e-1 4.98e-1 2.50e-1 1.25e-1 0.97

0.10 1.83 9.66e-1 4.87e-1 2.44e-1 1.22e-1 0.98

0.01 1.83 9.66e-1 4.87e-1 2.44e-1 1.22e-1 0.98

Table 7.4
The relative error in energy norm for the new nonconforming element, ε = 0.01.

δ\h 2−2 2−3 2−4 2−5 2−6 Rate

1.00 1.04e-1 3.23e-2 8.94e-3 2.21e-3 5.29e-4 1.91

0.10 1.04e-1 3.23e-2 8.94e-3 2.21e-3 5.29e-4 1.91

0.01 1.04e-1 3.23e-2 8.94e-3 2.21e-3 5.29e-4 1.91

independent of δ.
Next, we reduce ε and take ε = 0.01 and redo the experiment. The results are

given in Table 7.4.
We observe that to the given accuracy the numerical solution is independent

of δ, clearly indicating that the numerical solutions are close to a pure curl field
independent of δ, which is precisely the form of the exact solution in this case. A
similar observation is done if we take ε = 0.

The numerical experiments just presented indicate that the nonconforming space
Vh, introduced in section 4 above, is well suited for problem (7.1). We will give a par-
tial theoretical justification for this claim by deriving a generalization of Theorem 5.1.

We assume throughout this section that u ∈ H2 ∩H1
0 . Let ‖ · ‖b be the energy

norm associated with the system (7.1), i.e.,

‖v‖2b = bε,δ(v,v).

It is a straightforward consequence of the second Strang lemma (cf. [9, Theorem 4.2.2])
that there exists a c > 0, independent of ε, h and u, such that

‖u− uh‖2b ≤ ‖u−Πhu‖2b + c sup
v∈Vh

|Eε,h(u,v)|2
‖v‖2b

,(7.3)

where the inconsistency error Eε,h is introduced in section 5. However, since ‖v‖b ≥
‖v‖a, the inconsistency term can be bounded as in Lemma 5.1. Furthermore, (4.5)
implies

‖u−Πhu‖a ≤ c(h2 + εh)‖u‖2.

As a consequence of the fact that divΠhu = Ph divu, it is also true that

‖div(u− uh)‖20 = ‖div(u−Πhu)‖20 + ‖div(Πhu− uh)‖20.

Thus, we can conclude from (7.3) that

‖u− uh‖2a + δ−2‖(I − Ph) divu‖20 + δ−2‖div(Πhu− uh)‖20
≤ c(h2 + εh)2‖u‖22 + δ−2‖(I − Ph) divu‖20.
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We therefore have established the following convergence result.
Theorem 7.1. If u ∈H2 ∩H1

0 , then

‖u− uh‖0 + ε‖ rot(u− uh)‖0 + δ−1‖div(Πhu− uh)‖0 ≤ c(h2 + εh)‖u‖2.
Here c > 0 is a constant independent of ε, δ, and h.

Note that from this result we can conclude that if ε and h are fixed, and δ
approaches zero, then divuh converges in L2 to Ph divu. Furthermore, the divergence
of the error can be controlled by this estimate since

‖div(u− uh)‖0 ≤ ‖(I − Ph) divu‖0 + ‖div(Πhu− uh)‖0
≤ ch‖divu‖1 + cδ(ε2 + hε)‖u‖2.

Of course, exactly as for the problem (1.1) we can argue that, in general cases, the
norm ‖u‖2 will not remain bounded as ε and δ approach zero. Hence, ideally we
would like to generalize the results of section 6 to the problem (7.1). However, this
discussion is outside the scope of this paper.

Acknowledgments. The authors are grateful to Professors D.N. Arnold, R.S.
Falk, and Z. Cai for many useful discussions.
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Abstract. We deal with the Kirchhoff–Love model for a bending thin plate with physical
boundary conditions. We propose here a new mixed formulation, based on a decomposition of the
bending moment. For its discretization, we employ classical low-order conforming finite elements.
Then the discrete formulation allows us to obtain directly an approximation of the bending moment,
while the deflection is recovered by solving an additional second order elliptic problem. We establish
optimal error estimates which prove that the method is unconditionally convergent. Moreover, its
convergence rate is optimal whenever the exact solution is sufficiently smooth.

Key words. Kirchhoff–Love model, mixed formulation, finite element, error estimates
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1. Introduction. We are interested in this paper in the analysis, from the the-
oretical and the numerical point of view, of the Kirchhoff–Love model for a bending
thin plate satisfying physical boundary conditions; cf. [4]. The unknowns of the
problem are the plate’s deflection and the bending moment, which is a second order
symmetric tensor. The usual approach for solving the Kirchhoff–Love model consists
of eliminating the stress tensor and calculating next the displacement, which satisfies
a fourth order elliptic problem. However, due to the boundary conditions considered
here, this approach is not possible, and, moreover, our goal is to obtain a good ap-
proximation for the stress tensor, which represents in practice the quantity of physical
interest.

Therefore, we propose a new mixed formulation whose main unknown is the
bending moment, while the multiplier is the gradient of the displacement on the
lateral boundary. In order to avoid the discretization of the constraint imposed on the
bending moment and on the test-functions, div div = 0, the main idea is to decompose
them by applying twice the Tartar lemma [9] and also by using the symmetry of the
above tensors. A similar idea is used by Destuynder and Salaun [4], but they apply
only once Tartar’s lemma, so they get a completely different problem.

We thus obtain an equivalent mixed formulation of the problem, whose main
unknown is not a physical variable but whose spaces are very easy to approximate.
Indeed, we are now dealing with classical Sobolev spaces, H1(Ω) and H1/2(Γ), re-
spectively. We employ for the approximation conforming low-order finite elements,
for which we prove a uniform inf-sup condition with respect to the discretization pa-
rameter. So, thanks to the Babuška–Brezzi theory (cf., for instance, [2]), we establish
the unconditional convergence of the proposed method. Moreover, the convergence
rate is proved to be optimal O(h) whenever the continuous solution is sufficiently
smooth. It is then obvious how to obtain an approximate bending tensor, while the
deflection of the plate is recovered by solving an additional Laplacian problem.
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The same idea of decomposing the bending moment applies to the Reissner–
Mindlin thin plate model, with natural boundary conditions. The variational formu-
lations presented here can then be generalized to the Reissner–Mindlin case, and they
lead to a discrete conforming method whose convergence is uniform with respect to
the plate’s thickness, which means that no locking phenomenon occurs.

The paper is organized as follows. In section 2 we introduce the continuous
Kirchhoff–Love problem, and in section 3 we state and analyze a first mixed vari-
ational formulation with respect to the bending moment. Section 4 deals with an
equivalent variational problem, obtained by decomposing the above tensor. Finally,
in section 5 we study its discretization by means of classical finite elements; we estab-
lish optimal error estimates and deduce the unconditional convergence of the finite
element method. We conclude with the approximation of the quantities which inter-
ested us at the beginning of the paper, that is, the bending moment and the deflection
of the plate.

2. Presentation of the continuous problem. Let Ω ⊂ R
2 denote the medium

surface of the thin plate and Γ its lateral boundary. We suppose that Γ is decomposed
into three disjoint open parts,

Γ = Γ0 ∪ Γ1 ∪ Γ2.

On each part we impose different boundary conditions. More precisely, we suppose
that the plate is clamped on Γ0, simply supported on Γ1, while Γ2 represents the
free boundary. In view of the finite element approximation of the problem, we also
suppose that Ω is a polygonal and connected bounded domain. The hypothesis of
connectivity is not essential but permits an easier presentation of the method.

The mechanical framework considered here is linear elasticity, and, in order to sim-
plify the writing, the constitutive material is taken to be homogeneous and isotropic.
Then the equations describing the Kirchhoff–Love model may be written as below
(see, for instance, [4] for more details):



∆2u = f in Ω,
u = ∂nu = 0 on Γ0,
u = 0, σijninj = 0 on Γ1,
σijninj = ∂t(σijtinj) + ∂jσijni = 0 on Γ2,
σij = (1− ν)∂iju+ ν∆uδij in Ω,

(2.1)

where ν is the Poisson coefficient. The unknowns of the problem are the deflection of
the plate u and the bending moment σ = (σij)1≤i,j≤2, which is a symmetric second
order tensor. A transverse loading is applied, of force density denoted (after scaling)
by f . In what follows, we will take f ∈ L2(Ω). We will suppose for technical reasons
that Ω has no cuts, Γ0 is not empty, and, moreover, Γ0 ∪ Γ1 is connected.

We denote n = (ni)1≤i≤2 the unit outward normal vector along Γ and t =
(ti)1≤i≤2 the unit tangent vector to Γ oriented such that t1 = n2, t2 = −n1. We
also employ in this paper the summation convention of Einstein, and we denote by
the letter c any positive constant independent of the discretization. We agree to write
the vectors in bold letters and the tensors in underlined letters.

Let us also recall here some classical notation which will be used in what follows;
for any vector function v and any scalar function v we denote

curl v = ∂1v2 − ∂2v1, div v = ∂ivi,

curl v =

(
∂2v
−∂1v

)
, curl v =

(
∂2v1 −∂1v1
∂2v2 −∂1v2

)
,
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and we also put

divτ =

(
∂1τ11 + ∂2τ12
∂1τ21 + ∂2τ22

)
, I =

(
1 0
0 1

)
, J =

(
0 1
−1 0

)
.

We also introduce the tangential, respectively, the normal, derivative on the boundary
for a scalar function v:

∂tv = ∇v · t and ∂nv = ∇v · n.
We will denote by 〈·, ·〉− 1

2 ,
1
2 ,Γ

and 〈·, ·〉− 3
2 ,

3
2 ,Γ

the duality pairings between the spaces

H1/2(Γ) and its topological dualH−1/2(Γ), respectively,H3/2(Γ) and its dualH−3/2(Γ).
Let us also recall that H1/2(Γ) and H3/2(Γ) are the spaces of traces of functions be-
longing to H1(Ω), respectively, to H2(Ω). The Kirchhoff–Love model (2.1) is a rather
general one. It includes the case of a clamped plate (obtained for Γ1 = Γ2 = ∅ and
modelled by a classical biharmonic problem), as well as the case of a simply supported
plate (obtained when Γ0 = Γ2 = ∅).

One of the first questions which arise in the analysis of problem (2.1) is how to
give a mathematical framework in which the above problem is well-posed. For that,
we consider the following spaces:

V =
{
v ∈ H1 (Ω) ; v = 0 on Γ0 ∪ Γ1

}
,

X =
{
τ = (τ ij)1≤i,j≤2; τ ij ∈ L2 (Ω) , D(τ) ∈ L2 (Ω)

}
,

endowed with the natural norms

‖v‖V = |v|1,Ω ,
‖ τ ‖X= (‖ τ ‖20,Ω + ‖ D(τ) ‖20,Ω)1/2,

where D(τ) = div(divτ) = ∂ijτ ij . It is obvious that V and X are Hilbert spaces
with respect to these norms, and, moreover, we have the following result.

Proposition 2.1. The space (D(Ω))4 is a dense subspace of X.
Proof. Let σ ∈ X belong to the orthogonal complement of (D(Ω))4 in X; that is,

∀τ ∈ (D(Ω))4, 〈σ, τ〉X =

∫
Ω

σ : τ dΩ+

∫
Ω

D(σ)D(τ) dΩ = 0.

By taking τ ∈ (D (Ω))4 ⊂ (D(Ω))4 one obtains, for all i, j ∈ {1, 2}, the following
equality in the sense of distributions:

σij + ∂ijD(σ) = 0 in D′ (Ω) .

This immediately implies that D(σ) ∈ H2 (Ω) . By taking next as test-function τ = αI
with α ∈ D(Ω), one obtains that

D(σ) = ∂nD(σ) = 0 on Γ.

So, D(σ) satisfies the following boundary value problem:{
D(σ) ∈ H2

0 (Ω) ,
D(σ) + ∆2D(σ) = 0 in Ω,

which admits a unique solution D(σ) = 0. Therefore, we obtain that σ = 0. We
have thus established that (D(Ω)4)⊥ = {0} for the scalar product of X, and the
Hahn–Banach theorem completes the proof.
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This preliminary result allows us to define rigorously the trace operators for the
bending moment σ. We proceed in the usual way; that is, we first consider the oper-
ators γ0 and γ1 defined by

γ0 : (D(Ω))4 −→ L2 (Γ) , γ0(τ) = τn · n = τ ijninj

and, respectively,

γ1 : (D(Ω))4 −→ L2 (Γ) , γ1(τ) = ∂t(τn · t) + divτ · n = ∂t(τ ijtinj) + ∂jτ ijni,

and we establish the following result.
Theorem 2.2. Operators γ0 : ((D(Ω))4, ‖·‖X) −→ (L2 (Γ) , ‖·‖− 1

2 ,Γ
) and γ1 :

((D(Ω))4, ‖·‖X) −→ (L2 (Γ) , ‖·‖− 3
2 ,Γ

) are linear and continuous. They can be ex-

tended by continuity to the whole space X, with values in H−1/2(Γ) and H−3/2(Γ),
respectively. Moreover, for any v ∈ H2(Ω) one has the following Green-type formula:∫

Ω

D(τ)v dΩ =

∫
Ω

τ ij∂ijv dΩ− 〈γ0(τ), ∂nv〉− 1
2 ,

1
2 ,Γ

+ 〈γ1(τ), v〉− 3
2 ,

3
2 ,Γ
.(2.2)

Proof. Let us consider any τ ∈ (D(Ω))4. Then by classical Green’s formula one
has, for any v ∈ H2 (Ω) , that∫

Ω

D(τ)v dΩ = −
∫

Ω

divτ · ∇v dΩ+

∫
Γ

(divτ · n)v dΓ

=

∫
Ω

τ ij∂ijv dΩ+

∫
Γ

(divτ · n)v dΓ−
∫

Γ

(τn) · ∇v dΓ.

One can next write∫
Γ

(τn) · ∇v dΓ =

∫
Γ

(τn · n)∂nv dΓ +

∫
Γ

(τn · t)∂tv dΓ

=

∫
Γ

(τn · n)∂nv dΓ−
∫

Γ

∂t(τn · t)v dΓ

and finally obtain, for any τ∈ (D(Ω))4,∫
Ω

D(τ)v dΩ =

∫
Ω

τ ij∂ijv dΩ− 〈γ0(τ), ∂nv〉− 1
2 ,

1
2 ,Γ

+ 〈γ1(τ), v〉− 3
2 ,

3
2 ,Γ
.

We next establish the continuity of the linear operators γ0 and γ1 defined on the
space (D(Ω))4. For that, it is sufficient to write that

(‖ γ0(τ) ‖2−1/2,Γ + ‖ γ1(τ) ‖2−3/2,Γ)
1/2 ≤ c sup

λ∈H1/2(Γ)

µ∈H3/2(Γ)

〈γ0(τ), λ〉− 1
2 ,

1
2 ,Γ

+ 〈γ1(τ), µ〉− 3
2 ,

3
2 ,Γ

(‖λ‖21/2,Γ + ‖µ‖23/2,Γ)1/2

≤ c′ sup
v∈H2(Ω)

〈γ0(τ), ∂nv〉− 1
2 ,

1
2 ,Γ
− 〈γ1(τ), v〉− 3

2 ,
3
2 ,Γ

‖v‖2,Ω
.

The last inequality comes by associating, to any (λ, µ) ∈ H1/2 (Γ) × H3/2 (Γ) , a
function v ∈ H2 (Ω) defined as the unique solution of the biharmonic problem


∆2v = 0 in Ω,
v = −µ on Γ,
∂nv = λ on Γ
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and by noticing that ‖v‖2,Ω ≤ c(‖λ‖21/2,Γ + ‖µ‖23/2,Γ)1/2. Then one obviously has

‖ γ0(τ) ‖−1/2,Γ + ‖ γ1(τ) ‖−3/2,Γ≤ c sup
v∈H2(Ω)

∫
Ω

D(τ)v dΩ−
∫

Ω

τ ij∂ijv dΩ

‖v‖2,Ω
≤ c ‖ τ ‖X

and by density (cf. Proposition 2.1) it comes that γ0 and γ1 can be continuously
extended to X. Green-type formula (2.2) also holds, due to the density of (D(Ω))4 in
X.

3. Formulation with respect to the bending moment. In this section we
propose a first variational formulation of the initial plate problem, whose main un-
known will be the bending moment σ. For that, let us begin by introducing the Hilbert
spaces

M =
{
v ∈ H3/2 (Γ) ; v = 0 on Γ0 ∪ Γ1

}
,

N =
{
v ∈ H1/2 (Γ) ; v = 0 on Γ0

}
,

X0 = {τ ∈ X; D(τ) = 0} ,
as well as the subset of X:

Xf = {τ ∈ X; D(τ) = f} .
Let us also define the following continuous bilinear forms:

∀(σ, τ) ∈ X ×X, a(σ, τ) =
1

1− ν
∫

Ω

σ : τ dΩ− ν

1− ν2
∫

Ω

(trσ)(trτ) dΩ;

∀τ ∈ X, ∀(µ, λ) ∈M ×N, b(τ , (µ, λ)) = 〈γ1(τ), µ〉− 3
2 ,

3
2 ,Γ
− 〈γ0(τ), λ〉− 1

2 ,
1
2 ,Γ
.

It is also useful to introduce the boundary value problem


∆φ = f in Ω,
φ = 0 on Γ0 ∪ Γ1,
∂nφ = 0 on Γ2,

(3.1)

which admits a unique solution φf ∈ V. Thus, the set Xf is not empty since τ = φfI
belongs to Xf .

Next, we consider the mixed formulation of the Kirchhoff–Love model given by


findσ ∈ Xf , (u0, u1) ∈M ×N such that,
∀τ ∈ X0, a(σ, τ) + b(τ , (u0, u1)) = 0;
∀(v0, v1) ∈M ×N, b(σ, (v0, v1)) = 0.

Obviously, one can write the solution σ ∈ Xf in the following way:

σ = σ0 + φfI,

with φf verifying (3.1) and σ0 ∈ X0. By the means of this decomposition, we can
work from now on with the new unknown σ0. Since one has

γ0(φ
fI) = φf , γ1(φ

fI) = 0,
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the previous variational problem now writes under the equivalent form


findσ0 ∈ X0, (u0, u1) ∈M ×N such that,

∀τ ∈ X0, a(σ0, τ) + b(τ , (u0, u1)) = −a(φfI, τ);
∀(v0, v1) ∈M ×N, b(σ0, (v0, v1)) = 〈φf , v1〉− 1

2 ,
1
2 ,Γ
.

(3.2)

We establish in the next theorem the well-posedness of this problem, as well as its
link with the initial Kirchhoff–Love model.

Theorem 3.1. Problem (3.2) has a unique solution (σ0, u0, u1). Moreover, one
has that 


σ0 + φfI = σ in Ω
u0 = u on Γ
u1 = ∂nu on Γ,

where (σ, u) satisfies the Kirchhoff–Love equations (2.1).
Proof. We make use of the classical Babuška–Brezzi theory for mixed formulations

in order to obtain the existence and the uniqueness of the solution of (3.2).
First of all, let us note that the bilinear form a (·, ·) is elliptic on X0×X0 ; indeed,

the inequality

(trτ)2 ≤ 2τ : τ

implies that,

∀τ ∈ X0, a(τ , τ) ≥ 1

1 + ν
‖ τ ‖20,Ω .

Second, we verify the inf-sup condition for the bilinear form b(·, ·). For that, let
us consider an arbitrary couple (v0, v1) ∈ M × N, to which we associate the unique
solution w ∈ H2(Ω) of the following boundary value problem:


∆2w = 0 in Ω,
w = −v0 on Γ,
∂nw = −v1 on Γ.

(3.3)

We define next τ ij = ∂ijw for 1 ≤ i, j ≤ 2; then we have that τ = (τ ij)1≤i,j≤2 ∈ X0

and also that ‖ τ ‖X= |w|2,Ω . Green’s formula (2.2) gives

〈γ1(τ), v0〉− 3
2 ,

3
2 ,Γ
− 〈γ0(τ), v1〉− 1

2 ,
1
2 ,Γ

=

∫
Ω

τ ij∂ijw dΩ = |w|22,Ω ,

so, using the continuity of the trace operators for w, we get that

sup
τ∈X0

〈γ1(τ), v0〉− 3
2 ,

3
2 ,Γ
− 〈γ0(τ), v1〉− 1

2 ,
1
2 ,Γ

‖ τ ‖X ≥ |w|2,Ω ≥ c(‖v0‖ 3
2 ,Γ

+ ‖v1‖ 1
2 ,Γ

).

The hypotheses of the Babuška–Brezzi theorem are now satisfied, so problem (3.2)
admits a unique solution.

In order to interpret this variational problem in the sense of distributions, let us
begin by taking as test-function in the first equation of (3.2) a tensor τ ∈ (D(Ω))4
with D(τ) = 0. Then we have ∫

Ω

χ : τ dΩ = 0,(3.4)
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where we have put, for the simplicity of the writing,

χ =
1

1− ν
(
σ − ν

1 + ν
(trσ)I

)
, σ = σ0 + φfI.

By taking next in the relation (3.4) τ= ρJ with ρ ∈ D(Ω), we obtain that the tensor
χ is symmetric. For the test-function τ = curl ϕ with ϕ ∈ (D(Ω))2, we get

curl

(
χ11

χ12

)
= curl

(
χ21

χ22

)
= 0,

so there exists θ ∈ (H1(Ω)/R)2 such that χ = ∇θ. The symmetry of χ then implies θ =

∇u, where u ∈ H2(Ω). Therefore, we finally obtain that χij = ∂iju or, equivalently,

σij = (1− ν)∂iju+ ν∆uδij ,
with u ∈ H2(Ω) unique up to a first order polynomial. The Green-type formula (2.2)
and the first equation of (3.2) next give, for all τ ∈ X0, that

〈γ1(τ), u0 − u〉− 3
2 ,

3
2 ,Γ
− 〈γ0(τ), u1 − ∂nu〉− 1

2 ,
1
2 ,Γ

= 0.

Consequently, by using the same idea as in the proof of the inf-sup condition for b(·, ·),
we get that |w|2,Ω = 0, where w now satisfies the following biharmonic problem:


∆2w = 0 in Ω,
w = u0 − u on Γ,
∂nw = u1 − ∂nu on Γ.

So w is a first order polynomial, which we can take to be null, and thus we obtain
that

u|Γ = u0 ∈M, ∂nu|Γ = u1 ∈ N.
Finally, since D(σ) = f and since σ satisfies, from the second equation of (3.2),

the boundary conditions γ1(σ) = 0 on Γ2, γ0(σ) = 0 on Γ1 ∪ Γ2, we now get
that (σ, u) satisfies the equations of the Kirchhoff–Love model (2.1), which ends the
proof.

Remark 1. This result allows us to recover the deflection of the plate, too.
Indeed, u is the unique solution of the biharmonic problem


∆2u = f in Ω,
u = u0 on Γ,
∂nu = u1 on Γ.

However, in what follows we will calculate the displacement u more directly, as the
solution of a second order elliptic problem.

4. Equivalent mixed formulation. We introduce in this section another vari-
ational formulation for (2.1), which is equivalent to (3.2) and whose unknowns now
belong to classical Sobolev spaces. Then we will approximate this new problem, and
thus we will avoid the discretization of the constraint div(divτ) = 0 imposed on the
test-functions of (3.2). This equivalent formulation is based on the decomposition of
the elements of X0, which is presented in the next paragraph.
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4.1. Characterization of the subspace X0. For any τ ∈ X0, one has D(τ) =
0 that is div(divτ) = 0. Applying Tartar’s lemma (see [5] or [9] for instance), one
gets the existence of a unique ρ ∈ L2

0 (Ω) such that div τ = curl ρ. This translates
into the relations {

∂1τ11 + ∂2τ12 = ∂2ρ,
∂1τ21 + ∂2τ22 = −∂1ρ

or, equivalently, {
∂1τ11 + ∂2 (τ12 − ρ) = 0,
∂1 (τ21 + ρ) + ∂2τ22 = 0.

We have employed above the usual notation

L2
0 (Ω) =

{
ρ ∈ L2 (Ω) ;

∫
Ω

ρ dΩ = 0

}
.

By setting q1 = ( τ11

τ12−ρ ) and q2 = ( τ21+ρ
τ22

), the previous relations write div qi = 0 for
1 ≤ i ≤ 2. One more application of the Tartar lemma gives the existence of a unique
function ϕ = (ϕ1, ϕ2) ∈ (H1 (Ω))2, with

∫
Ω
ϕ dΩ = 0, such that



τ11 = ∂2ϕ1,
τ12 = ρ− ∂1ϕ1,
τ21 = −ρ+ ∂2ϕ2,
τ22 = −∂1ϕ2.

So, τ belongs to X0 if and only if there exist two functions ϕ ∈ (H1 (Ω))2 and
ρ ∈ L2 (Ω) , both unique up to a constant, such that

τ = curl ϕ+ ρJ.

It follows that if τ ∈ Xf , then there exist unique functions ϕ̃ ∈ (H1 (Ω))2 with∫
Ω
ϕ̃ dΩ = 0 and ρ̃ ∈ L2

0 (Ω) such that

τ = curl ϕ̃+ ρ̃J + φfI,

with φf ∈ V the solution of problem (3.1).
Concerning the trace operators γ0 and γ1, we can express them for every τ ∈ X0

in the following way:{
γ0(τ) = (curl ϕn) · n = −∂tϕ · n,
γ1(τ) = ∂t(τn · t) + divτ · n = −∂t(∂tϕ · t).(4.1)

If, moreover, the tensor τ ∈ X0 is symmetric, then

2ρ = divϕ.

In this case we write τ as below:

τ = curl ϕ+
1

2
(divϕ)J =

(
∂2ϕ1 (∂2ϕ2 − ∂1ϕ1)/2

(∂2ϕ2 − ∂1ϕ1)/2 −∂1ϕ2

)
,(4.2)
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with a unique function ϕ now belonging to

H =

{
ϕ ∈ (H1 (Ω))2;

∫
Ω

ϕ dΩ = 0,

∫
Ω

divϕ dΩ = 0

}
.

Obviously, H is a Hilbert space with respect to the norm

[ϕ]H =

(
‖∂2ϕ1‖20,Ω +

1

2
‖∂2ϕ2 − ∂1ϕ1‖20,Ω + ‖∂1ϕ2‖20,Ω

)1/2

.

By the means of the operator T : (H1 (Ω))2 → (H1 (Ω))2 defined by T (ϕ) = (ϕ2,−ϕ1),
one can immediately see that [ϕ]H =‖ ε(T (ϕ)) ‖0,Ω and divϕ = curl T (ϕ). Here,
ε(v) is the strain tensor associated to a function v with εij(v) =

1
2 (∂ivj + ∂jvi) for

1 ≤ i, j ≤ 2, and the L2-norm of a tensor is the square root of the sum of the squares
of the L2-norms of the tensor elements. So, by Korn’s inequality we have that [·]H
and ‖·‖1,Ω are equivalent norms on H.

From now on, since we know that ‖·‖1,Ω and |·|1,Ω are also equivalent norms on
H, we shall consider the space H endowed with the norm |·|1,Ω .

Remark 2. Let us point out here that to any ϕ ∈ (H1 (Ω))2 we can associate a
function ϕ̃ ∈ H such that

curl ϕ+
1

2
(divϕ)J = curl ϕ̃+

1

2
(divϕ̃)J,

∂tϕ · n = ∂tϕ̃ · n, ∂t(∂tϕ · t) = ∂t(∂tϕ̃ · t), [ϕ]H = [ϕ̃]H .

Indeed, let us put a =
∫
Ω
divϕ dΩ and consider the function ϕ′ = a

2m(Ω) (
x
y ) + c, with

c ∈ R
2 chosen such that

∫
Ω
ϕ dΩ =

∫
Ω
ϕ′ dΩ. Clearly, one has ∂tϕ

′ = a
2m(Ω)t on Γ

which leads to ∂tϕ
′ · n = 0, ∂t(∂tϕ

′ · t) = 0. Thus, we can take ϕ̃ = ϕ − ϕ′ which
satisfies the above conditions.

4.2. New variational formulation of the Kirchhoff–Love model. In what
follows, since we know that the bending moment σ is symmetric, we will use the
decomposition (4.2) for the symmetric elements of X0 in order to write down and to
study a new equivalent formulation of problem (3.2), whose main unknown will now
be a function ψ belonging to H.

To do that, let us define a bilinear continuous form A(·, ·) on H×H by putting

A(ψ,ϕ) = a

(
curl ψ +

1

2
(divψ)J, curl ϕ+

1

2
(divϕ)J

)

=
1

1− ν
∫

Ω

[
∂2ψ1∂2ϕ1 + ∂1ψ2∂1ϕ2 +

1

2
(∂2ψ2 − ∂1ψ1) (∂2ϕ2 − ∂1ϕ1)

]
dΩ

− ν

1− ν2
∫

Ω

(∂2ψ1 − ∂1ψ2) (∂2ϕ1 − ∂1ϕ2) dΩ.

Let us also calculate from (4.1), for any (v0, v1) ∈M ×N ,

b

(
curl ϕ+

1

2
(divϕ)J, (v0, v1)

)
= −〈∂t(∂tϕ · t), v0〉− 3

2 ,
3
2 ,Γ

+ 〈∂tϕ · n, v1〉− 1
2 ,

1
2 ,Γ
.

Considering a lifting w ∈ H2(Ω) which satisfies w = v0 on Γ and ∂nw = v1 on Γ, one
can now write

b

(
curl ϕ+

1

2
(divϕ)J, (v0, v1)

)
= 〈∂tϕ · t, ∂tv0〉− 1

2 ,
1
2 ,Γ

+ 〈∂tϕ · n, v1〉− 1
2 ,

1
2 ,Γ

= 〈∂tϕ · t,∇w · t〉− 1
2 ,

1
2 ,Γ

+ 〈∂tϕ · n,∇w · n〉− 1
2 ,

1
2 ,Γ

= 〈∂tϕ,∇w〉− 1
2 ,

1
2 ,Γ

= −〈∂t∇w,ϕ〉− 1
2 ,

1
2 ,Γ
.
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Remark 3. In order to establish in a rigorous manner the previous relations,
one may use the continuity of the trace operators γ0, γ1 and the density of D(Ω) in
H1(Ω).

This leads us to introduce a new bilinear form B(·, ·) on H× Z by setting

B(ϕ,q) = −〈∂tq, ϕ〉− 1
2 ,

1
2 ,Γ
,

where

Z =

{
q ∈ (H1/2 (Γ))2; q = 0 on Γ0, q · t = 0 on Γ1,

∫
Γ

q · t dΓ = 0

}

is endowed with the usual norm ‖·‖1/2,Γ . It is obvious that to any q ∈ Z, one can

now associate a unique couple (v0, v1) ∈M ×N by putting

q = (∂tv0)t+ v1n.

We also introduce the linear continuous forms F (·) and G(·) defined on H, re-
spectively, on Z, by

F (ϕ) = −a
(
φfI, curl ϕ+

1

2
(divϕ)J

)
= − 1

1 + ν

∫
Ω

φf (∂2ϕ1 − ∂1ϕ2) dΩ,

G(q) =

∫
Γ

φfq · n dΓ.

We are now able to write the following mixed variational problem:


find ψ ∈ H, p ∈ Z such that,
∀ϕ ∈ H, A(ψ,ϕ) +B(ϕ,p) = F (ϕ);
∀q ∈ Z, B(ψ,q) = G(q),

(4.3)

and we are able to prove in the next result that it is well-posed.
Theorem 4.1. Problem (4.3) has a unique solution.
Proof. We use, once more, the Babuška–Brezzi theory for mixed formulations.

We begin by establishing that the bilinear form A(·, ·) is H-elliptic. Indeed, let ϕ
be an arbitrary element of H. We put τ = curl ϕ + 1

2 (divϕ)J ; then we clearly have

τ ∈ X0, and we already know that there exists a constant c > 0 depending only on ν
such that

A(ϕ,ϕ) = a(τ , τ) ≥ c ‖ τ ‖20,Ω .
On the other hand, one has

‖ τ ‖0,Ω= [ϕ]H ≥ c |ϕ|1,Ω ,
so we deduce the ellipticity of A(·, ·) on H×H.

The continuity of the bilinear form B(·, ·) onH×Z may be established by classical
means:

| B(ϕ,q) |≤ ‖∂tq‖−1/2,Γ · ‖ϕ‖1/2,Γ ≤ c ‖q‖1/2,Γ · |ϕ|1,Ω .
As to the inf-sup condition for B(·, ·), let us consider for any q ∈ Z the boundary
value problem {

∆w = 0 in Ω,
w = q on Γ.
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Since ∂tq = −(curlw)n ∈ (H−1/2 (Γ))2, we can write that

sup
ϕ∈H

B(ϕ,q)

|ϕ|1,Ω
= sup
ϕ∈H

∫
Ω

curlw : ∇ϕ dΩ
|ϕ|1,Ω

.

On the other hand, since ∆wi = −curl(curlwi) = 0, for 1 ≤ i ≤ 2, one gets that
there exists z ∈ (H1 (Ω))2, unique up to a constant, such that curlw = ∇z. We can
take z such that

∫
Ω
z dΩ = 0. Moreover, we have∫

Ω

divz dΩ =

∫
Ω

(∂2w1 − ∂1w2) dΩ =

∫
Γ

w · t dΓ =

∫
Γ

q · t dΓ = 0,

so z belongs to H. This implies

sup
ϕ∈H

∫
Ω

curlw : ∇ϕ dΩ
|ϕ|1,Ω

≥

∫
Ω

curlw : ∇z dΩ
|z|1,Ω

= |z|1,Ω =‖ curlw ‖0,Ω .

So, we have now established that

sup
ϕ∈H

B(ϕ,q)

|ϕ|1,Ω
≥‖ curlw ‖0,Ω= |w|1,Ω .

However, q = 0 on Γ0 and, since we supposed thatm(Γ0) > 0, by Poincaré’s inequality
and by trace theorem we obtain that

|w|1,Ω ≥ c′ ‖w‖1,Ω ≥ c ‖q‖ 1
2 ,Γ
,

which allows us to conclude that problem (4.3) admits a unique solution.

4.3. Equivalence with the initial problem. We present here the link between
the solution of the previous variational problem (4.3) and the solution of the initial
Kirchhoff–Love model. This is stated in the next theorem.

Theorem 4.2. Let (ψ,p) ∈ H×Z be the unique solution of (4.3). Then one has{
σ′ = curl ψ +

1

2
(divψ)J + φfI in Ω,

∇u = p on Γ,
(4.4)

where (σ′, u) is the solution of (2.1) and φf the solution of (3.1).
Proof. Let us consider the tensor σ′ associated to the function ψ by means of the

relation

σ′ = curl ψ +
1

2
(divψ)J + φfI.

Then obviously D(σ′) = f and σ′ is symmetric. Moreover, to any (v0, v1) ∈ M ×N
we associate, as in Theorem 3.1, the auxiliary problem (3.3), and we set q = ∇w.
Then one has q ∈ Z and the second equation of (4.3) implies that

〈∂tψ,∇w〉− 1
2 ,

1
2 ,Γ

=

∫
Γ

φf∂nw dΓ

⇔ 〈∂tψ · t, ∂tw〉− 1
2 ,

1
2 ,Γ

+ 〈∂tψ · n− φf , ∂nw〉− 1
2 ,

1
2 ,Γ

= 0

⇔ 〈∂t(∂tψ · t), v0〉− 3
2 ,

3
2 ,Γ
− 〈∂tψ · n− φf , v1〉− 1

2 ,
1
2 ,Γ

= 0,
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which gives{
∂t(∂tψ · t) = 0 in H−3/2(Γ2),

∂tψ · n− φf = 0 in H−1/2(Γ1 ∪ Γ2),
⇐⇒

{
γ1(σ

′) = 0 on Γ2,
γ0(σ

′) = 0 on Γ1 ∪ Γ2.

Next, to any ϕ ∈ H we associate τ∈ X0 by putting τ = curl ϕ + 1
2 (divϕ)J . We

take (cf. Remark 2) in the first equation of (4.3) a test-function ϕ = ϕ∗−(ax+c1ay+c2
) ∈ H

with ϕ∗ ∈ (D(Ω))2 arbitrary, and we thus get that

a(σ′, τ) = 0.

By introducing the symmetric tensor

χ′ =
1

1− ν
(
σ′ − ν

1 + ν
(trσ′) I

)
,

we may write this last relation as∫
Ω

χ′ : τ dΩ = 0 ⇐⇒
∫

Ω

(χ′11∂2ϕ
∗
1 − χ′12∂1ϕ∗1) + (χ′12∂2ϕ

∗
2 − χ′22∂1ϕ∗2) dΩ = 0

for every ϕ∗ ∈ (D(Ω))2. We deduce, exactly as in the proof of Theorem 3.1, the
existence of a function u′ ∈ H2(Ω), unique up to a first order polynomial, such that

χ′ij = ∂iju
′ for 1 ≤ i, j ≤ 2;

that is,

σ′ = (1− ν)
(
∂11u

′ ∂12u′

∂21u
′ ∂22u′

)
+ ν(∆u′)I.

Now, for ϕ∗ ∈ (H1(Ω))2, the Green-type formula (2.2) gives that

〈γ1(τ), u′〉− 3
2 ,

3
2 ,Γ
− 〈γ0(τ), ∂nu′〉− 1

2 ,
1
2 ,Γ

= −a(σ′, τ) = −〈∂tp, ϕ∗〉− 1
2 ,

1
2 ,Γ
.

The above relation can be written as below:

−〈∂t(∂tϕ∗ · t), u′〉− 3
2 ,

3
2 ,Γ

+ 〈∂tϕ∗ · n, ∂nu′〉− 1
2 ,

1
2 ,Γ

= −〈∂tp, ϕ∗〉− 1
2 ,

1
2 ,Γ

⇔ 〈∂t(∇u′ − p), ϕ∗〉− 1
2 ,

1
2 ,Γ

= 0

for all ϕ∗ ∈ (H1(Ω))2. So we see that p = ∇u′ + c on Γ with c ∈ R
2, and since

∇u′ ∈ (H1(Ω)/R)2 we can choose c = 0. So we obtain, because p ∈ Z, that{ ∇u′ = 0 on Γ0,
∂tu

′ = 0 on Γ1,
⇐⇒

{
∂nu

′ = 0 on Γ0,
u′ = c on Γ0 ∪ Γ1.

However, now u′ belongs to H2(Ω)/R, so we can fix the constant c by taking u′ = 0
on Γ0 ∪ Γ1. We have thus proved that (σ′, u′) satisfies the Kirchhoff–Love problem
(2.1), and the theorem is established.

As a conclusion, it is sufficient to solve the mixed problem (4.3) and use relation
(4.4) to see that σ0 = curl ψ + 1

2 (divψ)J and, implicitly, the tensor σ = σ0 + φfI is
the solution of the initial Kirchhoff–Love model.



1644 M. AMARA, D. CAPATINA-PAPAGHIUC, AND A. CHATTI

Remark 4. Let us notice that we can also calculate the displacement u as the
unique solution of the following second order elliptic problem:


∆u =

1

1 + ν
(trσ) in Ω,

u = 0 on Γ0 ∪ Γ1,
∂nu = p · n on Γ2.

(4.5)

The equation in Ω is obtained by taking the trace in the constitutive law of the plate,
and it can also be written in terms of the solution ψ of (4.3) as ∆u = 1

1+ν (−curl ψ+

2φf ).
So, from now on, we shall study the variational problem (4.3). More precisely, we

are interested in its finite element approximation, which will be presented in the next
section.

5. Finite element approximation.

5.1. Discrete variational formulation. Let (Th)h>0 be a regular family of
triangulations of the polygonal domain Ω, each Th consisting of triangles K : Ω =⋃
K∈Th

K. For every triangle K of Th, we denote by hK its diameter, and we define
the discretization parameter h = maxK∈Th

hK . We also introduce the set of edges of
the triangulation Th situated on Γ1 ∪ Γ2,

∂T 1
h = {T ; T edge of K ∈ Th, T ⊂ (Γ1 ∪ Γ2)} ,

and we agree to denote by T ∗
h the set of triangles K ∈ Th which have at least an edge

situated on Γ1 ∪ Γ2. We consider two finite dimensional spaces Hh ⊂ H and Zh ⊂ Z
which we take as below:

H1
h = {ϕh ∈ H1(Ω); ∀K ∈ Th, ϕh|K ∈ P1 (K) if K /∈ T ∗

h

and ϕh|K ∈ P2 (K) if K ∈ T ∗
h },

Hh = H ∩ (H1
h)

2,

Zh =
{
qh ∈ Z; qh ∈ (C0 (Γ))2 and ∀T ∈ ∂T 1

h , qh|T ∈ (P1 (T ))
2
}
.

The degrees of freedom of ϕh ∈ Hh are the values of ϕh at the nodes of the triangula-
tion Th, to which we add the values at the midpoints of the edges situated on Γ1 ∪Γ2

(i.e., the bubble-functions on the boundary Γ1 ∪ Γ2).
Let us now write down the discrete version of the continuous problem (4.3) as

follows: 


find ψh ∈ Hh, ph ∈ Zh such that,
∀ϕh ∈ Hh, A(ψh, ϕh) +B(ϕh,ph) = Fh(ϕh);
∀qh ∈ Zh, B(ψh,qh) = Gh(qh).

(5.1)

The linear forms F (·) and G(·) are replaced in the discrete case by

Fh(ϕh) = −
1

1 + ν

∫
Ω

φfh (∂2ϕ1h − ∂1ϕ2h) dΩ,

Gh(qh) =

∫
Γ

φfh qh · n dΓ.

The discrete function φfh is a P1-continuous finite element approximation of φf , the
solution of the auxiliary problem (3.1). In order to calculate it explicitly, one can
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discretize the variational formulation of (3.1) and solve


find φfh ∈ Vh such that,

∀vh ∈ Vh,
∫

Ω

∇φfh · ∇vh dΩ =

∫
Ω

fvh dΩ,
(5.2)

where

Vh =
{
vh ∈ V ; vh|K ∈ P1(K) ∀K ∈ Th

}
.

It is then obvious that

| φf − φfh |1,Ω= inf
vh∈Vh

| φf − vh |1,Ω .

5.2. Error estimates. With the above choice for the finite element spaces,
we can show that the variational problem (5.1) has a unique solution. Moreover,
the discrete inf-sup condition of Babuška–Brezzi holds uniformly with respect to the
discretization parameter h, a result which is stated in the next lemma.

Lemma 5.1. There exists a positive constant c independent of h such that,

∀qh ∈ Zh, sup
ϕh∈Hh

B(ϕh,qh)

|ϕh|1,Ω
≥ c ‖ qh ‖1/2,Γ .

Proof. We apply Fortin’s trick (see [2], [8]). For that, we will use the continuous
inf-sup condition, established in Theorem 4.1, and the interpolation operator Ph :
(H1(Ω))2 → (H1

h)
2 defined hereafter.

Let us denote by P1h the classical Lagrange interpolation operator which satisfies,
for any ϕ ∈ (H1(K))2 ∩ (C0(K))2,

P1hϕ ∈ (P1(K))2 and P1hϕ(S) = ϕ(S)

for every vertex S of K ∈ Th. For the triangles satisfying K ∈ T ∗
h we also introduce

the operator P2h defined by P2hϕ ∈ (P2(K))2 and

P2hϕ(S) = 0 for every vertex S of K,∫
T

(ϕ− P2hϕ) dΓ = 0,

where T represents the edge of K situated on Γ1 ∪ Γ2. Then we put (see also [2]) on
every triangle K ∈ Th

Phϕ =

{
P1hϕ if K /∈ T ∗

h ,
P1hϕ+ P2h(ϕ− P1hϕ) if K ∈ T ∗

h ,

which clearly has the property

∀T ⊂ Γ1 ∪ Γ2,

∫
T

Phϕ dΓ =

∫
T

ϕ dΓ.(5.3)

If ϕ ∈ H ∩ (C0(Ω))2, then we have only Phϕ ∈ (H1
h)

2. We construct, according to
Remark 2,

P̃hϕ = Phϕ−
(
ax+ c1
ay + c2

)
∈ Hh.
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Now let us come back to the proof of the uniform inf-sup condition for problem
(5.1). To any qh ∈ Zh, we associate exactly as in Theorem 4.1 a function z ∈ H such
that

B(z,qh)

|z|1,Ω
≥ c ‖qh‖ 1

2 ,Γ
≥ |z|1,Ω .

We note that ∇z =curlw with w ∈ (H1(Ω))2 and ∆w = 0 in Ω and w = qh on
Γ. We have qh ∈ (H1(Γ))2; then by classical results of regularity of the Laplace
operator (see [6], [7]) we have that w ∈ (H1+a(Ω))2 with a ∈]0, 32 ]. We deduce that

z ∈ (H1+a(Ω))2 ↪→ (C0(Ω))2, so we can define Phz.

Then by considering the discrete function zh = P̃hz ∈ Hh and using (5.3) we
obtain

B(z,qh) = B(Phz,qh) = B
(
P̃hz,qh

)
.

The last equality comes from the fact that

B

((
ax+ c1
ay + c2

)
,qh

)
= a

∫
Γ

qh · t dΓ = 0.

On the other hand, we obtain by passing to the reference finite element and us-
ing the Bramble–Hilbert lemma (see [1], [3]), for any K such that K ∈ T ∗

h , that
|z− P2hz|1,K ≤ c |z|1,K . This implies

∀K ∈ Th, |z− Phz|1,K ≤ c |z− P1hz|1,K ≤ c |z|1,K ,
so, by the triangle inequality,

|Phz|1,Ω ≤ c |z|1,Ω .
By taking into account the fact that

c′
∣∣∣P̃hz∣∣∣

1,Ω
≤
[
P̃hz

]
H

= [Phz]H ≤ c |Phz|1,Ω ,

we now obtain that

sup
ϕh∈Hh

B(ϕh,qh)

|ϕh|1,Ω
≥
B
(
P̃hz,qh

)
∣∣∣P̃hz∣∣∣

1,Ω

≥ cB(z,qh)|z|1,Ω
≥ c ‖qh‖ 1

2 ,Γ
,

which completes the proof of the lemma.
This allows us to get the following error estimate (cf. [2], [8]):

|ψ − ψh|1,Ω + ‖p− ph‖ 1
2 ,Γ
≤ c

{
inf

ϕh∈Hh

|ψ − ϕh|1,Ω + inf
qh∈Zh

‖p− qh‖ 1
2 ,Γ

+ sup
ϕh∈Hh

Fh(ϕh)− F (ϕh)
|ϕh|1,Ω

+ sup
qh∈Zh

Gh(qh)−G(qh)
‖qh‖ 1

2 ,Γ

}
,

(5.4)

with c independent of the triangulation. It is obvious that

sup
ϕh∈Hh

Fh(ϕh)− F (ϕh)
|ϕh|1,Ω

≤ c | φf − φfh |1,Ω≤ c inf
vh∈Vh

| φf − vh |1,Ω,



MIXED METHOD FOR THE KIRCHHOFF–LOVE PLATE MODEL 1647

while the last term can be bounded as below:

sup
qh∈Zh

Gh(qh)−G(qh)
‖qh‖ 1

2 ,Γ

= sup
qh∈Zh

∫
Γ

(φfh − φf )qh · n dΓ
‖qh‖ 1

2 ,Γ

≤ c ‖ (φfh − φf )n ‖− 1
2 ,Γ

≤ c ‖ φfh − φf ‖0,Γ≤ c ‖ φfh − φf ‖1,Ω≤ c inf
vh∈Vh

| φf − vh |1,Ω .

So, we have now established the following result.

Theorem 5.2. The approximation method (5.1) of the variational problem (4.3)
is unconditionally convergent and satisfies the following error estimate:

|ψ − ψh|1,Ω + ‖p− ph‖ 1
2 ,Γ

≤ c
{

inf
ϕh∈Hh

|ψ − ϕh|1,Ω + inf
qh∈Zh

‖p− qh‖ 1
2 ,Γ

+ inf
vh∈Vh

| φf − vh |1,Ω
}
,

with a constant c independent of the discretization.

5.3. Convergence rate. First of all, let us recall that the function φf belonging
to H1(Ω) satisfies the boundary value problem (3.1):




∆φf = f ∈ L2(Ω),

φf = 0 on Γ0 ∪ Γ1,

∂nφ
f = 0 on Γ2.

The regularity results for the Laplace operator ensure (see [6], [7]) that there exists
b ∈] 12 , 1] such that

φf ∈ H1+b(Ω), || φf ||1+b,Ω≤ c ‖ f ‖0,Ω .

Then we get

inf
vh∈Vh

| φf − vh |1,Ω≤ chb ‖ f ‖0,Ω .

If Ω is convex, we have b = 1 and then we obtain an optimal behavior of the approx-
imation method given in (5.2). If the domain Ω is not convex but has no cuts, then
we have b ∈] 12 , 1[.

In order to give the convergence rate of the discretization method proposed in
(5.1), we assume that the solution (σ, u) of the initial Kirchhoff–Love model (2.1) has
the following smoothness:

σ ∈ (Ha(Ω))4, u ∈ H2+a(Ω), 0 < a ≤ 1,
‖ σ ‖a,Ω + ‖ u ‖2+a,Ω≤ c ‖ f ‖0,Ω .(5.5)

Then we immediately obtain from Theorem 5.2 and standard interpolation results
that

|ψ − ψh|1,Ω + ‖p− ph‖ 1
2 ,Γ
≤ chmin{a,b} ‖ f ‖0,Ω .(5.6)
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5.4. Approximate bending tensor and displacement. It is now easy to
come back to the calculus of the quantities which interested us at the beginning of
this paper, that is, the bending moment σ and the deflection of the plate u. Concerning
the tensor σ, we already know from Theorem 4.2 that

σ = curl ψ +
1

2
(divψ)J + φfI,

where ψ satisfies the equations (4.3). Therefore we set

σh = curl ψh +
1

2
(divψh)J + φfhI,(5.7)

with ψh the solution of (5.1) and with φfh given by (5.2). Then it is obvious that

‖ σ − σh ‖0,Ω≤ c |ψ − ψh|1,Ω + || φf − φfh ||0,Ω≤ chmin{a,b} ‖ f ‖0,Ω .(5.8)

One equally obtains the following estimate, with respect to the norm of H−1(Ω):

‖ D(σ)−D(σh) ‖−1,Ω=‖ ∆(φf − φfh) ‖−1,Ω≤| φf − φfh |1,Ω≤ chb ‖ f ‖0,Ω .
Now, concerning the plate’s deflection, we know that the continuous solution u

satisfies the boundary value problem (4.5), which may be written in variational form


find u ∈ V such that,

∀v ∈ V,
∫

Ω

∇u · ∇v dΩ =
−1

1 + ν

∫
Ω

(trσ)v dΩ+

∫
Γ2

p · n v dΓ.

Then we calculate the approximation uh of u as the solution of the next discrete
problem:


find uh ∈ Vh such that,

∀vh ∈ Vh,
∫

Ω

∇uh · ∇vh dΩ =
−1

1 + ν

∫
Ω

(trσh)vh dΩ+

∫
Γ2

ph · n vh dΓ,(5.9)

where σh is of course given by (5.7) and ph by the problem (5.1). We obtain the same
matrix in the relations (5.9) and (5.2), so we have to compute it only once. This leads
us to the following error bound:

|u− uh|1,Ω ≤ c
{

inf
vh∈Vh

|u− vh|1,Ω + ‖ σ − σh ‖0,Ω + ‖ (p− ph) · n ‖− 1
2 ,Γ2

}

≤ c
{

inf
vh∈Vh

|u− vh|1,Ω + ‖ σ − σh ‖0,Ω + ‖ p− ph ‖ 1
2 ,Γ2

}
.(5.10)

Thanks to Theorem 5.2 and to estimates (5.8) and (5.10), we immediately obtain
the convergence rate of the approximation of the bending moment σ, as well as of the
deflection u. As a conclusion, we finally state the following result.

Theorem 5.3. Under the previous smoothness hypotheses on the solution (σ, u),
one has

‖ σ − σh ‖0,Ω + ‖ u− uh ‖1,Ω + ‖ D(σ)−D(σh) ‖−1,Ω≤ chmin{a,b} ‖ f ‖0,Ω,
where the constant c is independent of the discretization.

So, the approximation method of the Kirchhoff–Love model described in this
paper is unconditionally convergent and is optimal whenever the solution (σ, u) of
(2.1), as well as the solution φf of the Laplacian (3.1), are sufficiently smooth. More
precisely, if σ ∈ (H1(Ω))4 and φf ∈ H2(Ω) (which is the case, for instance, when Ω is
convex since a = b = 1), then the convergence rate is O(h).
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Abstract. Shifted rank-1 lattice rules, a special class of quasi-Monte Carlo methods, have
recently been proposed by the present authors for the integration of functions belonging to certain
“weighted” Sobolev spaces. The shifts in these rules were generated in a deterministic manner. In
contrast, in this paper we generate these shifts randomly. This allows probabilistic estimates for the
error in a given integral. It also reduces the number of operations required to find the generating
vectors for the underlying lattice rules component-by-component. The rules thus constructed achieve
a worst-case strong tractability error bound in an average or probabilistic sense.

Key words. randomized quasi-Monte Carlo methods, shifted lattice rules, worst-case error,
tractability
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1. Introduction. In the recent paper [8] by the present authors, quasi-Monte
Carlo (QMC) rules of the form

Rn,d(f,∆) =
1

n

n∑
i=1

f

({
iz

n
+∆

})
(1.1)

were constructed for the approximation of integrals over the d-dimensional unit cube.
Here n is assumed to be prime, and z ∈ {1, 2, . . . , n−1}d is an integer vector, with the
braces around a vector indicating that we take the fractional part of each component
of the vector. In the given construction the components of z were constructed one
component at a time, as were the components of ∆, the “shift”. Rules of the form
(1.1) are called “shifted rank-1 lattice rules”, the rank-1 lattice rules being rules of
the form

Rn,d(f) := Rn,d(f,0) =
1

n

n∑
i=1

f

({
iz

n

})
.(1.2)

Further information about lattice rules may be found in [7]. The shifted rank-1 lattice
rules constructed in [8] had the advantage that they achieved the worst-case strong
tractability error bounds in certain weighted Sobolev spaces.

The construction of the rules in [8] for fixed n and all dimensions up to d required
O(n3d2) operations, making the construction computationally expensive for large n.
Moreover, like other QMC rules, the application of those rules did not yield a practical
error estimate.

∗Received by the editors August 17, 2001; accepted for publication (in revised form) April 1, 2002;
published electronically October 31, 2002. This research was supported by the Australian Research
Council.

http://www.siam.org/journals/sinum/40-5/39394.html
†School of Mathematics, The University of New South Wales, Sydney NSW 2052, Australia

(sloan@maths.unsw.edu.au).
‡Department of Mathematics, The University of Waikato, Private Bag 3105, Hamilton, New

Zealand (fkuo@math.waikato.ac.nz, stephenj@math.waikato.ac.nz).

1650



CONSTRUCTION OF RANDOMLY SHIFTED LATTICE RULES 1651

In [8], the components of the shift∆ were taken from the set {1/(2n), 3/(2n), . . . ,
(2n − 1)/(2n)}, with the successive components of the shift being obtained in a de-
terministic manner through minimizing a certain functional over the finite set. Here
we propose the alternative of allowing the components of ∆ to be random numbers
in [0, 1], opening the possibility of repeating the calculation with a number of inde-
pendent shifts so as to allow error estimation. The underlying idea is not new. For
example, as early as 1976 Cranley and Patterson [1] pointed out the benefits of using
random shifts with rank-1 lattice rules; later this idea was generalized to other lattice
rules by Joe [5]. Later still, Owen in [6] introduced a similar randomization idea
(“scrambled (t,m, s)-nets”) into nets. By now the idea of combining randomization
(or “Monte Carlo”) ideas with deterministic QMC ideas is commonplace. The key
underlying concepts behind such randomized QMC methods are discussed in [3]. The
novel element of the present paper is that the lattice rules that we construct here, one
component at a time, are specifically designed for use with random shifts, and are in
a certain sense optimal for this purpose. An important advantage is that, as we shall
see, the cost of constructing rules with n points and all dimensions up to d is reduced
to O(n2d2), allowing calculations with much larger values of n.

Let q be a positive integer. In this paper we approximate the integral

Id(f) =

∫
[0,1]d

f(x) dx,(1.3)

where f is at least continuous, by

R̄n,d(f,∆1, . . . ,∆q) =
1

q

q∑
m=1

Rn,d(f,∆m) =
1

qn

q∑
m=1

n∑
i=1

f

({
iz

n
+∆m

})
,(1.4)

where∆1, . . . ,∆q are q independent random shifts drawn from a uniform distribution
on [0, 1]d. In section 2 we will show that R̄n,d(f,∆1, . . . ,∆q) is an unbiased estimator
of Id(f).

In this work the quality of the approximation (1.4) to the integral (1.3) is measured
by the root-mean-square value of the worst-case error for f in the unit ball for a
particular Hilbert space Hd, that is, by the square root of

E
[
D2(R̄n,d)

]
:=

∫
[0,1]qd

D2
(
R̄n,d(∆1, . . . ,∆q)

)
d∆1 · · · d∆q,

where

D
(
R̄n,d(∆1, . . . ,∆q)

)
:= sup

{|R̄n,d(f,∆1, . . . ,∆q)− Id(f)| : ‖f‖Hd
≤ 1, f ∈ Hd

}
.(1.5)

The Hilbert space Hd in which our functions f lie is taken here, as in [8], to
be a slight generalization of the weighted Sobolev spaces introduced by Sloan and
Woźniakowski in [9]. In that work the successive coordinate directions were associated
with a nonincreasing sequence of “weights” γ1, γ2, . . . to express the common reality
that successive coordinate directions become less important. The integration problem
was found to be “strongly QMC tractable” if and only if

∞∑
j=1

γj <∞.
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(The integration problem is said to be strongly QMC tractable if the minimal number
of function evaluations n in a QMC rule

Qn,d(f) =
1

n

n∑
i=1

f(ti)(1.6)

needed to reduce the initial error Id(f) by a factor of ε > 0 is bounded by a polynomial
in ε−1 independently of d.) In the present generalization, there are two additional
sequences {βj} and {aj} of positive real numbers, and Hd is a tensor product of
1-dimensional Hilbert spaces,

Hd = H
(1)
1 ⊗H

(2)
1 ⊗ · · · ⊗H

(d)
1

with the inner product of 1-dimensional functions f and g in the jth 1-dimensional

space H
(j)
1 being

β−1
j f(aj)g(aj) + γ−1

j

∫ 1

0

f ′(x)g′(x) dx;

the function spaces of [9] are recovered by setting aj = 1 and βj = 1. The necessary
and sufficient condition for strong tractability now becomes (see [8])

∞∑
j=1

γj
βj

<∞.(1.7)

Under this condition the precise result of [9, Lemma 8], appropriately generalized, is
that for each n ≥ 1 and d ≥ 1 there exist QMC rules of the form (1.6) such that

D(Qn,d) ≤ Cd
n1/2

,(1.8)

where D(Qn,d) is defined analogously to (1.5), and

Cd :=


 d∏
j=1

[
βj + γj

(
a2
j − aj +

1
2

)]− d∏
j=1

[
βj + γj

(
a2
j − aj +

1
3

)]
1
2

which is bounded independently of d by

C∞ :=


 ∞∏
j=1

[
βj + γj

(
a2
j − aj +

1
2

)]− ∞∏
j=1

[
βj + γj

(
a2
j − aj +

1
3

)]
1
2

,

a finite number if and only if (1.7) holds. In [10] the stronger result was established
that (for prime n) there even exist shifted lattice rules (i.e., QMC rules of the special
form (1.1)) that satisfy (1.8). However, the results in both [9] and [10] were not
constructive.

A crucial aspect of the arguments in this paper, as in [8], [9] and [10], is that
Hd is a reproducing kernel Hilbert space with a simple kernel. In section 3 we study
the worst-case error D(Qn,d) in a reproducing kernel Hilbert space, specialize to our
particular Hilbert space Hd, and discuss tractability. In section 4 we explain the
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component-by-component construction of a generating vector z such that at every step
the strong tractability bound (1.8) is preserved. The final algorithm (Algorithm 4.2)
can be written in a few lines, and for a given (prime) n yields all components of

z up to the dth in a time of at most O(n2d2), and gives
√
E
[
D2(R̄n,d)

]
satisfying

(1.8). Section 5 gives the results of some searches, and some comparisons of computed
worst-case errors with the bound (1.8), for n up to approximately 32000 and d up to
100.

2. An unbiased estimator. First we show that the approximation R̄n,d(f,∆1,
. . . ,∆q) is an unbiased estimator of Id(f). Since this result is true not only for rank-1
lattice rules but also for all other integration rules, we state the result in its general
form.

Let Qn,d(f) be an n-point general quadrature rule with n ≥ 1,

Qn,d(f) :=

n∑
i=1

wif(ti),(2.1)

where ti ∈ [0, 1]d, wi ∈ R, and
∑n
i=1 wi = 1. For ∆ ∈ [0, 1]d, let Qn,d(f,∆) denote

the ∆-shifted rule by

Qn,d(f,∆) :=

n∑
i=1

wif({ti +∆}).

For q a positive integer and ∆1, . . . ,∆q ∈ [0, 1]d, let Q̄n,d(f,∆1, . . . ,∆q) denote the
approximation obtained by taking an average over q random shifts; that is,

Q̄n,d(f,∆1, . . . ,∆q) :=
1

q

q∑
m=1

Qn,d(f,∆m) =
1

q

q∑
m=1

n∑
i=1

wif({ti +∆m}),

where ∆1, . . . ,∆q ∈ [0, 1]d are independent random vectors having a uniform distri-
bution on [0, 1]d.

The proof that (1.4) is an unbiased estimator of the integral rests on the following
easily established property.

Lemma 2.1. Let f ∈ L1([0, 1]
d). For all t ∈ R

d,

∫
[0,1]d

f({t+ x}) dx =
∫

[0,1]d
f(x) dx = Id(f).

The theorem below then follows easily.

Theorem 2.2. The family of shifted rules Qn,d(f,∆) is an unbiased estimator
of the integral Id(f), in the sense that

E [Qn,d(f, ·)] :=
∫

[0,1]d
Qn,d(f,∆) d∆ = Id(f).
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Proof. We have

E [Qn,d(f, ·)] =
∫

[0,1]d

n∑
i=1

wif({ti +∆}) d∆

=

n∑
i=1

wi

∫
[0,1]d

f({ti +∆}) d∆

=

n∑
i=1

wiId(f) = Id(f),

which completes the proof.
Corollary 2.3 (cf. Corollary 3 of [5]). The mean Q̄n,d(f,∆1, . . . ,∆q) is an

unbiased estimate of Id(f) and has variance

σ2 =
1

q
E
[(
Qn,d(f, ·)− Id(f)

)2]
=
1

q

∫
[0,1]d

(
Qn,d(f,∆)− Id(f)

)2
d∆.

Remark 1. Since the theorem and the corollary hold for any general quadrature
rule Qn,d, then it certainly holds for rank-1 lattice rules, thus the shifted rank-1 lattice
rules given in (1.1) and (1.4) are unbiased estimates of the integral Id(f).

Remark 2. It is well known that an unbiased estimate of σ, the standard error of
the mean Q̄n,d(f,∆1, . . . ,∆q), is

σ̃ =

(
1

q(q − 1)
q∑

m=1

(
Qn,d(f,∆m)− Q̄n,d(f,∆1, . . . ,∆q)

)2)1/2

.

By using the well-known Chebyshev inequality,

probability
(∣∣Q̄n,d(f,∆1, . . . ,∆q)− Id(f)

∣∣ < kσ
) ≥ 1− 1

k2
,

this estimate of σ allows us to calculate confidence intervals for the error, that is, an
interval in which the true error must lie with a fixed probability.

3. Hilbert spaces and tractability. We recall that a d-dimensional repro-
ducing kernel Hilbert space consists of a Hilbert space Hd along with a reproducing
kernel K(x,y) which has the property that f(x) = 〈f,K(·,x)〉Hd

for f ∈ Hd and
x ∈ [0, 1]d, where 〈·, ·〉Hd

is the inner product in Hd. The corresponding norm in Hd

is ‖f‖Hd
= 〈f, f〉1/2Hd

.
Let D(Qn,d,K) denote the corresponding “discrepancy” for the rule Qn,d given

by (2.1), which we recall is the same as the worst-case error for all f in the unit ball
in Hd. Thus,

D(Qn,d,K) = sup{|Qn,d(f)− Id(f)| : ‖f‖Hd
≤ 1, f ∈ Hd}.

One may show (for example, see [9]) that

D2(Qn,d,K) =

∫
[0,1]2d

K(x,y) dxdy − 2
n∑
i=1

wi

∫
[0,1]d

K(ti,y) dy

+

n∑
i=1

n∑
k=1

wiwkK(ti, tk).(3.1)
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Since the approximation we are interested in is Q̄n,d(f,∆1, . . . ,∆q), we shall fol-
low the usual analysis of QMC methods and consider the mean square discrepancy
given by

E
[
D2(Q̄n,d,K)

]
=

∫
[0,1]qd

D2

(
1

q

q∑
m=1

n∑
i=1

wif({ti +∆m}),K
)
d∆1 · · · d∆q.

Theorem 3.1. The mean square discrepancy is given by

E
[
D2(Q̄n,d,K)

]
=
1

q

[
n∑
i=1

n∑
k=1

wiwk

∫
[0,1]d

K({ti +∆}, {tk +∆}) d∆−
∫

[0,1]2d
K(x,y) dxdy

]
.

Proof. It follows from (3.1) that

D2(Q̄n,d,K) =

∫
[0,1]2d

K(x,y) dxdy − 2
q

q∑
m=1

n∑
i=1

wi

∫
[0,1]d

K({ti +∆m},y) dy

+
1

q2

q∑
m=1

q∑
�=1

n∑
i=1

n∑
k=1

wiwkK({ti +∆m}, {tk +∆�}).(3.2)

It is clear that the expectation of the first term on the right-hand side of this expression
is just itself and that the expectation value of the second term is

−2
n∑
i=1

wi

∫
[0,1]2d

K({ti +∆},y) d∆ dy = −2
n∑
i=1

wi

∫
[0,1]2d

K(∆,y) d∆ dy

= −2
∫

[0,1]2d
K(∆,y) d∆ dy,(3.3)

where we have made use of Lemma 2.1 and
∑n
i=1 wi = 1. For the third term, we note

that the m �= " case is different from the m = " case. It is then not too hard to see
that the expectation of the third term is given by

q2 − q

q2

n∑
i=1

n∑
k=1

wiwk

∫
[0,1]2d

K({ti +∆}, {tk +∆′}) d∆ d∆′

+
q

q2

n∑
i=1

n∑
k=1

wiwk

∫
[0,1]d

K({ti +∆}, {tk +∆}) d∆

=
q − 1
q

n∑
i=1

n∑
k=1

wiwk

∫
[0,1]2d

K(∆,∆′) d∆ d∆′

+
1

q

n∑
i=1

n∑
k=1

wiwk

∫
[0,1]d

K({ti +∆}, {tk +∆}) d∆

=
q − 1
q

∫
[0,1]2d

K(∆,∆′) d∆ d∆′

+
1

q

n∑
i=1

n∑
k=1

wiwk

∫
[0,1]d

K({ti +∆}, {tk +∆}) d∆,(3.4)
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where again we have made use of Lemma 2.1 and
∑n
i=1 wi = 1. The result now follows

from (3.2), (3.3), and (3.4).
To relate the result given in Theorem 3.1 to past results, we recall that associated

with any reproducing kernel K(x,y) is the “shift-invariant” kernel K∗(x,y) defined
by

K∗(x,y) :=
∫

[0,1]d
K({x+∆}, {y +∆}) d∆.(3.5)

By shift-invariant, we mean that for arbitrary ∆ ∈ [0, 1]d

K∗(x,y) = K∗({x+∆}, {y +∆}),
so by taking ∆ = −y we can write

K∗(x,y) = K∗({x− y},0), x,y ∈ [0, 1]d.(3.6)

We then have from Hickernell and Woźniakowski [4] that

E
[
D2(Qn,d,K)

]
= D2(Qn,d,K

∗);

that is, the expected value of the squared discrepancy for the shifted rule in the Hilbert
space with reproducing kernel K is exactly the same as the squared discrepancy for
the original unshifted rule in the Hilbert space with reproducing kernel K∗. Thus we
would expect the expression for E

[
D2(Q̄n,d,K)

]
given in Theorem 3.1 to match this

result in the case when q = 1. In fact, we have the following result.
Theorem 3.2.

E
[
D2(Q̄n,d,K)

]
=
1

q
D2(Qn,d,K

∗),

with

D2(Qn,d,K
∗) =

n∑
i=1

n∑
k=1

wiwkK
∗({ti − tk},0)−

∫
[0,1]d

K∗(x,0) dx.(3.7)

Proof. The expression for D2(Qn,d,K
∗) in (3.7) (given in section 4 of [4]) follows

easily from (3.1) by using (3.6) and Lemma 2.1.
We see from Theorem 3.1 that E

[
D2(Q̄n,d,K)

]
depends on the expressions

n∑
i=1

n∑
k=1

wiwk

∫
[0,1]d

K({ti +∆}, {tk +∆}) d∆ and

∫
[0,1]2d

K(x,y) dxdy.

By making use of (3.5) and then (3.6), we see that

n∑
i=1

n∑
k=1

wiwk

∫
[0,1]d

K({ti +∆}, {tk +∆}) d∆

=

n∑
i=1

n∑
k=1

wiwkK
∗(ti, tk) =

n∑
i=1

n∑
k=1

wiwkK
∗({ti − tk},0).(3.8)

Application of Lemma 2.1 shows that∫
[0,1]2d

K(x,y) dxdy =

∫
[0,1]2d

K({x+ y},y) dxdy.
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Upon changing the order of integration in this last integral as well as replacing y by
∆, we obtain∫

[0,1]2d
K(x,y) dxdy =

∫
[0,1]2d

K({x+∆},∆) d∆ dx

=

∫
[0,1]2d

K({x+∆}, {0+∆}) d∆ dx =
∫

[0,1]d
K∗(x,0) dx,

where the final step follows from (3.5). The result then follows from Theorem 3.1,
together with this expression and (3.8).

We then see that E
[
D2(Q̄n,d,K)

]
may be calculated by making use of (3.7). In

the case when the quadrature points of Qn,d are the points of a rank-1 lattice rule
Rn,d, namely, the points {iz/n}, i = 1, . . . , n (cf. (1.2)), the double sum in (3.7) may
be reduced to a single sum.

Corollary 3.3. With ti = {iz/n}, we have

D2(Rn,d,K
∗) =

1

n

n∑
i=1

K∗(ti,0)−
∫

[0,1]d
K∗(x,0) dx.

Proof. In this case wi = 1/n and by the properties of a rank-1 lattice rule, we
have

{{ti − tk} : 1 ≤ i, k ≤ n} = {ti : 1 ≤ i ≤ n},
from which the result follows.

So far we have looked at the general theory and have not specified the reproducing
kernel Hilbert space. To specify the space, let β and γ be two sequences of positive
numbers. We shall consider the d-dimensional weighted Sobolev spaces that have
reproducing kernels of the form

K(x,y) = Kd,β,γ(x,y) =

d∏
j=1

(
βj + γjµaj (xj , yj)

)
,(3.9)

where

µa(x, y) =

{
min(|x− a|, |y − a|) if (x− a)(y − a) > 0,
0 if (x− a)(y − a) ≤ 0.

These and similar Sobolev spaces have been considered previously in works such as
[2], [4], [8], and [9]. Common choices of the parameters are aj = 1 or aj = 1/2 for
1 ≤ j ≤ d. Then it may be shown (see [8]) that the associated shift-invariant kernel
K∗(x,y) defined by (3.5) is given by

K∗
d,β,γ(x,y) =

d∏
j=1

[
βj + γj

(|xj − yj |2 − |xj − yj |+ a2
j − aj +

1
2

)]
,

which may be written as

K∗
d,β,γ(x,y) =

d∏
j=1

[
βj + γj

(
B2 (|xj − yj |) + a2

j − aj +
1
3

)]
,
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where B2(x) = x2−x+1/6 is the second-degree Bernoulli polynomial. Upon making
use of Corollary 3.3, we find that

D2(Rn,d,K
∗
d,β,γ) =

1

n

n∑
i=1

d∏
j=1

[
βj + γj

(
B2

({
izj
n

})
+ a2

j − aj +
1

3

)]

−
d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]
.(3.10)

The integration problem is said to be “QMC tractable” if the minimal number
n0(ε, d) of quadrature points ti needed in (2.1) with wi = 1/n to reduce the worst-
case error from its initial value ‖Id‖ by a factor ε > 0 is bounded by a polynomial
in ε−1 and d. The problem is said to be “strongly QMC tractable” if that bound is
independent of d.

To show that there exist rules of the form (1.4) which achieve strongly tractability
error bounds in a probabilistic sense, we need to show that there exist rules for which
D2(Rn,d,K

∗
d,β,γ) given in (3.10) satisfies a corresponding bound. It follows from

Lemma 8 in [9] that for aj = 1, j = 1, . . . , d, there exists a generating vector z such
that

D2(Rn,d,K
∗
d,β,γ) ≤

1

n


 d∏
j=1

(
βj +

γj
2

)
−

d∏
j=1

(
βj +

γj
3

) ,(3.11)

whereas ‖Id‖ for this case is given by (see [8])

‖Id‖ =
d∏
j=1

(
βj +

γj
3

)
.(3.12)

Moreover, arguments similar to those in the proof of Theorem 5.2 in that paper show
that if β and γ satisfy

∞∑
j=1

γj
βj

<∞,

then the ratio of the bound in (3.11) to ‖Id‖ is bounded independently of d, demon-
strating the strong QMC tractability of multivariate integration under this condition.

4. Construction of the lattice rule Rn,d. From the preceding discussion, it
is clear that if we wish to use random shifts of rank-1 lattice rules to estimate the
integral Id(f), then we should choose rank-1 lattice rules which give the best value of
D(Rn,d,K

∗
d,β,γ). This means finding a z for the rule in (1.2) in some class so as to

obtain the best value of D(Rn,d,K
∗
d,β,γ).

Here we propose finding such a z = (z1, z2, . . . , zd) by doing a search one com-
ponent at a time. Thus we fix z1 = 1 and find z2 ∈ {1, 2, . . . , n − 1} to minimize
D(Rn,2,K

∗
2,β,γ). With z1 and z2 fixed, we then find z3 ∈ {1, 2, . . . , n−1} to minimize

D(Rn,3,K
∗
3,β,γ), and so on.

We first give the theoretical foundation which ensures that the resulting rank-1
lattice rule achieves a bound (3.11) that corresponds to strong tractability. In fact,
the bound that we obtain in Theorem 4.1 below (for the case aj = 1) is exactly the
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bound given in (3.11). Throughout the rest of the paper, we will use the shorter
notation

D2(z) := D2(Rn,d,K
∗
d,β,γ),

where z is the generating vector for the rank-1 lattice rule Rn,d.

Theorem 4.1. Let n be a prime number, n > 1. Suppose there exists an integer
vector ẑ ∈ {1, 2, . . . , n− 1}d such that

D2(ẑ) ≤ 1

n


 d∏
j=1

[
βj + γj

(
a2
j − aj +

1
2

)]− d∏
j=1

[
βj + γj

(
a2
j − aj +

1
3

)] .(4.1)

Then there exists zd+1 ∈ {1, 2, . . . , n− 1} such that

D2 (ẑ, zd+1) ≤ 1

n


d+1∏
j=1

[
βj + γj

(
a2
j − aj +

1
2

)]− d+1∏
j=1

[
βj + γj

(
a2
j − aj +

1
3

)] .

Moreover, the bound (4.1) holds for d = 1.

(Here (ẑ, zd+1) ∈ {1, 2, . . . , n − 1}d+1 is just ẑ with the one additional component
zd+1.)

Proof. It follows from (3.10) that, for any z ∈ {1, 2, . . . , n − 1}d and zd+1 ∈
{1, 2, . . . , n− 1}, we have

D2 (z, zd+1)

=
1

n

n∑
i=1

d∏
j=1

[
βj + γj

(
B2

({
izj
n

})
+ a2

j − aj +
1

3

)]

×
[
βd+1 + γd+1

(
B2

({
izd+1

n

})
+ a2

d+1 − ad+1 +
1

3

)]

−
d+1∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]

=

[
βd+1 + γd+1

(
a2
d+1 − ad+1 +

1

3

)]
D2(z)

+
γd+1

n

n∑
i=1

d∏
j=1

[
βj + γj

(
B2

({
izj
n

})
+ a2

j − aj +
1

3

)]
B2

({
izd+1

n

})
.

Upon separating out the i = n term and using B2(0) = 1/6, this expression for
D2 (z, zd+1) becomes

[
βd+1 + γd+1

(
a2
d+1 − ad+1 +

1

3

)]
D2(z) +

γd+1

6n

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]

+
γd+1

n

n−1∑
i=1

d∏
j=1

[
βj + γj

(
B2

({
izj
n

})
+ a2

j − aj +
1

3

)]
B2

({
izd+1

n

})
.(4.2)
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In this expression, the only zd+1 dependence is in the last term. Suppose we
average this last term over all the possible values of zd+1 to form

Θ =
γd+1

n

n−1∑
i=1

d∏
j=1

[
βj + γj

(
B2

({
izj
n

})
+ a2

j − aj +
1

3

)]

× 1

n− 1
n−1∑

zd+1=1

B2

({
izd+1

n

})
.

When n is prime, for fixed i satisfying 1 ≤ i ≤ n− 1 the values of {izd+1/n} as zd+1

runs from 1 to n−1 are just 1/n, 2/n, . . . , (n−1)/n in some order, and hence we have

1

n− 1
n−1∑

zd+1=1

B2

({
izd+1

n

})
=

1

n− 1


 n∑
zd+1=1

B2

(zd+1

n

)
−B2(1)


 .

By recalling that B2(x) = x2 − x+1/6 and using the well-known sums for the first n
positive integers and the squares of the first n positive integers, we have

n∑
zd+1=1

B2

(zd+1

n

)
=

n∑
zd+1=1

[(zd+1

n

)2

−
(zd+1

n

)
+
1

6

]

=
(n+ 1)(2n+ 1)

6n
− n+ 1

2
+

n

6
=
1

6n
.(4.3)

It then follows that

1

n− 1
n−1∑

zd+1=1

B2

({
izd+1

n

})
=

1

n− 1
(
1

6n
− 1
6

)
= − 1

6n
,

and hence

Θ = −γd+1

6n2

n−1∑
i=1

d∏
j=1

[
βj + γj

(
B2

({
izj
n

})
+ a2

j − aj +
1

3

)]

= −γd+1

6n


D2(z)− 1

n

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]

+

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)] ,

where we have made use of (3.10). Since Θ involves an average over zd+1, it follows
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that there exists zd+1 ∈ {1, 2, . . . , n− 1} for which

D2(z, zd+1)

≤
[
βd+1 + γd+1

(
a2
d+1 − ad+1 +

1

3

)]
D2(z) +

γd+1

6n

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]

− γd+1

6n


D2(z)− 1

n

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]

+
d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]
=

[
βd+1 + γd+1

(
a2
d+1 − ad+1 +

1

3
− 1

6n

)]
D2(z)

+
γd+1

6n


(1 + 1

n

) d∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]
−

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)].

Using the hypothesis in the theorem, we now obtain

D2(ẑ, zd+1)

≤
[
βd+1 + γd+1

(
a2
d+1 − ad+1 +

1

3
− 1

6n

)]

× 1
n


 d∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]
−

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]

+
γd+1

6n


(1 + 1

n

) d∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]
−

d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]

=
1

n


d+1∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]
−
d+1∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]

− γd+1

(
1

6n
− 1

6n2

) d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]

≤ 1

n


d+1∏
j=1

[
βj + γj

(
a2
j − aj +

1

2

)]
−
d+1∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)] ,

which is the desired result.

In one dimension, it is known that there is only one n-point lattice rule, namely,
the n-point rectangle rule. Thus we may take z1 = 1 and obtain from (3.10) that

D2(1) =
1

n

n∑
i=1

[
β1 + γ1

(
B2

({
i

n

})
+ a2

1 − a1 +
1

3

)]
−
[
β1 + γ1

(
a2
1 − a1 +

1

3

)]

=
γ1

n

n∑
i=1

B2

({
i

n

})
=

γ1

6n2
≤ γ1

6n
,
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where we have made use of (4.3). Thus (4.1) holds for d = 1.
Given n (a prime number) and d, Theorem 4.1 leads to an algorithm for finding

a generating vector z = (z1, z2, . . . ) such that

D2 (z1, z2, . . . , zd) ≤ 1

n


 d∏
j=1

[
βj + γj

(
a2
j − aj +

1
2

)]− d∏
j=1

[
βj + γj

(
a2
j − aj +

1
3

)]
for arbitrarily large values of d. We note that this bound is the average of
D2(Qn,d,Kd,β,γ) over all the points t1, . . . , tn of an n-point QMC rule Qn,d.

Algorithm 4.2.
1. Set z1, the first component of z, to 1.
2. For d = 2, 3, . . . , dmax − 1, dmax, find zd ∈ {1, 2, . . . , n− 1} such that

D2 (z1, z2, . . . , zd) =
1

n

n∑
i=1

d∏
j=1

[
βj + γj

(
B2

({
izj
n

})
+ a2

j − aj +
1

3

)]

−
d∏
j=1

[
βj + γj

(
a2
j − aj +

1

3

)]

is minimized.
We see from the algorithm that the cost of constructing a rank-1 lattice rule for

all dimensions up to dmax is O(n
2d2

max). This can be reduced to O(n
2dmax) if we store

(at a cost of O(n) storage) the products during the search. Also, if at a later time
components of z for further dimensions are needed, the algorithm can be restarted in
an obvious way.

5. Numerical searches. Here we present some results from implementing the
algorithm given in the previous section for dimensions d up to dmax = 100. We
consider only values of zd satisfying 1 ≤ zd ≤ (n− 1)/2, since

B2

({
izd
n

})
= B2

(
1−

{
i(n− zd)

n

})
= B2

({
i(n− zd)

n

})
.

All the runs had βj = 1 and aj = 1 for 1 ≤ j ≤ d. The values of n used were the prime
numbers 2003, 8009, and 32003, so n1/2 approximately doubles from one value of n to
the next. The results are mainly presented in graphical form. However, in Table 5.1,
we present d, zd, and the corresponding value of D(z) for the case when γj = 0.9

j

and n = 2003 to allow readers to check their own implementation of Algorithm 4.2.
Figure 5.1 shows a graph of D(z) against d, for d increasing in steps of 5, in the

case when γj = 0.9
j . Figure 5.2 shows the same information for the case γj = 1/j

2. It
seems, on comparing the results with n = 2003, 8009, and 32003, that the convergence
ofD(z) to zero as n increases is faster than the theoretically predicted O(n−1/2) (since
the latter would predict that successive errors would halve from one value of n to the
next).

From the discussion preceding Algorithm 4.2, we see that the z constructed using
the algorithm is such that D(z) ≤ Cdn

−1/2, where (since βj = 1 and aj = 1)

Cd =


 d∏
j=1

(
1 +

γj
2

)
−

d∏
j=1

(
βj +

γj
3

)
1/2

.
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Table 5.1
n = 2003 and γj = 0.9j .

d zd D(z) d zd D(z) d zd D(z)

1 1 1.9336E-04 35 781 4.5241E-02 69 512 5.0287E-02
2 765 4.3028E-04 36 739 4.5735E-02 70 455 5.0303E-02
3 343 8.6132E-04 37 761 4.6183E-02 71 58 5.0317E-02
4 849 1.4677E-03 38 723 4.6589E-02 72 802 5.0330E-02
5 702 2.4072E-03 39 571 4.6957E-02 73 284 5.0341E-02
6 880 3.5417E-03 40 809 4.7291E-02 74 680 5.0352E-02
7 416 4.8706E-03 41 458 4.7593E-02 75 442 5.0361E-02
8 449 6.4552E-03 42 168 4.7867E-02 76 372 5.0369E-02
9 581 8.2240E-03 43 470 4.8115E-02 77 932 5.0377E-02
10 989 1.0138E-02 44 612 4.8340E-02 78 943 5.0384E-02
11 735 1.2055E-02 45 968 4.8543E-02 79 14 5.0390E-02
12 378 1.4090E-02 46 350 4.8727E-02 80 247 5.0396E-02
13 326 1.6169E-02 47 857 4.8893E-02 81 133 5.0401E-02
14 465 1.8189E-02 48 550 4.9043E-02 82 204 5.0405E-02
15 892 2.0215E-02 49 956 4.9179E-02 83 749 5.0409E-02
16 591 2.2222E-02 50 89 4.9303E-02 84 655 5.0413E-02
17 354 2.4215E-02 51 195 4.9415E-02 85 429 5.0416E-02
18 927 2.6125E-02 52 900 4.9516E-02 86 263 5.0419E-02
19 743 2.7972E-02 53 644 4.9608E-02 87 372 5.0422E-02
20 461 2.9721E-02 54 435 4.9690E-02 88 943 5.0424E-02
21 217 3.1356E-02 55 873 4.9765E-02 89 442 5.0426E-02
22 628 3.2902E-02 56 160 4.9832E-02 90 932 5.0428E-02
23 488 3.4353E-02 57 296 4.9893E-02 91 680 5.0430E-02
24 82 3.5704E-02 58 44 4.9947E-02 92 14 5.0432E-02
25 725 3.6967E-02 59 205 4.9996E-02 93 204 5.0433E-02
26 853 3.8133E-02 60 595 5.0041E-02 94 888 5.0434E-02
27 564 3.9210E-02 61 672 5.0081E-02 95 284 5.0436E-02
28 837 4.0212E-02 62 198 5.0117E-02 96 802 5.0437E-02
29 395 4.1133E-02 63 614 5.0149E-02 97 247 5.0438E-02
30 64 4.1977E-02 64 273 5.0178E-02 98 749 5.0438E-02
31 366 4.2749E-02 65 36 5.0205E-02 99 655 5.0439E-02
32 60 4.3459E-02 66 859 5.0229E-02 100 429 5.0440E-02
33 34 4.4108E-02 67 712 5.0250E-02
34 753 4.4699E-02 68 266 5.0269E-02

To get an idea of how much smaller the actual values of D(z) are compared to the
bound of Cdn

−1/2, we take d = 100 and for the three values of n calculate the
ratio D(z)/(Cdn

−1/2). The three values of this ratio in the two cases γj = 0.9
j and

γj = 1/j2 are plotted against n (on a log scale) and displayed in Figure 5.3. The
straight lines in the figure are intended to make it easier to view the data.

Figure 5.3 also provides some information about how good the rules are compared
to the classical Monte Carlo algorithm. As is well known, this is a randomized algo-
rithm in which the quadrature points are chosen randomly from a uniform distribution
on [0, 1]d. For any particular sampling of n points, we can compute a worst-case error
in our space Hd by using (3.7) with wi = 1/n. It is shown in [9] that the expected
value of the squared worst-case error is given by C2

d/n. In this sense Figure 5.3 in-
dicates that the rules constructed here on average make better point selections than
classical Monte Carlo, with the advantage increasing with n.



1664 I. H. SLOAN, F. Y. KUO, AND S. JOE

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

n 

n 

n 

= 2003

= 8009

= 32003

Fig. 5.1. D(z) against d for γj = 0.9j with n = 2003, 8009, and 32003.
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COMPUTING ZEROS ON A REAL INTERVAL THROUGH
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Abstract. Robust polynomial rootfinders can be exploited to compute the roots on a real
interval of a nonpolynomial function f(x) by the following: (i) expand f as a Chebyshev polynomial
series, (ii) convert to a polynomial in ordinary, series-of-powers form, and (iii) apply the polynomial
rootfinder. (Complex-valued roots and real roots outside the target interval are discarded.) The
expansion is most efficiently done by adaptive Chebyshev interpolation with N equal to a power of
two, where N is the degree of the truncated Chebyshev series. All previous evaluations of f can
then be reused when N is increased; adaption stops when N is sufficiently large so that further
increases produce no significant change in the interpolant. We describe two conversion strategies.
The “convert-to-powers” method uses multiplication by mildly ill-conditioned matrices to create a
polynomial of degree N . The “degree-doubling” strategy defines a polynomial of larger degree 2N but
is very well-conditioned. The “convert-to-powers” method, although faster, restricts N to moderate
values; this can always be accomplished by subdividing the target interval. Both these strategies
allow simultaneous approximation of many roots on an interval, whether simple or multiple, for
nonpolynomial f(x).

Key words. rootfinding, single transcendental equation, Chebyshev series

AMS subject classifications. 65H05, 42C10, 65E05
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1. Introduction. One irony of the history of mathematics is that the problem
of finding the roots of a polynomial, which taxed the brains of mathematicians from
the Babylonians to Diophantus to Omar Khayyam to Cardano and Tartaglia in the
Renaissance to Lagrange, Abel, Gauss, and Galois around the turn of the 19th cen-
tury, is now largely uninteresting. Reliable polynomial rootfinding software, which
requires no a priori estimates for the zeros, is now a part of almost all language
packages (Matlab, Maple, Mathematica) and Fortran libraries (NAG, IMSL, etc.).
The undergraduate who casually executes the one-line Matlab command, roots(p),
where p is a vector containing the coefficients of the polynomial, is blissfully ignorant
of the three centuries of struggle to move from Ferrari’s literal solution of the quartic,
published in 1545, to Hermite’s solution of the quintic 320 years later.

Nevertheless, the problem of finding the roots of a single transcendental equation
in a single unknown is still a staple of numerical analysis courses. The reason is that,
until recently, there was no black box for computing the zeros of a nonpolynomial
f(x). Bisection and Brent’s algorithm will reliably find some roots, but this is not
the same as finding all roots on an interval. It is particularly easy to miss zeros that
are closely spaced or multiple.

Kavvadias and Vrahatis [10], Kavvadias, Makri, and Vrahatis [11], and Smiley and
Chun [13] have developed bisection-like but more sophisticated subdivision strategies
for reliable transcendental rootfinding. However, these algorithms are relatively slow.
Later, we shall explain how these subdivision strategies can in principle be accelerated
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(or replaced!) by the ideas introduced here.
We show that it is easy to extend the existing library software for polynomial f

to general f merely by a simple intervention: expanding f as a Chebyshev series and
then converting the Chebyshev approximation to an ordinary polynomial. As seen
through the lens of Chebyshev polynomials, there is no such thing as a “transcenden-
tal” function: all rootfinding problems are polynomial rootfinding problems.

In his book Applied Analysis (1956) [12], Lanczos published the first example of
the “Chebyshevization” of rootfinding. At a time when general polynomial solvers did
not exist, he collapsed a cubic equation (hard) to a quadratic (easy!) by expanding
the cubic as a Chebyshev series and then neglecting the third degree term.

In an earlier paper [5], we extended Lanczos’s strategy to complicated f(x). How-
ever, our earlier work was criticized because it did not provide estimates for the con-
dition number of the conversion-to-powers step. Since Wilkinson’s famous example of
a very badly conditioned polynomial (well illustrated on pp. 330–331 of [1]), all right-
thinking numerical analysts have cringed at working with a polynomial expressed as a
sum of powers of x. In this work, we show that, although there is some ill-conditioning,
the convert-to-powers strategy is robust and reliable if the degree of the Chebyshev
expansion is restricted to moderate N (i.e., N < 18 or so). By subdividing an interval
with many roots into subintervals, and applying a separate Chebyshev expansion to
each one, the Chebyshev-to-powers strategy can be applied to almost all functions
which are analytic on a desired target interval.

Furthermore, there is an alternative strategy, discussed here for the first time,
which allows extraction of roots from a polynomial h2N (z) whose coefficients are
simply those of the Chebyshev series. The ill-conditioning is completely eliminated.
However, the degree of h2N (z) is twice that of the truncated Chebyshev series from
whence it came.

Figure 1 schematically summarizes our algorithm.
The first issue is, How is the Chebyshev series computed? The answer is that f(x)

must be evaluated at a set of discrete points on the target interval; the Chebyshev
coefficients are then given by a matrix-vector multiply where the vector holds the set
of grid-point values of f(x) and the elements of the matrix are trigonometric functions.
The complete procedure is described in the appendix.

The second issue is, How does one determine when the truncation N is large
enough? There is a well-established theory for doing this as reviewed in our book [6]
and previous article [5]. The most systematic strategy mimics that of the Clenshaw–
Curtis quadrature: the number of points is doubled until the approximation ceases to
change; all previously used values of f(x) are reused by finer approximations so that
nothing is wasted. We shall briefly review stopping criteria below.

The third issue is, How does one convert a truncated Chebyshev series to an
ordinary polynomial? We offer two ways. In the “convert-to-powers” strategy, the
coefficients of the powers of x are the product of an upper triangular matrix with
the vector of Chebyshev coefficients; the matrix elements are integers computed by a
simple recurrence.

The “degree-doubling” algorithm defines an associated polynomial whose degree
is twice that of the truncation of the Chebyshev series. However, the real part of the
roots of this polynomial which lie on the unit circle in the complex plane are the roots
of f(x) on the real interval x ∈ [a, b].

The fourth issue is, Given that the roots of a polynomial are notoriously sensitive
to small perturbations to the coefficients of the powers of x, how ill-conditioned is the
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f(x)

Chebyshev
expansion

fN=Σ aj  Tj(x)

Matrix
Multiplication

Convert-to-Powers
Change-of-
Coordinate
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fN=Σ bj  x
j

h2N=a0 zN +

Σ aj  {z
N-j+zN+j}

Polynomial Rootfinder

Zeros of f(x)

Fig. 1. Schematic of rootfinding for a nonpolynomial f(x).

convert-to-powers algorithm? The answer is that if the Chebyshev degree is restricted,
the roots of the polynomial on the target interval will be very good approximations to
those of the truncated Chebyshev series, whose zeros are in turn very good approx-
imations to those of the original f(x). Small errors can easily be corrected by one
or two secant or Newton iterations with f(x). If the interval is large and has many
roots, it may be necessary to subdivide the interval into subdomains and compute
a different moderate degree Chebyshev series on each. With these precautions of
degree restriction and interval subdivision followed by iteration with f(x) itself, the
convert-to-powers algorithm can yield roots to full machine precision.
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In this article, we offer four novelties (beyond the earlier work of Lanczos and
[5]):

1. Condition number estimates for the triangular matrices that convert Cheby-
shev coefficients to the coefficients of the same polynomial expressed as a sum
of powers of x.

2. A second strategy for converting a truncated Chebyshev polynomial to a dif-
ferent polynomial of twice the degree but with (effectively) the same roots; the
coefficients of the new polynomial are the same as the Chebyshev coefficients.

3. The Chebyshev-to-polynomial method is extended to unbounded intervals,
either infinite or semi-infinite, so long as f(x) asymptotes to a constant at
infinity and has only a finite number of real roots.

4. A different, grid-point-value-based “stopping” criterion for assessing when f
is approximated to sufficient accuracy by a Chebyshev series truncated after
the Nth term.

The strength of the algorithm is that no a priori knowledge of the roots is needed.
The reliability of existing polynomial solvers is extended to nonpolynomial f(x).

The sections of the article are as follows:
Sec. 2: first two issues (computing the Chebyshev expansion).
Sec. 3: convert-to-powers and its condition number.
Sec. 4: bounds on errors in roots and their application.
Sec. 5: the degree-doubling theorem.
Sec. 6: numerical example: roots of J0(x).
Sec. 7: searching a region in the complex plane instead of a real interval.
Sec. 8: rootfinding on an infinite interval.
Sec. 9: summary and open problems.

2. Adaptive computation of the Chebyshev coefficients. Our Chebyshev
approximation is a finite series of Chebyshev polynomials which interpolates f(x) at
a set of (N +1) points known as the Chebyshev–Lobatto grid. This differs little from
the truncation of the infinite Chebyshev polynomial series of f [6]. One must evaluate
f(x), the function whose roots are sought, at (N + 1) points on the target interval
x ∈ [a, b]. The Chebyshev coefficients are then the vector which is the product of a
square matrix with the column vector of grid-point values of f . (The grid points and
the matrix elements are given in the appendix for arbitrary N .)

If f(x) is expensive to evaluate, the best strategy is to restrict N to be a power
of two. In this case, all previously computed grid-point values of f(x) can be reused
when N is doubled so that the maximum number of evaluations of f is never more
than the smallest (power-of-two)N for which the “stopping criteria,” is met. A similar
strategy is employed in the adaptive, spectrally accurate Clenshaw–Curtis quadrature
scheme [6].

As explained in [6], Chebyshev series for a function f which is analytic on the
interval x ∈ [a, b] converge geometrically fast; that is, the jth term (and also the
absolute value of the jth coefficient) are bounded by ρj for some ρ < 1. The error in
the (N + 1)-point interpolation is typically the same order of magnitude as the last
computed Chebyshev coefficient aN [6]. [5] proposed a cautious “stopping criterion”:

increase N until
∑N
j=[(2/3)N ] |aj | < ε, where [(2/3)N ] denotes the integer closest to

2N/3.
One can also use a grid-point value criterion which is given here for the first time:

max |f2N (xj)− fN (xj)| < ε,(1)
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where the difference is calculated for all the points on the grid of (2N + 1) points
which are not on the coarser grid of (N+1) points. (At points common to both grids,
both interpolants equal f and therefore each other.) Since the error of fN tends to
be a maximum roughly halfway between the points of the coarse grid, the difference
at these intermediate points is likely to be quite close to the true maximum pointwise
error of fN .

Both these stopping criteria are very conservative; f2N will usually have an er-
ror much smaller than ε with the grid-point criterion, which forces the error of the
lower order approximation fN to be less than ε. Reliability is built on conservative
strategies, however.

2.1. Subdivision. As explained in the next section, conversion-to-powers is a
well-conditioned process only if N is restricted to moderate degree. What if large N
is needed to obtain an accurate Chebyshev approximation?

The answer is that one can divide the interval into subintervals. Our recommen-
dation is to expand f on the entire interval first, even if this requires using large
N . If the maximum degree that allows satisfactory conversion-to-powers is Nmax,
the asymptotic theory of Chebyshev expansions [6] suggests that one should subdi-
vide into [N/Nmax] subintervals where the square brackets denote the integer closest
to the ratio of N/Nmax. Cautious arithmurgists are encouraged to use a somewhat
larger number of subdivisions.

Once the split into subdomains has been made, the algorithm can be applied on
each subinterval without modification.

2.2. Scaling. Chebyshev expansions are highly uniform in the sense that the
maximum pointwise error (absolute error) oscillates with peaks and troughs of sim-
ilar amplitude over the entire expansion interval, x ∈ [a, b]. If f(x) is itself highly
nonuniform, such as exp(10x) sin(x), then the Chebyshev series will have large relative
errors where f(x) is very small.

There are two remedies. The first is to subdivide into subintervals sufficiently
small so that f(x) varies only mildly over each subdomain. The second is to multiply
f by a smooth scaling function that eliminates the large fluctuations in magnitude.
For our example, f̃ ≡ exp(−10x)f(x) = sin(x) has the same roots as f , but, because it
is much more uniform, the Chebyshev expansion of f̃ will have much smaller relative
error and yield much more accurate approximations to the roots. Devising a smooth
scaling function may be difficult, however, as illustrated in [5].

2.3. Nonanalytic/nonsmooth f(x). Chebyshev expansions converge, but at
a very slow rate, if f(x) has poles, branch points, discontinuities, or other singulari-
ties on the expansion interval, x ∈ [a, b], including singularities at the endpoints. We
therefore caution the reader that Chebyshev rootfinding methods are useful only when
f(x) is analytic everywhere on the expansion interval including the endpoints. (Sin-
gularities off the expansion interval, whether at real or complex locations, however,
are powerless to destroy the good properties of the algorithm and are thus largely
irrelevant.)

3. Converting Chebyshev series to polynomials, I: Convert-to-powers.
The Chebyshev expansion of f(x) on x ∈ [a, b] is

fN ≡
N∑
j=0

ajTj (y) =

N∑
j=

bj y
j , y(x) ∈ [−1, 1],(2)
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where

y ≡ 2x− (b+ a)

b− a
, y ∈ [−1, 1] ↔ x ∈ [a, b],(3)

is the stretched-and-translated argument of the Chebyshev polynomials. The cost
of transforming from {aj} to {bj} can be halved by splitting fN into its even and

odd parts: let �aeven and �beven be vectors containing the even degree coefficients
{a0, a2, a4 . . .} and {b0, b2, b4 . . .}, respectively. Then

�beven =
��Q
even

�aeven.(4)

Explicitly, the upper left block is given by

��Q
even,block

=

1 −1 1 −1 1 −1 1 −1 1
0 2 −8 18 −32 50 −72 98 −128
0 0 8 −48 160 −400 840 −1568 2688
0 0 0 32 −256 1120 −3584 9408 −21504
0 0 0 0 128 −1280 6912 −26880 84480
0 0 0 0 0 512 −6144 39424 −180224
0 0 0 0 0 0 2048 −28672 212992
0 0 0 0 0 0 0 8192 −131072
0 0 0 0 0 0 0 0 32768

.(5)

The jth column is composed of the coefficients of T2j−2 in powers of x.
Similarly,

��Q
odd,block

=

1 −3 5 −7 9 −11 13 −15 17
0 4 −20 56 −120 220 −364 560 −816
0 0 16 −112 432 −1232 2912 −6048 11424
0 0 0 64 −576 2816 −9984 28800 −71808
0 0 0 0 256 −2186 16640 −70400 239360
0 0 0 0 1024 −13312 92160 −452608
0 0 0 0 0 0 4096 −61440 487424
0 0 0 0 0 0 0 16384 −278528
0 0 0 0 0 0 0 0 65536

.(6)

The elements can be computed by recurrence relation:

Qeven
11 = 1, Qeven

jj = 22j−3, j = 2, 3, . . . .(7)

The recurrence, vertically up the j-column from the diagonal, is then

Qeven
j−K,j = round

{
− (2j − 2K)(2j − 2K − 1)

2K (4j − 2K − 4) Qeven
j−K+1,j

}
,(8)

Qodd
jj = 22j−2, j = 1, 2, 3, . . . ,(9)

Qodd
j−K,j = round

{
− (2j − 2K + 1)(j −K)

K (4j − 2K − 2) Qodd
j−K+1,j

}
.(10)
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Because the elements are integers, we can eliminate roundoff error in the recur-
rences by rounding to the nearest integer.

Figure 2 shows how the norms of the transformed matrices grow exponentially,
roughly as

||��Q
even

||∞ ∼ 0.016 (5.8)j , ||��Q
odd

||∞ ∼ 0.039 (5.8)j .(11)

If we wish to avoid sacrificing more than six decimal places of accuracy or, more
precisely, to guarantee that the errors in the coefficients of the power form are no
more than a million times the floating point and truncation errors in the Chebyshev

coefficients, we must restrict the size of
��Q
even

and
��Q
odd

to nine or less since

||��Q
even

||∞(9× 9) = 243, 712 , ||��Q
odd

||∞(9× 9) = 559, 104.(12)

If we put the even and odd polynomials together, we obtain a general nonsymmetric
polynomial of degree 17.

4. Condition number of polynomial roots. Gautschi [8] and Winkler [14]
give theorems on the condition number of polynomial roots. To give the flavor of these
ideas without undue complexity, we shall state a simpler result applicable only in the
limit of an arbitrarily small perturbation. Recall that the argument of the Chebyshev
polynomials (and of the sum-of-powers into which it is transformed) is y ∈ [−1, 1],
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which is the image of the interval x ∈ [a, b] through the linear change-of-coordinate
y ≡ (2x− (b+ a))(b− a).

Theorem 4.1 (sensitivity of polynomial roots). Let y∗ denote a real-valued root
of multiplicity m on the interval y ∈ [−1, 1] for a function f which is written terms
of a basis as

f(y) =
N∑
j=0

ajφj(y), y ∈ [−1, 1],(13)

where the basis functions are either Chebyshev polynomials or powers of y and in
either event satisfy

|φj(y)| ≤ 1 ∀ y ∈ [−1, 1].(14)

Let ỹ denote the root of the perturbed function f̃ which is equal to f except the kth
coefficient has been altered by an amount ε:

f̃(y) =

N∑
j=0,j �=k

ajφj(y) + (ak + ε)φk(y), y ∈ [−1, 1].(15)

Then

|ỹ − y∗| ≤ ε1/m
∣∣∣∣ 1m! d

mf

dym
(y∗)

∣∣∣∣
−1/m

+O(ε(m+1)/m), |ε| � 1.(16)

Proof. Taylor’s theorem at y = y∗ is

f̃(y) ≈ εφk(y) +
1

m!

dmf

dym
(y∗)(y − y∗)m +O((y − y∗)m+1),(17)

since, at an mth order zero of f , the function itself and its first (m − 1) derivatives
are zero by definition. Solving the Taylor approximation for the root of the perturbed
function, ỹ, and then invoking the inequality that all basis functions are bounded in
magnitude by one on the interval, is sufficient to prove the theorem.

The theorem implies that Wilkinson’s famous example of an ill-conditioned poly-
nomial, which has haunted the dreams of numerical analysts for a generation, is
dreaded unduly. When the largest root of interest has magnitude ymax � 1, then yk

can be become as large as (ymax)
k at that root, and thus tiny changes in the coeffi-

cient of yk can produce huge changes in the largest root. However, when |y| ≤ 1, all
the powers of y are bounded by one, and a simple root will be altered only an O(ε)
amount by an O(ε) perturbation of the coefficients.

Thus, for our purposes, the powers-of-x form is not ill-conditioned. The only
difficulty is that the Chebyshev-to-powers matrix multiplication greatly magnifies
small errors in the Chebyshev coefficients. Thus, when N is large, an alteration of ε
in the kth Chebyshev coefficient will produce changes of millions or billions of ε in the
coefficients of the powers-of-x form. This in turn will produce a comparable change
in a simple root.

We conclude that if N is restricted to moderate values, such as N < 18, by
subdividing the original interval, then the Chebyshev-to-powers algorithm will be
reasonably well-conditioned, where “reasonably” means that we lose no more than six

decimal places to the ugly condition numbers of the transformation matrices
��Q
even

,
��Q
odd

, and are still able to compute the roots to nine or ten decimal places.
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5. Conversion to a polynomial, II: Degree-doubling. An alternative method
for deriving a polynomial from a truncated Chebyshev series is given by the following.

Theorem 5.1 (associated double-degree polynomial). Let fN (x) be a polynomial:

fN (x) ≡
N∑
j=0

aj Tj(x).(18)

Define a polynomial h of twice the degree through

h2N (z) ≡
2N∑
j=0

bjz
j ,(19)

where

bj =




aj−N , j > N,
2 a0, j = N,
aN−j , j < N.

(20)

Then the roots xk of fN on the real interval x ∈ [−1, 1] are related to the roots zk of
hN (z) on the unit disk in the complex z-plane through

xk = �(zk).(21)

Proof. The identity Tj(x) = cos(jt) when x = cos(t) plus cos(t) ≡ (exp(it) +
exp(it))/2 implies that

fN (cos(t)) ≡
N∑
j=0

aj {exp(it) + exp(−it)} /2.(22)

Define

h2N (exp(it)) ≡ 2 exp(iNt)fN (cos(t)).(23)

Because exp(iNt) never vanishes, the roots of the product are identical with those
of fN (cos(t)). Defining z ≡ exp(it) and recalling exp(ijt) = [exp(it)]j proves the
theorem.

6. Numerical example. Figure 3 shows the success of the Chebyshev algorithm
using the two different strategies for polynomial creation: convert-to-powers on the
left and degree-doubling on the right.

The left panel shows that, for some f(x) at least, the restriction to N ≤ 17 for
convert-to-powers is very conservative. With N = 40, the maximum relative error
is less than 1 part in 3800 in all of the first 19 roots of the J0 Bessel function. By
increasing N , the error can be reduced to O(10−12) for some of the roots. However,
there are signs of ill-conditioning: the roots at the ends of chosen expansion interval
do not converge with increasing N .

The degree-doubling method requires more computation because the “black box”
polynomial rootfinder is asked to solve a polynomial of degree 2N instead of N . (The
cost of the triangular matrix multiplications of the convert-to-powers scheme is only
(N2/2) multiplications and the same number of additions.) However, the right panel
shows that the degree-doubling method is completely free of the ill-conditioning that
dogs the convert-to-powers method for large N .
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Fig. 3. Comparison of the “convert-to-powers” method (left) and the “degree-doubling” algo-
rithm (right) for computing the first 19 roots of J0(x) by Chebyshev expansions truncated after the
Nth term on the interval x ∈ [0, 60].

Nevertheless, the convert-to-powers strategy is very effective even for N far larger
than the restrictions suggested in earlier sections. Why is the ill-conditioning com-
pletely not ruinous for N = 80? Figure 4 (left) shows that the coefficients asymptote
to a plateau of O(10−16) for N > 60, which is a magnitude controlled by roundoff
error. The very small size of the high degree Chebyshev coefficients keeps these co-
efficients from causing major problems when the series is converted to an ordinary
polynomial of degree 80. It is important to the note from (5) and (6) that the size
of the matrix elements increases rapidly with the column so that the elements that
dominate the condition number of these matrices are the multipliers of very tiny
coefficients in the Bessel–Chebyshev series.

Even with the mild ill-conditioning, it is remarkable that 19 roots can be captured
so accurately with no more than two to four evaluations of f(x) per root. Another
robust interval rootfinding such as bisection would surely require far more evaluations
of f .

WhenN is restricted to smaller values (and the expansion interval proportionately
reduced), the ill-conditioning disappears as predicted. Figure 5 shows that, for a
smaller interval, the errors are nearly uniform over the interval and decrease uniformly
as N increases. (No comparison with the degree-doubling scheme is shown because
for this case, where N is small and the convert-to-powers method is well-conditioned,
there is no graphically discernible difference between the two algorithms.) With N =
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Fig. 4. Left: absolute values of the Chebyshev coefficients of J0(x) for the interval x ∈ [0, 60].
Right: A plot of J0 on this same interval, which contains 19 roots of J0.

28, somewhat larger than our ultraconservative recommended maximum of N = 17,
the first six roots of J0 are all approximated to within a relative error of less than 1
part in a hundred billion!

7. Generalization and alternative: Interpolation in powers around a
circle in the complex plane. To generalize our method to the complex plane, the
crucial fact is that a power series is optimal for interpolation in a disk in the complex
plane in the same way that Chebyshev polynomials are optimal for interpolation on
a real interval [9]. Interpolation by a series of Chebyshev polynomials on a real inter-
val is replaced by interpolation of a series of powers of z on a circle in the complex
z-plane. By applying interpolation-on-a-circle to many overlapping circles, polyno-
mial rootsolvers can thus be applied to find roots of nontranscendental functions in
arbitrary regions of the complex plane. Although they employ a different strategy to
find roots within a circle, Delves and Lyness give a good discussion of such regional
rootfinding methods [7].

8. Rootfinding on the whole real axis. If a function f has an infinite num-
bers of roots on the real axis, it is obviously impractical to find them all numerically.
However, it is often possible to find an asymptotic approximation to the roots of large
|x| and then numerically compute the finite number of roots for which |x| is too small
for the asymptotic formula to be accurate. For the J0 Bessel function used as an
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Fig. 5. Absolute errors for the first six roots of the J0 Bessel function. N is the degree of the
Chebyshev approximation used to generate the polynomial whose roots were computed to approximate
those of the Bessel function.

example, for instance, the kth root, conventionally denoted by j0,k, is asymptotically

j0,k ∼ (k − 1/4)π + 1

8(k − 1/4)π −
31

6(4k − 1)3π3
+O(k−5).(24)

This approximation has an absolute error of only 0.0018 even for the first root and
an error of just 2.7× 10−10 for the 20th root.

When f has only a finite number of roots on an unbounded interval, it is possible
to find them directly by using a change-of-coordinate that maps the infinite interval
into the canonical interval for Chebyshev polynomials, x ∈ [−1, 1]. One can then
apply the Chebyshev-to-polynomial algorithms, either convert-to-powers or degree-
doubling, without modification.

If the coordinate on the infinite interval is denoted by y, then a good mapping [2]
is

y =
Lx√
1− x2

; ↔ x =
y√

L2 + y2
, x ∈ [−1, 1], y ∈ [−∞,∞],(25)

where L is a constant, the user-choosable map parameter. Although the optimum L
is problem-dependent [2, 6], the Chebyshev rate of convergence is not very sensitive
to L, and L = 1 is a good choice in most applications. Other mappings can work,
too, as discussed in [4] and [6]; a similar transformation for the semi-infinite interval
is explained in [3] and [6].
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Fig. 6. Infinite interval example, f(y) ≡ (2y2 − 1) exp(−[1/2]y2), with symmetry exploited
by using Chebyshev expansion only on x ∈ [0, 1], which is the image of the positive real axis. The
dashed line is a guideline, 0.072 exp(−0.197N), to show that the trend of the error is exponential
decrease with N . The rise in error for large N is due to the use of the “convert-to-powers” method
of computing an ordinary polynomial from the Chebyshev series; the degree-doubling method is free
of this problem.

For example, the function

f(y) ≡ (2y2 − 1) exp(−[1/2]y2)(26)

has only two roots on the infinite interval, y∗ = ±1/
√
2. Under the mapping, this

becomes

f(y) =

(
2
L2x2

1− x2
− 1

)
exp

(
−1
2

L2x2

1− x2

)
.(27)

Because this is symmetric with respect to the origin, we can improve efficiency by
computing a Chebyshev expansion only on x ∈ [0, 1]. The function has only a single
finite root on the whole positive real axis at y = 1/

√
2, which is equivalent to x = 1/

√
3

in the transformed coordinate.
Figure 6 shows that the error decreases exponentially with N , the degree of the

Chebyshev approximation, with oscillations in N superimposed. At N = 70, the
roundoff error in the Chebyshev-to-powers conversion finally asserts itself so that
further increases in N worsen the error compared to N = 70 where the root is ap-
proximated to a relative error of about 1 part in six million. This roundoff problem
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can be suppressed, as in earlier examples, by using the “degree-doubling” conversion
instead.

The accuracy is not as good for the finite interval example, which is hardly sur-
prising. Nevertheless, with the added device of a mapping of the infinite interval into
a finite interval, the Chebyshev-to-powers rootfinding method is successful.

9. Chebyshev methods and other “black box” rootfinders. The rootfind-
ers of Kavvadias and Vrahatis [10], Kavvadias, Makri, and Vrahatis [11], and Smiley
and Chun [13] both claim to be “black boxes,” that is, to find the roots of a tran-
scendental f(x) without (i) requiring user input except for a subroutine to evaluate
f(x) and (ii) requiring the user to understand their algorithms—unnecessary because
of their reliability. Both methods are a kind of “bisection-with-macho”; after the
interval is subdivided, tests are applied to exclude subintervals which are root-free.
Subdivision-and-test is then recursively applied until all the roots are isolated in
sufficiently narrow intervals. Kavvadias and Vrahatis test for roots by numerically
evaluating the Kronecker–Picard integral, whose value is the number of roots; Smiley
and Chun use the cheaper but less precise criterion that if the Lipschitz constant L,
defined by L = max (|f(x)− f(y)|/|x− y|) for all x, y on the interval is such that
|f(a)|, |f(b)| > L|b − a|, then the interval x ∈ [a, b] must be root-free. Refinements
such as Newton–Ralphson iteration in the “end game” (when a root has been iso-
lated within a small interval) and local Lipschitz constants are used to accelerate
convergence for both methods.

We shall not attempt detailed comparisons between our algorithm and theirs.
The efficiency of both Kronecker–Picard and Lipschitz-test algorithms strongly de-
pend upon subdivision strategies, numerical quadrature tactics, Lipschitz constant
approximation schemes, and so on. These black boxes will significantly improve as
further experience allows better “tuning.”

Instead, we will merely note that these algorithms require a large number of evalu-
ations of f(x) because of the repeated subdivisions and also the numerical quadratures
or Lipschitz constant approximations. In principle, the cost of these evaluations could
be dramatically reduced by replacing f(x) by its Chebyshev interpolant. It follows
that our ideas are perhaps complementary rather than competitive with subdivide-
and-test methods.

However, our algorithm is completely self-contained. Kronecker–Picard and
Lipschitz-test algorithms are useful in an f → Chebyshev approach only if these al-
gorithms are superior to polynomial rootfinders. Are they? Alternatively, subdivide-
and-test methods will fail to benefit from replacement of f by its Chebyshev proxy
only for problems where f is cheap to evaluate and the subdivide-and-test methods
converge faster than polynomial rootfinders. Such comparisons are highly problem-
dependent and also implementation-dependent. We must leave these as open research
questions.

10. Summary and open problems. Our main conclusion is that by “Cheby-
shevizing” a function f(x), that is, by replacing f(x) by its Chebyshev interpolant,
the availability of robust polynomial rootfinders can be leveraged into reliable soft-
ware for finding the roots of a smooth, analytic but otherwise arbitrary function f(x)
on a given real interval. Our Matlab subfunction that computes the roots using the
convert-to-powers method has only 45 executable statements, and the degree-doubling
algorithm is even shorter. Automation of subdivision would require a few additional
lines, but the overall algorithms are commendably simple: all the complexity is in the
polynomial rootfinder, which the user borrows from a software library.
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By using an unbounded-interval-to-finite-interval mapping, the method easily gen-
eralizes to finding the real-valued roots of a function over the entire real axis if these
roots are finite in number and the function is sufficiently smooth as |x| → ∞ so that
the transformed function is C∞.

The “degree-doubling” method converts the truncated Chebyshev series of de-
gree N into an ordinary polynomial of degree 2N whose coefficients are the same as
the Chebyshev coefficients. This completely eliminates the ill-conditioning problem.
However, because the degree is doubled, the computational cost is greater than for
the convert-to-powers algorithm.

The convert-to-powers method has the flaw that it is mildly ill-conditioned. This
difficulty can be cured by restricting N to moderate degree (less than 18) and sub-
dividing the original target interval into as many subintervals as needed so that f(x)
is well-approximated by a Chebyshev series of restricted degree on each subinterval.
However, degree restriction and subdivision are annoying complications. The reward
is that the polynomial rootfinder is only asked to solve a polynomial of degree N
rather than 2N .

The numerical examples show that the convert-to-powers method is not as ill-
conditioned as the norms of the conversion matrices would indicate. The reason
is that, for a given problem, the true condition number depends upon the rate of
convergence of the Chebyshev series as well as upon the matrix norms. The most
extreme example is when f(x) is a polynomial of finite degree k so that all Chebyshev
coefficients aj are zero for j > k. In this case, only the upper left (k+1)/2× (k+1)/2
blocks of the transformation matrices have anything to operate on. The effective
condition number is determined by these blocks and not by the actual size of N ,
which may be much larger. For the Bessel function example, the Chebyshev series
of J0 is not identically zero for large degree, but the exponentially fast decrease of
the Chebyshev coefficients does drastically reduce the effective condition number. An
open problem is to develop a refined f -dependent condition number that takes the
rate of Chebyshev convergence into account.

Because of the competing virtues and flaws of well-conditioned versus mildly ill-
conditioned, fast versus slow, it is not possible to anoint either the degree-doubling
or convert-to-powers algorithm as the “best” choice. What can be said is that both
work well.

A minor unsolved problem, discussed at length in [5] but not here, is to find a
good multiplicative scaling function when f(x) varies by many orders of magnitude
on the search interval x ∈ [a, b]. Because Chebyshev expansions are highly uniform
in absolute error, there may be annoyingly large relative errors when f(x) is badly
scaled in the sense of having huge maxima on some parts of the interval but only
tiny peaks and valleys on other subintervals. In theory, this difficulty can always be
solved by subdividing the interval into subintervals and applying the algorithm on
each subdomain.

The major unsolved problem is to find a good direct way to find all the roots
of a polynomial on a real interval when the polynomial is defined by its Chebyshev
coefficients without prior conversion to powers-of-x form. If such an algorithm could
be found, then both the convert-to-powers and degree-doubling procedures become
unnecessary.

Seen through the lens of Chebyshev polynomial series, there is no such thing as
a nonpolynomial function. Every f(x) is a truncated Chebyshev series in disguise.
From the Chebyshev perspective, it is as easy to simultaneously find all roots of a
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function f(x) on a real interval, whether simple zeros or multiple roots, as it is for a
polynomial.

Appendix A. Chebyshev interpolation of a function f(x).
Goal. Compute a Chebyshev series, including terms up to and including TN , on

the interval x ∈ [a, b].
Step 1. Create the interpolation points (Lobatto grid):

xk ≡ b− a

2
cos

(
π
k

N

)
+

b+ a

2
, k = 0, 1, 2, . . . , N.(28)

Step 2. Compute the elements of the (N + 1)× (N + 1) interpolation matrix.
Define pj = 2 if j = 0 or j = N and pj = 1, j ∈ [1, N − 1]. Then the elements of

the interpolation matrix are

Ijk =
2

pj pkN
cos

(
jπ

k

N

)
.(29)

Step 3. Compute the grid-point values of f(x), the function to be approximated:

fk ≡ f(xk), k = 0, 1, . . . , N.(30)

Step 4. Compute the coefficients through a vector-matrix multiply:

aj =

N∑
k=0

Ijk fk, j = 0, 1, 2, . . . , N.(31)

The approximation is

f ≈
N∑
j=0

ajTj

(
2x− (b+ a)

b− a

)
=

N∑
j=0

aj cos

{
j arccos

(
2x− (b+ a)

b− a

)}
.(32)
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Abstract. In this paper we analyze nonconforming finite element methods for solving a fourth
order elliptic variational inequality of the second kind arising in a plate frictional contact problem.
The variational inequality involves a nondifferentiable term due to the frictional contact. Opti-
mal order error estimates are derived for both continuous and discontinuous nonconforming finite
elements.

Key words. nonconforming finite element method, elliptic variational inequality of fourth order,
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1. Introduction. Variational inequalities form an important family of nonlinear
boundary value or initial-boundary value problems. Interest in variational inequalities
originates in applications from mechanics and physics. A partial list of the applica-
tions that lead to variational inequalities include the following: contact mechanics,
non-Newtonian fluid flows such as Bingham fluids, obstacle problems, optimal control,
plasticity, Stefan problems, unilateral problems, and so on. An early comprehensive
reference on the topic is [8], where many problems in mechanics and physics are formu-
lated and studied in the framework of variational inequalities. More recent references
on the mathematical analysis of variational inequalities include [1, 10, 20, 22, 23].
Comprehensive references concerning the numerical analysis of variational inequali-
ties, especially those arising in mechanical problems, include [12, 13, 14, 15, 16, 17, 19].
These references focus on numerical analysis for variational inequalities involving sec-
ond order differential operators. Numerical study of fourth order variational inequal-
ities is also available from some of these references; e.g., a duality approach based on
conforming finite elements is analyzed in [16].

Nonconforming finite element methods are a natural choice in employing finite
element methods for solving fourth order boundary value problems since the smooth-
ness requirement on finite element functions is weakened. An early reference on the
mathematical analysis of nonconforming finite element methods for the plate bending
problem is [21]. Application of nonconforming finite element methods is not limited
to fourth order problems; they offer more efficient solution algorithms for numerous
other problems (cf. [3, p. 208]). Convergence and error estimation of nonconform-
ing finite element methods are more involved compared to that of conforming finite
element methods. A patch test was proposed and is widely used by engineers for con-
vergence analysis of nonconforming finite element methods (cf. [2, 18]). However, it
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is shown in [26] that the patch test is neither a necessary nor a sufficient condition for
convergence. One finds in [26] a rigorous necessary and sufficient condition for con-
vergence of nonconforming finite element solutions to variational equations of some
boundary value problems. Some further developments along this line can be found
in [25, 30], where convergence conditions are studied which are easier to examine. A
summary account of nonconforming finite element methods can be found in [5] or,
more recently, in [6]. In particular, in these latter references, one can find some dis-
cussions of the four nonconforming finite elements mentioned later in this paper: the
continuous nonconforming elements of the Zienkiewicz triangle and Adini’s rectangle,
and the discontinuous nonconforming elements of Morley’s triangle and the Fraeijs
De Veubeke triangle.

In this paper, we derive error estimates for continuous and discontinuous noncon-
forming finite elements in solving a fourth order elliptic variational inequality of the
second kind. A variational inequality of the second kind is featured by the presence
of nondifferentiable terms in the formulation. Variational inequalities of the second
kind are commonly seen in frictional contact problems. In this paper we adopt a
plate frictional contact problem as our model fourth order variational inequality of
the second kind for error analysis of nonconforming finite element methods; the ideas
and results reported here can be extended to nonconforming finite element methods
for other fourth order elliptic variational inequalities of the second kind. Literature
on nonconforming finite element methods for fourth order variational inequalities is
rather small at the moment. The only papers on this topic we know of are [27, 28, 29].
Note that in these papers the variational inequalities being approximated are of the
first kind; i.e., they are imposed over convex sets, and no nondifferentiable terms
are involved. To analyze nonconforming finite elements for fourth order variational
inequalities of the second kind, we need to employ new techniques.

The paper is organized as follows. In section 2, we introduce the plate contact
problem and show some properties for the solution of the problem. In section 3, we
present an abstract result for nonconforming methods that will be used in deriving
error estimates later in the paper. Sections 4 and 5 are devoted to error estimation
of continuous and discontinuous nonconforming finite element methods for the plate
contact problem, respectively.

2. The plate contact problem. Consider a thin flat plate Ω × (−d/2, d/2),
where Ω ⊂ R

2, d > 0 is the thickness of the plate and is assumed to be small.
Assume the three-dimensional material is isotropic, linearly elastic with Poisson’s
ratio ν ∈ (0, 1/2) and Young’s modulus E > 0. The plate is subject to a normal force
of density D0f(x) with the stiffness coefficient of the plate

D0 =
E d3

12 (1− ν2)
.

Denote by u = u(x), x ∈ Ω, the vertical deflection of the plate. Let the boundary
Γ = ∂Ω of the plate be decomposed into three mutually disjoint parts: Γ = Γ1∪Γ2∪Γ3

such that Γ1, Γ2, and Γ3 are relatively open, Γ1 ∩ Γ3 = ∅, and meas (Γ1) > 0. The
boundary is assumed to be Lipschitz continuous, and the unit outward normal vector
is denoted by n = (n1, n2)

T . The tangential vector is τ = (τ1, τ2)
T with τ1 = −n2,

τ2 = n1. Both n and τ exist a.e. on Γ. Assume the plate is clamped on Γ1:

u =
∂u

∂n
= 0 on Γ1,
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is free on Γ2:

M(u) = N(u) = 0 on Γ2,

and is in frictional contact with a rigid foundation on Γ3. Here,

M(u) = −∆u+ (1− ν) ∂ττu,

N(u) = ∂n∆u+ (1− ν) ∂τ (∂nτu).

Notice that for a smooth function u, M(u) and N(u) are defined a.e. on Γ. The
quantity M(u) can be interpreted as the tangential moment, while −N(u) represents
a force. Here and throughout the paper, we use the following notations:

∂11u =
∂2u

∂x2
1

, ∂12u =
∂2u

∂x1∂x2
, ∂nu =

∂u

∂n
, ∂τu =

∂u

∂τ
, · · · .

Introduce the function space

V = { v ∈ H2(Ω) | v = ∂nv = 0 on Γ1 }.(2.1)

Over the space V , we define a bilinear form

a(u, v) =

∫
Ω

[
∆u∆v + (1− ν) (2 ∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v)

]
dx,(2.2)

and a functional

j(v) =

∫
Γ3

g |v| ds,(2.3)

where g is given. For the data of the problem, we assume

f ∈ L2(Ω), g ∈ L2(Γ3), g > 0 a.e. on Γ3.(2.4)

We will use the notation

(f, v) =

∫
Ω

f v dx.

The plate frictional contact problem is defined through a minimal energy principle:

u ∈ V, J(u) = inf
v∈V

J(v),

where

J(v) =
1

2
a(v, v) + j(v)− (f, v).

The quantity D0J(v) is the total energy, and j(v) is the contribution from the fric-
tional contact. It is easy to show that the minimization problem is equivalent to the
following variational inequality.

Problem 2.1. Find u ∈ V such that

a(u, v − u) + j(v)− j(u) ≥ (f, v − u) ∀ v ∈ V.(2.5)
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Wellposedness of Problem 2.1 follows from a standard argument.
Theorem 2.2. Problem 2.1 has a unique solution.
Proof. Since meas (Γ1) > 0, the bilinear form is coercive on V :

a(v, v) ≥ α ‖v‖2V ∀ v ∈ V.

We also observe that over the space V , a(·, ·) is continuous, j(·) is continuous and
convex, and f defines a linear continuous functional. Thus Problem 2.1 is an elliptic
variational inequality of the second kind and has a unique solution (cf. [12]).

To obtain the corresponding strong form of the boundary value problem, we
assume the solution u is smooth (say, u ∈ C4(Ω)). For any v ∈ H2(Ω), we have∫

Ω

∆2u v dx =

∫
Ω

∆u∆v dx+

∫
Γ

∂n∆u v ds−
∫

Γ

∆u ∂nv ds.(2.6)

It is easy to verify the equality∫
Ω

(2 ∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v) dx =

∫
Γ

(−∂ττu ∂nv + ∂nτu ∂τv) ds.

If the boundary Γ is smooth, we further have∫
Ω

(2 ∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v) dx = −
∫

Γ

(∂ττu ∂nv + ∂τ (∂nτu) v) ds.(2.7)

Then from (2.6) we have

a(u, v) =

∫
Ω

∆2u v dx−
∫

Γ

N(u) v ds−
∫

Γ

M(u) ∂nv ds ∀ v ∈ H2(Ω).(2.8)

Using this relation in the variational inequality (2.5), we can follow a standard argu-
ment (cf., e.g., [8, 19]) to conclude that u satisfies the relations

∆2u = f in Ω,(2.9)

u =
∂u

∂n
= 0 on Γ1,(2.10)

M(u) = N(u) = 0 on Γ2,(2.11)

M(u) = 0, |N(u)| ≤ g,
|N(u)| < g =⇒ u = 0,
|N(u)| = g =⇒ u = λN(u) for some λ ≥ 0


 on Γ3.(2.12)

This is the strong form of the plate contact problem studied in [8]. We comment that
g > 0 can be interpreted as the frictional bound.

When the boundary Γ is only piecewise smooth, the right-hand side of the relation
(2.7) needs to be replaced by

∑
P

(
∂nτu(P−)− ∂nτu(P+)

)
v(P )−

∫
Γ

(∂ττu ∂nv + ∂τ (∂nτu) v) ds,

where P is any corner point on the boundary and ∂nτu(P−) and ∂nτu(P+) are the left
and right limiting values of ∂nτu at P along Γ directed counterclockwise. Then the
relations (2.9)–(2.12) are to be supplemented with continuity conditions of the form

∂nτu(P−) = ∂nτu(P+).
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Such conditions can be interpreted as “corner force conditions” (cf. [7]).
The main purpose of the paper is to analyze nonconforming finite element methods

for Problem 2.1. For this, we need a characterization of the solution of Problem 2.1,
following an idea found in [13]. Let

Λ = {µ ∈ L∞(Γ3) | |µ| ≤ 1 a.e. on Γ3 }.
Theorem 2.3. A function u is a solution of Problem 2.1 if and only if there

exists λ ∈ Λ such that

a(u, v) +

∫
Γ3

g λ v ds = (f, v) ∀ v ∈ V,(2.13)

λu = |u| a.e. on Γ3.(2.14)

Proof. Suppose u is a solution of Problem 2.1. By taking v = 0 and 2u in (2.5),
we obtain

a(u, u) + j(u) = (f, u).(2.15)

Then, from (2.5),

a(u, v) + j(v) ≥ (f, v) ∀ v ∈ V.(2.16)

It is easy to see that (2.5) is equivalent to (2.15) and (2.16). From (2.16), we get

(f, v)− a(u, v) ≤ j(v) ∀ v ∈ V.

Replacing v by −v in this inequality, we obtain
(f, v)− a(u, v) ≥ −j(v) ∀ v ∈ V.

Therefore,

|(f, v)− a(u, v)| ≤ j(v) ∀ v ∈ V.(2.17)

Let γ be the trace operator defined on V and denote HΓ3 = γ(V )|Γ3 with the norm

‖v‖HΓ3
= inf{ ‖w‖V | w ∈ V, w|Γ3 = v }.

Then, from (2.17), we see that HΓ3 � v �→ (f, v)− a(u, v) defines a linear mapping on
HΓ3 ; here, we use the same symbol v for a function from V with the trace v on Γ3.
Thus "(v) = (f, v)− a(u, v) is a linear mapping on HΓ3 and, from (2.17),

|"(v)| ≤
∫

Γ3

g |v| ds ∀ v ∈ HΓ3 .

Obviously, HΓ3 ⊂ L1(Γ3). By the Hahn–Banach theorem, the linear functional " can
be the extended to the space L1(Γ3), and we have the existence of λ ∈ Λ such that

"(v) =

∫
Γ3

g λ v ds ∀ v ∈ L1(Γ3).

Therefore, (2.13) holds. Using (2.15), we then have∫
Γ3

g (λu− |u|) ds = 0.
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Since |λ| ≤ 1 a.e. on Γ3, we have the relation (2.14).
Proof of the converse statement is easy and is hence omitted.
By comparing (2.8) with (2.13) and using the equality boundary conditions of the

solution u, we find that

g λ = N(u) on Γ3.

Thus, the “Lagrange multiplier” λ can be interpreted as a scaled shearing force.
Note that the relations (2.9)–(2.12) are valid only if the solution u ∈ V of Problem

2.1 is smooth, e.g., u ∈ C4(Ω). Consequently, these relations cannot be used in error
analysis. In finite element error analysis, we need a reasonable solution regularity
stronger than u ∈ V . Such a regularity result for Problem 2.1 does not seem to be
available in the current literature. In this paper, we will assume

u ∈ H3(Ω).(2.18)

Now let us derive some relations for the solution u ∈ V of Problem 2.1. In (2.13),
we let v ∈ C∞

0 (Ω) to obtain

∆2u = f in the sense of distributions.

Since f ∈ L2(Ω), we actually have

∆2u = f in L2(Ω),(2.19)

and then also

∆2u = f a.e. in Ω.(2.20)

Since ∆2u ∈ L2(Ω) and u ∈ H3(Ω), we can define ∂n∆u ∈ H−1/2(Γ) by the relation
(cf., e.g., [11])

〈∂n∆u, v〉1/2,Γ =
∫

Ω

[
∆2u v +∇(∆u) · ∇v] dx ∀ v ∈ H1(Ω).(2.21)

For the bilinear form (2.2), we then have

a(u, v) =

∫
Ω

∆2u v dx− 〈∂n∆u, v〉1/2,Γ +
∫

Γ

∆u ∂nv ds

+ (1− ν)

∫
Γ

(−∂ττu ∂nv + ∂nτu ∂τv) ds

= (f, v)−
∫

Γ

M(u) ∂nv ds− 〈∂n∆u, v〉1/2,Γ + (1− ν)

∫
Γ

∂nτu ∂τv ds.

Thus by (2.13) we have

−
∫

Γ

M(u) ∂nv ds− 〈∂n∆u, v〉1/2,Γ + (1− ν)

∫
Γ

∂nτu ∂τv ds+

∫
Γ3

g λ v ds = 0 ∀ v ∈ V.

(2.22)

By a standard procedure (cf. [8]), it can then be established that

M(u) = 0 a.e. on Γ2 ∪ Γ3.(2.23)
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Then from (2.22) we obtain

−〈∂n∆u, v〉1/2,Γ + (1− ν)

∫
Γ

∂nτu ∂τv ds+

∫
Γ3

g λ v ds = 0 ∀ v ∈ V.(2.24)

Now the closure of V in H1(Ω) is

H1
Γ1
(Ω) = { v ∈ H1(Ω) | v = 0 a.e. on Γ1 }.

Denote

H̃1
Γ1
(Ω) = { v ∈ H1

Γ1
(Ω) | ∂τv ∈ L2(Γ) }.

Then from (2.24) we conclude that

−〈∂n∆u, v〉1/2,Γ + (1− ν)

∫
Γ

∂nτu ∂τv ds+

∫
Γ3

g λ v ds = 0 ∀ v ∈ H̃1
Γ1
(Ω).(2.25)

3. An abstract error estimate. Let {Th}h be a family of finite element parti-
tions of the domain Ω. Here h→ 0+ is a discretization parameter. A typical element
in Th is denoted by T . Let {Vh}h be a family of corresponding finite element spaces
used to approximate the space V . We consider the case of nonconforming approxi-
mation. Thus, in general, Vh �⊂ V . Then the discrete approximation problem is the
following.

Problem 3.1. Find u ∈ Vh such that

ah(uh, vh − uh) + j(vh)− j(uh) ≥ (f, vh − uh) ∀ vh ∈ Vh,(3.1)

where the discrete bilinear form is

ah(u, v) =
∑
T∈Th

∫
T

[
∆u∆v + (1− ν) (2 ∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v)

]
dx.(3.2)

Assume

‖vh‖h =
{∑
T∈Th

|vh|22,T
}1/2

, vh ∈ Vh,

is a norm on Vh. Then the bilinear form (3.2) is coercive on Vh. Obviously, ah(·, ·) is
continuous:

|ah(u, v)| ≤M ‖uh‖h‖vh‖h ∀uh, vh ∈ V + Vh.

We also observe that j(·) is continuous and convex on Vh, and f defines a linear
continuous functional on Vh. Therefore, Problem 3.1 has a unique solution.

The following abstract error estimate is inspired by Falk’s work [9] and the work
of Brezzi, Hager, and Raviart [4]. It plays an important role in error analysis for the
approximation of the variational inequality and can be viewed as an extension of the
Strang lemma (cf. [5]) for variational equations to variational inequalities.

Theorem 3.2. For the solutions of the Problems 2.1 and 3.1, we have the in-
equality

‖u− uh‖2h ≤ c inf
vh∈Vh

{‖u− vh‖2h +Rh(vh, uh)
}
,(3.3)
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where

Rh(vh, uh) = ah(u, vh − uh) + j(vh)− j(uh)− (f, vh − uh)(3.4)

is a discrete residual.
Proof. For any vh ∈ Vh, we have

α ‖uh − vh‖2h ≤ ah(uh − vh, uh − vh)

= ah(u− vh, uh − vh) + ah(uh − u, uh − vh)

≤M ‖u− vh‖h‖uh − vh‖h + ah(uh, uh − vh)− ah(u, uh − vh)

≤M ‖u− vh‖h‖uh − vh‖h +Rh(vh, uh),

where in the last step we used the defining inequality (3.1). Using the inequality

M ‖u− vh‖h‖uh − vh‖h ≤ α

2
‖uh − vh‖2h +

M2

2α
‖u− vh‖2h

we obtain

‖uh − vh‖2h ≤ c
{‖u− vh‖2h +Rh(vh, uh)}.

Now the relation (3.3) follows from

‖u− uh‖h ≤ ‖u− vh‖h + ‖u− vh‖h
and the arbitrariness of vh ∈ Vh.

4. Continuous nonconforming finite element approximation. We con-
sider some continuous nonconforming plate elements in this section. Let {Th}h be a
family of regular triangulation of Ω, and let {Vh}h ⊂ C0(Ω) be a corresponding family
of nonconforming finite element subspaces of V . We assume∣∣∣∑

T

∫
∂T

w ∂nvh ds
∣∣∣ ≤ c h ‖w‖1,Ω‖vh‖h ∀ vh ∈ Vh,(4.1)

and the finite element interpolation error estimate

‖w −Πhw‖h ≤ c h ‖w‖3,Ω ∀w ∈ V ∩H3(Ω).(4.2)

Here Πhw ∈ Vh denotes the finite element interpolant of w.
Theorem 4.1. Assume (2.18), (4.1), and (4.2). Then we have the error estimate

‖u− uh‖h ≤ c h (‖u‖3,Ω + h1/4‖g‖0,Γ3).(4.3)

Proof. Let us first estimate the terms involved in the residual Rh(vh, uh). We
have

ah(u, uh − vh) =
∑
T

∫
T

{
∆u∆(uh − vh) + (1− ν) (2 ∂12u ∂12(uh − vh)

(4.4)

− ∂11u ∂22(uh − vh)− ∂22u ∂11(uh − vh))
}
ds

= −
∑
T

∫
T

∇(∆u) · ∇(uh − vh) dx+
∑
T

∫
∂T

∆u ∂n(uh − vh) ds

+ (1− ν)
∑
T

∫
∂T

{− ∂ττu ∂n(uh − vh) + ∂nτu ∂τ (uh − vh)
}
ds.
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Since Vh ⊂ C(Ω), we have uh, vh ∈ H1(Ω) and

−
∑
T

∫
T

∇(∆u) · ∇(uh − vh) dx = −
∫

Ω

∇(∆u) · ∇(uh − vh) dx

(4.5)

=

∫
Ω

∆2u (uh − vh) dx− 〈∂n∆u, uh − vh〉1/2,Γ.

Then

(f, uh − vh)− ah(u, uh − vh)

= −
∑
T

∫
∂T

[
∆u− (1− ν) ∂ττu

]
∂n(uh − vh) ds+ 〈∂n∆u, uh − vh〉1/2,Γ

− (1− ν)
∑
T

∫
∂T

∂nτu ∂τ (uh − vh) ds

= −
∑
T

∫
∂T

M(u) ∂n(uh − vh) ds− (1− ν)
∑
T

∑
γ⊂∂T
γ �⊂Γ

∫
γ

∂nτu ∂τ (uh − vh) ds

− (1− ν)
∑
T

∑
γ⊂∂T
γ⊂Γ

∫
γ

∂nτu ∂τ (uh − vh) ds+ 〈∂n∆u, uh − vh〉1/2,Γ.

Since uh, vh ∈ C(Ω), we have

∑
T

∑
γ⊂∂T
γ �⊂Γ

∫
γ

∂nτu ∂τ (uh − vh) ds = 0.

Thus,

(f, uh − vh)− ah(u, uh − vh) = −
∑
T

∫
∂T

M(u) ∂n(uh − vh) ds+ 〈∂n∆u, uh − vh〉1/2,Γ

− (1− ν)

∫
Γ

∂nτu ∂τ (uh − vh) ds.

Using the relation (2.25), we obtain

(f, uh − vh)− ah(u, uh − vh) = −
∑
T

∫
∂T

M(u) ∂n(uh − vh) ds−
∫

Γ3

g λ (uh − vh) ds.

(4.6)

Then

Rh(vh, uh) =

∫
Γ3

g (|vh| − λ vh − |uh|+ λuh) ds−
∑
T

∫
∂T

M(u) ∂n(uh − vh) ds.

(4.7)

The last term on the right-hand side of (4.7) is estimated by (4.1):∣∣∣∣∣
∑
T

∫
∂T

M(u) ∂n(vh − uh) ds

∣∣∣∣∣ ≤ c h ‖u‖3,Ω‖vh − uh‖h.
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We now estimate the first term on the right-hand side of (4.7). Since |λ| ≤ 1 a.e. on
Γ3, ∫

Γ3

g (|vh| − λ vh − |uh|+ λuh) ds ≤
∫

Γ3

g (|vh| − λ vh) ds.

In the following, we choose vh = Πhu. We have∫
Γ3

g (|Πhu| − λΠhu) ds =

∫
Γ3

g (|Πhu| − |u| − λ (Πhu− u)) ds

≤ 2
∫

Γ3

g |u−Πhu| ds

≤ 2 ‖g‖0,Γ3‖u−Πhu‖0,Γ3 .

From [26], for any element side γ ⊂ Γ3, denoting T the element that has the side γ,
we have

‖u−Πhu‖0,γ ≤ c
(
h−1‖u−Πhu‖20,T + h |u−Πhu|21,T

)1/2
≤ c

(
h−1h6|u|23,T + hh4|u|23,T

)1/2
≤ c h5/2|u|3,T .

Thus,

‖u−Πhu‖0,Γ3
=


∑
γ⊂Γ3

‖u−Πhu‖20,γ




1/2

≤ c h5/2


 ∑
T :∂T∩Γ3 	=∅

|u|23,T




1/2

≤ c h5/2|u|3,Ω.
Summarizing, we have the bound

Rh(Πhu, uh) ≤ c h ‖u‖3,Ω‖Πhu− uh‖h + c h5/2‖g‖0,Γ3‖u‖3,Ω.
So, from (3.3),

‖u− uh‖2h ≤ c {‖u−Πhu‖2h + h ‖u‖3,Ω‖Πhu− uh‖h + h5/2‖g‖0,Γ3
‖u‖3,Ω}.

The term ‖Πhu−uh‖h is bounded by ‖Πhu−u‖h+‖u−uh‖h. Using the interpolation
error estimate (4.2), we then obtain the error estimate (4.3).

One example of a continuous nonconforming finite element is the Zienkiewicz
triangle. Assume Ω is such that it is possible to split it into triangles with all sides
parallel to three fixed directions. This property is valid if Ω is the union of rectangles
with sides parallel to two fixed directions and right triangles with two sides parallel
to the two fixed directions. Let {Th} be a regular family of partitions of Ω into such
triangles. Then the Zienkiewicz triangle consists of piecewise incomplete polynomials
of degree less than or equal to 3. On each triangle, the polynomial is determined by
its values and the values of its two first order derivatives at the three vertices; for
details, cf. [5]. For this element, we have (4.1) and (4.2) (cf. [24]).
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Another example is Adini’s rectangle. Assume Ω ⊂ R
2 can be partitioned into

rectangles (e.g., if Ω is the union of rectangles with sides parallel to two fixed direc-
tions). Let {Th}h be a regular family of partitions of Ω into rectangles with sides
parallel to the coordinate axes. Then Adini’s rectangle is defined as a piecewise poly-
nomial corresponding to the partition Th such that, on each element, it is a polynomial
from the space P3(R

2) + [x3
1x2, x1x

3
2], with the values of function and of the two first

partial derivatives with respect to x1 and x2 at the four vertices of the element as the
finite element parameters. For the vertices on Γ1, the parameters are taken to be zero
for Vh. Then, from [26], we have (4.1) and (4.2).

We conclude that for both the Zienkiewicz triangle and Adini’s rectangle, the
optimal order error estimate (4.3) holds.

5. Discontinuous nonconforming finite element approximation. In this
section, we consider discontinuous nonconforming finite element approximations of
the plate contact problem. Let {Vh}h �⊂ C0(Ω) be a family of nonconforming finite
element subspaces of V corresponding to a regular family {Th}h of triangulations of
Ω such that the finite element functions are continuous at the vertices of the corre-
sponding triangulation. We still assume (4.1) and (4.2).

Theorem 5.1. Assume (2.18), (4.1), and (4.2). Also assume the finite element
functions are continuous at the vertices of the corresponding triangulation. Then we
have the error estimate

‖u− uh‖h ≤ c h
{‖u‖3,Ω + h1/4‖g‖0,Γ3 + h ‖f‖0,Ω

}
.(5.1)

Proof. Since Vh �⊂ C(Ω) implies Vh �⊂ H1(Ω), we must modify the expression
(4.5) as follows. Denote wh = uh − vh and let w

I
h be the continuous piecewise linear

interpolant of wh. Since w
I
h ∈ C(Ω), wIh ∈ H1(Ω). First we write

−
∑
T

∫
T

∇(∆u) · ∇(uh − vh) dx = −
∑
T

∫
T

∇(∆u) · ∇wh dx

= −
∑
T

∫
T

∇(∆u) · ∇wIh dx

−
∑
T

∫
T

∇(∆u) · ∇(wh − wIh) dx

=

∫
Ω

∆2uwIh dx− 〈∂n∆u,wIh〉1/2,Γ

−
∑
T

∫
T

∇(∆u) · ∇(wh − wIh) dx.

Then

ah(u, uh − vh) =

∫
Ω

∆2uwIh dx− 〈∂n∆u,wIh〉1/2,Γ −
∑
T

∫
T

∇(∆u) · ∇(wh − wIh) dx

+
∑
T

∫
∂T

∆u ∂nwhds+ (1− ν)
∑
T

∫
∂T

(−∂ττu ∂nwh + ∂nτu ∂τwh) ds.
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Use the relation (2.20),

ah(u, uh − vh) = (f, w
I
h)− 〈∂n∆u,wIh〉1/2,Γ +

∑
T

∫
∂T

{
∆u− (1− ν) ∂ττu

}
∂nwh ds

+ (1− ν)
∑
T

∫
∂T

∂nτu∂τwh ds−
∑
T

∫
T

∇(∆u) · ∇(wh − wIh) dx.

Hence,

(f, uh − vh)− ah(u, uh − vh)

= (f, wh − wIh) +
∑
T

∫
T

∇(∆u) · ∇(wh − wIh) dx+ 〈∂n∆u,wIh〉1/2,Γ

−
∑
T

∫
∂T

M(u) ∂nwh ds− (1− ν)
∑
T

∫
∂T

∂nτu ∂τwh ds.

Now∑
T

∫
∂T

∂nτu ∂τwh ds =
∑
T

∫
∂T

∂nτu ∂τw
I
h ds+

∑
T

∫
∂T

∂nτu ∂τ (wh − wIh) ds.

For each side γ of the elements, define a piecewise constant projection operator P γ0 :
L1(γ)→ R by

P γ0 (v) =
1

|γ|
∫
γ

v ds.

Since ∫
γ

∂τ (wh − wIh) ds = 0,

we have∑
T

∫
∂T

∂nτu ∂τ (wh − wIh) ds =
∑
T

∑
γ⊂∂T

∫
γ

∂nτu ∂τ (wh − wIh) ds

=
∑
T

∑
γ⊂∂T

∫
γ

(∂nτu− P γ0 (∂nτu)) ∂τ (wh − wIh) ds

≤ c h |u|3,Ω‖wh‖h.

Using the fact wIh ∈ C(Ω) we have

∑
T

∫
∂T

∂nτu ∂τw
I
h ds =

∑
γ⊂Γ

∫
γ

∂nτu ∂τw
I
h ds.

Also,

(f, wh − wIh) ≤ ‖f‖0,Ω‖wh − wIh‖0,Ω ≤ c h2‖f‖0,Ω‖wh‖h
and ∑

T

∫
T

∇(∆u) · ∇(wh − wIh) ≤
∑
T

|u|3,T |wh − wIh|1,T ≤ c h |u|3,Ω‖wh‖h.
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Using the estimate (4.1), we have

(f, uh − vh)− ah(u, uh − vh) ≤ c h (|u|3,Ω + h ‖f‖0,Ω) ‖wh‖h + 〈∂n∆u,wIh〉1/2,Γ
− (1− ν)

∫
Γ

∂nτu ∂τw
I
h ds.

By (2.25), we then obtain

(f, uh − vh)− ah(u, uh − vh) ≤ c h (|u|3,Ω + h ‖f‖0,Ω) ‖wh‖h +
∫

Γ3

g λwIh ds.

Thus, for the residual term defined in (3.4), we have

Rh(vh, uh) ≤
∫

Γ3

g (|vh| − |uh|+ λwIh) ds+ c h (|u|3,Ω + h ‖f‖0,Ω) ‖wh‖h(5.2)

=

∫
Γ3

g (|vh| − |uh|+ λwh) ds+

∫
Γ3

g λ (wIh − wh) ds

+ c h (|u|3,Ω + h ‖f‖0,Ω) ‖wh‖h.
The second term on the right is bounded as follows:∫

Γ3

g λ (wIh − wh) ds ≤
∑
γ⊂Γ3

∫
γ

g |wh − wIh| ds

≤ ‖g‖0,Γ3


∑
γ⊂Γ3

‖wh − wIh‖20,γ




1/2

≤ c ‖g‖0,Γ3


 ∑
∂T∩Γ3 	=∅

[
h−1‖wh − wIh‖20,T + h |wh − wIh|21,T

]
1/2

≤ c ‖g‖0,Γ3h
3/2


 ∑
T :∂T∩Γ3 	=∅

|wh|22,T




1/2

≤ c h3/2‖g‖0,Γ3‖wh‖h.
The first term

∫
Γ3

g (|vh| − |uh|+ λwh) ds can be handled similarly as in the proof of

Theorem 4.1. So, with vh = Πhu in (5.2), we have the bound

Rh(Πhu, uh) ≤ c (h3/2‖g‖0,Γ3 + h |u|3,Ω + h2‖f‖0,Ω) ‖Πhu− uh‖h(5.3)

+ c h5/2‖g‖0,Γ3‖u‖3,Ω.
Now, by (3.3), we have

‖u− uh‖2h ≤ c (‖u−Πhu‖2h + (h3/2‖g‖0,Γ3
+ h |u|3,Ω + h2‖f‖0,Ω) ‖Πhu− uh‖h

+ h5/2‖g‖0,Γ3‖u‖3,Ω),
from which we can derive the error estimate (5.1) as in the proof of Theorem
4.1.

As examples of discontinuous nonconforming finite element spaces for the plate
contact problem, we mention Morley’s triangle and the Fraeijs De Veubeke triangle.
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Assume Ω is a polygonal domain and let {Th} be a regular family of partitions of Ω
into triangles. For Morley’s triangle, on each element, the finite element function is
quadratic and is uniquely determined by the function values at the three vertices and
the normal derivative at the three midside nodes. For the Fraeijs De Veubeke triangle,
on each element, the finite element function is cubic and is uniquely determined by
the function values at the three vertices and at the center and the normal derivative
at the Gaussian points of second order on each side. From their constructions, we see
that for both Morley’s triangle and the Fraeijs De Veubeke triangle, the finite element
functions are continuous at the vertices of the corresponding triangulation. For both
elements, (4.1) and (4.2) are valid (cf. [26]).

We conclude that for both Morley’s triangle and the Fraeijs De Veubeke triangle,
the optimal order error estimate (5.1) holds.

Acknowledgment. We thank the two referees whose suggestions led to an im-
provement of this paper.
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[16] J. Haslinger, I. Hlaváček, and J. Nečas, Numerical methods for unilateral problems in solid

mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions, eds.,
North-Holland, Amsterdam, 1996, pp. 313–485.
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Abstract. In this paper we derive optimal a priori L∞(L2) error estimates for mixed finite
element displacement formulations of the acoustic wave equation. The computational complexity
of this approach is equivalent to the traditional mixed finite element formulations of the second
order hyperbolic equations in which the primary unknowns are pressure and the gradient of pressure.
However, the displacement formulations with the physical variables of interest, displacement and
pressure, requires less regularity on the displacement.

Key words. acoustic wave equation, mixed finite elements, error estimation
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1. Introduction. There is significant interest in simulating the effects of wave
propagation in heterogeneous media to aid in the interpretation of field data and to
predict the damage patterns due to earthquakes. Simulated waveform data (seismo-
grams) computed for an assumed earth model are compared against the recorded data.
If the match is unacceptable, the model is perturbed, and the simulation is redone
and compared again. This procedure is implemented formally by global optimization
techniques [19] resulting in a description of an earth model (with its associated uncer-
tainties) that explains the observations. Thus there is a need for a fast and accurate
simulation technique that can be used for real time analysis of seismograms.

In the past, wave simulation has been successfully modeled using finite difference
methods [10, 13], but these solutions have been expensive to compute. The use of
structured finite differences in simulating earthquake responses in the Los Angeles
Basin requires 35 billion grid points [3], which emphasizes the need for unstructured
meshes. The staggered grid approach described in [10] may be used to solve problems
on the order of millions using a workstation, but memory optimization routines must
be used and it is unclear that the method is easily parallelized.

Finite element discretization methods have the advantage of handling complex
geometries and straightforward local discretization techniques using error indicators.
It is also easy to incorporate free surface boundary conditions and nonmatching grids.
In [13], Marfurt concludes that finite element methods may be the most cost-effective
way to simulate wave fields.

Previous attempts at wave simulation using finite elements have used continuous
Galerkin methods [2, 3, 9, 13, 18], discontinuous Galerkin methods [11, 17], and
mixed finite element methods [7, 8]. We propose mixed finite element displacement
formulations for solving the acoustic wave equation, which are described below. These
approximations can be defined for general meshes.
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Let Ω be a bounded domain in R
n, n = 1, 2, 3, with boundary ∂Ω = ΓD ∪ ΓN .

The general form of the wave equation is

ρutt −∇ · τ̃ = f in Ω× (0, T ) ,(1.1)

∇ · u = 0 on ΓD × (0, T ) ,(1.2)

u · ν = 0 on ΓN × (0, T ) ,(1.3)

u (·, 0) = u0 in Ω,(1.4)

ut (·, 0) = u1 in Ω,(1.5)

where u is the displacement, ρ is the density, and τ̃ is the stress tensor given by the
generalized Hooke’s law τ̃ = λ(∇ · u)Ĩ + µ(∇u+ (∇u)T ). Here λ > 0 and µ are the
Lamé coefficients characterizing the material. We let f represent a general source
term, and let u0 and u1 be the initial conditions on displacements and velocities, and
we assume that f , u0, and u1 are smooth enough so that there is a unique solution
u ∈ C2 ((0, T )× Ω) to (1.1)–(1.5) [12].

The acoustic problem is the limiting case with µ = 0. In this case, (1.1) becomes

ρutt −∇ · (λ(∇ · u)Ĩ) = f .(1.6)

We assume that ρ and λ are bound above and below by the positive constants ρ0, ρ1,
λ0, and λ1, respectively.

A standard approach in geophysics modeling is to solve a scalar wave equation.
Here, since p = λ∇ · u, we have ptt = λ∇ · utt. We substitute this expression into
(1.6) to obtain

ptt − λ∇ · 1

ρ
(∇p) = f̃ ,(1.7)

where f̃ = ∇ · f .
A priori error estimates for solving (1.7) with a constant λ were obtained by

Cowsar, Dupont, and Wheeler [7, 8]. We propose an alternative mixed finite elements
displacement formulation that requires less regularity on the displacement solution
than the approach in [7, 8]. We describe this method in section 3. We derive the error
estimates for the continuous-in-time problem in section 4. For the discrete-in-time
problem, stability results and error estimates are obtained in section 5. In section 6
we present conclusions.

2. Preliminaries. In this section we describe the notation used in this paper,
we introduce the functional spaces, two projection operators and their approximation
properties, and we recall Gronwall’s inequality, which is needed in the error analysis.

2.1. Inner products and norms. The L2 inner product over Ω is defined as

(u, v) =

∫
Ω

uv dΩ,

and we denote by ‖·‖L2 the L2 norm over Ω, i.e., ‖u‖L2(Ω) = (u, u)
1
2 . The inner

product over the boundary ∂Ω is denoted

〈u, v〉 =

∫
∂Ω

uv dΩ
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for u, v ∈ H 1
2+ε (Ω), with ε > 0. The time-space norm ‖·‖L2(0,T ;L2(Ω)) is defined as

‖u‖L2(0,T ;L2(Ω)) = ‖u‖L2(L2) =

(∫ T

0

‖u‖2L2(Ω)

) 1
2

.

The time-space norm ‖ · ‖L∞(L2) is similarly defined.

2.2. Gronwall’s inequality. We recall Gronwall’s inequality, which states that
if y ≥ 0 satisfies yt ≤ ky(t) + h(t) for 0 ≤ t ≤ τ , where k ≥ 0 is a constant and
h(t) ≥ 0, h ∈ L1((0, τ)), then

y(t) ≤ ekτ
[
y(0) +

∫ τ

0

h(s) ds

]

for all t ∈ [0, τ ] [14].

2.3. Functional spaces and projections. We define the standard Sobolev
spaces for mixed methods:

H (Ω,div) = {v : v ∈ (L2(Ω))n,∇ · v ∈ L2(Ω)},
V = {v ∈H (Ω,div) : v · ν|ΓN

= 0} ,
W = H

1
2+ε (Ω) for any ε > 0.

Let {Eh}h>0 be a quasi-uniform family of finite element partitions of Ω, where h is
the maximal element diameter. Let V h×Wh be any of the usual mixed finite element
approximating subspaces of V × W , that is, the Raviart–Thomas–Nedelec spaces
[15, 16], Brezzi–Douglas–Marini spaces [5], or Brezzi–Douglas–Fortin–Marini spaces
[4].

Each of these mixed spaces has a projection operator Πh : H (Ω,div)→ V h such
that for any z ∈H (Ω,div)

(∇ ·Πhz, w) = (∇ · z, w) ∀w ∈Wh.(2.1)

In addition, if z ∈H (Ω,div) ∩Hk (Ω), we also have

‖Πhz − z‖0 ≤ Chj‖z‖j , 1 ≤ j ≤ k,(2.2)

where k is associated with the degree of the polynomial, and ‖ · ‖s is the standard
Sobolev norm on (Hs(Ω))

n
[1].

Let Ph be the L2 projection of W onto Wh such that

(Phφ,w) = (φ,w) ∀φ ∈W, ∀w ∈Wh.(2.3)

In addition, if φ ∈W ∩Hk (Ω), then we also have

‖Phφ− φ‖s ≤ Chj−s‖φ‖j , 0 ≤ s ≤ k, 0 ≤ j ≤ k.(2.4)

3. Model problem and scheme. We observe that ∇· (λ(∇·u)Ĩ) = ∇(λ∇·u)
so that (1.6) may be rewritten as

ρutt −∇ (λ∇ · u) = f.(3.1)
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By introducing p = λ∇ · u, we present (3.1) in a mixed finite element form:

ρutt −∇p = f in Ω× (0, T ) ,(3.2)

λ−1p = ∇ · u in Ω× (0, T ) .(3.3)

A similar approach for the linear elasticity problem has been presented by Brezzi and
Fortin in [6].

Let v ∈ V and w ∈ W . If we multiply (3.2) and (3.3) by v and w, respectively,
and integrate over Ω we get the weak formulation

(ρutt,v)− (∇p,v) = (f(t),v) ∀v ∈ V ,(3.4) (
λ−1p, w

)− (∇ · u, w) = 0 ∀w ∈W.(3.5)

Clearly, if u, p satisfy (3.2) and (3.3), then u, p satisfy (3.4) and (3.5).
If we integrate by parts in (3.4) we get, for any v ∈ V ,

(∇p,v) = 〈p,v · ν〉 − (p,∇ · v) = − (p,∇ · v) ,

and the weak formulation becomes the following:
For any t ≥ 0, find (u(t), p(t)) ∈ V ×W such that

(u(0),v) = (u0,v) ∀v ∈ V ,(3.6)

(ut(0),v) = (u1,v) ∀v ∈ V ,(3.7) (
λ−1p(0), w

)
= (∇ · u0, w) ∀w ∈W,(3.8)

(ρutt(t),v) + (p(t),∇ · v) = (f(t),v) ∀v ∈ V , ∀ t > 0,(3.9) (
λ−1p(t), w

)− (∇ · u(t), w) = 0 ∀w ∈W, ∀ t > 0.(3.10)

Note that in [7, 8] it is necessary that ∇p ∈H (Ω,div) so that ∇ ·u ∈ H2 (Ω). Here,

we require only that ∇ · u ∈ H 1
2 (Ω). It is clear that the solution u ∈ C2 ((0, T )× Ω)

of problem (1.1)–(1.5) with p = λ∇ · u is a solution to (3.6)–(3.10). The uniqueness
is provided by the following lemma.

Lemma 3.1. Let (ua, pa) and (ub, pb) be two solutions of (3.6)–(3.10). Then
ua = ub and pa = pb.

Proof. Let χ = ua − ub and ψ = pa − pb. Then by subtracting the equations
satisfied by these solutions we have

(χ(0),v) = 0 ∀v ∈ V ,(3.11)

(χt(0),v) = 0 ∀v ∈ V ,(3.12) (
λ−1ψ(0), w

)
= 0 ∀w ∈W,(3.13)

(ρχtt(t),v) + (ψ(t),∇ · v) = 0 ∀v ∈ V , ∀ t > 0,(3.14) (
λ−1ψ(t), w

)− (∇ · χ(t), w) = 0 ∀w ∈W, ∀ t > 0.(3.15)

We differentiate (3.15) with respect to time:(
λ−1ψt, w

)− (∇ · χt, w) = 0 ∀w ∈W, ∀t > 0.(3.16)

We choose v = χt and w = p. Thus (3.14) and (3.16) become

(ρχtt,χt) + (ψ,∇ · χt) = 0,(3.17) (
λ−1ψt, ψ

)− (∇ · χt, ψ) = 0.(3.18)
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We add (3.17) and (3.16) so that

(ρχtt,χt) +
(
λ−1ψt, ψ

)
= 0(3.19)

and thus

1

2

d

dt

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
+

1

2

d

dt

∥∥∥λ− 1
2ψ
∥∥∥2

L2(Ω)
= 0.(3.20)

We integrate (3.20) with respect to time to obtain

1

2

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
+

1

2

∥∥∥λ− 1
2ψ
∥∥∥2

L2(Ω)
= C1,(3.21)

where C1 is a constant independent of time. As (3.21) holds for any t, it holds in

particular for t = 0. We have from the initial data that ‖χt(0)‖2L2(Ω) = ‖ψ(0)‖2L2(Ω) =
0, so C1 = 0. Hence

1

2

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
+

1

2

∥∥∥λ− 1
2ψ
∥∥∥2

L2(Ω)
= 0(3.22)

and therefore

1

2

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
=

1

2

∥∥∥λ− 1
2ψ
∥∥∥2

L2(Ω)
= 0.(3.23)

However, we assume that both λ and ρ are bounded above and below away from 0.
Hence we must have that

χt = ψ = 0.

Now we consider χt = 0. We integrate with respect to time and obtain

χ = C2,

where C2 is a constant independent of time. This holds for any t; in particular, it
holds for t = 0. Again, we use the initial conditions and see that χ(0) = 0, and hence
C2 = 0. Thus χ = 0, which concludes the proof.

The mixed finite element approximation to (u(t), p(t)) for any t ≥ 0 is given by
the functions (U(t), P (t)) ∈ V h ×Wh satisfying

(U(0),v) = (Πhu0,v) ∀v ∈ V h,(3.24)

(U t(0),v) = (Πhu1,v) ∀v ∈ V h,(3.25)

(P (0), w) = (p(0), w) ∀w ∈Wh,(3.26)

(ρU tt(t),v) + (P (t),∇ · v) = (f(t),v) ∀v ∈ V h, ∀ t > 0,(3.27) (
λ−1P (t), w

)− (∇ ·U(t), w) = 0 ∀w ∈Wh, ∀ t > 0.(3.28)

The existence and uniqueness of a solution (U(t), P (t)) to (3.24)–(3.28) is shown
in the following lemma.

Lemma 3.2. A solution (U(t), P (t)) to (3.24)–(3.28) exists and is unique.
Proof. Because we are operating in a finite dimensional space, it suffices to show

uniqueness. Uniqueness follows directly from the proof of the previous lemma.
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4. Continuous in time a priori error estimates. In this section, we prove
the convergence of the scheme (3.24)–(3.28) in the L∞(L2) norm. We first derive
an estimate for the error in the pressure and the velocity, then for the error in the
displacement.

Theorem 4.1. For t ≥ 0, let (u(t), p(t)) be the solution of the problem (3.6)–
(3.10). Assume that ut ∈ L∞ (L2(Ω)

)
, utt ∈ L2(Hk(Ω)), p ∈ L∞ (L2(Ω)

)
, and

pt ∈ L2
(
Hk(Ω)

)
. Then there exists a constant C independent of h such that

(4.1)
∥∥∥ρ 1

2 (ut −U t)
∥∥∥
L∞(L2)

+
∥∥∥λ− 1

2 (p− P )
∥∥∥
L∞(L2)

≤ Chk
(
‖utt‖L2(Hk) + ‖pt‖L2(Hk)

)
,

where k is associated with the degree of the finite element polynomial.
Proof. For simplification, we denote χ = U − Πhu, ξ = P − Php, η = u− Πhu,

and ζ = p−Php, where Πh and Ph have been defined in section 2.3. These definitions
hold throughout the paper. If we subtract Πhu and Php from (3.9), (3.10), (3.27),
and (3.28) we obtain

(ρχtt,v) + (ξ,∇ · v) = (ρηtt,v) + (ζ,∇ · v) ∀v ∈ V h,(4.2) (
λ−1ξ, w

)− (∇ · χ, w) =
(
λ−1ζ, w

)− (∇ · η, w) ∀w ∈Wh.(4.3)

Since χ ∈ V h, we can set v = χt in (4.2):

(ρχtt,χt) + (ξ,∇ · χt) = (ρηtt,χt) + (ζ,∇ · χt) .(4.4)

We then differentiate (4.3) with respect to time to obtain(
λ−1ξt, w

)− (∇ · χt, w) =
(
λ−1ζt, w

)− (∇ · ηt, w) ∀w ∈Wh.(4.5)

As ξ ∈Wh, we can set w = ξ in (4.5), which gives(
λ−1ξt, ξ

)− (∇ · χt, ξ) =
(
λ−1ζt, ξ

)− (∇ · ηt, ξ) .(4.6)

Adding (4.4) and (4.6) gives

(4.7)
1

2

d

dt

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
+

1

2

d

dt

∥∥∥λ− 1
2 ξ
∥∥∥2

L2(Ω)

= (ρηtt,χt) + (ζ,∇ · χt) +
(
λ−1ζt, ξ

)− (∇ · ηt, ξ) .

If we use the definitions (2.1) and (2.3) of the Πh and Ph projections, we obtain

1

2

d

dt

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
+

1

2

d

dt

∥∥∥λ− 1
2 ξ
∥∥∥2

L2(Ω)
= (ρηtt,χt) +

(
λ−1ζt, ξ

)
.(4.8)

We use the Cauchy–Schwarz inequality to bound the right-hand side of (4.8) so that

1

2

d

dt

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
+

1

2

d

dt

∥∥∥λ− 1
2 ξ
∥∥∥2

L2(Ω)
≤
∥∥∥ρ 1

2χt

∥∥∥
L2(Ω)

∥∥∥ρ 1
2ηtt

∥∥∥
L2(Ω)

+
∥∥∥λ− 1

2 ζt

∥∥∥
L2(Ω)

∥∥∥λ− 1
2 ξ
∥∥∥
L2(Ω)

,



1704 E. W. JENKINS, B. RIVIÈRE, AND M. F. WHEELER

and use the fact that 2ab ≤ a2 + b2 to get

d

dt

∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
+

d

dt

∥∥∥λ− 1
2 ξ
∥∥∥2

L2(Ω)
≤
∥∥∥ρ 1

2χt

∥∥∥2

L2(Ω)
+
∥∥∥ρ 1

2ηtt

∥∥∥2

L2(Ω)

+
∥∥∥λ− 1

2 ζt

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2 ξ
∥∥∥2

L2(Ω)
.

Now we can apply Gronwall’s inequality and∥∥∥ρ 1
2χt

∥∥∥2

L2(Ω)
(t) +

∥∥∥λ− 1
2 ξ
∥∥∥2

L2(Ω)
(t) ≤

∥∥∥ρ 1
2χt(0)

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2 ξ(0)
∥∥∥
L2(Ω)

+

∫ t

0

(∥∥∥ρ 1
2ηtt

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2 ζt

∥∥∥2

L2(Ω)

)
.

If we take the supremum over all t and use the initial conditions we obtain∥∥∥ρ 1
2χt

∥∥∥2

L∞(L2)
+
∥∥∥λ− 1

2 ξ
∥∥∥2

L∞(L2)
≤
∥∥∥ρ 1

2ηtt

∥∥∥2

L2(L2)
+
∥∥∥λ− 1

2 ζt

∥∥∥2

L2(L2)
.

We complete the proof by using the approximation properties (2.2) and (2.4) of the
projections.

We now derive an estimate of the error in the displacement in the L∞(L2) norm.
Theorem 4.2. For t ≥ 0, let (u(t), p(t)) be the solution of problem (3.6)–

(3.10). Assume that u ∈ L∞ (L2(Ω)
)
, ut ∈ L2(Hk(Ω)), ut(0) ∈ Hk (Ω), and

p ∈ L2
(
Hk(Ω)

)
. Then there exists a constant C independent of h such that∥∥∥ρ 1

2 (u−U)
∥∥∥
L∞(L2)

≤ Chk
(
‖ut‖L2(Hk) + ‖ut(0)‖Hk + ‖p‖L2(Hk)

)
,

(4.9)

where k is associated with the degree of the finite element polynomial.
Proof. We first obtain the same equations (4.2) and (4.3) that arrive after taking

into account the definition of the Πh and the Ph projections

(ρχtt,v) + (ξ,∇ · v) = (ρηtt,v) ∀v ∈ V h,(4.10) (
λ−1ξ, w

)− (∇ · χ, w) = (λ−1ζ, w) ∀w ∈Wh.(4.11)

If we integrate (4.10) from 0 to t, noting that χt(0) = 0, we obtain

(ρχt,v) +

(∫ t

0

ξ,∇ · v
)

= (ρηt,v)− (ρηt(0),v) .(4.12)

We set v = χ, φ =
∫ t
0
ξ(s) ds, and w = φ. Then (4.12) and (4.11) become

(ρχt,χ) + (φ,∇ · χ) = (ρηt,χ)− (ρηt(0),χ) ,(4.13) (
λ−1ξ, φ

)− (∇ · χ, φ) = (λ−1ζ, φ).(4.14)

Adding (4.13) and (4.14) gives

(ρχt,χ) +
(
λ−1ξ, φ

)
= (ρηt,χ)− (ρηt(0),χ) + (λ−1ζ, φ).

Therefore

(ρχt,χ) +
(
λ−1φt, φ

)
= (ρηt,χ)− (ρηt(0),χ) + (λ−1ζ, φ)
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so that

1

2

d

dt

∥∥∥ρ 1
2χ
∥∥∥2

L2(Ω)
+

1

2

d

dt

∥∥∥λ− 1
2φ
∥∥∥2

L2(Ω)
= (ρηt,χ)− (ρηt(0),χ) + (λ−1ζ, φ).

Multiplying through by 2 and using the Cauchy–Schwarz inequality gives

d

dt

∥∥∥ρ 1
2χ
∥∥∥2

L2(Ω)
+

d

dt

∥∥∥λ− 1
2φ
∥∥∥2

L2(Ω)
≤ 2

∥∥∥ρ 1
2χ
∥∥∥
L2(Ω)

∥∥∥ρ 1
2ηt

∥∥∥
L2(Ω)

+ 2
∥∥∥ρ 1

2χ
∥∥∥
L2(Ω)

∥∥∥ρ 1
2ηt(0)

∥∥∥
L2(Ω)

+ 2
∥∥∥λ− 1

2 ζ
∥∥∥
L2(Ω)

∥∥∥λ− 1
2φ
∥∥∥
L2(Ω)

.

Hence

d

dt

∥∥∥ρ 1
2χ
∥∥∥2

L2(Ω)
+

d

dt

∥∥∥λ− 1
2φ
∥∥∥2

L2(Ω)
≤ 2

∥∥∥ρ 1
2χ
∥∥∥2

L2(Ω)

∥∥∥ρ 1
2ηt

∥∥∥2

L2(Ω)

+
∥∥∥ρ 1

2ηt(0)
∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2 ζ
∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φ
∥∥∥2

L2(Ω)
.

(4.15)

We apply Gronwall’s inequality to (4.15) and note that φ(0) = 0 and χ(0) = 0 from
(3.24). Then

∥∥∥ρ 1
2χ
∥∥∥2

L2(Ω)
(t) +

∥∥∥λ− 1
2φ
∥∥∥2

L2(Ω)
(t)

≤
∫ t

0

(∥∥∥ρ 1
2ηs

∥∥∥2

L2(Ω)
+
∥∥∥ρ 1

2ηs(0)
∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2 ζ
∥∥∥2

L2(Ω)

)
ds

and thus

∥∥∥ρ 1
2χ
∥∥∥2

L2(Ω)
(t) +

∥∥∥λ− 1
2φ
∥∥∥2

L2(Ω)
(t)

≤ Ct
∥∥∥ρ 1

2ηt(0)
∥∥∥2

L2(Ω)
+ C

∥∥∥ρ 1
2ηt

∥∥∥2

L2(L2)
+ C

∥∥∥λ− 1
2 ζ
∥∥∥2

L2(L2)
.

We take the supremum over all t to get

∥∥∥ρ 1
2χ
∥∥∥2

L∞(L2)
≤ C

∥∥∥ρ 1
2ηt

∥∥∥2

L2(L2)
+ C

∥∥∥ρ 1
2ηt(0)

∥∥∥2

L2(Ω)
+ C

∥∥∥λ− 1
2 ζ
∥∥∥2

L2(L2)
.

The final result is obtained by using the approximation properties (2.2) and
(2.4).

5. Explicit method. In this section, we define further notation, we formulate
the fully discrete mixed finite element scheme, and we analyze the stability and the
convergence of the discrete method.

5.1. Notation and scheme. Let ∆t > 0 be the time step size and define
ti = i∆t with tN = T . For any function φ of time, let φn denote φ(tn). We denote

φn+ 1
2 = (φn + φn+1)/2, and we define the following terms for the discrete temporal

derivatives:

∂tφ
n =

φn+1 − φn−1

2∆t
, ∂tφ

n+ 1
2 =

φn+1 − φn
∆t

, ∂2
t φ

n =
φn+1 − 2φn + φn−1

∆t2
.
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We easily see that we have

∂2
t φ

n =
∂tφ

n+ 1
2 − ∂tφn− 1

2

∆t
and ∂tφ

n =
∂tφ

n+ 1
2 + ∂tφ

n− 1
2

2
.(5.1)

The fully discrete mixed finite element scheme is as follows: find
(
Un+1, Pn+1

)
in

Vh ×Wh such that (
U0,v

)
= (Πhu0,v) ∀v ∈ V h(5.2) (

P 0, w
)

=
(
p0, w

) ∀w ∈Wh(5.3) (
ρ

2

∆t
∂tU

1
2 ,v

)
+
(
P 0,∇ · v) =

(
f0 + ρ

2

∆t
Πhu1,v

)
∀v ∈ V h,(5.4) (

ρ∂2
tU

n,v
)

+ (Pn,∇ · v) = (fn,v) ∀v ∈ V h,(5.5) (
λ−1Pn+1, w

)− (∇ ·Un+1, w
)

= 0 ∀w ∈Wh.(5.6)

5.2. Stability condition for the discrete problem. We show that the scheme
is stable for the Dirichlet (homogeneous) problem, and in particular show that the
temporal iterates are bound by the initial data. We consider (5.5) and (5.6) for the
homogeneous case, (

ρ∂2
tU

n,v
)

+ (Pn,∇ · v) = 0 ∀v ∈ V h,(5.7) (
λ−1Pn+1, w

)− (∇ ·Un+1, w
)

= 0 ∀w ∈Wh.(5.8)

As in [7], we use the “inverse assumption,” which states that there exists a constant
C0, independent of h, such that

‖∇ · φ‖L2(Ω) ≤ C0h
−1 ‖φ‖L2(Ω)(5.9)

for φ ∈Wh.

Theorem 5.1. The explicit scheme defined by (5.2)–(5.6) is stable if ∆t <
2hρ

1
2
0

C0λ
1
2
1

.

That is, (
1− ∆t2C2

0λ1

4h2ρ0

)∥∥∥∂tUN+ 1
2

∥∥∥2

L2(Ω)
+
∥∥∥PN+ 1

2

∥∥∥2

L2(Ω)
(5.10)

is bound by initial data.
Proof. If we subtract (5.8) from itself, with n+ 1 replaced by n− 1, we get(

λ−1
(
Pn+1 − Pn−1

)
, w
)− (∇ · (Un+1 −Un−1

)
, w
)

= 0, w ∈Wh.(5.11)

As (5.7) holds for all v ∈ V h and (5.11) holds for all w ∈ Wh, we set v = ∂tU
n and

w = Pn

2∆t . This gives (
ρ∂2
tU

n, ∂tU
n
)

+ (Pn,∇ · ∂tUn) = 0,(5.12) (
λ−1

(
Pn+1 − Pn−1

)
,
Pn

2∆t

)
−
(
∇ · (Un+1 −Un−1

)
,
Pn

2∆t

)
= 0.(5.13)

If we add (5.12) and (5.13), we obtain(
ρ∂2
tU

n,
Un+1 −Un−1

2∆t

)
+

(
λ−1

(
Pn+1 − Pn−1

)
,
Pn

2∆t

)
= 0.(5.14)
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Substituting (5.1) into (5.14) above yields

(5.15)
1

2∆t

(
ρ
(
∂tU

n+ 1
2 − ∂tUn− 1

2

)
, ∂tU

n+ 1
2 + ∂tU

n− 1
2

)
+
(
λ−1∂tP

n, Pn
)

=
1

2∆t

(∥∥∥ρ 1
2 ∂tU

n+ 1
2

∥∥∥2

L2(Ω)
−
∥∥∥ρ 1

2 ∂tU
n− 1

2

∥∥∥2

L2(Ω)

)
+
(
λ−1∂tP

n, Pn
)

= 0.

We now examine (∂tP
n, Pn). We have

∂tP
n =

Pn+1 + Pn − Pn − Pn−1

2∆t
=

(
Pn+ 1

2 − Pn− 1
2

)
∆t

.(5.16)

We can rewrite Pn as

Pn =
Pn + Pn+1

4
+
Pn−1 + Pn

4
− ∆t2

4

(
Pn+1 − 2Pn + Pn−1

∆t2

)

=
Pn + Pn+1

4
+
Pn−1 + Pn

4
− ∆t2

4
∂2
t P

n

=
Pn+ 1

2

2
+
Pn−

1
2

2
− ∆t2

4
∂2
t P

n.(5.17)

If we use (5.16) and (5.17) in (∂tP
n, Pn), we have(

λ−1∂tP
n, Pn

)
=

1

2∆t

(
λ−1

(
Pn+ 1

2 − Pn− 1
2

)
, Pn+ 1

2 + Pn−
1
2

)
−
(
λ−1∂tP

n,
∆t2

4
∂2
t P

n

)

=
1

2∆t

(
λ−1

(
Pn+ 1

2 − Pn− 1
2

)
, Pn+ 1

2 + Pn−
1
2

)

−

λ−1

2

(
∂tP

n+ 1
2 + ∂tP

n− 1
2

)
,

∆t2

4

(
∂tP

n+ 1
2 − ∂tPn− 1

2

)
∆t




=
1

2∆t

[∥∥∥λ− 1
2Pn+ 1

2

∥∥∥2

L2(Ω)
−
∥∥∥λ− 1

2Pn−
1
2

∥∥∥2

L2(Ω)

− ∆t2

4

(∥∥∥λ− 1
2 ∂tP

n+ 1
2

∥∥∥2

L2(Ω)
−
∥∥∥λ− 1

2 ∂tP
n− 1

2

∥∥∥2

L2(Ω)

)]
.

Thus (5.15) becomes

(5.18)
∥∥∥ρ 1

2 ∂tU
n+ 1

2

∥∥∥2

L2(Ω)
−
∥∥∥ρ 1

2 ∂tU
n− 1

2

∥∥∥2

L2(Ω)

+
∥∥∥λ− 1

2Pn+ 1
2

∥∥∥2

L2(Ω)
−
∥∥∥λ− 1

2Pn−
1
2

∥∥∥2

L2(Ω)

− ∆t2

4

(∥∥∥λ− 1
2 ∂tP

n+ 1
2

∥∥∥2

L2(Ω)
−
∥∥∥λ− 1

2 ∂tP
n− 1

2

∥∥∥2

L2(Ω)

)
= 0.

If we sum (5.18) from n = 1, . . . , N , we get

∥∥∥ρ 1
2 ∂tU

N+ 1
2

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2PN+ 1
2

∥∥∥2

L2(Ω)
− ∆t2

4

∥∥∥λ− 1
2 ∂tP

N+ 1
2

∥∥∥2

L2(Ω)

=
∥∥∥ρ 1

2 ∂tU
1
2

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2P
1
2

∥∥∥2

L2(Ω)
− ∆t2

4

∥∥∥λ− 1
2 ∂tP

1
2

∥∥∥2

L2(Ω)
.
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We recall from (5.11) that(
λ−1

(
Pn+1 − Pn) , w)− (∇ · (Un+1 −Un

)
, w
)

= 0.

Then, by the Cauchy–Schwarz inequality and (5.9),(
λ−

1
2

(
PN+1 − PN) , w) =

(
∇ ·
(
UN+1 −UN

)
, w
)

≤
∥∥∥∇ · (UN+1 −UN

)∥∥∥
L2(Ω)

‖w‖L2(Ω)

≤ C0

h

∥∥∥UN+1 −UN
∥∥∥
L2(Ω)

‖w‖L2(Ω)

≤ C0

h
(∆t)

∥∥∥∂tUN+ 1
2

∥∥∥
L2(Ω)

‖w‖L2(Ω) .

Thus

(∆t)
(
λ−

1
2 ∂tP

N+ 1
2 , w

)
≤ C0

h
(∆t)

∥∥∥∂tUN+ 1
2

∥∥∥
L2(Ω)

‖w‖L2(Ω) .

We choose w = ∂tP
N+ 1

2 , so∥∥∥λ− 1
2 ∂tP

N+ 1
2

∥∥∥2

L2(Ω)
≤ C0

h

∥∥∥∂tUN+ 1
2

∥∥∥
L2(Ω)

∥∥∥∂tPN+ 1
2

∥∥∥
L2(Ω)

≤ C0λ
1
2
1

hρ
1
2
0

∥∥∥ρ 1
2 ∂tU

N+ 1
2

∥∥∥
L2(Ω)

∥∥∥λ− 1
2 ∂tP

N+ 1
2

∥∥∥
L2(Ω)

or

∥∥∥λ− 1
2 ∂tP

N+ 1
2

∥∥∥
L2(Ω)

≤ C0λ
1
2
1

hρ
1
2
0

∥∥∥ρ 1
2 ∂tU

N+ 1
2

∥∥∥
L2(Ω)

.

Hence ∥∥∥ρ 1
2 ∂tU

1
2

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2P
1
2

∥∥∥2

L2(Ω)
− ∆t2

4

∥∥∥λ− 1
2 ∂tP

1
2

∥∥∥2

L2(Ω)

=
∥∥∥ρ 1

2 ∂tU
N+ 1

2

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2PN+ 1
2

∥∥∥2

L2(Ω)

− ∆t2

4

∥∥∥λ− 1
2 ∂tP

N+ 1
2

∥∥∥2

L2(Ω)

≥
∥∥∥ρ 1

2 ∂tU
N+ 1

2

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2PN+ 1
2

∥∥∥2

L2(Ω)

− ∆t2C2
0λ1

4h2ρ0

∥∥∥ρ 1
2 ∂tU

N+ 1
2

∥∥∥2

L2(Ω)

=

(
1− ∆t2C2

0λ1

4h2ρ0

)∥∥∥ρ 1
2 ∂tU

N+ 1
2

∥∥∥2

L2(Ω)

+
∥∥∥λ− 1

2PN+ 1
2

∥∥∥2

L2(Ω)
.

Thus the temporal iterates are bound by the initial data and the discrete in time

scheme is stable if ∆t <
2hρ

1
2
0

λ
1
2
1 C0

.
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5.3. Discrete in time a priori error estimates. We now can derive the
estimates for the fully discrete scheme.

Theorem 5.2. If u ∈ L∞(H(Ω; div)), ∂3u
∂t3 ∈ L1

(
L2(Ω)

)
∂4u
∂t4 ∈ L∞ (L2(Ω)

)
,

and p ∈ L∞(L2(Ω)), then for {Un, Pn} defined by (5.3)–(5.6) there exists a constant

C independent of h and ∆t such that if ∆t <
2hρ

1
2
0

λ
1
2
1 C0

, then

(5.19)
∥∥∥ρ 1

2 (u−U)
∥∥∥
l∞(L2)

+
∥∥∥λ 1

2 (p− P )
∥∥∥
l∞(L2)

≤ C
(
hk + ∆t2

)(‖u‖L∞(Hk) +

∥∥∥∥∂3u

∂t3

∥∥∥∥
L∞(L2)

+ ‖p‖L∞(L2)

)
,

where k is associated with the degree of the finite element polynomial.
Proof. From (3.9)–(3.10) and (5.5)–(5.6), and by the properties of the L2 and Πh

projections, we can write(
ρ∂2
tχ

n,v
)

+ (ξn,∇ · v) =
(
ρ∂2
t η

n,v
)

+ (rn,v) ,(5.20) (
λ−1ξn+1, w

)− (∇ · χn+1, w
)

=
(
λ−1ζn+1, w

)
,(5.21)

where rn = ρ(∂
2u
∂t2 (tn)− ∂2

tu
n). We introduce

φ0 =
∆t

2
ξ0, φn =

∆t

2
ξ0 + ∆t

n∑
i=1

ξi.

Using (5.1) in (5.20) gives(
ρ
∂tχ

n+ 1
2 − ∂tχn− 1

2

∆t
,v

)
+ (ξn,∇ · v) =

(
ρ
∂tη

n+ 1
2 − ∂tηn− 1

2

∆t
,v

)
+ (rn,v) .

Summing over time levels and multiplying through by ∆t gives

(5.22)
(
ρ
(
∂tχ

n+ 1
2 − ∂tχ 1

2

)
,v
)

+
(
φn − φ0,∇ · v)

=
(
ρ
(
∂tη

n+ 1
2 − ∂tη 1

2

)
,v
)

+

(
∆t

n∑
i=1

ri,v

)
,

since ∆t
∑n
i=1 ξ

i = φn − φ0.

Using (5.4), we obtain

(
ρ∂tχ

1
2 ,v
)

+
∆t

2

(
ξ0,∇ · v)

=
(
ρ∂tη

1
2 ,v
)

+ (ρ(Πu1 − u1),v)− 1

2∆t

∫ ∆t

0

ρ (∆t− t)2
(
∂3u

∂t3
,v

)
dt,

and thus (5.22) reduces to(
ρ∂tχ

n+ 1
2 ,v
)

+ (φn,∇ · v) =
(
ρ∂tη

n+ 1
2 ,v
)

+ (Rn,v) ,(5.23)
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where Rn is defined as

Rn = ∆t

n∑
i=1

ri + ρ(Πhu1 − u1)− 1

2∆t

∫ ∆t

0

ρ (∆t− t)2 ∂
3u

∂t3
(t) dt.

We now rewrite (5.21) by noting that ξn+1 = ∂tφ
n+ 1

2 , so that(
λ−1∂tφ

n+ 1
2 , w

)
− (∇ · χn+1, w

)
= (λ−1ζn+1, w).(5.24)

We choose v = χn+ 1
2 and w = φn+ 1

2 , which, when substituted into (5.23) and (5.24),
gives (

ρ∂tχ
n+ 1

2 ,χn+ 1
2

)
+
(
φn,∇ · χn+ 1

2

)
=
(
ρ∂tη

n+ 1
2 ,χn+ 1

2

)
+
(
Rn,χn+ 1

2

)
,(5.25) (

λ−1∂tφ
n+ 1

2 , φn+ 1
2

)
−
(
∇ · χn+1, φn+ 1

2

)
=
(
λ−1ζn+1, φn+ 1

2

)
.(5.26)

We expand (5.25) and (5.26) to get

(
ρ

(
χn+1 − χn

∆t

)
,
χn+1 + χn

2

)
+

(
φn,
∇ · (χn+1 + χn

)
2

)

=
(
ρ∂tη

n+ 1
2 ,χn+ 1

2

)
+
(
Rn,χn+ 1

2

)
(
λ−1

(
φn+1 − φn

∆t

)
,
φn+1 + φn

2

)
−
(
∇ · χn+1,

φn+1 + φn

2

)
=
(
λ−1ζn+1, φn+ 1

2

)
,

so that

1

2∆t

(∥∥∥ρ 1
2χn+1

∥∥∥2

L2(Ω)
−
∥∥∥ρ 1

2χn
∥∥∥2

L2(Ω)

)
+

1

2

(
φn,∇ · χn+1

)
+

1

2
(φn,∇ · χn)

=
(
ρ∂tη

n+ 1
2 ,χn+ 1

2

)
+
(
Rn,χn+ 1

2

)
(5.27)

1

2∆t

(∥∥∥λ− 1
2φn+1

∥∥∥2

L2(Ω)
−
∥∥∥λ− 1

2φn
∥∥∥2

L2(Ω)

)
=

1

2

(∇ · χn+1, φn
)

+
1

2

(∇ · χn+1, φn+1
)

+
(
λ−1ζn+1, φn+ 1

2

)
.(5.28)

Adding (5.27) and (5.28) and multiplying by 2∆t gives

(5.29)
∥∥∥ρ 1

2χn+1
∥∥∥2

L2(Ω)
−
∥∥∥ρ 1

2χn
∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φn+1
∥∥∥2

L2(Ω)
−
∥∥∥λ− 1

2φn
∥∥∥2

L2(Ω)

+ ∆t
[
(φn,∇ · χn)− (∇ · χn+1, φn+1

)]
= 2∆t

[(
ρ∂tη

n+ 1
2 ,χn+ 1

2

)
+
(
Rn,χn+ 1

2

)]
+ 2∆t

(
λ−1ζn+1, φn+ 1

2

)
.

The terms on the right-hand side are bound using the Cauchy–Schwarz inequality as(
ρ∂tη

n+ 1
2 ,χn+ 1

2

)
≤
∥∥∥ρ 1

2 ∂tη
n+ 1

2

∥∥∥
L2(Ω)

∥∥∥χn+ 1
2

∥∥∥
L2(Ω)(

Rn,χn+ 1
2

)
≤ ‖Rn‖L2(Ω)

∥∥∥χn+ 1
2

∥∥∥
L2(Ω)(

λ−1ζn+1, φn+ 1
2

)
≤
∥∥∥λ− 1

2 ζn+1
∥∥∥
L2(Ω)

∥∥∥λ− 1
2φn+ 1

2

∥∥∥
L2(Ω)

.
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Sum (5.29) over time levels to get

∥∥∥ρ 1
2χn+1

∥∥∥2

L2(Ω)
−
∥∥∥ρ 1

2χ0
∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φn+1
∥∥∥2

L2(Ω)

−
∥∥∥λ− 1

2φ0
∥∥∥2

L2(Ω)
−∆t

[(∇ · χn+1, φn+1
)− (φ0,∇ · χ0

)]
≤ 2∆t

n∑
i=0

(∥∥∥ρ 1
2 ∂tη

i+ 1
2

∥∥∥
L2(Ω)

∥∥∥χi+ 1
2

∥∥∥
L2(Ω)

+
∥∥Ri

∥∥
L2(Ω)

∥∥∥χi+ 1
2

∥∥∥
L2(Ω)

)

+∆t

n∑
i=0

(∥∥∥λ− 1
2 ζi+1

∥∥∥
L2(Ω)

(∥∥∥λ− 1
2φi+1

∥∥∥
L2(Ω)

+
∥∥∥λ− 1

2φi
∥∥∥
L2(Ω)

))
.(5.30)

After imposing the initial conditions (5.2) and (5.3) in (5.30) we have

∥∥∥ρ 1
2χn+1

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φn+1
∥∥∥2

L2(Ω)
−∆t

(∇ · χn+1, φn+1
)

≤ 2∆t

n∑
i=0

(∥∥∥ρ 1
2 ∂tη

i+ 1
2

∥∥∥
L2(Ω)

∥∥∥χi+ 1
2

∥∥∥
L2(Ω)

+
∥∥Ri

∥∥
L2(Ω)

∥∥∥χi+ 1
2

∥∥∥
L2(Ω)

)

+ ∆t

n∑
i=0

(∥∥∥λ− 1
2 ζi+1

∥∥∥
L2(Ω)

(∥∥∥λ− 1
2φi+1

∥∥∥
L2(Ω)

+
∥∥∥λ− 1

2φi
∥∥∥
L2(Ω)

))
.

Using the Cauchy–Schwarz inequality and the inverse assumption (5.9) and choosing

h and ∆t such that ∆t <
2hρ

1
2
0

C0λ
1
2
1

, we have that

∆t
(∇ · χn+1, φn+1

) ≤ ∆t
∥∥∇ · χn+1

∥∥
L2(Ω)

∥∥φn+1
∥∥
L2(Ω)

≤ ∆tC0h
−1
∥∥χn+1

∥∥
L2(Ω)

∥∥φn+1
∥∥
L2(Ω)

≤ ∆tC0λ
1
2
1

2hρ
1
2
0

(∥∥∥ρ 1
2χn+1

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φn+1
∥∥∥2

L2(Ω)

)

<
∥∥∥ρ 1

2χn+1
∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φn+1
∥∥∥2

L2(Ω)
.

Thus we have

∥∥∥ρ 1
2χn+1

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φn+1
∥∥∥2

L2(Ω)

≤ C∆t

n∑
i=0

(∥∥∥ρ 1
2 ∂tη

i+ 1
2

∥∥∥
L2(Ω)

∥∥∥χi+ 1
2

∥∥∥
L2(Ω)

+
∥∥Ri

∥∥
L2(Ω)

∥∥∥χi+ 1
2

∥∥∥
L2(Ω)

)

+ 2
∥∥∥λ− 1

2φ
∥∥∥
l∞(L2)

(
∆t

n∑
i=0

∥∥∥λ− 1
2 ζi+1

∥∥∥
L2(Ω)

)
.
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Since
∥∥∥χi+ 1

2

∥∥∥
L2(Ω)

≤ ‖χ‖l∞(L2), then

∥∥∥ρ 1
2χn+1

∥∥∥2

L2(Ω)
+
∥∥∥λ− 1

2φn+1
∥∥∥2

L2(Ω)

≤ C2∆t

ρ
1
2
0

∥∥∥ρ 1
2χ
∥∥∥
l∞(L2)

(
n∑
i=0

∥∥∥ρ 1
2 ∂tη

i+ 1
2

∥∥∥
L2(Ω)

+

n∑
i=0

∥∥Ri
∥∥
L2(Ω)

)

+
1

4

∥∥∥λ− 1
2φ
∥∥∥2

l∞(L2)
+ C

(
∆t

n∑
i=0

∥∥∥λ− 1
2 ζi+1

∥∥∥
L2(Ω)

)2

≤ 1

4

∥∥∥ρ 1
2χ
∥∥∥2

l∞(L2)
+ C∆t2

(
N∑
i=0

∥∥∥ρ 1
2 ∂tη

i+ 1
2

∥∥∥
L2(Ω)

)2

+ C∆t2

(
N∑
i=0

∥∥Ri
∥∥
L2(Ω)

)2

+
1

4

∥∥∥λ− 1
2φ
∥∥∥2

l∞(L2)

+ C

(
∆t

n∑
i=0

∥∥∥λ− 1
2 ζi+1

∥∥∥
L2(Ω)

)2

.

If we take the supremum on n on the left-hand side we get∥∥∥ρ 1
2χ
∥∥∥2

l∞(L2)
+
∥∥∥λ− 1

2φ
∥∥∥2

l∞(L2)
≤ C

∥∥∥λ− 1
2 ζ
∥∥∥2

l∞(L2)

+ C∆t2

(
N∑
i=0

∥∥∥ρ 1
2 ∂tη

i+ 1
2

∥∥∥
L2(Ω)

)2

+ C∆t2

(
N∑
i=0

∥∥Ri
∥∥
L2(Ω)

)2

.

The first two terms in the right-hand side of the previous inequality can be bound
using the approximation properties and the bound

∆t
N∑
i=0

∥∥∥ρ 1
2 ∂tη

i+ 1
2

∥∥∥
L2(Ω)

≤ C

(
hk ‖u‖L∞(Hk(Ω)) + ∆t2

∥∥∥∥∂3u

∂t3

∥∥∥∥
L1(0,T ;L2(Ω))

)
.

We bound the last term by

∆t

N∑
i=0

∥∥Ri
∥∥
L2(Ω)

≤ C ‖R‖l∞(L2)

≤ C∆t

N∑
i=1

∥∥ri∥∥
L2(Ω)

+ C ‖ρ (Πhu1 − u1)‖L2(Ω)

+ C

∥∥∥∥∥ 1

2∆t

∫ ∆t

0

ρ(∆t− t)2 ∂
3u

∂t3
(t) dt

∥∥∥∥∥
L2(Ω)

.

We obtain a bound on ‖ri‖L2(Ω) by first expanding ri as

ri = ρ(uitt − ∂2
tu

i).(5.31)

We note that

∂2
tu

i =
ui+1 − 2ui + ui−1

∆t2
(5.32)
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and use Taylor series to expand ui+1 and ui−1. We have

ui−1 = u (ti −∆t)

= u(ti)−∆t
∂u

∂t
(ti) +

∆t2

2

∂2u

∂t2
(ti)− ∆t3

6

∂3u

∂t3
(ti)

+
1

6

∫ ti

ti−∆t

(
ti −∆t− t)3 ∂4u

∂t4
(t) dt

and

ui+1 = u(ti + ∆t)

= u(ti) + ∆t
∂u

∂t
(ti) +

∆t2

2

∂2u

∂t2
(ti) +

∆t3

6

∂3u

∂t3
(ti)

+
1

6

∫ ti+∆t

ti

(
ti + ∆t− t)3 ∂4u

∂t4
(t) dt

so that

ui+1 + ui−1 = 2u(ti) + ∆t2
∂2u

∂t2
(ti) +

1

6

[∫ ti+∆t

ti

∂4u

∂t4
(t)
(
ti + ∆t− t)3 dt

+

∫ ti

ti−∆t

∂4u

∂t4
(t)
(
ti −∆t− t)2 dt

]

= 2u(ti) + ∆t2
∂2u

∂t2
(ti) +

1

6

∫ ∆t

−∆t

(|t| −∆t)
3 ∂

4u

∂t4
(
ti + t

)
dt.(5.33)

When we use (5.33) and (5.32) in (5.31) we get

ri = ρ

(
∂2u

∂t2
(ti)− ∂2

tu
i

)

=
ρ

6∆t2

∫ ∆t

−∆t

(|t| −∆t)
3 ∂

4u

∂t4
(
ti + t

)
dt

and thus

ri = ρ

(
∂2u

∂t2
(ti)− ∂2

tu
i

)
=

ρ

6∆t2

∫ ∆t

−∆t

∂4u

∂t4
(
ti + ∆t

)
(|t| −∆t)

3
dt.

Therefore

∥∥ri∥∥2

L2(Ω)
≤ C∆t2

∫
Ω

[∫ ti+∆t

ti−∆t

∂4u

∂t4
(t)

]2

dt

≤ C∆t3
∫ ti+∆t

ti−∆t

∥∥∥∥ρ 1
2
∂4u

∂t4

∥∥∥∥
2

L2(Ω)

≤ C∆t4
∥∥∥∥ρ 1

2
∂4u

∂t4

∥∥∥∥
2

L∞(L2)

,

so that

∆t

n∑
i=1

∥∥ri∥∥
L2(Ω)

≤ C∆t2
∥∥∥∥ρ 1

2
∂4u

∂t4

∥∥∥∥
L∞(L2)

n∑
i=1

∆t ≤ C∆t2
∥∥∥∥ρ 1

2
∂4u

∂t4

∥∥∥∥
L∞(L2)

.
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Similarly,

∥∥∥∥∥ 1

2∆t

∫ ∆t

0

ρ(∆t− t)2u(3)(t)

∥∥∥∥∥
L2(Ω)

≤ C∆t2
∫

Ω

(∫ ∆t

0

ρ
∂3u

∂t3
(t) dt

)2

≤ C∆t3
∫ ∆t

0

∥∥∥∥ρ 1
2
∂3u

∂t3

∥∥∥∥
2

L2(Ω)

dt

≤ C∆t4
∥∥∥∥ρ 1

2
∂3u

∂t3

∥∥∥∥
2

L∞(L2)

.

Finally, using the approximation result (2.2) and combining all the bounds, we get

∆t

N∑
i=0

∥∥Ri
∥∥
L2(Ω)

≤ C(hk + ∆t2),

which concludes the proof of the discrete estimate.
Remark. The convergence rate in space can be at most quadratic, as ∆t < Ch.

6. Conclusions. We have developed a priori error estimates for mixed finite
element displacement formulations of the acoustic wave equation. Our scheme main-
tains the same computational complexity as earlier mixed finite element formulations
for second order hyperbolic equations, as we have not introduced any additional un-
knowns. Our formulations require less regularity on the displacement than standard
approaches.

We have shown convergence of the scheme via our continuous-in-time estimates,
and we have shown that in the temporally discrete case we expect a quadratic con-
vergence rate.

Acknowledgment. The authors would like to thank Dr. Mrinal Sen of the In-
stitute for Geophysics at the University of Texas at Austin for his insights into this
problem.
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Abstract. To solve a particular partial differential equation, namely a viscous porous medium
equation, we discuss a particle method, which is based on the concept of moderately interacting
many-particle systems. Our approach may be classified as a combination of a smoothed particle hy-
drodynamics method and a particle-mesh method. Quantitatively, it is assessed in terms of estimates
on the approximation error.
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1. Introduction. In this paper we consider the numerical simulation of a viscous
porous medium equation,

∂tρ =
1

2
∆ρ+

1

2
∆ρ2 =

1

2
∆ρ+∇ · (ρ∇ρ), ρ(., 0) = ρ0,(1.1)

by a particle method, which is based on the concept of moderately interacting many-
particle systems.

The approximation of the solution ρ of (1.1) by the empirical processes of such
many-particle systems has been studied analytically in [12] and [13]. In those papers
we have for any N ∈ N a family of N particles in R

d, whose positions at time t ≥ 0
are denoted by XkN (t), k = 1, . . . , N . It is assumed that they evolve according to the
system

dXkN (t) = −
1

N

∑
m=1,...,N

m�=k

∇φN
(
XkN (t)−XmN (t)

)
dt+ dW k(t),(1.2)

k = 1, . . . , N, t ≥ 0,

of coupled stochastic differential equations. In (1.2) the processes W 1,W 2, . . . are
independent, standard Brownian motions in R

d. Moreover, the interaction potential
φN is obtained from a fixed function φ1 by the scaling

φN (x) = θdNφ1(θNx), x ∈ R
d, N ∈ N,(1.3)

where

θN = Nβ/d for some β ∈
(
0,

d

d+ 2

)
,(1.4)

and φ1 is a differentiable, symmetric probability density, i.e.,

φ1 ∈ C1
b (R

d), φ1 ≥ 0,

∫
Rd

dx φ1(x) = 1, φ1(x) = φ1(−x), x ∈ R
d.(1.5)
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The scaling parameter θN represents the inverse interaction range in the system (1.2).
In particular, β determines the decrease of the interaction range θ−1

N in comparison
to the typical distance between neighboring particles, which as explained below in this
section is O(N−1/d) as N →∞.

In [12] and [13] we discuss in particular the empirical processes

XN (t) =
1

N

N∑
m=1

δXm
N

(t), t ≥ 0, N ∈ N,(1.6)

of the many-particle systems (1.2), where δa denotes the Dirac measure at a ∈ R
d. If

XN (0), N ∈ N, and φ1 are sufficiently regular, the convergence

lim
N→∞

XN = ρ(1.7)

of the empirical processes to the solution ρ of (1.1) can be demonstrated; cf. [12]. In
particular, (1.7) is proved as L2-convergence of a regularized version of XN to ρ as
N →∞. As an extension in [13] the rate of the convergence (1.7) is specified. More
precisely, we deduce an expansion

XN (t) ∼ ρ(., t) +

�d/4β�∑
r=1

θ−2r
N ρr(., t) +

1√
N
ζ(t), t ≥ 0, N →∞,

where the functions ρr, r = 1, . . . , 
d/4β�, are solutions of suitable linear diffusion
equations and ζ is some S ′(Rd)-valued Gaussian process. Here, S ′(Rd) is the space of
tempered distributions on R

d and 
z� = max{n ∈ Z : n ≤ z}, z ∈ R.
The convergence result (1.7) suggests determining a numerical solution of the

partial differential equation (1.1) by simulating the many-particle system (1.2) for
sufficiently large N . Then, the associated empirical process can be considered as
an approximation to the analytical solution of (1.1). Such an approach to solve an
evolution equation by using a many-particle system as an auxiliary tool is called a
particle method. Physically motivated applications can be found, e.g., in numerical
studies in astro-, hydro-, or plasmaphysics, where they have a long tradition but
very often a formal or heuristic basis; cf. [4], [8]. Mathematical investigations of
particle methods usually refer to simpler evolution problems, which are considered
to exhibit typical features and difficulties of more complex, realistic problems, and
nevertheless are accessible to a detailed analysis. For example, particle simulations of
the Boltzmann equation, cf., e.g., [11], or Vlasov–Poisson–Fokker–Planck equations,
cf., e.g., [6], have been studied in detail. Furthermore, applications of particle methods
to solve hydrodynamical equations, cf., e.g., [1], [10], or specific reaction-diffusion
equations, cf., e.g., [2], [18], have been investigated. Also in the present paper we deal
with a simple partial differential equation, namely (1.1), and utilize this context to
propose a particular particle method together with an analytical investigation. We
emphasize that our considerations should also be applicable in more general situations.
In particular, it seems that they can be extended to such evolution equations, which
like those in [14], [15], [16] can be approximated by suitable moderately interacting
many-particle systems. Indeed, at least the computer program employed to perform
the simulations, which will be described in section 6, has already been modified such
that parabolic systems of partial differential equations as those discussed in [14] may
be handled.
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Moderately interacting many-particle systems are essentially characterized by the
feature that the range of the different types of interactions between the particles is
both large in comparison to the typical distance between neighboring particles and
small in comparison to the spatial size of the whole system. For example, by (1.3)–
(1.5) the range of the interaction in the system (1.2) is O(θ−1

N ) = O(N−β/d). On
the other hand, the fact that to any particle the mass 1/N is attached, cf. (1.6),
and the convergence relation (1.7) imply that in the situations studied in [12] and
[13] the typical distance between neighboring particles is O(N−1/d) as N → ∞, and
furthermore that the spatial size of the whole system is O(1). In particular, since
β ∈ (0, d/(d + 2)), the above-mentioned characteristic of moderate interaction can
be observed in this case. As an extension of [12] and [13] we have described and
investigated in [14], [15], [16] various types of moderately interacting many-particle
systems, which also may involve different species of particles. More precisely, we derive
in these papers in the limit as the particle number tends to ∞ systems of reaction-
diffusion equations, cf. [14], and particular systems of hydrodynamical equations, cf.
[15] and [16], as limit dynamics for empirical processes. Although the dynamics of the
many-particle systems in [14], [15], [16] may be much more complex than in (1.2), the
crucial ideas to determine analytically the respective limit behavior are quite similar.
In all these cases we consider vectors (XN,1(t) ∗ κN , . . . ,XN,R(t) ∗ κN ) of regularized
versions of the empirical processes XN,1(t), . . . ,XN,R(t), t ≥ 0, N ∈ N, for the various
species, where R is the number of species and κN , N ∈ N, a sequence of suitable
convolution kernels converging to δ0 as N → ∞. As a result an L2-convergence like
limN→∞

∑R
r=1 ‖XN,r(t) ∗ κN − ρr(., t)‖2 = 0, t ≥ 0, to the solution (ρ1, . . . , ρr) of the

limit dynamics is deduced.
Of course, systems like (1.2), which are continuous in space and time, cannot

be simulated directly on a computer. For that aim we have to deal with problems
related to discretization. In particular, we have to replace the many-particle dynamics
(1.2) by some modified version, where to a certain extent for continuous features
discrete counterparts are employed. Consequently, we shall introduce in section 2 a
family of many-particle systems, whose members differ in the number N of particles,
a spatial mesh size δ, the time step h, and the scaling parameter θ for the interaction
potential. In an extension, we shall also present a family of many-particle systems,
whose members additionally differ in a parameter τ determining the adaption of the
mesh to local spatial irregularities. More precisely, instead of (1.2) we shall define

• for any N ∈ N a family of systems of N coupled evolution equations
• in discrete time with time step h ∈ (0, 1) and
• an interaction potential φθ obtained by the scaling

φθ(x) = θdφ1(θx), x ∈ R
d, θ > 1,(1.8)

such that
• the force field corresponding to (x, t) → (1/N)

∑N
m=1∇φN (x − XmN (t)) in

(1.2) is determined by the values of the particle density, which is defined in

analogy to (x, t) → (1/N)
∑N
m=1 φN (x − XmN (t)), in a discrete spatial mesh

with mesh size δ ∈ (0, 1). Furthermore,
• depending on τ > 0 this mesh may be adapted, i.e. refined, in those regions
of space, where the particle density behaves irregularly.

Quite similarly as in [12], [13], [14], [15], [16] we shall study regularized versions
of the empirical processes YN,δ,h,θ(,τ) of the discretized modifications of (1.2), namely
functions like (x, s)→ (YN,δ,h,θ(,τ)(s) ∗φθ)(x). As a main result of the present paper,
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which is formulated precisely in section 3.2, we shall demonstrate the convergence in
an L2-sense of these functions to the solution ρ of (1.1) as N, θ →∞ and δ, h(, τ)→ 0.
In particular, an estimate for the rate of that convergence will be provided. The crucial
parts of the proofs of our results are contained in section 4, whereas some auxiliary
ingredients are deferred to section 5. In section 6 we shall present the outcomes of
some numerical simulations.

Regarding the technical basis of the present work, we have indicated in the previ-
ous paragraph that the interaction kernels φθ, θ > 1, and also certain related functions
are employed to regularize the empirical processes YN,δ,h,θ(,τ). As a consequence, sev-
eral technical properties of these kernels have to be assumed. These suppositions are
collected in section 3.1. We note that a few estimates used in sections 4 and 5 in some
possibly modified form also appear in [12], [13], [14], [15], [16]. A certain amount of
the technical difficulties encountered in the present work is associated with the fact
that in the many-particle system (1.2) and also in its discretized modifications the
range of the interaction is strictly positive, whereas in the dynamics (1.1) of the limit
ρ this range vanishes. To handle that problem a family ρθ, θ > 1, of functions solv-
ing particular integro-differential equations, cf. (3.16), will be utilized as an auxiliary
tool. The dynamics of both these functions and the discretized modifications of (1.2)
is governed by the interaction kernels φθ, θ > 1. Therefore, it will become possible
to study the distance between YN,δ,h,θ(,τ) and ρθ as N, θ → ∞ and δ, h(, τ) → 0 in
detail. On the other hand, in an accompanying paper [17] it is demonstrated that
limθ→∞ ρθ = ρ, where explicit relations for the rate of this convergence are also given.
As a final consequence, the desired estimate on the rate of convergence of YN,δ,h,θ(,τ)

to ρ as N, θ →∞ and δ, h(, τ)→ 0 will follow.
The study in the present paper is essentially a theoretical investigation of the so-

called smoothed particle hydrodynamics- (SPH-) method, which has been described,
e.g., in [1], [5]. The crucial feature of that particular particle method is the use of
regularizations of the particle configurations, which are obtained by convolutions with
smooth kernels approaching δ0 as the particle number tends to infinity, to determine
estimates for densities and also their derivatives. In particular, we employ the close
connection to moderately interacting many-particle systems, which is established by
this property.

As mentioned above, to determine the force field describing the interaction be-
tween the particles we shall utilize the values of the particle density on a discrete
spatial mesh. For this reason our approach here may also be classified as a particle-
mesh method; cf., e.g., [8]. As an important consequence, we do not need to consider
explicitly the interaction between individual pairs of particles, and therefore it will
become less expensive to simulate systems with large particle numbers.

Sometimes in applications of particle methods to the solution of partial differen-
tial equations the particles represent point concentrations of some derivative of the
solution. This happens, for example, in connection with the vortex method to solve
equations for incompressible fluid motion, cf., e.g., [10], and also in related studies of
particular reaction-diffusion equations in one dimension; cf., e.g., [3], [18]. In contrast,
as usual in SPH-models the particles in the present paper describe concentrations of
the solution itself.

To conclude this first section we mention some notation, which will be used in
the remaining parts of this paper.

By

f̃(λ) = (2π)−d/2
∫

Rd

dx exp(iλx)f(x), λ ∈ R
d, f ∈ L1(Rd),
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we denote the Fourier transform. For its natural extensions to finite measures µ or
square integrable functions g the notation µ̃ or g̃ is also employed.

The set M(Rd) contains the finite measures on R
d. The variation of any µ ∈

M(Rd) is denoted by |µ|.
To quantify regularity properties in some L2-sense the Sobolev norms

‖f‖(m) =

(
m∑
k=0

‖∇⊗kf‖22
)1/2

,(1.9)

‖f‖(m,1) =
(
m∑
k=0

∫
Rd

dy (1 + |y|)|∇⊗kf(y)|2
)1/2

, m = 0, 1, 2, . . . ,

for sufficiently regular real-valued functions f on R
d are utilized. Here, ∇⊗kf denotes

the tensor of all partial derivatives of order k of a function f . The Sobolev spaces
associated with the norms ‖.‖(m), m = 0, 1, 2, . . ., are

H2
m(R

d) =
{
f ∈ L2(Rd) : ‖f‖(m) <∞

}
, m = 0, 1, 2, . . . .

As an abbreviation for integrals we shall apply the notations

〈µ, f〉 =
∫

Rd

µ(dx)f(x), 〈f, g〉 =
∫

Rd

dx f(x)g(x),

whenever the right sides are well-defined for a measure µ and functions f and g.
The discrete sets

Th = {0, h, 2h, . . .}, h > 0,

represent collections of equidistant points on the time axis. For s ≥ 0 we define


s�h = h
s/h� = max{ph : p ∈ Z, ph ≤ s};
i.e., 
s�h is the largest element of Th, which is not larger than s. In addition to 
.�
we will also use the notation

�z� = min{n ∈ Z : n ≥ z}, z ∈ R.

For the cardinality of a finite set N the notation |N | will be employed.
Centered Gaussian densities in R

d are denoted as

σd;α(x) =
1

(2πα)d/2
exp

(
− x2

2α

)
, x ∈ R

d, α > 0.

To describe mathematically the randomness of the initial positions of the parti-
cles and the Brownian motions, which model the random part of their dynamics, we
suppose the existence of some probability space (Ω,F ,P). Any random variable or ran-
dom process appearing in this paper should be measurable with respect to (Ω,F ,P).
The expectation operator in (Ω,F ,P) is denoted by E[.]. Moreover, we assume that
(Fs)s≥0 is a filtration of σ-algebras Fs ⊆ F such that the initial positions of the
particles are measurable with respect to F0 and any Brownian motion in this paper
is adapted to (Fs)s≥0.

We denote by C,C ′, C ′′, . . . positive, finite constants, which may vary from place
to place. In general, these constants are independent of the particle number N , the
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discretization parameters δ and h, the scaling variable θ, the adaption parameter τ ,
or other variables with respect to those uniform estimates have to be deduced. If,
however, the dependence on particular parameters α1, . . . , αM is to be emphasized,
the notation C(α1, . . . , αM ) is employed.

For the subsequent sections we choose some fixed T ∈ (0,∞) and then restrict
our studies to the time interval [0, T ]. As a simplification we also formulate our
considerations only for d = 2. No essential new problems would be encountered for
d = 1 or d > 2. Furthermore, our computer simulations described in section 6 are
also performed for the two-dimensional case.

2. A discretized version of the many-particle system (1.2). In this section
we describe how the many-particle system (1.2), which is continuous in space and time,
may be discretized such that its simulation on a computer becomes possible. In other
words, we construct a particle method, which can be used to solve (1.1) numerically.

First, we note that as a consequence of the symmetry of φ1, cf. (1.5), the restriction
“m �= k” in the sum in (1.2) has no effect, and therefore to simplify the notation it
will be omitted from now on.

To obtain a modification of the system (1.2), which is suitable for a numerical
simulation,

(i) we discretize the time axis and utilize an Euler scheme based on this dis-
cretization to determine the evolution in time of the particle positions. Ad-
ditionally,

(ii) we employ some spatial mesh and for any discrete time point we calculate
at its vertices the local population density. Quite similarly as in moderately
interacting many-particle systems this density is defined as the convolution of
the empirical process of the particle positions with φθ; cf. (1.8). Depending
on the spatial variations of the population density

(iia) the mesh size can be adapted locally. Furthermore,
(iii) we use the discrete set of values of the population density, which has been

computed in (ii) (and (iia)), to determine by some interpolation procedure
the force field at the particle positions. Together with some Gaussian random
variables, which model the increments of the Brownian motions, this force
field is employed to accomplish the evolution in time.

We note that the population density determined in (ii) (and (iia)) may also be
used to obtain a graphical representation of the simulation results.

As a consequence of the rough outline (i)–(iii) our modification of the many-
particle system (1.2) in the first case, when no adaption is performed, depends on
four parameters, namely the particle number N , the mesh size δ of the nonadapted
initial mesh, the time step h, and additionally on the scaling variable θ of the in-
teraction potential φθ. Hence, we then typically need four indices N , δ, h, and θ
to characterize the various mathematical objects appearing in the investigation of
our particle method. Next, in the second case, when adaption is also included, the
additional parameter τ has to be taken into account.

Subsequently in this section, we shall supplement (i)–(iii) by missing details. Es-
pecially, we have to describe the adaption procedure in (iia) and the interpolation
step in (iii).

First, let us fix a particle number N , a mesh size δ, a time step h, a scaling
parameter θ, and also for use in the second case an adaption parameter τ . We now
will define a system of N particles, whose positions in R

2 at time ph, p = 0, 1, 2, . . .,
will be denoted by Y kN,δ,h,θ(,τ)(ph), k = 1, . . . , N . The relevant information about
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these particle positions is summarized in the associated empirical process

YN,δ,h,θ(,τ)(ph) =
1

N

N∑
m=1

δYm
N,δ,h,θ(,τ)

(ph), p = 0, 1, 2, . . . ;(2.1)

i.e., YN,δ,h,θ(,τ)(ph) is a finite measure having mass 1/N at the particle positions

Y kN,δ,h,θ(,τ)(ph), k = 1, . . . , N .
To characterize the time evolution of the particles, first their drift has to be de-

scribed. Similarly as above in (1.2) in the original many-particle system this drift is
determined by the interaction kernel φθ, which is defined in (1.8). A look at (1.2) sug-

gests evaluating for any p = 0, 1, 2, . . . the sum (1/N)
∑N
m=1∇φθ

(
y−Y mN,δ,h,θ(,τ)(ph)

)
at the particle positions y ∈ {Y 1

N,δ,h,θ(,τ)(ph), . . . , Y
N
N,δ,h,θ(,τ)(ph)}. Evidently, for any

time step the expense for computing these sums exactly would be proportional to N2.
This quadratic dependence on N would restrict severely the study of systems with
large particle numbers. Hence, as indicated in (ii)–(iii) we shall provide an alterna-
tive expression for the drift on the particles. Ultimately, our analytical calculations
summarized in Theorem 2 will imply that this expression is a good approximation as
N, θ →∞ and δ, h(, τ)→ 0.

Our starting point is the observation that for a smooth initial state ρ0 the so-
lution ρ of (1.1) also remains smooth for t > 0. Then, for any t ≥ 0 the empirical
measures XN (t) of the system (1.2), which converge to ρ(., t) as N → ∞, cf. [12],
[13], should also be smooth in some generalized sense. Continuing this line of rea-
soning one may suspect that the empirical measures YN,δ,h,θ(,τ)(t) associated with
the simulation possess some smoothness properties too, at least, if they constitute
the desired approximation to ρ(., t) at all. For this reason, to determine the drift
acting on the particles and furthermore the particle density needed for a graphical
representation of the simulation results, it should suffice to evaluate the function
y → (1/N)

∑N
m=1 φθ

(
y − Y mN,δ,h,θ(,τ)(t)

)
in some sufficiently dense discrete subset of

R
2.

More precisely, to implement (ii)–(iii) we proceed as follows:
(A) We choose some region Q ⊆ R

2. This region should contain the positions
of most of the particles during the time interval [0, T ] of our considerations. For
simplicity we select a rectangle Q. Both Q and also the rectangles R1, R2, . . ., which
are constructed below in (B) and (C), are half open; i.e., they have the form [a, b)×
[c, d) for suitable a, b, c, d ∈ R. However, occasionally when considering a single Rm

it will be convenient to assume that rectangle to be closed. In particular, the corners
Am, Bm, Cm and Dm, cf. Figure 1, are then contained in Rm. We denote the width
of Q in the x1- (x2-) direction by w1 (w2). The introduction of the bounded set Q is
necessary, since the lattices constructed below in (B) and (C) have to be finite.

(B) Within Q a regular, rectangular lattice L0, which consists of a set of rectangles
R1, . . . , R|L0|, whose sides have length w1/�w1/δ� (w2/�w2/δ�) in the x1- (x2-) direc-
tion, is constructed. At any time point ph, when the drift of the particles has to be
computed, the density y → dN,δ,h,θ(,τ)(y, ph) = (1/N)

∑N
m=1 φθ

(
y − Y mN,δ,h,θ(,τ)(ph)

)
is determined both at the vertices of the lattice and the centers of the rectangles R1,
. . . , R|L0|. As indicated in Figure 1 the corners and the center of some rectangle Rm

are denoted by Am, Bm, Cm, Dm and Mm, respectively. We suppose that

δ < δ0 = min{w1, w2}/2,(2.2)

in order that L0 contains a 3× 3 submesh.
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Fig. 1. A typical rectangle within the mesh in Q.

(C) For some time ph it may happen that the discretization of the function y →
dN,δ,h,θ(,τ)(y, ph), which is associated with the lattice L0 as described in (B), is too
coarse. In such a situation the above-mentioned local adaption of the mesh size, cf.
(iia), may be performed. More precisely, the adaption procedure should be started,
if in some rectangles the density dN,δ,h,θ,τ (., ph) is not flat enough, where flatness is
measured in terms of |∇⊗2dN,δ,h,θ,τ (., ph)|.

In our situation we have given only the values of the function dN,δ,h,θ,τ (., ph) in
some discrete set of points in Q. These values can be utilized to compute for any
Rm a quantity κmN,δ,h,θ,τ (ph) related to diam(Rm) supx∈Rm |∇⊗2dN,δ,h,θ,τ (x, ph)|. For
clarity in the present paragraph we defer the detailed description of the determination
of κmN,δ,h,θ,τ (ph) to (E). Employing now the adaption parameter τ > 0 we consider
dN,δ,h,θ,τ (., ph) as not flat enough in Rm if

|κmN,δ,h,θ,τ (ph)| > τ.(2.3)

In this way in any rectangle the flatness of dN,δ,h,θ,τ (., ph) is examined, and finally
any Rm, where (2.3) holds, is divided into four smaller rectangles having equal scales
and the point Mm as a common corner. Next, the density dN,δ,h,θ,τ (., ph) is com-
puted at the centers and those corners of the new rectangles, where it has not yet
been calculated during previous calculations referring to time ph. If necessary, i.e., if
as a consequence of divisions new rectangles have been created, the discretization of
Q is checked again. More precisely, using (2.3) the flatness of dN,δ,h,θ,τ (., ph) within
the various rectangles is examined once more and perhaps further rectangles are di-
vided. Continuing with this procedure we finally arrive at some possibly irregular
lattice L(ph), which consists of rectangles R1, . . . , R|L(ph)| and locally may have an
appearance as in Figure 2. L(ph) is adapted to the density dN,δ,h,θ,τ (., ph); i.e., the
rectangles Rm, m = 1, . . . , |L(ph)|, constructed by the procedure described above are
small enough such that within any Rm the function y → dN,δ,h,θ,τ (y, ph) is sufficiently
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Fig. 2. Details of a locally refined mesh.

flat according to the criterion specified by (2.3).

Let

Sm1 = Bm1 −Am1 = Cm1 −Dm1 ,(2.4)

Sm2 = Am2 −Dm2 = Bm2 − Cm2 , m = 1, . . . , |L(ph)|,

with Am1 (Am2 ), . . . denoting the x1- (x2-) coordinate of A
m, . . . , be the width of Rm

in the x1- (x2-) direction. Obviously, the ratios S
m
1 /Sm2 , m = 1, 2, . . ., coincide for L0

and equal w1�w2/δ�/(w2�w1/δ�). Furthermore, they are preserved by the subsequent
divisions of rectangles described above, and therefore we observe

C(Q) ≤ Sm1
Sm2

≤ C(Q), 0 ≤ Sm1 , Sm2 ≤ δ, m = 1, . . . , |L(ph)|,(2.5)

where C(Q), C(Q) ∈ (0,∞) are constants, which depend only on the rectangle Q, i.e.,
on w1 and w2.

(D) For the graphical representation of the particle density of the many-particle
system defining the particle method the density values at the corners and the centers
of the rectangles of the lattice L(ph), which are calculated by performing (B) and (C),
may be used immediately. However, as indicated above in (iii) for the determination
of the drift acting on the particles an interpolation procedure has to be utilized. To
explain the details we fix one particle at position yP = Y kN,δ,h,θ(,τ)(ph) at time ph.
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If yP �∈ Q, where Q is the region introduced in (A), i.e., if yP is not covered by
some rectangle in the lattice L(ph), then in accordance with (1.2) we define

D̂N,δ,h,θ(,τ)(yP , ph) = ∇dN,δ,h,θ(,τ)(yP , ph)(2.6)

=
1

N

N∑
m=1

∇φθ
(
yP − Y mN,δ,h,θ(,τ)(ph)

)
.

If yP ∈ Q, we first determine the unique rectangle Rm such that yP ∈ Rm. As shown
in Figure 1, Rm is divided into four triangles ∆m1 , ∆m2 , ∆m3 , and ∆m4 , where these
triangles have the corners Am, Bm, Mm (for ∆m1 ), Bm, Cm, Mm (for ∆m2 ), Cm,
Dm, Mm (for ∆m3 ), and Dm, Am, Mm (for ∆m4 ). We suppose that the points on
the diagonals of Rm belong to the respective adjacent triangle on the left and that
Mm ∈ ∆m4 . For any triangle ∆mr the density values at its corners, which are calculated
in (B) and (C), are employed to determine the drift acting on particles contained in
its interior. For example, if yP ∈ ∆m1 , we may define the vector

D̂N,δ,h,θ(,τ)(yP , ph)(2.7)

=




dN,δ,h,θ(,τ)(B
m, ph)− dN,δ,h,θ(,τ)(A

m, ph)

Sm1
dN,δ,h,θ(,τ)(A

m, ph)+dN,δ,h,θ(,τ)(B
m, ph)−2dN,δ,h,θ(,τ)(Mm, ph)

Sm2


 ,

where Sm1 and Sm2 are introduced in (2.4). Obviously, (2.7) characterizes a particular
discretization of ∇dN,δ,h,θ(,τ)(yP , ph). If yP ∈ ∆mr , r = 2, 3, 4, immediate modifica-
tions of (2.7) may be used. For details we refer the reader to (5.1).

For convenience, we do not utilize D̂N,δ,h,θ(,τ) as defined in (2.6) and (2.7) di-
rectly for the determination of the drift acting on the particles but employ a bounded
modification. More precisely, we define

DN,δ,h,θ(,τ)(y, ph)(2.8)

=




D̂N,δ,h,θ(,τ)(y, ph)

|D̂N,δ,h,θ(,τ)(y, ph)|
min{K, |D̂N,δ,h,θ(,τ)(y, ph)|},

if |D̂N,δ,h,θ(,τ)(y, ph)| �= 0,

0 if |D̂N,δ,h,θ(,τ)(y, ph)| = 0,

y ∈ R
2, p = 0, 1, 2, . . . ,

where the constantK > 0 is a suitable upper bound to the drift acting on the particles
asymptotically as N, θ →∞ and δ, h(, τ)→ 0; cf. (3.15).

(E) We still have to describe the determination of the quantity κ.N,δ,h,θ,τ (.) to
complete the discussion in (C) of the adaption of the lattice L(.) to the local fluctu-
ations of the density dN,δ,h,θ,τ . For that aim we suppose that for some fixed time ph
after the division of several rectangles in an intermediate step the lattice L′(ph) has
been obtained. Then a fixed rectangle Rm and its environment may look similarly as
in Figure 2.

Within Rm the function dN,δ,h,θ,τ (., ph) is given at least in Am, Bm, Cm, Dm, and
Mm, and therefore in any case four independent differences like dN,δ,h,θ,τ (B

m, ph)−
dN,δ,h,θ,τ (A

m, ph) or dN,δ,h,θ,τ (M
m, ph)− dN,δ,h,θ,τ (D

m, ph) are available to estimate
the five components of ∇dN,δ,h,θ,τ (x, ph) and ∇⊗2dN,δ,h,θ,τ (x, ph) for x ∈ Rm. Con-
sequently, if not by previous steps in the construction of L′(ph) sides of Rm have been
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divided and thus the values of dN,δ,h,θ,τ (., ph) at some intermediate points are known,
we possibly will also have to take into account some values of dN,δ,h,θ,τ (., ph) in points
of neighboring rectangles to estimate those partial derivatives.

As far as ∇dN,δ,h,θ,τ (x, ph), x ∈ Rm, is concerned, our approximations are de-
scribed in (D); cf. (2.7) and also (5.1). Obviously, for those approximations only the
values of dN,δ,h,θ,τ (., ph) in {Am, Bm, Cm, Dm,Mm} are used. They are also sufficient
to estimate some particular linear combinations of partial derivatives of second order.
More precisely, we obtain

(Sm1 )2∇1∇1dN,δ,h,θ,τ (x, ph) + (Sm2 )2∇2∇2dN,δ,h,θ,τ (x, ph)(2.9)

 2
(
dN,δ,h,θ,τ (A

m, ph) + dN,δ,h,θ,τ (B
m, ph)

+ dN,δ,h,θ,τ (C
m, ph) + dN,δ,h,θ,τ (D

m, ph)− 4dN,δ,h,θ,τ (M
m, ph)

)
,

Sm1 Sm2 ∇1∇2dN,δ,h,θ,τ (x, ph)

 dN,δ,h,θ,τ (B
m, ph) + dN,δ,h,θ,τ (D

m, ph)

− dN,δ,h,θ,τ (A
m, ph)− dN,δ,h,θ,τ (C

m, ph), x ∈ Rm.

To justify (2.9) the right sides may be expanded in a Taylor series of second order.
Some hints can be found in the proof of Lemma 3.

Contrary to (2.9), in order to approximate the derivatives ∇1∇1dN,δ,h,θ,τ (., ph)
and∇2∇2dN,δ,h,θ,τ (., ph) separately dN,δ,h,θ,τ (., ph)-values of some points belonging to
neighboring rectangles are possibly needed. Let us consider first the upper boundary
of Rm, i.e., the interval [Am, Bm] between Am and Bm. It may happen that by
previous divisions in L′(ph) the rectangle above Rm has been divided. Then as a
particular consequence, dN,δ,h,θ,τ ((A

m +Bm)/2, ph) has been computed. In this case
we define

Km1,u = 4
(
dN,δ,h,θ,τ (A

m, ph)(2.10)

+ dN,δ,h,θ,τ (B
m, ph)− 2dN,δ,h,θ,τ ((A

m +Bm)/2, ph)
)
/(Sm1 )2

as an approximation to ∇1∇1dN,δ,h,θ,τ (x, ph), x ∈ [Am, Bm]. Otherwise, i.e., if
dN,δ,h,θ,τ ((A

m + Bm)/2, ph) is not known, we examine the structure of L′(ph) in
the linear continuations of the interval [Am, Bm] beyond Am and Bm, respectively.
Since the lattice L′(ph), which represents the present state of refinement of the origi-
nal lattice L0, is obtained by several divisions of rectangles as described in (C), either
one or both continuations of [Am, Bm] belong to the respective boundary of another
neighboring rectangle in L′(ph). With Emu ⊆ {l, r} we introduce an enumeration of
those continuations. We suppose that l ∈ Emu (r ∈ Emu ) if and only if [Am, Bm] can
be extended within L′(ph) on its left (right) side beyond Am (Bm). For example, in
Figure 2 we have Emu = {r} and Em2

u = {r, l}. If l ∈ Emu (r ∈ Emu ), we define Emu,l
(Emu,r) as that vertex in L′(ph) on the extension of [Am, Bm] beyond Am (Bm), whose
distance to Am (Bm) is minimal. In particular, in Figure 2 we get Emu,r = Bm2 and
Em2

u,l = Am. We note that dN,δ,h,θ,τ (E
m
u,q, ph), q ∈ Emu , has been determined during

the previous steps in the construction of L′(ph). Therefore, we may now introduce
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Km1,u,l =
2

(Am1 − Emu,l,1)(B
m
1 −Am1 )

(
Bm1 −Am1
Bm1 − Emu,l,1

dN,δ,h,θ,τ (E
m
u,l, ph)

+
Am1 − Emu,l,1
Bm1 − Emu,l,1

dN,δ,h,θ,τ (B
m, ph)− dN,δ,h,θ,τ (A

m, ph)

)
,

if l ∈ Emu ,(2.11)

and

Km1,u,r =
2

(Bm1 −Am1 )(Emu,r,1 −Bm1 )

(
Emu,r,1 −Bm1
Emu,r,1 −Am1

dN,δ,h,θ,τ (A
m, ph)

+
Bm1 −Am1
Emu,r,1 −Am1

dN,δ,h,θ,τ (E
m
u,r, ph)− dN,δ,h,θ,τ (B

m, ph)

)
,

if r ∈ Emu ,(2.12)

where Emu,q,k, k = 1, 2, denotes the xk-coordinate of Emu,q, q ∈ Emu . By employing
Taylor expansions of second order for dN,δ,h,θ,τ (., ph) at A

m and Bm it may be shown
that Km1,u,l  ∇1∇1dN,δ,h,θ,τ (A

m, ph) and Km1,u,r  ∇1∇1dN,δ,h,θ,τ (B
m, ph), respec-

tively. For details we refer to Lemma 3 and its proof. Consequently, in the case where
dN,δ,h,θ,τ ((A

m +Bm)/2, ph) is not known we may use Km1,u,l and Km1,u,r to introduce
an alternative to (2.10), namely

Km1,u =
1

|Emu |
∑
q∈Em

u

Km1,u,q,(2.13)

as an approximation to ∇1∇1dN,δ,h,θ,τ (x, ph), x ∈ [Am, Bm].
For the lower boundary of Rm, i.e., the interval [Cm, Dm] between Cm and Dm,

we can define a supplement Km1,l to Km1,u. First, if dN,δ,h,θ,τ ((C
m + Dm)/2, ph) has

been determined during previous calculations, an obvious modification of (2.10) may
be used. Otherwise, the considerations leading to (2.13) have to be transferred from
[Am, Bm] to [Cm, Dm]. More precisely, in a study of the continuations of [Cm, Dm]
beyond Cm and Dm we have to introduce the set Eml , and then, similarly as in (2.11)
and (2.12), we have to define Km1,l,q, q ∈ Eml , such that finally an analogue of (2.13)
for an approximation Km1,l for ∇1∇1dN,δ,h,θ,τ (x, ph), x ∈ [Cm, Dm], is obtained.

Now, with

Km1 =
1

2
(Km1,u +Km1,l)(2.14)

an approximation to ∇1∇1dN,δ,h,θ,τ (x, ph), x ∈ Rm, can be defined.
Next, the considerations leading to (2.14) may be “rotated by π/2” to deduce

quite analogously an approximation Km2 to ∇2∇2dN,δ,h,θ,τ (x, ph), x ∈ Rm.
For the definition of κmN,δ,h,θ,τ (ph), which is employed in (C) to quantify flatness

of dN,δ,h,θ,τ (., ph) in Rm, we do not utilize approximations like Km1 or Km2 for spatial
derivatives of second order of dN,δ,h,θ,τ (., ph) in R

m directly but instead use a suitable
upper bound for such approximations. Taking into account (2.10)–(2.14) and also
their modifications, which refer to the intervals [Bm, Cm], [Cm, Dm], [Dm, Am] and
have not been written down explicitly, we therefore introduce further definitions.
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First, by Xm1 we denote the set of those intervals η ∈ I =
{
[Am, Bm], [Bm, Cm],

[Cm, Dm], [Dm, Am]
}
such that during previous divisions of some rectangles in the

neighborhood of Rm we have determined dN,δ,h,θ,τ (Mη, ph) with Mη denoting the
center of η. Let Pη and Eη be the endpoints of η. Next, by Xm2 we denote the set of
all linear continuations of intervals in I \Xm1 beyond their respective endpoints, which
belong to the boundary of a neighboring rectangle. Associated with any η ∈ Xm2 is a
set Θη = {Pη,Mη, Eη} of three points such that Pη and Mη are neighboring corners
of Rm, η is an extension of [Pη,Mη] beyond Mη, and Eη is lying outside Rm but is
contained both in η and L′(ph) with minimal distance to Rm. In the end we obtain
for any Rm a set Xm = Xm1 ∪Xm2 with a set Θη = {Pη,Mη, Eη} of vertices in L′(ph)
for any η ∈ Xm.

Following (2.10)–(2.12) we then define

Kη =
1

|Pη −Mη||Mη − Eη|
∣∣∣∣ |Mη − Eη|
|Pη − Eη| dN,δ,h,θ,τ (Pη, ph)(2.15)

+
|Pη −Mη|
|Pη − Eη| dN,δ,h,θ,τ (Eη, ph)− dN,δ,h,θ,τ (Mη, ph)

∣∣∣∣, η ∈ Xm.

These quantities Kη, η ∈ Xm, may be combined with an analogous estimate for the
approximation to ∇1∇2dN,δ,h,θ,τ (x, ph), x ∈ Rm, given by (2.9). Consequently, we
are directed to the definition

κmN,δ,h,θ,τ (ph) =

(
1

Sm1 Sm2

∣∣dN,δ,h,θ,τ (Am, ph) + dN,δ,h,θ,τ (C
m, ph)(2.16)

− dN,δ,h,θ,τ (B
m, ph)− dN,δ,h,θ,τ (D

m, ph)
∣∣

+
∑
η∈Xm

Kη

)√
Sm1 Sm2 , m = 1, . . . , |L′(ph)|.

With κmN,δ,h,θ,τ (ph) we have provided the desired quantity to estimate flatness of
dN,δ,h,θ,τ (., ph) within Rm. Its use in a procedure to obtain a mesh L(ph), which is
adapted to the local density fluctuations of dN,δ,h,θ,τ (., ph) in Q, is explained in (C).

Remark 1. (i) The definition (2.16) of κmN,δ,h,θ,τ (.) is symmetric; i.e., any corner
of Rm and any direction is considered in the same way. However, to obtain the rate
of convergence given by the right side of (3.24) in Theorem 2(b) with a possibly
different C(T ) it would suffice to include in (2.16) instead of

∑
η∈Xm Kη only two

terms accounting for the x1- and x2-direction, respectively. In particular, these terms
would provide suitable upper bounds to approximations of ∇1∇1dN,δ,h,θ,τ (x, ph), x ∈
Rm, and ∇2∇2dN,δ,h,θ,τ (x, ph), x ∈ Rm, which are needed in connection with the
second part of Lemma 3.

(ii) Obviously, the choice of the region Q, which is that part of R
2 where our

simulation procedure may be characterized as a particle-mesh method, has a consid-
erable influence on the expenses for the computations. In particular, if Q is large, it
is left by only a few particles, and therefore for the determination of their drift only a
small number of extensive summations as in (2.6) has to be performed. On the other
hand, for any time ph the number of mesh points, where dN,δ,h,θ(,τ)(., ph) has to be
determined, being ∼ |L(ph)| gets large with Q. For the determination of a convenient
region Q we have not performed rigorous considerations but rely on some heuristic
arguments. For details we refer to Remark 3(vi) in section 3.

(iii) The restriction (2.2) on the spatial discretization parameter δ ensures that
L0 contains at least three mesh points in each direction. This is a necessary require-
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ment in order that the adaption step described by (C) and (E) can be performed, in
particular since only in this case sets like Emu , which are introduced in the paragraph
after (2.10), are always nonempty.

Having specified at some fixed time ph the negative drift acting on the respective
particles according to (2.6)–(2.8) we may finally determine the particle positions at
time ph+ h by following an Euler scheme; cf. (i). In particular, we may define

Y kN,δ,h,θ(,τ)(ph+ h) = Y kN,δ,h,θ(,τ)(ph)(2.17)

− hDN,δ,h,θ(,τ)
(
Y kN,δ,h,θ(,τ)(ph), ph

)
+
√
hZk,p, k = 1, . . . , N,

where Zk,p, k = 1, . . . , N , p = 0, 1, 2, . . ., are independent R
2-valued Gaussian ran-

dom variables with mean 0 and variance 1. To justify (2.17) we remark that the
random vector (

√
hZ1,p, . . . ,

√
hZN,p) has the same distribution as

(
W 1(ph + h) −

W 1(ph), . . . ,WN (ph + h) − WN (ph)
)
, which describes the increments in the time

interval [ph, ph+ h) of the Brownian motions W 1, . . . ,WN appearing in (1.2).
The crucial ideas to discretize (1.2) are formulated in (i)–(iii), where the details

of (ii)–(iii) can be found in (A)–(E). In short form the resulting procedure may be
summarized as follows:

(0) First, as a domain, which may be regarded as the essential living space of
the population of particles under consideration, some rectangle Q is chosen.
Then, as discretization parameters the number N of particles, the mesh size
δ ∈ (0, δ0) and the time step h > 0 are selected. Moreover, θ > 1 is used as
scaling parameter for the interaction, and some τ > 0 is introduced, if the
adaption of the mesh should be performed.

(1) We determine suitable initial positions Y kN,δ,h,θ(,τ)(0), k = 1, . . . , N , such that

the initial population density ρ(., 0) = ρ0 of the limit system (1.1) is approx-

imated by the empirical measure YN,δ,h,θ(,τ)(0) = (1/N)
∑N
k=1 δY k

N,δ,h,θ(,τ)
(0).

Some hints on the choice of these initial positions can be found in Re-
mark 3(iii) in section 3.

(2) For any time point ph, p = 0, 1, 2, . . ., we first determine the population
density at the points of some sufficiently fine mesh L(ph) in Q, cf. (B), (C),
in the course of which the adaption procedure (C), (E) may also be performed.
Next, following (D), cf. (2.6)–(2.8), we compute the negative drift acting on
the respective particles. Finally, the new particle positions at time ph+h are
fixed according to (2.17).

(3) For sufficiently many time points the values of the population density at the
corners and centers of the rectangles of the respective lattice L(ph) are saved
in some file. These values can be used for a graphical representation of the
simulation results.

Of course, for the computer simulations the particle positions Y kN,δ,h,θ(,τ)(t), k =

1, . . . , N , need to be defined only for time points t in the discrete set Th. However,
for our subsequent considerations, where the empirical processes YN,δ,h,θ(,τ) are com-
pared analytically with processes in continuous time, it will be convenient to define
Y kN,δ,h,θ(,τ)(t) for any t ≥ 0. For that purpose, we extend the system (2.17) of stochas-

tic difference equations to some system of stochastic differential equations, namely

Y kN,δ,h,θ(,τ)(t) = Y kN,δ,h,θ(,τ)(0)(2.18)

−
∫ t

0

ds DN,δ,h,θ(,τ)
(
Y kN,δ,h,θ(,τ)(
s�h), 
s�h

)
+W k(t),
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k = 1, . . . , N, t ≥ 0, δ ∈ (0, δ0), h > 0, θ > 1, (τ > 0, ) N ∈ N.

As we have indicated by our notation, the respective solutions (Y 1
N,δ,h,θ(,τ)(t), . . . ,

Y NN,δ,h,θ(,τ)(t)) of (2.17) and (2.18) coincide in distribution for t ∈ Th. This is fairly

obvious, since in (2.18) the drift −DN,δ,h,θ(,τ) acting on the particles remains constant
between two successive time points ph, ph + h ∈ Th and equals the “drift” at time
ph in the system (2.17), and since the increments of the Brownian motions W k(ph+
h)−W k(ph) in (2.18) have the same law as the random variables

√
hZk,p appearing

in (2.17).
Now, with (2.18) definition (2.1) of the empirical processes YN,δ,h,θ(,τ)(t) can be

extended from t ∈ Th to any t ≥ 0. In our analytical investigation of the procedure
sketched by (0)–(3) we shall study the convergence of those empirical processes in
continuous time to the solution ρ of (1.1) in the limit as N, θ →∞ and δ, h(, τ)→ 0.
As a consequence of several similarities between (1.2) and (2.18) we can rely in these
considerations on some ideas from [13]. Of course, the fact that in (2.18) the drift is

determined by discretizing the gradient (y, t)→ (1/N)
∑N
m=1∇φθ(y − Y mN,δ,h,θ(,τ)(t))

of the population density both in space and time will lead to new problems, which
did not appear in [13].

3. Results. In this section we first collect some assumptions, in particular on
the kernel φ1 and the initial state ρ0 of the solution ρ of (1.1). Next, we shall describe
the family ρθ, θ > 1, of auxiliary functions, which had been mentioned in section 1.
Finally, our main results and some supplementary remarks are presented.

3.1. Technical preliminaries. According to (1.8) the function φ1 can be con-
sidered as the basis of the family of interaction kernels φθ, θ > 1. Moreover, as
indicated in section 1 these interaction kernels are used to regularize the empirical
processes YN,δ,h,θ(,τ), N ∈ N, δ ∈ (0, δ0), h > 0, θ > 1(, τ > 0). In view of those
applications (1.5) has to be supplemented by various other assumptions on φ1.

First, φ1 is supposed to be a convolution product

φ1 = φr1 ∗ φr1,(3.1)

where φr1 is a smooth, symmetric probability density, i.e.,

φr1 ∈ C1
b (R

2), φr1 ≥ 0,

∫
R2

dx φr1(x) = 1, φr1(x) = φr1(−x), x ∈ R
2.(3.2)

As far as smoothness properties of φr1 are concerned, we also need

φ̃r1 ∈ C2
b (R

2),

∫
R2

dx |∇φr1(x)|2 <∞.(3.3)

Functions related to φr1 are defined by

Uk1,k2(x) = (−1)k1+k2 x
k1
1 xk22

k1!k2!
φr1(x),(3.4)

k1, k2 = 0, 1, . . . , k, k1 + k2 ≤ k, x ∈ R
2,

where

k = 2.(3.5)
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They are supposed to satisfy∣∣∣Ũk1,k2(λ)∣∣∣ ≤ C
∣∣∣φ̃r1(λ)∣∣∣ , k1, k2=0, 1, . . . , k−1, 1≤k1+k2≤k−1, λ∈R

2,(3.6)

and

|Uk1,k2(x)| ≤ C

(
1

1 + |x|3
)1/2

, k1, k2 = 0, 1, . . . , k, k1 + k2 = k, x ∈ R
2.(3.7)

Furthermore, we assume that φ1 has bounded moments of all orders, i.e.,∫
R2

dx |x|mφ1(x) <∞, m = 1, 2, . . . .(3.8)

To regularize the empirical processes we shall use functions which are obtained
from φr1 by the scaling (1.8), namely

φrθ(x) = θ2φr1(θx), x ∈ R
2, θ > 1.(3.9)

Obviously, modifications of (3.1) and (3.2) also hold for these functions, i.e.,

φθ = φrθ ∗ φrθ,(3.10)

φrθ ∈ C1
b (R

2), φrθ≥0,

∫
R2

dx φrθ(x)=1, φrθ(x)=φrθ(−x), x∈R
2, θ>1.

Moreover, by (1.5), (1.8), (3.2), and (3.9) the kernels φθ and φrθ satisfy

lim
θ→∞

φθ = lim
θ→∞

φrθ = δ0 in S ′(R2).(3.11)

In particular, by (3.11) the study of the limit behavior of the function (x, t) →
(YN,δ,h,θ(,τ)(t) ∗ φrθ)(x), x ∈ R

2, 0 ≤ t ≤ T , in order to obtain information on the
asymptotics of YN,δ,h,θ(,τ) as N, θ →∞, δ, h(, τ)→ 0 is justified.

As a consequence of (3.1), (3.3), (3.9), and (3.10) we furthermore deduce with

φ1 ∈ C2
b (R

2), φθ ∈ C2
b (R

2), θ > 1,(3.12)

a strengthening of the first relation in (1.5). The remaining parts of (1.5) are obvious
consequences of (3.1) and (3.2).

Remark 2. Similarly as in our analytical investigations of moderately interacting
many-particle systems [12], [13], [14], [15], [16] the factorization property (3.1) will be
needed to transfer crucial parts of the study of the empirical processes YN,δ,h,θ(,τ) to
an L2-context, where the attention is drawn to the functions (x, t)→ (YN,δ,h,θ(,τ)(t)∗
φrθ)(x). For that purpose the assumption that φr1 and therefore also φrθ is a symmetric
probability density, cf. (3.2), (3.10), is essential. The remaining assumptions about
φ1 and φr1 are technical and needed only to deduce various estimates. We note that
(3.2)–(3.8) are satisfied, in particular, if φr1 = C(−∆+ 1)−n, n = 2, 3, . . ., where C is
a suitable constant.

Next, we suppose that the initial state ρ0 of the limit process ρ is a smooth
probability density, i.e.,

ρ0 ≥ 0,

∫
R2

dx ρ0(x) = 1, ‖ρ0‖(m,1) <∞, m = 0, 1, 2, . . . ,(3.13)
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where the norms ‖.‖(m,1), m = 0, 1, 2, . . ., are introduced in (1.9).
We note that the limit dynamics (1.1) represents a simple nonlinear parabolic

problem, which may be handled quite well by classical methods; cf. Remark (i) in [17,
section 2]. In particular, (3.13) implies

ρ(., t) ≥ 0,

∫
R2

dx ρ(x, t) = 1, t ≥ 0,(3.14)

ρ ∈ C∞
b

(
R

2 × [0, T ]
)
, sup

t≤T
‖ρ(., t)‖(m) <∞, m = 0, 1, 2, . . . .

In (2.8) the constant K is introduced as upper bound for the absolute value of
the drift acting on the particles in the many-particle system (2.17) or (2.18). The
convergence limN,θ→∞, δ,h(,τ)→0 YN,δ,h,θ(,τ) = ρ of course can only be expected if K
is also in this limit an upper bound to the drift. This is guaranteed, for example, if
K satisfies

sup
t≤T

‖∇ρ(., t)‖∞ + 1 < K.(3.15)

We note that the left side of (3.15) is finite as a consequence of (3.14). We also
mention that the interpretation of −∇ρ(., t) as drift is an immediate consequence of
the fact that (1.1) may be considered as a Fokker–Planck equation.

As indicated in section 1 we have to take care of the range of the interaction in
the various dynamical systems appearing in this paper. In particular, many-particle
systems like (1.2) or its analogues conceived for computer simulations like (2.17) or
(2.18) and the partial differential equation (1.1) differ in their range of interaction.
By (1.3) the range in the system (1.2) is O(θ−1

N ), and by (1.8) and the construction of
DN,δ,h,θ(,τ) in section 2 the systems (2.17) and (2.18) have a range of order O(θ−1).
Hence, in (1.2) and (2.17) or (2.18) the interaction has strictly positive range for
any N ∈ N, δ ∈ (0, δ0), h > 0, θ > 1 (and τ > 0). On the other hand, in the
partial differential equation (1.1) the interaction is strictly local; i.e., its range is 0.
This essential difference in the structure of the many-particle systems and their limit,
respectively, will lead to difficulties when the distance between YN,δ,h,θ(,τ) and ρ is
studied analytically. For this reason we introduce as an auxiliary tool a family of
deterministic functions ρθ, θ > 1, whose time evolutions are governed by an interaction
similar as in the many-particle systems (1.2), (2.17), or (2.18), and which furthermore
are approximating the limit ρ as θ → ∞. In particular, we define ρθ as the solution
of the integro-differential equation

∂tρθ =
1

2
∆ρθ +∇ ·

(
ρθ∇(ρθ ∗ φθ)

)
, ρθ(., 0) = ρ0,(3.16)

where φθ is the interaction kernel employed in (2.17) or (2.18), and ρ0 coincides with
the initial state of ρ; cf. (1.1).

By (3.11) the formal convergence of ρθ to the solution ρ of (1.1) is quite obvious.
The convergence can be stated rigorously, also quantitatively, and additional regular-
ity properties, which hold uniformly in θ, can be deduced; cf. Theorem 3 in [17]. In
particular, for any θ > θ0, where θ0 = θ0(T ) is sufficiently large, there exists a unique
solution ρθ ∈ C∞

b (R2 × [0, T ]) of (3.16), which satisfies

ρθ(., t) ≥ 0,

∫
R2

dx ρθ(x, t) = 1, t ≤ T, θ > θ0,(3.17)



SIMULATION BY A PARTICLE METHOD 1733

sup
t≤T,θ>θ0

‖ρθ(., t)‖(m,1) <∞, m = 0, 1, 2, . . . ,

sup
x∈R2,t≤T,θ>θ0

|∇⊗m∂kt ρθ(x, t)| <∞, m, k = 0, 1, 2, . . . ,

and

sup
x∈R2,t≤T,θ>θ0

θ2|∇⊗m∂kt (ρθ(x, t)− ρ(x, t))| <∞, m, k = 0, 1, 2, . . . .(3.18)

We note that the conditions (3.1), (3.2), (3.8), and (3.13) are employed in [17, Theorem
3], to verify (3.17) and (3.18).

In particular, possibly after increasing θ0, the relations (3.15) and (3.18) imply

sup
t≤T,θ>θ0

‖∇ρθ(., t)‖∞ < K.(3.19)

So far the parameters N , δ, h, θ (and τ) have been considered as indepen-
dent. However, the convergence limN,θ→∞, δ,h→0 YN,δ,h,θ = ρ or limN,θ→∞, δ,h,τ→0

YN,δ,h,θ,τ = ρ can only be expected when certain relations for these parameters hold.
For example, the mesh size δ has to be much smaller than the interaction range θ−1.
In this context, we introduce some particular sets

P1 =
{
(N, δ, h, θ) ∈ N× (0, δ0)× (0,∞)× (θ0,∞) : (δ2 + h)θ8 < C

}
,(3.20)

P2 =
{
(N, δ, h, θ, τ) ∈ N× (0, δ0)× (0,∞)× (θ0,∞)× (0,∞) :

τ2 + hθ8 + δ4θ10 < C
}
,

where C is some arbitrary but fixed constant. Obviously, in order that the parameters
N , δ, h, θ (and τ) stay in these sets, θ may grow only slowly as δ, h→ 0.

3.2. Results and supplementary remarks. By (3.18) the convergence of ρθ
to ρ as θ →∞ is specified quite precisely. Hence, as a crucial part of our considerations
we have to study the distance between YN,δ,h,θ(,τ) and ρθ. A result sufficient for our
purposes is given by the following proposition.

Proposition 1. For any N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0 (and τ > 0) we
consider the solution ρθ of (3.16) and also the many-particle system as described in
section 2. We emphasize that the positions Y kN,δ,h,θ(,τ)(t), 0 ≤ t ≤ T , k = 1, . . . , N ,

of the particles of that many-particle system solve (2.17) or (2.18), where the nega-
tive drift DN,δ,h,θ(,τ) is determined according to the particular discretization procedure
summarized essentially by (2.6)–(2.8). The associated empirical process YN,δ,h,θ(,τ) is
introduced in (2.1). Moreover, the constants δ0, θ0, and K are characterized in (2.2)
and the last part of section 3.1, respectively.

We assume that the interaction kernels φθ, θ > θ0, which determine the time
evolution of the many-particle system and the solution of (3.16), satisfy (1.8) and
(3.1)–(3.8). Furthermore, for the initial state ρ0 of ρ and ρθ, θ > θ0, the regularity
properties (3.13) are supposed to hold. Then, the distance between YN,δ,h,θ(,τ) and ρθ
may be estimated as follows.

(a) If the adaption step (C) in section 2 is not performed, we get

E

[
sup
t≤T

‖(YN,δ,h,θ(t)−ρθ(., t))∗φrθ‖22 +
∫ T

0

dt ‖∇((YN,δ,h,θ(t)−ρθ(., t))∗φrθ)‖22
]

(3.21)

≤ C(T )

(
E
[‖(YN,δ,h,θ(0)− ρ0) ∗ φrθ‖22

]
+
θ4

N
+ (δ2 + h)θ8 + θ2(1−k)

)
,

(N, δ, h, θ) ∈ P1.
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(b) If the adaption step (C) in section 2 is included, we deduce

E

[
sup
t≤T

‖(YN,δ,h,θ,τ (t)− ρθ(., t)) ∗ φrθ‖22 +
∫ T

0

dt ‖∇((YN,δ,h,θ,τ (t)− ρθ(., t)) ∗ φrθ)‖22
]

≤ C(T )
(
E
[‖(YN,δ,h,θ,τ (0)−ρ0)∗φrθ‖22

]
+
θ4

N
+δ4θ10+τ2+hθ8+θ2(1−k)

)
,

(N, δ, h, θ, τ) ∈ P2.(3.22)

By Proposition 1 and estimates for ‖ρ(., t)−ρθ(., t)‖22 and ‖ρθ(., t)−ρθ(., t)∗φrθ‖22,
which are provided by (3.17), (3.18) and Lemma 4, we may now quite easily deduce
our main estimates.

Theorem 2. Let us consider the same situation as in Proposition 1. Then, the
distance between YN,δ,h,θ(,τ) and ρ may be estimated as follows.

(a) If the adaption step (C) in section 2 is not performed, we get

E

[
sup
t≤T

‖YN,δ,h,θ(t)∗φrθ−ρ(., t)‖22 +
∫ T

0

dt ‖∇(YN,δ,h,θ(t)∗φrθ−ρ(., t))‖22
]

(3.23)

≤ C(T )

(
E
[‖YN,δ,h,θ(0) ∗ φrθ − ρ0‖22

]
+
θ4

N
+ (δ2 + h)θ8 + θ−2

)
,

(N, δ, h, θ) ∈ P1.

(b) If the adaption step (C) in section 2 is included, we deduce

E

[
sup
t≤T

‖YN,δ,h,θ,τ (t)∗φrθ−ρ(., t)‖22 +
∫ T

0

dt ‖∇(YN,δ,h,θ,τ (t)∗φrθ−ρ(., t))‖22
]

(3.24)

≤ C(T )

(
E
[‖YN,δ,h,θ,τ (0)∗φrθ−ρ0‖22

]
+
θ4

N
+δ4θ10+τ2+hθ8+θ−2

)
,

(N, δ, h, θ, τ) ∈ P2.

Remark 3. (i) The right sides of related estimates in Proposition 1 and Theorem 2
essentially coincide, since for any t ≥ 0 the convergence limθ→∞ ρθ(., t) ∗ φrθ = ρ(., t)
is fast in comparison to the convergence limN,θ→∞, δ,h(,τ)→0(YN,δ,h,θ(,τ)(t)−ρθ(., t))∗
φrθ = 0.

The factor 1/N on the right sides of (3.21)–(3.24) corresponds to the usual 1/
√
N -

dependence of the distance between some deterministic object and its Monte-Carlo
simulation involving N quantities, which are stochastically independent.

(ii) As a consequence of the scaling relations (1.8) and (3.9) the diameters of the
respective supports of the kernels φθ and φrθ decrease with the same order O(θ−1) as
θ → ∞. Here, we have to define “support” in a generalized sense, e.g., as the set of
those points in R

2, whose distance to the mean 0 of the probability densities φθ or
φrθ is less than the respective standard error. Hence, since the function ρ is smooth,
cf. (3.14), Theorem 2 demonstrates that in our situation on the scale of its range of
interaction, which obviously may be identified with the diameter of the support of
φθ, the many-particle system (2.17) or (2.18) behaves regularly; i.e., the interaction
force acting on the particles does not exhibit extreme fluctuations. In retrospect,
this observation is a justification of the discretization step (B) and the subsequent
interpolation step (D) in section 2.

(iii) In a simple method the initial positions Y kN,δ,h,θ(,τ)(0), k = 1, . . . , N , of the

particles may be chosen as independently and identically distributed (i.i.d.) random



SIMULATION BY A PARTICLE METHOD 1735

variables in R
2 with density ρ0. By (3.10) we then obtain

E
[‖YN,δ,h,θ(,τ)(0) ∗ φrθ − ρ0‖22

]
= E

[〈YN,δ,h,θ(,τ)(0),YN,δ,h,θ(,τ)(0)∗φθ〉]− 2E
[〈YN,δ,h,θ(,τ)(0), ρ0∗φrθ〉

]
+ ‖ρ0‖22

=
1

N2

N∑
k,l=1

E
[
φθ

(
Y kN,δ,h,θ(,τ)(0)− Y lN,δ,h,θ(,τ)(0)

)]

− 2

N

N∑
k=1

E
[
(ρ0 ∗ φrθ)

(
Y kN,δ,h,θ(,τ)(0)

)]
+ ‖ρ0‖22

=
N(N − 1)

N2

∫
R2

dx

∫
R2

dy ρ0(x)ρ0(y)φθ(x− y) +
1

N
φθ(0)

− 2

∫
R2

dx ρ0(x)(ρ0 ∗ φrθ)(x) + ‖ρ0‖22

=
N − 1

N
‖ρ0 ∗ φrθ‖22 +

1

N
φθ(0)− 2〈ρ0, ρ0 ∗ φrθ〉+ ‖ρ0‖22

= ‖ρ0 ∗ φrθ − ρ0‖22 −
1

N
‖ρ0 ∗ φrθ‖22 +

1

N
φθ(0).

Consequently, (3.2), (3.3), (3.9), (3.13), and Lemma 4 imply

E
[‖YN,δ,h,θ(,τ)(0) ∗ φrθ − ρ0‖22

] ≤ C

(
θ−4 +

θ2

N

)
.(3.25)

Since N, θ ≥ 1, we observe that for this particular choice of the initial positions of the
particles (3.23) may be replaced by

E

[
sup
t≤T

‖YN,δ,h,θ(t)∗φrθ−ρ(., t)‖22 +
∫ T

0

dt ‖∇(YN,δ,h,θ(t)∗φrθ−ρ(., t))‖22
]

(3.26)

≤ C(T )
(θ4

N
+ (δ2 + h)θ8 + θ−2

)
, (N, δ, h, θ) ∈ P1,

and that (3.24) turns into

E

[
sup
t≤T

‖YN,δ,h,θ,τ (t)∗φrθ−ρ(., t)‖22 +
∫ T

0

dt ‖∇(YN,δ,h,θ,τ (t)∗φrθ−ρ(., t))‖22
]

(3.27)

≤ C(T )

(
θ4

N
+ δ4θ10 + τ2 + hθ8 + θ−2

)
, (N, δ, h, θ, τ) ∈ P2.

These considerations demonstrate that in the present situation an optimized choice of
the initial particle positions, e.g., by employing so-called low-discrepancy methods, cf.
[11], does not lead to an improvement of the final bound for E

[
supt≤T ‖YN,δ,h,θ(,τ)(t)∗

φrθ − ρ(., t)‖22 +
∫ T
0
dt ‖∇(YN,δ,h,θ(,τ)(t) ∗ φrθ − ρ(., t))‖22

]
.

(iv) Obviously, the CPU-time for the simulation of our many-particle system
increases with decreasing δ, h, and τ and increasing N . Moreover, the various terms
on the right sides of (3.23), (3.24), (3.26), and (3.27) exhibit opposing monotonicity
properties as functions of θ. Hence, to achieve in the limit as N, θ →∞ and δ, h(, τ)→
0 with minimal efforts a fixed order of accuracy it is suggested to determine N, δ, h, θ
(and τ) in such a way that the terms on the right sides of our estimates have equal
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weights. Then, any modification of a parameter would lead to either an increasing
approximation error or to an increasing CPU-time without improving the accuracy. In
particular, first θ has to be chosen such that θ−2 corresponds to the desired accuracy.
Next, in the case where the adaption step is not performed, N, δ, and h should satisfy

N ∼ θ6, h ∼ θ−10, δ ∼ θ−5.(3.28)

On the other hand, if the adaption step is included,N, δ, h, and τ should be determined
according to

N ∼ θ6, h ∼ θ−10, δ ∼ θ−3, τ ∼ θ−1.(3.29)

(v) Of course, in the derivation of the estimates (3.21)–(3.24) rigorous mathemat-
ical arguments will be used. As a supplement we shall present in section 4.3 some
formal considerations, which lead to nonrigorous improvements of several intermediate
results. Those considerations are essentially based on a hypothesis about the uniform
regularity of the functions R

2 × [0, T ] ' (x, t) → (YN,δ,h,θ(,τ)(t) ∗ φθ)(x), N ∈ N,
δ < δ0, h < T , θ > θ0(, τ > 0), and they finally amount to discard the θ-dependence
of exactly those contributions to the right sides of (3.23) and (3.24), which emerge as
a consequence of the space-time discretization in our simulation method; cf. (i)–(iii)
in section 2.

In particular, if the adaption step (C) in section 2 is not performed, and if (4.8)
and (4.11) are modified, the estimate (3.23) may formally be replaced by

E

[
sup
t≤T

‖YN,δ,h,θ(t)∗φrθ−ρ(., t)‖22 +
∫ T

0

dt ‖∇(YN,δ,h,θ(t)∗φrθ − ρ(., t))‖22
]

(3.30)

� C(T )
(
E
[‖YN,δ,h,θ(0) ∗ φrθ − ρ0‖22

]
+
θ4

N
+ δ2 + h+ θ−2

)
,

(N, δ, h, θ) ∈ P1, θ ( N1/2.

Now taking into account (3.25) we observe that for fixed θ instead of (3.28) the
quantities N, δ, and h should satisfy

N ∼ θ6, h ∼ θ−2, δ ∼ θ−1(3.31)

to guarantee an “optimal” performance of our simulation procedure.
In the case where the adaption step (C) in section 2 is included, the relation (4.8)

has to be replaced by (4.18). As indicated in section 4.3, too, a formal improvement
of that estimate is also possible and first leads to

E

[
sup
t≤T

‖YN,δ,h,θ,τ (t)∗φrθ−ρ(., t)‖22 +
∫ T

0

dt ‖∇(YN,δ,h,θ,τ (t)∗φrθ−ρ(., t))‖22
]

(3.32)

� C(T )
(
E
[‖YN,δ,h,θ,τ (0) ∗ φrθ − ρ0‖22

]
+
θ4

N
+ δ4 + τ2 + h+ θ−2

)
,

(N, δ, h, θ, τ) ∈ P2, θ ( N1/2,

instead of (3.24), and subsequently to

N ∼ θ6, h ∼ θ−2, δ ∼ θ−1/2, τ ∼ θ−1,(3.33)

as a substitute for (3.29).
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If in a computer simulation of Y kN,δ,h,θ(,τ)(.), k = 1, . . . , N , the choice of the

parameters N,h, δ (and τ) is based on (3.31) or (3.33) instead of (3.28) or (3.29),
for both discretization parameters δ and h much larger values may be chosen. In
particular, a considerable reduction of the expenses may be expected.

Finally, we mention that those contributions to the derivations of (3.23) and
(3.24), which are not related to the space-time discretization in our simulation proce-
dure, have close analogues in the corresponding calculations in the study [13] of the
asymptotics of the associated many-particle system (1.2) as N → ∞. It therefore
seems that also formally our estimates for those terms cannot be improved.

(vi) In step (A) in section 2 the region Q ⊆ R
2 is characterized as a rectangle

“containing most of the particles” during the simulation interval [0, T ]. To determine
Q heuristically we may first introduce some rectangle Q0 satisfying

∫
Q0

dx ρ0(x) ≥
1 − ε, where ε > 0 and ρ0, which by (3.13) is a probability density, is the initial
state of the solution ρ of (1.1). Next, we use the fact that (1.1) can be considered as a
Fokker–Planck equation with diffusion coefficient 1/2 and drift vector −∇ρ(., t), t ≥ 0.
In particular, together with Q0 the diffusion coefficient and the drift vector can be
employed to guess some rectangle Q = QT satisfying

∫
Q
dx ρ(x, t) � 1− ε, 0 ≤ t ≤ T .

Of course, in general ∇ρ(., t), t > 0, is not known in advance. However, the maximum
principle implies that the solution ρ of (1.1) in R

1 satisfies ‖ρ′(., t)‖∞ ≤ ‖ρ′0‖∞,
t ≥ 0. Also in R

d, d > 1, as a consequence of its nonsingular diffusion the dynamics
(1.1) is smoothing. Hence, it seems to be justified to use ‖∇ρ0‖∞ as an estimate for
supt≤T ‖∇ρ(., t)‖∞. When taking into account that a mass density subject to diffusion

with coefficient 1/2 spreads by
√
T during [0, T ] we are led to define Q = QT as that

rectangle, whose boundaries have the distance
√
T + ‖∇ρ0‖∞T to their counterparts

in Q0.
In the simulations described in section 6 the initial state ρ0 is always a weighted

superposition of Gaussian densities. In these cases it is particularly easy to determine
Q0 and ‖∇ρ0‖∞ in terms of the weights, the centers, and the standard deviations of
the various Gaussians, and then to guess Q in the way sketched above.

We note that in some sense the quantity 1 − ε may be considered as a measure
for the fraction of the particle-mesh method within our procedure; cf. Remark 1(ii)
in section 2.

(vii) The cut-off step (2.8) for the negative drift DN,δ,h,θ(,τ) acting on the particles
appears as a technical tool in the proofs of Proposition 1 and Theorem 2. In particular,
for the estimation of the terms on the right side of (4.4) it will be useful that uniformly
in N ∈ N, δ < δ0, h > 0, θ > θ0 (and τ > 0) the drift is bounded. Later on, in the

simulations described in section 6 the vector −D̂N,δ,h,θ(,τ) introduced in (2.6), (2.7),
and the associated paragraph is employed as drift; i.e., (2.8) is omitted.

4. Proofs. In this section we present the main parts of the proofs. Several
auxiliary results will be provided in section 5.

4.1. Proof of Proposition 1. To simplify our considerations we temporarily
concentrate on the proof of (a); i.e., we suppose that in the determination of the
negative drift DN,δ,h,θ acting on the particles the adaption step (C) in section 2 is not
performed.

Essentially, we now proceed in a similar way as in [13] or [14]. In particular,
we shall employ the integro-differential equation (3.16) for ρθ and the stochastic dif-
ferential equations (2.18) for the positions Y kN,δ,h,θ(.), k = 1, . . . , N , of the particles
together with Itô’s formula, cf. [9], to write down an equation describing the time
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evolution of the stochastic process t → ‖(YN,δ,h,θ(t) − ρθ(., t)) ∗ φrθ‖22. As a result,
with (2.1) and (3.10) we get

‖(YN,δ,h,θ(t)−ρθ(., t)) ∗ φrθ‖22(4.1)

=
〈
YN,δ,h,θ(t) ∗ φrθ,YN,δ,h,θ(t) ∗ φrθ

〉
− 2

〈
YN,δ,h,θ(t) ∗ φrθ, ρθ(., t) ∗ φrθ

〉
+

〈
ρθ(., t) ∗ φrθ, ρθ(., t) ∗ φrθ

〉
=

1

N2

N∑
k,l=1

φθ
(
Y kN,δ,h,θ(t)− Y lN,δ,h,θ(t)

)

− 2

N

N∑
k=1

(
ρθ(., t) ∗ φθ

)
(Y kN,δ,h,θ(t)) +

〈
ρθ(., t), ρθ(., t) ∗ φθ

〉
= ‖(YN,δ,h,θ(0)− ρ0) ∗ φrθ‖22

−
∫ t

0

ds
2

N2

N∑
k,l=1

∇φθ
(
Y kN,δ,h,θ(s)−Y lN,δ,h,θ(s)

)·DN,δ,h,θ(Y kN,δ,h,θ(
s�h), 
s�h)

+

∫ t

0

ds
1

N2

∑
k,l=1,...,N

k �=l

∆φθ
(
Y kN,δ,h,θ(s)− Y lN,δ,h,θ(s)

)

+

∫ t

0

2

N2

N∑
k,l=1

∇φθ
(
Y kN,δ,h,θ(s)− Y lN,δ,h,θ(s)

) · dW k(s)

+

∫ t

0

ds
2

N

N∑
k=1

∇(
ρθ(., s) ∗ φθ

)
(Y kN,δ,h,θ(s)) ·DN,δ,h,θ

(
Y kN,δ,h,θ(
s�h), 
s�h

)

−
∫ t

0

ds
1

N

N∑
k=1

∆
(
ρθ(., s) ∗ φθ

)
(Y kN,δ,h,θ(s))

−
∫ t

0

2

N

N∑
k=1

∇(
ρθ(., s) ∗ φθ

)
(Y kN,δ,h,θ(s)) · dW k(s)

+

∫ t

0

ds 2
〈
ρθ(., s),∇(YN,δ,h,θ(s) ∗ φθ) · ∇(ρθ(., s) ∗ φθ)

〉
−

∫ t

0

ds
〈
ρθ(., s),∆(YN,δ,h,θ(s) ∗ φθ)

〉
−

∫ t

0

ds 2
〈
ρθ(., s), |∇(ρθ(., s) ∗ φθ)|2

〉
+

∫ t

0

ds
〈
ρθ(., s),∆(ρθ(., s) ∗ φθ)

〉
,

0 ≤ t ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.

To determine an upper bound for the right side of (4.1) we collect the various terms
in several groups.

First, we deduce for the terms which contain the Laplace operator and therefore
represent the deterministic contributions of the Brownian motions the relation

1

N2

∑
k,l=1,...,N

k �=l

∆φθ
(
Y kN,δ,h,θ(s)− Y lN,δ,h,θ(s)

)− 1

N

N∑
k=1

∆
(
ρθ(., s) ∗ φθ

)
(Y kN,δ,h,θ(s))(4.2)

− 〈
ρθ(., s),∆(YN,δ,h,θ(s) ∗ φθ)

〉
+

〈
ρθ(., s),∆(ρθ(., s) ∗ φθ)

〉
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=
〈
YN,δ,h,θ(s),∆(YN,δ,h,θ(s)∗φθ)

〉− 1

N
∆φθ(0)−

〈
YN,δ,h,θ(s),∆(ρθ(., s)∗φθ)

〉
− 〈

ρθ(., s),∆(YN,δ,h,θ(s) ∗ φθ)
〉
+

〈
ρθ(., s),∆(ρθ(., s) ∗ φθ)

〉
= − 〈∇(YN,δ,h,θ(s) ∗ φrθ),∇(YN,δ,h,θ(s) ∗ φrθ)〉− θ4

N
∆φ1(0)

+ 2
〈∇(YN,δ,h,θ(s)∗φrθ),∇(ρθ(., s)∗φrθ)〉− 〈∇(ρθ(., s)∗φrθ),∇(ρθ(., s)∗φrθ)〉

= − ‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22 +
θ4

N

∫
R2

dz |∇φr1(z)|2,
0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0,

where we have utilized in particular (1.8), (3.1), (3.2), (3.10), and (3.12).

Next, following (2.8) we introduce the notation

∇(K)f(y)=



∇f(y)
|∇f(y)| min{K, |∇f(y)|} if |∇f(y)| �=0,

0 if |∇f(y)|=0,

y∈R
2, f ∈C1

b (R
2),(4.3)

where the constant K is characterized by (3.15).

Now, collecting those terms on the right side of (4.1), which are related to the
interaction, we get

− 2

N2

N∑
k,l=1

∇φθ
(
Y kN,δ,h,θ(s)− Y lN,δ,h,θ(s)

) ·DN,δ,h,θ(Y kN,δ,h,θ(
s�h), 
s�h)(4.4)

+
2

N

N∑
k=1

∇(
ρθ(., s) ∗ φθ

)
(Y kN,δ,h,θ(s)) ·DN,δ,h,θ

(
Y kN,δ,h,θ(
s�h), 
s�h

)
+ 2

〈
ρθ(., s),∇(YN,δ,h,θ(s)∗φθ)·∇(ρθ(., s)∗φθ)

〉−2〈ρθ(., s), |∇(ρθ(., s)∗φθ)|2〉
=

2

N

N∑
k=1

∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))
· (DN,δ,h,θ(Y kN,δ,h,θ(
s�h), 
s�h)−∇(K)

(
YN,δ,h,θ(
s�h)∗φθ

)
(Y kN,δ,h,θ(
s�h))

)
+

2

N

N∑
k=1

∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))
·(∇(K)

(
YN,δ,h,θ(
s�h) ∗ φθ

)
(Y kN,δ,h,θ(
s�h))
−∇(K)

(
YN,δ,h,θ(s) ∗ φθ

)
(Y kN,δ,h,θ(s))

)
+

2

N

N∑
k=1

∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))
·∇(K)

((
YN,δ,h,θ(s)− ρθ(., s)

) ∗ φθ)(Y kN,δ,h,θ(s))
+

2

N

N∑
k=1

∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))
·(∇(K)(ρθ(., s) ∗ φθ)−∇(ρθ(., s) ∗ φθ)

)
(Y kN,δ,h,θ(s))

+ 2
〈
YN,δ,h,θ(s)− ρθ(., s),∇

((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ) · ∇(ρθ(., s) ∗ φθ)〉
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=

5∑
j=1

AjN,δ,h,θ(s), 0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.

In the subsequent calculations we shall determine upper bounds for AjN,δ,h,θ, j =
1, . . . , 5.

For A1
N,δ,h,θ we obtain

|A1
N,δ,h,θ(s)| ≤

2

N

N∑
k=1

∣∣∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))∣∣(4.5)

∥∥DN,δ,h,θ(., 
s�h)−∇(K)(YN,δ,h,θ(
s�h) ∗ φθ)
∥∥
∞

= 2
〈
YN,δ,h,θ(s), |∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φθ)|

〉
∥∥DN,δ,h,θ(., 
s�h)−∇(K)(YN,δ,h,θ(
s�h) ∗ φθ)

∥∥
∞.

By (3.10) and (3.17) the first factor on the right side of (4.5) can be estimated as〈
YN,δ,h,θ(s),|∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φθ)|

〉
(4.6)

≤ 〈
YN,δ,h,θ(s), φ

r
θ ∗ |∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φrθ)|

〉
≤ ‖YN,δ,h,θ(s) ∗ φrθ‖2‖∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φrθ)‖2
≤ (‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖2 + 1

)‖∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φrθ)‖2.
On the other hand, by (1.8), (2.1), (2.6)–(2.8), (3.1), (3.2), (3.12), (4.3), and Lemma 3
we also obtain∥∥DN,δ,h,θ(., 
s�h)−∇(K)(YN,δ,h,θ(
s�h) ∗ φθ)

∥∥
∞(4.7)

≤ ∥∥D̂N,δ,h,θ(., 
s�h)−∇(YN,δ,h,θ(
s�h) ∗ φθ)∥∥∞
≤ Cδ‖∇⊗2(YN,δ,h,θ(
s�h) ∗ φθ)‖∞
≤ Cδθ4.

Hence, as a summary of (4.5)–(4.7) we deduce

|A1
N,δ,h,θ(s)| ≤ Cδ2θ8

(‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖22 + 1
)

(4.8)

+
1

8
‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22,

0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.

We note that (4.7) is the only estimate which has to be modified when the adaption
step (C) in section 2 is included in our algorithm, i.e., when part (b) of Proposition 1
is proved. In that case we will have to take into account in particular the second part
of (5.2).

Next, we turn to the estimation of |A2
N,δ,h,θ|. By (1.8), (3.10), (3.12), and (4.3)we

obtain

|A2
N,δ,h,θ(s)|(4.9)

≤ 2

N

N∑
k=1

∣∣∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))∣∣
∣∣∇(

YN,δ,h,θ(
s�h) ∗ φθ
)
(Y kN,δ,h,θ(
s�h))

−∇(
YN,δ,h,θ(s)∗φθ

)
(Y kN,δ,h,θ(s))

∣∣
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=
2

N

N∑
k=1

∣∣∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))∣∣
∣∣∣∣∣ 1N

N∑
l=1

(
∇φθ

(
Y kN,δ,h,θ(
s�h)− Y lN,δ,h,θ(
s�h)

)

−∇φθ
(
Y kN,δ,h,θ(s)− Y lN,δ,h,θ(s)

))∣∣∣∣∣
≤ Cθ4 1

N2

N∑
k,l=1

∣∣∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))∣∣(|Y kN,δ,h,θ(
s�h)−Y kN,δ,h,θ(s)|+ |Y lN,δ,h,θ(
s�h)−Y lN,δ,h,θ(s)|)
≤ Cθ4

∫
R2

dx
∣∣∇((

ρθ(., s)− YN,δ,h,θ(s)
) ∗ φrθ)(x)∣∣|γN,δ,h,θ(x, s)|

≤ Cθ4‖∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φrθ)‖2‖γN,δ,h,θ(., s)‖2,
where

γN,δ,h,θ(x, s) =
1

N2

N∑
k,l=1

φrθ
(
x− Y kN,δ,h,θ(s)

)(|Y kN,δ,h,θ(
s�h)− Y kN,δ,h,θ(s)|

+ |Y lN,δ,h,θ(
s�h)− Y lN,δ,h,θ(s)|
)
.

Equation (3.10) yields

E
[‖γN,δ,h,θ(., s)‖22](4.10)

= E

[
1

N4

N∑
k,k′,l,l′=1

φθ
(
Y kN,δ,h,θ(s)− Y k

′
N,δ,h,θ(s)

)
(|Y kN,δ,h,θ(
s�h)−Y kN,δ,h,θ(s)|+|Y lN,δ,h,θ(
s�h)−Y lN,δ,h,θ(s)|)(|Y k′N,δ,h,θ(
s�h)−Y k′N,δ,h,θ(s)|+|Y l′N,δ,h,θ(
s�h)−Y l′N,δ,h,θ(s)|)

]

=
1

N4

N∑
k,k′,l,l′=1

E

[
φθ

(
Y kN,δ,h,θ(s)− Y k

′
N,δ,h,θ(s)

)
(|Y kN,δ,h,θ(
s�h)−Y kN,δ,h,θ(s)|+|Y lN,δ,h,θ(
s�h)−Y lN,δ,h,θ(s)|)(|Y k′N,δ,h,θ(
s�h)−Y k′N,δ,h,θ(s)|+|Y l′N,δ,h,θ(
s�h)−Y l′N,δ,h,θ(s)|)]

≤ 2

N3

N∑
k,k′,l=1

E

[
E

[
φθ

(
Y kN,δ,h,θ(s)− Y k

′
N,δ,h,θ(s)

)
(|Y kN,δ,h,θ(
s�h)− Y kN,δ,h,θ(s)|2

+|Y lN,δ,h,θ(
s�h)− Y lN,δ,h,θ(s)|2
)∣∣∣F�s�h

]]
.

According to the definition of their dynamics, cf. (2.17) or (2.18), for any triple
(k, k′, l) with k �= k′ �= l �= k the processes Y kN,δ,h,θ, Y

k′
N,δ,h,θ, and Y lN,δ,h,θ have

the form (5.23) in the time interval
[
s�h, 
s�h + h

)
, where their respective neg-

ative drift, namely DN,δ,h,θ(Y
k
N,δ,h,θ(
s�h), 
s�h), DN,δ,h,θ(Y k

′
N,δ,h,θ(
s�h), 
s�h), and
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DN,δ,h,θ(Y
l
N,δ,h,θ(
s�h), 
s�h), is constant. Consequently, (1.8), (2.8), (3.10), (3.12),

(3.17), (4.10), and Lemma 6 imply

E
[‖γN,δ,h,θ(., s)‖22]
≤ Ch

(
exp(2K2T )

N3

∑
k,k′,l=1,...,N

k �=k′

E

[
(φθ ∗ σ2;8(s−�s�h))

(
Y kN,δ,h,θ(
s�h)−Y k

′
N,δ,h,θ(
s�h)

)]

+
φθ(0)

N

)

≤ Ch
(
E
[‖YN,δ,h,θ(
s�h) ∗ φrθ ∗ σ2;4(s−�s�h)‖22

]
+ θ2/N

)
≤ Ch

(
E
[‖(YN,δ,h,θ(
s�h)− ρθ(., 
s�h)) ∗ φrθ‖22

]
+ 1 + θ2/N

)
,

where in the first line of the right side the terms with k = k′ contribute Chφθ(0)/N .
Therefore, (4.9) leads to

E
[|A2

N,δ,h,θ(s)|
] ≤ Chθ8

(
E
[‖(YN,δ,h,θ(
s�h)−ρθ(., 
s�h))∗φrθ‖22]+ 1 + θ2/N

)
(4.11)

+
1

8
E
[‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22

]
,

0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.

Since for any f ∈ C1
b (R

2) and any x ∈ R
2 the vectors ∇f(x) and ∇(K)f(x) are

parallel, cf. (4.3), we immediately observe

A3
N,δ,h,θ(s) ≤ 0, 0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.(4.12)

Moreover, by (3.10) and (3.19), which is a consequence of the particular choice of
the constants K and θ0, we conclude

A4
N,δ,h,θ(s) = 0, 0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.(4.13)

For the estimation of |A5
N,δ,h,θ(s)| we may employ Lemma 5 in the case d = 2,

L = k, κ = φr1, and κθ = φrθ. In this situation the assumptions (5.9), (5.11), (5.13),
and (5.14) are satisfied by (3.2), (3.6), (3.7), and (3.9). Additionally, we also choose
µ(dx) = YN,δ,h,θ(s)(dx) − ρθ(x, s)dx, h = ∇((ρθ(., s) − YN,δ,h,θ(s)) ∗ φrθ), and g =
∇ρθ(., s) ∗ φθ. Although both g and h are R

2-valued now, Lemma 5 may still be
applied. In particular, with (2.1), (3.10), and (3.17) we obtain

|A5
N,δ,h,θ(s)|(4.14)

≤ C

(
‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖2

k−1∑
l=0

θ−l‖∇⊗(l+1)ρθ(., s) ∗ φθ‖∞

+ θ1−k
∫

R2

{
YN,δ,h,θ(s)(dx)+ρθ(x, s)dx

}‖∇⊗(k+1)ρθ(., s)∗φθ‖∞
)

‖∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φrθ)‖2
≤ C

(‖(YN,δ,h,θ(s)−ρθ(., s))∗φrθ‖2+θ1−k)‖∇((YN,δ,h,θ(s)−ρθ(., s))∗φrθ)‖2
≤ C

(‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖22 + θ2(1−k))
+

1

8
‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22,

0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.
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Now, since we have completed the derivation of an upper bound for the right side
of (4.4), we turn to those terms on the right side of (4.1) which explicitly contain
the Brownian motions W 1,W 2, . . .. For those contributions Doob’s inequality, cf. [9],
(2.1), (3.2), (3.9), and (3.10) imply

E

[
sup
s≤t

∣∣∣∣
∫ s

0

2

N2

N∑
k,l=1

∇φθ
(
Y kN,δ,h,θ(u)− Y lN,δ,h,θ(u)

) · dW k(u)(4.15)

−
∫ s

0

2

N

N∑
k=1

∇(ρθ(., u) ∗ φθ)(Y kN,δ,h,θ(u)) · dW k(u)

∣∣∣∣
]

= E

[
sup
s≤t

∣∣∣∣
∫ s

0

2

N

N∑
k=1

∇(
(YN,δ,h,θ(u)−ρθ(., u))∗φθ

)
(Y kN,δ,h,θ(u))·dW k(u)

∣∣∣∣
]

≤ C√
N

(
E

[∫ t

0

ds
1

N

N∑
k=1

∣∣∇(
(YN,δ,h,θ(s)−ρθ(., s))∗φθ

)
(Y kN,δ,h,θ(s))

∣∣2])1/2

=
C√
N

(∫ t

0

ds E
[〈

YN,δ,h,θ(s), |∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φθ)|2
〉])1/2

≤ C√
N

(∫ t

0

ds E
[〈

YN,δ,h,θ(s)∗φrθ, |∇((YN,δ,h,θ(s)−ρθ(., s))∗φrθ)|2
〉])1/2

≤C

N
‖φrθ‖∞ +

1

8

∫ t

0

ds E
[‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22

]
≤ C

θ2

N
+

1

8

∫ t

0

ds E
[‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22

]
,

0 ≤ t ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0.

By (4.2), (4.4), (4.8), and (4.11)–(4.15) the estimates for the terms on the right
side of (4.1) are now finished. If the parameters N , δ, h, and θ are restricted to the
set P1, cf. (3.20), and if (3.3) is taken into account, we obtain as a summary

‖(YN,δ,h,θ(t)− ρθ(., t)) ∗ φrθ‖22
≤ ‖(YN,δ,h,θ(0)− ρ0) ∗ φrθ‖22 + C

(
θ4

N
+ δ2θ8 + θ2(1−k)

)

− 3

4

∫ t

0

ds ‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22

+ C

∫ t

0

ds ‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖22 +
∫ t

0

ds |A2
N,δ,h,θ(s)|

+ sup
s≤t

∣∣∣∣
∫ s

0

2

N

N∑
k=1

∇(
(YN,δ,h,θ(u)− ρθ(., u)) ∗ φθ

)
(Y kN,δ,h,θ(u)) · dW k(u)

∣∣∣∣,
0 ≤ t ≤ T, (N, δ, h, θ) ∈ P1,

and therefore

sup
s≤t

(
‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖22(4.16)

+
3

4

∫ s

0

du ‖∇((YN,δ,h,θ(u)− ρθ(., u)) ∗ φrθ)‖22
)
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≤ ‖(YN,δ,h,θ(0)− ρ0) ∗ φrθ‖22 + C

(
θ4

N
+ δ2θ8 + θ2(1−k)

)

+ C

∫ t

0

ds ‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖22 +
∫ t

0

ds |A2
N,δ,h,θ(s)|

+ sup
s≤t

∣∣∣∣
∫ s

0

2

N

N∑
k=1

∇(
(YN,δ,h,θ(u)−ρθ(., u))∗φθ

)
(Y kN,δ,h,θ(u))·dW k(u)

∣∣∣∣,
0 ≤ t ≤ T, (N, δ, h, θ) ∈ P1.

Next, by (3.20), (4.11), (4.15), and (4.16) we deduce

E

[
sup
s≤t

(
‖(YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ‖22

+
3

4

∫ s

0

du ‖∇((YN,δ,h,θ(u)− ρθ(., u)) ∗ φrθ)‖22
)]

≤ E
[‖(YN,δ,h,θ(0)− ρ0) ∗ φrθ‖22

]
+ C

(
θ4

N
+ (δ2 + h)θ8 + θ2(1−k)

)

+
1

4

∫ t

0

ds E
[‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22

]
+ C

∫ t

0

ds E

[
sup
u≤s

‖(YN,δ,h,θ(u)− ρθ(., u)) ∗ φrθ‖22
]
,

0 ≤ t ≤ T, (N, δ, h, θ) ∈ P1.

Now, by an application of Gronwall’s lemma the relation (3.21) follows.

To prove (b) we have only to check the estimate (4.7) another time, since all re-
maining parts of the proof of (a) are independent of the adaption step (C) in section 2.

In particular, by Lemma 3 and the adaption rule introduced in step (C) in sec-
tion 2 we obtain∥∥D̂N,δ,h,θ,τ (., 
s�h)−∇(YN,δ,h,θ,τ (
s�h) ∗ φθ)∥∥∞(4.17)

≤ C

(
sup

m=1,...,|L(�s�h)|
|κmN,δ,h,θ,τ (
s�h)|+δ2‖∇⊗3(YN,δ,h,θ,τ (
s�h)∗φθ)‖∞

)

≤ C(τ + δ2θ5).

Consequently, with (4.5), (4.6), and the first part of (4.7) we deduce

|A1
N,δ,h,θ,τ (s)| ≤ C(τ2+δ4θ10)

(‖(YN,δ,h,θ,τ (s)−ρθ(., s))∗φrθ‖22 + 1
)

(4.18)

+
1

8
‖∇((YN,δ,h,θ,τ (s)− ρθ(., s)) ∗ φrθ)‖22,

0 ≤ s ≤ T, N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0, τ > 0,

instead of (4.8).

Now, the proof of (b) may be finished in just the same way as that of (a).

4.2. Proof of Theorem 2. As consequence of (3.14), (3.17), and (3.18) we
obtain
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sup
t≤T,θ>θ0

θ2‖∇(ρθ(., t)− ρ(., t))‖22(4.19)

= sup
t≤T,θ>θ0

(−θ2)
〈
∆(ρθ(., t)− ρ(., t)), ρθ(., t)− ρ(., t)

〉
≤ sup
t≤T,θ>θ0

θ2‖∆(ρθ(., t)− ρ(., t))‖∞
〈
ρθ(., t) + ρ(., t), 1

〉
<∞,

and quite similarly

sup
t≤T,θ>θ0

θ2‖ρθ(., t)− ρ(., t)‖22 <∞.(4.20)

By (1.9), (3.17), and Lemma 4 we also observe that

sup
t≤T,θ>θ0

θ4
(‖ρθ(., t)−ρθ(., t)∗φrθ‖22 + ‖∇(ρθ(., t)−ρθ(., t)∗φrθ)‖22) <∞.(4.21)

We note here that the assumptions (5.9) and (5.10), which are needed for an applica-
tion of Lemma 4 in the case κ = φr1, are satisfied by (3.2) and (3.3).

Now, (3.23) follows from (3.5), (3.21), and (4.19)–(4.21), whereas to obtain (3.24)
we have to take into account (3.22) instead of (3.21).

4.3. Some formal improvements. In this subsection we present those formal
considerations, which are mentioned in Remark 3(v) in section 3.

To support our arguments we introduce in R
2 a many-particle system, whose

dynamics is determined by a system of coupled stochastic differential equations like
(1.2), where, however, the interaction is defined in terms of the kernel φθ; cf. (1.8),
instead of φN ; cf. (1.3), (1.4). Obviously, this many-particle system may be described
by empirical processes XN,θ, N ∈ N, θ > 1, which are given in a similar way as in (1.6)
or (2.1). As in (1.7) the convergence limN,θ→∞ XN,θ = ρ may be expected, at least, if
it is ensured that N and θ converge to their common limit ∞ in such a way that the
range of the interaction (= O(θ−1)) is much larger than the typical distance between
neighboring particles (= O(N−1/2)). Moreover, limN,θ→∞ ∂nt ∇⊗m(XN,θ(.) ∗ φθ) =
∂nt ∇⊗mρ, m = 0, 1, 2, 3, n = 0, 1, should also hold. In particular, for m = 0, 1, 2, 3
and n = 0, 1 the functions R

2× [0, T ] ' (x, t)→ ∂nt ∇⊗m(XN,θ(t)∗φθ)(x) are supposed
to be “bounded” uniformly in N ∈ N and θ ( N1/2.

Next, we assume that the empirical processes YN,δ,h,θ(,τ) and XN,θ exhibit similar
regularity properties if the discretization parameters δ and h are sufficiently small.

As a summary of the formal assumptions collected so far we are led to the following
hypothesis:

(HS) The functions R
2 × [0, T ] ' (x, t) → ∂nt ∇⊗m(YN,δ,h,θ(,τ)(t) ∗ φθ)(x),

m = 0, 1, 2, 3, n = 0, 1, are bounded uniformly in (N, δ, h, θ) ∈ P1 (or
(N, δ, h, θ, τ) ∈ P2) and θ ( N1/2.

Since the Brownian motions W 1,W 2, . . ., which are not differentiable, and the
negative drift DN,δ,h,θ(,τ), which as a consequence of the space-time discretization is
even discontinuous, contribute in the particular form determined by (2.1) and (2.18)
to the functions considered in (HS), the regularity properties stated there cannot hold
in a strong, classical sense. However, at least some weak version of (HS) is supposed
to be valid. That should be sufficient for our purposes, since the calculations sketched
below in the remaining part of this subsection are performed in a context, where an
integration over R

2 × [0, t], 0 ≤ t ≤ T , is involved.
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As a first consequence of (HS) we may omit θ4 on the right side of (4.7). Subse-
quently, on the right side of (4.8) the term δ2θ8 may be replaced by δ2.

Next, for the second contribution to the sum constituting the first estimate for
|A2
N,δ,h,θ(s)| in (4.9) we deduce∣∣∇(

YN,δ,h,θ(
s�h) ∗ φθ
)
(Y kN,δ,h,θ(
s�h))−∇

(
YN,δ,h,θ(s) ∗ φθ

)
(Y kN,δ,h,θ(s))

∣∣
≤ ∣∣∇(

YN,δ,h,θ(
s�h)∗φθ
)
(Y kN,δ,h,θ(
s�h))−∇

(
YN,δ,h,θ(
s�h)∗φθ

)
(Y kN,δ,h,θ(s))

∣∣
+

∣∣∇(
YN,δ,h,θ(
s�h) ∗ φθ

)
(Y kN,δ,h,θ(s))−∇

(
YN,δ,h,θ(s) ∗ φθ

)
(Y kN,δ,h,θ(s))

∣∣
= Qk,1N,δ,h,θ(s) +Qk,2N,δ,h,θ(s).

First, the hypothesis (HS) yields Qk,2N,δ,h,θ(s) � Ch. Furthermore, when taking into

account additionally the fact that the processes [v, v + h) ' u → Y kN,δ,h,θ(u), v ∈
Th ∩ [0, T ], k = 1, . . . , N , are diffusion processes with constant drift bounded by K

and diffusion coefficient 1/2, we observe Qk,1N,δ,h,θ(s) ≤ C|Y kN,δ,h,θ(
s�h)−Y kN,δ,h,θ(s)| �
C(
√
h+ h). As a consequence, we may formally replace (4.9) by

|A2
N,δ,h,θ(s)| �

C
√
h

N

N∑
k=1

∣∣∇((
ρθ(., s)− YN,δ,h,θ(s)

) ∗ φθ)(Y kN,δ,h,θ(s))∣∣
≤ C

√
h
〈
YN,δ,h,θ(s) ∗ φrθ, |∇((ρθ(., s)− YN,δ,h,θ(s)) ∗ φrθ)|

〉
≤ Ch‖YN,δ,h,θ(s) ∗ φrθ‖22 +

1

8
‖∇((YN,δ,h,θ(s)− ρθ(., s)) ∗ φrθ)‖22.

Hence, on a formal level in (4.11) the factor θ8 may be omitted.
By the modifications of (4.8) and (4.11) discussed so far we now can conclude

that (3.30) may formally be used instead of (3.23).
In the case, where the adaption step (C) in section 2 is performed, we may utilize

(HS) to omit on the right sides of (4.17) and (4.18) the factors θ5 and θ10, respectively.
Since the remaining estimates are independent of the adaption step, the arguments
leading to (3.30), (3.31) have to be modified only slightly to deduce (3.32), (3.33).

5. Some auxiliary results. The present section contains some auxiliary results,
which are needed in the calculations of section 4. Apart from Lemma 3 those results
are both formulated and proved essentially independently of the dimension; i.e., they
are discussed for arbitrary R

d, d ≥ 1.
First, we study the approximation of the gradient of some smooth function f :

R
2 → R by expressions like those on the right side of (2.7). On the one hand, the

quality of that approximation is estimated in terms of ‖∇⊗2f‖∞. On the other hand,
if the components of the tensor ∇⊗2f are replaced by discrete approximations like
those introduced in step (E) in section 2, an estimate involving ‖∇⊗3f‖∞ and an
expression like κ.N,δ,h,θ,τ (.), cf. (2.16), is obtained.

For the subsequent considerations we choose some region Q ⊆ R
2 and a discretiza-

tion parameter δ ∈ (0, δ0) according to steps (A) and (B) in section 2. We also select
a rectangle R = Rm in L0 or any of its refinements, which are constructed according
to step (C) in section 2. As indicated in section 2, Figure 1, and discussed in steps (B)
and (C) in section 2, some points A = Am, B = Bm, C = Cm, D = Dm, M = Mm

and some triangles ∆1 = ∆m1 , ∆2 = ∆m2 , ∆3 = ∆m3 , ∆4 = ∆m4 are associated with R.
Moreover, the width of R in x1- (x2-) direction is denoted by S1 = Sm1 (S2 = Sm2 ).
We note that S1 and S2 satisfy (2.5).



SIMULATION BY A PARTICLE METHOD 1747

Let f ∈ C1
b (R

2) and x ∈ R. Similarly as in (2.7) we introduce an approximation

∇̂Rf(x) to ∇f(x) in terms of f(A), f(B), f(C), f(D), and f(M). More precisely, we
define

∇̂Rf(x) =




(
f(B)− f(A)

S1
,
f(A) + f(B)− 2f(M)

S2

)T
if x ∈ ∆1,(

f(B) + f(C)− 2f(M)

S1
,
f(B)− f(C)

S2

)T
if x ∈ ∆2,(

f(C)− f(D)

S1
,
2f(M)− f(C)− f(D)

S2

)T
if x ∈ ∆3,(

2f(M)− f(A)− f(D)

S1
,
f(A)− f(D)

S2

)T
if x ∈ ∆4.

(5.1)

If f ∈ C2
b (R

2), we may also apply the considerations in step (E) in section 2 to
determine approximations to the components of the tensor ∇⊗2f(x), x ∈ R, which
quite similarly as in (2.9)–(2.14) involve only f(A), f(B), f(C), f(D), f(M), and
f(G), G ∈ G, where G is a set of corners of some rectangles, which are adjacent to
R. The absolute value of the product of such an approximation to some component
of ∇⊗2f(x), x ∈ R, with

√
S1S2 is bounded above by a quantity κR(f) defined by an

immediate analogue of the right side of (2.16). Since a detailed description of κR(f)
would amount to a more or less literal repetition of the considerations between the
paragraph before (2.15) and (2.16), it is omitted here.

Now, we may state our estimates on the error, which is associated with the ap-
proximation of ∇ by ∇̂R.

Lemma 3. Let R be some rectangle as discussed above. Moreover, for f : R
2 → R

let ∇̂Rf and κR(f) be determined by (5.1) and the considerations in the subsequent
paragraph. Then,

sup
x∈R

|∇f(x)−∇̂Rf(x)| ≤



C‖∇⊗2f‖∞δ if f ∈ C2
b (R

2),

CκR(f) + C ′‖∇⊗3f‖∞δ2 if f ∈ C3
b (R

2),
(5.2)

where the constants C and C ′ are independent of R and f .
Proof. For f ∈ C2

b (R
2) and x ∈ R the values f(A), f(B), f(C), f(D), and f(M)

may be obtained by a Taylor expansion of f at x. For example,

f(A) = f(x) + (A− x) · ∇f(x)(5.3)

+
1

2

2∑
i,j=1

(Ai − xi)(Aj − xj)∇i∇jf
(
x+ ϑ(A, x, f)(A− x)

)
,

where 0 ≤ ϑ(. . .) ≤ 1. Employing (5.3) and a corresponding expression for f(B) in
the case where x ∈ ∆1 we immediately get

f(B)−f(A)
S1

=
f(B)−f(A)
B1 −A1

=
1

B1−A1
(B−A)·∇f(x) + g1(A,B, x, f) = ∇1f(x) + g1(A,B, x, f)

with

|g1(A,B, x, f)| ≤ 2
|A− x|2 + |B − x|2

S1
‖∇⊗2f‖∞ ≤ Cδ‖∇⊗2f‖∞,
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where (2.5) is also used. For x ∈ ∆1 we additionally observe

f(A) + f(B)− 2f(M)

S2
= ∇2f(x) + g2(A,B,M, x, f),

where |g2(A,B,M, x, f)| ≤ Cδ‖∇⊗2f‖∞. These relations and analogues for the re-
maining cases x ∈ ∆2, x ∈ ∆3, x ∈ ∆4 on the right side of (5.1) prove the first part
of (5.2).

If f ∈ C3
b (R

2) and x ∈ R, as an extension of (5.3) the relation

f(A) = f(x) + (A− x) · ∇f(x) + 1

2

2∑
i,j=1

(Ai − xi)(Aj − xj)∇i∇jf(x)(5.4)

+
1

6

2∑
i,j,k=1

(Ai−xi)(Aj−xj)(Ak−xk)∇i∇j∇kf
(
x+ϑ′(A, x, f)(A−x))

with 0 ≤ ϑ′(. . .) ≤ 1 holds. With a similar expansion for f(B) and by taking into
account (2.5) we now deduce

f(B)− f(A)

S1
=

f(B)− f(A)

B1 −A1
(5.5)

= ∇1f(x)+
1

2(B1−A1)

2∑
i,j=1

(
(Bi−xi)(Bj−xj)−(Ai−xi)(Aj−xj)

)∇i∇jf(x)
+ g3(A,B, x, f), x ∈ ∆1,

where

|g3(A,B, x, f)| ≤ Cδ2‖∇⊗3f‖∞, x ∈ ∆1.(5.6)

The partial derivatives ∇i∇jf(.) in (5.5) may be approximated by expressions like
those introduced on the right sides of (2.9)–(2.12). For example, suppose i = j = 1.
The considerations in the paragraph preceding (2.15) demonstrate that there exists at
least one η1 in the set X = Xm associated with R = Rm such that Pη1 ,Mη1 , Eη1 ∈ Θη1
are contained in a line parallel to the x1-axis; i.e., for the x2-coordinates of these
points the relations Pη1,2 = Mη1,2 = Eη1,2 hold. Moreover, Mη1 is contained in the
closure of R. For convenience we may also suppose Pη1,1 < Mη1,1 < Eη1,1 for the
x1-coordinates. Then by choosing x = Mη1 in (5.4) and furthermore A = Pη1 and
A = Eη1 , respectively, and by employing (2.5) we deduce

1

(Mη1,1 − Pη1,1)(Eη1,1 −Mη1,1)
(5.7) (

Eη1,1 −Mη1,1

Eη1,1 − Pη1,1
f(Pη1) +

Mη1,1 − Pη1,1
Eη1,1 − Pη1,1

f(Eη1)− f(Mη1)

)

=
1

2
∇1∇1f(Mη1) + g11(Pη1 ,Mη1 , Eη1 , f)

with

|g11(Pη1 ,Mη1 , Eη1 , f)| ≤ Cδ‖∇⊗3f‖∞.(5.8)
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Further relations corresponding to (5.7), (5.8) may be deduced for (i, j) �= (1, 1),
where again (2.9)–(2.12) are used as a guide. As indicated in the paragraph after
(5.1) the respective products of the left sides of (5.7) and its analogues with

√
S1S2

are bounded by a multiple of κR(f). Hence, with (2.5), (5.1), (5.5), (5.6) and since
supx∈∆1

|∇⊗2f(x)−∇⊗2f(Mη1)| ≤ Cδ‖∇⊗3f‖∞ we obtain

sup
x∈∆1

|∇1f(x)− ∇̂R,1f(x)| ≤ CκR(f) + C ′‖∇⊗3f‖∞δ2,

where ∇̂R,1f is the x1-component of ∇̂Rf .
By repeating now the considerations after (5.4) for (f(A) + f(B) − 2f(M))/S2

instead of (f(B)−f(A))/S1 and then for x ∈ ∆2,∆3,∆4 the verification of the second
part of (5.2) may be finished.

Next, we provide estimates for the distance between some smooth function and
its convolutions with kernels like φθ or φ

r
θ.

Lemma 4. Let κ be some symmetric probability density on R
d; i.e.,

κ ≥ 0,

∫
Rd

dx κ(x) = 1, κ(−x) = κ(x), x ∈ R
d,(5.9)

which satisfies

κ̃ ∈ C2
b (R

d),(5.10)

and let

κθ(x) = θdκ(θx), x ∈ R
d, θ > 1,(5.11)

be a family of rescaled versions of κ.
Then, we get

‖f − f ∗ κθ‖2 ≤ Cθ−2‖∆f‖2‖∇⊗2κ̃‖∞, f ∈ H2
2 (R

d),(5.12)

where the constant C is independent of f and κ.
Proof. Assumptions (5.9)–(5.11) yield

‖f − f ∗ κθ‖22 =
∫

Rd

dλ |f̃(λ)|2|1− (2π)d/2κ̃θ(λ)|2

=

∫
Rd

dλ |f̃(λ)|2|1− (2π)d/2κ̃(λ/θ)|2

= (2π)d
∫

Rd

dλ |f̃(λ)|2
∣∣∣κ̃(0)− (

κ̃(0) +
1

θ
λ · ∇κ̃(0)

+
1

2θ2

d∑
i,j=1

λiλj∇i∇j κ̃(η(λ, θ)λ/θ)
)∣∣∣2,

where 0 ≤ η(. . .) ≤ 1. As a consequence of the symmetry of κ, cf. (5.9), we get
∇κ̃(0) = 0, and therefore

‖f − f ∗ κθ‖22 ≤ Cθ−4‖∇⊗2κ̃‖2∞
∫

Rd

dλ |f̃(λ)|2|λ|4,

which proves (5.12).
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For the estimation of A5
N,δ,h,θ(s), cf. (4.4), we have to study an expression like

〈µ, (h ∗ φrθ)g〉, µ ∈M(R2), h ∈ L2(R2), g ∈ C∞
b (R2),

where φrθ, θ > 1, is the family of convolution kernels introduced in (3.9) by using
the function φr1, which in particular satisfies (3.2) and (3.4)–(3.7). As demonstrated
by Lemma 5 the absolute value of such expressions may be estimated from above in
terms of ‖h‖2, L∞-norms of partial derivatives of g, the L2-norm of the regularization
µ ∗ φrθ of µ, and the total variation |µ|(R2) of µ. We note that some slightly different
variant of Lemma 5 can be found in [15, section 4 (ii)].

Lemma 5. Suppose that κ and κθ, θ > 1, satisfy (5.9) and (5.11) and let L ∈
{�d/2�, �d/2�+ 1, . . .} be fixed. Moreover, assume that the functions

V lk1,...,kd(x) = (−1)k1+···+kd x
k1
1 . . . xkdd
k1! . . . kd!

κ(x),

k1, . . . , kd = 0, . . . , L, 0 ≤ l = k1 + · · ·+ kd ≤ L, x ∈ R
d,

satisfy∣∣∣∣ ˜V lk1,...,kd(λ)

∣∣∣∣ ≤ C|κ̃(λ)|,(5.13)

k1, . . . , kd=0, . . . , L−1, 1≤ l=k1+ · · ·+kd≤L−1, λ∈R
d,

and

|V Lk1,...,kd(x)| ≤ C

(
1

1 + |x|d+1

)1/2

,(5.14)

k1, . . . , kd = 0, . . . , L, k1 + · · ·+ kd = L, x ∈ R
d.

Then,

〈µ, (h ∗ κθ)g〉 = 〈µ ∗ κθ, hg〉+Rκ,θ,L(µ, h, g),

µ ∈M(Rd), h ∈ L2(Rd), g ∈ CLb (R
d), θ > 1,

where

|Rκ,θ,L(µ, h, g)| ≤ C

(
‖µ∗κθ‖2

L−1∑
l=1

θ−l‖∇⊗lg‖∞ + θ(d/2)−L|µ|(Rd)‖∇⊗Lg‖∞
)
‖h‖2,

µ ∈M(Rd), h ∈ L2(Rd), g ∈ CLb (R
d), θ > 1.

Proof. Similarly as in [15, section 4 (ii)], we first observe that

〈µ, (h ∗ κθ)g〉 =
〈
µ,

∫
Rd

dz κθ(z)h(.− z)g(.)

〉
(5.15)

=

〈
µ,

∫
Rd

dz κθ(z)

{
g(.−z) +

L−1∑
l=1

∑
s1,...,sd=0,...,l

s1+···+sd=l

zs11 . . . zsdd
s1! . . . sd!

∇s11 . . .∇sdd g(.−z)

+
∑

s1,...,sd=0,...,L

s1+···+sd=L

zs11 . . . zsdd
s1! . . . sd!

∇s11 . . .∇sdd g(.−z+ϑ(., z)z)
}
h(.−z)

〉
,
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where |ϑ(. . .)| ≤ 1. In (5.15) we may rearrange the brackets and the integral. Conse-
quently, we get

〈µ, (h∗κθ)g〉 =
L−1∑
l=0

∑
s1,...,sd=0,...,l

s1+···+sd=l

Rlθ;s1,...,sd(µ, h, g) +
∑

s1,...,sd=0,...,L

s1+···+sd=L

R∗,L
θ;s1,...,sd

(µ, h, g),(5.16)

where

Rlθ;s1,...,sd(µ, h, g) =
〈
µ ∗ V lθ;s1,...,sd , h∇s11 . . .∇sdd g

〉
,(5.17)

R∗,L
θ;s1,...,sd

(µ, h, g)(5.18)

=

〈
µ,

∫
Rd

dz κθ(z)
zs11 . . . zsdd
s1! . . . sd!

∇s11 . . .∇sdd g(.− z + ϑ(., z)z)h(.− z)

〉
,

with

V lθ;s1,...,sd(x) = θd−lV ls1,...,sd(θx), x ∈ R
d.(5.19)

Of course, in (5.17)–(5.19) the respective range of l and s1, . . . , sd is determined by
(5.15) and (5.16).

For l = 0 we also have s1 = . . . = sd = 0. Since V 0
θ;0,...,0(x) = θdV 0

0,...,0(θx) =
κθ(x), we deduce

R0
θ;0,...,0(µ, h, g) = 〈µ ∗ κθ, hg〉(5.20)

in this case. Next, for l = 1, . . . , L− 1 we get

|Rlθ;s1,...,sd(µ, h, g)| ≤ ‖µ ∗ V lθ;s1,...,sd‖2‖h‖2‖∇s11 . . .∇sdd g‖∞.

Since (5.11), (5.13), and (5.19) yield

‖µ ∗ V lθ;s1,...,sd‖22 = (2π)d
∫

Rd

dλ |µ̃(λ)|2
∣∣∣∣ ˜V lθ;s1,...,sd(λ)

∣∣∣∣
2

=
(2π)d

θ2l

∫
Rd

dλ |µ̃(λ)|2
∣∣∣∣ ˜V ls1,...,sd(λ/θ)

∣∣∣∣
2

≤ C

θ2l

∫
Rd

dλ |µ̃(λ)|2|κ̃(λ/θ)|2 ≤ C

θ2l
‖µ ∗ κθ‖22,

we obtain

|Rlθ;s1,...,sd(µ, h, g)| ≤
C

θl
‖µ ∗ κθ‖2‖h‖2‖∇⊗lg‖∞, l = 1, . . . , L− 1.(5.21)

From (5.9), (5.11), (5.14), (5.18), and (5.19) we finally derive

|R∗,L
θ;s1,...,sd

(µ, h, g)|(5.22)

≤
〈
|µ|,

∫
Rd

dz κθ(z)
|z1|s1 . . . |zd|sd
s1! . . . sd!

|h(.− z)|
〉
‖∇s11 . . .∇sdd g‖∞

≤ 〈|µ| ∗ |V Lθ;s1,...,sd |, |h|〉‖∇⊗Lg‖∞
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≤ ‖∇⊗Lg‖∞
∫

Rd

|µ|(dx)
∫

Rd

dy |V Lθ;s1,...,sd(y − x)||h(y)|

≤ Cθd−L‖∇⊗Lg‖∞
∫

Rd

|µ|(dx)
∫

Rd

dy

(
1

1 + (θ|y − x|)d+1

)1/2

|h(y)|

≤ Cθd−L‖∇⊗Lg‖∞
∫

Rd

|µ|(dx)
∥∥∥∥
(

1

1 + (θ|.− x|)d+1

)1/2∥∥∥∥
2

‖h‖2

≤ Cθ(d/2)−L‖∇⊗Lg‖∞|µ|(Rd)‖h‖2.
Equations (5.16) and (5.20)–(5.22) suffice to complete the proof of Lemma 5.

In our estimate of A2
N,δ,h,θ(s); cf. (4.4), the term ‖γN,δ,h,θ(., s)‖2 appears; cf. (4.9).

As indicated in (4.10), to determine an upper bound of that quantity an estimate for
some particular functional of three independent diffusion processes with constant drift
and diffusion matrix is needed. This estimate is provided now.

Lemma 6. Let

Xj(t) = xj +Djt+Bj(t), t ≥ 0, j = 1, 2, 3,(5.23)

where x1, x2, x3, D1, D2, D3 ∈ R
d, and B1, B2, B3 are independent, standard Brown-

ian motions in R
d. Then, for any positive ψ ∈ L1(Rd) we get

E
[
ψ(X1(t)−X2(t))(Xn(t)− xn)2

]
≤ C(d)t exp

( t
2

(|D1|2+|D2|2+|D3|2))(ψ∗σd;8t)(x1−x2), t≥0, n=1, 2, 3.

Proof. The family of transition densities for the standard Brownian motion in
R
d is given by {σd;s(.) : s > 0}. These kernels can also be used to describe the time

evolution of the processes Xj , j = 1, 2, 3, which obviously are obtained from B1, B2

and B3, respectively, by a simple transformation. In particular, for any n = 1, 2, 3 we
get

E
[
ψ(X1(t)−X2(t))(Xn(t)− xn)2

]
=

1

(2πt)3d/2

∫
Rd

dz1

∫
Rd

dz2

∫
Rd

dz3 ψ(z1 − z2)(zn − xn)2

exp

(
− (x1−z1+D1t)2

2t

)
exp

(
− (x2−z2+D2t)2

2t

)
exp

(
− (x3−z3+D3t)2

2t

)

≤ 1

(2πt)3d/2
exp

(
t

2

(|D1|2 + |D2|2 + |D3|2))∫
Rd

dz1

∫
Rd

dz2

∫
Rd

dz3 ψ(z1 − z2)(zn − xn)2

exp

(
− (x1 − z1)2

4t

)
exp

(
− (x2 − z2)2

4t

)
exp

(
− (x3 − z3)2

4t

)

≤ exp

(
t

2

(|D1|2 + |D2|2 + |D3|2)) t

(2πt)3d/2
sup
y∈Rd

(
y2 exp

(
−y

2

8

))
∫

Rd

dz1

∫
Rd

dz2

∫
Rd

dz3 ψ(z1 − z2)

exp

(
− (x1 − z1)2

8t

)
exp

(
− (x2 − z2)2

8t

)
exp

(
− (x3 − z3)2

8t

)
,

which completes the proof of Lemma 6, since σd;α ∗ σd;β = σd;α+β , α, β > 0.
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6. Computer simulations. To illustrate our results summarized in section 3
we now discuss computer simulations of the many-particle system described in sec-
tion 2. First, we present some details of our algorithms in order to explain how the
general description in section 2 is transfered to our computer program. In the sec-
ond subsection the results of our simulations are exhibited, in particular in terms
of three-dimensional visualizations of particle densities and associated approximation
errors. We also add some notes on computational expenses. The final part of this
section contains some remarks on the hardware and software employed to perform the
simulations.

6.1. Algorithmical details. In general, our purpose is to simulate for fixed
parameters N ∈ N, δ ∈ (0, δ0), h > 0, θ > θ0 (and τ > 0) the system (2.17) or
(2.18) describing the individual motion of the particles, to visualize regularizations of
the empirical processes YN,δ,h,θ(,τ)(.), cf. (2.1), and also to compare our results with
the solution ρ of the limit dynamics (1.1). Within our computer program needed for
the simulation we tried to follow the description in section 2 and the assumptions in
section 3.1 as close as possible. A few departures, which are subsequently described,
should have no essential influence on the relevance of our simulation results.

As far as the negative drift DN,δ,h,θ(,τ) acting on the individual particles is con-
cerned, we omit the cut-off step in (2.8). The kernels φθ, θ > θ0, which characterize
the interaction between the particles, cf. (2.6), (2.7), are obtained in our simulations
by the scaling (1.8) from a Gaussian density φ1 with mean 0 and variance 0.5. Obvi-
ously, the natural choice for φr1, cf. (3.1), would then be a centered Gaussian density
with variance 0.25. With these functions φ1 and φr1 the conditions (3.1)–(3.3), (3.7),
and (3.8) are satisfied, whereas (3.6) does not hold. We note that this condition ap-
pears only as a technical ingredient needed for the application of Lemma 5 to prove
(4.14).

Of course, to implement the Gaussian random variables Zk,p, k = 1, . . . , N , p =
0, 1, 2, . . ., in (2.17), which correspond to the increments of the Brownian motions
W 1,W 2, . . . in (2.18), pseudorandom numbers produced by some random number
generator, which is provided by the computer system, are employed.

This random number generator is also applied to determine the initial positions
Y kN,δ,h,θ(,τ)(0), k = 1, . . . , N , of the particles according to the method proposed in

Remark 3(iii) in section 3, i.e., as i.i.d. random variables with density ρ0. Since in all
our simulations the initial state ρ0 of (1.1) is chosen as a weighted superposition of
Gaussian densities that method is particularly convenient.

Furthermore, the choice of the rectangle Q, cf. step (A) and Remark 1(ii) in
section 2, is facilitated for these special initial conditions. In particular, the method
described in Remark 3(vi) in section 3 is utilized here.

For the calculation of κmN,δ,h,θ,τ (ph), which is employed to decide whether a given
rectangle Rm in some mesh L′(ph), cf. step (E) in section 2, should be divided, we do
not follow the line leading to (2.16) quite exactly. More precisely, after interchanging
Sm1 and Sm2 in several places and taking into account (2.5) we finally arrive at a
quantity κ̂mN,δ,h,θ,τ (ph) satisfying C3κ

m
N,δ,h,θ,τ (ph) ≤ κ̂mN,δ,h,θ,τ (ph) ≤ C4κ

m
N,δ,h,θ,τ (ph),

m = 1, . . . , |L′(ph)|, p = 0, 1, 2, . . ., where C3 = C3(Q) and C4 = C4(Q) depend
only on the region Q. Obviously, by (2.3) the use of κ̂.N,δ,h,θ,τ instead of κ.N,δ,h,θ,τ is
essentially equivalent to the replacement of the adaption parameter τ by some τ̂ = Cτ .

To assess the approximation error of our simulation results we also solve the limit
equation (1.1) numerically. Since this way to obtain the solution ρ of (1.1) is not of
particular interest in the present paper, we use an extremely simple algorithm, namely
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an Euler scheme with a finite-difference method to approximate the spatial partial
derivatives. This approach is justified, since the viscous porous medium equation is
a well-behaved partial differential equation for which we also consider only smooth
initial conditions. To obtain a reliable representation of ρ we choose a very fine
discretization both in space and time. In particular, this discretization is much finer
than the discretizations employed for the corresponding particle simulations. In our
numerical solution of (1.1) we completely neglect the mass of ρ outside the rectangle
Q, which anyhow is chosen in such a way that the mass of ρ is concentrated essentially
within Q; cf. Remark 3(vi) in section 3. In particular, we employ Dirichlet conditions
at the boundary ∂Q of Q.

The discretization used to solve (1.1) is also applied to compute the L2-norms in
the second row of Table 1 in section 6.2.

6.2. Results of the simulations. In order that the quantitative behavior of
the particle simulations is clearly displayed, we first consider a special case of (1.1),
where the graph of the solution ρ has a particularly simple shape. More precisely,
we suppose that ρ0 is a Gaussian density with mean 0 and variance 1. Later on,
we also consider a more complicated initial condition, namely a superposition of four
Gaussian densities.

Our estimates in Theorem 2 or (3.26) and (3.27) and also in the formal results
(3.30) and (3.32) provide upper bounds for the expectation of a squared approximation
error E[supt≤T ‖YN,δ,h,θ(,τ)(t) ∗ φrθ − ρ(., t)‖22]. On the respective right sides of those
estimates only the dependence on the simulation parameters N , δ, h, θ (and τ) is
displayed explicitly. In particular, any dependence on the solution ρ of the limit
dynamics (1.1) or on the region Q is subsumed in the constants C(T ). Hence, our
results do not yield precise upper bounds for the approximation error. However, they
indicate how a given setMA = {NA, δA, hA, θA(, τA)} of parameters may be modified,
in order that the expected squared approximation error, whose exact value is unknown,
is reduced by a certain factor α ∈ (0, 1). For this reason we provide several sequences
of simulations, where the squared error obtained with some parameter setMA should
be reduced successively by factors α1, α2, . . ..

We first present the results of our simulations by three-dimensional visualizations
of the densities y → dN,δ,h,θ(,τ)(y, ti) = (YN,δ,h,θ(,τ)(ti)∗φθ)(y) for several time points
ti ∈ [0, 1], i = 1, 2, . . .. They may be compared to corresponding representations
of the numerical solution ρ of (1.1). We note that in all pictures pertaining to the
same initial condition ρ0 any function depicted there is restricted to the respective
domain Q. Moreover, the values of these functions are scaled in the same way, and
the lighting conditions and the viewpoints do not vary. Since the factor for the scaling
in z-direction is considerably larger than 1, the differences between dN,δ,h,θ(,τ) and ρ
are overaccentuated. To assess the different simulations quantitatively the respective
L2-norms of the difference dN,δ,h,θ(,τ)(., 1)− ρ(., 1) are also given.

6.2.1. A simply structured initial condition ρ0. In this first example we
suppose that ρ0 is a Gaussian density with mean 0 and variance 1. The simulation
results refering to that situation are presented in Figures 3–5, where in particular the
region Q is chosen as [−5.38, 5.38]× [−5.38, 5.38].

First, in Figure 3 we provide for t = 0, t = 0.5, and t = 1 in the right row three-
dimensional visualizations of a numerical solution of (1.1). Additionally, the results
of three simulations of the many-particle system (2.17) or (2.18) without the adaption
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MPS-simulation A MPS-simulation B MPS-simulation C PDE-simulation 1

t =
0

t =
0.5

t =
1

Fig. 3. Simulations of (1.1). Reduction of the approximation error according to (3.26) and (6.2).

step are shown. In MPS-simulation A the parameters

N = NA = 100, δ = δA = 1, h = hA = 0.1, θ = θA = 2(6.1)

are used. In the remaining simulations these parameters are chosen in such a way
that the expected squared approximation error estimated by the right side of (3.26) is
reduced by the factors 0.75 and 0.5, respectively. In general, a reduction by α ∈ (0, 1)
is achieved if the parameters N = Nα, δ = δα, h = hα, and θ = θα satisfy

1

θ2
α

=
α

θ2
A

,
θ4
α

Nα
= α

θ4
A

NA
, δ2αθ

8
α = αδ2Aθ

8
A, hαθ

8
α = αhAθ

8
A,

i.e., if

Nα =
NA
α3

, δα = δA
√
α5, hα = hAα

5, θα =
θA√
α
.(6.2)

Consequently, after some rounding we get

NB = 300, δB = 0.487, hB = 0.0237, θB = 2.31

for MPS-simulation B with α = 0.75, whereas

NC = 800, δC = 0.177, hC = 0.0031, θC = 2.83

are employed for MPS-simulation C with α = 0.5.
By (6.2) the discretization parameters δα and hα with decreasing α get very small.

Hence, the CPU-time for the particle method grows enormously if (3.26) and the
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MPS-simulation D MPS-simulation E MPS-simulation F MPS-simulation G

t =
0

t =
0

t =
0.5

t =
0.5

t =
1

t =
1

Fig. 4. Simulations of (1.1). Reduction of

the approximation error according to (3.25),

(3.30), and (6.3).

Fig. 5. Simulations of (1.1). Reduction of

the approximation error according to (3.25),

(3.32), and (6.5).

associated relations (6.2) are employed as the basis for the choice of the parameters in
order to reduce the approximation error. In this respect a considerable improvement
may be expected if (3.26) is replaced by the formal result (3.30) supplemented with
(3.25). Then, instead of (6.2) the relations

Nα =
NA
α3

, δα = δA
√
α, hα = hAα, θα =

θA√
α

(6.3)

are obtained if a reduction of the expected squared approximation error by the factor
α has to be attained.

Simulations of our many-particle system (2.17) or (2.18), where (6.3) is applied to
improve the accuracy of MPS-simulation A, are presented in Figure 4. In particular,
MPS-simulation D and MPS-simulation E refer to α = 0.5 and α = 0.25, respectively,
where (6.3) suggests to use

ND = 800, δD = 0.707, hD = 0.05, θD = 2.83

and

NE = 6400, δE = 0.5, hE = 0.025, θE = 4.(6.4)

The simulations related to Figure 4 are still unnecessarily expensive. In regions
where the graph of the density is flat a larger spatial discretization parameter δ
should suffice for our calculations. On the other hand, in regions with a large density
curvature a finer mesh seems to be desirable, i.e., the use of a globally larger δ,
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Table 1
Approximation errors and reduction factors for different variants of the particle method.

‖dN,δ,h,θ(,τ)(., 1)− ρ(., 1)‖2 αR
theor αR

obs

MPS-simulation A 0.0440 1.000 1.000
MPS-simulation B 0.0331 0.866 0.752
MPS-simulation C 0.0266 0.707 0.605
MPS-simulation D 0.0217 0.707 0.493
MPS-simulation E 0.0083 0.500 0.189
MPS-simulation F 0.0216 0.707 0.491
MPS-simulation G 0.0086 0.500 0.195

which is reduced only locally in a few critical regions with high curvature, should be
advantageous. Accordingly, we next present in Figure 5 some simulations including
the adaption step (C) in section 2 in order to provide a local refinement of the spatial
mesh.

Just as their counterparts in Figure 4 MPS-simulation F and MPS-simulation G
are obtained by reducing the expected squared approximation error of MPS-simulation
A by 0.5 and 0.25, respectively. Now, the determination of the simulation parameters
is based on (3.25) and the formal estimate (3.32), which yield

Nα =
NA
α3

, δα = δAα
1/4, τα = τA

√
α, hα = hAα, θα =

θA√
α

(6.5)

if a reduction by the factor α is desired. Therefore, with (6.1), which has been
supplemented arbitrarily with τ = τA = 0.1, and (6.5) we get

NF = 800, δF = 0.841, τF = 0.071, hF = 0.05, θF = 2.83

for MPS-simulation F and

NG = 6400, δG = 0.707, τG = 0.05, hG = 0.025, θG = 4(6.6)

for MPS-simulation G.

So far in this section we have considered the application of several variants of
our particle method to the same initial condition. The variants differ in the rule to
modify the parameters N , δ, h, θ (and τ) in order to reduce the approximation error.
In addition to their visual comparison given above we next in Tables 1 and 2 discuss
them quantitatively.

First, in Table 1, in particular, the approximation errors ‖dN,δ,h,θ(,τ)(., 1)−ρ(., 1)‖2
are collected. We also contrast the respective theoretical reduction αRtheor of that error
with its observed reduction αRobs. Here, for MPS-simulation X we use αRtheor =

√
α,

where α is the corresponding parameter for the reduction of the expected squared ap-
proximation error appearing in the preceding paragraphs in this section. Moreover,
we define

αRobs =
‖dN,δ,h,θ(,τ)(., 1)− ρ(., 1)‖2 for MPS-simulation X

‖dN,δ,h,θ(,τ)(., 1)− ρ(., 1)‖2 for MPS-simulation A
.

In any situation we get
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Table 2
Comparison of the computational expenses for different variants of the particle method.

CPU-time (Sec) SF (0) (Byte) SF (1) (Byte)

MPS-simulation C 21692.10 522445 518175
MPS-simulation D 113.70 32053 31693
MPS-simulation F 82.64 31851 23252

αRtheor
αRobs

> 1;(6.7)

i.e., the observed reduction αRobs is always better than the predicted reduction αRtheor.
We additionally notice that the fraction on the left side of (6.7) seems to grow with de-
creasing ‖dN,δ,h,θ(,τ)(., 1)−ρ(., 1)‖2. Perhaps this observation may be attributed to the

fact that according to (3.26), (3.27), (3.30), or (3.32) also
∫ 1

0
ds ‖∇(dN,δ,h,θ(,τ)(., s)−

ρ(., s))‖22 contributes to α and hence to αRtheor. If ‖dN,δ,h,θ(,τ)(., 1)−ρ(., 1)‖2 → 0, this
part of αRtheor possibly becomes substantially larger than ‖dN,δ,h,θ(,τ)(., 1)− ρ(., 1)‖22.
To supplement Table 1 we also note that ‖ρ(., 1)‖2 = 0.195. In particular, we now
may use the absolute approximation error ‖dN,δ,h,θ(,τ)(., 1)−ρ(., 1)‖2 to determine the
relative approximation error ‖dN,δ,h,θ(,τ)(., 1)− ρ(., 1)‖2/‖ρ(., 1)‖2.

Table 2 may provide some insight into the computational expenses, which are
associated with the different variants of our particle method. In particular, for
MPS-simulations C, D, and F, which all serve to reduce a fixed expected squared
approximation error by the factor α = 0.5, we present the CPU-time for the simu-
lation and additionally the size SF (t) of the files used to store the particle density

dN,δ,h,θ(,τ)(., t) = (1/N)
∑N
m=1 φθ(.− Y mN,δ,h,θ(,τ)(t)) for t = 0 and t = 1. As discussed

in steps (B) and (C) in section 2 the domain of dN,δ,h,θ(,τ)(., t) consists of the set
of corners and centers of the rectangles in the lattice L(t). Hence, for any t = ph,
p = 0, 1, 2, . . ., the quantity SF (t) corresponds to the number of mesh points in L(t)
and consequently reflects the amount of storage needed to perform the simulation.

Obviously, as a consequence of the small values of δC and hC the expenses for
MPS-simulation C are fairly large. On the other hand, Figures 3–5 and Table 1
indicate that apart from the higher resolution the quality of the simulation result
associated with MPS-simulation C is not substantially better than the quality ob-
tained with MPS-simulation D or MPS-simulation F, which are performed with much
fewer computational efforts. In particular, the formal considerations from section 4.3,
which present the background of MPS-simulation D and MPS-simulation F, seem to
be quite reliable and useful when a higher computational efficiency is desired. We
finally remark that the adaption step in MPS-simulation F in comparison to MPS-
simulation D leads to reduced expenses, whereas the quality of the simulation result
remains unchanged.

6.2.2. An initial condition with a nontrivial shape. To illustrate the per-
formance of our particle method in a more complicated situation we now suppose
that ρ0 is a superposition of four Gaussian densities. These Gaussians have equal
weight 0.25 and variance 1, and their centers span a “T”on the boundary of a rect-
angle Q′ of size 2.5 × 5. As the domain of the densities obtained by our simulations
we choose the rectangle Q of size 10.5× 13, whose border lines have distance 4 to the
corresponding borders of Q′.
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t = 0 t = 0.3 t = 0.6 t = 1

PDE-simulation 2

PDE-simulation 2

MPS-simulation H

MPS-simulation I

MPS-simulation I

Fig. 6. Simulations of (1.1) with “ T”-initial condition.

Our simulation results for t = 0, t = 0.3, t = 0.6, and t = 1 are presented in
Figure 6. The first line contains three-dimensional visualizations of a numerical solu-
tion of (1.1). Modifications of these pictures can be found in the second line. More
precisely, in the first and third row the graphs are cut along the line connecting those
centers of the Gaussians, which characterize the top of the “T”-initial condition. In
the second and fourth row cuts along two different level lines are performed. Visu-
alizations of simulations of the many-particle system (2.17) or (2.18) are collected in
the remaining lines of Figure 6. For the simulation parameters N , δ, h, θ (and τ) we
essentially apply combinations also employed in the previous simulations described
in section 6.2.1. In particular, for MPS-simulation H, where the adaption step is not
included, the same parameters NE , δE , hE , and θE as in MPS-simulation E are taken;
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cf. (6.4). Finally, the parameters NG, δG, hG, and θG from MPS-simulation G, cf.
(6.6), are utilized again now in MPS-simulation I also featuring the adaption step.
Since the adaption of the mesh did not begin to work, i.e., the resulting pictures did
not differ from those in the third row, when τG = 0.05 was chosen again, a smaller
adaption parameter τI = 0.01 was selected for this simulation. In the last row of
Figure 6 modifications of the snapshots in the fourth row of MPS-simulation I are
collected, where cuts are performed in exactly the same way as in the pictures in the
second row.

6.3. Remarks on the hardware and software. Our simulations have been
performed on a PC with an Intel Pentium processor working with 200 MHz, where
first Slackware Linux by Patrick Volkerding and later on Redhat Linux was used as
the operating system. The simulation program was written in C++. In particular, we
used the GNU C++-library to obtain a random number generator and also in order
to work with the vector classes and the set- and bag-class prototypes implemented
there. To generate visualizations of our results we employed the Mesa 3D graphics
library by Brian Paul. Finally, to control the various parts of the simulation program
a graphical user interface generated with the XForms library by T. C. Zhao and Mark
Overmars was utilized. Presently, efforts are made to replace the GNU C++-library
by the C++ standard library.

Concluding remarks. In this paper we employ a particular partial differential
equation, namely the viscous porous medium equation (1.1), to discuss a special par-
ticle method based on the concept of moderately interacting many-particle systems
to obtain an approximation to its solution. We propose an algorithm, which may be
classified as a combination of a smoothed particle hydrodynamics and a particle-mesh
method. This algorithm depends on several discretization parameters, namely on a
particle number N , a spatial mesh size δ, a time step h, an inverse interaction range
θ and, for some modified version, on an adaption parameter τ .

To assess this particle method we give upper bounds for the expected squared
approximation error. In particular, our result provides some hints on how to modify
the discretization parameters to obtain a desired reduction of the approximation error.
Furthermore, the proof of our result suggests employing some regularity hypothesis
(HS), cf. section 4.3, about the empirical processes associated with the particle method
to deduce improved upper bounds for the approximation error. As a consequence of
these formal considerations another approach to modify the discretization parameters
is obtained.

To examine our mathematical considerations we perform some computer simula-
tions, where in addition to tests of our particle method we also determine a numerical
solution of (1.1) by a simple finite-difference method. We check the dependence of the
performance of the particle method, i.e., its precision and its computational expenses,
on the strategy to modify the discretization parameters. We observe that the strategy
based on (HS) has a considerable advantage.

As mentioned in section 1 particle methods are established in several branches
of computational physics. Studies like the present one may be helpful for their im-
provement. For example, our considerations demonstrate that a careful choice of
discretization parameters can have a considerable influence on the performance of
particle methods. In this context a mathematical justification of (HS) or an investi-
gation of the dependence of the right side of estimates like (3.23) on the region Q, cf.
step (A) in section 2, might be useful.



SIMULATION BY A PARTICLE METHOD 1761

In our computer experiments the solution of (1.1) by finite differences turned out
to be faster. More elaborate methods like finite elements should perform even better.
Although in this paper we have not considered them in detail, we presently believe that
for the solution of some more general reaction-diffusion equations in low-dimensional
spaces those methods should also be preferred. An additional plus for finite elements
is the availability of software packages like FEMLAB, cf. http://www.femlab.com/,
or FREEFEM, cf. http://www-rocq.inria.fr/Frederic.Hecht/freefem++.htm or [7], for
the solution of general partial differential equations. For reaction-diffusion equations
in high-dimensional spaces further investigations seem to be needed. In such cases
for finite differences or finite elements the number of nodes needed in the respec-
tive meshes grows enormously with increasing precision, which may lead to serious
drawbacks for these methods.

Moreover, in many situations partial differential equations provide less useful
models. For example, for the modelling of biological populations of moderate size,
which typically exhibit stochastic fluctuations, many-particle models are more realis-
tic than PDE models, which are conceived to describe the limit of infinite populations.
Hence, in this field studies of the simulation of many-particle systems are important.
In order to develop effective simulation methods, e.g., the “distance” between “true”
many-particle systems like (1.2) and its modifications optimized for computer sim-
ulations as that considered in this paper should be investigated. As a first step in
this direction the ideas exposed in section 2 have already been used to improve the
computer program employed for obtaining the results described in section 6 such that
many-particle systems as those described in [14] can be simulated.
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Abstract. In general, when a quasi-Newton method is applied to solve a system of nonlinear
equations, the quasi-Newton direction is not necessarily a descent direction for the norm function.
In this paper, we show that when applied to solve symmetric nonlinear equations, a quasi-Newton
method with positive definite iterative matrices may generate descent directions for the norm func-
tion. On the basis of a Gauss–Newton based BFGS method [D. H. Li and M. Fukushima, SIAM
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symmetric nonlinear equations. Under mild conditions, we establish the global and superlinear con-
vergence of the method. The proposed method shares some favorable properties of the BFGS method
for solving unconstrained optimization problems: (a) the generated sequence of the quasi-Newton
matrices is positive definite; (b) the generated sequence of iterates is norm descent; (c) a global
convergence theorem is established without nonsingularity assumption on the Jacobian. Preliminary
numerical results are reported, which positively support the method.
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1. Introduction. Let F : Rn → Rn be continuously differentiable. A general
quasi-Newton method for solving the system of nonlinear equations

F (x) = 0(1.1)

generates a sequence of iterates {xk} by letting xk+1 = xk+dk, where dk is a solution
of the following system of linear equations:

Bkd+ F (xk) = 0.(1.2)

If in (1.2), matrix Bk is replaced by F ′(xk), the Jacobian of the function F at xk, the
method reduces to the well-known Newton method. An attractive feature of a quasi-
Newton method is its local superlinear convergence property without computation
of Jacobians. To enlarge the convergence domain of a quasi-Newton method, line
search technique or trust region strategy can be exploited. In this paper, we use a
backtracking line search technique to globalize a quasi-Newton method.

A line search step at iteration k of an iterative method determines a scalar λk > 0
which satisfies

‖F (xk + λkdk)‖ < ‖F (xk)‖.(1.3)

The next iterate is then determined by letting xk+1 = xk + λkdk. The scalar λk is
called the steplength. Let θ be the norm function defined by

θ(x) =
1

2
‖F (x)‖2.(1.4)
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Then the nonlinear equation problem (1.1) is equivalent to the following global opti-
mization problem:

min θ(x), x ∈ Rn,(1.5)

and condition (1.3) is equivalent to

θ(xk + λkdk) < θ(xk).(1.6)

An iterative method that generates a sequence {xk} satisfying (1.3) or (1.6) is called
a norm descent method. If dk is a descent direction of θ at xk, then inequality (1.6)
holds for all λk > 0 sufficiently small. Accordingly, the related iterative method is
a norm descent method. In particular, Newton’s method with line search is norm
descent. For a quasi-Newton method, however, dk may not be a descent direction
of θ at xk even if Bk is symmetric and positive definite. To globalize a quasi-Newton
method, Li and Fukushima [6] proposed an approximately norm descent line search
technique and established global and superlinear convergence of a Gauss–Newton
based BFGS method for solving symmetric nonlinear equations. The method in [6] is
not norm descent. In addition, the global convergence theorem is established under
the assumption that F ′(x) is uniformly nonsingular.

The purpose of this paper is to develop a norm descent Gauss–Newton based
BFGS method. We adjust the steplength and the search direction simultaneously
so that the generated iterate sequence satisfies (1.6). We update Bk by combining
a modified BFGS formula [7] or the cautious BFGS update rule with the Gauss–
Newton based BFGS method [6] such that Bk+1 inherits positive definiteness of Bk
no matter whatever line search is used. Under mild conditions, we establish a global
convergence theorem which shows that there exists an accumulation point that is a
stationary point of problem (1.5) even if F ′(x) is singular everywhere. We also get
the superlinear convergence of the proposed method.

In the next section, we describe how to generate a quasi-Newton direction that
is descent for θ. We also state the steps of the proposed method. In section 3, we
establish the global and superlinear convergence of the proposed method. In section 4,
we present some numerical results.

2. Descent direction in a quasi-Newton method. In this section, we de-
scribe a way to generate a descent quasi-Newton direction for θ and then propose
a norm descent BFGS method for solving (1.1). We assume that the function F is
continuously differentiable, and its Jacobian F ′(x) is symmetric for every x ∈ Rn.

Recall that in Newton’s method, the Newton direction is a solution of the Newton
equation

F ′(xk)d+ F (xk) = 0.(2.1)

Equation (2.1) may have no solution if F ′(xk) is singular. In the case where the
solution set of (2.1) is empty, instead of solving (2.1), we may solve the least squares
problem

min
1

2
‖F ′(xk)d+ F (xk)‖2

to get a direction dk, which results in the so-called Gauss–Newton equation

F ′(xk)2d+ F ′(xk)F (xk) = 0.(2.2)
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Here we have used the symmetry of F ′(xk). On the other hand, if F ′(xk) is nonsingu-
lar, (2.2) is equivalent to (2.1). In [6], a Gauss–Newton based quasi-Newton method
was proposed in which the quasi-Newton direction is the solution of the following
system of linear equations:

Bkd+ q̄k = 0,(2.3)

where Bk is an approximation of matrix F ′(xk)2, and q̄k is an approximation of
vector F ′(xk)F (xk). Specifically, let λk−1 be the steplength used at the previous
iteration. Then, vector q̄k is defined by

q̄k = (F (xk + λk−1F (xk))− F (xk))/λk−1 ≈ F ′(xk)F (xk),

and matrix Bk is updated by the BFGS formula

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+
yky

T
k

yTk sk
,(2.4)

where sk = xk+1 − xk, yk = F (xk + δk) − F (xk), and δk = F (xk+1) − F (xk). It is
clear that if ‖sk‖ is small, then Bk+1sk = yk ≈ F ′(xk+1)

2sk. Since the solution dk
of (2.3) may not be a descent direction of θ at xk when xk is far away from a solution
of (1.1), it is generally not possible to get a steplength λk > 0 satisfying (1.6). Taking
this into account, Li and Fukushima [6] proposed a nondescent line search in which
the steplength λk > 0 satisfies the following inequality:

θ(xk + λkdk)− θ(xk) ≤ −σ1‖λkdk‖2 − σ2‖λkF (xk)‖2 + εk‖F (xk)‖2,(2.5)

where σ1 and σ2 are positive constants, and εk > 0 satisfies

∞∑
k=0

εk <∞.

Since εk is small, {xk} is approximately norm descent.
The purpose of this paper is to develop a norm descent BFGS method. In other

words, we want to construct a system of linear equations like (2.3) such that its
solution provides a descent direction of θ at xk.

Observe that

lim
λk−1→0+

q̄k = F ′(xk)F (xk)
�
= q̃k.

Accordingly, the solution of (2.3) with q̃k instead of q̄k is d̃k = −B−1
k F ′(xk)F (xk).

If Bk is positive definite and F ′(xk) is symmetric, then d̃k is a descent direction
of θ at xk. This observation prompts us to regard λk−1 as a parameter. When this
parameter is adjusted to be small enough, the solution of (2.3) is a descent direction
of θ at xk. The following process gives details to realize it.

Let

qk(λ) = (F (xk + λF (xk))− F (xk))/λ.(2.6)

Consider the system of linear equations with parameter λ:

Bkd+ qk(λ) = 0.(2.7)



1766 G.-Z. GU, D.-H. LI, L. QI, AND S.-Z. ZHOU

Let d(λ) be the solution of (2.7). The following lemma shows that when λ > 0 is
sufficiently small, every solution of (2.7) is a descent direction of θ at xk.

Lemma 2.1. Let σ1 and σ2 be positive constants and Bk be a symmetric and
positive definite matrix. If xk is not a stationary point of (1.5), then there exists a
constant λ̄ > 0 depending on k such that when λ ∈ (0, λ̄), the unique solution d(λ)
of (2.7) satisfies

∇θ(xk)T d(λ) < 0.(2.8)

Moreover, inequality

θ(xk + λd(λ))− θ(xk) ≤ −σ1‖λd(λ)‖2 − σ2‖λF (xk)‖2(2.9)

holds for all λ > 0 sufficiently small.
Proof. It is clear that

lim
λ→0

qk(λ) = F ′(xk)F (xk).

Therefore, we get from (2.7) that

lim
λ→0+

∇θ(xk)T d(λ) = − lim
λ→0+

F (xk)
TF ′(xk)B−1

k qk(λ)

= −F (xk)TF ′(xk)B−1
k F ′(xk)F (xk).

Since F ′(xk) is symmetric and F ′(xk)F (xk) �= 0 as xk is not a stationary point
of (1.5), the last equality and the positive definiteness of Bk imply (2.8). We turn to
verifying (2.9).

Notice that

lim
λ→0+

(θ(xk + λd(λ))− θ(xk))/λ = lim
λ→0+

∇θ(xk)T d(λ)
= −F (xk)TF ′(xk)B−1

k F ′(xk)F (xk) < 0.

However, the right-hand side of (2.9) is o(λ). Therefore, inequality (2.9) holds for all
λ > 0 sufficiently small.

Lemma 2.1 motivates us to find a descent quasi-Newton direction by adjusting
parameter λ.

Procedure 1. Let constant ρ ∈ (0, 1) be given. Let ik be the smallest nonnegative
integer such that inequality (2.9) holds with λ = ρi, i = 0, 1, . . . . Let dk = d(ρik),
and qk = qk(ρ

ik).
Procedure 1 ensures that the value of θ at xk + ρ

ikdk is less than that of θ at xk,
though dk may not necessarily be a descent direction of θ at xk. It is reasonable to
let the scalar ρik be the steplength. However, this steplength may be very small if ik
is large. To enlarge steplength, we exploit the following forward procedure.

Procedure 2. Let ik and dk be determined by Procedure 1. If ik = 0, let λk = 1.
Otherwise, let jk be the largest positive integer j ∈ {0, 1, 2, . . . , ik − 1} satisfying

θ(xk + ρ
ik−jdk)− θ(xk) ≤ −σ1‖ρik−jdk‖2 − σ2‖ρik−jF (xk)‖2.(2.10)

Let λk = ρik−jk .
Note that (2.10) is satisfied with j = 0. Therefore, Procedure 2 is well defined.
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Procedures 1 and 2 describe a way to generate dk and λk. It is easy to see from
Procedures 1 and 2 that

θ(xk + λkdk)− θ(xk) ≤ −σ1‖λkdk‖2 − σ2‖λkF (xk)‖2,(2.11)

which corresponds to (2.5) with εk = 0. It is also easy to see that if λk �= 1, then
λ′k = λk/ρ satisfies

θ(xk + λ
′
kdk)− θ(xk) > −σ1‖λ′kdk‖2 − σ2‖λ′kF (xk)‖2.(2.12)

Notice that Procedure 1 generates a direction dk which satisfies

Bkdk + qk = 0,(2.13)

where qk = qk(ρ
ik). Vector qk differs from qk(λk) if jk �= 0.

Based on the above process, we propose a norm descent Gauss–Newton based
BFGS method as follows.

Algorithm 1 (a descent BFGS method).
Initial Let B0 ∈ Rn×n be symmetric and positive definite. Let x0 ∈ Rn. Set k = 0.
Step 1 Determine dk and λk by Procedures 1 and 2. Let xk+1 = xk + λkdk.
Step 2 Update Bk to get Bk+1 by the modified BFGS formula

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+
yky

T
k

yTk sk
,(2.14)

where sk = xk+1 − xk,

yk = γk +
(
max

{
0,− γ

T
k sk
‖sk‖2

}
+ φ(‖F (xk)‖)

)
sk,

γk = F (xk + δk) − F (xk), δk = F (xk+1) − F (xk), and function φ : R → R
satisfies (i) φ(t) > 0 for all t > 0, (ii) φ(t) = 0 if and only if t = 0, (iii) φ(t)
is bounded if t is in a bounded set.

Step 3 Let k := k + 1 and go to Step 1.
In Step 2 of Algorithm 1, we use a modified BFGS update formula instead of the

ordinary BFGS formula. The modified BFGS update formula was proposed by Li and
Fukushima [7], where φ(t) = µt with some constant µ > 0. A favorable property for
this modification is that Bk+1 inherits positive definiteness of Bk whatever line search
is used [7]. Indeed, it is not difficult to get that

yTk sk ≥ max
{
γTk sk, φ(‖F (xk)‖)‖sk‖2

}
> 0,(2.15)

which is sufficient to guarantee positive definiteness of Bk+1 as long as Bk is positive
definite. Suppose that {xk} is contained in a bounded set at which F is continuously
differentiable. It is not difficult to deduce that

‖yk‖ ≤ 2‖γk‖+ φ(‖F (xk)‖) ‖sk‖ ≤ 2L‖δk‖+M‖sk‖ ≤ (2L2 +M)‖sk‖,(2.16)

where M > 0 is an upper bound of φ(‖F (x)‖) and L > 0 is a Lipschitz constant of F .
Inequalities (2.15) and (2.16) imply that

max
{
γTk sk, φ(‖F (xk)‖)‖sk‖2

}
≤ yTk sk ≤ (2L2 +M)‖sk‖2.(2.17)
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Another way to develop quasi-Newton methods is to adopt the so-called cau-
tious update rule proposed by Li and Fukushima [8]. The steps of the related BFGS
algorithm is stated as follows.

Algorithm 2 (a descent cautious BFGS method).
Initial Let B0 ∈ Rn×n be symmetric and positive definite. Let x0 ∈ Rn. Set k = 0.
Step 1 Determine dk and λk by Procedures 1 and 2. Let xk+1 = xk + λkdk.
Step 2 Update Bk to get Bk+1 by the cautious BFGS formula

Bk+1 =



Bk − Bksks

T
kBk

sTkBksk
+
γkγ

T
k

γTk sk
if
γTk sk
‖sk‖2 ≥ φ(‖F (xk)‖),

Bk otherwise,

(2.18)

where γk and φ are the same as those in Algorithm 1.
Step 3 Let k := k + 1 and go to Step 1.

The only difference between Algorithms 1 and 2 is the update formula. The
cautious BFGS method possesses similar properties of the modified BFGS method.
For details, we refer to [8].

3. Global and superlinear convergence. In this section, we prove the global
and superlinear convergence of Algorithm 1. The global convergence of Algorithm 2
can be obtained in a similar way. Without specification, we let {xk} and {Bk} stand
for the sequences of iterates and matrices generated by Algorithm 1, respectively. The
following lemma is straightforward from Algorithm 1.

Lemma 3.1. The sequence {θ(xk)} is strictly decreasing. In addition, the follow-
ing inequalities hold:

∞∑
k=0

‖sk‖2 <∞,
∞∑
k=0

‖λkF (xk)‖2 <∞.(3.1)

We summarize the condition needed for the global convergence of Algorithm 1 as
follows.

Assumption A.
(i) The level set

Ω = {x ∈ Rn | θ(x) ≤ θ(x0)}
is bounded.

(ii) Function F is continuously differentiable on Ω, and F ′(x) is symmetric for
every x ∈ Ω.

It is clear that under condition (i) in Assumption A, sequence {xk} ⊂ Ω is
bounded.

We are going to establish a global convergence theorem of Algorithm 1 to show
that under Assumption A, there exists an accumulation point of {xk} which is a
stationary point of (1.5), namely,

lim inf
k→∞

‖∇θ(xk)‖ = 0.(3.2)

It is easy to see from Lemma 3.1 that if lim supk→∞ λk > 0, then lim infk→∞ ‖F (xk)‖
= 0 and, hence, (3.2) holds. So, we need only to show (3.2) for the case limk→∞ λk = 0.
We do it by assuming

lim inf
k→∞

‖∇θ(xk)‖ > 0(3.3)
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to deduce a contradiction.
Notice that (3.3) particularly implies that there is a constant η > 0 such that

‖F (xk)‖ ≥ η for all k. It follows from (2.17) and the properties of φ that if (3.3)
holds, then there are positive constants c ≤ C such that

c‖sk‖2 ≤ yTk sk ≤ C‖sk‖2.(3.4)

Therefore, we get the following lemma from (2.16), (3.4), and Theorem 2.1 of [1].
Lemma 3.2. If (3.3) holds, then there are positive constants βi, i = 1, 2, 3, such

that for any positive integer k, inequalities

‖Bisi‖ ≤ β1‖si‖, β2‖si‖2 ≤ sTi Bisi ≤ β3‖si‖2(3.5)

hold for at least �k/2� many i ≤ k.
Inequalities (3.5) together with (2.13) imply that there are at least �k/2� many

i ≤ k satisfying

‖qi‖ = ‖Bidi‖ ≤ β1‖di‖, ‖di‖ ≤ β−1
2 ‖qi‖.(3.6)

We now prove the global convergence of Algorithm 1.
Theorem 3.3. Let Assumption A hold and {xk} be generated by Algorithm 1.

Then (3.2) holds.
Proof. We need only to show (3.2) for the case limk→∞ λk = 0. In this case,

inequality (2.12) holds for all k sufficiently large. Suppose contrarily that (3.2) does
not hold or, equivalently, (3.3) holds. Denote by K the set of indices i such that
(3.5) holds. Then K is infinite. Since {xk} ⊂ Ω is bounded, it is clear that se-
quences {qk}k∈K and {dk}k∈K are bounded. Let K1 ⊂ K and subsequences {xk}k∈K1

and {dk}k∈K1 converge to x∗ and d∗, respectively. Then we have

lim
k∈K1

qk = ∇θ(x∗).(3.7)

Dividing both sides of (2.12) by λ′k and then taking limits as k →∞ with k ∈ K1, we
get

∇θ(x∗)T d∗ ≥ 0.(3.8)

On the other hand, taking the inner product with dk in (2.13), we get

0 = dTkBkdk + q
T
k dk ≥ β2‖dk‖2 + qTk dk.

Taking limits in both sides as k →∞ with k ∈ K1 yields

∇θ(x∗)T d∗ ≤ −β2‖d∗‖2.

This together with (3.8) implies that d∗ = 0. It then follows from (3.6) that limk∈K1
qk

= 0, which together with (3.7) yields a contradiction with (3.3). The contradiction
proves (3.2).

Remark. In [2] the global convergence of Broyden’s class of variable metric meth-
ods except for DFP was proved. The proof there depends on the convexity of the
objective function. A similar result was obtained by Powell [10] when the BFGS
method is applied to convex minimization problems. For nonconvex minimization
problems, no theory exists to support the global convergence of the BFGS method.
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On the contrary, an example has been constructed [3] recently, which shows that the
ordinary BFGS method with the Wolfe line search may fail to converge to a stationary
point of a nonconvex unconstrained minimization.

On the other hand, a modified BFGS method was proposed by Li and Fukushima
[7]. In the modified BFGS method, the iterative matrix Bk is always positive def-
inite whatever line search is used as long as B0 is positive definite. Moreover, a
liminf result was obtained for nonconvex unconstrained minimization. Besides, an-
other modified BFGS method called the cautious BFGS method was proposed by Li
and Fukushima [8]. The cautious BFGS method also possesses global convergence in
the sense lim infk→∞∇f(xk) = 0 when it is applied to min f(x). In both papers, the
results were obtained without the requirement of nonsingular Hessian. These two pa-
pers show the possibility to improve the unconstrained minimization result by Byrd,
Nocedal, and Yuan [2] and Powell [10].

This paper adopts a similar updating technique as used in [4] and [5]. Conse-
quently, we established Theorem 3.3, which shows that the iterative sequence has an
accumulation point which is a stationary point of problem min θ(x) = 1

2‖F (x)‖2. It
may not be a solution of the nonlinear equation (1.1) if the Jacobian is singular at
that point.

The next theorem shows a strong convergence property of Algorithm 1.
Theorem 3.4. Let Assumption A hold. Suppose that the sequence {xk} generated

by Algorithm 1 has a subsequence converging to a stationary x∗ at which F ′(x∗) is
nonsingular. Then x∗ is a solution of (1.1). Moreover, the whole sequence {xk}
converges to x∗.

Proof. Since x∗ satisfies ∇θ(x∗) = F ′(x∗)F (x∗) = 0, we obviously have F (x∗) = 0
if F ′(x∗) is nonsingular. Since {θ(xk)} converges, every accumulation point of {xk}
is a solution of (1.1). By the nonsingularity of F ′(x∗) again, x∗ is an isolated limit
point of {xk}. However, we have from (3.1) that xk+1−xk → 0 as k →∞. Therefore,
the whole sequence {xk} converges to x∗.

In a way similar to the proof of Theorem 3.8 in [7], it is not difficult to prove the
superlinear convergence of Algorithm 1. We state the theorem as follows but omit
the proof.

Theorem 3.5. Let the conditions of Theorem 3.4 hold. Suppose further that F ′

is Lipschitz continuous. Then {xk} is superlinearly convergent.
Similar to the above argument, we can establish the global and superlinear con-

vergence of Algorithm 2. We state the results as follows but omit the proof.
Theorem 3.6. Let Assumption A hold and {xk} be generated by Algorithm 2.

Then (3.2) holds. If the sequence {xk} has a subsequence converging to a stationary
x∗ at which F ′(x∗) is nonsingular, then x∗ is a solution of (1.1). Moreover, the whole
sequence {xk} converges to x∗. If we further suppose that F ′ is Lipschitz continuous,
then {xk} is superlinearly convergent.

4. Numerical results. In this section, we test the proposed descent BFGS
methods on nonlinear equation problems obtained from [6, 9] and the unconstrained
optimization problems obtained from the website ftp://ftp.mathworks.com/pub/
contrib/v4/optim/uncprobs/. We call Algorithms 1 and 2 the DBFGS (descent
BFGS) method and the CBFGS (cautious BFGS) method, respectively, and call
the BFGS method based on the Gauss–Newton approach and the nondescent line
search [6] the NBFGS (nondescent BFGS) method. Then we compare their perfor-
mance.

The parameters are specified as follows. We take ρ = 0.1 and σ1 = σ2 = 10−5



DESCENT DIRECTIONS OF QUASI-NEWTON METHODS 1771

in (2.9). The initial quasi-Newton matrices are set to be B0 = A [6] for nonlin-
ear equation problems and B0 = I for unconstrained optimization problems. The
function φ is determined by

φ(t) =

{
Ct2 if t ≤ 1,
Ct0.1 otherwise,

where C = 10−5. For the NBFGS method, we update Bk by the BFGS formula [6]
if yTk sk ≥ 10−5. Otherwise, we let Bk+1 = Bk. We stop the iteration process if
‖F (xk)‖ ≤ 10−4.

The tested results are listed in Tables 1 and 2. Table 3 gives the average perfor-
mance of the three methods for solving nonlinear equation problems. The columns of
the tables have the following meaning:

Dim: the dimension of the problem.
Method: the name of the algorithm.
Init: the initial point, namely, integer l in Table 1 meaning x0 = (l, l, . . . , l)T .
Iter: the total number of iterations.
Inner: for the NBFGS method, the number of iterations at which yTk sk ≥ 10−5 is

satisfied; for the DBFGS method and the CBFGS method, the maximum
number of inner iterations to generate the descent direction dk.

Numf: the number of the function evaluations.
Fnorm: the final value of ‖F (xk)‖.

All the three methods terminate at solutions of nonlinear equation problems for
all tested starting points. However, for the 33 unconstrained optimization problems,
all the three methods fail to converge to a solution for at least 10 problems. The
numbers of problems for which the NBFGS method, the DBFGS method, and the
CBFGS method fail to converge are 16, 19, and 12, respectively.

The numerical results show that for low dimensional problems, the performance
of these three methods is not different very much. For most of the test problems, the
DBFGS method and the CBFGS method perform better than the NBFGS method in
the iteration number, but worse in the number of the function evaluation. However,
for high dimensional problems (n = 200 in Tables 1 and 3), both the DBFGS and
the CBFGS methods perform much better than the NBFGS method in the iteration
number as well as the number of the function evaluation. The maximum numbers of
the inner iteration to generate a descent direction of a DBFGS method are generally
very small. We also note that the performance of the DBFGS and CBFGS meth-
ods is almost the same if the both methods terminate regularly. For unconstrained
optimization problems, the DBFGS method fails more frequently than the CBFGS
method does.

In summary, the presented numerical results reveal that the DBFGS and CBFGS
methods, compared with the NBFGS method, have potential advantages when applied
to solve symmetric nonlinear equation whose function is not difficult to compute.

In Tables 1–3, we simply denote the NBFGS method as the BFGS method.
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Table 1
Test results for nonlinear equation problems B0 = A.

Dim Method Init Iter Inner Numf Fnorm Dim Method Init Iter Inner Numf Fnorm
10 BFGS 0 6 0 19 2.9e-06 50 BFGS 0 25 0 76 3.2e-05

DBFGS 6 1 19 2.9e-06 DBFGS 25 1 76 3.9e-05
CBFGS 6 1 19 2.9e-06 CBFGS 25 1 76 3.2e-05
BFGS 1 11 0 35 9.1e-05 BFGS 1 37 0 114 3.3e-05
DBFGS 10 2 42 3.5e-05 DBFGS 36 2 120 1.6e-05
CBFGS 10 2 42 3.5e-05 CBFGS 36 2 120 1.6e-05
BFGS −1 12 0 38 2.0e-05 BFGS −1 37 0 114 1.8e-05
DBFGS 10 2 36 1.1e-05 DBFGS 36 2 120 1.0e-05
CBFGS 10 2 36 1.1e-05 CBFGS 36 2 120 1.0e-05
BFGS 10 13 0 41 4.1e-05 BFGS 10 38 0 117 6.0e-05
DBFGS 13 2 52 2.6e-05 DBFGS 38 2 133 4.9e-05
CBFGS 13 2 52 2.6e-05 CBFGS 38 2 133 4.8e-05
BFGS −10 13 0 41 3.9e-04 BFGS −10 38 0 117 6.1e-05
DBFGS 13 2 52 2.5e-05 DBFGS 38 2 133 5.3e-05
CBFGS 13 2 52 2.5e-05 CBFGS 38 2 133 4.9e-05

BFGS 102 14 0 44 1.4e-05 BFGS 102 41 0 127 4.5e-05
DBFGS 12 2 48 1.3e-05 BFGS 40 2 132 1.5e-05
CBFGS 12 2 48 1.3e-05 CBFGS 40 2 132 1.5e-05

BFGS −102 14 0 44 2.0e-05 BFGS −102 41 0 127 5.0e-05
DBFGS 12 2 48 1.1e-05 DBFGS 38 2 126 8.6e-05
CBFGS 12 2 48 1.1e-05 CBFGS 38 2 126 8.6e-05

BFGS 103 16 0 50 1.8e-06 BFGS 103 44 0 136 4.1e-05
DBFGS 13 2 51 3.9e-06 DBFGS 40 2 137 9.9e-05
CBFGS 13 2 51 3.9e-06 CBFGS 40 2 137 9.9e-05

BFGS −103 16 0 50 7.5e-07 BFGS −103 44 0 136 3.4e-05
DBFGS 13 2 51 5.0e-06 DBFGS 40 2 137 7.9e-05
CBFGS 13 2 51 5.0e-06 CBFGS 40 2 137 7.9e-05

BFGS 104 16 0 50 1.1e-05 BFGS 104 49 0 152 5.4e-05
DBFGS 14 2 54 5.7e-06 DBFGS 44 2 160 4.9e-05
CBFGS 14 2 54 5.7e-06 CBFGS 44 2 160 4.9e-05

BFGS −104 16 0 50 8.8e-06 BFGS −104 49 0 144 9.6e-05
DBFGS 14 2 54 5.1e-06 DBFGS 44 2 152 6.9e-05
CBFGS 14 2 54 5.1e-06 CBFGS 44 2 152 6.9e-05

100 BFGS 0 50 0 151 5.7e-06 200 BFGS 0 501 0 2181 8.9e-05
DBFGS 50 1 151 5.7e-06 DBFGS 155 3 1142 9.5e-05
CBFGS 50 1 151 5.7e-06 CBFGS 151 3 1104 9.5e-05
BFGS 1 63 0 192 1.0e-04 BFGS 1 2191 1 8661 1.0e-04
DBFGS 62 2 198 6.8e-05 DBFGS 116 3 383 2.2e-05
CBFGS 62 2 198 6.8e-05 CBFGS 116 3 383 2.2e-05
BFGS −1 63 0 192 5.8e-05 BFGS −1 1971 1 7835 1.0e-04
DBFGS 62 2 198 5.4e-05 DBFGS 116 3 382 1.8e-05
CBFGS 62 2 198 5.4e-05 CBFGS 116 3 382 1.8e-05
BFGS 10 66 0 203 2.0e-05 BFGS 10 4547 1 18085 1.0e-04
DBFGS 66 2 220 3.7e-05 DBFGS 119 3 405 4.1e-05
CBFGS 66 2 217 9.0e-05 CBFGS 119 3 405 4.0e-05
BFGS −10 66 0 203 1.2e-05 BFGS −10 4070 1 16177 1.0e-04
DBFGS 66 2 221 1.8e-05 DBFGS 119 3 406 2.3e-06
CBFGS 76 2 254 6.9e-05 CBFGS 119 3 407 2.3e-06

BFGS 102 69 0 213 6.7e-05 BFGS 102 6095 1 24277 1.0e-04
DBFGS 67 2 220 5.7e-05 DBFGS 125 4 447 6.9e-05
CBFGS 66 2 217 9.0e-05 CBFGS 120 4 424 9.7e-05

BFGS −102 69 0 213 6.2e-05 BFGS −102 6049 1 24093 1.0e-04
DBFGS 65 2 211 9.8e-05 DBFGS 125 3 433 6.9e-05
CBFGS 65 2 211 8.5e-05 CBFGS 124 3 439 5.6e-05

BFGS 103 72 0 221 9.2e-05 BFGS 103 8330 1 33217 1.0e-04
DBFGS 70 2 236 5.8e-05 DBFGS 150 3 543 7.3e-05
CBFGS 67 2 222 2.3e-05 CBFGS 540 3 3704 8.5e-05

BFGS −103 71 0 220 4.3e-05 BFGS −103 8296 1 33081 1.0e-04
DBFGS 69 2 232 8.5e-05 DBFGS 145 3 511 9.8e-05
CBFGS 67 2 222 2.7e-05 CBFGS 533 3 3662 8.3e-05

BFGS 104 73 0 227 6.7e-05 BFGS 104 9962 1 39745 1.0e-04
DBFGS 72 2 246 4.9e-05 DBFGS 185 3 704 8.9e-05
CBFGS 69 2 233 8.3e-05 CBFGS 1299 2 10043 5.0e-05

BFGS −104 73 0 227 6.3e-05 BFGS −104 9915 1 39557 1.0e-04
DBFGS 72 2 242 4.3e-05 DBFGS 590 3 3123 8.5e-05
CBFGS 69 2 232 5.6e-05 CBFGS 1268 2 9837 4.8e-05
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Table 2
Test results for unconstrained optimization problems B0 = I.

Method Prob Dim Iter Inner Numf Fnorm Method Prob Dim Iter Inner Numf Fnorm

BFGS rose 2 103 0 415 6.3e-005 BFGS froth 2 - - - -
DBFGS - - - - DBFGS - - - -
CBFGS 668 7 6301 9.1e-05 CBFGS 282 7 3155 9.1e-06
BFGS beale 2 347 0 1331 9.4e-05 BFGS jensam - - - - -
DBFGS - - - - DBFGS - - - -
CBFGS 155 4 1330 2.6e-05 CBFGS 12 5 65 8.3e-05
BFGS helix 3 279 0 1205 8.9e-05 BFGS gulf 3 1 1 4 5.6e-086
DBFGS - - - - DBFGS 1 1 4 1.9e-10
CBFGS 156 6 1413 3.1e-05 CBFGS 1 1 4 1.0e-10
BFGS gauss 3 2 0 8 5.9e-006 BFGS meyer 3 - - - -
DBFGS 2 2 10 6.0e-06 DBFGS 1 4 14 4.2e-07
CBFGS 2 2 10 6.0e-06 CBFGS 1 4 14 4.2e-07
BFGS sing 4 218 1 875 8.6e-05 BFGS wood 4 - - - -
DBFGS 214 9 1847 9.9e-05 DBFGS - - - -
CBFGS 97 6 650 9.7e-05 CBFGS 617 8 8971 6.9e-05
BFGS kowosb 5 - - - - BFGS biggs 6 59 0 211 4.4e-05
DBFGS 661 4 7031 1.0e-04 DBFGS 101 5 589 6.9e-05
CBFGS 661 4 7028 1.0e-04 CBFGS 101 5 589 6.9e-05
BFGS osb2 11 225 1 775 4.0e-05 BFGS watson 2 24 0 90 2.8e-06
DBFGS - - - - DBFGS 18 5 124 1.1e-05
CBFGS - - - - CBFGS 18 5 124 1.1e-05
BFGS trid 10 152 0 609 1.8e-05 BFGS singx 40 - - - -
DBFGS 115 5 682 6.2e-05 DBFGS - - - -
CBFGS 115 5 682 6.2e-05 CBFGS 741 6 6372 1.0e-04
BFGS pen1 10 248 0 1048 2.9e-05 BFGS pen2 10 320 0 1499 5.0e-05
DBFGS 148 7 1235 4.5e-05 DBFGS - - - -
CBFGS 148 7 1235 4.5e-05 CBFGS - - - -
BFGS bv 10 30 0 104 1.0e-05 BFGS ie 10 5 0 17 2.6e-05
DBFGS 31 3 135 1.8e-05 DBFGS 4 2 18 2.6e-05
CBFGS 31 3 135 1.8e-05 CBFGS 4 2 18 2.6e-05
BFGS lin 10 1 0 4 1.0e-13 BFGS lin1 10 2 0 17 7.7e-06
DBFGS 1 1 4 8.9e-16 DBFGS 2 11 28 1.1e-10
CBFGS 1 1 4 8.9e-16 CBFGS 2 11 28 1.1e-10
BFGS lin0 10 2 0 17 7.7e-07
DBFGS 2 11 30 1.3e-11
CBFGS 2 11 30 1.3e-11

Table 3
Average performance for nonlinear equation problems.

Dim Method Iter Inner Numf Dim Method Iter Inner Numf
10 BFGS 13.4 0 42 50 BFGS 46 0 123.6

DBFGS 11.8 1.9 46.1 DBFGS 38 1.9 129.6
CBFGS 11.8 1.9 46.1 CBFGS 38 1.9 129.6

100 BFGS 66.8 0 205.6 200 BFGS 5629.7 0.9 22446
DBFGS 65.5 1.9 215.9 DBFGS 176.8 3.1 770.8
CBFGS 65.2 1.9 214.1 CBFGS 409.5 2.6 2799.1
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Galerkin-type discretization leads to a convergent approximation and that the indefinite system
arising from the Karush–Kuhn–Tucker (KKT) system is well-posed.

In addition, we present a multilevel version of the Levenberg–Marquardt method and discuss
the simultaneous solution of the discretized KKT system by preconditioned iteration methods for
indefinite problems. From a discussion of the numerical effort we conclude that these approaches
may lead to a considerable speed-up with respect to standard iterative regularization methods that
eliminate the underlying state equation. The numerical efficiency of the LMSQP method is confirmed
by numerical examples.
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1. Introduction. Parameter identification denotes the procedure of determin-
ing unknown parameters appearing in an underlying state equation (usually a partial
differential equation) from indirect measurements related to the solution of this equa-
tion. Such problems appear in many applications, where mathematical models of
physical, chemical, biological, or economical processes are used (cf., e.g., [2, 13, 17]
and the references therein).

Since such problems are ill-posed in general, i.e., the parameter to be reconstructed
does not depend on the observation in a stable way, regularization methods have to
be used in order to compute a stable approximation of the parameter in the presence
of data noise. Due to the ill-posedness of the identification problem, the numerical
approximation of such problems is not a simple task. The standard approach that can
be found in literature is based on a priori elimination of the state equation, and an
application of a discretized regularization method to the resulting operator equation
involving the parameter-to-output map, which is the operator mapping the parameter
to the corresponding observation. The main part in the evaluation of this map is the
solution of the underlying state equation for a given parameter, which is numerically
realized by standard discretizations such as finite elements.

The approach based on the parameter-to-output map, in particular combined with
iterative regularization methods (cf. [18] for an overview), has been applied with success
even to rather complicated parameter identification problems (cf., e.g., [10, 25, 26]).
However, since these methods need a high number of direct solves (i.e., solutions of the
state equation), fine discretizations of the parameter lead to a considerable compu-
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tational effort, which results in high CPU times or even in the impossibility of using
fine discretizations. Another drawback of this approach is that the discretizations
of state and parameter are rather independent, which makes the numerical analysis
extremely difficult. Therefore, fundamentally different methods for the solution of pa-
rameter identification problems have been investigated recently, whose common idea
is to avoid a priori elimination of the state equation (cf. [11, 21, 27]). The aim of this
paper is to discuss the numerical approximation of an iterative regularization method
based on the idea of SQP (cf. [11]). We investigate Galerkin-type discretizations in the
product space for parameter, state variable, and a corresponding Lagrangian variable,
which leads to a sequence of well-posed indefinite systems. With this approach we
are able to show convergence of the numerical approximation both for the quadratic
programming problem arising in each iteration step and for the overall minimization
procedure.

The general setup in this paper is as follows: we assume that we are given a noisy
measurement zδ satisfying

‖ẑ − zδ‖Z ≤ δ,(1.1)

where the exact data satisfy

ẑ := Eû,(1.2)

with E ∈ L(X,Z) and û ∈ X solving e(û, q̂) = f for some q̂ ∈ Qad ⊂ Q (where Qad is
a closed subset of Q with a nonempty interior). Our aim is to identify the parameter
q ∈ Qad in the underlying equation

e(u, q) = f,(1.3)

where e : X ×Q→ X∗ is a continuous nonlinear operator with

e(0, 0) = 0.(1.4)

In this setup X, X∗, Q, and Z are Hilbert spaces, and X∗ can be identified with
the dual of X. Finally, we assume that e is continuously Fréchet-differentiable on
X ×Q and that the partial derivative eu ∈ L(X,X∗) is self-adjoint and satisfies the
coercivity condition

〈eu(u, q)v, v〉 ≥ αe‖v‖2X ∀(u, q, v) ∈ X ×Qad ×X(1.5)

for some αe ∈ R
+.

The above setup is typical for partial differential equations of elliptic type, which
is also the main type of application we have in mind. We want to mention that the
infinite-dimensional analysis carried out in the preceding paper [11] was not restricted
to elliptic problems but only assumed the well-posedness of the state equation for a
given parameter. However, since the numerical approximation techniques for elliptic
problems differ from the ones for parabolic or hyperbolic problems (cf., e.g., [33]
for an overview), one cannot expect a successful unified approach to corresponding
parameter identification problems. For this reason we start with an investigation of the
elliptic case in this paper, but we want to mention that the numerical identification of
parameters in transient equations or even mixed systems of equations is an important
and challenging problem for future research.
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In [11], it has been mentioned that the parameter identification problem in the
above setup is an ill-posed inverse problem, and we have proposed the following iter-
ative regularization method based on the idea of SQP.

Method 1 (Levenberg–Marquardt SQP method). Let

(u0, q0) ∈ X ×Q
be a given initial value, and let (βk)k∈N be a bounded sequence of positive real numbers.
The Levenberg–Marquardt SQP (LMSQP) method consists of the iteration procedure

(uk+1, qk+1) = (uk, qk),(1.6)

where (uk, qk) is the minimizer of the quadratic programming problem

1

2
‖Eu− zδ‖2Z +

βk
2
‖q − qk‖2Q → min

(u,q)∈X×Q
(1.7)

subject to the linear constraint

e(uk, qk) + e′(uk, qk)(u− uk, q − qk) = f.(1.8)

The iteration procedure is stopped as soon as k = k∗, where

‖Euk∗ − zδ‖Z ≤ τδ < ‖Euk − zδ‖ ∀ k < k∗,(1.9)

with appropriately chosen τ > 1.
The motivation for the LMSQP method comes from two sources: a first guide for

the design of this method are classical SQP methods, where one would minimize in
each step a functional of the form

1

2
‖Eu− zδ‖2Z + 〈e′′(uk, qk)(u− uk, q − qk)2, λk〉 → min

(u,q)∈X×Q
,(1.10)

subject to the constraint (1.8), in order to obtain the new values uk+1, qk+1 with
corresponding Lagrangian variable λk+1 (cf. [1, 14] and the references therein for
further details on SQP methods). Since this approach results in a sequence of ill-
posed quadratic minimization problems for typical cases in parameter identification
(cf. [11]), it seems natural to add a regularizing term. This leads us to the second
guide for the construction of the LMSQP method, namely the classical Levenberg–
Marquardt method for nonlinear least-squares problems. For the solution of an uncon-
strained nonlinear least-squares problem of the form ‖F (q)− ẑ‖ → min (which would
arise, e.g., by a priori elimination of the state equation), the Levenberg–Marquardt
method can be characterized via the sequence of minimization problems

1

2
‖F (qk) + F ′(qk)(q − qk)− ẑ‖2Z +

βk
2
‖q − qk‖2Q → min

q∈Q
.(1.11)

The synthesis of Levenberg–Marquardt and SQP methods for ill-posed parameter
identification problems is not unique; one possibility would be to minimize

1

2
‖Eu− zδ‖2Z + 〈e′′(uk, qk)(u− uk, q − qk)2, λk〉+ βk

2
‖q − qk‖2Q → min

(u,q)∈X×Q
,

(1.12)
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subject to (1.8), and another one would be the method given by (1.7), (1.8). Both of
these methods have been introduced in [11], but since for least-squares systems the
Lagrangian variable must be small close to a solution (note that we are interested
in the case of attainable data here) we restrict our attention to the LMSQP method
(1.7), (1.8).

Due to the results of [11], the LMSQP method is a convergent regularization
method if the condition (1.9) is used as a stopping rule. We note that (1.9) is a
standard stopping criterion for ill-posed inverse problems but a nonstandard one for
SQP-type methods. However, the analysis in [11] and in the remainder of this paper
shows that in this context it does not cause termination of the method at (largely)
infeasible points. As a particular consequence of the results in [11], the quadratic pro-
gramming problems of the form (1.7), (1.8), which have to be solved in each iteration
step, are well-posed. Our aim in this paper is to investigate the numerical approxima-
tion of the LMSQP method by a Galerkin-type approach. We shall show below that
this leads to an indefinite system in each iteration step, whose solution is an approx-
imation of optimal order to the solution of (1.7), (1.8). Moreover, we show that the
reconstructions obtained with the discretized LMSQP method converge to a solution
of the parameter identification problem as the noise level and the discretization size
tend to zero, if an appropriate stopping rule is used, which relates the residual to the
noise level and some measures for the discretization.

Moreover, we shall discuss the solution of the discretized Karush–Kuhn–Tucker
(KKT) system, which is an indefinite linear system to be solved for the discretized
equivalents of state, parameter, and Lagrangian variable. The standard approaches to
the solution of such discretized problems arising from partial differential equations are
reduced SQP methods, where state and Lagrangian variable are eliminated a priori.
We recall the basic properties of the reduced SQP approach, but we mainly focus
on the iterative solution of the whole system with appropriate preconditioning. This
promising approach has been employed recently for parameter identification (cf. [21,
27]) and optimal control problems (cf. [3, 4, 5, 6]) with good numerical results, in
particular with respect to efficiency.

The paper is organized as follows: in section 2 we investigate the numerical ap-
proximation of the LMSQP method by a Galerkin-type approach and discuss the
well-posedness, stability, and approximation properties of the discretized KKT sys-
tem; the convergence of the discretized solutions is shown in section 3. Some further
numerical methods and the implementation of the SQP iteration are examined in
section 4. We briefly discuss the correct scaling of variables, the solution of the KKT
system, and globalization strategies. Moreover, we present and analyze a multilevel
approach, which leads to a further speed-up of the method. As a first application
we investigate the identification of a potential in an elliptic boundary value problem,
where we can give quantitative error estimates in terms of the discretization sizes.
Some numerical experiments related to this identification problem are presented in
section 6, before we conclude and give an outlook for further interesting problems
related to this topic in section 7.

2. Discretization techniques. In the following we investigate the discretiza-
tion of the LMSQP method by a Galerkin approach. First of all, we assume that we
have discretized data zδ,η ∈ Zη ⊂ Z of the form

zδ,η = Rηz
δ,(2.1)
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where Rη : Z → Zη is the orthogonal projector onto the finite-dimensional subspace
Zη. Note that we can give an error estimate for zδ,η using (1.1) and ‖Rη‖ = 1, which
yields

δη := ‖Rηz
δ − ẑ‖Z ≤ ‖Rη(z

δ − ẑ)‖Z + ‖Rη ẑ − ẑ‖Z ≤ δ + inf
y∈Zη

‖y − ẑ‖Z .(2.2)

Now let Xh ⊂ X, Qh ⊂ Q be finite-dimensional subspaces of X and Q, with the
corresponding orthogonal projectors Ph : X → Xh and P̃h : Q → Qh. Then we can
discretize the LMSQP method as follows.

Method 2 (Galerkin LMSQP method). Let Xh, Qh, and Zη be as above, and
let

(u0, q0) ∈ Xh ×Qh

be a given initial value. Moreover, let (βk)k∈N be a bounded sequence of positive real
numbers. The Galerkin LMSQP (GLMSQP) method consists of the iteration procedure

(uk+1, qk+1) = (uk, qk),(2.3)

where (uk, qk) ∈ Xh ×Qh is the minimizer of the quadratic programming problem

1

2
‖Rη(Eu− zδ)‖2Z +

βk
2
‖q − qk‖2Q → min

(u,q)∈Xh×Qh

(2.4)

subject to the linear constraint

〈e(uk, qk) + e′(uk, qk)(u− uk, q − qk), ϕ〉 = 〈f, ϕ〉 ∀ ϕ ∈ Xh.(2.5)

Note that the constraint (2.5) can be rewritten in operator form as

P ∗
hKkPh(u− uk) + P ∗

hLkP̃h(q − qk) = P ∗
h (f − e(uk, qk)),(2.6)

to be solved for (u, q) ∈ Xh ×Qh, with the notation

Kk : X → X∗, Kku = eu(uk, qk)u ∀ u ∈ X,(2.7)

Lk : Q→ X∗, Lkq = eq(uk, qk)q ∀ q ∈ Q,(2.8)

and P ∗
h : X∗

h → X∗ is the adjoint of Ph. Under the assumption (1.5), we obtain that

〈P ∗
hKkPhv, v〉 = 〈KkPhv, Phv〉 = 〈Kkv, v〉 ≥ αe‖v‖2X(2.9)

for all v ∈ Xh; i.e., the discrete bilinear form associated with the operator P ∗
hKkPh

is coercive on Xh. This implies by the Lax–Milgram theorem that (2.6) is uniquely
solvable with respect to u for given q ∈ Qh. Consequently, in an analogous way to the
proof of Proposition 2.1 in [11] we may show the following result on the well-posedness
of the quadratic programming problem that has to be solved in each step of Method
2.

Proposition 2.1. Let e be continuously Fréchet-differentiable, let (1.5) hold,
and let βk > 0. Then the quadratic programming problem (2.4), (2.5) has a unique
solution (uk, qk) ∈ Xh ×Qh, which is also the only local minimum.
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2.1. The discretized KKT system. In [11], the KKT system for the infinite-
dimensional version of the LMSQP method has been derived and analyzed in the
framework of linear saddle-point problems. Now we will discuss the discretized ana-
logue of this system, namely the first-order optimality conditions for the quadratic
programming problem (2.4), (2.5).

The Lagrangian of (2.4), (2.5) is given by

Lk(u, q;λ) =
1

2
‖Rη(Eu− zδ)‖2Z +

βk
2
‖q − qk‖2Q

+ 〈λ, e′(uk, qk)(u− uk, q − qk) + e(uk, qk)− f〉(2.10)

for (u, q, λ) ∈ Xh × Qh ×Xh. Since Ph and P̃h are equal to the identity on Xh and
Qh, respectively, we can rewrite the Lagrangian as

Lk(u, q;λ) =
1

2
‖Rη(EPhu− zδ)‖2Z +

βk
2
‖P̃h(q − qk)‖2Q

+ 〈Phλ,KkPh(u− uk) + LkP̃h(q − qk) + e(uk, qk)− f〉,(2.11)

with the operators Kk and Lk defined by (2.7), (2.8). The KKT system can now be
deduced by computing the partial derivatives of the Lagrangian with respect to u, q,
and λ; i.e., (uk+1 − uk, qk+1 − qk, λk+1) solves the linear saddle-point problem

(2.12)
 P ∗

hE
∗R∗

ηRηEPh 0 P ∗
hK

∗
kPh

0 βkP̃
∗
h P̃h P̃ ∗

hL
∗
kPh

P ∗
hKkPh P ∗

hLkP̃h 0




 u

q
λ


 =


 P ∗

hE
∗R∗

ηRη(z
δ − Euk)

0
P ∗
h (f − e(uk, qk))


 .

As in [11], we define the symmetric bilinear form ak : (X ×Q)2 → R by

aηk(u, q;ϕ, σ) := 〈RηEu,RηEϕ〉Z + βk〈q, σ〉Q(2.13)

and the bilinear form bk : (X ×Q)×X → R by

bk(u, q;λ) := 〈Kku, λ〉+ 〈Lku, λ〉.(2.14)

Moreover, we use the right-hand sides

fk := f − e(uk, qk) ∈ X∗,(2.15)

gηk := (E∗R∗
ηRη(z

δ − Euk), 0) ∈ X∗ ×Q.(2.16)

Then the KKT system (2.12) can be interpreted as the Galerkin approximation of an
indefinite variational problem; i.e., (u, q, λ) ∈ Xh ×Qh ×Xh is the solution of

aηk(u, q;ϕ, σ) + bk(ϕ, σ;λ) = 〈gηk , (ϕ, σ)〉 ∀ (ϕ, σ) ∈ Xh ×Qh,(2.17)

bk(u, q;µ) = 〈fk, µ〉 ∀ µ ∈ Xh.(2.18)

In an analogous way to the proof of Theorem 2.3 in [11] we can show that the
bilinear form a satisfies the kernel-ellipticity condition on Xh ×Qh; i.e., there exists
a constant αa > 0 such that

aηk(u, q;u, q) ≥ αa‖(u, q)‖2
∀ (u, q) ∈ Kh

b := { (v, s) ∈ Xh ×Qh | b(v, s;λ) = 0, ∀ λ ∈ Xh }
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and that b satisfies the LBB condition

inf
λ∈Xh

sup
(u,q)∈Xh×Qh

bk(u, q;λ)

‖(u, q)‖ ‖λ‖ ≥ αb

for some αb > 0. This implies the following well-posedness result (cf. [8, 9]) for the
discretized problem (2.17), (2.18).

Theorem 2.2. Let e be continuously Fréchet-differentiable, let (1.5) hold, and
let βk > 0. Then the indefinite system (2.17), (2.18) has a unique solution (u, q, λ) ∈
Xh ×Qh ×Xh, which depends continuously on the right-hand sides fk and g

η
k .

Since the constants αa and αb are the same as in the corresponding infinite-
dimensional conditions in X ×Q, they are, in particular, independent of the discrete
subspaces Xh and Qh. This allows us to deduce an approximation result for the
solutions of (2.17), (2.18) to the solution (u, q, λ) ∈ X × Q × X of the infinite-
dimensional KKT system, given in variational form as

ak(u, q;ϕ, σ) + bk(ϕ, σ;λ) = 〈gk, (ϕ, σ)〉 ∀ (ϕ, σ) ∈ X ×Q,(2.19)

bk(u, q;µ) = 〈fk, µ〉 ∀ µ ∈ X,(2.20)

with ak given by

ak(u, q;ϕ, σ) := 〈Eu,Eϕ〉Z + βk〈q, σ〉Q,(2.21)

bk, fk as above, and gk defined by

gk := (E∗(zδ − Euk), 0) ∈ X∗ ×Q.(2.22)

Theorem 2.3. Suppose that the assumptions of Theorem 2.2 are satisfied, and
let

(uh, qh, λh) ∈ Xh ×Qh ×Xh

denote the unique solution of (2.17), (2.18). Then there exists a constant c > 0
independent of Xh and Qh such that

‖(u− uh, q − qh, λ− λh)‖ ≤ c

(
rδη,h + inf

(v,s,µ)∈Xh×Qh×Xh

‖(u− v, q − s, λ− µ)‖
)
,

(2.23)

where (u, q, λ) denotes the unique solution of (2.19), (2.20) and

rδη,h := ‖(Rη − I)zδ‖Z + sup
v∈Xh,‖v‖=1

‖(Rη − I)Ev‖Z .(2.24)

Proof. First, let (ũh, q̃h, λ̃h) denote the solution of (2.17), (2.18) with aηk, g
η
k

replaced by ak, gk. Then Theorem 2.1 in [9] implies the existence of a constant c1 > 0
(independent of Xh and Qh) such that

‖(u− ũh, q − q̃h, λ− λ̃h)‖ ≤ c1 inf
(v,s,µ)∈Xh×Qh×Xh

‖(u− v, q − s, λ− µ)‖.
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Moreover, the stable dependence of the solutions of (2.17), (2.18) on the right-hand
side implies the existence of c2 > 0, c3 > 0 with

‖(uh − ũh, qh − q̃h, λh − λ̃h)‖

≤ c2

(
sup

v∈Xh,‖v‖=1

〈gηk − gk, (v, 0)〉+ sup
ϕ∈Xh,‖ϕ‖=1

|aηk(ũh, q̃h, ϕ)− ak(ũh, q̃h, ϕ)|
)

≤ c2

(
sup

v∈Xh,‖v‖=1

〈Ev, (R∗
ηRη − I)(zδ − Euk)〉+ sup

ϕ∈Xh,‖ϕ‖=1

〈Eϕ, (R∗
ηRη − I)Eũh〉

)

≤ c3

(
‖E‖ ‖(Rη − I)zδ‖Z + sup

v∈Xh,‖v‖=1

‖(Rη − I)Ev‖Z
)
,

and with the triangle inequality we may conclude (2.23).
Theorem 2.3 provides an error estimate for the solutions of the discretized saddle-

point problem (2.17), (2.18), consisting of two parts corresponding to the numerical
approximation in the image space Z and in the preimage spaces X and Q. An obvious
estimate for the first term is

rδη,h ≤ inf
y∈Zη

‖y − zδ‖Z + sup
v∈Xh,‖v‖X=1

inf
ỹ∈Zη

‖ỹ − Ev‖Z ,

which possibly does not lead to a quantitative estimate, since there is no additional
information on the smoothness of the noisy data. An alternative estimate is

rδη,h ≤ δ + inf
y∈Zη

‖y − ẑ‖Z + sup
v∈Xh,‖v‖X=1

inf
ỹ∈Zη

‖ỹ − Ev‖Z .

The infimum of ‖y − ẑ‖Z can usually be estimated more easily, since the exact data
ẑ are smoother due to the fact that û is the solution of the state equation for some
parameter q̂. For example, if the state equation is of elliptic type with solution
û ∈ H1(Ω), E : H1(Ω) → L2(Ω) is the embedding operator, and Rη results from a
standard finite element discretization on a grid with fineness η, then we have at least

inf
y∈Zη

‖y − ẑ‖ = O(η).

Another important observation is that the last term vanishes if the discrete spaces Zη

and Xh are equal, which can be achieved in some applications.
The second term in (2.23) shows that the Galerkin approximation of the KKT

system is of optimal order in Xh ×Qh ×Xh; it can be estimated by standard meth-
ods for finite element discretizations; quantitative estimates can be obtained using
the regularity of the iterates. This part depends, of course, strongly on the specific
application.

3. Convergence analysis. In this section we will analyze the GLMSQP method
with respect to convergence, i.e., the convergence of the reconstruction obtained with
an appropriate stopping rule as the noise level and the measure for the discretization
fineness tend to zero. With η = 0, h = 0 we will identify the infinite-dimensional case,
i.e., X0 = X, Q0 = Q, and Z0 = Z. We assume that the discrete subspaces satisfy⋃

h>0

Xh = X,
⋃
η>0

Zη = Z,
⋃
h>0

Qh = Q.
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If we denote by dk and fk the error terms (note that e(û, q̂) = f)

(dk, fk) := (Ph(uk − û), P̃h(qk − q̂)),(3.1)

we can rewrite the KKT system (2.12) as
 P ∗

hE
∗R∗

ηRηEPh 0 P ∗
hK

∗
kPh

0 βkP̃
∗
h P̃h P̃ ∗

hL
∗
kPh

P ∗
hKkPh P ∗

hLkP̃h 0




 dk+1

fk+1

λk+1


(3.2)

=


 P ∗

hE
∗R∗

ηRη(z
δ − EPhû)

βkP̃
∗
h P̃h(qk − q̂)

rk


 ,

where the rk denotes the remainder

rk := P ∗
h

(
e(û, q̂)− e(uk, qk) + e′(uk, qk)(Phdk, P̃hfk)

)
.(3.3)

As in [11], we require a condition on the nonlinearity, which is summarized in the
following.

Assumption 1. Let (1.5) be satisfied and define the remainder r(u, q) by

r(u, q) := e(û, q̂)− e(u, q)− e′(u, q)(û− u, q̂ − q).(3.4)

Then we assume that there exists a constant γ1 < 1 such that

‖Eeu(u, q)−1r(u, q)‖Z ≤ γ1‖Eu− ẑ‖Z ∀ (u, q) ∈ B2ζ(u0)×B2ρ(q0)(3.5)

and that there exists a solution (û, q̂) ∈ Bζ(u0)×Bρ(q0) of the parameter identification
problem.

For a discussion of the nonlinearity condition (3.5) and a comparison with stan-
dard conditions used in the convergence analysis of nonlinear ill-posed problems we
refer the reader to [11].

If we define the discretization measures εh, κh by

εh = ‖E(I − Ph)û‖Z , κh = cζ,ρ‖(I − P̃h)q̂‖Q,(3.6)

where

cζ,ρ = sup
(u,q)∈B2ζ(u0)×B2ρ(q0)

‖Eeu(u, q)−1eq(u, q)‖Z ,(3.7)

and εη by

εη = γ1ζ
−1 sup

‖v‖X=1

‖(Rη − I)Ev‖Z ,(3.8)

then for all (u, q) ∈ B2ζ(u0)×B2ρ(q0) the estimate

‖RηEeu(u, q)
−1rh(u, q)‖Z ≤ γ1‖Rη(Eu− ẑ)‖Z + εη + εh + κh(3.9)

holds, where

rh(u, q) := e(û, q̂)− e(u, q)− e′(u, q)(Phû− u, P̃hq̂ − q).(3.10)
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Remark 1. If Xh, Zη, and Qh are standard finite element spaces on some trian-
gulations, then εh, εη, and κh can be estimated by the approximation error of these
elements. In particular, if the discretization parameter (i.e., the maximal size of a
triangle) tends to zero and if the triangulation is regular, one can guarantee that εh,
εη, and κh tend to zero (cf. [33] for further details).

For the choice of the stopping index we use a numerical version of (1.9), which
involves the discretization measures defined above:

‖Rη(Euk∗ − zδ)‖Z ≤ τ(δη + 2εh + κh) < ‖Rη(Euk − zδ)‖Z ∀ k < k∗.(3.11)

For an appropriate choice of τ , this allows us to prove the following monotonicity
property of the iterates.

Lemma 3.1. Let Assumption 1 be fulfilled, let the noise be bounded by (1.1), and
assume that

β−1
0 (‖Ed0‖Z − δ − εh)2 + ‖f0‖2Q ≤ ρ2.(3.12)

In addition, βk is chosen such that βk ≤ βk−1 for all k ∈ N and that

γ1 := γ1 sup
k∈N

√
βk−1

βk
< 1,(3.13)

and the stopping index k∗ is chosen according to the generalized discrepancy principle
(3.11) with

τ > 1 +
γ1 + γ1

γ1(1− γ1)
;(3.14)

then qk ∈ B2ρ(q0) and the estimates

(‖RηEdk+1‖Z − δ − εh)2 + βk‖fk+1‖2Q + βk‖qk+1 − qk‖2Q
≤ (γ1‖RηEdk‖Z + δ + εη + 2εh + κh)

2 + βk‖fk‖2Q(3.15)

and

β−1
k (‖RηEdk+1‖Z − δ − εh)2 + ‖fk+1‖2Q ≤ β−1

k−1(‖RηEdk‖Z − δ − εh)2 + ‖fk‖2Q
(3.16)

hold for all k < k∗.
Proof. Assume that qk ∈ B2ρ(q0). Then, with (3.2) and

λk+1 = −(P ∗
hK

∗
kPh)

−1P ∗
hE

∗R∗
ηRη(Euk+1 − zδ)

we deduce the identity

2‖RηEdk+1‖2Z + βk‖fk+1‖2Q + βk‖qk+1 − qk‖2Q
= 2‖RηEdk+1‖2Z + βk‖fk‖2Q + 2βk〈fk+1, qk+1 − qk〉
= 2〈Rη(z

δ − EPhû), RηEdk+1〉Z + βk‖fk‖2Q
+ 2〈Rη(Euk+1 − zδ), RηEPh(P

∗
hKkPh)

−1P ∗
hrh(uk, qk)〉Z .

The noise bound (1.1) implies that

‖Rη(z
δ − Phû)‖Z ≤ ‖Rη(z

δ − ẑ)‖Z + ‖E(I − Ph)û‖Z ≤ δ + εh,
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and using the Cauchy–Schwarz inequality together with (3.9) we obtain the estimate

(‖RηEdk+1‖Z − δ − εh)2 + βk‖fk+1‖2Q + βk‖qk+1 − qk‖2Q
≤ (γ1‖RηEdk‖Z + δ + εη + 2εh + κh)

2 + βk‖fk‖2Q.

Equation (3.16) follows from dividing (3.15) by βk and the fact that√
βk−1

βk
(γ1‖RηEdk‖Z + δ + εη + 2εh + κη) ≤ ‖RηEdk‖Z − δ − εh.

By induction we can now show that qk ∈ Bρ(q0) for k < k∗ and τ satisfying
(3.14).

In an analogous way to the proof of Lemma 3.2 in [11] we can prove the following
statement on the finiteness of the stopping index k∗ if δ > 0.

Lemma 3.2. Under the assumptions of Lemma 3.1, the discrepancy principle
(3.11) yields a finite stopping index k∗ if

δη,h := δ + εη + 2εh + κh > 0,(3.17)

and τ is chosen according to (3.14).
One observes that in the above estimates the term δη,h now plays the same role as

the noise level δ in the infinite-dimensional setup. Therefore it is also possible to prove
convergence as δη,h → 0 in the same way as convergence in the infinite-dimensional
case for δ → 0 (cf. [11, Theorem 3.5]). Consequently, we do not give the detailed
convergence proof but refer to [11] for further details on the technique of the proof.
We recall only the basic assumptions on e and give the final convergence result, where
we use the notation (uδ,η,h

k , qδ,η,hk ) for the iteration according to (2.12) with initial

value (Phu0, P̃hq0), noise level δ, and discretization parameters h and η.
Assumption 2. In addition to Assumption 1, assume that e is of the form

e(u, q) = A(u) +N(u, q) ∀ (u, q) ∈ X ×Q,(3.18)

with continuously Fréchet-differentiable (nonlinear) operators A : X → X∗ and N :
X ×Q→ X∗ such that

N(u, .) ∈ L(Q,X∗) ∀ u ∈ X.(3.19)

Moreover, we assume that A and N satisfy the nonlinearity conditions

‖Eeu(u, q)−1A′(v)w‖X∗ ≤ γ2‖Ew‖X∗ ∀ (u, v, w, q) ∈ B2ζ(u0)
2 ×X ×B2ρ(q0)

(3.20)

and

‖Eeu(u, q)−1Nu(v, s)w‖Y ≤ γ3‖Ew‖Y ∀ (u, v, w, q, s) ∈ B2ζ(u0)
2 ×X ×B2ρ(q0)

2

(3.21)

for some positive constants γ2 and γ3.
Theorem 3.3 (convergence). Let Assumption 2 and (3.12) be fulfilled with ζ, ρ

sufficiently small, and let the noise be bounded by (1.1). Moreover, let βk be chosen
such that βk ≤ β0 for all k ∈ N and that (3.13) is satisfied. If the perturbed iteration
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is stopped with k∗ = k∗(δ,Rηz
δ, h) according to the generalized discrepancy principle

(3.11) with τ = τ(h, η) (uniformly bounded in h and η) satisfying (3.14), then

(qδ,η,h
k∗(δ,Rηzδ,h)

, uδ,η,h
k∗(δ,Rηzδ,h)

)→ (q, u) in X ×Q as max{δη, εh, κh} → 0,(3.22)

where (u, q) is a solution of (1.3) with Eu = ẑ.
Proof. The proof is analogous to the proof of Theorem 3.5 in [11].

4. Numerical realization. In the following we want to discuss some numerical
methods and variants for the GLMSQP algorithm. We split this discussion into
two parts, the first related to the inner iteration, i.e., the numerical solution of the
discretized KKT system (2.12) for fixed iteration number k, and the second related
to the outer iteration, i.e., the iteration in k defined by the LMSQP method.

4.1. The inner iteration. Using appropriate bases for all finite-dimensional
subspaces, the discretized KKT system (with penalty parameter β = βk) can be
written as 

 G 0 KT

0 βH LT

K L 0




 V

S
Λ


 =


 f1

0
f3


 ,(4.1)

to be solved for V ∈ R
m, S ∈ R

n, and Λ ∈ R
m. One notices that due to the properties

of the corresponding infinite-dimensional operators, the matrices G ∈ R
m×m and

H ∈ R
n×n are symmetric and positive definite, K ∈ R

m×m is regular, and L ∈ R
m×n

is of rather general form. An alternative formulation of (4.1) is

MX = F,(4.2)

with

M =


 G 0 KT

0 βH LT

K L 0


 , X =


 V

S
Λ


 , F =


 f1

0
f3


 .

From the analysis in section 2 we may conclude that M is a regular, indefinite matrix,
whose further properties (such as distribution of eigenvalues) rely on the specific form
of the state equation and the objective. For a first application, we will investigate
these properties in section 5.

For the solution of the discretized KKT system (4.2), there are two basic possibili-
ties. The first one is the so-called reduced SQP approach, which consists of eliminating
the state and Lagrangian variable (using the regularity of K) and then solving the
arising lower-dimensional system for the parameter, which has a symmetric positive
definite system matrix Mr ∈ R

n×n. This approach is frequently used in optimal con-
trol and parameter identification (cf., e.g., [36, 37, 38]) and seems attractive, since
the problem dimension is reduced significantly. However, the reduced matrix is of
the same structure as the matrix arising from a discretization of a Newton method
following the feasible path (in particular, it involves the inverses of K and KT ), and
therefore one has to expect that the numerical effort is of the same order as for such
well-known methods. Recently, the simultaneous solution of KKT systems by itera-
tive methods has been investigated, in particular in connection with optimal control
problems (cf. [3, 5, 6, 21]). Compared to the reduced SQP approach, a simultaneous
solution strategy has the obvious advantage that the allocation and evaluation of the
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system matrix M is much cheaper than of Mr. Also matrix-vector products with Mr

are by far more effort than matrix-vector products with M .
At first glance, it seems rather straightforward to solve (4.2) by a standard itera-

tive method for indefinite systems such as inexact Uzawa methods (cf. [7, 16, 40]) or
Krylov-subspace correction methods such as GMRES (cf. [35]), MINRES (cf. [32]),
and QMR (cf. [19]). However, in the case of large-scale problems, we have to expect a
large condition number (note that β is usually small and thatM is singular for β = 0)
and a complicated eigenvalue pattern of the matrix M , which might cause iterative
methods to diverge or to need a high number of iterations. Therefore, an appropriate
preconditioning technique seems necessary for any of the methods. We do not go into
detail here but refer to the forthcoming paper [12] for a discussion and comparison of
different preconditioners.

4.2. The outer iteration. As usual for nonlinear optimization we have to take
care of the following two aspects for the discretized LMSQP method:

• Scaling of the state variable, parameter, and Lagrangian variable is needed
in order to ensure that all variables and all sensitivities are of the same mag-
nitude. In addition, appropriate scaling is needed for balancing the set of
constraints and the objective. Since this topic is of high practical importance
for any optimization problem and well investigated, we refer to monographs
on nonlinear optimization for a detailed discussion (cf., e.g., [20, 31]).
• Globalization strategies are important for any locally convergent optimization
method such as Newton-type or SQP-type methods. The two most popular
classes of globalization techniques in optimization are trust region methods
and line search strategies, which can both be applied for a globalization of the
LMSQP algorithm. For a comprehensive overview of trust region methods we
refer to Conn, Gould, and Toint [14], and for details on line search strategies
we refer the reader to Nocedal and Wright [31].

Important tools for the efficient numerical approximation of infinite-dimensional
optimization problems are multilevel optimization methods. In the nested multilevel
setup, one starts the optimization procedure at a coarse level Xh1 × Qh1 , where the
iteration procedure can be carried out efficiently. If an appropriate stopping rule is
satisfied, one interpolates the state and parameter obtained in this way to a finer
level Xh2 × Qh2 (for h2 < h1), serving now as a starting value on this level. This
procedure is repeated until the finest level is reached. Usually, nested spaces are
used in this approach, i.e., Xh1 ⊂ Xh2 , Qh1 ⊂ Qh2 (for h2 < h1), which leads to
simple interpolation operators. Since one cannot choose the discretization of the data
arbitrarily, in general, we consider only the case of fixed η here, but a multilevel
approach in η can be realized in an analogous way, if necessary.

Nested multilevel methods outperform standard discretization techniques in many
cases (cf., e.g., [22, 23, 30]); usually a considerable number of iterations is needed on
the coarse level only, where the numerical effort per iteration is very low. On the
finest levels, the stopping rule is often satisfied already after one iteration step and
so the overall effort is less than for a direct discretization on the finest level. For the
GLMSQP method, we can formulate a multilevel algorithm as follows.

Algorithm 4.1 (nested multilevel GLMSQP).
Given a decreasing sequence {h } =1,... ,L with nested spaces Xh�

⊂ Xh�+1
, Qh�

⊂
Qh�+1

(e.g., h = 2− h0), and a nonincreasing sequence τ satisfying (3.14), the nested
multilevel GLMSQP method consists of the following iterative procedure:

1. Set 6 = 1, h = h1 and start with (u1
0, q

1
0) ∈ Xh1 ×Qh1 .
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2. Perform the GLMSQP method until the stopping criterion (3.11) is satisfied
with stopping index k∗(6).

3. If 6 = L stop the iteration, else prolongate the iterate (u 
k∗ , q

 
k∗) to the finer

level Xh�+1
× Qh�+1

, which results in a new starting value (u +1
0 , q +1

0 ). Set
h = h +1, 6 = 6+ 1, and go to step 2.

The analysis in section 3 shows that for β 
0 ≥ β −1

k∗( −1) the estimate

(β 
k∗( ))

−1‖RηEd
 
k∗( )‖2Z + ‖f  

k∗( )‖2Q +

k∗( )−1∑
j=0

‖q j+1 − q j‖2Q

≤ (β 
0)

−1‖RηEd
 
0‖2Z + ‖f  

0‖2Q
≤ (β −1

k∗( −1))
−1‖RηEd

 −1
k∗( −1)‖2Z + ‖f  −1

k∗( −1)‖2Q + θ 

holds, where θ is the error corresponding to the interpolation of the iterates from
level 6− 1 to level 6, i.e.,

θ = (β 
0)

−1
(
‖RηEd

 
0‖2Z − ‖RηEd

 −1
k∗( −1)‖2Z

)
+
(
‖f  

0‖2Q − ‖f  −1
k∗( −1)‖2Q

)
.(4.3)

This monotonicity estimate corresponds very well to the intuition that only few it-
erations are needed on the fine levels, in particular if β 

k is decreasing, which leads
to

‖RηEd
 
k∗( )‖2Z ≤ β 

k∗( )

(
(β 

0)
−1τ −1δη,h�−1

+ ‖f  −1
k∗( −1)‖2Q + θ 

)
.

For a fine level with small β, we can expect that

β 
k∗( )(β

 
0)

−1τ −1δη,h�−1
≈ τ δη,h�

,

and the second term β 
k∗( )(‖f  −1

k∗( −1)‖2Q + θ ) can be expected to be negligible. In

other words, the stopping rule at level 6 is probably satisfied with k∗(6) = 1.
Under typical conditions, where Xh�

and Qh�
correspond to standard finite ele-

ment spaces on different refinement levels of an initial triangulation of a domain Ω,
one can show that at least θ = O(h −1), and consequently

L∑
 =2

θ ≤ ch1


1 +

L−2∑
j=0

rj


 ≤ ch1

2

1− r

for some constant c ∈ R+, where

r = max
1≤ ≤L−1

h +1

h 
< 1.

Together with the above estimate one can show with a standard proof technique that
the pair (uL

k∗(L), q
L
k∗(L)) converges to a solution (u, q) of the parameter identification

problem for δη,hL
→ 0.

5. Application to potential reconstruction. As a first application we inves-
tigate the identification of the potential q in the elliptic boundary value problem

−∆u+ qu = f in Ω,(5.1)

u = 0 on ∂Ω,(5.2)
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from a state observation in L2(Ω), which is a well-studied problem in literature (cf.,
e.g., [34]). In [11], it has been shown that in the setup (d denotes the space dimension)

X = H1
0 (Ω), X∗ = H−1(Ω), Q = Hd(Ω), Z = L2(Ω),(5.3)

the operators

e : X ×Q→ X∗, (u, q) �→ (−∆u+ qu)(5.4)

E : X → Z, u �→ u(5.5)

satisfy all assumptions needed for the convergence analysis of the LMSQP method.
Now we shall study a concrete finite element discretization of the KKT system and
the derivation of estimates for the numerical errors εη, εh, and κh.

5.1. Error estimates for the discretized KKT system. If we denote the
iterates for state and Lagrangian variable at step k+1 by u and λ, respectively, then
we can write the whole KKT system in classical form as

−∆u+ qku+ quk = f + qkuk in Ω,(5.6)

−∆λ+ qkλ+ u− zδ = 0 in Ω,(5.7)

βLd(q − qk) + ukλ = 0 in Ω,(5.8)

again with homogenous Dirichlet boundary conditions upon u and λ on ∂Ω, where Ld

is a dimension-dependent differential operator of order 2d corresponding to the norm
in Hd(Ω); e.g., we have

L1q = −qxx + q,(5.9)

L2q = ∆(∆q + q) + q,(5.10)

supplemented by homogenous boundary conditions up to order d − 1. If f ∈ L2(Ω)
and u0 ∈ H2(Ω) ∩H1

0 (Ω), a standard elliptic regularity argument shows that û, uk ∈
H2(Ω)∩H1

0 (Ω) (where û is the exact solid state) for all k ∈ N. In the same way we can
show that λk ∈ H2(Ω) ∩H1

0 (Ω) and sk+1 − sk ∈ H2d(Ω). This additional regularity
can be employed to derive standard error estimates for finite element discretizations
of the KKT system (2.12).

If we use piecewise linear finite elements on regular triangulations Tη and Th for
the discretization spaces Zη and Xh, where η and h represent the fineness of the grids,
then a classical approximation result for finite elements (cf. [33, p. 96]) implies that

εη = O(η2) and εh = O(h).(5.11)

Of course, one could also use piecewise constant elements on Tη, which would yield
εη = O(η). However, in practical applications a higher-order approximation in η is
often desirable, since η can be significantly larger than a reasonable choice of h. A
canonical approximation of the parameter q is a finite element space of order greater
than or equal to d on a regular triangulation Th̃ ⊂ Th; under a priori assumptions

on the exact solution q̂ one can obtain quantitative estimates for κh in terms h̃. At
first glance it seems surprising that one needs a priori assumptions on the parameter
but not on the state in order to derive error estimates. However, due to the ill-
posedness of the identification problem with respect to the parameter q, such a priori
knowledge seems to be necessary. The approximation of the state corresponds rather
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to the approximation of the underlying elliptic state equation, which is well-posed
with respect to u and yields further regularity. We finally want to mention that
according to the theory developed above, one could choose Th̃ independent of Th, but
this would cause unnecessary complications in the implementation of the method.

We note that alternatively one can use the space Q = L2(Ω) for d ≤ 3, which
yields Ld = I; i.e., (5.8) becomes

β(q − qk) + ukλ = 0.(5.12)

An appropriate discretization strategy is, e.g., to choose Qh as the space of piecewise
constant elements on an underlying grid Th̃. The advantage of this approach is that
elements of order greater than one, which are necessary for Q = Hd(Ω) (d ≥ 2), can
be avoided.

5.2. Structure of the system matrix. For the potential identification prob-
lem, some parts of the system matrixM in (4.1) are well-understood. First of all, G is
an L2-mass matrix and it is positive definite if the triangulations Tη and Th coincide,
which we assume in the following. The eigenvalues of G are then all of order hd.
The matrix H is the stiffness matrix for the differential operator Ld, with minimal
eigenvalue of order hd and maximal eigenvalue of order h−d.

The matrix K is the sum of a stiffness matrix for the Laplacian and a weighted
mass matrix (with weight qk in the L2-scalar product), where one can expect the first
part in this sum to be dominating. Thus, the stiffness matrix K̂ for the Laplacian
will be a good preconditioner for K. The maximal and minimal eigenvalues of K and
K̂ are of order hd−2 and hd, respectively. The remaining part in the system matrix,
namely the matrix L, is difficult to understand, since its elements are weighted L2-
scalar products of basis functions of different finite element spaces. However, the
spectral norm of L can be estimated; it is of order h̃d.

The construction of preconditioners for G and H is well investigated; even exact
preconditioning seems to be applicable. For K it seems reasonable to use a precon-
ditioner K̂ for the Laplacian, e.g., a multigrid preconditioner. With preconditioning
for K, the system matrix can be transformed to

M̃ =


 G 0 KK̂−1

0 βH LT K̂−1

K̂−1K K̂−1L 0


 ,(5.13)

with the corresponding Schur complement

C̃ = K̂−1KG−1KK̂−1 + β−1K̂−1LH−1LT K̂−1.(5.14)

If K̂ is an appropriate preconditioner for K, then we can estimate the minimal eigen-
value by

λmin(C̃) ≥ λmin(K̂
−1KG−1KK̂−1) = O(h−d)(5.15)

and the maximal eigenvalue by

λmax(C̃) ≤ ‖K̂−1KG−1KK̂−1‖2 + β−1‖K̂−1LH−1LT K̂−1‖2(5.16)

= O
(
h−d(1 + β−1h−2dh̃2d)

)
.(5.17)
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Hence, the condition number of C̃ is independent of h but depends only on β and h̃
h .

One observes that the condition number is decreasing as h̃ tends to h from above.
(Note that usually h̃ ≥ h.) For the Uzawa iteration, one can choose the preconditioner
Ĉ in this case as a multiple of K̂−1KG−1KK̂−1 or even of G−1. If h̃� h, the Uzawa
iteration seems not to be optimal; in this case one can apply either a reduced SQP
approach or use Krylov-subspace methods with different preconditioning strategies.
For the details on the latter we refer the reader to [12].

6. Numerical experiments. In order to test our theoretical results, we numer-
ically solve some model problems, which have already been investigated with respect
to the convergence behavior of the LMSQP method in [11].

Example 6.1. Our first example is the identification of the potential q in (5.1),
(5.2) from a state observation u ∈ L2(Ω), with Ω = (0, 1), homogeneous Dirichlet
values for u, and

f(x) =
1

2
+ sinx, x ∈ Ω.

The exact potential is given by

q(x) = x(1− x),

which is an element of Q = H1(Ω).
This problem was implemented in the software system MATLAB as follows. The

data are generated by solving the state equation on a fine grid and subsequent interpo-
lation to a coarser grid; the noise is an additive high-frequency perturbation. We used
uniform grids with m nodes for the discretization of the state u and the Lagrange pa-
rameter λ and n nodes for the parameter q, i.e., h = (m−1)−1 and h̃ = (n−1)−1. This
implies a rather simple structure of the KKT submatrices, in particular G = g0I with
g0 ∈ R

+ and I the identity matrix, and H is the H1-stiffness matrix. The parameters
βk are chosen according to βk+1 = 0.9βk, with β0 = 10−6, which led to convergence
of the method even for starting value q ≡ 0. Roughly speaking, this choice of the
regularization parameters corresponds to a globalization strategy of trust-region type,
since it is well known that the diameter of the trust region is negative proportional
to the parameter βk for Levenberg–Marquardt methods. The KKT system (4.1) is
solved using a direct solver in this case, which is probably not the best choice with
respect to the numerical effort for fine discretizations, but it still leads to reasonable
results in our case.

The convergence results for the overall LMSQP method have been shown in [11]
and compared to a Levenberg–Marquardt method following the feasible path. It
turned out that both methods lead to almost the same iteration sequence qk. In par-
ticular, the number of iterations needed until the stopping rule is satisfied is the same
for both methods. Now we compare the numerical efficiency of the LMSQP method
with feasible path approaches, namely the Levenberg–Marquardt (LM) method on
the feasible path (with the same Galerkin discretization as for LMSQP and solution
of the Gauss–Newton system by a CG method) and a Broyden-type variant of the
LM method (cf. [24] for further details).

For this sake we choose different discretization levels (fixed during the iteration)
and measure the CPU time needed for the LMSQP method until the stopping rule
is satisfied (for fixed noise level δ). From the results shown in Table 1 one observes
that the LMSQP method with simultaneous solution of the KKT system outperforms
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Table 1
CPU time (in seconds) needed for the LMSQP method, the LM method, and a Broyden-type

variant of the LM method.

m n LMSQP LM Broyden
201 41 0.07 1.37 0.51
201 101 0.18 3.44 1.34
201 201 0.36 6.94 2.88
401 201 0.51 24.83 9.09
401 401 1.39 50.39 20.48
801 401 2.61 193.21 70.69
801 801 5.66 392.54 158.69

1601 801 7.91 1564.50 600.66
1601 1601 22.86 3144.40 1356.60

the feasible-path approaches for all different discretizations. Since the LMSQP and
the LM method need the same number of outer iterations, the difference in the nu-
merical effort is caused by the fact that the effort for matrix-vector products with
the system matrix in the LM method is significantly higher than the preconditioning
and performing of matrix-vector products with the system matrix in the simultane-
ous LMSQP method. Obviously, the gain in the numerical effort for the evaluation of
the system matrix increases with the number of discretization points, which explains
the extremely large CPU time for the LM method at the finest discretization level
(m = 1601). For small m and n, the Broyden variant is much faster than the LM
method, which is again caused by the fact that the evaluation of the system ma-
trix can be carried out efficiently. However, the number of iterations needed for the
Broyden-type variant is much larger than for the other two methods, which use the
full information about the derivatives.

Finally, we investigate the spectral condition of the system matrix M as well
as of the matrix M̃ defined by (5.13), where we use a Jacobi preconditioner for the
Laplacian as K̂. From the left picture in Figure 1, which shows the condition number
as a function of the discretization size h (in logarithmic scale) for fixed β = 10−5,
one observes that the condition number of M grows quadratically with h−1, while the
condition number of M̃ is much smaller and almost independent of h. The second
part of Figure 1 shows a plot of the condition numbers vs. the parameter β in doubly
logarithmic scale, from which it seems that the growth of the condition number as
β → 0 is slower for M̃ than for the original matrix M . In both cases, the condition
number seems to be a convex function of β, which has a unique minimum at some β.
However, this value β is rather large, and values of β that are significantly larger than
β are not of interest for our purpose, since they would cause a tremendous slowdown
of the outer iteration. Therefore we can focus our attention on the case β < β, where
the condition number increases monotonically with β−1.

Example 6.2. Our second numerical example is the identification of the conduc-
tivity q ∈ L∞(Ω) in

− div (q∇u) = f in Ω,(6.1)

u = g on ∂Ω(6.2)

from a state observation u ∈ L2(Ω). The domain Ω is a ball in R
2 with a missing first

quadrant; i.e., in radial coordinates

Ω = { (r cos θ, r sin θ) | r ∈ [0, 1), θ ∈ (π/2, 2π) }.(6.3)
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Fig. 1. Plot of the spectral condition of the matrix M vs. the discretization size h (in logarithmic
scale, left) and vs. the parameter β (in doubly logarithmic scale, right). The solid line shows the
condition number of the original matrix M , the dashed line of the matrix M̃ with the preconditioned
state equation.

The exact parameter to be reconstructed is q̂ ≡ 1, and the right-hand side in (6.1) is
given by

f =
3π

4

(
3π cos

(
3π

2
r

)
+

2

r
sin

(
3π

2
r

))
with r =

√
x2 + y2.

The corresponding solution of the state equation is û = cos( 3π
2 r). The data are

generated using the exact solution û perturbed by uniformly distributed random noise.
For the discretization we used triangular finite elements with piecewise quadratic
shape functions for the state u and the Lagrange parameter λ and piecewise constant
shape functions for the parameter q. The results were calculated using the finite
element code FEPP [28], developed at the Institute of Computational Mathematics
of the University of Linz.

We want to mention that this identification problem is quite challenging not only
due to the complicated geometry, but also due to the fact that q is not identifiable
along a level line in the interior, where u attains an extremum. This does not destroy
the theoretical identifiability results, because it is a set of Lebesgue-measure zero, but
it can be expected to create numerical difficulties.

The KKT system (4.1) was solved using a preconditioned QMR method with a
block-factorization type preconditioner of the form

M̂ =


GK̂−1 0 I

0 I LT K̂−T

I 0 0




K̂ L 0

0 Sc 0

0 −GK̂−1L K̂T


(6.4)

(cf. [5, 6, 21]) with a multigrid preconditioner K̂ and no preconditioning of the Schur
complement Sc. Results for exact data can be found in Table 2. The good performance
of the method with respect to both CPU time and the number of outer iterations can
be observed clearly. Especially for problems with fine discretizations of the parameter
q, this method can still be realized efficiently, while classical approaches do not yield
results in reasonable time. A plot of the parameter q can be found in Figure 2,
from which one observes that the parameter is reconstructed very well except in a
neighborhood of the level curve {∇u = 0}.
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Table 2
CPU time and number of inner (QMR) and outer (SQP) iterations for exact data

Level dim q dim u Avg QMR it SQP it Time
2 92 215 200 9 8 sec
3 368 797 200 4 15 sec
4 1472 3065 180 5 77 sec
5 5888 12017 142 6 450 sec

Fig. 2. Parameter distribution for exact data at level 4, qmin = 0.59, qmax = 1.4.

Additional speed-up can be gained using a multilevel approach as described in
subsection 4.2. We used nested spaces for q and u by subdividing each triangular
element into four smaller elements, when refining the mesh. Table 3 presents results
for this approach. It can be seen that on fine discretization levels one SQP step
is sufficient for fulfilling the stopping criterion, which corresponds very well to the
theoretical predictions made in section 4.2. A comparison of the results to the ones
in Table 2 shows that for fixed discretization level the solution of the identification
problem on level 5 is only slightly faster than the identification of q on level 6 (with
about the fourfold number of parameters) using a multilevel approach. A plot of the
parameter can be found in Figure 3. Here the approximation of the parameter in
the area where it cannot be identified is by far better than in the classical approach
using only one discretization level (compare Figure 2). A possible explanation for this
effect is the following: the influence of the level line {∇u = 0} where q cannot be
identified on the solution is smaller the coarser the discretization. The prolongation
from coarse levels to finer ones adds information to the region where the parameter is
not identifiable from its surrounding region. As long as the parameter is smooth this
helps to improve the quality of the numerical results where the parameter cannot be
identified.

7. Conclusions and outlook. We have developed a framework for Galerkin-
type approximations of the LMSQP method for parameter identification problems in
elliptic partial differential equations, and we have discussed the implementation of the
GLMSQP method with iterative solution of the KKT system. The numerical results
show that the resulting iteration method clearly outperforms state-of-the-art methods
for iterative regularization and provides a tool for the efficient solution of identification
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Table 3
CPU time per level, accumulated time, and number of inner (QMR) and outer (SQP) iterations

for exact data using a nested multilevel approach.

Level dim q dim u Avg QMR it SQP it Time Acc. time
2 92 215 200 9 8 sec 8 sec
3 368 797 200 4 15 sec 23 sec
4 1472 3065 175 2 24 sec 47 sec
5 5888 12017 80 1 47 sec 94 sec
6 23552 47585 121 1 425 sec 520 sec

Fig. 3. Parameter distribution for exact data at level 4 using a nested multilevel approach,
qmin = 0.66, qmax = 1.13.

problems with fine discretizations. Moreover, we have developed a multilevel version
of the GLMSQP method, which yields a further speed-up.

The crucial point for the possibility to obtain an efficient implementation of the
LMSQP method is the preconditioning of the KKT system, which is then solved
iteratively as an indefinite problem in the product space for state, parameter, and
Lagrangian variable. The construction of such preconditioners is not a simple task
and has not been discussed in detail in the present paper, but will be investigated in
[12], where different preconditioning techniques will be compared.

Other numerical aspects to be investigated in future research are adaptive dis-
cretization strategies and fast parallel solvers based on domain decomposition tech-
niques. The adaptive discretization of optimal control problems, which is a closely
related subject, has been discussed by Becker, Kapp, and Rannacher [4]; possibly the
ideas of this work can be carried over to identification problems, too. The parallel
solution of optimal control problems has been investigated by Lions and Pironneau
[29] in the case of quadratic problems; recently Biros and Ghattas [5, 6] performed a
numerical study of a parallel solver with an SQP method for the outer and precon-
ditioned Krylov-subspace methods for the inner iteration. Many of their ideas seem
to be applicable also for parameter identification problems that are solved with the
LMSQP method, which raises the hope that efficient parallel versions of the LMSQP
method can be designed also for large-scale identification problems such as impedance
tomography.

Finally, we want to recall that the framework of this problem does not apply
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to transient problems of parabolic or hyperbolic type. Since numerical methods for
different types of partial differential equations have many type-specific features, in
general, it is not surprising that also the numerical treatment of parameter identifica-
tion problems should depend on the type of the underlying state equation. However,
it seems possible to construct efficient and convergent discretized methods at least in
the case of parabolic equations, which is an important task for future research.

Acknowledgments. The authors thank Dr. Walter Zulehner (University of Linz)
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THE SPECTRUM OF CIRCULANT-LIKE PRECONDITIONERS FOR
SOME GENERAL LINEAR MULTISTEP FORMULAS FOR LINEAR
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Abstract. The spectrum of the eigenvalues, the conditioning, and other related properties
of circulant-like matrices used to build up block preconditioners for the nonsymmetric algebraic
linear equations of time-step integrators for linear boundary value problems are analyzed. Moreover,
results concerning the entries of a class of Toeplitz matrices related to the latter are proposed.
Generalizations of implicit linear multistep formulas in boundary value form are considered in more
detail.

It is proven that there exists a new class of approximations which are well conditioned and whose
eigenvalues have positive and bounded real and bounded imaginary part. Moreover, it is observed
that preconditioners based on other circulant-like approximations, which are well suited for Hermitian
linear systems, can be severely ill conditioned even if the matrices of the nonpreconditioned system
are well conditioned.

Key words. trigonometric preconditioners, nonsymmetric Toeplitz matrices, eigenvalues, linear
systems of time-step integrators, general linear multistep formulas in boundary value form, boundary
value problems
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1. Introduction. In this paper we investigate the properties of some classes
of circulant approximations and some generalizations used in the preconditioners for
(small rank perturbations of) block nonsymmetric Toeplitz matrices introduced in
[4]. These matrices arise in the numerical approximation of time-dependent partial
differential equations by means of generalizations of implicit linear multistep formulas.

An n× n matrix An = (aj,k) is said to be Toeplitz if aj,k = aj−k, j, k = 1, . . . , n,
i.e., An is constant along its diagonals, quasi Toeplitz if it is a small rank perturbation
of a Toeplitz matrix. An n× n matrix Ăn is said to be circulant if it is Toeplitz and
its diagonals satisfy ăn−j = ă−j , j = 1, . . . , n − 1. The circulant matrices Ăn are
diagonalized by the Fourier matrix F = (Fj,k), Fj,k = e2πijk/n/

√
n, j, k = 0, . . . , n−1,

i is the imaginary unit; see [13]. From the previous arguments, it follows that such
matrices are easily and efficiently invertible using the fast Fourier transform (FFT);
see, e.g., [11]. Other circulant-like matrices will be mentioned in section 4.

The matrices of the underlying linear systems can be written as follows:

M = A⊗ I − hB ⊗ J,(1.1)

where A and B are n×n (small rank perturbations of) band Toeplitz matrices whose
entries are given by the coefficients of the scheme involved, I is the identity, and J is
an m ×m matrix which can be large and sparse. More precisely, J is the Jacobian
matrix of a system of ordinary or partial differential equations discretized in space by
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finite differences; see [4] for details. It is worth noting that J can have a (multilevel)
structure as well. For example, J can be block-banded, block-Toeplitz, etc.

Unfortunately, when m and/or n are (even moderately) large, iterative solvers for
(1.1), used without preconditioners or with general purpose preconditioners such as
those based on incomplete factorizations, often converge very slowly or do not converge
at all; see [4, section 5]. Moreover, direct methods are not appropriate because they
cannot exploit the block structure of (1.1). On the other hand, the preconditioners
we consider here take into account the block structure in (1.1). More precisely, they
are block-circulant and, in matrix form, can be written as

P = Ă⊗ I − h B̆ ⊗ J̃ ,(1.2)

where Ă and B̆ are circulant-like approximations for A, B, respectively, and J̃ is a
suitable approximation for J .

In [4] we have observed that P−1M , the preconditioned matrix, can be written
as a perturbation of the identity matrix (see also section 5.3), which can result in
fast convergence of Krylov subspace methods for nonsymmetric linear systems such
as GMRES and BiCG-like methods such as BiCGstab. The computational cost for
a possible implementation has been considered in detail in [4, section 4.1], showing
that the cost per iteration is of the order of O(mn log n) if J is banded, say.

Here we will prove that there exists a class of circulant approximations, introduced
in [4], which have a moderate 2-norm condition number increasing at most linearly
with their size n. Moreover, the spectrum of the eigenvalues of several of the possible
approximations for the nonsymmetric matrices A, B in (1.1) will be investigated as
well, showing that it lies in the right half plane. It is worth noting that this holds
true for the original matrices A, B in (1.1) considered here; see [6].

We stress that the condition number and the spectrum of the component matrices
Ă and B̆ of the preconditioner (1.2) are very important to have fast convergence.
Indeed, as observed in [4, 5, 6], the matrix J in (1.1) can have very small (and/or
very large) singular values in different subintervals of integration (see [5]), and this is
difficult (if not impossible) to know in advance. Recall that J is the Jacobian matrix
of the given continuous time-dependent problem; see [15, 19]. Thus, if Ă or B̆ are ill
conditioned, we can have an ill conditioned preconditioner even if the original matrix
M is well conditioned; see, e.g., the end of section 5.2 and Figure 5.3. As observed
in [4, 5], this can slow down the convergence process (see [14]), giving unacceptably
slowly convergent (or even divergent!) preconditioned iterations.

We observe that, in the case of nonsymmetric linear systems, solved by Krylov
accelerators, the condition number of the preconditioned matrix P−1M (say), assumed
to be not too large, is much less important for the convergence than the clustering of
the spectrum of its eigenvalues; see, e.g., [18, 14]. On the other hand, the condition
number of the matrix M in (1.1) is crucial for the rate of convergence of conjugate
gradients preconditioned iterations for the normal linear system; see [6].

Here we will consider certain general linear multistep methods (or GLMs, see [19])
used in boundary value form and called boundary value methods. These methods are
used to solve continuous boundary value problems for differential equations (see [2, 9]
and references therein). However, the asymptotic techniques considered here could
be adapted, at least in principle, to other discretization schemes.

Notice that, in this paper, we will consider multistep formulas of arbitrarily high
order merely to state bounds and the asymptotic behavior of the spectrum of the
underlying circulant(-like) approximations involved in (1.2). In practice, the best
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performance of the underlying preconditioners seems to be achieved for formulas (2.3)
whose number of steps k is not too large (typically 3 to 9, say). On the other hand,
we have observed in [4, 5] that the preconditioners (1.2) can be effective for any order
of magnitude of n, either if it is small (4 to 8, say) or (very) large (n > 1024, say) as
well.

In section 2 we summarize some information on numerical integrators based on
linear multistep formulas in boundary value form. Section 3 contains some intro-
ductory lemmas. In section 4 we recall some circulant approximations. Section 5 is
devoted to the investigation on the spectrum and the conditioning of the underlying
matrices. Finally, some remarks on the convergence of preconditioned iterations and
the use of different approximations in (1.2) are given in section 5.3.

2. Families of numerical integrators.

2.1. Formulas in boundary value form. The boundary value methods for
differential equations are a generalization of implicit linear multistep formulas; see
[2, 9] and references therein. They approximate the solution of a continuous differ-
ential boundary value problem by means of a discrete boundary value problem. For
simplicity, let us consider the linear boundary value problem{

y′(t) = f(t, y(t)) := J y(t) + g(t), t ∈ (t0, T ],
y(t0) = η1, y(T ) = η2,

(2.1)

where y(t), g(t) : R → R
m, J ∈ R

m×m, ηj ∈ R
m, j = 1, 2. The continuous problem

(2.1) can be reduced to a discrete boundary value problem by the following k-step
linear multistep formula of order p used with ν > 0 initial and k−ν > 0 final conditions
over a uniform mesh tj = t0 + j h, j = 0, . . . , s:

k∑
i=0

αiyn+i = h

k∑
i=0

βifn+i, n = 0, . . . , s− k,(2.2)

where yn is the discrete approximation to y(tn), fn = f(tn, yn) ≡ J yn+gn, gn = g(tn),
while the values y0, . . . , yν−1, ys−k+ν+1, . . . , ys of the approximation computed in the
mesh points t0, . . . , tν−1, ts−k+ν+1, . . . , ts, respectively, are assumed to be given. We
observe that the boundary value problem (2.1) provides only the initial and final values
y0 and ys, respectively. The missing values are supplied by coupling the method (2.2)
with other difference schemes of order p, sometimes called additional methods, which
provide an additional set of equations, independent of those in (2.2). For simplicity,
we can assume that these formulas have the same number of steps as (2.2) but different

coefficients α
(r)
j , β

(r)
j , r = 1, . . . , ν − 1, s− k + ν + 1, . . . , s− 1, j = 0, . . . , k > ν; see

[4] for details.
In order to stress the dependence of the formula on the ν initial and k − ν final

values, it is useful to rewrite (2.2) in the following shifted form:

k−ν∑
i=−ν

αi+νyn+i = h

k−ν∑
i=−ν

βi+νfn+i, n = ν, . . . , s− k + ν.(2.3)

To have order p ≥ 1, the coefficients αj , βj in (2.3) should satisfy the order conditions
(see, e.g., [19])

k∑
j=0

(
jiαj − iji−1βj

)
= 0, i = 0, . . . , p,(2.4)
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where the first two equations of (2.4) (i = 0, 1) are usually called consistency condi-
tions. By rewriting (2.4) in shifted form we have

k−ν∑
j=−ν

(
jrαj+ν − rjr−1βj+ν

)
= 0, r = 0, . . . , p,(2.5)

where we assume, as is customary, that 0j−1 = 0, j0 = 1 for all j.
For practical implementation, we cast the above discrete problem in matrix form:

MY = b, Y =
(
yT0 , yT1 , . . . , yTs

)T
, M = A⊗ Im − hB ⊗ J,

b = e1 ⊗ η1 + es+1 ⊗ η2 + h(B ⊗ Im)g, g = (g(t0) · · · g(ts))
T ,(2.6)

where ei ∈ R
s+1, i = 1, . . . , s + 1, is the ith column of the identity matrix and A,

B ∈ R
(s+1)×(s+1) are quasi-Toeplitz matrices whose pattern is

A =




1 · · · 0

α
(1)
0 · · · α

(1)
k

...
...

...

α
(ν−1)
0 · · · α

(ν−1)
k

α0 · · · αk
α0 · · · αk

. . .
. . .

. . .

α0 · · · αk

α
(s−k+ν+1)
0 · · · α

(s−k+ν+1)
k

...
...

...

α
(s−1)
0 · · · α

(s−1)
k

0 · · · 1




,(2.7)

where α
(r)
j , j = 0, . . . , k, are the coefficients of the additional formulas. The matrix

B is similarly defined, but with βj (β
(r)
j ) instead of αj (α

(r)
j ) and with the entries of

the first and last rows set to zero; see [4] for details. We stress that the matrix M in
(2.6) is usually nonsymmetric, nondiagonally dominant, and large and sparse if, e.g.,
n or m are large and J is sparse.

2.2. Some linear multistep schemes. Let us recall some families of formulas
(2.3) that will be considered in subsequent sections.

A minimal requirement for a multistep formula (2.3) is consistency, see, e.g., [19],
i.e., they must satisfy the conditions ρ(1) = 0, ρ′(1) = σ(1), where ρ(z) and σ(z)
denote the two characteristic polynomials associated with the given method, i.e.,

ρ(z) =

k∑
j=0

αj zj , σ(z) =

k∑
j=0

βj zj

or, in shifted form,

ρ(z) = zν
k−ν∑
j=−ν

αj+ν zj , σ(z) = zν
k−ν∑
j=−ν

βj+ν zj .(2.8)
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The backward differentiation formulas are a class of well-known initial value methods
for the numerical integration of stiff problems (see, e.g., [15, 19]). A generalization of
these as a boundary value scheme, called generalized backward differentiation formu-
las, has been proposed in [9] and can be written in the form

k−ν∑
i=−ν

αi+ν yn+i = h fn, n = ν, . . . , s− k + ν,(2.9)

where ν = (k + 2)/2 if k is even, and ν = (k + 1)/2 if k is odd; see [9]. Notice
that backward differentiation formulas have ν = k in (2.9). The coefficients {αi} are
determined by imposing maximum order for (2.9), i.e., order k, k ≥ 1.

Another popular class of initial value methods is the Adams–Moulton formulas;
see, e.g., [15, 19]. Let us consider their generalization in the boundary value form,
proposed in [9], called generalized Adams–Moulton methods, that can be written in
the following form:

yn − yn−1 = h

k−ν∑
i=−ν

βi+ν fn+i, n = ν, . . . , s− k + ν,(2.10)

i.e., the only nonzero coefficients in the first characteristic polynomial are αν = 1 and
αν−1 = −1, ν = k/2 if k is even, and ν = (k + 1)/2 if k is odd. The coefficients {αi}
are determined by imposing that the method has maximum order, i.e., k + 1. Notice
that the classical Adams–Moulton methods have ν = k; see, e.g., [19]. When k is odd,
the scheme shares the same stability properties of the trapezoidal rule. Such methods
can be suitable for approximating Hamiltonian problems and continuous boundary
value problems.

Another generalization of the trapezoidal rule proposed in [9] is given by the
following formula:

ν−1∑
i=−ν

αi+ν yn+i =
h

2
(fn + fn−1), n = ν, . . . , s− k + ν,(2.11)

where ν = (k + 1)/2 if k is odd and ν = k/2 if k is even. The coefficients {αi} are
determined by imposing that the above formula has maximum order, i.e., k + 1. Such
methods can be suitable for approximating Hamiltonian problems and continuous
boundary value problems.

It will be useful in the following sections to have some of the order conditions
(2.4) for the above mentioned schemes written in a different form. For the formulas
(2.11), we consider (2.4) with βν = βν−1 = 1/2. Therefore, we have

ν−1∑
j=−ν

jrαj+ν = (−1)r+1 r

2
, r = 0, 2, . . . , k + 1,

ν−1∑
j=−ν

jαj+ν = 1.(2.12)

Similarly, for (2.9), βν = 1, βj = 0 for j �= ν. Thus, the αj , j = 0 . . . , k, satisfy
consistency conditions and

k−ν∑
j=−ν

jrαj+ν = 0, r = 0, 2, . . . , k.(2.13)
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Finally, for (2.10), αν = −αν−1 = 1 while the coefficients βj , j = 0 . . . , k, satisfy

k−ν∑
j=−ν

jrβj+ν = (−1)r
1

r + 1
, r = 0, 1, . . . , k.(2.14)

3. The entries of a class of Toeplitz matrices. Let us consider the n × n
band Toeplitz matrix Ân = (αj), n > k,

Ân =




αν . . . αk−1 αk 0 . . . 0
... αν

. . . αk−1 αk
. . .

...

α0
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . . αk−1 αk
...

. . .
. . .

. . .
. . .

. . . αk−1

...
. . .

. . .
. . .

. . .
. . .

...
0 . . . . . . 0 α0 . . . αν




,(3.1)

and B̂n = (βj) having similar pattern, but with βj instead of αj , j = 0, . . . , k. If

αj , βj , j = 0, . . . , k, are the coefficients of (2.3), E
(A)
n = An − Ân, E

(B)
n = Bn − B̂n

are small rank matrices if n  k, where A ≡ An is defined in (2.7) and similarly for
B ≡ Bn.

It can be checked that all such matrices are, in general, nonsymmetric, nondiag-
onally dominant, with real entries of nonconstant sign. Moreover, let us associate to
the matrices Ân, B̂n (An and Bn) as above the functions gA(z), gB(z), respectively.
It is customary to call gA(z) the symbol of the matrix An, see, e.g., [8], where

gA(z) = z−νρ(z) =

k−ν∑
j=−ν

αj+νz
j , z ∈ C,(3.2)

and ρ(z) is the characteristic polynomial of Ân while gB(z) is defined similarly for B̂n

from σ(z) in (2.8). The set {q ∈ C : q = gA(eiθ), 0 ≤ θ < 2π} is called the boundary
locus of the Toeplitz matrix Ân. It is worth noting that gA(eijθ), gB(eijθ) are the
generating functions of the band Toeplitz matrices Ân, B̂n, respectively; see, e.g.,
[8, 11].

The Toeplitz matrices related to the linear multistep formulas considered in sec-
tion 2.2 have the boundary locus and their spectrum of eigenvalues in the right half
plane; see [9]. We recall that the families of matrices {Ân}, {B̂n} are such that their
entries αj , βj , j = 0, . . . , k, satisfy the system of linear equations (2.4), where p in
(2.4) is the largest integer such that those equations are independent. Notice that
the choice of ν is strictly related to the condition number of the underlying Toeplitz
matrices; see [6, 8, 9]. For example, with the choice suggested in section 2.2, the
matrices {Ân}, {B̂n} related to the formulas (2.9), (2.10), (2.11) have a condition
number which increases at most linearly with their size; see [6]. On the other hand,
the boundary locus and the spectrum of the eigenvalues of the matrices related to
linear multistep formulas are not necessarily contained in one half plane for all k. For
example, one can consider the matrices associated with well-known families of formu-
las used as initial value methods for a sufficiently large value of k in (2.3). This is the
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case of the backward differentiation formulas for k > 2 and of the Adams–Moulton
methods for k > 1. However, if ν is chosen differently from the choice suggested in
section 2.2, the eigenvalues of {Ân}, {B̂n} can have both positive and negative (or
zero!) real part. Indeed, it is easy to check that this is the case of formulas (2.10)
used with k = 5 but with ν = 4 instead of ν = (k + 1)/2 = 3.

We will assume, as is the case in practice for the methods described in section 2.2,

that the influence of the small rank perturbations E
(A)
n = An−Ân, E

(B)
n = Bn−B̂n on

the spectral properties of Ân, B̂n is moderate. More precisely, here we refer to suitably
chosen additional schemes such that their related matrices An, Bn have the spectrum
of eigenvalues in the right half plane, and the condition number of these is still of the
order of O(n), where n is their size. These hypotheses are usually reasonable; see [6].
On the other hand, notice that, in general, the influence of low rank modifications
in the non-Hermitian case can very much change the spectral properties of a given
matrix; see [22]. However, in this paper we will focus mainly on the preconditioner
and on the spectrum of the component matrices of the preconditioner (1.2), which
are normal and defined by using the coefficients of (2.3), i.e., by the entries of Ân, B̂n

only.
We will need an explicit expression of the coefficients of the formulas (2.9) and

(2.10). To this end, there are at least two (equivalent) strategies. In the first one, the
coefficients can be computed by writing the formula of the GLM in backward difference
form; see, e.g., [19, chapter 3]. Thus, expanding the backward differences of yn+j for
the formulas (2.9) and of fn+j for the formulas (2.10), equating the coefficients of yn+j

and of fn+j , j = 0, . . . , k, to the corresponding expressions, and using an induction
argument gives the coefficients αj , βj , j = 0, . . . , k.

Proposition 3.1. The coefficients of the formulas (2.9) are given by

αi = (−1)k−i
k∑

j=k−i

(
j

k − i

)
δj , i = 0, . . . , k,(3.3)

where

δi =




0, i = 0;
1, i = 1;

1

i!

i−1∑
s=0

i−1∏
j=0,
j �=s

(−(k − ν) + j), i ≤ k − ν, i ≥ 1;

1

i!

i−1∏
j=0,
j �=k−ν

(−(k − ν) + j), i > (k − ν) ≥ 1.

The coefficients of the formulas (2.10) are given by

βi =
(−1)k−i

(k − i)!

k∑
j=k−i

1

(j − (k − i))!

∫ −(k−ν)

−(k−ν)−1

j−1∏
m=0

(r + m) dr, i = 0, . . . , k.(3.4)

Proof. The expression (3.3) is derived by writing (2.9) in backward difference
form (see [19, chapter 3]), i.e.,

k∑
j=0

δi∇iyn+k−ν = h fn,
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where

δi = (−1)i
d

dr

(−r

i

)
,

and the above derivative is computed at r = k − ν. Thus, by observing that(−r

j

)
=

(−r − j + 1) · · · (−r)

j!
=

(−1)j

j!

j−1∏
m=0

(r + m),(3.5)

we have (3.3). The other expression, i.e., (3.4), is derived by observing that (2.10)
can be written as (see [19, chapter 3])

yn+1 − yn = h

k∑
j=0

γi∇ifn+k−ν+1,(3.6)

where

γj = (−1)j
∫ −(k−ν)

−(k−ν)−1

(−r

j

)
dr.

Thus, from (3.5), we have (3.4).
The other strategy is based on the explicit solution of linear equations in the

unknowns αj , βj , j = 0, . . . , k, by writing (2.4) in matrix form. Thus, we have to solve
a linear system whose matrix is a Vandermonde-like one, and several combinatorial
identities can be used. The coefficients of (2.9) and of (2.10) were computed following
this strategy in [3]. We stress that the derivation of a useful expression can be rather
lengthy. Full details can be found in [3, pp. 46–50, 66–69].

Proposition 3.2. The coefficients of the formula (2.9) are given by

αi =
(−1)ν−i

ν − i

ν!(k − ν)!

i!(k − i)!
, i �= ν, i = 0, . . . , k,

=
1

ν
=

2

k + 1
, i ≡ ν, k odd,

=
2ν − 1

ν(ν − 1)
=

4(k + 1)

k(k + 2)
, i ≡ ν, k even, k ≥ 1.(3.7)

The coefficients of the formula (2.10) are given by

βi =
(−1)k−i

i! (k − i)!

∫ ν+1

ν

k∏
m=0,
m�=i

(t−m) dt, i = 0, . . . , k.(3.8)

Proof. The proof follows after some manipulations of the results in Theorem 4.1.1
for (3.7) and in Remark 4.2.2 for (3.8) in [3] by recalling that ν = (k + 1)/2 if k is
odd, while ν = (k + 2)/2 for (2.9), ν = k/2 for (2.10) if k is even.

We remark that there is a third approach to derive the coefficients of the formulas
(2.9) and (2.10) that is simpler than the other two. It is based on generating functions
and symbolic operators; see, e.g., [19, sections 3.9–3.12]. Using that approach, we have
that the generating function for δi in (3.3) is given by

G1(z) = −(1− z)k−ν log(1− z) =

∞∑
i=0

δiz
i.
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Therefore,

δi =

i−1∑
s=0

(−1)s
(

k − ν

s

)
1

i− s
.

Similarly, the generating function for γi in (3.6) is given by

G2(z) =
−z(1− z)k−ν

log(1− z)
=

∞∑
i=0

γiz
i,

and an explicit expression for γi can be derived accordingly.
Obviously, suitably manipulating the expressions derived by one strategy (e.g.,

(3.3), (3.4)) gives the expressions derived by the others (see, e.g., (3.7), (3.8), respec-
tively).

Corollary 3.3. The coefficients of the formulas (2.9) are uniformly bounded by
2 for all k ≥ 1. Moreover, |αi+1| < |αi| for i = ν + 1, . . . , k − 1; |αi+1| > |αi| for
i = 0, . . . , ν − 2; |αν | < |αν+1|; |αν−1| > |αν |; and limk→∞ αj = 0, j = 0, k, ν.

Proof. By considering the expression (3.7) we have that |αi+1| < |αi| for i =
ν + 1, . . . , k− 1 and |αi+1| > |αi| for i = 0, . . . , ν − 2. For k odd, ν = (k + 1)/2, and,

by (3.7), we have αν−1 = − (k+1)/2
k−(k+1)/2+1 = −1 while, for k even, ν = (k + 2)/2 and

αν−1 = k+2
k ≤ 2 for k ≥ 2. Similarly, for k odd, we have αν+1 = (k − 1)/(k + 4) < 1,

otherwise αν+1 = (k − 2)/(k + 4) < 1, k ≥ 2, and the proof is complete by recalling
(3.7) again for i = 0, ν, k.

On the other hand, we can observe that for many families of linear multistep for-
mulas the above results do not hold. This is the case of popular initial value methods
such as the backward differentiation formula and the Adams–Moulton methods or of
the schemes in section 2.2 with some choices of ν different from those suggested there.
More precisely, some of the coefficients αj and βj , j = 0, . . . , k, for the methods
above, can grow boundlessly very fast for k →∞.

4. Circulant approximations for general linear multistep formulas. Let
us consider the block preconditioners in (1.2) for the linear systems in (2.6) based on
circulant-like matrices introduced in [4, 5, 7]. The approximating operators Ă, B̆ in
(1.2) are computed by taking into account the coefficients of the formula (2.3), i.e.,
they are defined for the Toeplitz matrices Ân, B̂n.

In what follows, we will recall in brief the main trigonometric approximations for
the nonsymmetric matrices Ân, B̂n (and for A, B in (1.1)) we have found effective for
the preconditioner (1.2); see also section 5.3. To this end, let Tn = (tj) be an n × n
Toeplitz matrix whose diagonal entries are tj , j = −(n− 1), . . . , n− 1.

Strang’s s(Tn) (see [21]), sometimes called simple circulant approximation, is
such that if s0, . . . , sn−1 are the entries of the first row of the corresponding n × n
preconditioner for Tn, we have

sj =




tj , 0 < j ≤
⌊n

2

⌋
,

tj−n,
⌊n

2

⌋
< j < n, j = 0, . . . , n− 1.

(4.1)

The spectrum of the Hermitian Toeplitz matrices preconditioned using Strang’s pre-
conditioner was analyzed in [10]. Notice that s(Tn) is singular for the Toeplitz matrices
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Tn whose generating function f(θ) is zero in θ = 0, as observed, e.g., in [5, 24]. Unfor-
tunately, the generating function of the matrix Ân always has a zero of multiplicity one
in θ = 0 because of the consistency condition 0 = ρ(1) =

∑k
j=0 αj . Thus, as observed

in [5], the approximation (4.1) cannot be safely used in the preconditioner (1.2), e.g.,
when the Jacobian matrix J in (2.6) has some very small or zero eigenvalues; see [5]
for more details.

T. Chan’s circulant preconditioner for the Toeplitz matrix Tn, denoted by c(Tn),
is defined such that ‖c(Tn) − Tn‖F is minimum, where c(Tn) is chosen in the set of
n × n circulant matrices and ‖ · ‖F is the Frobenius norm. If c0, . . . , cn−1 are the
entries of the first row of c(Tn) and tj , j = −(n− 1), . . . , n− 1, are the elements on
the diagonals of the Toeplitz matrix Tn, we have (see [12])

cj =
(n− j)tj + jtj−n

n
, j = 0, . . . , n− 1.(4.2)

If the Toeplitz matrix Tn is Hermitian and positive definite, then these properties
hold true for c(Tn) as well; see [23]. Unfortunately, if Tn is nonsymmetric, s(Tn) and
c(Tn) can have eigenvalues in the right and left half plane or zero as well, even for
those matrices Tn whose eigenvalues have strictly positive real part. For example,
this holds true for the underlying linear systems based on the formulas in section 2.
Moreover, there are families of formulas (2.3) such that the circulant approximation
(4.2) can be ill conditioned or even singular (e.g., those based on the midpoint method
in boundary value form; see at the end of section 5.2).

Let us consider the P-circulant approximation introduced in [4]. Again, if Tn is
a Toeplitz matrix whose entries of the diagonals are t−(n−1), . . . , tn−1, we have that
the entries p0, . . . , pn−1 of the first row of the P-circulant preconditioner p(Tn) for Tn
are given by

pj =
(n + j)tj + jtj−n

n
, j = 0, . . . , n− 1.(4.3)

Notice that the P-circulant and simple and T. Chan’s circulants are equivalent in the
sense of the linear approximation processes; see [20]. In practice, P-circulant matrices
come from using the Frobenius norm weight (n − j)/n for the lower and the weight
(n + j)/n for the upper diagonals, respectively. The circulant matrices, whose entries
are defined in (4.3), have been called P-circulant in [4] because, for some classes of
Toeplitz matrices (and thus for formulas (2.3)), their eigenvalues have positive real
part; see section 5.2. This property can speed up the convergence process with respect
to the other basic approximations described here; see section 5.3. We stress that P-
circulants neither preserve symmetry (but for our purpose this is not essential) nor
minimize the “distance” with the original Toeplitz matrix. More precisely, ||p(Tn)−
Tn|| is not minimized with respect to the p-norms (e.g., p = 1, 2,∞) nor the Frobenius
norm.

The MS-circulant approximation for Tn is given by a rank-one perturbation of
the simple circulant preconditioner whose zero eigenvalue in (5.1) is set to a suitable
nonzero value c for those Toeplitz matrices Tn whose generating functions have a zero.
We achieved interesting results in [5] by setting c = 1/n and c = minr{Re(φr)} > 0,
where φr, r = 1, . . . , n, are the eigenvalues of s(Tn).

Finally, the {ω}-circulant approximation can be considered as another extension
of the simple circulant approximation. Let Tn be a n1-band Toeplitz matrix, n1 <
�n/2�. The {ω}-circulant matrix s̃(tn) differs from the simple circulant s(Tn) because
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the entries outside the diagonals −n1, . . . , n1 of s̃(tn) are given by those of s(Tn)
multiplied by ω = exp(iθ), 0 < θ ≤ π, and s̃(Tn) is nonsingular even if the generating
function of Tn has a zero for θ = 0; see [7].

We observe that some combinations of the above approximations can give further
useful preconditioners as well. For example, it is straightforward to define {ω}–P-
circulant preconditioners by using (4.3) and {ω}-circulant matrices instead of circulant
matrices. The arguments used in the following sections can be adapted for these pre-
conditioners as well, in general, and we will focus only on the “basic” approximations
above.

5. The spectrum of the circulant approximations. The Toeplitz matrices
Ân, B̂n in (3.1) are positive stable for the linear multistep formulas (2.9), (2.10),
(2.11); see [9, chapter 11]. We recall that a square matrix is said to be (semi)positive
stable if its eigenvalues have positive (nonnegative) real part; see, e.g., [16]. It is
straightforward to note that positive stable matrices are nonsingular.

Let us consider n = s + 1 and the (s + 1) × (s + 1) P-circulant matrix p(A)
defined in (4.3) for the Toeplitz matrix A in (2.7) (and then for Âs+1 in (3.1)). The
eigenvalues φj , j = 0, . . . , s, of p(A) can be computed by a linear combination of the
entries of the first row (see Davis [13]):

φl =

s∑
j=0

pjε
jl, l = 0, . . . , s, ε = e2π i/(s+1).(5.1)

From (4.3) we have

φl =

s∑
j=0

αj+ν

(
1 +

j

s + 1

)
εjl +

s∑
j=0

(
j

s + 1
αj+ν−(s+1)

)
εjl, l = 0, . . . , s.

Therefore,

φl =

k−ν∑
j=−ν

αj+ν

(
1 +

j

s + 1

)
εjl, l = 0, . . . , s.(5.2)

A similar expression holds for the eigenvalues ψ0, . . . , ψs of p(B):

ψl =

k−ν∑
j=−ν

βj+ν

(
1 +

j

s + 1

)
εjl, l = 0, . . . , s.(5.3)

Notice that (5.2) and (5.3) are trigonometric sums. Let us define

Φ̂k(x) =

k−ν∑
j=−ν

αj+ν

(
1 +

j

s + 1

)
cos (j x) , x ∈ R,(5.4)

Ψ̂k(x) =

k−ν∑
j=−ν

βj+ν

(
1 +

j

s + 1

)
cos (j x) , x ∈ R.(5.5)

We observe that (5.4) and (5.5) are analytic functions (for k < ∞). From (5.2), we
have that

Φ̂k

(
2πl

s + 1

)
= Re(φl), Ψ̂k

(
2πl

s + 1

)
= Re(ψl), l = 0, . . . , s.
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Thus, it is straightforward to see that if Φ̂k(x), Ψ̂k(x) are positive for real values of
x, then p(A) and p(B) are positive stable.

By using similar arguments, we can derive the expression of the eigenvalues of
s(As+1), s(Bs+1) and c(As+1), c(Bs+1), respectively:

γl =

k−ν∑
j=−ν

αj+νε
jl, δl =

k−ν∑
j=−ν

βj+νε
jl, l = 0, . . . , s,(5.6)

and

k−ν∑
j=−ν

αj+ν

(
1− |j|

s + 1

)
εjl,

k−ν∑
j=−ν

βj+ν

(
1− |j|

s + 1

)
εjl, l = 0, . . . , s.(5.7)

Notice that the eigenvalues of s(As+1), s(Bs+1) lie on the boundary locus of As+1,
Bs+1, respectively.

5.1. Preliminary results. First, let us give some properties of the trigonomet-
ric sums (5.4), (5.5).

We recall that a sequence {cj} is of bounded variation (see [25]) if the series∑∞
j=0 |cj+1−cj | converges. If {cj} tends monotonically to zero, then {cj} is of bounded

variation. It is useful to simplify the expressions (5.4) and (5.5) by observing that
cos(x) is an even function.

Lemma 5.1. The function Φ̂k(x) in (5.4) can be expressed for (2.9) as

Φ̂k(x) =
a0

2
+
k−ν∑
n=1

(−1)nan cos(nx),(5.8)

where a0 = 2αν , ν = (k+1)/2 if k is odd, ν = (k+2)/2 if k is even, and an = (−1)nãn,

ãn = αn+ν

(
1 +

n

s + 1

)
+ α−n+ν

(
1− n

s + 1

)
, n = 1, . . . , k − ν.(5.9)

It is intended that αj is zero if j < 0 or j > k. The sequence {an} has the following
properties:

(1) an ≥ 0, n ≥ 0;
(2) an tends to zero if n→∞;
(3) an is uniformly bounded (i.e., 0 ≤ an < 2, n ≥ 0);
(4) {an} is monotonic decreasing;
(5) {an} is of bounded variation.

Proof. The expression (5.8) follows by observing that from (3.7), (5.4), and (5.9)
we have

ãn =
(−1)n

n


−

(
k

ν + n

)
(

k

ν

) (
1 +

n

s + 1

)
+

(
k

ν − n

)
(

k

ν

) (
1− n

s + 1

)
 = (−1)n · an.

(1) Let us check for first that an > 0 for n ≥ 1, n ≤ k − ν (recall that a0 = 2αν
is positive; see (3.7)). From here on, it is intended that an = 0 if n > k − ν. Again,
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from the expression (3.7), we have

n ·an =

(
k

ν − n

)
(

k

ν

) (
1− n

s + 1

)
−

(
k

ν + n

)
(

k

ν

) (
1 +

n

s + 1

)

=

[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)
·
(

1− n

s + 1

)]
−
[
ν − 1

ν + 1
· . . . · ν − n

ν + n
·
(

1 +
n

s + 1

)]

=

[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)

]
·
[(

1− n

s + 1

)
− ν − n

ν + n

(
1 +

n

s + 1

)]

=

[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)

]
· 2n

(ν + n)(s + 1)
· (s + 1− ν) > 0.

Indeed, notice that the term in square brackets above can assume values in (0, 1), and
(s + 1− ν) is greater than zero because s ≥ k ≥ ν ≥ 1 by hypothesis; see section 2.2.

(2) Now, let us check that an converges to zero for n → ∞. From the last
expression, we have

an =

[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)

]
· 2(s + 1− ν)

(ν + n)(s + 1)

=

[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)

]
· 2

ν + n
·
(

1− ν

s + 1

)

≤
[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)

]
· 2

n
≤ 2

n
(5.10)

because the term in square brackets above assumes values in (0, 1), n ≤ ν, and
0 < 1− ν/(s + 1) < 1 because s ≥ k ≥ ν ≥ 1.

(3) It is an immediate consequence of the bound in (5.10).
(4) {an} is monotonic (decreasing). Indeed,

an+1−an

=

[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)

]
·
[

2ν(ν − n)

(ν + n + 1)(s + 1)(ν + n)
− 2ν

(ν + n)(s + 1)

]

=

[
ν − 1

ν + 1
· . . . · ν − (n− 1)

ν + (n− 1)

]
· − 2ν

s + 1
· 2n + 1

(ν + n + 1)(ν + n)
< 0

by using similar arguments as in (1) and (2).
(5) Finally, for (1)–(4), {an} is of bounded variation.
We recall that a sequence of functions is said to converge locally uniformly on a

set S if it converges uniformly on every compact subset of S; see, e.g., [17, p. 160].
Proposition 5.2. The sequence of functions {Φ̂k(x)} for (2.9) converges locally

uniformly with respect to k (and then with respect to ν = O(k), see section 2) in
(−π, π).

Proof. It is a consequence of Lemma 5.1 and of [25, Theorem 2.7, p. 4].
Corollary 5.3. Under the hypotheses of Proposition 5.2, the function

Φ̂(x) = lim
k→∞

Φ̂k(x)(5.11)

is an analytic function for x ∈ (−π, π) and continuous for x ∈ R.
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Proof. It is a consequence of Proposition 5.2 and of [17, Corollary 3.4c, p. 161].
The continuity over the whole real axis derives from Abel’s limit theorem applied in
x = ±π and considering that, for n integer, we have

Φ̂k(±x + 2nπ) = Φ̂k(x), Φ̂k(2π − x)′ = −Φ̂k(x)′,(5.12)

Ψ̂k(±x + 2nπ) = Ψ̂k(x), Ψ̂k(2π − x)′ = −Ψ̂k(x)′, x ∈ [0, 2π], k ≥ 1.(5.13)

Similar expressions hold true for Φ̂(x) and Ψ̂(x).
Lemma 5.4. Let k be an integer and ν = �(k + 1)/2� (k even or odd) or ν =

(k + 2)/2 (k even). For −(k − ν) ≤ n ≤ (k − ν), we have

(ν + n)! (k − ν − n)! ≥ (ν − n)! (k − ν + n)!,(5.14)

ν! (k − ν)! ≤ (ν + n)! (k − ν − n)!.(5.15)

Proof. Let us consider (5.14). We have

(ν − n)!(k − ν + n)!

(ν + n)!(k − ν − n)!
=

(ν − n)!(k − (ν − n))!

k!
· k!

(ν + n)!(k − (ν + n))!
=

(
k

ν + n

)
(

k

ν − n

) ,

where the ratio above is equal to 1 if k is even and it is less than 1 otherwise. Indeed,

(
k

ν − n

)
=

(
k

k − (ν − n)

)
=




(
k

ν + n

)
if k − ν = ν (and k is even),(

k

ν + n− 1

)
if k − ν = ν − 1 (and k is odd) .

Thus, for k odd, we have

(
k

ν + n− 1

)
=

(
k + 1

ν + n

)
−
(

k

ν + n

)
⇒

(
k

ν + n

)
(

k

ν − n

) =
1

ν+n−1
ν−n

< 1, 1 ≤ n ≤ (k − ν).

Using similar arguments, we can see that (5.14) holds true for ν = (k + 2)/2 and k
even as well. Now, let us consider (5.15) for n ≥ 1 (for negative values of n a similar
argument can be used). We have

ν! (k − ν)!

(ν + n)! (k − ν − n)!
=

k − ν

ν + 1
· k − ν − 1

ν + 2
· · · k − ν − (n− 1)

ν + n
,

where we have that the above expression is equal to




ν − 1

ν + 1
· · · ν − n

ν + n
< 1 if k − ν = ν and k is odd,

ν

ν + 1
· · · ν − (n− 1)

ν + n
< 1 if k − ν = ν − 1 and k is even .



1812 DANIELE BERTACCINI

Using similar arguments, we can see that (5.15) holds true for ν = (k + 2)/2 and k
even as well.

Lemma 5.5. The function Ψ̂k(x) can be expressed for (2.10) as

Ψ̂k(x) =
b0

2
+

k−ν∑
n=1

(−1)n+1bn cos(nx),(5.16)

where b0 = 2βν , ν = �(k + 1)/2�, and bn = (−1)n+1b̃n, n ≥ 1,

b̃n = βn+ν

(
1 +

n

s + 1

)
+ β−n+ν

(
1− n

s + 1

)
, n = 1, . . . , k − ν.(5.17)

It is intended that βj is zero if j < 0 or j > k. The sequence {bn} has the following
properties:

(1) bn ≥ 0, n ≥ 0;
(2) bn tends to zero if n→∞;
(3) bn is uniformly bounded (i.e., 0 ≤ bn < 2, n ≥ 0);
(4) {bn} is monotonic decreasing;
(5) {bn} is of bounded variation.
Proof. (1) By expanding (5.17), we have

b̃n =


 (−1)k−ν−n

(ν + n)!(k − ν − n)!

∫ ν+1

ν

k∏
m=0,
m�=ν+n

(t−m) dt



(

1 +
n

s + 1

)

+


 (−1)k−ν+n

(ν − n)!(k − ν + n)!

∫ ν+1

ν

k∏
m=0,
m�=ν−n

(t−m) dt



(

1− n

s + 1

)
.

(5.18)

Thus, for n ≥ 1, we have

b̃n = (−1)n+1

∫ ν+1

ν

[
1 + n/(s + 1)

(ν + n)!(k − ν − n)!

1

|t− ν − n|

− 1− n/(s + 1)

(ν − n)!(k − ν + n)!

1

(t− ν + n)

] k∏
m=0

|t−m| dt = (−1)n+1 · bn,(5.19)

while, by observing that t−m, m = 0, . . . , k, do not change sign for t ∈ (ν, ν + 1),

b̃0 ≡ b0 = 2βν =
2(−1)k−ν

ν!(k − ν)!

∫ ν+1

ν

k∏
m=0,
m�=ν

(t−m) dt =
2

ν!(k − ν)!

∫ ν+1

ν

k∏
m=0,
m�=ν

|t−m| dt,

(5.20)

therefore (5.20) is positive. To check that bn > 0, n ≥ 1, and n ≤ k−ν (it is intended
that bn = 0 for n > k−ν), it is enough to see that the part in square bracket in (5.19)
is positive or zero. For brevity, let us consider k even. By Lemma 5.4, the part in
square brackets in (5.19) can be rewritten as

1

(ν + n)!(k − ν − n)!

(
1 + n/(s + 1)

n− (t− ν)
− 1− n/(s + 1)

n + (t− ν)

)
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=
(s + 1 + n) (n + (t− ν))− (s + 1− n) (n− (t− ν))

(ν + n)! (k − ν − n)! (n− (t− ν)) (n + (t− ν)) (s + 1)
.

Then, we can observe that the ratio above is positive because the denominator of the
related expression is positive, s + 1 + n > 0, n + (t− ν) > 0, and

(s + 1− n)(n− (t− ν))

(s + 1 + n)(n + (t− ν))
< 1, n ≥ 1, 0 ≤ t ≤ ν + 1.

For k odd a similar argument can be used, and (1) and the expression (5.16) are
verified.

(2) Let us check first that b0 is bounded. We observe that, for t = t∗ = ν + ε(ν),
0 < ε(ν)→ 0 for k, ν →∞ (recall that ν = O(k)), the following function

f(t) =

k∏
m=0,
m�=ν

|t−m|, ν ≤ t ≤ (ν + 1),(5.21)

reaches its (unique) maximum in the segment ν ≤ t ≤ (ν + 1). This can be checked
by considering the derivative df/dt of (5.21) in (ν, ν + 1) and applying an induction
argument on k. Thus, f(t∗) = c ·ν! (k−ν)!, where c = c(ν) is a parameter of the order
of 1 that converges fast to 1 as ν →∞ and, by (5.20), b0 is uniformly bounded above
by 2. As a corollary of the above result, by (3.8), βν is uniformly bounded above by
1. Now, to check that bn is bounded for n ≥ 1, it is enough to observe that both the
following factors in (5.19)

1

(ν + n)!(k − ν − n)!

∫ ν+1

ν

k∏
m=0

|t−m| dt,
1

(ν − n)!(k − ν + n)!

∫ ν+1

ν

k∏
m=0

|t−m| dt

are positive and bounded by a constant of the order of unity. To this end, notice that

G(t) =

k∏
m=0

(t−m) =

{
(−1)k+1 · Γ(k + 1− t)

Γ(−t)
, ν < t < ν + 1,

0, t = ν or t = ν + 1,
(5.22)

where Γ(z) is the Gamma function (see [1] for definitions and some properties). The
equality (5.22) can be derived by using arguments in [1, pp. 12–13]. It is straightfor-
ward to observe that

∫ ν+1

ν

k∏
m=0

|t−m| ≤ sup
ν<t<ν+1

k∏
m=0

|t−m|.

Let us denote by t∗ the maximum of the function |G(t)| in ν ≤ t ≤ ν + 1; G(t) is
defined in (5.22). By considering dG/dt in (ν, ν +1) and using an induction argument
on k, we have that t∗ = ν + 1/2 + ε(ν), where ε(ν) → 0 as ν → ∞ (k → ∞). By
using the definition of Γ(z), we have Γ(x + 1) = x Γ(x)⇒ Γ(x) = Γ(x + 1)/x, where
x cannot be a negative integer or zero. Applying repeatedly Γ(x) = Γ(x + 1)/x, we
have

|Γ(−t)|−1 ≤ ν! (t∗ − ν)
1

|Γ(−t∗ + ν + 1)| .(5.23)
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By observing that

(k−ν−1)! < Γ(k + 1− t∗) < (k−ν)!, 0 < c ≡ Γ(−t∗ +ν + 1) < 1, 1 < 1/(t∗−ν) < 2

and by recalling Lemma 5.4, we can write

|G(t)| ≤ c · (t∗ − ν)−1 · ν! · (k − ν)!;

thus, bn is bounded above by 2.
(3) To check that {bn} converges to zero as n → ∞, arguments similar to those

used to prove (1), (2) give that bn in (5.19) can be written as bn = 1
n ·hn, where {hn}

is a uniformly bounded sequence.
(4) To check that {bn} is a monotonic nonnegative decreasing sequence, we observe

that the expression (5.19) for n > 1 and for k even gives

bn − bn+1 =
1

(ν + n)!(k − ν − n)!

∫ ν+1

ν

{[
1 + n/(s + 1)

n− (t− ν)
− 1− n/(s + 1)

n + (t− ν)

]

−
[

1 + (n + 1)/(s + 1)

(n + 1)− (t− ν)
− 1− (n + 1)/(s + 1)

(n + 1) + (t− ν)

]} k∏
m=0

|t−m| dt.(5.24)

Let us consider the expression in curly brackets in (5.24). We have the following lower
bound:

{·} >
1 + n/(s + 1)

n− 1
− 1 + (n + 1)/(s + 1)

n + 1
− 1− n/(s + 1)

n− 1
+

1− (n + 1)/(s + 1)

n + 1

=
2n

(s + 1)(n− 1)
− 2(n + 1)

(s + 1)(n + 1)
=

2

s + 1

(
n

n− 1
− 1

)
> 0,(5.25)

and thus, by (5.24), bn − bn+1 > 0 and the sequence {bn} is monotonic decreasing.
(5) For (1)–(4), {bn} is of bounded variation.
Finally, by using similar arguments such as in the Proposition 5.2 and Corollary

5.3, we have the following results.
Proposition 5.6. The sequence of functions {Ψ̂k(x)} for (2.10) converges locally

uniformly with respect to k (and thus with respect to ν = O(k)) in (−π, π).
Proof. It is a consequence of Lemma 5.5 and of [25, Theorem 2.7, p. 4].
Corollary 5.7. Under the hypotheses of Proposition 5.6, the function

Ψ̂(x) = lim
k→∞

Ψ̂k(x)(5.26)

is analytic for x ∈ (−π, π) and continuous for x ∈ R.

5.2. Main results. As a consequence of the results in the previous section, we
can give bounds for the eigenvalues for some of the underlying approximations.

Theorem 5.8. The P-circulant matrices p(As+1), p(Bs+1) related to the formu-
las (2.9), (2.10) are positive stable and, if φj, ψj, j = 0, . . . , s, are the eigenvalues of
p(As+1), p(Bs+1), respectively, we have

1

s + 1
≤ Re(φj) < 2, Re(ψj) = 1 for (2.9),(5.27)

1

s + 1
≤ Re(φj) <

2s + 1

s + 1
< 2,

2

π2(s + 1)
< Re(ψj) < 1 for (2.10).(5.28)
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Proof. Let us observe that, from (4.3) and (5.2), considering the scaling and
consistency conditions ρ(1) = 0, σ(1) = 1, we have

k−ν∑
j=−ν

αj+ν = 0,

k−ν∑
j=−ν

jαj+ν = 1.(5.29)

Thus, the expression (5.2) gives φ0 = Φ̂(0) = 1/(s + 1) for the formulas (2.3).

Let us check (5.27). To this end, we consider formulas (2.9) and expand cos(jx)
in the right-hand side of (5.4) using power series in a neighborhood of the origin. If
P(f) is the formal power series expansion of a function f , we can write

P
(

Φ̂k(x)
)

=
1

s + 1
+

∞∑
n=1


(−1)n

x2n

(2n)!

k−ν∑
j=−ν

j2nαj+ν

(
1 +

j

s + 1

)
 .(5.30)

For brevity, we consider k odd (⇒ ν = (k + 1)/2). From (2.13), it is worth noting
that (5.30) is equivalent to the following expression:

P
(

Φ̂k(x)
)

=
1

s + 1
+

∞∑
n=ν


(−1)n

x2n

(2n)!

k−ν∑
j=−ν

j2nαj+ν

(
1 +

j

s + 1

)
 .(5.31)

However, in Proposition 5.2, we observed that {Φ̂k(x)} converges locally uniformly in
S = (−π, π) with respect to k (i.e., to ν because k = 2ν − 1) for (2.9). Moreover, the
functions fn(x) = (−1)n an cos(nx) in (5.8) are analytic in S. Then, by [17, Corollary
3.4c, p. 161], we have that

∑
fn(x), i.e., Φ̂(x) in (5.11), is analytic in S and that the

sequence {Φ̂k(x)} converges in S and the series related to (5.30) (and (5.31)) is the
Taylor series of Φ̂(x). However, by Abel’s limit theorem for the power expansions, we
have that the Taylor expansion in (5.30) (and (5.31)) converges for x = ±π as well,

Φ̂(x) := lim
k→+∞

Φ̂k(x) = lim
k→+∞

P(Φ̂k(x)), x ∈ [−π, π],(5.32)

and thus, by (5.12), for x ∈ R. To conclude the first part of the proof, we observe
that the quantity in the curly brackets in (5.31) is positive for n = ν (i.e., the first
term of the sum), vanishes fast for k → ∞ (recall (2.4) and (2.13)), and we can see
that (see Figure 5.1, right)

1

s + 1
≤ Φk(x) ≤ Φ1(x) ≤ 2, k ≥ 1, −π ≤ x ≤ π.

Let us now check (5.28). We can expand cos(jx) in the expression (5.5) in Taylor
series in a neighborhood of the origin, and, for k <∞, we have

Ψ̂k(x) =

∞∑
n=0


(−1)n

x2n

(2n)!

k−ν∑
j=−ν

j2nβj+ν

(
1 +

j

s + 1

)
 .(5.33)

By considering the order conditions (2.14), recalling the power series expansion of
sin(x) and of cos(x) in a neighborhood of the origin and arguments similar to those
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Fig. 5.1. Φ̂k(x), k = 1, 7, 15, 27, s = 30 for formula (2.11) (left) and for formula (2.9) (right).

The dashed curves give Φ̂(x).

used to prove (5.27), we have that, for k →∞ (i.e., ν →∞ because ν = O(k)),

lim
k→∞

Ψ̂k(x) = Ψ̂(x) =




sin(x)
x − 1

s + 1

(
sin(x)

x − 1
2

sin2(x/2)
(x/2)2

)
,

x ∈ (−π, 0) ∪ (0, π),

1− 1
2(s + 1)

, x = 0.

Thus, by using similar arguments as before, the expressions (5.12), (5.13), and Abel’s
limit theorem, we see that the following inequalities hold true for (2.10):

Ψ̂k(x) ≥ Ψ̂(π) =
2

π2(s + 1)
> 0, x ∈ R,

1

s + 1
≤ Φ̂k(x) ≡ Φ̂1(x) ≤ 2s + 1

s + 1
< 2, x ∈ R, k ≥ 1.

The behavior of Ψ̂k(x) for some values of k is displayed in Figure 5.2.
We observe that the imaginary parts of the eigenvalues of the circulant approxi-

mations (4.1) and (4.3) for the matrices A and B in (2.6) for the formulas (2.9) and
(2.10) are uniformly bounded by constants of the order of unity.

Theorem 5.9. If φj, ψj, j = 0, . . . , s, are the eigenvalues of p(As+1), p(Bs+1),
respectively, we have

−π < Im(φj) < π, Im(ψj) = 0 for (2.9),(5.34)

− s

s + 1
≤ Im(φj) <

s

s + 1
, −c < Im(ψj) < c for (2.10), j = 0, . . . , s,

(5.35)



CIRCULANT-LIKE PRECONDITIONERS FOR GLMS 1817

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x  (GAM, k even)

k=2

k=28

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x  (GAM, k odd)

k=1

k=27

Fig. 5.2. Left: Ψ̂k(x), k = 2, 6, 14, 28 (k even); right: Ψ̂k(x), k = 1, 7, 15, 27 (k odd) for

formula (2.10), s = 28. The dashed curve gives Ψ̂(x).

where

c = max
0<x<π

∣∣∣∣cos(x)− 1

x

∣∣∣∣ (⇒ 0.7246 < c < 0.7247).

Proof. The proof uses arguments similar to those in the proof of Theorem
5.8.

Again, as a corollary of Theorem 5.8, we have the following results.
Theorem 5.10. The preconditioners s(As+1), s(Bs+1) defined in (4.1) and re-

lated to the formulas (2.9), (2.10) are semipositive stable. If γj, δj, j = 0, . . . , s, are
the eigenvalues of s(As+1), s(Bs+1), respectively, we have

0 ≤ Re(γj) ≤ 2, Re(δj) = 1 for (2.9),(5.36)

0 ≤ Re(γj) ≤ 2, 0 ≤ Re(δj) ≤ 1 for (2.10), j = 0, . . . , s.(5.37)

Theorem 5.11. The {ω}-circulant preconditioners s̃(As+1), s̃(Bs+1) for ω =
exp (iθ), 0 < θ ≤ π, and the MS-circulant preconditioners defined in section 4, related
to the formulas (2.9), (2.10), are positive stable. If γ̃j, δ̃j, j = 0, . . . , s, are the
eigenvalues of s̃(As+1), s̃(Bs+1), respectively, we have

0 < Re(γ̃j) ≤ 2, Re(δ̃j) = 1 for (2.9),(5.38)

0 < Re(γ̃j) ≤ 2, 0 ≤ Re(δ̃j) ≤ 1 for (2.10), j = 0, . . . , s.(5.39)

The bounds (5.38), (5.39) hold true for the eigenvalues of the MS-circulant approxi-
mations as well.

Similarly, it is straightforward to derive a result analogous to Theorem 5.9 for
simple {ω}-circulant and MS-circulant preconditioners by using the results in [7, 5].
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It is worth noting that Theorems 5.8 and 5.10 can give results beyond linear
algebra. The following corollary suggests a proof for the A-stability of formulas (2.9)
using different tools, shorter than in [3, pp. 50–65].

Corollary 5.12. The formulas (2.9), used in boundary value form with ν initial
and k − ν final conditions, are A-stable.

Proof. As observed in [9], a linear multistep formula used in boundary value form
is A-stable if its boundary locus is in the right half plane. In fact, the expression of
the real part of the boundary locus of the formulas (2.9) is given by

k−ν∑
j=−ν

αj+ν cos(j x), x ∈ R, k ≥ 1;

see (5.6). Thus, by using the bound (5.36), we have that the boundary locus of
formulas (2.9) is in the right half plane.

Notice that the condition number of the underlying P-circulant approximations
has a favorable behavior, e.g., for the methods based on formulas (2.9) and (2.10).

Corollary 5.13. Consider the sequences {K2(p(As+1))}, {K2(p(Bs+1))}. We
have that

K2(p(As+1)) < (s + 1)
√

π2 + 1, K2(p(Bs+1)) = 1 for (2.9),

and

K2(p(As+1)) < 2(s + 1), K2(p(Bs+1)) < (s + 1)
π2

2
for (2.10),

where K2(·) is the 2-norm condition number.
Proof. The proof follows from Theorems 5.8 and 5.9 by considering that circulant

matrices are normal (see [13]), and thus the singular values are given by the modulus
of the eigenvalues.

We observe that the bounds in the Corollary 5.13 could be not very tight for
all values of k and s. However, for our purposes, it is enough to stress the linear
dependence of the condition number from the size of the underlying matrices. Again,
recall that K2(As+1) = O(s) and K2(Bs+1) = O(s) as well; see [6].

On the other hand, we cannot give an upper bound for K2(p(As+1)) for the
matrices related to the formulas in (2.11). Indeed, applying arguments similar to those
used in the proofs of Theorem 5.8 and of Corollary 5.13, we would have Φ̂(nπ) = 0,
n �= 0 integer (see Figure 5.1, left). Therefore, K2(p(As+1)) cannot be bounded,
and we have not considered in detail formulas (2.11). Moreover, we experienced
that the methods based on formulas (2.9) and (2.10) can perform better than those
based on (2.11) with the underlying preconditioners. For example, less preconditioned
iterations are often required to solve the linear systems (2.6) for (2.9) and (2.10).

Notice that, for several families of non-Hermitian Toeplitz matrices, the real parts
of the eigenvalues of their circulant approximations can be positive, negative, or zero
even when the nonpreconditioned matrix is positive stable. For example, this is
the case of backward differentiation formulas, Adams–Moulton methods, formulas
in section 2.2 for choices of ν different from those suggested there. Moreover, for
non-Hermitian matrices, the circulant approximation in (4.2) may give ill conditioned
preconditioners as well. For example, the condition number of c(As+1) can grow
fast with k, e.g., for the families of k-step formulas in section 2.2; see Figure 5.3.
Moreover, the block preconditioners using the approximations (4.2) can be singular
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Fig. 5.3. Condition number of the P-circulant and of the circulant approximation based on
(4.2) for the matrices A as in (2.7) related to k-step formulas (2.9).

for stable multistep formulas in boundary value form whose component matrices are
nonsingular. This is the case of the midpoint method using with one initial and one
final condition (k = 2, ν = 1 in (2.3)) introduced in [2]. Indeed, by using (5.7), and
by recalling that α2 = 1 = −α0 in (2.3), we have the expression of the eigenvalues of
c(As+1) for the above-mentioned method:(

1− 1

s + 1

)
(εl − ε−l) = 2i

(
1− 1

s + 1

)
sin

(
2πil

s + 1

)
, l = 0, . . . , s,

which is zero for l = 0 for any s ≥ 2 and, if s is odd, for l = (s + 1)/2 as well. On the
other hand, by (5.2), the eigenvalues of the corresponding P-circulant matrix p(As+1)
are given by

1

s + 1
cos

(
2πl

s + 1

)
+ i sin

(
2πl

s + 1

)
, l = 0, . . . , s,

which cannot be zero. However, we have experienced that, for low order formulas in
section 2.2, both the preconditioners based on P-circulants and on T. Chan’s circulants
(4.2) can be effective to solve (2.6) with Krylov subspace accelerators; see [4, 5].

5.3. How to choose the approximations and convergence of precondi-
tioned iterations. In the previous sections, we have considered the spectrum of the
component matrices of the block preconditioners in (1.2). Further information on
the spectrum of the matrix M in (2.6) and its component matrices can be found in
[2, 6, 9]. On the other hand, the convergence of preconditioned iterations using, e.g.,
GMRES, BiCGstab, and some other BiCG-like methods, is essentially decided by the
distribution of the spectrum of the eigenvalues and by the eigenvectors of the precon-
ditioned matrix; see, e.g., [18]. Notice that the analysis of the preconditioned linear
system, in the nonsymmetric case, cannot be performed by using the arguments in
the previous sections. In fact, one should explicitly manipulate the related character-
istic polynomial. For example, if we consider the preconditioner (1.2) and the linear
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systems (2.6), we need to derive an analytic expression for λ from

det((1− λ)Im(s+1) + P−1E) = 0, E = (A− Ă)⊗ Im − h(B − B̆)⊗ J,(5.40)

where we recall that Im(s+1) + P−1E = P−1M ; see [4, Theorem 4.1] for details.
Unfortunately, the above approach can fail to give complete and useful information on
the convergence process. Indeed, the above analysis must consider a specific Jacobian
matrix J and a formula (2.3) with k fixed. Moreover, the derivation of λ from (5.40)
is usually rather lengthy even for low order schemes and sometimes it is difficult to
handle in view of the behavior of the eigenvalues.

Therefore, in what follows, we will give some general suggestions in order to decide
whether approximation could be more suitable to precondition the underlying linear
system. These hints could be adapted for the solution of other problems based on
nonsymmetric (block-)Toeplitz-like matrices.

Recall that, for Krylov subspace methods, we expect fast convergence of precondi-
tioned iterations if the spectrum of the eigenvalues of the block preconditioned matrix
is clustered around (1, 0) ∈ C. Let Tn be a nonsymmetric band Toeplitz matrix, p(Tn)
the P-circulant approximation for Tn, and l(Tn) a trigonometric approximation, e.g.,
one of those described in section 4. Defining Ep = Tn − p(Tn), El = Tn − l(Tn), and
using similar arguments as in [4], we can write

p(Tn)−1Tn = I + p(Tn)−1Ep = I + p(Tn)−1(E(1)
p + E(2)

p ),(5.41)

l(Tn)−1Tn = I + l(Tn)−1El = I + l(Tn)−1(E
(1)
l + E

(2)
l ),(5.42)

where E
(2)
p , E

(2)
l have small rank with respect to n and E

(1)
p , E

(1)
l have small norm

(with respect to Tn, say). From (5.41), (5.42), we expect that the P-circulant-based
approximation will perform better than the other if, e.g.,

(C1) ||p(Tn)−1||2 < ||l(Tn)−1||2;

(C2) ||p(Tn)−1E
(1)
p ||2 < ||l(Tn)−1E

(1)
l ||2 (if the underlying approximation l(Tn) is

such that ||E(1)
l || �= 0; otherwise we require that ||p(Tn)−1E

(1)
p ||2 is moderate);

(C3) the outlying eigenvalues of p(Tn)−1Tn (i.e., the eigenvalues outside the cluster
in (1, 0) ∈ C) have positive real part whereas some of l(Tn)−1Tn have negative
real part.

Notice that condition (C1) is equivalent to, say, that of K2(p(Tn)) < K2(l(Tn)) be-
cause ||p(Tn)||2, ||l(Tn)||2 are uniformly bounded with n. (We assume, as is custom-
ary, that the entries of Tn are uniformly bounded with respect to n.) By condition
(C2) alone and (5.41), (5.42), it would appear that preconditioners based on simple
circulant-like approximations such as Strang’s, MS-circulant, and {ω}-circulant will
perform definitively better than a P-circulant based one (or, e.g., better than (4.2))

because they have E
(1)
l = 0 in (5.42), i.e., no small norm perturbation. Unfortunately,

this is false in general. Finally, the third condition (C3) can be very important for
the convergence of GMRES and BiCG-like Krylov methods. Indeed, as observed in
[18], if the convex hull of the eigenvalues includes the origin of the complex plane,
then the convergence can be slow.

Let us consider some examples in which P-circulant-like block preconditioners
in (1.2) can outperform preconditioners based on other approximations for the lin-
ear systems (2.6). For simplicity, we assume J = V DV −1 diagonalizable, D =
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diag(µ1, . . . , µm), and Re(µr) ≤ 0. By using the notation of the previous sections,
we have the following decomposition for P as in (1.2):

P = (F ∗ ⊗ V ) diag (φ0 − hψ0µ1, . . . , φ0 − hψ0µm, . . .

. . . , φs − hψsµ1, . . . , φs − hψsµm)
(
F ⊗ V −1

)
.(5.43)

Then, the eigenvalues of the block preconditioner are given by φj−hψjµr, j = 0, . . . , s,
r = 1, . . . ,m, and

||P−1||2 ≤ K2(V ) min
j,r
{|φj − hψjµr|}−1,

where K2(V ) does not depend on s. If we consider the matrices related to the schemes
(2.9), we have ψj ≡ 1, j = 0, . . . , s, and using P-circulant approximations for Ă, B̆ in
(1.2) gives

||P−1||2 ≤ K2(V )
s + 1

1 + (T − t0)µ̃
= O(s), µ̃ = min

r
{|µr|}.

On the other hand, similar bounds cannot be stated for non-P-circulant-like approx-
imations because, in general, we have

||P−1||2 ≤ K2(V )
s + 1

(T − t0)µ̃
, µ̃ = min

r
{|µr|},

which can be unbounded if some eigenvalues of J are very small or zero in modulus.
A similar effect can be observed for some classes of matrices J with purely imaginary
eigenvalues and other matrices A, B in (2.6), Tn in (5.41), (5.42) as well.

Notice that, by using similar arguments as before, we can write P−1M = I +
P−1(E(1) + E(2)); see, [4, Theorem 4.1]. Therefore, if we take the 2-norm of the
perturbation of the identity in the right-hand side above, we get

||P−1(E(1) + E(2))|| ≤ ||P−1|| · (||E(1)||+ ||E(2)||).

By the above arguments, ||P−1|| can be larger for the preconditioner not based on
P-circulant matrices. As a result, the amplification of the perturbations E(1) + E(2)

given by the multiplication by P−1 can give (C3); see (5.41), (5.42). Moreover, recall
that the spectrum of the eigenvalues can be much more sensitive to perturbations
with respect to the Hermitian case; see, e.g., [22].

On the other hand, if the eigenvalues µr, r = 1, . . . ,m, are, e.g., negative and
bounded from below by a constant c < 0, then preconditioners based on simple
circulant-like approximations (i.e., based on Strang’s, {ω}-circulant, and MS-circulant
matrices) may give better performances for large s as well. For numerical examples,
see [4, 5, 7].
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Università di Genova, Italy, 1999.
[4] D. Bertaccini, A circulant preconditioner for the systems of LMF-based ODE codes, SIAM J.

Sci. Comput., 22 (2000), pp. 767–786.
[5] D. Bertaccini, Reliable preconditioned iterative linear solvers for some numerical integrators,

Numer. Linear Algebra Appl., 8 (2001), pp. 111–125.
[6] D. Bertaccini and M. K. Ng, The convergence rate of block preconditioned systems arising

from LMF-based ODE codes, BIT, 41 (2001), pp. 433–450.
[7] D. Bertaccini and M. K. Ng, Skew-circulant preconditioners for systems of LMF-based ODE

codes, Lecture Notes in Comp. Sci. 1988, Springer-Verlag, Berlin, 2001, pp. 93–101.
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Abstract. The aim of this paper is to analyze a finite element method to solve the low-frequency
harmonic Maxwell equations in a bounded domain containing conductors and dielectrics. This system
of partial differential equations is a model for the so-called eddy currents problem. After writing
this problem in terms of the magnetic field, it is discretized by Nédélec edge finite elements on a
tetrahedral mesh. Error estimates are easily obtained if the curl-free condition is imposed on the
elements in the dielectric domain.

Then, the curl-free condition is imposed, at a discrete level, by introducing a piecewise linear
multivalued potential. The resulting problem is shown to be a discrete version of other continuous
formulation in which the magnetic field in the dielectric part of the domain has been replaced by a
magnetic potential. Moreover, this approach leads to an important saving in computational effort.
Problems related to the topology are also considered in that the possibility of having a nonsimply
connected dielectric domain is taken into account.

Implementation issues are discussed, including an amenable procedure to impose the boundary
conditions by means of a Lagrange multiplier. Finally, the method is applied to solve a three-
dimensional model problem: a cylindrical electrode surrounded by dielectric.

Key words. low-frequency harmonic Maxwell equations, eddy currents problems, finite element
computational electromagnetism

AMS subject classifications. 78M10, 65N30

PII. S0036142901390780

1. Introduction. In this paper we analyze a finite element method with La-
grange multipliers to solve the eddy currents model in a bounded domain including
conductors and dielectrics. This model can be obtained from Maxwell equations by
assuming that all fields are harmonic and that the current frequency is low enough so
that the term involving the displacement current in Ampère’s law can be neglected.
Such a situation happens, for instance, in problems related to machines working at
power frequencies. In particular, this paper is motivated by the need for a three-
dimensional numerical simulation of a metallurgical furnace. (See [6, 7] for related
works concerning axisymmetric models.)

Because of many interesting applications in electrical engineering, numerical so-
lution of eddy currents problems became an important research area, leading to a
great number of publications in recent years. (See, for instance, [2, 3, 8, 9, 10, 12, 13,
16, 20, 29].) The books by Bossavit [11] and Silvester and Ferrari [28] also contain
valuable material on this subject and include large reference lists.

While several papers deal with the mathematical and numerical analysis of the
full harmonic Maxwell equations (see, for instance, the papers by Monk [23, 24, 25]
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and Fernandes and Gilardi [17]), the number of papers concerning analysis of the
eddy currents model is much smaller. Significant mathematical and numerical results
have been obtained by MacCamy and coauthors [18, 21, 22] for a two-dimensional
eddy currents problem. In the three-dimensional case, let us mention the article by
Ammari, Buffa, and Nédélec [4], where a thorough justification of the eddy current
model is given.

The above mentioned papers deal with the eddy currents problem in the whole
space, the infinity being usually taken into account by means of integral equations. A
useful alternative approach is considered by Alonso and Valli [2, 3], where the prob-
lem in a bounded domain is considered, including appropriate boundary conditions.
In these papers, a formulation involving only the electric field is given and then nu-
merically solved by using a domain decomposition technique and Nédélec edge finite
elements.

In the present paper we also consider the eddy currents problem in a bounded
domain which includes conductors and dielectrics. The conductors are not assumed
to be totally included in the problem domain. We consider a formulation in terms of
magnetic field with mixed Neumann and Dirichlet boundary conditions. The former
are the natural conditions for the conducting part of the boundary. The latter are
imposed on the dielectric part and allow taking into account all the electromagnetics
effects outside the domain.

Then, following Bossavit and Vérité [13], we introduce a scalar magnetic potential
in the domain occupied by the dielectric. This hybrid formulation is discretized by
using Nédélec edge elements for the magnetic field and standard piecewise linear
continuous elements for the magnetic potential.

The outline of the paper is as follows: In section 2, we recall the eddy currents
model and obtain a weak formulation involving the magnetic field only. Section 3
concerns existence and uniqueness of a solution which are proved by using classical
tools. Then, in section 4, we introduce a scalar magnetic potential in the dielectric
domain and show that the resulting problem is completely equivalent to the previous
one. The numerical discretization is introduced in section 5, where error estimates
are obtained under mild regularity assumption on the solution.

In order to solve the discretized problem, a Lagrange multiplier is proposed in
section 6 to impose the Dirichlet boundary conditions. The resulting mixed problem
is shown to attain a unique solution and to be equivalent to the original discrete one.
Finally, in section 7, we report numerical results for a test with known analytical
solution; these results confirm the predicted order of convergence of the method.

2. The eddy currents problem. Eddy currents are usually modeled by the
low-frequency harmonic Maxwell equations. First let us recall the governing equations
of electromagnetism: Maxwell equations,

∂D
∂t
− curlH = −J ,(2.1)

∂B
∂t
+ curlE = 0,(2.2)

divB = 0,(2.3)

divD = ρ;(2.4)

constitutive laws,

B = µH,(2.5)
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D = εE;(2.6)

and Ohm’s law in conductors,

J = σE.(2.7)

We have used notations which are standard in electromagnetism:
• D is the electric displacement,
• E is the electric field,
• B is the magnetic induction,
• H is the magnetic field,
• J is the current density,
• ρ is the electric charge density,
• µ is the magnetic permeability,
• ε is the electric permittivity,
• σ is the electric conductivity.

We use boldface letters to denote vector fields and variables, as well as vector-valued
operators, throughout the paper.

When alternating currents are considered, all the fields have the following steady-
state form:

F(x, t) = Re [eiωtF(x)] ,
where ω is the angular frequency. Moreover, in the low-frequency harmonic regime,
the term in (2.1) including the electric displacement can be neglected. Under these
assumptions, (2.1)–(2.7) reduce to the so-called eddy currents model:

curl H = J,(2.8)

iωµH+ curl E = 0,(2.9)

divB = 0,(2.10)

divD = ρ,(2.11)

with

B = µH,(2.12)

D = εE,(2.13)

J = σE.(2.14)

We are interested in solving these equations in a bounded domain Ω, which con-
sists of two parts, Ω

C and ΩD, occupied by conductors and dielectrics, respectively.
The electric conductivity σ vanishes in the dielectric domain. The boundary of the
domain Ω also splits into two parts: ΓC := ∂ΩC∩ ∂Ω and ΓD := ∂ΩD∩ ∂Ω. Finally, we
denote ΓI := ∂ΩC∩ ∂ΩD, the interface between dielectric and conductors.

Boundary conditions must be added to solve the eddy currents model in the
bounded domain Ω. We consider

E× n = 0 on ΓC
,(2.15)

H× n = f on Γ
D,(2.16)

with f being a given tangential vector field (i.e., satisfying f · n = 0 on ΓD).
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In the equations above, n denotes the outer unit normal vector to ∂Ω. Throughout
the paper, n will denote a unit vector normal to a given surface, not necessarily the
same at each occurrence. In general, it will not be explicitly mentioned which surface
this is, provided this is sufficiently clear from the context.

To obtain a weak formulation of the boundary value problem (2.8)–(2.16), con-
sider a test function G such that G× n = 0 on Γ

D
. From (2.9) we have

iω

∫
Ω

µH · Ḡ+

∫
Ω

curl E · Ḡ = 0.(2.17)

Now, we can transform the second term above by using Green’s formula:∫
Ω

curl E · Ḡ =

∫
Ω

E · curl Ḡ−
∫

Γ
C

E · n× Ḡ dΓ(2.18)

=

∫
Ω

E · curl Ḡ−
∫

Γ
C

E× n · Ḡ dΓ =

∫
Ω

E · curl Ḡ,

where we have used the boundary condition (2.15) to obtain the last equality. We
observe that (2.8) and (2.14), and the fact that σ is null in the dielectric domain, lead
to

curl H = 0 in Ω
D.

Because of this, we need only to take test functions G satisfying curl G = 0 in ΩD.
By doing so, (2.17) and (2.18) yield

iω

∫
Ω

µH · Ḡ+

∫
Ω

C

E · curl Ḡ = 0.

Instead, in the conductors, (2.8) and (2.14) lead to E = 1
σ curl H, which allows us to

eliminate E in the equation above. Thus, finally we obtain

iω

∫
Ω

µH · Ḡ+

∫
Ω

C

1

σ
curl H · curl Ḡ = 0.

3. Analysis of the magnetic field formulation of the eddy currents
problem. Let us assume that Ω is simply connected, with a Lipschitz-continuous
connected boundary. The subdomains Ω

C
and Ω

D
are also assumed to have Lipschitz-

continuous boundaries, although not necessarily connected. Finally, the boundaries
of Γ

C, ΓD, and ΓI are assumed to be Lipschitz-continuous, too.
We use standard notation for Sobolev spaces and norms. Moreover, we recall the

definition of some functional spaces. Let

H(curl,Ω) :=
{
G ∈ L2(Ω)3 : curl G ∈ L2(Ω)3

}
endowed with the norm

‖G‖H(curl,Ω) :=
[
‖G‖2L2(Ω)3 + ‖ curl G‖2L2(Ω)3

]1/2
,

and, for each positive real number r, let

Hr(curl,Ω) :=
{
G ∈ Hr(Ω)3 : curl G ∈ Hr(Ω)3}
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endowed with the norm

‖G‖Hr(curl,Ω) :=
[
‖G‖2Hr(Ω)3 + ‖ curl G‖2Hr(Ω)3

]1/2
.

Consider the following closed subspaces of H(curl,Ω):

V = {G ∈ H(curl,Ω) : curl G = 0 in Ω
D
} ,

V0 =
{

G ∈ V : G× n = 0 in H
−1/2
00 (Γ

D
)3
}
,

where H
−1/2
00 (ΓD)

3 denotes the dual space of H
1/2
00 (ΓD

)3, which, in its turn, is the space
of functions defined on Γ

D that, extended by 0 on ∂Ω \ ΓD, belong to H
1/2(∂Ω)3.

We assume that µ, ε, σ ∈ L∞(Ω) and that there exist constants µ, ε, and σ such
that

µ(x) ≥ µ > 0, a.e. in Ω,

ε(x) ≥ ε > 0, a.e. in Ω,

σ(x) ≥ σ > 0, a.e. in Ω
C, σ(x) = 0 in ΩD.

Concerning the boundary data f , we suppose there exists a field Hf ∈ V such
that

Hf × n = f in H
−1/2
00 (ΓD)

3.(3.1)

Remark 3.1. We refer to [1] for necessary and sufficient conditions on f to ensure
that there exists Hf ∈ H(curl,Ω) such that Hf × n = f on ΓD in a weak sense, in the
case Γ

C = ∅, ΓD = ∂Ω (i.e., when the conductors Ω
C are fully contained in Ω). We also

refer to [14, 15] for similar conditions in the case that Ω is a Lipschitz polyhedron,
and Γ

C
and Γ

D
are polyhedral surfaces with piecewise smooth boundaries.

Equation (3.1) implies an additional constraint on the data f , since Hf has to be
curl-free in Ω

D. A necessary condition for the existence of such Hf is that divΓ f = 0
on Γ

D, where divΓ stands for the tangential divergence operator. (See [1] for the
result and a precise definition of divΓ .) In the case ΓC

= ∅, Γ
D
= ∂Ω; then divΓ f = 0

on Γ
D
is also a sufficient condition, when Ω has a smooth boundary (see Theorem 4.1

of [1]).
Now, we can state a variational formulation of our problem in terms of the mag-

netic field H.
Problem MP. Find H ∈ V such that

H× n = f in H
−1/2
00 (Γ

D
)3,(3.2)

iω

∫
Ω

µH · Ḡ+

∫
Ω

C

1

σ
curl H · curl Ḡ = 0 ∀G ∈ V0.(3.3)

Let a : H(curl,Ω)×H(curl,Ω) −→ C be the sesquilinear continuous form defined
by

a(H,G) := iω

∫
Ω

µH · Ḡ+

∫
Ω

C

1

σ
curl H · curl Ḡ.

This form clearly satisfies

|a (G,G)| ≥ α‖G‖2H(curl,Ω) ∀G ∈ V .(3.4)
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Hence, the following existence result is immediately derived.

Theorem 3.1. If there exists Hf ∈ V such that Hf ×n = f in H
−1/2
00 (Γ

D
)3, then

Problem MP attains a unique solution.
Proof. Consider the translation Ĥ = H −Hf . Then Problem MP is equivalent

to finding Ĥ ∈ V0 such that

a(Ĥ,G) = −a(Hf ,G) ∀G ∈ V0,

and this problem has a unique solution because of inequality (3.4) and the Lax–
Milgram lemma.

Once the magnetic field H is known, the current density J and the electric field E
can be readily computed in the conductors by means of (2.8) and (2.14), respectively.
These are the magnitudes actually needed in most applications.

In the following theorem we show that the solution of Problem MP satisfies some
of the Maxwell equations (2.8)–(2.11) and the boundary conditions (2.15)–(2.16) in a
weak sense.

Theorem 3.2. Let H ∈ V be the solution of Problem MP. Let B = µH ∈
L2(Ω), J = curl H ∈ L2(Ω), and E = ( 1

σJ)|
Ω

C

∈ L2(ΩC). Then the following

properties hold true:

divB = 0 in Ω,(3.5)

iωµH+ curl E = 0 in Ω
C,(3.6)

E× n = 0 in H
−1/2
00 (ΓC)

3,(3.7)

H× n = f in H
−1/2
00 (Γ

D
)3,(3.8)

J = 0 in Ω
D.(3.9)

Proof. Given Ψ ∈ D(Ω) := {Ψ ∈ C∞(Ω) : suppΨ ⊂ Ω}, let G = gradΨ ∈ V0.
Then, (3.3) yields ∫

Ω

µH · grad Ψ̄ = 0.

Consequently, B = µH ∈ H(div,Ω), and (3.5) holds true.
Now, let G ∈ D(Ω)3 be such that suppG ⊂ Ω

C
. Then G ∈ V0, and (3.3) yields

iω

∫
Ω

C

µH · Ḡ+

∫
Ω

C

1

σ
curl H · curl Ḡ = 0.

Hence E = 1
σJ = 1

σ curl H ∈ H(curl,Ω
C
), and (3.6) holds true.

To prove (3.7), given ϕ ∈ H1/2
00 (ΓC

)3, we will show that 〈E× n, ϕ̃〉∂Ω
C
= 0, where

〈·, ·〉∂Ω
C
denotes the duality pairing in H−1/2(∂Ω

C
)3×H1/2(∂Ω

C
)3, and ϕ̃ ∈ H1/2(∂Ω

C
)3

is the natural extension of ϕ by 0 on ∂ΩC \ ΓC. To this aim, let G ∈ H1(ΩC)
3 be such

that G|∂Ω
C
= ϕ̃, and G̃ is the extension by 0 of G to Ω \ ΩC. Then G̃ ∈ V0, and

(3.3) yields

0 = iω

∫
Ω

µH · ¯̃
G+

∫
Ω

C

E · curl
¯̃
G

= iω

∫
Ω

C

µH · Ḡ+

∫
Ω

C

curl E · Ḡ+
〈
E× n,G|∂Ω

C

〉
∂Ω

C

= 〈E× n, ϕ̃〉∂Ω
C
,
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where we have used that E = 1
σ curl H in Ω

C
and (3.6).

Finally, (3.8) and (3.9) arise explicitly in Problem MP.
Remark 3.2. The theorem above shows that Problem MP allows us to deter-

mine uniquely the electric field E in the conductors. In its turn, E and Maxwell
equation (2.11) determine the charge density ρ in Ω

C
. In particular, in the interior

of any homogeneous subdomain Ω′ of Ω
C
(i.e., Ω′ ⊂ Ω

C such that ε|Ω′ and σ|Ω′ are
constant), ρ|Ω′ = div

(
ε
σ curl H

)∣∣
Ω′ = 0.

Instead, the electric field E is not uniquely determined in the dielectric. Indeed,
from the eddy currents model (2.8)–(2.14) we obtain the following equations for E|Ω

D
:

curl E = −iωµH in ΩD,(3.10)

div (εE) = ρ in Ω
D
,(3.11)

E× n = E|Ω
C
× n on ΓI.(3.12)

The latter arises from the facts that E|Ω
C
is already known and that E is globally in

H(curl,Ω).
A boundary condition on ΓD is needed to determine a unique solution, even in the

simplest case of a topologically trivial Ω
D
(i.e., when Ω

D
is simply connected with a

connected boundary). A natural condition would be to impose the normal component
of the electric displacement D on Γ

D; namely,

εE · n = ψ on Γ
D.(3.13)

The data ψ amounts to eventual surface charges on the outer boundary of the dielectric
domain.

Existence of the solution to (3.10)–(3.13) has been proved in Theorem 4.2 of [1]
in the case that ∂Ω

D is smooth and that ΓI ∩ ΓD = ∅ (for instance, when ΩC ⊂ Ω).
Even in this simpler case, a number of additional constraints related to the topology
of ΩD must be added to have uniqueness, as can be seen in this reference.

To the best of the authors’ knowledge, a similar result has not been proved for
the general case of ΩD

being a Lipschitz polyhedron with Γ
I
∩ Γ

D �= ∅. Nevertheless,
this is not a drawback for the application of this eddy currents model, since typically
the goal of these problems is to compute the electric field only in the conductors, as
mentioned above.

4. Introducing a magnetic potential. In this section we show how Problem
MP can be transformed by replacing the magnetic field in the dielectric domain Ω

D

by a (scalar) magnetic potential.
We recall that Ω is assumed to be simply connected with connected boundary ∂Ω.

Let ΩC
=
⋃j=J
j=0 Ω

j
C
, with Ω0

C
being the union of all the connected components of ΩC

such that Ω\Ω0
C
is simply connected, and Ωj

C
, j = 1, . . . , J , are the remaining connected

components of ΩC (see Figure 4.1).
We assume that for each Ωj

C
, j = 1, . . . , J , there exists an open “cut” surface

Σj ⊂ ΩD such that ∂Σj ⊂ ∂Ω
D
and Ω̃

D
:= Ω

D
\ ⋃j=Jj=0 Σj is pseudo-Lipschitz and

simply connected (see Figure 4.1). We also assume that each one of these surfaces Σj
is connected, and Σj ∩ Σk = ∅ for j �= k (see, for instance, [5]).

Let us arrange the conductors Ωj
C
in such a way that the inner ones are numbered

from j = 1 to K, and those going through ∂Ω, from j = K + 1 to J . In Figure 4.1,
Ω1

C
is an example of a conductor of the first kind, and Ω2

C
of the second kind.
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Fig. 4.1. Sketch of the domain.

We also assume that there exist cross sections of Ωj
C
, j = 1 . . . J ; namely, open

surfaces Sj ⊂ ΩjC, with respective boundaries ∂Sj = Sj ∩ ΓI
, which are assumed to be

closed simple curves. We denote these curves γj . Moreover, for j = K + 1, . . . , J , we
take Sj ⊂ ΓC

and γj ⊂ ΓC
∩ Γ

D
(see Figure 4.1 again).

Let Ω̃j
D
:= ΩD \ Σj , j = 1 . . . J . We fix a unit normal nj on each Σj and denote

its two faces by Σ−
j and Σ

+
j , with nj being the “outer” normal to Ω̃

j
D
along Σ+

j . We

choose an orientation for each γj by taking its initial and end points on Σ
−
j and Σ

+
j ,

respectively. We denote by tj the unit vector tangent to γj .

For any function Ψ̃ ∈ H1(Ω̃
D
), we denote by

[[Ψ̃]]Σj
:= Ψ̃|Σ−

j
− Ψ̃|Σ+

j

the jump of Ψ̃ through Σj along nj . The gradient of Ψ̃ in D′(Ω̃D) can be extended

to L2(ΩD)
3 and will be denoted by gr̃ad Ψ̃.

Let Θ be the linear space of H1(Ω̃D) defined by

Θ =
{
Ψ̃ ∈ H1(Ω̃D) : [[Ψ̃]]Σj

= constant, j = 1, . . . , J
}
.

Then, for Ψ̃ ∈ H1(Ω̃D), we have that gr̃ad Ψ̃ ∈ H(curl,Ω
D) if and only if Ψ̃ ∈ Θ, in

which case curl (gr̃ad Ψ̃) = 0 (see Lemma 3.11 in [5]). Actually, the kernel of the
operator curl : H(curl,ΩD) −→ L2(ΩD)

3 is given by

Ker (curl) = gr̃adΘ = gradH1(Ω
D
)⊕ C,(4.1)
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where C is the space of the so-called Neumann harmonic fields in ΩD
defined by

C := {G ∈ L2(Ω
D
)3 : curl G = 0, div (µG) = 0 in Ω

D
, and µG · n = 0 on ∂Ω

D

}
.

A basis of the space C is given by the set of functions {gr̃ad Φ̃j , j = 1, . . . , J},
where, for each j, Φ̃j ∈ H1(Ω̃j

D
) is the solution of∫

Ω̃j
D

µgr̃ad Φ̃j · grad Ψ̄ = 0 ∀Ψ ∈ H1(Ω
D
),(4.2)

[[Φ̃j ]]Σj
= 1.(4.3)

By using the Lax–Milgram lemma, it is straightforward to see that Φ̃j is uniquely

defined in H1(Ω̃j
D
)/C. (See, for instance, [5] again.)

Therefore, according to (4.1), for all G ∈ V , there exist unique constants cj ,

j = 1, . . . , J , and a unique scalar field Ψ ∈ H1(ΩD)/C such that G|Ω
D
= gr̃ad Ψ̃, with

Ψ̃ ∈ Θ given by Ψ̃ = Ψ+∑J
j=1 cjΦ̃j . Furthermore, because of (4.3), the constants cj

are the jumps of Ψ̃ across the respective cuts Σj . Consequently, given Ψ̃ ∈ Θ, we have
that Ψ̃ ∈ H1(Ω) if and only if [[Ψ̃]]Σj

= 0 for j = 1, . . . , J .
Remark 4.1. These jumps have a precise physical meaning. For instance, for

the solution H of Problem MP, let us write H|Ω
D
= gr̃ad Φ̃ with Φ̃ ∈ Θ. If H is

sufficiently smooth, by using the Stokes theorem and (2.8) we have

[[Φ̃]]Σj
=

∫
γj

gr̃ad Φ̃ · tj dγ =

∫
γj

H|Ω
D
· tj dγ =

∫
γj

H|Ω
C
· tj dγ

=

∫
Sj

curl H|Ω
C
· n dΓ =

∫
Sj

J · n dΓ =: Ij , j = 1, . . . , J.

Thus, the jump of the magnetic potential Ψ̃ across each cut surface Σj is exactly
the current intensity Ij through the cross section Sj of the conductor Ω

j
C
(as defined

above).
We introduce the following notation: for G

C ∈ L2(ΩC)
3 and GD ∈ L2(ΩD)

3, we
denote by (G

C|GD) the field G ∈ L2(Ω)3 defined a.e. by

G(x) :=

{
G

C(x) if x ∈ Ω
C
,

GD
(x) if x ∈ Ω

D
.

Let us denote by W the linear space given by

W :=
{
(G, Ψ̃) ∈ H(curl,ΩC)× (Θ/C) : (G|gr̃ad Ψ̃) ∈ H(curl,Ω)

}
.

Clearly, the following application is an isomorphism:

W −→ V ,

(G, Ψ̃) �−→ (G|gr̃ad Ψ̃).

Similarly, we define the closed subspace of W

W0 :=
{
(G, Ψ̃) ∈W : gr̃ad Ψ̃× n = 0 in H

−1/2
00 (Γ

D
)3
}
,
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which is isomorphically equivalent to V0.
Thus, we are led to define the following problem.
Problem HP. Find (H, Φ̃) ∈W such that

gr̃ad Φ̃× n = f in H
−1/2
00 (Γ

D
)3,

iω

∫
Ω

C

µH · Ḡ+

∫
Ω

C

1

σ
curl H · curl Ḡ+ iω

∫
Ω

D

µgr̃ad Φ̃ · gr̃ad
¯̃
Ψ = 0

∀(G, Ψ̃) ∈W0.

This is the well-known magnetic field/magnetic potential hybrid formulation of
the eddy currents problem introduced by Bossavit and Vérité [13]. One main ad-
vantage with respect to formulation (3.2)–(3.3) lies in the fact that a vector field is
replaced by a scalar one in the dielectric domain.

The following lemma is an immediate consequence of the isomorphisms between
W and V , and between W0 and V0.

Lemma 4.1. The pair (H, Φ̃) is solution of ProblemHP if and only if (H|gr̃ad Φ̃)
is solution of Problem MP.

As a consequence of this lemma, Theorem 3.1 yields existence and uniqueness of
solution for Problem HP.

Corollary 4.2. Under the assumptions of Theorem 3.1, Problem HP has a
unique solution (H, Φ̃), with (H|gr̃ad Φ̃) being the unique solution of Problem MP.

5. Numerical solution. In this section we first introduce a discretization of
Problem MP and prove its convergence. Then we prove that the obtained discrete
problem is completely equivalent to a convenient discrete version of Problem HP.

5.1. Discretizing the magnetic field. We employ “edge” finite elements to
approximate the magnetic field, more precisely, the lowest-order finite element of the
family introduced by Nédélec in [26]. This element belongs to the family of the so-
called Whitney elements (see [9]).

We assume Ω, Ω
C
, and Ω

D are Lipschitz polyhedra and consider a family of regular
tetrahedral meshes {Th} of Ω such that, for every mesh Th, each element K ∈ Th is
contained either in Ω

C
or in Ω

D
. (h stands as usual for the corresponding mesh-size.)

The magnetic field is approximated in each tetrahedron K by a polynomial vector
field in the space

N (K) :=
{
Gh ∈ P1(K)

3 : Gh(x) = a× x+ b, a,b ∈ C
3, x ∈ K

}
.

An explicit computation shows that vector fields of this type have constant tangential
components along each straight line in the Euclidean space. Moreover, given six
complex numbers βn, n = 1, . . . , 6, there exists a unique Gh ∈ N (K) (i.e., unique
a,b ∈ C

3) such that its tangential component along the nth edge of K coincides
with βn for n = 1 . . . 6, respectively. Thus, these tangential components along the
edges of K can be taken as the degrees of freedom defining the elements in N (K).

These elements are H(curl)-conforming in the sense that, for all Gh ∈ N (K),
their tangential traces on each triangular face T of K depend only on the degrees of
freedom of Gh on the three edges of T . So, if we set

N h(Ω) := {Gh ∈ H(curl,Ω) : Gh|K ∈N (K) ∀K ∈ Th} ,
the elements in this space are piecewise linear vector fields with tangential traces
that are continuous through the faces of the mesh. This is the lowest-order Nédélec
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finite element space introduced in [26]. See [19] for a detailed mathematical analysis
and [11] for useful implementation issues.

If G is smooth enough (e.g., G ∈ H2(Ω)3), then its Nédélec interpolant GI is
defined by

GI ∈N h(Ω) :

∫
�

GI · t� dγ =
∫
�

G · t� dγ ∀� edge of Th,(5.1)

where, from now on, t� denotes a unit vector tangent to the edge �. The Nédélec
interpolation operator

H2(Ω)3 −→ N h(Ω),

G �−→ GI,
(5.2)

with GI defined by (5.1), extends uniquely to Hr(curl,Ω) with r > 1/2. Indeed,
according to the Sobolev imbedding theorem and a trace theorem, for each K ∈ Th,
G|K ∈ Lp(K)3, curl G|K ∈ Lp(K)3, andG× n|∂K ∈ Lp(∂K)3, with p = 4/(3−2r) >
2. Then, the result follows by applying Lemma 4.7 of [5].

However, the solution H of Problem MP does not satisfy, in general, curl H =
J ∈ Hr(Ω)3 with r > 1/2. In fact, J|Ω

D
= 0, whereas J|Ω

C
×n = ( 1

σE)|
Ω

C

×n in general

does not vanish on ΓI; thus, J×n has a jump across ΓI. (See, for instance, the problem
in section 7.) Nevertheless, typically H|Ω

C
∈ Hr(curl,Ω

C
) and H|Ω

D
∈ Hr(curl,Ω

D
)

with r > 1/2. This is enough for HI to be well defined as shown in the following
lemma, which also provides an error estimate for the Nédélec interpolant under these
assumptions. (Here and thereafter, C denotes a generic constant, not necessarily the
same at each occurrence, but always independent of the mesh-size h.)

Lemma 5.1. Let r ∈ ( 12 , 1]. The operator defined by (5.2)–(5.1) extends uniquely
to the space {G ∈ H(curl,Ω) : G|Ω

C
∈ Hr(curl,ΩC) and G|Ω

D
∈ Hr(curl,ΩD)}.

Furthermore, for all G in this space,

‖G−GI‖H(curl,Ω) ≤ Chr
[
‖G‖Hr(curl,Ω

C
) + ‖G‖Hr(curl,Ω

D
)

]
.

Proof. According to the discussion above, since G|Ω
C
∈ Hr(curl,Ω

C) and G|Ω
D
∈

Hr(curl,ΩD), with r > 1/2, the Nédélec interpolants of G|Ω
C
and G|Ω

D
are well

defined in N h(ΩC) and N h(ΩD), respectively. Moreover, since G ∈ H(curl,Ω), a
density argument shows that the degrees of freedom corresponding to the edges � ⊂ ΓI

coincide for both interpolants. Thus the global interpolantGI ∈N h(Ω) is well defined
also in this case.

On the other hand, the arguments in the proof of Theorem 5.4 in [19] can be
extended to this case to prove the error estimate above.

In order to use these elements to discretize Problem MP, we have to use an
approximant f

I
of the boundary data f such that a discrete version of (3.2) can hold

true, namely, such that there exists Hh ∈N h(Ω) satisfying Hh × n = f
I
.

To attain this goal, we will use the two-dimensional Nédélec interpolant of n× f
on the triangular mesh induced by Th on the polyhedral surface ΓD

. To introduce this

interpolant, let T Γ
D

h := {T ⊂ ΓD : T face of K ∈ Th}. For each triangle T ∈ T Γ
D

h ,
consider local orthogonal coordinates (ξ, η, ζ) such that T is contained in the plane
ζ = 0. Let

N 2(T ) :=
{
ϕh ∈ P1(T )

3 : ϕh(ξ, η, 0) = (a− cη, b+ cξ, 0), a, b, c ∈ C, (ξ, η, 0) ∈ T
}
.
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This is the lowest-order two-dimensional Nédélec finite element (see [26]) on the plane
ζ = 0. The tangential components of these vector fields along the three edges of the
triangle T can also be taken as the degrees of freedom defining them. Therefore, we
define

N 2
h(ΓD) :=

{
ϕh ∈ L2(ΓD)

3 : ϕh|T ∈N 2(T ) ∀T ∈ T Γ
D

h

and ϕh · t� is continuous on � ∀� edge of T Γ
D

h

}
.

Let ϕ be a tangential vector field on Γ
D (i.e., satisfying ϕ · n = 0 on ΓD). If ϕ is

sufficiently smooth (e.g., ϕ ∈ H1(ΓD)
3), then its Nédélec interpolant on ΓD, which we

denote by ϕI2 , is defined by

ϕI2 ∈N 2
h(ΓD) :

∫
�

ϕI2 · t� dγ =
∫
�

ϕ · t� dγ ∀� edge of T Γ
D

h .(5.3)

If G is smooth enough in Ω
D (e.g., G ∈ H2(ΩD)

3), then its tangential trace on ΓD,
n× (G|Γ

D
× n), is smooth too and satisfies

[
n×

(
G|Γ

D
× n

)]I2
= n×

(
GI|Γ

D
× n

)
on ΓD.(5.4)

Indeed, a straightforward computation shows that the right-hand side above also
belongs to N 2

h(ΓD
). On the other hand, (5.1) implies∫

�

n×
(
GI|Γ

D
× n

)
· t� dγ =

∫
�

GI · t� dγ =
∫
�

G · t� dγ

=

∫
�

n×
(
G|Γ

D
× n

)
· t� dγ ∀� edge of T Γ

D

h .

Thus, the degrees of freedom defining both sides of (5.4) coincide and, consequently,
(5.4) holds true.

The following lemma shows that a similar result is valid for G ∈ Hr(curl,Ω
D
).

Lemma 5.2. Let r ∈ ( 12 , 1]. The linear operator
H2(Ω

D)
3 −→ N 2

h(ΓD
),

G �−→ [
n× (G|Γ

D
× n)

]I2
,

(5.5)

with ( · )I2 defined by (5.3), extends uniquely to Hr(curl,ΩD). Furthermore, (5.4)
holds true for all G in this space.

Proof. As said above, ifG ∈ H2(ΩD)
3, then

[
n×(G|Γ

D
×n)

]I2 ∈N 2
h(ΓD) is defined

by ∫
�

[
n×

(
G|Γ

D
× n

)]I2 · t� dγ =
∫
�

G · t� dγ ∀� edge of T Γ
D

h .

Then, by repeating the arguments in the proof of Lemma 5.1 (i.e., using the Sobolev
imbedding theorem and Lemma 4.7 of [5]) we prove that the operator defined by
(5.5) and (5.3) extends uniquely to Hr(curl,ΩD) for r > 1/2.

Furthermore, we have also shown above that, for G ∈ H2(ΩD),∫
�

[
n×

(
G|Γ

D
× n

)]I2 · t� dγ =
∫
�

G · t� dγ

=

∫
�

n×
(
GI|Γ

D
× n

)
· t� dγ ∀� edge of T Γ

D

h .
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Then, a density argument and the fact that n × (GI|Γ
D
× n) ∈ N 2

h(ΓD
) allow us to

conclude that (5.4) holds true for all G ∈ Hr(curl,Ω
D
).

If the data f of Problem MP are sufficiently smooth, we define

f
I
:= (n× f)I2 × n;(5.6)

that is, f
I
is such that n× f

I
= (n× f)I2 , which means

n× f
I
∈N 2

h(ΓD) :

∫
�

n× f
I
· t� dγ =

∫
�

n× f · t� dγ ∀� edge of T Γ
D

h .

The following lemma shows that this definition also works under the same weak
smoothness assumptions of the previous lemmas.

Lemma 5.3. Let G ∈ Hr(curl,ΩD), with r > 1/2, and let g = G|Γ
D
× n. Then

g
I
:= (n× g)I2 × n is well defined and satisfies

n× g
I
= n× (GI|Γ

D
× n) on ΓD.

Proof. As a consequence of Lemma 5.2, (n × g)I2 =
[
n × (G|Γ

D
× n)

]I2
is well

defined. Hence g
I
:= (n × g)I2 × n is well defined, too. Moreover, according to this

lemma, (5.4) holds true for G ∈ Hr(curl,ΩD); thus,

n× g
I
= (n× g)I2 =

[
n× (G|Γ

D
× n)

]I2
= n× (GI|Γ

D
× n) on Γ

D
.

Now we are in a position to discretize Problem MP. We introduce the following
finite-dimensional spaces:

Vh := {Gh ∈N h(Ω) : curl Gh = 0 in ΩD} ,
V0
h := {Gh ∈ Vh : Gh × n = 0 on Γ

D
} .

Finally, we define the discrete magnetic problem as follows.
Problem DMP. Find Hh ∈ Vh such that

Hh × n = f
I
on Γ

D
,

iω

∫
Ω

µHh · Ḡh +

∫
Ω

C

1

σ
curl Hh · curl Ḡh = 0 ∀Gh ∈ V0

h.

It is straightforward to prove existence and uniqueness of solution for this problem
under mild smoothness assumptions on the solution of Problem MP. Moreover, an
error estimate can be deduced from the standard finite element approximation theory.

Theorem 5.4. Let us assume that the solution H of Problem MP satisfies
H|Ω

C
∈ Hr(curl,ΩC) and H|Ω

D
∈ Hr(ΩD)

3, with r ∈ ( 12 , 1]. Then, f
I
is well defined

by (5.6), Problem DMP attains a unique solution Hh, and

‖H−Hh‖H(curl,Ω) ≤ Chr
[
‖H‖Hr(curl,Ω

C
) + ‖H‖Hr(Ω

D
)3

]
.

Proof. Since H ∈ V , curl H = 0 in Ω
D. Hence, H|Ω

D
∈ Hr(curl,ΩD). Therefore,

according to Lemma 5.1, its Nédélec interpolant HI ∈ N h(Ω) is well defined and
satisfies

‖H−HI‖H(curl,Ω) ≤ Chr
[
‖H‖Hr(curl,Ω

C
) + ‖H‖Hr(Ω

D
)3

]
.(5.7)
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Moreover, the arguments of Remark 5.6 in [19] can be extended to this case to prove
that curl H|Ω

D
= 0 implies that curl HI|Ω

D
= 0. Therefore, HI ∈ Vh.

On the other hand, because of Lemma 5.3, f
I
is well defined by (5.6) and satisfies

f
I
= HI|Γ

D
× n on ΓD. Thus, we have proved that there exists HI ∈ Vh such that

HI×n = f
I
on Γ

D
. Hence, since V0

h ⊂ V0, the arguments in the proof of Theorem 3.1
also apply to Problem DMP, allowing us to prove existence and uniqueness of a
solution Hh of this problem.

Finally, to prove the error estimate, notice that since V0
h ⊂ V0,

a(H−Hh,Gh) = 0 ∀Gh ∈ V0
h.

Hence, since Hh × n = f
I
= HI × n on ΓD, Hh −HI ∈ V0

h. Therefore, because of this
and (3.4),

α‖H−Hh‖2H(curl,Ω) ≤ |a(H−Hh,H−Hh)| =
∣∣a(H−Hh,H−HI)

∣∣
≤ C‖H−Hh‖H(curl,Ω)

∥∥H−HI
∥∥

H(curl,Ω)
,

which together with estimate (5.7) allow us to conclude the proof.

5.2. Discretizing the magnetic potential. Problem DMP is actually just
a “theoretical” method in that its solution requires to impose somehow the curl-free
condition in the definition of Vh to trial and test functions. In what follows we
show how to deal efficiently with this curl-free condition by introducing a discrete
multivalued magnetic potential in the dielectric domain.

We assume that the cut surfaces Σj are polyhedral and that the meshes are
compatible with them, in the sense that each Σj is a union of faces of tetrahedra

K ∈ Th for each mesh Th. Therefore, T Ω
D

h := {K ∈ Th : K ⊂ Ω
D
} can also be seen

as a mesh of Ω̃D
.

First, we introduce an approximation of the space Θ. Let us denote

Lh(Ω̃D
) :=

{
Ψ̃h ∈ H1(Ω̃

D
) : Ψ̃h|K ∈ P1(K) ∀K ∈ T Ω

D

h

}
.

Then, we consider the family of finite-dimensional subspaces of Θ given by

Θh := {Ψ̃h ∈ Lh(Ω̃D
) : [[Ψ̃h]]Σj

= constant, j = 1, . . . , J}.

The following lemma shows that the curl-free vector fields in N h(ΩD) admit a
multivalued potential in Θh.

Lemma 5.5. Let Gh ∈ L2(ΩD)
3. Then Gh ∈N h(ΩD) with curl Gh = 0 in ΩD if

and only if there exists Ψ̃h ∈ Θh such that Gh = gr̃ad Ψ̃h in ΩD. Such Ψ̃h is unique
up to an additive constant.

Proof. According to (4.1), curl Gh = 0 in ΩD if and only if there exists Ψ̃h ∈ Θ
such that Gh = gr̃ad Ψ̃h in Ω̃D. Moreover, since Ω̃D is connected, Ψ̃h is unique up

to an additive constant. Now, let K ∈ T Ω
D

h be a tetrahedron of the mesh. A direct
calculation shows that Gh ∈ N (K) with curl Gh|K = 0 if and only if Gh|K ∈
P0(K)

3, or, equivalently, if and only if Ψ̃h|K ∈ P1(K)
3. Thus the lemma follows from

the definition of Θh.
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Let us introduce the following families of finite-dimensional approximations of
W and W0, respectively:

Wh :=
{
(Gh, Ψ̃h) ∈N h(ΩC)× (Θh/C) : (Gh|gr̃ad Ψ̃h) ∈ H(curl,Ω)

}
,

W0
h :=

{
(Gh, Ψ̃h) ∈Wh : gr̃ad Ψ̃h × n = 0 on Γ

D

}
.

By virtue of Lemma 5.5, Wh and W0
h are isomorphically equivalent to Vh and V0

h,
respectively. Thus, we define the following discrete problem which turns out to be
equivalent to Problem DMP.

Problem DHP. Find (Hh, Φ̃h) ∈Wh such that

gr̃ad Φ̃h × n = f
I
on ΓD,(5.8)

iω

∫
Ω

C

µHh · Ḡh +

∫
Ω

C

1

σ
curl Hh · curl Ḡh(5.9)

+ iω

∫
Ω

D

µgr̃ad Φ̃h · gr̃ad
¯̃
Ψh = 0 ∀(Gh, Ψ̃h) ∈W0

h.

Clearly, the following discrete analogue of Lemma 4.1 holds true.
Lemma 5.6. The pair (Hh, Φ̃h) is a solution of Problem DHP if and only if

(Hh|gr̃ad Φ̃h) is a solution of Problem DMP.
As an immediate consequence of these two lemmas, Theorem 5.4 yields an error

estimate for the approximation obtained from Problem DHP.
Corollary 5.7. Let us assume that the solution (H, Φ̃) of Problem HP satisfies

H ∈ Hr(curl,Ω
C
) and gr̃ad Φ̃ ∈ Hr(Ω

D
)3, with r ∈ ( 12 , 1]. Then, Problem DHP is

well posed, it attains a unique solution (Hh, Φ̃h), and

‖H−Hh‖H(curl,Ω
C
) + ‖gr̃ad Φ̃− gr̃ad Φ̃h‖L2(Ω

D
)3

≤ Chr
[
‖H‖Hr(curl,Ω

C
) + ‖gr̃ad Φ̃‖Hr(Ω

D
)3

]
.

6. Computer implementation. For Problem DHP to be useful for compu-
tational purposes, we have to introduce effective procedures to impose the following
constraints:

1. (Gh|gr̃ad Ψ̃h) ∈ H(curl,Ω), which arises in the definition of Wh;

2. [[Ψ̃h]]Σj
= constant, which arises in the definition of Θh;

3. the boundary condition gr̃ad Φ̃h × n = f
I
on ΓD.

We fix some notation to deal with these constraints. We choose an orientation
for each edge � of the mesh Th and denote P−

� and P+
� its initial and end points,

respectively, and t� its unit tangent vector pointing from P−
� to P+

� .
Regarding the first constraint we have the following result.
Lemma 6.1. Let (Gh, Ψ̃h) ∈ N h(ΩC) × (Θh/C). Then, (Gh, |gr̃ad Ψ̃h) ∈

H(curl,Ω) if and only if∫
�

Gh · t� dγ = Ψ̃h(P+
� )− Ψ̃h(P−

� ) ∀� edge of Th : � ⊂ ΓI.

Proof. SinceGh ∈N h(ΩC) and gr̃ad Ψ̃h ∈N h(ΩD), (Gh|gr̃ad Ψ̃h) ∈ H(curl,Ω)

if and only if the tangential traces on ΓI
of Gh and gr̃ad Ψ̃h coincide; that is, if and
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only if

n× (Gh × n) = n×
(

gr̃ad Ψ̃h × n
)

on ΓI.

Now, the equation above holds true if and only if the degrees of freedom of Gh and
gr̃ad Ψ̃h coincide on all the edges � ⊂ ΓI, and this reads as∫

�

Gh · t� dγ =
∫
�

gr̃ad Ψ̃h · t� dγ = Ψ̃h(P+
� )− Ψ̃h(P−

� ).

This lemma shows that the constraint (Gh|gr̃ad Ψ̃h) ∈ H(curl,Ω) can be readily
imposed by eliminating the degrees of freedom of Gh associated with the edges � ⊂ ΓI,

in terms of those of Φ̃h corresponding to the vertices of the mesh on this interface.

Regarding the second constraint, for Ψ̃h ∈ Θh, let us denote

chj := [[Ψ̃h]]Σj
, j = 1, . . . , J.

In order to handle the multivalued character of the functions Ψ̃h ∈ Θh, for each cut
surface Σj , we in principle distinguish the degrees of freedom of Ψ̃h on Σ

+
j from those

on Σ−
j . Then, the latter can be eliminated by using

Ψ̃h|Σ−
j
= Ψ̃h|Σ+

j
+ [[Ψ̃h]]Σj

= Ψ̃h|Σ+
j
+ chj , j = 1, . . . , J.

This elimination must be carried out for the solution (Hh, Φ̃h) ∈ Wh of Prob-

lem DHP as well as for the test functions (Gh, Ψ̃h) ∈W0
h. For the former, the argu-

ments in Remark 4.1 can be repeated at discrete level to show that each jump [[Φ̃h]]Σj

represents the current intensity through the conductor Ωj
C
corresponding to the dis-

crete solution (Hh, Φ̃h). Because of this, we denote these jumps

Ihj := [[Φ̃h]]Σj
, j = 1, . . . , J.

For j = 1, . . . ,K (i.e., for inner conductors Ωj
C
), Ihj are additional unknowns of

the discrete problem. Instead, for j = K + 1, . . . , J (i.e., for conductors Ωj
C
going

through ∂Ω), Ihj can be computed in advance from the data of the discrete problem.

Indeed, since γj ⊂ ΓD and gr̃ad Φ̃h × n = f
I
on ΓD,

Ihj =

∫
γj

gr̃ad Φ̃h · tj dγ =

∫
γj

n×
(

gr̃ad Φ̃h × n
)
· tj dγ =

∫
γj

n× f
I
· tj dγ .(6.1)

For the test functions (Gh, Ψ̃h) ∈W0
h, by repeating these arguments and using

that gr̃ad Ψ̃h × n = 0 on ΓD, we have

chj =

∫
γj

n×
(

gr̃ad Ψ̃h × n
)
· tj dγ = 0, j = K + 1, . . . , J.(6.2)

Hence, only the constants chj , for j = 1, . . . ,K, must be taken into account as genuine
degrees of freedom in the definition of W0

h.
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Remark 6.1. The computed and exact intensities through the conductors Ωj
C
,

j = K + 1, . . . , J , coincide. Indeed, because of (6.1), Lemma 5.3, (5.1), the fact that
each γj is union of edges � in Th, and Remark 4.1, we have

Ihj =

∫
γj

n× f
I
· tj dγ =

∫
γj

n×
[
(gr̃ad Φ̃)I|Γ

D
× n

]
· tj dγ

=

∫
γj

(gr̃ad Φ̃)I · tj dγ =

∫
γj

gr̃ad Φ̃ · tj dγ = [[Φ̃]]Σj
= Ij .

Regarding the third constraint, we impose the boundary condition by means of
a Lagrange multiplier. Let Γ̃D be the pseudo-Lipschitz connected polyhedral surface
defined by

Γ̃D := ΓD \
J⋃

j=K+1

(
Σj ∩ ΓD

)
.

Let

Lh(Γ̃D) :=
{
νh ∈ H1(Γ̃D) : νh|T ∈ P1(T ) ∀T ∈ T Γ

D

h

}
,

Lh(ΓD
) :=

{
νh ∈ H1(Γ

D
) : νh|T ∈ P1(T ) ∀T ∈ T Γ

D

h

}
.

Hence, given νh ∈ Lh(Γ̃D
), we have that νh ∈ Lh(ΓD

) if and only if [[νh]]Σj∩Γ
D
= 0 for

j = K + 1, . . . , J .
Let gr̃ad Γ denote the surface gradient operator. Since we will use this operator

acting only on piecewise linear functions, we give a definition valid in this case (for
its general definition on polyhedral surfaces, see [14, 15]):

gr̃ad Γ : Lh(Γ̃D) −→ L2
t(ΓD)

3 :=
{
ϕ ∈ L2(ΓD)

3 : ϕ · n = 0 on ΓD

}
is defined, on each element T ∈ T Γ

D

h , by (gr̃ad Γ νh)|T = ∇2(νh|T ), where ∇2 is the
usual gradient of a function of two variables; i.e., using local coordinates (ξ, η, ζ) such
that T is in the plane ζ = 0,

(gr̃ad Γ νh)|T :=
(
∂(νh|T )

∂ξ
,
∂(νh|T )

∂η
, 0

)
.

For all Ψ̃h ∈ Lh(Ω̃D), we have Ψ̃h|Γ
D
∈ Lh(Γ̃D), and it is straightforward to show

that

gr̃ad Γ (Ψ̃h|Γ̃
D

) = n×
[
(gr̃ad Ψ̃h)|Γ

D
× n

]
a.e. in ΓD.(6.3)

The following lemma provides a weak formulation of the boundary condition (5.8)
in Problem DHP.

Lemma 6.2. Let Ψ̃ ∈ Θ be such that gr̃ad Ψ̃ ∈ Hr(ΩD) with r > 1/2. Let

g = gr̃ad Ψ̃|Γ
D
× n and g

I
= (n× g)I2 × n (well defined because of Lemma 5.3). Let

Ψ̃h ∈ Θh be such that

[[Ψ̃h]]Σj
=

∫
γj

n× g
I
· tj dγ , j = K + 1, . . . , J.(6.4)
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Then, gr̃ad Ψ̃h × n = g
I
on Γ

D
if and only if∫

Γ
D

gr̃ad Γ Ψ̃h · gradΓ ν̄h dΓ =

∫
Γ
D

n× g
I
· gradΓ ν̄h dΓ ∀νh ∈ Lh(ΓD

)/C.(6.5)

Proof. If gr̃ad Ψ̃h × n = g
I
on ΓD, then, because of (6.3), we have (6.5).

Conversely, let us assume that (6.5) holds true. Since Ψ̃ ∈ H1+r(Ω̃D)/C with

r > 1/2, its Lagrange interpolant Ψ̃L ∈ Lh(Ω̃D)/C is well defined. Given a cut surface

Σj , j = 1, . . . , J , for all the vertices P of Th such that P ∈ Σj , we have [[Ψ̃L(P )]]Σj
=

[[Ψ̃(P )]]Σj
= constant (the same for all such P ). Then [[Ψ̃L]]Σj

= constant, and hence

Ψ̃L ∈ Θh/C. Thus, because of Lemma 5.5, gr̃ad Ψ̃L ∈N h(ΩD).

On the other hand, let (gr̃ad Ψ̃)I ∈ N h(ΩD) be the Nédélec interpolant of

gr̃ad Ψ̃. We have
∫
�
(gr̃ad Ψ̃)I · t� dγ =

∫
�

gr̃ad Ψ̃L · t� dγ for all edges � of T Ω
D

h .

Indeed, if gr̃ad Ψ̃ were smooth (e.g., gr̃ad Ψ̃ ∈ H2(Ω
D
)3), then∫

�

(gr̃ad Ψ̃)I · t� dγ =
∫
�

gr̃ad Ψ̃ · t� dγ = Ψ̃(P+
� )− Ψ̃(P−

� )

= Ψ̃L(P+
� )− Ψ̃L(P−

� ) =

∫
�

gr̃ad Ψ̃L · t� dγ .

Hence, because of a density argument, this is also true for gr̃ad Ψ̃ ∈ Hr(curl,ΩD)
3.

Therefore, since we have shown that gr̃ad Ψ̃L ∈ N h(ΩD) and that its degrees of

freedom coincide with those of (gr̃ad Ψ̃)I for all edges � of T Ω
D

h , we have

(gr̃ad Ψ̃)I = gr̃ad Ψ̃L in ΩD.(6.6)

Consequently,

[[Ψ̃L]]Σj
=

∫
γj

gr̃ad Ψ̃L · tj dγ =

∫
γj

(gr̃ad Ψ̃)I · tj dγ

=

∫
γj

n×
[
(gr̃ad Ψ̃)I|Γ

D
× n

]
· tj dγ =

∫
γj

n× g
I
· tj dγ , j = K + 1, . . . , J,

the last equality because of Lemma 5.3.
Let νh := (Ψ̃h − Ψ̃L)|

Γ̃
D

∈ Lh(Γ̃D)/C. Because of the equation above and (6.4),

we have

[[νh]]Σj∩Γ
D
= [[Ψ̃h]]Σj

− [[Ψ̃L]]Σj
= 0, j = K + 1, . . . , J.

Then, νh ∈ Lh(ΓD)/C, and, because of (6.3), (6.6), and Lemma 5.3, we have

gradΓ νh = gr̃ad Γ (Ψ̃h|Γ̃
D

)− n×
[
(gr̃ad Ψ̃L)|Γ

D
× n

]
= gr̃ad Γ (Ψ̃h|Γ̃

D

)− n× g
I
.

Thus, using this νh in (6.5), we obtain

gr̃ad Γ (Ψ̃h|Γ̃
D

)− n× g
I
= 0.

Hence, by using again (6.3), we conclude the proof.
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Now we are in a position to set a new discrete problem including the three con-
straints as we have just described. To this end, we introduce the following discrete
spaces:

Zh :=

{
(Gh, Ψ̃h, ch) ∈N h(ΩC)× (Θh/C)× C

J : [[Ψ̃h]]Σj
= chj , j = 1, . . . , J,

and

∫
�

Gh · t� dγ = Ψ̃h(P+
� )− Ψ̃h(P−

� ) ∀� edge Th : � ⊂ Γ
I

}
,

Z0
h :=

{
(Gh, Ψ̃h, ch) ∈ Zh : chj = 0, j = K + 1, . . . , J

}
.

The new discrete problem, which will be shown to be equivalent to Problem DHP in
the next theorem, is the following one.

Problem DLP. Find (Hh, Φ̃h, Ih) ∈ Zh and λh ∈ Lh(ΓD
)/C such that

Ihj =

∫
γj

(n× f
I
) · tj dγ , j = K + 1, . . . , J,(6.7)

iω

∫
Ω

C

µHh · Ḡh +

∫
Ω

C

1

σ
curl Hh · curl Ḡh + iω

∫
Ω

D

µgr̃ad Φ̃h · gr̃ad
¯̃
Ψh(6.8)

+

∫
Γ
D

gradΓ λh · gr̃ad Γ
¯̃
Ψh dΓ = 0 ∀(Gh, Ψ̃h, ch) ∈ Z0

h,∫
Γ
D

gr̃ad Γ Φ̃h · gradΓ ν̄h dΓ =

∫
Γ
D

(n× f
I
) · gradΓ ν̄h dΓ ∀νh ∈ Lh(ΓD

)/C.(6.9)

First we prove that Problem DLP is well posed.
Theorem 6.3. Let f

I
be any vector field defined on Γ

D
, such that the integrals in

the right-hand sides of (6.7) and (6.9) are well defined. Then, Problem DLP attains
a unique solution.

Proof. Problem DLP reduces to a linear system with the same number of equa-
tions and unknowns. Then, it is enough to prove that, for f

I
= 0, this problem attains

only the null solution. So let (Hh, Φ̃h, Ih) ∈ Zh, and λh ∈ Lh(ΓD)/C satisfying
(6.7)–(6.9) with f

I
= 0.

Equation (6.7) implies that Ihj = 0 for j = K+1, . . . , J ; hence, (Hh, Φ̃h, Ih) ∈ Z0
h,

and [[Φ̃h]]Σj
= Ihj = 0, too. Thus, if we define νh := Φ̃h|Γ̃

D

∈ Lh(Γ̃D)/C, we have

[[νh]]Σj∩Γ
D
= 0 for j = K + 1, . . . , J , and, then, νh ∈ Lh(ΓD)/C.

Now, by testing (6.9) with this νh, we obtain gr̃ad Γ (Φ̃h|Γ
D
) = 0. Hence, by

testing (6.8) with (Hh, Φ̃h, Ih) (which was already shown to belong to Z0
h), we obtain

iω

∫
Ω

C

µ|Hh|2 +
∫

Ω
C

1

σ
| curl Hh|2 + iω

∫
Ω

D

µ|gr̃ad Φ̃h|2 = 0.

Hence, Hh = 0 in ΩC, and gr̃ad Φ̃h = 0 in ΩD. Consequently, Φ̃h = 0 in Lh(Ω̃D)/C,

and Ihj = [[Φ̃h]]Σj
= 0 for j = 1, . . . ,K, too.

Thus, it remains only to prove that λh = 0. To do this, first let us show that
there exists (Gh, Ψ̃h, ch) ∈ Z0

h satisfying Ψ̃h|Γ
D
= λh. Indeed, let Ψ̃h ∈ Lh(Ω̃D

)/C be

the unique function in this space satisfying for each vertex P of T Ω
D

h ,

Ψ̃h(P ) = λh(P ) if P ∈ Γ
D
,

Ψ̃h(P ) = 0 if P /∈ ΓD.
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Let chj = [[Ψ̃h]]Σj
, j = 1, . . . , J . Because of the definition of Ψ̃h, clearly ch = 0. Then

Ψ̃h ∈ Θh. Finally, let Gh ∈ N h(ΩC) be the unique function in this space satisfying
for each edge � of Th such that � ⊂ ΩC

,

∫
�

Gh · t� dγ = Ψ̃h(P+
� )− Ψ̃h(P−

� ) if � ⊂ ΓI,∫
�

Gh · t� dγ = 0 if � �⊂ ΓI.

Therefore, (Gh, Ψ̃h, ch) ∈ Z0
h, and Ψ̃h|Γ

D
= λh. Now, by testing (6.8) with this

(Gh, Ψ̃h, ch), since we already know that Hh = 0 in Ω
C
and that gr̃ad Φ̃h = 0 in ΩD

,
we obtain ∫

Γ
D

|gr̃ad Γ λh|2 dΓ = 0.

Then, λh = 0 in Lh(ΓD
)/C, and we conclude the proof.

Now it is very simple to show that Problems DHP and DLP are equivalent.

Theorem 6.4. Let us assume that the solution (H, Φ̃) of Problem HP satisfies

H ∈ Hr(curl,Ω
C
) and gr̃ad Φ̃ ∈ Hr(Ω

D
)3, with r ∈ ( 12 , 1].

If ((Hh, Φ̃h, Ih), λh) is a solution of Problem DLP, then (Hh, Φ̃h) is a solution
of Problem DHP.

Conversely, if (Hh, Φ̃h) is a solution of Problem DHP, and Ihj = [[Φ̃h]]Σj
, j =

1, . . . , J , then there exists λh ∈ Lh(ΓD)/C such that ((Hh, Φ̃h, Ih), λh) is a solution of
Problem DLP.

Proof. Let ((Hh, Φ̃h, Ih), λh) be a solution of ProblemDLP. Since (Hh, Φ̃h, Ih) ∈
Zh, (Hh, Φ̃h) ∈ Wh (because of Lemma 6.1), and Ihj = [[Φ̃h]]Σj

, j = 1, . . . , J .

Therefore, because of (6.7), Φ̃h satisfies assumption (6.4) in Lemma 6.2. Then, (6.9)
implies (5.8).

On the other hand, let (Gh, Ψ̃h) ∈W0
h and chj = [[Ψ̃h]]Σj

, j = 1, . . . , J . Because

of Lemma 6.1 and (6.2), (Gh, Ψ̃h, ch) ∈ Z0
h. Since gr̃ad Ψ̃h×n = 0 on ΓD, because of

(6.3) we have gr̃ad Γ (Ψ̃h|Γ
D
) = 0. Therefore, by testing (6.8) with such (Gh, Ψ̃h, ch),

we obtain (5.9). Thus, (Hh, Φ̃h) is a solution of Problem DHP.

Conversely, let (Hh, Φ̃h) be a solution of Problem DHP. Since the assumptions
of Corollary 5.7 are fulfilled, this solution is unique. On the other hand, Theorem 6.3
shows that there also exists a unique solution ((H′

h, Φ̃
′
h, Ih), λh) of ProblemDLP. But

then we have already proved that (H′
h, Φ̃

′
h) is a solution of Problem DHP. Hence,

(H′
h, Φ̃

′
h) = (Hh, Φ̃h), and we conclude the proof.

Problem DLP is the one that we have actually implemented. The degrees of
freedom for this problem are the following ones:

• for Hh ∈N h(ΩC):
∫
�
Hh · t� dγ , for all edge � ⊂ ΩC \ ΓI;

• for Φ̃h ∈ Lh(Ω̃D)/C: Φ̃h(P ), for all vertices P ∈ ΩD (one of them set to zero);
• for Ih ∈ C

J : Ihj , j = 1, . . . , J (IhK+1, . . . , IhJ are directly computed from f);
• for λh ∈ Lh(ΓD)/C: λh(P ), for all vertices P ∈ ΓD (one of them set to zero).

Remark 6.2. We have imposed the boundary condition of Problem DHP by
means of a Lagrange multiplier. However, this is not the only way of doing it. An
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alternative procedure consists of using the fact that, for each edge � ⊂ ΓD
,

Φ̃h(P
+
� )− Φ̃h(P−

� ) =

∫
�

gr̃ad Φ̃h · t� dγ =
∫
�

n×
(

gr̃ad Φ̃h × n
)
· t� dγ

=

∫
�

n× f
I
· t� dγ =

∫
�

n× f · t� dγ .

Therefore, the values of Φ̃h(P ) can be obtained for each vertex P ∈ Γ
D
by the following

procedure:
1. Fix arbitrarily the value of Φ̃h at a given vertex P0 ∈ ΓD:

Φ̃h(P0) = 0

(this can be done because Φ̃h ∈ Θh/C).
2. For each other vertex P ∈ ΓD (those on ΓD ∩ Σj , j = K + 1, . . . , J , must be
counted twice),
(a) find a path ΓP joining P0 with P , which does not cross any Σj ∩ ΓD,

j = K+1, . . . , J , and which consists of adequately oriented edges � ⊂ Γ
D:

ΓP := ±�1 ∪ · · · ∪ ±�NP
;

(b) evaluate

Φ̃h(P ) = ±
∫
�1

n× f · t�1 dγ ± . . .±
∫
�NP

n× f · t�NP
.

The main drawback of this procedure is that step 2(a) is rather complicated to im-
plement (see [11]). The strategy we have proposed is more expensive than this one
in terms of degrees of freedom (one unknown per vertex on Γ

D is added, instead of
being eliminated). Nevertheless, one neat advantage is that its implementation is
quite straightforward.

7. Numerical experiments. In this section we present some numerical results
obtained with a code developed by us, which implements in Matlab the method
described above.

We have solved a particular problem with a known analytical solution to validate
the computer code and to test the performance and convergence properties of the
method. The geometry of the domain is similar to that of an electric furnace with
only one electrode.

More precisely, we consider a domain Ω containing a conductor Ω
C and dielec-

tric Ω
D, as shown in Figure 7.1.

We assume that ΩC and Ω = ΩC ∪ ΩD are coaxial cylinders of radius RC and RD,
respectively, with height L. To obtain the data for a test problem in this domain
with a known analytical solution, we consider that ΩC and Ω are bounded sections of
respective infinite cylinders. The electric conductivity σ is taken as a constant in ΩC

,
and the magnetic permeability µ is constant in the whole Ω. We consider that an
alternating current J goes through the conductor Ω

C in the direction of its axis; this
current is assumed to be axially symmetric with an intensity I(t) = I0 cos(ωt).

We analyze this problem using a cylindrical coordinate system (r, θ, z) with the
z-axis coinciding with the common axis of both cylinders (see Figure 7.1). We denote
er, eθ, and ez the unit vectors in the corresponding coordinate directions.
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Fig. 7.1. Sketch of the domain. Coordinate system.

Because of the assumed conditions on J, only the z-component of the electric
field E = 1

σJ does not vanish in the conductor. Moreover, it depends on the radial
coordinate r, but it is independent of the other two coordinates z and θ. Consequently,
only the θ-component of the magnetic field H = i

ωµ curl E does not vanish, and it
also depends only on the coordinate r. Then, taking into account the expression of
the curl operator in cylindrical coordinates, we have H(r, θ, z) = Hθ(r)eθ, with Hθ

satisfying the equation

iωµHθ(r)− d

dr

{
1

σr

d

dr
[rHθ(r)]

}
= 0, r ∈ (0, RC),

and the boundary conditions

|Hθ(0)| <∞, Hθ(RC) =
I0
2πR

C

.

To solve this problem, we perform the change of variable x = γr, where γ =√
iωµσ ∈ C. Then, we obtain the equation

x2 d2

dx2
H̃θ(x) + x

d

dx
H̃θ(x)− (x2 + 1)H̃θ(x) = 0, x ∈ (0, γR

C
),

where H̃θ(x) = Hθ(x/γ).

This is a Bessel equation, the solution of which is given by H̃θ(x) = αI1(x), with I1
being the modified Bessel function of the first kind, and α is a constant to be obtained
from the boundary condition at x = γR

C. Thus, the magnetic field in the conductor
is given by

H(r, θ, z) =
I0
2πRC

I1(γr)

I1(γRC)
eθ, r ∈ (0, R

C
), θ ∈ [0, 2π], z ∈ R.
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O 

X 

Y 

Z 

Fig. 7.2. Coarsest mesh on the conductor domain.

O 

X 

Y 

Z 

Fig. 7.3. Coarsest mesh on the dielectric domain.

On the other hand, the magnetic field created by an infinite circular cylindrical
conductor of radius R

C carrying an axially aligned and symmetric current of inten-
sity I0 is computed using Ampère’s circuital law (see, for instance, [27]). In cylindrical
coordinates it is given by H(r, θ, z) = Hθ(r)eθ, with

Hθ(r) =
I0
2πr

, r ≥ R
C.

Once more, the magnitude of Hθ depends only on the radial coordinate r.
Moreover, from this expression, it is also possible to know the multivalued mag-

netic potential Φ̃, which corresponds to the magnetic field in the dielectric domain.
Indeed, taking into account the expression of the gradient operator in cylindrical
coordinates, we obtain

Φ̃(r, θ, z) =
I0
2π

θ, r > RC, θ ∈ [0, 2π], z ∈ R.

Notice that the scalar potential depends only on the variable θ and experiences a
jump of magnitude I0 across the cut surface Σ placed at θ = 0.

Now, we again consider the bounded cylinder of Figure 7.1. The boundary con-
ditions added to define properly this problem are the following:

• On the exterior boundary of the dielectric domain (i.e., the lateral surface of
the cylinder Ω and the outer part of its top and bottom surfaces), we consider
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Table 7.1
H(curl,Ω)-norm of errors and exact solution.

Mesh-size Number d.o.f. Computed solution Error
h 1699 62257.66 36504.31
h/2 11285 64063.20 23591.63
h/3 35671 64296.90 16646.00
h/4 81769 64363.90 12709.90
h/5 156491 64391.83 10228.25

Fig. 7.4. Error versus number of d.o.f. (log-log scale).

the condition H× n = f , with f being obtained from the analytical solution:

f(R
D
, θ, z) = − I0

2πR
D

ez, θ ∈ [0, 2π], z ∈ [−L
2 ,

L
2

]
,

f
(
r, θ,±L

2

)
= ± I0

2πRC

I1(γr)

I1(γRC)
er, r ∈ [RC, RD], θ ∈ [0, 2π].

• On the top and bottom surfaces of the conducting cylinder ΩC, we impose

E
(
r, θ,±L

2

)× n = 0, r ∈ (0, RD), θ ∈ [0, 2π],

which is true in this case, because the electric field has vanishing r- and
θ-components, and, thus, it aligns with the normal vector n on these surfaces.

Finally, we have used the following geometrical and physical data:
• R

C = 1m;
• R

D = 2m;
• L = 1m;
• σ = 151565.8 (Ωm)−1;
• µ = µ0 = 4π 10

−7Hm−1 (magnetic permeability of free space);
• I0 = 62000A;
• ω = 50Hz.
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Fig. 7.5. Intensity of the magnetic field |Hh| in the conductor.

Fig. 7.6. Magnetic potential Φ̃h in the dielectric.

To determine the order of convergence, the numerical method has been used on
several successively refined meshes, and we have compared the obtained numerical
solutions with the analytical one. Figures 7.2 and 7.3 show the coarsest meshes used
for conductor and dielectric domains, respectively.

Table 7.1 shows the H(curl,Ω) norms of the approximate solutions Hh computed
on several meshes and their corresponding errors. The total number of degrees of
freedom for each mesh are also included.

Figure 7.4 shows a log-log plot of the errors measured in H(curl,Ω)-norm versus
the number of degrees of freedom for the same meshes. A linear dependence on the
mesh-size is obtained by calculating the slope of the line. These O(h) errors agree
with the theoretical results, since the solution is smooth, and, hence, the hypotheses
of Theorem 5.4 are fulfilled for r = 1.

Finally, Figures 7.5 and 7.6 show the intensity of the computed magnetic field |Hh|
in the conductor domain ΩC and the computed magnetic potential Φ̃h in the dielectric
domain Ω

D
. The former is presented in a section of Ω

C
to show its behavior in the

interior of this domain.
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Abstract. In this paper, we derive a posteriori error estimates for the finite element approx-
imation of distributed optimal control problems governed by the Stokes equations. We obtain a
posteriori error estimators for both the state and the control approximation in the L2 norm and the
H1 norm. These estimates can be used to construct reliable adaptive finite element approximation
for the control problems.
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1. Introduction. Flow control problems are crucial to many engineering ap-
plications. For the last decade, it has become a very active and successful research
area. Extensive research has been carried out on various theoretical aspects of flow
control problems; see, for example, [1], [14], [23], [20], [31], [32], [42], [45], and the
references cited therein, for existence of optimal control, optimality conditions, regu-
larity of the optimal solutions, and existence of Lagrange multipliers. The literature
for engineering applications is too huge to give even a very brief review here. One
can find some useful model optimal control problems of flow motion with the purpose
of achieving some desired objective in real-life applications in, for example, [19], [20],
[25], [42], [45], and some flavors of aeronautical and chemical engineering problems
can be found in, e.g., [26], [27], and [28]. In flow control problems, boundary and
shape control are widely used, though body (i.e., distributed) control is also avail-
able through a magnetic field, a heat source using radiation, or laser technology; see
[20], [25], and [40].

It is obvious that efficient numerical methods are essential to successful appli-
cations of flow control (indeed of any other control). Nowadays, the finite element
method is undoubtedly the most widely used numerical method in computing optimal
control problems, including flow control problems. The literature on finite element
approximation of optimal control is huge. Systematic introduction of the finite ele-
ment method for PDEs and optimal control problems can be found in, for example,
[11], [24], [43], and [45]. There have been extensive theoretical studies for finite el-
ement approximation of various optimal control problems. For instance, a priori
error estimates of finite element approximation were established long ago for the op-
timal control problems governed by linear elliptic or parabolic state equations; see,
for example, [13], [30], and [38]. Furthermore, finite element approximation of some
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flow control has been studied, and a priori error estimates have been established; see
[22], [23], [20], and [25]. A priori error estimates have also been obtained for a class of
state constrained control problems in [48], though the state equation is assumed to be
linear. In [33] this assumption has been removed by reformulating the control prob-
lem as an abstract optimization problem in some Banach spaces and then applying
nonsmooth analysis. In fact, the state equation there can be a variational inequality.

In recent years, the adaptive finite element method has been extensively inves-
tigated, beginning with the pioneering work in [7]. Adaptive finite element approxi-
mation is among the most important means to boost the accuracy and efficiency of
finite element discretizations. It ensures a higher density of nodes in a certain area
of the given domain, where the solution is more difficult to approximate, using an a
posteriori error indicator. The decision of whether further refinement of the meshes
is necessary is based on the estimate of the discretization error. If further refinement
is to be performed, then the error indicator is used as a guide to show how the refine-
ment might be accomplished most efficiently. The literature in this area is huge. Some
of techniques directly relevant to our work can be found in [6], [37], [46], [49], [50],
and [51]. It is our belief that adaptive finite element enhancement is one of the future
directions to pursue in developing sophisticated numerical methods for optimal design
problems.

Although adaptive finite element approximation is widely used in numerical simu-
lations, it has not yet been fully utilized in optimal design. Initial attempts in this as-
pect have only been reported recently for some design problems; see, e.g., [2], [4], [39],
and [47]. However, a posteriori error indicators of a heuristic nature are widely used
in most applications. For instance, in some existing work on adaptive finite element
approximation of optimal design, the mesh refinement is guided by a posteriori error
estimators based on a posteriori error estimates solely from the state equation for a
fixed control. Thus error information from approximation of the control (design) is
not utilized. This strategy was found to be inefficient in recent numerical experiments
(see [8]). In other work (see [12]), a preassigned mesh refinement scheme is applied
around the possible singularity points of the state equation. Although these methods
may work well in some particular applications, they cannot be applied confidently in
general. It is unlikely that the potential power of adaptive finite element approxima-
tion has been fully utilized due to the lack of more sophisticated a posteriori error
indicators.

It is not straightforward to rigorously derive suitable a posteriori error estimators
or monitors for general optimal control problems. For instance, it seems difficult to
apply the gradient recovery techniques as the control is normally not differentiable.
Recovering approximation in function value is in general difficult. For a similar reason,
it also seems difficult to apply the local solution strategy.

Very recently, some error indicators of residual type were developed in [8], [9], [34],
and [36]. These error estimators are based on a posteriori estimation of the discretiza-
tion error for the state and the control (design). When there exists no inequality
control constraint in a control problem, normally the optimality conditions consist of
coupled partial differential equations only. Consequently, one may be able to write
down the dual system of the whole optimality conditions and then apply the adjoint
approach (see [16], [17], [44]) to obtain some error estimators. For example, one can
then apply the weighted a posteriori error estimation technique to obtain a posteriori
estimators for objective functional approximation error; see [8] and [9]. Such estima-
tors have indeed been derived for some unconstrained elliptic control problems, and
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have proved quite efficient in the numerical tests carried out in [8].

However, there frequently exist some inequality constraints for the control in
applications. In such cases, the optimality conditions often contain a variational
inequality and then have some very different properties. For example, the optimal
control and the state may have very different regularity. Thus, it is not clear how
to apply the adjoint techniques used in [8] and [9] to general constrained control
problems. In our work, constrained cases are studied via residual estimation using the
norms of energy type. A posteriori error estimators are derived for some constrained
control problems governed by elliptic equations; see [34] and [36]. However, to our
best knowledge, there has been a lack of a posteriori error indicators for finite element
approximation of any constrained flow control problem, which is immensely important
and yet far more complicated to analyze than an elliptic control problem.

In this work we investigate optimal control governed by stationary Stokes flows
with general control constraints. The purpose of studying control for Stokes flows is
twofold: On the one hand, the Stokes equations model the flows with low velocity,
or very viscous fluids, e.g., many biological flows and non-Newtonian flows. Thus,
such a control model can be used as the first approximation of more complex control
problems; see [41], [42], and [45] for some examples. On the other hand, some of the
problems encountered when studying control for the full Navier–Stokes equations are
already present in this simpler model. Thus this investigation will pave the way for
further research on adaptive finite element approximation of optimal control for the
Navier–Stokes equations; see Remark 3.2 for some details.

In this paper we derive a posteriori error estimates for the conforming finite ele-
ment approximation of distributed optimal control governed by the two-dimensional
Stokes equations. The case of boundary control can be dealt with similarly by com-
bining the ideas and techniques used in [36]. The obtained error estimates can then
be used as a posteriori error indicators to construct reliable adaptive finite element
methods.

The plan of the paper is as follows: In section 2 we shall give a weak formula for
the control problem and then discuss the finite element approximation of the control
problem. In section 3, a posteriori error bounds are derived for the control problem
in L2 and H1 norms. Some applications are presented in section 4.

Let Ω and ΩU be two bounded open sets in R2 with Lipschitz boundaries ∂Ω and
∂ΩU , respectively. In this paper we adopt the standard notation Wm,q(Ω) for Sobolev
spaces on Ω with norm ‖ · ‖Wm,q(Ω) and seminorm | · |Wm,q(Ω) (or ‖ · ‖m,q,Ω, | · |m,q,Ω
for simplification). We shall extend these (semi)norms to vector functions whose
components belong to Wm,p(Ω). We set Wm,q

0 (Ω) ≡ {w ∈ Wm,q(Ω) : w|∂Ω = 0}.
We denote Wm,2(Ω) (Wm,2

0 (Ω)) by Hm(Ω) (Hm
0 (Ω)). In addition, c or C denotes a

general positive constant independent of h.

2. Finite element approximation of optimal control problems. In this
section, we discuss the finite element approximation of distributed convex optimal con-
trol problems governed by the Stokes equations. Let Y = (H1

0 (Ω))2, U = (L2(ΩU ))2,
H = (L2(Ω))2, and Q = L2

0(Ω) = {q ∈ L2(Ω),
∫
Ω
q = 0}. In this paper, the state

space and the control space will be Y × Q and U, respectively. Let B be a linear
continuous operator from U to H, and let K be a closed convex subset of U. Assume
that g and h are strictly convex functionals which are differentiable on H and that
h(u)→ +∞ as ‖u‖U →∞.

We are interested in the following optimal control problem: find (y, r,u) ∈



A POSTERIORI ERROR ESTIMATES FOR STOKES CONTROL 1853

Y ×Q×U such that

min
u∈K⊂U

{g(y) + h(u)},
−∆y +∇r = f + Bu in Ω,

divy = 0 in Ω,

y = 0 on ∂Ω,

where f ∈ L = (L2(Ω))2, K is a closed convex set in U, and B is a continuous linear
operator from U to H. To consider the finite element approximation of the above
optimal control problem, we have to give a weak formula for the state equations. Let

a(y,w) =

∫
Ω

∇y · ∇w ∀y,w ∈ Y,

b(v, r) =

∫
Ω

r divv ∀(v, r) ∈ Y ×Q,

(f + Bu,w) =

∫
Ω

(f + Bu) ·w ∀u,w ∈ H×Y.

Then the standard weak formula for the state equations reads as follows: Given f ∈ L,
find (y(u), r(u)) ∈ Y ×Q such that

a(y(u),w)− b(w, r(u)) = (f + Bu,w) ∀w ∈ Y,(2.1)

b(y(u), φ) = 0 ∀φ ∈ Q.(2.2)

For the above problem, it is well known that the following Babuska–Brezzi condition
holds (see [18], for example).

Lemma 2.1. Let ß = (H1
0 (Ω))2 × L2

0(Ω), and define a bilinear form �L on ß × ß
by �L([u, p]; [v, q]) := a(u,v)− b(v, p)− b(u, q); then

inf
[u,p]∈ß

sup
[v,q]∈ß

�L([u, p]; [v, q])

(|u|1 + ‖p‖0)(|v|1 + ‖q‖0)
≥ c > 0,

where c is a constant independent of u, v, p, and q.
Furthermore, the following a priori estimates are well known (see [18], for exam-

ple).
Lemma 2.2. Assume that Ω is convex. Let (Ψ, ρ) be the solution of the following

equation:

a(Ψ,w)± b(w, ρ) = (Φ, w) ∀w ∈ (H1
0 (Ω))2,

b(Ψ, q) = 0 ∀q ∈ L2
0(Ω),(2.3)

where a(·, ·) and b(·, ·) are defined as above. Then

‖Ψ‖2,Ω + ‖ρ‖1,Ω ≤ C‖Φ‖0,Ω.
Using the weak formula, our control problem can be restated as the following

(SCP):

min
u∈K⊂U

{g(y) + h(u)},
a(y(u),w)− b(w, r(u)) = (f + Bu,w) ∀w ∈ Y,(2.4)

b(y(u), φ) = 0 ∀φ ∈ Q.
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It is well known (see, e.g., [31]) that the control problem (SCP) has a unique solu-
tion (y∗, r∗,u∗) and that (y∗, r∗,u∗) is the solution of (SCP) if and only if there is a
co-state (p∗, s∗) ∈ Y×Q such that (y∗, r∗,p∗, s∗,u∗) satisfies the following optimality
conditions (SCP–OPT):

a(y∗,w)− b(w, r∗) = (f + Bu∗,w) ∀w ∈ Y,

b(y∗, φ) = 0 ∀φ ∈ Q,

a(q,p∗) + b(q, s∗) = (g′(y∗),q) ∀q ∈ Y,(2.5)

b(p∗, ψ) = 0 ∀ψ ∈ Q,

(h′(u∗) + B∗p∗,v − u∗)U ≥ 0 ∀v ∈ K ⊂ U,

where B∗ is the adjoint operator of B, and (·, ·)U is the inner product of U.
We note that for any (y,u) ∈ V×U, g′(y) and h′(u) are in H = H′ = (L2(Ω))2

and U′ = U = (L2(ΩU))2, respectively. Therefore they can be viewed as functions in
(L2(Ω))2 and (L2(ΩU))2, respectively, from the well-known representation theorem
in a Hilbert space.

Let us consider finite element approximation of the control problem (SCP). Here
we consider only triangular elements as they are among the most widely used ones.
Also, we consider only conforming elements for the state and co-state equations.

Let Ωh be a polygonal approximation of Ω with boundary ∂Ωh. Let Th be a
partitioning of Ωh into disjoint regular triangular τ , so that Ω̄h =

⋃
τ∈Th τ̄ . Each

element has at most one edge on ∂Ωh, and τ̄ and τ̄ ′ have either only one common
vertex or a whole edge if τ and τ ′ ∈ Th. We further require that Pi ∈ ∂Ωh ⇒ Pi ∈ ∂Ω,
where {Pi} (i = 1 . . . J) is the vertex set associated with the triangulation Th. For
ease of exposition, we will assume that Ωh = Ω, though all the results can be extended
to the more general case where Ωh ⊂ Ω.

Associated with Th is a finite dimensional subspace Yh × Qh of (H1
0 (Ωh))2 ×

L2
0(Ωh). In this paper, we assume that Yh and Qh contain the functions which are

piecewise polynomials of degree at least 1 and 0, respectively, and of degree at most
l and m, respectively.

Then the discretized weak formula of the state equations reads as

a(yh,wh)− b(wh, rh) = (f + Buh,wh) ∀wh ∈ Yh ⊂ Y,(2.6)

b(yh, φh) = 0 ∀φh ∈ Qh ⊂ Q.(2.7)

In order to guarantee that the above problem is well-posed, we assume that the spaces
Yh and Qh satisfy the well-known Babuska–Brezzi conditions: There is constant
c > 0, independent of h, such that

inf
rh∈Qh

sup
yh∈Yh

(rh,∇ · yh)/‖rh‖0,Ω‖yh‖1,Ω ≥ c.

These above assumptions are satisfied by many finite elements, e.g., the Taylor–Hood
elements and the mini elements; see, [3], [15], [18], and [50] for the details.

Let ΩhU be a polygonal approximation to ΩU with boundary ∂ΩhU. Let ThU be
a partitioning of ΩhU into disjoint regular triangular τU so that Ω̄hU =

⋃
τU∈Th

U
τ̄U.

Each element has at most one edge on ∂ΩhU, and τ̄U and τ̄ ′U have either only one
common vertex or a whole edge if τU and τ ′U ∈ ThU. We further require that
Pi ∈ ∂ΩhU ⇒ Pi ∈ ∂ΩU, where {Pi} (i = 1 . . . J) is the vertex set associated with the
triangulation ThU.
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Associated with ThU is another finite dimensional subspace Wh
U of L2(ΩhU), such

that χ|τU is a polynomial of k-order (k ≥ 0) for all χ ∈ Wh
U and τ ∈ ThU. Here there

is no requirement for the continuity or boundary conditions. Due to the limited
regularity of the optimal control u (which is at most in (H1(ΩU))2 in general), we
consider only the piecewise constant elements, that is, k = 0. For ease of exposition,
we again assume that ΩhU = ΩU.

Let Uh = (Wh
U)2. It is easy to see that Uh ⊂ U. Let hτ (hτU) denote the

maximum diameter of the element τ (τU) in Th (ThU); let ρτ (ρτU) denote the diameter
of the largest ball contained in τ (τU). Assume that there is a regularity constant R
such that 1 ≤ maxτ∈Th(hτ/ρτ ) ≤ R (1 ≤ maxτU∈Th

U
(hτU/ρτU) ≤ R). Let h =

maxτ∈Th hτ (hU = maxτU∈Th
U
hτU).

Then a possible finite element approximation of (SCP) is the control problem
(SCP)h:

min
uh∈Kh⊂Uh

{g(yh) + h(uh)},

a(yh,wh)− b(wh, rh) = (f + Buh,wh) ∀wh ∈ Yh ⊂ Y,(2.8)

b(yh, φh) = 0 ∀φh ∈ Qh ⊂ Q,

where Kh is a closed convex set in Uh, an approximation of K.
It follows that the control problem (SCP)h has a unique solution (y∗

h, r
∗
h,u

∗
h) and

that (y∗
h, r

∗
h,u

∗
h) ∈ Yh × Qh × Uh is the solution of (SCP)h if and only if there is

a co-state (p∗
h, s

∗
h) ∈ Yh × Qh such that (y∗

h, r
∗
h,p

∗
h, s

∗
h,u

∗
h) satisfies the following

optimality conditions (SCP–OPT)h:

a(y∗
h,wh)− b(wh, r

∗
h) = (f + Bu∗

h,wh) ∀wh ∈ Yh ⊂ Y,

b(y∗
h, φh) = 0 ∀φh ∈ Qh ⊂ Q,

a(qh,p
∗
h) + b(qh, s

∗
h) = (g′(y∗

h),qh) ∀qh ∈ Yh ⊂ Y,(2.9)

b(p∗
h, ψh) = 0 ∀ψh ∈ Qh ⊂ Q,

(h′(u∗
h) + B∗p∗

h,vh − u∗
h)U ≥ 0 ∀vh ∈ Kh ⊂ Uh ⊂ U.

To derive a posteriori error estimates, we need some stable interpolators from Y
to Yh, and from Q to Qh, respectively. These are given in the following lemmas, which
are important in deriving residual-type a posteriori error estimates. These lemmas
are well known, and can be found in, e.g., [11], [29], and [46].

Lemma 2.3 (see [11]). Let πh be the standard piecewise linear Lagrange interpo-
lation operator. Let π̄h be such that

π̄hp|τ =

∫
τ

p/|τ | ∀p ∈ L2(τ), τ ∈ Th,

where |τ | is the measure of τ . Then for 1 ≤ q ≤ ∞ and v ∈W 2,q(τ), p ∈W 1,q(τ),

|v − πhv|Wm,q(τ) ≤ Ch2−m
τ |v|W 2,q(τ), m = 0, 1,

and

‖p− π̄hp‖Lq(τ) ≤ Chτ |p|W 1,q(τ).

Lemma 2.4 (see [46]). Let π̂h be the average interpolation operator defined in [46].
For m = 0 or 1, 1 ≤ q ≤ ∞, and v ∈W 1,q(Ω),

|v − π̂hv|Wm,q(τ) ≤
∑

τ̄ ′∩τ̄ 	=∅
Ch1−m

τ |v|W 1,q(τ ′).
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Lemma 2.5 (see [29]). For v ∈W 1,q(τ), 1 ≤ q <∞,

‖v‖W 0,q(∂τ) ≤ C(h
− 1

q
τ ‖v‖W 0,q(τ) + h

1− 1
q

τ |v|W 1,q(τ)).

3. A posteriori error estimators for Stokes flow control. In order to obtain
a numerical solution of acceptable accuracy for the optimal control problem, the finite
element meshes have to be refined or adjusted according to a mesh refinement scheme.
A widely used approach in engineering is adaptive finite element approximation. At
the heart of any adaptive finite element method is an a posteriori error indicator.
Adaptive finite element approximation refines or adjusts only the area where the
error indicator is large so that a high density of nodes is distributed over the area
where the solution is difficult to approximate. Therefore, the error indicator has to
reflect reliably the approximation error distribution over the computational domain.

In this section we derive a posteriori error estimators for the optimal control of
Stokes flows. It is fairly clear that this is not an easy task, as the solution of the control
problem satisfies a complicated coupled variational inequality system (SCP–OPT).
There seems to be no existing work in the literature on a posteriori error bounds
for a system of such a type. Very recently in [34], [35], and [36] a posteriori error
estimates were derived for the finite element approximation of constrained elliptic
optimal control problems with distributed or boundary control. In general, the finite
element approximation of a flow control problem is more complicated to analyze than
that of an elliptic control problem. For example, one has to use the Babuska–Brezzi
conditions to handle the mixed finite element formulations. Furthermore, we shall
derive sharper a posteriori error estimates for the control approximation and error
estimates in the L2 norm for the state and co-state, since for the control problems
of this type, one normally would be more interested in the approximation error of
the values of the state and co-state than in their gradient. To this end, we have to
modify some techniques from the adjoint approach. Although some of the ideas and
techniques used in [34] and [36] are adopted here, we believe that there are substantial
differences between the two problems in both the estimates obtained and the methods
used.

We first derive a posteriori error bounds for the approximation of the optimal
control of (SCP).

We shall first assume that the discretized constraint set Kh is such that Kh ⊂ K.
For many cases, it is not difficult to construct such an approximation of K. We shall
briefly examine how to relax this condition at the end of this section. We shall further
assume that there is a constant c > 0 such that

(h′(u)− h′(v),u− v)U ≥ c‖u− v‖2U.

We first establish an important lemma for the approximation of the optimal con-
trol of (SCP).

Lemma 3.1. Let (y∗, r∗,p∗, s∗,u∗) and (y∗
h, r

∗
h,p

∗
h, s

∗
h,u

∗
h) be the solutions of

(2.5) and (2.9), respectively. Assume that (B∗p∗
h + h′(u∗

h))|τU ∈ (H1(τU))2 and that
there is a vh ∈ Kh such that

|(B∗p∗
h + h′(u∗

h),vh − u∗)U| ≤ C
∑
τU

hτU |B∗p∗
h + h′(u∗

h)|1,τU‖u∗ − u∗
h‖0,τU .(3.1)

Then we have

‖u∗ − u∗
h‖20,ΩU

≤ C
∑
τU

h2
τU |B∗p∗

h + h′(u∗
h)|21,τU + C‖p∗

h − p(u∗
h)‖20,Ω,(3.2)
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where p(u∗
h) is the solution of the following system:

a(y(u∗
h),w)− b(w, r(u∗

h)) = (f + Bu∗
h,w) ∀w ∈ Y,

b(y(u∗
h), φ) = 0 ∀φ ∈ Q,

a(q,p(u∗
h)) + b(q, s(u∗

h)) = (g′(y(u∗
h)),q) ∀q ∈ Y,(3.3)

b(p(u∗
h), ψ) = 0 ∀ψ ∈ Q.

Proof. It follows from (SCP–OPT)–(SCP–OPT)h that for all vh ∈ Kh ⊂ K,

c‖u∗ − u∗
h‖20,ΩU

≤ (h′(u∗),u∗ − u∗
h)U − (h′(u∗

h),u∗ − u∗
h)U

≤ −(B∗p∗,u∗ − u∗
h)U − (h′(u∗

h),u∗ − u∗
h)U

= −(B∗p∗
h + h′(u∗

h),u∗ − u∗
h)U + (B∗(p∗

h − p(u∗
h)),u∗ − u∗

h)U

+ (B∗(p(u∗
h)− p∗),u∗ − u∗

h)U

= −(B∗p∗
h + h′(u∗

h),u∗ − vh)U + (B∗p∗
h + h′(u∗

h),u∗
h − vh)U

+ (B∗(p∗
h − p(u∗

h)),u∗ − u∗
h)U + (g′(y(u∗

h))− g′(y∗),y∗ − y(u∗
h))

≤ (B∗p∗
h + h′(u∗

h),vh − u∗)U + (B∗(p∗
h − p(u∗

h)),u∗ − u∗
h)U.

Hence,

c‖u∗−u∗
h‖20,ΩU

≤ C
∑
τU

h2
τU |B∗p∗

h+h′(u∗
h)|21,τU +C‖p∗

h−p(u∗
h)‖20,Ω+

c

2
‖u∗−u∗

h‖20,ΩU
.

This proves the lemma.
In the following we first derive a posteriori error estimates using the energy norms.

We bound up ‖p∗
h − p(u∗

h)‖0,Ω with the energy norms and then obtain the following.
Theorem 3.1. Let (y∗, r∗,p∗, s∗,u∗) and (y∗

h, r
∗
h,p

∗
h, s

∗
h,u

∗
h) be the solutions of

(2.5) and (2.9), respectively. Assume that all the conditions in Lemma 3.1 hold. Then

‖u∗ − u∗
h‖2U + ‖y∗ − y∗

h‖2Y + ‖p∗ − p∗
h‖2Y ≤ Cη̂2,(3.4)

where

η̂2 =
∑
τU

h2
τU |B∗p∗

h + h′(u∗
h)|21,τU + η̂2

1 ,

where

η̂2
1 =

∑
τ

h2
τ

∫
τ

(∆p∗
h +∇s∗h + g′(y∗

h))2 +
∑
l

hl

∫
l

[Al]
2 + ‖divp∗

h‖20,Ω

+
∑
τ

h2
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2 +
∑
l

hl

∫
l

[Dl]
2 + ‖divy∗

h‖20,Ω,

where hl is the size of the edge l; [Al] and [Dl] are jumps on the edge l = τ̄1
l ∩ τ̄2

l

defined by

[Dl] = ((∇y∗
h)τ1

l
− (∇y∗

h)τ2
l
) · n− (r∗h|τ1

l
− r∗h|τ2

l
)n,

[Al] = ((∇p∗
h)τ1

l
− (∇p∗

h)τ2
l
) · n + (s∗h|τ1

l
− s∗h|τ2

l
)n,
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where n is the outer normal direction of τ1
l . For ease of exposition, we let [Al] =

[Dl] = 0 when l ⊂ ∂Ω.
Proof. We need only to estimate ‖p∗

h − p(u∗
h)‖20,Ω. Let Ep = p∗

h − p(u∗
h), and

Es = s∗h − s(u∗
h). By Lemma 2.1, there exist q, ψ ∈ Y ×Q such that

c(‖Ep‖1,Ω + ‖Es‖0,Ω)(‖q‖1,Ω + ‖ψ‖0,Ω)

≤ (∇q,∇(p∗
h − p(u∗

h))) + (divq, s∗h − s(u∗
h)) + (div(p∗

h − p(u∗
h)), ψ).

Let qI = π̂hq ∈ Yh be the interpolations of q defined in Lemma 2.4. By (2.9), (3.3)
and Lemmas 2.4 and 2.5,

c(‖Ep‖1,Ω + ‖Es‖0,Ω)(‖q‖1,Ω + ‖ψ‖0,Ω)

≤ (∇q,∇(p∗
h − p(u∗

h))) + (divq, s∗h − s(u∗
h)) + (div(p∗

h − p(u∗
h)), ψ)

= (∇(q− qI),∇(p∗
h − p(u∗

h))) + (div(q− qI), s
∗
h − s(u∗

h)) + (∇qI ,∇(p∗
h − p(u∗

h)))

+ (divqI , s
∗
h − s(u∗

h)) + (div(p∗
h − p(u∗

h)), ψ)

= −
∑
τ

∫
τ

∆(p∗
h − p(u∗

h))(q− qI) +
∑
τ

∫
∂τ

∂

∂n
(p∗
h − p(u∗

h))(q− qI)

−
∑
τ

∫
τ

∇(s∗h − s(u∗
h))(q− qI) +

∑
τ

∫
∂τ

(s∗h − s(u∗
h))(q− qI) · n

+ (g′(y∗
h)− g′(y(u∗

h)),qI) + (divp∗
h, ψ)

=
∑
τ

∫
τ

(−∆p∗
h −∇s∗h − g′(y(u∗

h)))(q− qI) +
∑
l

∫
l

[Al](q− qI)

+ (g′(y∗
h)− g′(y(u∗

h)),qI) + (divp∗
h, ψ)

=
∑
τ

∫
τ

(−∆p∗
h −∇s∗h − g′(y∗

h))(q− qI) + (g′(y∗
h)− g′(y(u∗

h)),q− qI)

+
∑
l

∫
l

[Al](q− qI) + (g′(y∗
h)− g′(y(u∗

h)),qI) + (divp∗
h, ψ)

≤ C

(∑
τ

h2
τ

∫
τ

(∆p∗
h + g′(y∗

h) +∇s∗h)2 +
∑
l

hl

∫
l

[Al]
2 + ‖divp∗

h‖20,Ω

+ ‖y(u∗
h)− y∗

h‖20,Ω
) 1

2

(‖q‖1,Ω + ‖ψ‖0,Ω).

Then, it follows that

‖p∗
h − p(u∗

h)‖1,Ω ≤ C

(∑
τ

h2
τ

∫
τ

(∆p∗
h + g′(y∗

h) +∇s∗h)2 +
∑
l

hl

∫
l

[Al]
2

+ ‖divp∗
h‖20,Ω + ‖y(u∗

h)− y∗
h‖20,Ω

) 1
2

.(3.5)

Similarly, let Ey = y∗
h − y(u∗

h), Er = r∗h − r(u∗
h). Let wI = π̂hw ∈ Yh be the

interpolation of w ∈ Y defined in Lemma 2.4. Then, we can prove that

c(‖Ey‖1,Ω + ‖Er‖0,Ω)(‖w‖1,Ω + ‖φ‖0,Ω)

≤ (∇(y∗
h − y(u∗

h)),∇w)− (divw, r∗h − r(u∗
h))− (div(y∗

h − y(u∗
h)), φ)

= (∇(y∗
h − y(u∗

h)),∇(w −wI))− (div(w −wI), r
∗
h − r(u∗

h))− (div(y∗
h − y(u∗

h)), φ)
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= −
∑
τ

∫
τ

∆(y∗
h − y(u∗

h))(w −wI) +
∑
τ

∫
∂τ

∂

∂n
(y∗
h − y(u∗

h))(w −wI)

+
∑
τ

∫
τ

∇(r∗h − r(u∗
h))(w −wI)−

∑
τ

∫
∂τ

(r∗h − r(u∗
h))(w −wI) · n− (divy∗

h, φ)

=
∑
τ

∫
τ

(−∆y∗
h +∇r∗h − f −Bu∗

h)(w −wI) +
∑
l

∫
l

[Dl](w −wI)− (divy∗
h, φ)

≤ C

(∑
τ

h2
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2

+
∑
l

hl

∫
l

[Dl]
2 + ‖divy∗

h‖20,Ω
) 1

2

(‖w‖1,Ω + ‖φ‖0,Ω).

It follows that

‖y∗
h − y(u∗

h)‖21,Ω
≤ C

(∑
τ

h2
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2 +
∑
l

hl

∫
l

[Dl]
2 + ‖divy∗

h‖20,Ω
)
.

Then, it follows from (3.5) that

‖p∗
h − p(u∗

h)‖21,Ω ≤ Cη̂2
1 .

Then by Lemma 3.1,

‖u∗
h − u∗‖20,ΩU

≤ Cη̂2.(3.6)

Note that

‖y∗ − y(u∗
h)‖1,Ω ≤ C‖u∗

h − u∗‖0,ΩU
,

and

‖p∗ − p(u∗
h)‖1,Ω ≤ C‖y∗ − y(u∗

h)‖0,Ω ≤ C‖u∗ − u∗
h‖0,ΩU

.

We have

‖y∗ − y∗
h‖21,Ω + ‖p∗ − p∗

h‖21,Ω ≤ Cη̂2.(3.7)

Then, the theorem follows from (3.6) and (3.7).
Remark 3.1. It is clear that the a posteriori error estimator η̂ consists of two

parts. The part η̂1 is contributed from the approximation error of the state and
co-state equations, and the other part results from the approximation error of the
variational inequality. Among them, η̂1 mainly indicates the approximation error for
the state and co-state, and the term

∑
τU⊂Th

U
h2
τU |h′(u∗

h)+B∗p∗
h|2H1(τU) mainly reflects

the approximation error for the control. There does not have to exist a relationship
between the computational meshes for the state and those for the control. Clearly,
the most suitable implementation and thus the optimal mesh refinements will much
depend on what is the most important quantity to be computed in a particular control
problem. It also depends on the structure of the meshes used in the computations.
Further investigation is still much needed.
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The part η̂1 can be further divided into two parts: one from the approximation
error of the state equation and the other from that of the co-state equation. Clearly, a
posteriori error estimators obtained solely from the state equation may fail to reflect
the main approximation error of the optimal control problem and thus fail to yield
efficient mesh refinements. This will become even more clear after Theorem 3.2.

It follows from the above proof that when Ω is convex, one can bound up ‖p∗
h −

p(u∗
h)‖0,Ω with the L2 norm, using the dual equations, and thus derive the sharper

estimates for ‖u∗−u∗
h‖0,ΩU

. This is what we are going to do in the following theorem.
Furthermore we derive a posteriori error estimates for the control problem using the
L2 norms. If one is more interested in the control and the values of the state, then
the following result may be very useful.

Theorem 3.2. Let (y∗, r∗,p∗, s∗,u∗) and (y∗
h, r

∗
h,p

∗
h, s

∗
h,u

∗
h) be the solutions

of (2.5) and (2.9), respectively. Assume that all the conditions in Lemma 2.2 and
Lemma 3.1 hold. Then

‖u∗ − u∗
h‖20,ΩU

+ ‖y∗ − y∗
h‖20,Ω + ‖p∗ − p∗

h‖20,Ω ≤ Cη2,(3.8)

where

η2 =
∑
τU

h2
τU |B∗p∗

h + h′(u∗
h)|21,τU + η2

1 ,

where

η2
1 =

∑
τ

h4
τ

∫
τ

(∆p∗
h +∇s∗h + g′(y∗

h))2 +
∑
l

h3
l

∫
l

[Al]
2 +

∑
τ

h2
τ

∫
τ

(divp∗
h)2

+
∑
τ

h4
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2 +
∑
l

h3
l

∫
l

[Dl]
2 +

∑
τ

h2
τ

∫
τ

(divy∗
h)2,

where hl is the size of the edge l; [Al] and [Dl] are jumps on the edge l = τ̄1
l ∩ τ̄2

l

defined by

[Dl] = ((∇y∗
h)τ1

l
− (∇y∗

h)τ2
l
) · n− (r∗h|τ1

l
− r∗h|τ2

l
)n,

[Al] = ((∇p∗
h)τ1

l
− (∇p∗

h)τ2
l
) · n + (s∗h|τ1

l
− s∗h|τ2

l
)n,

where n is the outer normal direction of τ1
l . For ease of exposition, we let [Al] =

[Dl] = 0 when l ⊂ ∂Ω.
Proof. Let (Ψ, ρ) be the solution of (2.3) with Φ = p∗

h − p(u∗
h) and + sign. Let

ΨI = πhΨ ∈ Yh and ρI = π̄hρ ∈ Qh be the interpolations of Ψ and ρ defined in
Lemma 2.3. By (2.9), (3.3) and Lemmas 2.2, 2.3, and 2.5,

‖p∗
h − p(u∗

h)‖20,Ω = (Φ,p∗
h − p(u∗

h))

= (∇Ψ,∇(p∗
h − p(u∗

h))) + (div(p∗
h − p(u∗

h)), ρ) + (divΨ, s∗h − s(u∗
h))

= (∇(Ψ−ΨI),∇(p∗
h − p(u∗

h))) + (div(Ψ−ΨI), s
∗
h − s(u∗

h))

+ (∇ΨI ,∇(p∗
h − p(u∗

h))) + (divΨI , s
∗
h − s(u∗

h)) + (divp∗
h, ρ− ρI)

= −
∑
τ

∫
τ

∆(p∗
h − p(u∗

h))(Ψ−ΨI) +
∑
τ

∫
∂τ

∂

∂n
(p∗
h − p(u∗

h))(Ψ−ΨI)

−
∑
τ

∫
τ

∇(s∗h − s(u∗
h))(Ψ−ΨI) +

∑
τ

∫
∂τ

(s∗h − s(u∗
h))(Ψ−ΨI) · n
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+ (g′(y∗
h)− g′(y(u∗

h)),ΨI) + (divp∗
h, ρ− ρI)

≤ C
∑
τ

h4
τ

∫
τ

(∆p∗
h +∇s∗h + g′(y∗

h))2 + C
∑
l

h3
l

∫
l

[Al]
2 + C

∑
τ

h2
τ

∫
τ

(divp∗
h)2

+C‖y(u∗
h)− y∗

h‖20,Ω + Cδ(‖Ψ‖22,Ω + ‖ρ‖21,Ω)

≤ C
∑
τ

h4
τ

∫
τ

(∆p∗
h +∇s∗h + g′(y∗

h))2 + C
∑
l

h3
l

∫
l

[Al]
2 + C

∑
τ

h2
τ

∫
τ

(divp∗
h)2

+C‖y(u∗
h)− y∗

h‖20,Ω + Cδ‖Φ‖20,Ω
= C

∑
τ

h4
τ

∫
τ

(∆p∗
h +∇s∗h + g′(y∗

h))2 + C
∑
l

h3
l

∫
l

[Al]
2 + C

∑
τ

h2
τ

∫
τ

(divp∗
h)2

+C‖y(u∗
h)− y∗

h‖20,Ω + Cδ‖p∗
h − p(u∗

h)‖20,Ω.

Then, let δ = 1
2C ; it follows that

‖p∗
h − p(u∗

h)‖20,Ω ≤ C
∑
τ

h4
τ

∫
τ

(∆p∗
h +∇s∗h + g′(y∗

h))2 + C
∑
l

h3
l

∫
l

[Al]
2

+C
∑
τ

h2
τ

∫
τ

(divp∗
h)2 + C‖y(u∗

h)− y∗
h‖20,Ω.(3.9)

Similarly, let (Ψ, ρ) be the solution of (2.3) with Φ = y∗
h − y(u∗

h) and − sign. Let
ΨI = πhΨ ∈ Yh and ρI = π̄hρ ∈ Qh be the interpolations of Ψ and ρ defined in
Lemma 2.3. Again, we can prove that

‖y∗
h − y(u∗

h)‖20,Ω = (Φ,y∗
h − y(u∗

h))

= (∇(y∗
h − y(u∗

h)),∇Ψ)− (divΨ, r∗h − r(u∗
h))− (div(y∗

h − y(u∗
h)), ρ)

= (∇(y∗
h − y(u∗

h)),∇(Ψ−ΨI))− (div(Ψ−ΨI), r
∗
h − r(u∗

h))− (divy∗
h, ρ− ρI)

= −
∑
τ

∫
τ

∆(y∗
h − y(u∗

h))(Ψ−ΨI) +
∑
τ

∫
∂τ

∂

∂n
(y∗
h − y(u∗

h))(Ψ−ΨI)

+
∑
τ

∫
τ

∇(r∗h − r(u∗
h))(Ψ−ΨI)−

∑
τ

∫
∂τ

(r∗h − r(u∗
h))(Ψ−ΨI) · n

− (divy∗
h, ρ− ρI)

=
∑
τ

∫
τ

(−∆y∗
h +∇r∗h − f −Bu∗

h)(Ψ−ΨI) +
∑
l

∫
l

[Dl](Ψ−ΨI)− (divy∗
h, ρ− ρI)

≤ C

(∑
τ

h4
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2 +
∑
l

h3
l

∫
l

[Dl]
2 +

∑
τ

h2
τ

∫
τ

(divy∗
h)2
)

+Cδ(‖Ψ‖22,Ω + ‖ρ‖21,Ω)

≤ C

(∑
τ

h4
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2

+
∑
l

h3
l

∫
l

[Dl]
2 +

∑
τ

h2
τ

∫
τ

(divy∗
h)2
)

+ Cδ‖Φ‖20,Ω

= C

(∑
τ

h4
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2 +
∑
l

h3
l

∫
l

[Dl]
2 +

∑
τ

h2
τ

∫
τ

(divy∗
h)2
)

+Cδ‖y∗
h − y(u∗

h)‖20,Ω.
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It follows that

‖y∗
h − y(u∗

h)‖20,Ω
≤ C

(∑
τ

h4
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h)2 +
∑
l

h3
l

∫
l

[Dl]
2 +

∑
τ

h2
τ

∫
τ

(divy∗
h)2
)
.

Then, it follows from (3.9) that

‖p∗
h − p(u∗

h)‖20,Ω ≤ Cη2
1 .

Then by Lemma 3.1,

‖u∗
h − u∗‖20,ΩU

≤ Cη2.(3.10)

Note that

‖y∗ − y(u∗
h)‖0,Ω ≤ C‖u∗

h − u∗‖0,ΩU
,

and

‖p∗ − p(u∗
h)‖0,Ω ≤ C‖y∗ − y(u∗

h)‖0,Ω ≤ C‖u∗ − u∗
h‖0,ΩU

.

We have

‖y∗ − y∗
h‖20,Ω + ‖p∗ − p∗

h‖20,Ω ≤ Cη2.(3.11)

Then, the theorem follows from (3.10) and (3.11).
It follows from Theorem 3.2 that when using the same meshes for the state and

the control, the estimator ∑
τU

h2
τU |B∗p∗

h + h′(u∗
h)|21,τU

is dominant ! This fact could be useful in simplifying implementation of the result-
ing error estimates in computations and have impacts on developing implementation
techniques. Furthermore, it is not hard to see that one could use much coarser meshes
for the state and co-state approximation, since η1 has a different approximation or-
der. Thus, computational efficiency could be further improved if we use different
meshes for the state and the control. It is clear that much more research is needed to
investigate possible implementations of these error indicators with multiset meshes.

Remark 3.2. The techniques developed in this paper can be extended to derive
similar a posteriori error estimates for the optimal control problem governed by the
Navier–Stokes equations (at least when the Reynolds number is small):

min
u∈K⊂U

{g(y) + h(u)},
−∆y + Re(y · ∇)y +∇r = f + Bu in Ω,

divy = 0 in Ω, y = 0 on ∂Ω,

∫
Ω

r = 0,

where Re is the Reynolds number. It is well known that (y∗, r∗,u∗) is the solution of
above problem only if there is a co-state (p∗, s∗) ∈ Y×Q such that (y∗, r∗,p∗, s∗,u∗)
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satisfies the following optimality conditions:

a(y∗,w) + (Re(y∗ · ∇)y∗,w)− b(w, r∗) = (f + Bu∗,w) ∀w ∈ Y,(3.12)

b(y∗, φ) = 0 ∀φ ∈ Q,

a(q,p∗)− Re((y∗ · ∇)p∗,q)

+ Re((∇y∗)Tp∗,q) + b(q, s∗) = (g′(y∗),q) ∀q ∈ Y,

b(p∗, ψ) = 0 ∀ψ ∈ Q,

(h′(u∗) + B∗p∗,v − u∗)U ≥ 0 ∀v ∈ K ⊂ U,

where B∗ is the adjoint operator of B, a(·, ·), b(·, ·) are defined in section 2, and (·, ·)U
is the inner product of U.

Although rigorous proof details have yet to be worked out, one already should
be in the position of seeing similar a posteriori error estimates for the above con-
trol problem with smaller Re by using the same ideas and techniques. For exam-
ple, let (y∗, r∗,p∗, s∗,u∗) be the solutions of (3.12) and (y∗

h, r
∗
h,p

∗
h, s

∗
h,u

∗
h) be the

finite element approximations of (y∗, r∗,p∗, s∗,u∗). Assume that all the conditions
in Lemma 3.1 hold. Then

‖u∗ − u∗
h‖2U + ‖y∗ − y∗

h‖2Y + ‖p∗ − p∗
h‖2Y ≤ Cη̃2,(3.13)

where

η̃2 =
∑
τU

h2
τU |B∗p∗

h + h′(u∗
h)|21,τU + η̃2

1 ,

where

η̃2
1 =

∑
τ

h2
τ

∫
τ

(∆p∗
h +∇s∗h + g′(y∗

h) + Re(y∗
h · ∇)p∗

h − Re(∇y∗
h)Tp∗

h)2

+
∑
l

hl

∫
l

[Al]
2 + ‖divp∗

h‖20,Ω

+
∑
τ

h2
τ

∫
τ

(∆y∗
h −∇r∗h + f + Bu∗

h − Re(y∗
h · ∇)y∗

h)2 +
∑
l

hl

∫
l

[Dl]
2 + ‖divy∗

h‖20,Ω.

One can also write down the error estimates in the L2 norm.
In the following, we extend Lemma 3.1 to the cases where Kh �⊂ K. Consequently

Theorems 3.1 and 3.2 can also be extended to the cases using the same methods used
in the proofs of Theorems 3.1 and 3.2.

Remark 3.3. Assume that all the conditions in Lemma 3.1 hold except the
condition that Kh ⊂ K. Use the same notation in Lemma 3.1. Assume that
(B∗p∗

h + h′(u∗
h))|τU ∈ (H1(τU))2 and that there is a vh ∈ Kh such that

|(B∗p∗
h + h′(u∗

h),vh − u∗)U|(3.14)

≤ C
∑

τU⊂Th
U

hτU |B∗p∗
h + h′(u∗

h)|1,τU‖u∗ − u∗
h‖0,τU .

Then for all v ∈ K we have

‖u∗ − u∗
h‖20,ΩU

≤ C

( ∑
τU⊂Th

U

h2
τU |B∗p∗

h + h′(u∗
h)|21,τU + ‖p∗

h − p(u∗
h)‖20,Ω
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+ |(B∗p∗
h + h′(u∗

h),u∗
h − v)U|+ |(B∗(p∗

h − p(u∗
h)),u∗

h − v)U|(3.15)

+ |(B∗(p(u∗
h)− p∗),u∗

h − v)U|+ |(h′(u∗
h)− h′(u∗),u∗

h − v)U|
)
,

where p(u∗
h) is defined in Lemma 3.1.

The proof of this estimate is similar to that of Lemma 3.1. First we have

(h′(u∗),u∗ − v)U ≤ −(B∗p∗,u∗ − v)U ∀v ∈ K,

(h′(u∗
h),u∗

h − vh)U + (B∗p∗
h,u

∗
h − vh)U ≤ 0 ∀vh ∈ Kh.

Then by applying the same techniques used in the proof of Lemma 3.1, we have for
any vh ∈ Kh and v ∈ K that

c‖u∗ − u∗
h‖20,ΩU

≤ (h′(u∗),u∗ − u∗
h)U − (h′(u∗

h),u∗ − u∗
h)U

= (h′(u∗),u∗ − v)U + (h′(u∗),v − u∗
h)U − (h′(u∗

h),u∗ − u∗
h)U

≤ −(B∗p∗,u∗ − v)U + (h′(u∗),v − u∗
h)U − (h′(u∗

h),u∗ − u∗
h)U

= −(B∗p∗
h,u

∗ − v)U + (B∗(p∗
h − p(u∗

h)),u∗ − v)U + (B∗(p(u∗
h)− p∗),u∗ − u∗

h)U

+ (B∗(p(u∗
h)− p∗),u∗

h − v)U + (h′(u∗),v − u∗
h)U − (h′(u∗

h),u∗ − v + v − u∗
h)U

= (B∗p∗
h + h′(u∗

h), (v − u∗
h) + (u∗

h − vh) + (vh − u∗))U

+ (B∗(p∗
h − p(u∗

h)),u∗ − v)U − (g′(y∗)− g′(y(u∗
h)),y∗ − y(u∗

h))

+ (B∗(p(u∗
h)− p∗),u∗

h − v)U + (h′(u∗)− h′(u∗
h),v − u∗

h)U

≤ |(B∗p∗
h + h′(u∗

h),vh − u∗)U|+ |(B∗p∗
h + h′(u∗

h),u∗
h − v)U|

+ |(B∗(p∗
h − p(u∗

h)),u∗ − u∗
h)U|+ |(B∗(p∗

h − p(u∗
h)),u∗

h − v)U|

+ |(B∗(p(u∗
h)− p∗),u∗

h − v)U|+ |(h′(u∗
h)− h′(u∗),u∗

h − v)U|.
Then the desired result (3.15) follows.

4. Some examples. In this section we consider some applications of the results
in section 3. First let Ω = [−1, 1] × [−1, 1]. Let Y = (H1

0 (Ω))2, U = (L2(Ω))2,
H = (L2(Ω))2, and Q = L2

0(Ω). For any u ∈ U, let Bu = u. Now let us consider the
following well-known quadratic control problem (see [31]), (EXP):

min
u∈K⊂U

{
1

2
‖y − zd‖2H +

1

2
‖u‖2U

}
,

−∆y +∇r = f + u in Ω,

divy = 0 in Ω,

y = 0 on ∂Ω,

∫
Ω

r = 0,

where f ∈ L = (L2(Ω))2, zd ∈ H, and K is a closed convex set in U.
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Example 4.1. Let K1 = U, K2 = {u ∈ U : u ≥ 0}, K3 = {u ∈ U : |u| ≤ 1},
and K4 = {u ∈ U :

∫
Ω
u ≥ 0}. Here the notations u ≥ 0, |u| ≤ 1,

∫
Ω
u ≥ 0 mean

that ui ≥ 0, |ui| ≤ 1,
∫
Ω
ui ≥ 0, with i = 1, 2, and u = (u1, u2). Construct the

finite element approximation as in section 2. Especially, we take Uh = {u ∈ U :
u|τU ∈ (P0)2}, where P0 is the 0-order polynomial space, and take Kh

1 = Uh, Kh
2 =

{uh ∈ Uh : uh ≥ 0}, Kh
3 = {uh ∈ Uh : |uh| ≤ 1}, and Kh

4 = {uh ∈ Uh :
∫
Ω
uh ≥ 0}.

For any u ∈ K, define (πchu)|τU = ū|τU , where ū|τU is the integral average of u on
the element τU. Then, it is easy to see that Kh

i ⊂ Ki, and πchu ∈ Kh
i if u ∈ Ki,

i = 1, 2, 3, 4.
Let u∗ be the solution of (EXP) and u∗

h be the solution of the finite element
approximation of (EXP). It follows that (p∗

h + u∗
h)|τU ∈ (H1(τU))2. Then

|(p∗
h + u∗

h, π
c
hu

∗ − u∗)U| = |(p∗
h + u∗

h − πch(p∗
h + u∗

h), πch(u∗ − u∗
h)− (u∗ − u∗

h))U|
≤ C

∑
τU

hτU |p∗
h + u∗

h|1,τU‖u∗ − u∗
h‖0,τU .

Therefore, Theorems 3.1 and 3.2 hold:

‖u∗ − u∗
h‖2U + ‖y∗ − y∗

h‖2Y + ‖p∗ − p∗
h‖2Y ≤ Cη̂2,(4.1)

where

η̂2 =
∑

τU⊂Th
U

h2
τU |u∗

h + p∗
h|21,τU + η̂2

1 ,

η̂2
1 =

∑
τ

h2
τ

∫
τ

(∆p∗
h +∇s∗h + y∗

h − zd)
2 +

∑
l

hl

∫
l

[Al]
2 + ‖divp∗

h‖20,Ω

+
∑
τ

h2
τ

∫
τ

(∆y∗
h −∇r∗h + f + u∗

h)2 +
∑
l

hl

∫
l

[Dl]
2 + ‖divy∗

h‖20,Ω.

Also,

‖u∗ − u∗
h‖20,ΩU

+ ‖y∗ − y∗
h‖20,Ω + ‖p∗ − p∗

h‖20,Ω ≤ Cη2,(4.2)

where

η2 =
∑

τU⊂Th
U

h2
τU |u∗

h + p∗
h|21,τU + η2

1 ,

η2
1 =

∑
τ

h4
τ

∫
τ

(∆p∗
h +∇s∗h + y∗

h − zd)
2 +

∑
l

h3
l

∫
l

[Al]
2 +

∑
τ

h2
τ

∫
τ

(divp∗
h)2

+
∑
τ

h4
τ

∫
τ

(∆y∗
h −∇r∗h + f + u∗

h)2 +
∑
l

h3
l

∫
l

[Dl]
2 +

∑
τ

h2
τ

∫
τ

(divy∗
h)2.

One can use
∑
τU

h2
τU |p∗

h+u∗
h|21,τU as an error indicator for the control approxima-

tion mesh refinement and use η2
1 (or η̂2

1) for the state and co-state mesh refinement.
The (single) obstacle problem case where the obstacle is not constant can be easily

dealt with, for instance, by using the transformation unew = uold −Φ, where Φ is the
obstacle. Now let us consider the two side obstacle case.
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Example 4.2. Let K = {u ∈ U : g0 ≤ u ≤ g1}, where g0,g1 ∈ (H1(Ω))2. Let Uh

be the piecewise constant space. Let Kh = {uh ∈ Uh : πchg0 ≤ uh ≤ πchg1}. It is clear
that K may not contain Kh this time. We then apply the estimates in Remark 3.2.
Let u∗ be the solution of (EXP) and u∗

h be the finite element approximation of the
problem. It follows from [13] that one can construct P (u∗

h) ∈ K such that

πch(P (u∗
h)) = πch(u∗

h), ‖u∗
h − P (u∗

h)‖0,Ω ≤ C
∑
τU

hτU(|g0|1,τU + |g1|1,τU).

First, as in Example 4.1, let vh = πchu
∗,

|(p∗
h + u∗

h, π
c
hu

∗ − u∗)U| ≤ C
∑
τU

hτU |p∗
h + u∗

h|1,τU‖u∗ − u∗
h‖0,τU .

Let v = P (u∗
h) in the estimate (3.15) of Remark 3.2. Then, first,

|(p∗
h + u∗

h,u
∗
h − v)U| = |((p∗

h + u∗
h − πch(p∗

h + u∗
h)),u∗

h − v)U|

≤ C
∑
τU

h2
τU |p∗

h + u∗
h|1,τU(|g0|1,τU + |g1|1,τU),

since πch(P (u∗
h)) = πch(u∗

h). Therefore

|(p∗
h + u∗

h,u
∗
h − v)U| ≤ C

∑
τU

h2
τU |p∗

h + u∗
h|21,τU + C

∑
τU

h2
τU(|g0|1,τU + |g1|1,τU)2.

Second,

|((p∗
h − p(u∗

h)),u∗
h − v)U| ≤ C

∑
τU

hτU‖(p∗
h − p(u∗

h))‖0,τU(|g0|1,τU + |g1|1,τU)

≤ C‖(p∗
h − p(u∗

h))‖20,Ω + C
∑
τU

h2
τU(|g0|1,τU + |g1|1,τU)2.

Third, from the proof of Theorem 3.1,

|((p(u∗
h)− p∗),u∗

h − v)U| ≤ C‖p(u∗
h)− p(u∗)‖0,Ω‖u∗

h − v‖U

≤ C‖u∗
h − u∗‖U‖u∗

h − v‖U ≤ ε‖u∗
h − u∗‖2U + C‖u∗

h − v‖2U,

where ε is positive but can be made very small. Finally,

|(u∗
h − u∗,u∗

h − v)U| ≤ ε‖u∗
h − u∗‖2U + C‖u∗

h − v‖2U.

Therefore, we have

‖u∗ − u∗
h‖20,ΩU

≤ C

(∑
τU

h2
τU |p∗

h + u∗
h|21,τU + ‖p∗

h − p(u∗
h)‖20,Ω +

∑
τU

h2
τU(|g0|1,τU + |g1|1,τU)2

)
.

Then it follows from the proof of Theorem 3.2; we finally have

‖u∗ − u∗
h‖20,ΩU

+ ‖y∗ − y∗
h‖20,Ω + ‖p∗ − p∗

h‖20,Ω ≤ Cη2
3 ,
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with

η2
3 = η2

2 +
∑
τU

h2
τU(|g0|1,τU + |g1|1,τU)2,

η2
2 =

∑
τU

h2
τU |p∗

h + u∗
h|21,τU + η2

1 ,

and

η2
1 =

∑
τ

h4
τ

∫
τ

(∆p∗
h +∇s∗h + y∗

h − zd)
2 +

∑
l

h3
l

∫
l

[Al]
2 +

∑
τ

h2
τ

∫
τ

(divp∗
h)2

+
∑
τ

h4
τ

∫
τ

(∆y∗
h −∇r∗h + f + u∗

h)2 +
∑
l

h3
l

∫
l

[Dl]
2 +

∑
τ

h2
τ

∫
τ

(divy∗
h)2.
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1. Introduction. In this work we derive a series of new interpolation error
estimates for some well-known interpolators. These new estimates are among the key
tools in our improved a posteriori error analysis for the finite element approximation
of the p-Laplacian with Dirichlet data:

− div(|∇u|p−2∇u) = f in Ω,

u = 0 on ∂Ω,(1.1)

where 1 < p <∞ and Ω is a bounded open subset of R2 with a Lipschitz boundary ∂Ω.
This equation is viewed as one of the typical examples of a large class of nonlinear
problems—degenerate nonlinear systems. Indeed it is believed that this equation
contains most of the essential difficulties in studies of finite element approximations
for this class of degenerate nonlinear systems, where many existing techniques (such
as the linearization or deformation procedure) in the finite element method do not
seem to work well.

Finite element approximations of the p-Laplacian have been extensively studied
in the literature, and one can find some previous work, for example, in [10], [11], and
[13], and overviews of some recent work in [3], [4], [5], [16], [17], [18], and [19], where
among others, the quasi-norm approach is developed. This approach has proved quite
successful in deriving sharp a priori error bounds for the finite element approximation
of the degenerate systems. Some accounts of very recent work on the p-Laplacian can
be found in the papers [18] and [19] as well. Another important area is a posteriori
error estimation of the p-Laplacian. The work in this area seems to date back to [20],
and some of the recent work can be found in [2], [4], [8], [21], [23], and [25], where
among other things, a posteriori error estimates on the conforming and nonconforming
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discretization errors are derived with both upper and lower bounds. However, in all
the cases there are gaps in the power between the existing upper and lower estimates.

Very recently in [18] and [19], we extended the quasi-norm techniques and devel-
oped some improved a posteriori error estimators of residual type for the conforming
and nonconforming finite element approximation of the p-Laplacian. The structure
of the new estimators seems very different from all the existing ones. The estimators
are in fact shown to be equivalent up to higher order terms in the quasi norms. Initial
analysis and numerical tests indicate that the new estimators are sharper than the
existing ones, and indeed lead to more efficient computational meshes in some impor-
tant cases. However, the error estimates in [18] and [19] are not fully a posteriori in
the sense that some of the higher order terms in the error bounds contain a priori
information of the solutions and therefore are not directly computable. This draw-
back is due to the lack of suitable interpolation error estimates in the quasi norms
for the interpolators used in the papers. It is well known that suitable interpolation
error estimation for averaging interpolators is one of the key ingredients in deriving
full a posteriori error estimates of residual type for the finite element approximation
of elliptic, and indeed more general, systems. Unfortunately such results in the quasi
norms have not been available for the averaging interpolators used in the literature,
and this leads to those a priori terms in the error bounds in [18] and [19]. It is far
from straightforward to generalize the existing estimates on the interpolation error to
the quasi norms, since some unique properties of a norm are essentially needed in all
the existing proofs of the estimates.

In this work we address this very important issue. In particular, we establish a
series of new interpolation error estimates for some of the most widely used interpo-
lators in the literature. The results obtained are of their own importance. It is found
that there sometimes exist essential differences between the quasi-norm estimates and
the existing ones. We then utilized these results in deriving further improved new a
posteriori error estimates for the finite element approximation of the p-Laplacian; see
a further explanation at the end of section 2. The results and the methods developed
in this paper are applicable to more general degenerate systems.

The plan of this paper is as follows: In section 2 we state the weak formulation of
the p-Laplacian and its finite element approximation. Some important inequalities,
the definition of the quasi norm, and related results are also presented in section
2. These inequalities are among the key ingredients of the quasi-norm a priori and
a posteriori error analysis for the finite element approximation of the p-Laplacian.
In section 3 we derive some quasi-norm interpolation error estimates, which can be
viewed as the quasi-norm counterparts of some well-known results. In section 4 we
use the interpolation error estimates obtained in section 3 to derive a posteriori error
bounds for conforming and nonconforming finite element approximations of the p-
Laplacian.

2. Preliminaries. Let Ω be a bounded open set in R2 with a Lipschitz boundary
∂Ω. In this paper we adopt the standard notation Wm,q(Ω) for Sobolev spaces on
Ω with norm ‖ · ‖m,q,Ω and seminorm | · |m,q,Ω. We set Wm,q

0 (Ω) ≡ {w ∈ Wm,q(Ω) :
w|∂Ω = 0}. We denote Wm,2(Ω) by Hm(Ω) with norm ‖ · ‖m,Ω and seminorm | · |m,Ω.

Consider the p-Laplacian with zero Dirichlet data:

−div(|∇u|p−2∇u) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where 1 < p <∞ and f ∈ L2(Ω). The weak formulation of (2.1) is as follows (WP):



1872 WENBIN LIU AND NINGNING YAN

Find u ∈W 1,p
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈W 1,p
0 (Ω),(2.2)

where

a(u, v) =

∫
Ω

|∇u|p−2∇u · ∇v

and

(f, v) =

∫
Ω

fv.

It is a simple matter to show that there exists a unique solution to (WP); see [11].
We note that for sufficiently regular data, global C1,α regularity is established in [15].

Let Ωh be a polygonal approximation to Ω with the boundary ∂Ωh. Let Th be
a partitioning of Ωh into disjoint open regular simplices K, so that Ω̄h =

⋃
K∈Th K̄.

K̄ and K̄ ′ have either an empty or only one common vertex, or a whole edge if K
and K ′ ∈ Th. We further require that xi ∈ ∂Ωh ⇒ xi ∈ ∂Ω, where {xi} (i = 1 . . . J)
is the vertex set associated with the partitioning Th. Let hK denote the maximum
diameter of the element K in Th and let ρK denote the diameter of the largest ball
contained in K. We assume that there is a regularity constant R of Th such that
1 ≤ maxK∈Th(hK/ρK) ≤ R. For ease of exposition we will assume that Ωh = Ω.

Due to limited regularity for the solution of the p-Laplacian, we shall only dis-
cuss the conforming piecewise linear elements and a simple nonconforming element—
Crouzeix–Raviart—in this paper.

Conforming element. Associated with Th is a finite dimensional subspace V h of
C0(Ω̄h) such that χ|K ∈ P1 for all χ ∈ V h and K ∈ Th, where P1 is the space of
polynomials of first degree. Let

V h0 = {χ ∈ V h : χ(xi) = 0 ∀xi ∈ ∂Ωh}.
Then the finite element approximation of (WP) is as follows (WP )h: Find uh ∈ V h0
such that

a(uh, vh) = (f, vh) ∀vh ∈ V h0 ,(2.3)

where

a(uh, vh) =

∫
Ωh

|∇uh|p−2∇uh · ∇vh,

(f, vh) =

∫
Ωh

fvh.

It is a simple matter to show that (WP )h has a unique solution uh; see [11] again.
Analysis of the finite element approximation of (WP) and a priori error bounds for
this approximation were first discussed in [11] and [13]. Some of the best results are
obtained in [3].

Nonconforming element. Associated with Th is the Crouzeix–Raviart-type finite
dimensional subspace Ṽ h of L2(Ωh):

Ṽ h = {v ∈ L2(Ωh) : v|K ∈ P1 ∀K ∈ Th, v is continuous on the midpoints of edges}.
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Let

Ṽ h0 = {v ∈ Ṽ h : v = 0 on the midpoints of edges on ∂Ω}.

Note that Ṽ h0 ∈̄W 1,p
0 (Ω). The finite element approximation of (WP) is as follows

(WP )hn: Find uh ∈ Ṽ h0 such that

ah(uh, vh) = (f, vh) ∀vh ∈ Ṽ h0 ,(2.4)

where

ah(uh, vh) =
∑
K

∫
K

|∇uh|p−2∇uh · ∇vh,

(f, vh) =

∫
Ωh

fvh.

It also is a simple matter to show that (WP )hn has a unique solution uh. Analysis of the
finite element approximation of (WP) and a priori error bounds for this approximation
are discussed in [19]. In particular, the optimal a priori error bounds have been
established there.

In the following we state some inequalities which play an essential role in our
error analysis. In all these lemmas, C is a positive constant which depends only on p.
The first two lemmas have been used in our work on a priori quasi-norm error bounds
for the finite element approximation of degenerate nonlinear PDEs; see, e.g., [3], [16].
The proofs of Lemma 2.1 and 2.2 can be found in [5] and [18].

Lemma 2.1. For all p > 1, ξ, η ∈ Rn,

| |ξ|p−2ξ − |η|p−2η | ≤ C|ξ − η|(|ξ|+ |η|)p−2,(2.5)

(|ξ|p−2ξ − |η|p−2η, ξ − η) ≥ C|ξ − η|2(|ξ|+ |η|)p−2.(2.6)

Lemma 2.2. For all a, σ1, σ2 ≥ 0, p > 1, θ > 0,

(a+ σ1)
p−2σ1σ2 ≤ θ−γ(a+ σ1)

p−2σ2
1 + θ(a+ σ2)

p−2σ2
2 ,

where

γ =




1, 1 < p ≤ 2, θ ∈ [1,∞) or 2 < p <∞, θ ∈ (0, 1),

1

p− 1
, 1 < p ≤ 2, θ ∈ (0, 1) or 2 < p <∞, θ ∈ [1,∞).

The following lemma is essential for estimating a bilinear form via the quasi
norms. It can be viewed as a generalization of the Young inequality where a = 0. A
proof can be found in [18].

Lemma 2.3. For all a, σ1, σ2 ≥ 0, p > 1, and δ > 0,

σ1σ2 ≤ δ−β(ap−1 + σ1)
p′−2σ2

1 + δ(a+ σ2)
p−2σ2

2 ,

where β is such that δ−β = max{δ−1, δ−
1

p−1 }, and p′ is such that 1
p + 1

p′ = 1.
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The following two lemmas will be used to prove some triangle inequality-like
results for a power of the quasi norms. They have been proved in [18].

Lemma 2.4. For all 1 < p <∞, σ1, σ2 ∈ Rn, and a ≥ 0,

(a+ |σ1 + σ2|)p−2|σ1 + σ2|2 ≤ C(a+ |σ1|)p−2|σ1|2 + C(a+ |σ2|)p−2|σ2|2.
Lemma 2.5. For all 1 < p <∞ and σ, σ1, σ2 ∈ Rn,

(|σ1|+ |σ2|)p−2|σ1−σ2|2 ≤ C(|σ|+ |σ−σ1|)p−2|σ−σ1|2+C(|σ|+ |σ−σ2|)p−2|σ−σ2|2.
One of the key ideas in our approach is to introduce some quasi norms to handle

the possible degeneracy of the p-Laplacian in order to obtain sharp error bounds. Let
us try to explain the main motivation of the method. A norm may be considered
to be a “straight ruler” or measure in a linear space. It can handle the smooth
nonlinear problems that can be linearized. However, a standard Sobolev norm may
not be able to give sharp estimation for the errors of the finite element approximation
of some nonlinear equations where, for instance, the locations of degeneracy points
of the equations are solution dependent, since it has to assume the worst scenario
that there exists the degeneracy everywhere. The type of the equation studied here,
which may be degenerate and highly nonlinear, falls into this category. Naturally
some “curved” solution dependent rulers or distances may have to be introduced to
handle the degeneracy adaptively in order to present more accurate error analysis for
the finite element approximation of the equation. Furthermore, these “rulers” should
be consistent with the special structure of the equation studied, in particular, both
monotone and continuous, see (2.11) and (2.12), and thus equivalent to the energy
difference. In the case of the p-Laplacian, these rulers (or some of their powers)
happen to be quasi norms. This idea has been widely used in our work; see [16], [18],
and [19]. As seen later, this idea is also essential in deriving improved a posteriori
error estimates for the p-Laplacian. In the following we very briefly introduce such
a quasi-norm and some relations between it and the standard Sobolev norms. Let
W 1,p(Ω, Th) ≡ {v ∈ Lp(Ω) : v|K ∈W 1,p(K)} ∀K ∈ Th}. Let

‖v‖1,p,Ω,Th =


 ∑
K∈Th

‖v‖p1,p,K




1/p

and

|v|1,p,Ω,Th =


 ∑
K∈Th

|v|p1,p,K




1/p

.

Let w ∈W 1,p(Ω, Th). Similarly as in [19], we define for any v ∈W 1,p(Ω, Th)

|v|2(w,p) ≡
∑
K∈Th

∫
K

|∇v|2(|∇w|+ |∇v|)(p−2).(2.7)

Remark 2.1. It is easy to see that when v ∈ W 1,p(Ω), ‖v‖1,p,Ω,Th = ‖v‖1,p,Ω,
|v|1,p,Ω,Th = |v|1,p,Ω, and

∑
K∈Th

∫
K

(|∇w|+ |∇v|)p−2|∇v|2 =

∫
Ωh

(|∇w|+ |∇v|)p−2|∇v|2
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if w, v ∈ W 1,p(Ω). The quasi norm on the right side has been introduced in [3] and
[18] to study (WP )h.

We have the following proposition.
Proposition 2.6. (i) |v|(w,p) ≥ 0, and when v ∈ W 1,p

0 (Ω), |v|(w,p) = 0 if and

only if v = 0. (ii) |v1 + v2|(w,p) ≤ C(|v1|(w,p) + |v2|(w,p)) for any v1, v2 ∈W 1,p(Ω, Th),
where C depends only on p.

Furthermore for 1 < p ≤ 2, we have

|v|1,p,Ω,Th ≤ C(1 + |w|1,p,Ω,Th + |v|1,p,Ω,Th)(2−p)/2|v|(w,p),(2.8)

|v|2(w,p) ≤
∑
K∈Th

|v|p1,p,K = |v|p
1,p,Ω,Th ,(2.9)

and for 2 ≤ p <∞,
|v|p

1,p,Ω,Th ≤ ‖v‖2(w,p) ≤ C(1 + |w|1,r,Ω,Th + |v|1,r,Ω,Th)(p−2)/2|v|21,s,Ω,Th ,(2.10)

where s ∈ [2, p], r = s(2− p)/(2− s).
The conclusion (ii) can be easily proved by Lemma 2.4. The rest of the proposition

can be shown similarly as in [5].
Although in a priori error analysis we almost always take w to be u, the solution

of (WP), it is sometimes desirable to replace it with uh (see [18]) in a posteriori
error analysis, where uh is the finite element approximation of u, in order to make
the quasi-norm “computable.” It follows from the triangle inequality that there are
constants c, C > 0, independent of h such that

c|u− uh|(u,p) ≤ |u− uh|(uh,p) ≤ C|u− uh|(u,p).
We shall simply write | · |(u,p) as | · |(p) when no confusion is likely caused.

The essential relations between the quasi norm and the equation are reflected in
the following inequalities, which follow from Lemmas 2.1 and 2.2 (see [4] for a proof).
Let u be the solution of (WP). For any v ∈W 1,p(Ω),

a(u, u− v)− a(v, u− v) ≥ C|u− v|2(u,p),(2.11)

and for any θ > 0,

|a(u,w)− a(v, w)| ≤ Cθ−γ |u− v|2(u,p) + Cθ|w|2(u,p) ∀v, w ∈W 1,p(Ω),(2.12)

where the constant γ > 0 is defined in Lemma 2.2. It follows from (2.11) and (2.12)
that there are constants c, C > 0 such that for any u, v ∈W 1,p(Ω)

c(a(u, v − u)− a(v, u− v)) ≤ |u− v|2(u,p) ≤ C(a(u, u− v)− a(v, u− v)).

Thus the quasi norm is naturally related to the total energy difference a(u, u − v) −
a(v, u− v).

The relations (2.11) and (2.12) are important to prove the optimal a priori error
bound in the quasi norm. For instance, for the conforming piecewise linear finite
element solution uh of the p-Laplacian, we have (see [3] and [16])

|u− uh|2(p) ≤ C min
vh∈V h

0

|u− vh|2(p) ≤ Ch2
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provided u is smooth enough. Thus when 1 < p ≤ 2, for instance, one has the optimal
a priori error bound in the W 1,p norm:

‖u− uh‖1,p,Ω ≤ C|u− uh|(p) ≤ Ch,

when u is smooth enough.
In [18] and [19], the quasi norm has been used to obtain improved a posteriori

error estimators for the p-Laplacian. For instance, let uh be the piecewise linear
conforming finite element approximation of the p-Laplacian. Then

c(η2
1 + η2

2) + cε1 ≤ |u− uh|2(p) ≤ C(η2
1 + η2

2) + Cε2,

where η1, η2 are defined in section 4, and ε1, ε2 are some higher order terms for smooth
f and the smooth solutions, though ε2 is not directly computable. The readers are
referred to [18] and [19] for the details. However, it is not clear if ε2 is always negligible.
Thus the above estimators may not be fully reliable. This is an annoying theoretical
problem, as logically one wishes to be assured that one’s estimators are always reliable
and at least efficient for the smooth data. In this paper, we shall derive new a
posteriori error estimates, which are fully reliable. We will discuss and interpret these
estimates in Remark 4.1 and Remark 4.3.

In the next section, we shall derive some important interpolation error estimates
in the quasi norm for some well-known averaging interpolators, which are among the
keys to our improved estimates.

3. Interpolation error estimates. In this section, we shall establish some
interpolation error estimates in the quasi norm, which are essential in our a posteriori
error analysis for the p-Laplacian. Some of the relevant ideas can be found in [9], [18],
and [19]. First, let us prove a lemma which is a quasi-norm version of the inequalities
of the Poincare type. The following proof was adopted from [9].

Lemma 3.1. Let Ω be a nonempty bounded connected open set in R2. Let 1 <
p < ∞ and f ∈ (W 1,p(Ω))∗ with R ∩ Ker(f) = {0}. Then there exists a constant
C = C(f, p,Ω) such that, for all a ∈ R, a ≥ 0, and v ∈W 1,p(Ω),∫

Ω

(a+ |v|)p−2|v|2dx ≤ C(a+ |f(v)|)p−2|f(v)|2 + C

∫
Ω

(a+ |∇v|)p−2|∇v|2 dx.

Proof. We first introduce the following notation to simplify the proof. For x, y ≥ 0,
1 < p <∞, let

G(x, y) :=

{
y2(x+ y)p−2 if x+ y > 0,
0 if x = y = 0.

(3.1)

Then the lemma states that there exists a constant C = C(f, p,Ω) such that, for all
a ≥ 0 and for all v ∈W 1,p(Ω),∫

Ω

G(a, |v|) dx ≤ C G(a, |f(v)|) + C

∫
Ω

G(a, |∇v|) dx.(3.2)

Note that G(x, y) is monotone increasing and convex with respect to the variable y.
We argue by contradiction and suppose that (3.2) is false. Then there would exist

a sequence vj in W 1,p(Ω) with δj := ‖vj‖1,q,Ω > 0, q = min{2, p}, and a sequence aj
of nonnegative real numbers such that

G(aj , |f(vj)|) +

∫
Ω

G(aj , |∇vj |) dx ≤ 1

j

∫
Ω

G(aj , |vj |) dx(3.3)
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for all j ∈ N . We observe in any case that there exists a u ∈W 1,q(Ω) with

uj :=
vj
δj

satisfies ‖uj‖1,q,Ω = 1, uj ⇀ u in W 1,q(Ω).(3.4)

Here we have chosen a weak convergent subsequence with the Banach–Alaoglu theo-
rem. In the first case we suppose that there exists a constant γ, 0 < γ <∞, with

aj ≤ γ δj for j = 1, 2, 3, . . . .(3.5)

At least we suppose (3.5) for a subsequence we have not relabelled. If 1 < p ≤ 2, then
G(a, x) ≤ xp for all x ≥ 0. Therefore,∫

Ω

G

(
aj
δj
, |uj |

)
dx ≤ ‖uj‖p0,p,Ω ≤ 1

even without (3.5). If 2 ≤ p, then G(·, |uj |) is monotone increasing. Hence, (3.4)–(3.5)
yield ∫

Ω

G

(
aj
δj
, |uj |

)
dx ≤

∫
Ω

(γ + |uj |)p−2|uj |2 dx

≤ ‖γ + |uj |‖p0,p,Ω ≤ (1 + γ|Ω| 1p )p.
Hence, for all 1 < p < ∞,

∫
Ω
G(aj/δj , |uj |) dx is bounded. A scaling of (3.3) then

shows

lim
j→∞

∫
Ω

G

(
aj
δj
, |∇uj |

)
dx = lim

j→∞
G

(
aj
δj
, |f(uj)|

)
= 0.(3.6)

If 1 < p ≤ 2, a Hölder inequality with exponents 2/p and 2/(2− p) leads to

‖∇uj‖p0,p,Ω =

∫
Ω

|∇uj |p
(
aj
δj

+ |∇uj |
) p(p−2)

2
(
aj
δj

+ |∇uj |
) p(2−p)

2

dx

≤
(∫

Ω

G

(
aj
δj
, |∇uj |

)
dx

) p
2
(∫

Ω

(
aj
δj

+ |∇uj |
)p

dx

)1− p
2

.(3.7)

The last factor is bounded as j →∞ by (3.4)–(3.5) and the second last tends to zero
by (3.6). Again, for 1 < p ≤ 2 (when G(·, |f(uj)|) is monotone decreasing), (3.6)
shows that G(γ, |f(uj)|) tends to zero and, hence, so does |f(uj)|. Consequently,

lim
j→∞

‖∇uj‖0,q,Ω = lim
j→∞

|f(uj)| = 0.(3.8)

So far we established (3.8) for 1 < p ≤ 2. For 2 < p < ∞, |∇uj |p ≤ G(aj/δj , |∇uj |)
and |f(uj)|p ≤ G(aj/δj , |f(uj)|), and so (3.6) implies (3.8) directly. From (3.8) we
deduce a contradiction to (3.4): Since W 1,q(Ω) is compactly embedded in Lq(Ω),
we have uj → u in Lq(Ω). With (3.8), uj → u in W 1,q(Ω) and so ‖u‖1,q,Ω = 1.
Conversely, u is constant (as ∇uj → 0 in Lq(Ω)). Since f is a bounded linear form,
f(uj)→ f(u) and f(u) = 0. Since u ∈ R ∩Kerf , we have u = 0. This contradiction
with ‖u‖1,q,Ω = 1 concludes (3.2) in case (3.5).

In the remaining second case we suppose that aj/δj is not bounded (not even for
a subsequence). Hence, limj→∞(aj/δj) = +∞. One can assume that

δj ≤ γ aj for q = min{2, p} and for j = 1, 2, 3, . . .(3.9)
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for a constant γ (and at least for sufficiently large j which we have not relabelled). If
1 < p ≤ 2, we use (1 + (δj/aj)|uj |)p−2 ≤ 1. If 2 ≤ p < ∞, we use δj/aj ≤ γ. This
leads to

1

j

∫
Ω

(
1 +

δj
aj
|uj |
)p−2

|uj |2 dx(3.10)

≤




1

j
‖uj‖20,2,Ω if 1 < p ≤ 2,

1

j
γp−2

(
1

γ
|Ω|1/p + ‖uj‖0,p,Ω

)p
if 2 ≤ p <∞.

Since q = min{2, p} and ‖uj‖1,q,Ω = 1, we conclude that (3.10) tends to zero as j →∞
from embedding. A scaling of (3.3) therefore yields

lim
j→∞

∫
Ω

(
1 +

δj
aj
|∇uj |

)p−2

|∇uj |2 dx(3.11)

= lim
j→∞

(
1 +

δj
aj
|f(uj)|

)p−2

|f(uj)|2 = 0.

If 2 ≤ p <∞, we directly deduce (3.8) for q = 2 and finish the proof of (3.2) as in the
first case since ‖uj‖1,2,Ω = 1. If 1 < p ≤ 2, we argue with a Hölder inequality analogy
to (3.7) and infer

‖∇uj‖20,p,Ω ≤
∫

Ω

(
1 +

δj
aj
|∇uj |

)p−2

|∇uj |2 dx
(∫

Ω

(
1 +

δj
aj
|∇uj |

)p
dx

) 2−p
p

.

The last factor is bounded according to (3.9) and ‖uj‖1,p,Ω = 1. This and (3.11) show
(3.8) with p = q ≤ 2. (3.2) then follows as in the first case. Hence, Lemma 3.1 follows.

Corollary 3.2. Let Ω be a nonempty bounded connected open set in R2. Then,
for any a ≥ 0, v ∈ W 1,p(Ω), and p > 1, there exists a constant C, which is only
dependent on Ω and p, such that

inf
q∈R

∫
Ω

(a+ |v + q|)p−2|v + q|2 ≤ C

∫
Ω

(a+ |∇v|)p−2|∇v|2.

Proof. It follows from (3.2) that for given p > 1 and f ∈ (W 1,p(Ω))∗ with
R∩Ker(f) = {0} there exists a constant C = C(f, p,Ω) such that for all v ∈W 1,p(Ω),
q ∈ R, ∫

Ω

(a+ |v + q|)p−2|v + q|2 +

∫
Ω

(a+ |∇(v + q)|)p−2|∇(v + q)|2

≤ C

(∫
Ω

(a+ |∇(v + q)|)p−2|∇(v + q)|2 + (a+ |f(v + q)|)p−2|f(v + q)|2
)
.

Let us take a fixed linear functional f (say, f(v) =
∫
Ω
v). Note that there exists a

q∗(v) ∈ R such that f(v + q∗) = 0. Then, we have

inf
q∈R

{∫
Ω

(a+ |v + q|)p−2|v + q|2 +

∫
Ω

(a+ |∇(v + q)|)p−2|∇(v + q)|2
}



QUASI-NORM A POSTERIORI ERROR ESTIMATES FOR p-LAPLACIAN 1879

≤
∫

Ω

(a+ |v + q∗|)p−2|v + q∗|2 +

∫
Ω

(a+ |∇(v + q∗)|)p−2|∇(v + q∗)|2

≤ C

(∫
Ω

(a+ |∇(v + q∗)|)p−2|∇(v + q∗)|2 + (a+ |f(v + q∗)|)p−2|f(v + q∗)|2
)

= C

∫
Ω

(a+ |∇(v + q∗)|)p−2|∇(v + q∗)|2 = C

∫
Ω

(a+ |∇v|)p−2|∇v|2.

Hence, Corollary 3.2 follows.
Thanks to the above lemma and its corollary, now we can prove new quasi-norm

interpolation error estimates for some finite element spaces.
First, let us consider the nonconforming finite element—Crouzeix–Raviart

element—space Ṽ h. An interpolation operator π̃h from W 1,1(K) to Ṽ h is defined
(see [12] and [24] for examples) such that for any w ∈W 1,1(K), π̃hw|K ∈ P1 and∫

li

π̃hw =

∫
li

w, i = 1, 2, 3,

where li are the edges of the element K. For the above interpolation, we have the
following interpolation error estimate.

Theorem 3.3. Let π̃h be the interpolation operator defined as above. For all
K ∈ Th, v ∈W 1,p(K), and p > 1, one has∫

K

(|∇uh|+ h−1
K |v − π̃hv|)p−2h−2

K |v − π̃hv|2 ≤ C

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2(3.12)

and ∫
K

(|∇uh|+ |∇(v − π̃hv)|)p−2|∇(v − π̃hv)|2 ≤ C

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2 .(3.13)

Proof. Let K̂ be a reference element of K; it is easy to see that∫
K

(|∇uh|+h−1
K |v−π̃hv|)p−2h−2

K |v−π̃hv|2 ≤ Ch2−p
K

∫
K̂

(|∇uh|+|v−π̃hv|)p−2|v−π̃hv|2.

Note that for all q ∈ R, π̃hq = q. It follows from Lemma 2.4 that∫
K

(|∇uh|+ h−1
K |v − π̃hv|)p−2h−2

K |v − π̃hv|2

≤ Ch2−p
K inf

q∈R

{∫
K̂

(|∇uh|+ |(I − π̃h)(v + q)|)p−2|(I − π̃h)(v + q)|2
}

(3.14)

≤ Ch2−p
K inf

q∈R

{∫
K̂

(|∇uh|+ |v + q|)p−2|v + q|2

+

∫
K̂

(|∇uh|+ |π̃h(v + q)|)p−2|π̃h(v + q)|2
}
.

Note that by the definition of π̃h and a trace theorem,∫
K̂

(|∇uh|+ |π̃h(v + q)|)p−2|π̃h(v + q)|2

≤
3∑
i=1

Ci

∫
K̂

(
|∇uh|+

∫
li

|v + q|
)p−2(∫

li

|v + q|
)2
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≤
3∑
i=1

Ci

∫
K̂

(
|∇uh|+

∫
K̂

|v + q|+
∫
K̂

|∇(v + q)|
)p−2(∫

K̂

|v + q|+
∫
K̂

|∇(v + q)|
)2

≤ C

(∫
K̂

(
|∇uh|+

∫
K̂

|v + q|
)p−2(∫

K̂

|v + q|
)2

+

∫
K̂

(
|∇uh|+

∫
K̂

|∇(v + q)|
)p−2(∫

K̂

|∇(v + q)|
)2)

.

Let s(x) = (a + x)p−2x2. Then it can be shown that s(x) is increasing on [0,∞) for
any a ≥ 0 and is further a convex continuous function on [0,∞). Therefore it follows
from the integral form of the Jensen inequality that

meas(K̂)s

(∫
K̂

r

)
≤
∫
K̂

s(meas(K̂)r).(3.15)

Note that there exist constants c and C such that c ≤ meas(K̂) ≤ C. Then applying
the Jensen inequality, we have that∫

K̂

(|∇uh|+ |π̃h(v + q)|)p−2|π̃h(v + q)|2

≤ C

(∫
K̂

(|∇uh|+ |v + q|)p−2|v + q|2 +

∫
K̂

(|∇uh|+ |∇(v + q)|)p−2|∇(v + q)|2
)
.

Hence by (3.14) and Corollary 3.2, we have that∫
K

(|∇uh|+ h−1
K |v − π̃hv|)p−2h−2

K |v − π̃hv|2

≤ Ch2−p
K inf

q∈R

{∫
K̂

(|∇uh|+ |v + q|)p−2|v + q|2

+

∫
K̂

(|∇uh|+ |∇(v + q)|)p−2|∇(v + q)|2
}

≤ Ch2−p
K

∫
K̂

(|∇uh|+ |∇v|)p−2|∇v|2 ≤ Ch2−p
K h−2

K hpK

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2

= C

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2 .

This proves (3.12). The estimate (3.13) can be proved similarly.
Now let us consider the conforming finite element space. Let πh be the average

interpolator defined in [22] from H1(Ω) to V h (or from H1
0 (Ω) to V h0 ); see [22] for

details. For this average interpolator, we have the following quasi-norm interpolation
error estimates.

Theorem 3.4. Let πh be the average interpolation operator defined in [22]. Then,
for all p > 1, constant a ≥ 0, K ∈ Th, and v ∈W 1,p(Ω), one has∫

K

(a+ h−1
K |v − πhv|)p−2h−2

K |v − πhv|2 ≤ C
∑

K̄′∩K̄ 	=∅

∫
K′

(a+ |∇v|)p−2|∇v|2(3.16)

and ∫
K

(a+ |∇(v − πhv)|)p−2|∇(v − πhv)|2 ≤ C
∑

K̄′∩K̄ 	=∅

∫
K′

(a+ |∇v|)p−2|∇v|2 ,(3.17)
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where the constant C depends only on Ω and p.
Proof. Let

Si = {∪K ′ : K ′ ∈ Th, K̄ ′ ∩ xi �= ∅},

where xi, i = 1, 2, 3, are the vertices of the element K. Let Ŝi and K̂ be reference
elements of Si and K, respectively, q ∈ R. By the definition of interpolation πh and
Lemma 2.4, we have that∫

K̂

(a+ |πh(v + q)|)p−2|πh(v + q)|2

≤
3∑
i=1

Ci

∫
K̂

(
a+

∫
Ŝi

|v + q|+
∫
Ŝi

|∇(v + q)|
)p−2(∫

Ŝi

|v + q|+
∫
Ŝi

|∇(v + q)|
)2

≤ C

3∑
i=1

∫
K̂

(
a+

∫
Ŝi

|v + q|
)p−2(∫

Ŝi

|v + q|
)2

+ C

3∑
i=1

∫
K̂

(
a+

∫
Ŝi

|∇(v + q)|
)p+2(∫

Ŝi

|∇(v + q)|
)2

.

Using the Jensen inequality (3.15), we have that

∫
K̂

(
a+

∫
Ŝi

|v + q|
)p−2(∫

Ŝi

|v + q|
)2

≤ C

∫
Ŝi

(a+ |v + q|)p+2|v + q|2

and∫
K̂

(
a+

∫
Ŝi

|∇(v + q)|
)p−2(∫

Ŝi

|∇(v + q)|
)2

≤ C

∫
Ŝi

(a+ |∇(v+ q)|)p+2|∇(v+ q)|2.

Hence, ∫
K̂

(a+ |πh(v + q)|)p−2|πh(v + q)|2

≤ C

3∑
i=1

(∫
Ŝi

(a+ |v + q|)p−2|v + q|2 +

∫
Ŝi

(a+ |∇(v + q)|)p−2|∇(v + q)|2
)
.

Note that for all q ∈ R, πhq = q and ∪3
i=1Si is a bounded open set and meas(K) =

O(h2
K)meas(K̂). Then, similarly as in the proof of Theorem 3.3, we have that (using

Corollary 3.2)∫
K

(a+ h−1
K |v − πhv|)p−2h−2

K |v − πhv|2dx

≤ C

∫
K̂

(a+ h−1
K |v − πhv|)p−2|v − πhv|2dx̂

≤ Ch2−p
K

∫
K̂

(hKa+ |v − πhv|)p−2|v − πhv|2

≤ Ch2−p
K inf

q∈R

{∫
K̂

(hKa+ |(I − πh)(v + q)|)p−2|(I − πh)(v + q)|2
}
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≤ Ch2−p
K inf

q∈R

{∫
K̂

(hKa+ |v + q|)p−2|v + q|2

+

∫
K̂

(hKa+ |πh(v + q)|)p−2|πh(v + q)|2
}

≤ Ch2−p
K inf

q∈R

{ 3∑
i=0

∫
Ŝi

(hKa+ |v + q|)p−2|v + q|2

+

∫
Ŝi

(hKa+ |∇(v + q)|)p−2|∇(v + q)|2)
}

≤ Ch2−p
K inf

q∈R

{ ∑
K̄∩K̄′ 	=∅

∫
K̂′

(hKa+ |v + q|)p−2|v + q|2

+

∫
K̂′

(hKa+ |∇(v + q)|)p−2|∇(v + q)|2)
}

≤ Ch2−p
K

∑
K̄∩K̄′ 	=∅

∫
K̂′

(hKa+ |∇v|)p−2|∇v|2

≤ Ch2−p
K h−2

K hpK
∑

K̄∩K̄′ 	=∅

∫
K′

(a+ |∇v|)p−2|∇v|2

≤ C
∑

K̄′∩K̄ 	=∅

∫
K′

(a+ |∇v|)p−2|∇v|2.

This proves (3.16). The estimate (3.17) can be proved similarly.

However, in deriving a posteriori error estimates for the conforming finite element
approximation of the p-Laplacian, a (= |∇uh|) is generally different on different el-
ements. Thus Theorem 3.4 has to be generalized to accommodate the interactions
across the elements.

To this end, we first introduce some notations, as in [18] and [19]. Let uh ∈ V h.
Let l be an edge of an element K ∈ Th. If l is on the boundary of Ωh, then we define
the element Klmax = Klmin = K. Otherwise let l = K̄1

l ∩K̄2
l , where K1

l ,K
2
l are the two

elements sharing the common face l. Then we define the element Klmax(K
l
min) = Kil

(i = 1 or 2) such that

|∇uh|p−2
Kl

max
= max
i=1,2
{|∇uh|p−2

Ki
l

},

|∇uh|p−2

Kl
min

= min
i=1,2
{|∇uh|p−2

Ki
l

}.

We will take Klmax = Klmin = K1
l just for fixing the idea if |∇uh|p−2

K1
l

= |∇uh|p−2
K2

l

.

Let [w]l = w|K1
l
− w|K2

l
. The purpose of introducing Kmin and Kmax is to make

some estimators (like η below) sharper. We shall come back to this point at the
end of section 4. Using Theorem 3.4, we shall derive two important interpolation
error estimates for the conforming piecewise linear finite element which are stated in
Theorems 3.3 and 3.4 and will be used in the proofs of Theorems 4.1 and 4.2. We
first need a simple proposition, which was adopted from [9].

Proposition 3.5. Let G(x, y) be defined in (3.1). For all a1, a2, . . . , an ∈ R2,
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where n is a given positive integer, there exists a constant C = C(p, n) such that

n∑
j=1

j−1∑
k=1

G(|aj |, |aj − ak|) ≤ C

n−1∑
�=1

min
m=1,...,n

G(|am|, |a�+1 − a�|).(3.18)

Proof. Let α := (a1+· · ·+an)/n ∈ R2 and bj := aj−α ∈ R2 so that b1+· · ·+bn =
0. Define

f(α; b1, . . . , bn) :=

n∑
j=1

j−1∑
k=1

G(|α+ bj |, |bj − bk|),

g(α; b1, . . . , bn) :=

n−1∑
�=1

min
m=1,...,n

G(|α+ bm|, |b�+1 − b�|).

Observe that g(α, ·) is positive for nonzero arguments on

X := {(b1, . . . , bn) ∈ R2×n : b1 + · · ·+ bn = 0}
since g(α; b1, . . . , bn) = 0 implies b1 = b2 = . . . = bn. Let B := {(b1, . . . , bn) ∈ X :
|b1|2 + · · ·+ |bn|2 = 1} denote the unit ball surface in X. Then, for any β ∈ R2,

c(β) := max
(b1,...,bn)∈B

f(β; b1, . . . , bn)/g(β; b1, . . . , bn) <∞

since the denominator is positive and f(α; ·), g(α; ·) are continuous on the compact
set B. The same argument shows

c∞ := max
(b1,...,bn)∈X\{0}

n∑
j=1

j−1∑
k=1

|bj − bk|2/
n−1∑
�=1

|b�+1 − b�|2 <∞.

Note that lim sup|β|→∞ c(β) ≤ c∞ <∞, and so c(β) is a bounded continuous function

in β ∈ R2. For all a1, . . . , an ∈ R2, we have α ∈ R2, and (b1, . . . , bn) ∈ X as above.
Since f and g are positively homogeneous functions, we have, for λ := (|b1|2 + · · · +
|bn|2)1/2 > 0,

f(α; b1, . . . , bn) = λpf(α/λ; b1/λ, . . . , bn/λ)

≤ Cλpg(α/λ, b1/λ, . . . , bn/λ) = Cg(α; b1, . . . , bn),

where C is only dependent on p and n. This proves our conclusion.
Theorem 3.6. Let uh ∈ V h. Under the conditions of Theorem 3.2,

∑
K

∫
K

(|∇uh|+ h−1
K |v − πv|)p−2h−2

K |v − πv|2(3.19)

≤ C
∑
K

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2 + Cη2,

∑
K

∫
K

(|∇uh|+ |∇(v − πv)|)p−2|∇(v − πv)|2(3.20)

≤ C
∑
K

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2 + Cη2,
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where ∂uh∂n is the normal derivative of uh, and

η2 =
∑
l

∫
Kl

min

(
|∇uh|+

∣∣∣∣
[
∂uh
∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n

]
l

∣∣∣∣
2

.

Proof. Note that for all a ≥ 0, p > 1, (a + x)p−2x2 is a convex function, and for
any real number a, b,

1

2
(|a|+ |b|) ≤ |a|+ |a+ b| ≤ 2(|a|+ |b|).(3.21)

It follows from Theorem 3.4, Lemma 2.4, and (3.21) that

(3.22)∑
K

∫
K

(|∇uh|+ h−1
K |v − πv|)p−2h−2

K |v − πv|2

≤ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|K + |∇v|)p−2|∇v|2

≤ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|K + |∇v|+ |∇(uh − uh|K)|)p−2(|∇v|+ |∇(uh − uh|K)|)2

≤ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|+ |∇v|+ |∇(uh − uh|K)|)p−2(|∇v|+ |∇(uh − uh|K)|)2

≤ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|+ |∇v|)p−2|∇v|2

+ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|+ |∇(uh − uh|K)|)p−2|∇(uh − uh|K)|2

≤ C
∑
K

∫
K

(|∇uh|+ |∇v|)p−2(|∇v|)2

+ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|+ |∇(uh − uh|K)|)p−2|∇(uh − uh|K)|2.

We now apply Proposition 3.5. Let aj = ∇uh|Kj with K1 ∪K2 ∪ · · · ∪Kn = {K ′ ∈
Th : K̄ ′ ∩ K̄ �= ∅}. Then n is finite because that Th is regular. Therefore, it follows
from (3.18) that∑

K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|+ |∇(uh − uh|K)|)p−2|∇(uh − uh|K)|2

≤ C
∑
l

∫
Kl

min

(|∇uh|+ |[∇uh]l|)p−2|[∇uh]l|2.

Note that ∂uh
∂t |l is continuous, where t is the tangent direction of l. We have that

[∂uh∂n ]|l = [∇uh]|l. Hence,∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|+ |∇(uh − uh|K)|)p−2|∇(uh − uh|K)|2

≤ C
∑
l

∫
Kl

min

(
|∇uh|+

∣∣∣∣
[
∂uh
∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n

]
l

∣∣∣∣
2

= Cη2.(3.23)
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Then (3.19) follows from (3.22) and (3.23). The estimate (3.20) can be proved simi-
larly.

The following result is the dual version of Theorem 3.6.
Theorem 3.7. Let uh ∈ V h. Under the conditions of Theorem 3.4,

∑
K

∫
K

(|∇uh|p−1 + h−1
K |v − πv|)p′−2h−2

K |v − πv|2

≤ C
∑
K

∫
K

(|∇uh|p−1 + |∇v|)p′−2|∇v|2 + Cη̃2,(3.24)

∑
K

∫
K

(|∇uh|p−1 + |∇(v − πv)|)p′−2|∇(v − πv)|2

≤ C
∑
K

∫
K

(|∇uh|p−1 + |∇v|)p′−2|∇v|2 + Cη̃2,(3.25)

where

η̃2 =
∑
l

∫
Kl

max

(|∇uh|p−1 + |[|∇uh|p−2∇uh]l|)p′−2|[|∇uh|p−2∇uh]l|2.

Proof. Similarly as in the proof Theorem 3.6, it follows from Theorem 3.4 that

∑
K

∫
K

(|∇uh|p−1 + h−1
K |v − πv|)p′−2h−2

K |v − πv|2

≤ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|p−1
K + |∇v|)p′−2|∇v|2

≤ C
∑
K

∫
K

(|∇uh|p−1 + |∇v|)p′−2(|∇v|)2(3.26)

+ C
∑
K

∑
K̄∩K̄′ 	=∅

∫
K′

(|∇uh|p−1 + | |∇uh|p−1
K′ − |∇uh|p−1

K |)p′−2

× | |∇uh|p−1
K′ − |∇uh|p−1

K |2.

Let aj = |∇uh|p−2∇uh|Kj
. Using Proposition 3.5 and

| |∇uh|p−1
K′ − |∇uh|p−1

K | ≤ | |∇uh|p−2∇uh|K′ − |∇uh|p−2∇uh|K |,

we have that∫
K′

(|∇uh|p−1 + | |∇uh|p−1
K′ − |∇uh|p−1

K |)p′−2| |∇uh|p−1
K′ − |∇uh|p−1

K |2

≤
∫
K′

(|∇uh|p−1 + | |∇uh|p−2∇uh|K′ − |∇uh|p−2∇uh|K |)p′−2

× | |∇uh|p−2∇uh|K′ − |∇uh|p−2∇uh|K |2(3.27)

≤ C

m∑
i=1

∫
K

li
max

(|∇uh|p−1 + |[|∇uh|p−2∇uh]li |)p
′−2|[|∇uh|p−2∇uh]li |2 = η̃2.



1886 WENBIN LIU AND NINGNING YAN

Then (3.24) follows from (3.26) and (3.27). The estimate (3.25) can be proved simi-
larly.

Next is a well-known trace theorem.
Lemma 3.8 (see [14]). For all v ∈W 1,q(K), 1 ≤ q <∞,

‖v‖0,q,∂K ≤ C(h
− 1

q

K ‖v‖0,q,K + h
1− 1

q

K |v|1,q,K).(3.28)

We need another lemma which is the quasi-norm version trace theorem for piece-
wise polynomials.

Lemma 3.9. Let K ∈ Th and v be an s-degree polynomial with s ≤ k, where k is
a fixed nonnegative integer. Then

hK

∫
∂K

(|∇uh|+ |∇v|)p−2|∇v|2 ≤ C

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2,(3.29)

where the constant C depends only on k, the maximum degree of the polynomials, and
the regularity constant of Th.

Proof. Because v is a polynomial in K, by an inverse inequality, we have that for
any x ∈ K,

|∇v(x)| ≤ |v|1,∞,K ≤ Ch−2
K

∫
K

|∇v| .

Therefore, it follows from the Jensen inequality (3.15) that

hK

∫
∂K

(|∇uh|+ |∇v|)p−2|∇v|2

≤ Ch2
K

(
|∇uh|+

∫
K

Ch−2
K |∇v|

)p−2(∫
K

Ch−2
K |∇v|

)2

≤ C

∫
K

(|∇uh|+ |∇v|)p−2|∇v|2 .

This proves (3.29).

4. Applications for a posteriori error estimates. As applications of Theo-
rems 3.3–3.7, we derive a posteriori error estimates for the finite element approxima-
tions of the p-Laplacian.

4.1. Conforming finite element. Let the finite element space V h0 be the stan-
dard conforming piecewise linear triangular element defined in section 2. Using the
quasi-norm interpolation error estimates in section 3, we can prove the following a
posteriori error bounds.

Theorem 4.1. Let u and uh be the solutions of (2.2) and (2.3), respectively. Let
p > 1 and p′ > 1 be such that 1

p + 1
p′ = 1. Assume that f ∈ Lp

′
(Ω). Then, there is a

δ0 > 0 for all 0 < δ ≤ δ0 such that

|u− uh|2(p) ≤ C(δ)(η2
1 + η2

2) + Cδη2,(4.1)

η2
1 + η2

2 ≤ C|u− uh|2(p) + Cε2,(4.2)

with

|u− uh|2(p) =

∫
Ω

(|∇uh|+ |∇(u− uh)|)p−2|∇(u− uh)|2,
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η2
1 =

∑
K

∫
K

(|∇uh|p−1 + hK |f |)p′−2h2
K |f |2,

η2
2 =

∑
l

∫
Kl

max

(|∇uh|p−1 + |Al|)p′−2A2
l ,

η2 =
∑
l

∫
Kl

min

(
|∇uh|+

∣∣∣∣
[
∂uh
∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n

]
l

∣∣∣∣
2

,

ε2 =
∑
K

∫
K

(|∇uh|p−1 + hK |f − f̄ |)p′−2h2
K |f − f̄ |2,

where f̄ |K =
∫
K
f/|K|, and Al is the jump of the p-normal derivative of uh over the

interior edge l = K̄1
l ∩ K̄2

l , defined by

Al =

[
|∇uh|p−2 ∂uh

∂n

]
l

= ((|∇uh|p−2∇uh)K1
l
− (|∇uh|p−2∇uh)K2

l
) · n,

where n is the unit normal vector of the face l outwards K1
l . For later convenience,

we shall define the jump Al to be zero when an edge l is on the boundary.
Proof. Let e = u− uh. Then, it follows from Lemma 2.1, (2.2), and (2.3) that

|u− uh|2(p) =

∫
Ω

(|∇u|+ |∇(u− uh)|)p−2|∇(u− uh)|2

≤ C

∫
Ω

(|∇u|p−2∇u− |∇uh|p−2∇uh)∇(u− uh)

= C

∫
Ω

(|∇u|p−2∇u− |∇uh|p−2∇uh)∇e

= C

∫
Ω

(|∇u|p−2∇u− |∇uh|p−2∇uh)∇(e− πhe)(4.3)

= −C
∑
K

∫
K

div(|∇u|p−2∇u− |∇uh|p−2∇uh)(e− πhe)

+ C
∑
K

∫
∂K

(
|∇u|p−2 ∂u

∂n
− |∇uh|p−2 ∂uh

∂n

)
(e− πhe)

= C
∑
K

∫
K

f(e− πhe)− C
∑
l

∫
l

[
|∇uh|p−2 ∂uh

∂n

]
(e− πhe)

= I1 + I2,

where the average interpolator πh is defined in section 3, and we have used the fact
that e ∈W 1,p

0 (Ω) and πhe ∈ V h0 . By Lemma 2.3 and Theorem 3.6, for any δ1 > 0

I1 = C
∑
K

∫
K

hKfh
−1
K (e− πhe)

≤ Cδ−β1

∑
K

∫
K

(|∇uh|p−1 + hK |f |)p′−2h2
K |f |2
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+ Cδ1
∑
K

∫
K

(|∇uh|+ h−1
K |e− πhe|)p−2h−2

K |e− πhe|2(4.4)

≤ Cδ−β1 η2
1 + Cδ1

∑
K

∫
K

(|∇uh|+ |∇e|)p−2|∇e|2

+ Cδ1
∑
l

∫
Kl

min

(
|∇uh|+

∣∣∣∣
[
∂uh
∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n

]
l

∣∣∣∣
2

= Cδ−β1 η2
1 + Cδ1|u− uh|2(p) + Cδ1η

2,

where β is defined in Lemma 2.3. Similarly, it follows from Lemma 2.3, Lemma 3.8,
and Theorem 3.6 that for any δ2 > 0

I2 = −C
∑
l

∫
l

[
|∇uh|p−2 ∂uh

∂n

]
(e− πhe) ≤ C

∑
l

∫
∂Kl

max

|Al| |e− πhe|

≤ C
∑
l

∫
Kl

max

|Al| (h−1
Kl

max
|e− πhe|+ |∇(e− πhe)|)

≤ Cδ−β2

∑
l

∫
Kl

max

(|∇uh|p−1 + |Al|)p′−2A2
l

+ Cδ2
∑
l

∫
Kl

max

(|∇uh|+ h−1
Kl

max
|e− πhe|)p−2h−2

Kl
max
|e− πhe|2

+ Cδ2
∑
l

∫
Kl

max

(|∇uh|+ |∇(e− πhe)|)p−2|∇(e− πhe)|2(4.5)

≤ Cδ−β2 η2
2 + Cδ2

∑
K

∫
K

(|∇uh|+ |∇e|)p−2|∇e|2

+ Cδ2
∑
l

∫
Kl

min

(
|∇uh|+

∣∣∣∣
[
∂uh
∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n

]
l

∣∣∣∣
2

= Cδ−β2 η2
2 + Cδ2|u− uh|2(p) + Cδ2η

2.

Then (4.1) follows from (4.3)–(4.5) if δ0 ≤ 1
4C . The estimate (4.2) has been proved in

[18].
Remark 4.1. Let us examine the structure of the estimators in Theorem 4.1. As

in the linear case, the idea is to bound the residual

R(uh) = (f, u− πhu)− a(uh, u− πhu) =
∑
K

∫
K

hKfh
−1
K (e− πhe)−

∫
l

Al(e− πhe).

Thus the building blocks hKf and Al enter the estimators η1 and η2 as usual. The
reason why η1 and η2 have the unconventional formats is due to the fact we have
to estimate the above bilinear terms in the quasi norm, and this needs to apply the
generalized Young inequality in Lemma 2.3.

The term η comes from the interpolation error estimates in Theorem 3.6—due to
the gradient jumps |∇uh| over the elements—and it seems to be indispensable in the
estimates. The relative contribution of η may be controlled by δ to a certain degree;
see below.
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To see η more clearly, let

V kh = {v ∈ C1(Ω̄) : v|K ∈ Pk ∀K ∈ Th},
where Pk is the space of k-degree polynomials, k ≥ 1. It follows from Lemma 3.9 and
Lemma 2.5 that for all vkh ∈ V kh ,

η2 =
∑
l

∫
Kl

min

(
|∇uh|+

∣∣∣∣
[
∂uh
∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n

]
l

∣∣∣∣
2

≤ C
∑
l

hKl
min

∫
l

(
|∇uh|Kl

min
+

∣∣∣∣
[
∂uh
∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n

]
l

∣∣∣∣
2

= C
∑
l

hKl
min

∫
l

(
|∇uh|Kl

min
+

∣∣∣∣
[
∂uh
∂n
− ∂vkh

∂n

]
l

∣∣∣∣
)p−2 ∣∣∣∣

[
∂uh
∂n
− ∂vkh

∂n

]
l

∣∣∣∣
2

≤ C
∑
l

∫
K1

l
∪K2

l

(|∇uh|Kl
min

+ |∇(uh − vkh)|)p−2|∇(uh − vkh)|2

≤ C
∑
K

∫
K

(|∇uh|+ |∇(uh − vkh)|)p−2|∇(uh − vkh)|2

≤ C|u− uh|2(p) + C|u− vkh|2(p).
Then immediately we can obtain the upper error estimates derived in [18] by letting
δ be small enough.

Furthermore it can be seen (ignoring ε for the time being) that

cE2 − cδ inf
vk
h
∈V k

h

|uh − vkh|2(uh,p) ≤ |u− uh|2(p) ≤ C(δ)E2,

where E2 = η2
1 + η2

2 + δη2 with C(δ)δ → 0 as δ → 0. Thus

cE2 − cδ inf
vk
h
∈V k

h

|u− vkh|2(p) ≤ |u− uh|2(p) ≤ C(δ)E2.

A posteriori error estimates of this type have also been obtained recently for some well-
known a posteriori error estimators based on gradient recovery, like the Z-Z estimator;
see [6], [7] for instance. Clearly E is always reliable, and if u is smooth enough, then
the estimator E is both reliable and efficient. It appears that our result is slightly
stronger, as here δ can be made small. We tested the model problems Examples
5.3 and 5.4 in [3] for a range of δ ∈ [0.01, 0.1] by using the Polak–Ribiere conjugate
gradient method. The implementation settings are similar to those in [3] and [18].
We found that the estimators η2

1 + η2
2 and E2 behave quite similarly, at least for

the tests problems. Thus it seems that δη2 is serviced only as a deterrence for most
applications.

4.2. Nonconforming finite element. Next, we shall discuss the nonconform-
ing finite element approximation of the p-Laplacian stated in section 2. Thanks to
Theorems 3.3–3.7, we can prove the following a posteriori error estimates.

Theorem 4.2. Let u and uh be the solutions of (2.2) and (2.4), respectively. Let
p > 1 and p′ > 1 be such that 1

p + 1
p′ = 1. Assume that f ∈ Lp

′
(Ω). Then there is a

δ0 > 0 for all 0 < δ ≤ δ0 such that

|u− uh|2(p) ≤ C(δ)(η̃2
1 + η̃2

2) + Cδη̃2,(4.6)
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η̃2
1 + η̃2

2 ≤ C|u− uh|2(p) + Cε2,(4.7)

with

|u− uh|2(p) =
∑
K

∫
K

(|∇uh|+ |∇(u− uh)|)p−2|∇(u− uh)|2,

η̃2
1 =

∑
K

∫
K

(|∇uh|p−1 + hK |f |)p′−2h2
K |f |2,

η̃2
2 =

∑
l

∫
Kl

min

(|∇uh|+ |Bl|)p−2B2
l ,

η̃2 =
∑
l

∫
Kl

max

(|∇uh|p−1 + |[|∇uh|p−2∇uh]l|)p′−2|[|∇uh|p−2∇uh]l|2,

ε2 =
∑
K

∫
K

(|∇uh|p−1 + hK |f − f̄ |)p′−2h2
K |f − f̄ |2,

where Bl is the jump of the tangent derivative of uh on edge l = K̄1
l ∩ K̄2

l :

Bl =
∂uh
∂t
|K1

l
− ∂uh

∂t
|K2

l
,

t is the tangent direction of l. If l ⊂ ∂Ω and l is the edge of Kl, we denote Bl =
∂uh
∂t |Kl .

Proof. Let ∇uh|K = ∇(uh|K). Let us introduce an auxiliary function (see [21]
for the details) φ ∈W 1,p

0 (Ω) satisfying∫
Ω

|∇φ|p−2∇φ∇v =

∫
Ω

|∇uh|p−2∇uh∇v ∀v ∈W 1,p
0 (Ω).(4.8)

It follows from Lemma 2.1 and Lemma 2.5 that

|u− uh|2(p) ≤ C
∑
K

∫
K

(|∇φ|+ |∇(φ− u)|)p−2|∇(φ− u)|2

+ C
∑
K

∫
K

(|∇φ|+ |∇(φ− uh)|)p−2|∇(φ− uh)|2 = I1 + I2.
(4.9)

Let π̃h be the interpolation operator defined in section 3. Note that π̃hw ∈ Ṽ h0 if
w ∈W 1,p

0 (Ω), and ∫
l

π̃hw =

∫
l

w,

where l are the edges of an element. It follows from (2.2), (2.4), (4.8), and Lemma
2.1 that

I1 ≤ C
∑
K

∫
K

(|∇u|p−2∇u− |∇φ|p−2∇φ)∇(u− φ)
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= C

(∑
K

∫
K

f(u− φ)−
∑
K

∫
K

|∇uh|p−2∇uh∇(u− φ)

)

= C

(∑
K

∫
K

f((u− φ)− π̃h(u− φ))−
∑
K

∫
K

|∇uh|p−2∇uh∇((u− φ)− π̃h(u− φ))

)

= C
∑
K

∫
K

f((u− φ)− π̃h(u− φ)).

Let ẽ = u− φ. It follows from Lemmas 2.3–2.4 and Theorem 3.3 that

I1 = C
∑
K

∫
K

f((u− φ)− π̃h(u− φ)) = C
∑
K

∫
K

hKfh
−1
K (ẽ− π̃hẽ)

≤ Cδ−β1

∑
K

∫
K

(|∇uh|p−1 + hK |f |)p′−2h2
K |f |2

+ Cδ1
∑
K

∫
K

(|∇uh|+ h−1
K |ẽ− π̃hẽ|)p−2h−2

K |ẽ− π̃hẽ|2

≤ Cδ−β1 η̃2
1 + Cδ1

∑
K

∫
K

(|∇uh|+ |∇ẽ|)p−2|∇ẽ|2(4.10)

≤ Cδ−β1 η̃2
1 + Cδ1

∑
K

∫
K

(|∇uh|+ |∇(u− uh)|)p−2|∇(u− uh)|2

+ Cδ1
∑
K

∫
K

(|∇uh|+ |∇(φ− uh)|)p−2|∇(φ− uh)|2

≤ Cδ−β1 η̃2
1 + Cδ1(|u− uh|2(p) + I2).

Note the well-known fact (see [21]) that since div(|∇φ|p−2∇φ − |∇uh|p−2∇uh) = 0,
there exists a function ψ ∈W 1,p′(Ω) such that

|∇φ|p−2∇φ− |∇uh|p−2∇uh = curlψ.(4.11)

Moreover, note that for any continuous piecewise linear function vh ∈ V h,∑
K

∫
K

∇uhcurl vh = 0.

Then it follows from Lemma 2.1, Lemma 3.8, (4.8), and integrating by parts that

I2 ≤ C
∑
K

∫
K

(|∇φ|p−2∇φ− |∇uh|p−2∇uh)∇(φ− uh)

= −C
∑
K

∫
K

(|∇φ|p−2∇φ− |∇uh|p−2∇uh)∇uh

= −C
∑
K

∫
K

curl ψ∇uh = −C
∑
K

∫
K

curl (ψ − πhψ)∇uh

= −C
∑
K

∫
∂K

(ψ − πhψ)
∂uh
∂t
≤ C

∑
l

∫
l

|ψ − πhψ|
∣∣∣∣
[
∂uh
∂t

]∣∣∣∣
= C

∑
l

∫
l

|ψ − πhψ| |Bl| ≤
∑
l

∫
∂Kl

min

|Bl| |ψ − πhψ|
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≤ C
∑
l

∫
Kl

min

|Bl| (h−1
Kl
|ψ − πhψ|+ |∇(ψ − πhψ)|),

where we have used the average interpolation operator πh defined in section 3 and the
fact that πhψ ∈ V h is a continuous piecewise linear function. It follows from Lemma
2.3 and Theorem 3.7 that

I2 ≤ C
∑
l

∫
Kl

min

|Bl|(h−1
K |ψ − πhψ|+ |∇(ψ − πhψ)|)

≤ Cδ2
∑
l

∫
Kl

min

(|∇uh|+ |Bl|)p−2|Bl|2

+ Cδ−β2

∑
l

∫
Kl

min

(|∇uh|p−1 + h−1
Kl

min

|ψ − πhψ|)p′−2

× h−2
Kl

min

|ψ − πhψ|2+Cδ−β2

∑
l

∫
Kl

min

(|∇uh|p−1 + |∇(ψ − πhψ)|)p′−2|∇(ψ − πhψ)|2

≤ Cδ2η̃
2
2 + Cδ−β2

∑
K

∫
K

(|∇uh|p−1 + |∇ψ|)p′−2|∇ψ|2

+ Cδ−β2

∑
l

∫
Kl

max

(|∇uh|p−1 + |[|∇uh|p−2∇uh]l|)p′−2|[|∇uh|p−2∇uh]l|2

≤ Cδ2η̃
2
2 + Cδ−β2

∑
K

∫
K

(|∇uh|p−1 + |curlψ|)p′−2|curlψ|2 + Cδ−β2 η̃2.

It follows from (4.11) and Lemma 2.1 that for all K ∈ Th∫
K

(|∇uh|p−1 + |curlψ|)p′−2|curlψ|2

=

∫
K

(|∇uh|p−1 + | |∇φ|p−2∇φ− |∇uh|p−2∇uh|)p′−2| |∇φ|p−2∇φ− |∇uh|p−2∇uh|2

≤
∫
K

(|∇uh|p−1 + (|∇uh|+ |∇(uh − φ)|)p−2|∇(uh − φ)|)p′−2

× (|∇uh|+ |∇(uh − φ)|)2(p−2)|∇(uh − φ)|2

=

∫
K

Q(|∇uh|+ |∇(uh − φ)|)p−2|∇(uh − φ)|2,

where

Q =
[|∇uh|p−1 + (|∇uh|+ |∇(uh − φ)|)p−2|∇(uh − φ)|]p′−2

(|∇uh|+ |∇(uh − φ)|)2−p .

When 1 < p ≤ 2, for all x ∈ K, if |∇uh|p−1 ≤ (|∇uh|+ |∇(uh − φ)|)p−2|∇(uh − φ)|,

Q ≤ 2p
′−2|∇(uh − φ)|(p−1)(p′−2)

|∇(uh − φ)|2−p = 2p
′−2.

If (|∇uh|+ |∇(uh − φ)|)p−2|∇(uh − φ)| < |∇uh|p−1,

Q ≤ 2p
′−2|∇uh|(p−1)(p′−2)

|∇uh|2−p = 2p
′−2.
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When p > 2, for all x ∈ K, if |∇uh| ≤ |∇(uh − φ)|,

Q ≤ 2p−2|∇(uh − φ)|p−2

|∇(uh − φ)|(p−1)(2−p′) = 2p−2.

If |∇(uh − φ)| < |∇uh|,

Q ≤ 2p−2|∇uh|p−2

|∇uh|(p−1)(2−p′) = 2p−2.

Hence, we have that for all x ∈ K, Q ≤ C, where C is only dependent on p. It follows
that for all K ∈ Th,∫

K

(|∇uh|p−1 + |curlψ|)p′−2|curlψ|2

≤ C

∫
K

(|∇uh|+ |∇(uh − φ)|)p−2|∇(uh − φ)|2 = CI2.

Therefore,

I2 ≤ Cδ2η̃
2
2 + Cδ−β2 I2 + Cδ−β2 η̃2.

Then, we have

I2 ≤ Cδ2η̃
2
2 + Cδ−β2 η̃2 .(4.12)

By (4.10) and (4.12),

I1 ≤ C(δ)(η̃2
1 + η̃2

2) +
1

2
|u− uh|2(p) + Cδη̃2 .(4.13)

Hence, (4.6) follows from (4.9), (4.13), and (4.12). The estimate (4.7) has been proved
in [19].

Remark 4.2. It can be seen that the purpose of introducing Kmin and Kmax is
to make our estimators smaller (sharper). That is why we use either Kmax or Kmin,
depending on whether the power in the estimators is p′ − 2 or p− 2. Furthermore, it
can be shown that the bubble function Lemma 3.1 in [18], which is needed to prove
the lower bounds there, does not hold if Kmax is not used. In this sense introducing
Kmin and Kmax seems to be necessary.

Remark 4.3. Similar interpretations made in Remark 4.1 apply here. In particu-
lar, it follows from Lemma 2.1 that

|[|∇uh|p−2∇uh]l| ≤ C(|∇uh|Kl
min

+ |[∇uh]l|)p−2|[∇uh]l|.
Then,

η̃2 =
∑
l

∫
Kl

max

(|∇uh|p−1 + |[|∇uh|p−2∇uh]l|)p′−2|[|∇uh|p−2∇uh]l|2

≤ C
∑
l

hKl
max

∫
l

(|∇uh|p−1
Kl

max
+ |[|∇uh|p−2∇uh]l|)p′−2|[|∇uh|p−2∇uh]l|2

≤ C
∑
l

hKl
max

∫
l

(|∇uh|p−1
Kl

max
+ (|∇uh|Kl

min
+ |[∇uh]l|)p−2|[∇uh]l|)p′−2
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× (|∇uh|Kl
min

+ |[∇uh]l|)2(p−2)|[∇uh]l|2

= C
∑
l

hKl
max

∫
l

Q(|∇uh|Kl
min

+ |[∇uh]l|)p−2|[∇uh]l|2

≤ C
∑
l

∫
Kl

min

Q(|∇uh|+ |[∇uh]l|)p−2|[∇uh]l|2,

with

Q =
(|∇uh|p−1

Kl
max

+ (|∇uh|Kl
min

+ |[∇uh]l|)p−2|[∇uh]l|)p′−2

(|∇uh|Kl
min

+ |[∇uh]l|)2−p ≤ C,

where C is a constant only dependent on p. Hence, similarly as in Remark 4.1, it can
be proved that for all vkh ∈ V kh ,

η̃2 ≤ C|u− uh|2(p) + C|u− vkh|2(p).

Thus the estimates in Theorem 4.2 seem to be sharp as well.
Remark 4.4. Note that

η̃2 =
∑
l

∫
Kl

max

(|∇uh|p−1 + |[|∇uh|p−2∇uh]l|)p′−2|[|∇uh|p−2∇uh]l|2

≤
∑
l

∫
Kl

max

(
|∇uh|p−1 +

∣∣∣∣
[
|∇uh|p−2 ∂uh

∂t

]
l

∣∣∣∣
)p′−2 ∣∣∣∣

[
|∇uh|p−2 ∂uh

∂t

]
l

∣∣∣∣
2

+
∑
l

∫
Kl

max

(
|∇uh|p−1 +

∣∣∣∣
[
|∇uh|p−2 ∂uh

∂n

]
l

∣∣∣∣
)p′−2 ∣∣∣∣

[
|∇uh|p−2 ∂uh

∂n

]
l

∣∣∣∣
2

,

where t and n are the tangent and normal directions of l, respectively. Moreover, it
has been proved that (see Theorem 4.1 and [18] for the details)

∑
l

∫
Kl

max

(
|∇uh|p−1 +

∣∣∣∣
[
|∇uh|p−2 ∂uh

∂n

]
l

∣∣∣∣
)p′−2 ∣∣∣∣

[
|∇uh|p−2 ∂uh

∂n

]
l

∣∣∣∣
2

≤ C|u−uh|2(p)+Cε2,

where ε is defined in Theorem 4.1. Then, it can be proved that for all δ > 0

|u− uh|2(p) ≤ C(δ)(η̃2
1 + η̃2

2) + Cδη̂2 + Cδε2,

where η̃2
1 and η̃2

2 are defined in Theorem 4.2, ε is defined in Theorem 4.1, and

η̂2 =
∑
l

∫
Kl

max

(
|∇uh|p−1 +

∣∣∣∣
[
|∇uh|p−2 ∂uh

∂t

]
l

∣∣∣∣
)p′−2 ∣∣∣∣

[
|∇uh|p−2 ∂uh

∂t

]
l

∣∣∣∣
2

.

5. Conclusions. We have established new interpolation error estimates for some
well-known averaging interpolators. These estimates have proved essential in deriving
improved a posteriori error estimates in the quasi norms.

Acknowledgments. The authors wish to express their sincere thanks to Mr. R.
Klose for his computational work in Remark 4.1.
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A CONSTRAINT SATISFACTION APPROACH FOR ENCLOSING
SOLUTIONS TO PARAMETRIC ORDINARY DIFFERENTIAL
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Abstract. This paper considers initial value problems for ordinary differential equations (ODEs),
where some of the data is uncertain and given by intervals as is the case in many areas of science and
engineering. Interval methods provide a way to approach these problems, but they raise fundamental
challenges in obtaining high accuracy and low computation costs. This work introduces a constraint
satisfaction approach to these problems which enhances traditional interval methods with a pruning
step based on a global relaxation of the ODE. The relaxation uses Hermite interpolation polynomi-
als and enclosures of their error terms to approximate the ODE. Our work also shows how to find
an evaluation time for the relaxation that minimizes its local error. Theoretical and experimental
results show that the approach produces significant improvements in accuracy over the best interval
methods for the same computation costs. The results also indicate that the new algorithm should
be significantly faster when the ODE contains many operations.

Key words. ordinary differential equation, interval methods, constraint satisfaction polynomial

AMS subject classifications. 65L05, 65G20
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1. Introduction. Initial value problems (IVPs) for ordinary differential equa-
tions (ODEs) arise naturally in many applications in science and engineering, includ-
ing chemistry, physics, molecular biology, and mechanics to name only a few. An
ODE O is a system of the form

u1
′(t) = f1(u1(t), . . . , un(t)),

...
un

′(t) = fn(u1(t), . . . , un(t))

often denoted in vector notation by u′(t) = f(u(t)) or u′ = f(u).1 An IVP is an
ODE with an initial condition u(t0) = u0. It is often the case that the parameters
and/or the initial values are not known with certainty but are given as intervals.
Hence, traditional methods may not be the simplest way to approach the resulting
parametric ODEs since, in essence, they would have to solve infinitely many systems.
Interval methods, pioneered by Moore [21], provide an approach to tackle parametric
ODEs. They return enclosures of exact solutions at different points in time; i.e., for
a given IVP, they are guaranteed to return intervals containing the exact solution.
In addition, they inherently accommodate uncertainty in the parameters or initial
values by using intervals instead of floating-point numbers. In this paper, we talk
about ODEs to denote both traditional and parametric ODEs.

∗Received by the editors July 12, 2001; accepted for publication (in revised form) April 3, 2002;
published electronically December 3, 2002. This research was partially supported by the actions de
recherche concertée ARC/95/00-187 and an NSF NYI award.
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‡Brown University, Box 1910, Providence, RI 02912 (pvh@cs.brown.edu).
1Only autonomous systems are considered in this paper, but it is not difficult to generalize the

results to nonautonomous systems.
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Traditional interval methods usually consist of two processes applied at each inte-
gration step: (1) a bounding box process that proves existence and uniqueness of the
solution and computes a rough enclosure (called a bounding box ) of the solution over a
time interval [t0, t1]; (2) a forward process that computes an enclosure of the solution
at t1. The bounding box process, which is specific to interval methods, is necessary
to bound the error terms in the forward process. The forward process is generally
realized by applying a one-step Taylor interval method and making extensive use of
automatic differentiation [27] to obtain the Taylor coefficients [8, 16, 21, 22]. However,
the major problem of such methods is the explosion of the size of the boxes at suc-
cessive points as they often accumulate errors from point to point and lose accuracy
by enclosing the solution by a box. (This is called the wrapping effect.) Lohner’s
AWA system [20] was an important step in interval methods which features efficient
coordinate transformations to tackle the wrapping effect. More recently, Nedialkov
and Jackson’s interval Hermite-Obreschkoff method [24] improved on AWA by extend-
ing a Hermite–Obreschkoff’s approach (which can be viewed as a generalized Taylor
method) to intervals. Another recent approach, the Taylor models, was proposed
by Berz and Makino [4] for reducing the wrapping effect. Their scheme validates
existence and uniqueness and also computes tight enclosures of the solution in one
process, contrary to the other methods mentioned above.

The research described in this work takes a constraint satisfaction approach to
ODEs. Its basic idea [7, 13, 14] is to view the solving of ODEs as the iteration of three
processes: (1) a bounding box process, (2) a predictor process that computes initial
enclosures at given times from enclosures at previous times and bounding boxes, and
(3) a pruning process that reduces the initial enclosures without removing solutions.2

The real novelty in our approach is the pruning component. It is based on the con-
struction of a nontrivial constraint from a relaxation of the ODE, a key concept in
constraint satisfaction [32]. This constraint can then be used to prune the solution
space at the various integration points.

The main contribution of this work is to show that an effective pruning technique
can be derived from a relaxation of the ODE, importing a fundamental principle from
constraint satisfaction into the field of validated differential equations. Four main
steps are necessary to derive an effective pruning algorithm.

1. The first step consists of obtaining a relaxation of the ODE by safely approx-
imating its solution using Hermite interpolation polynomials.

2. The second step consists of using the mean-value form of this relaxation for
more accuracy and efficiency. Unfortunately, these two steps, which were
sketched in [13], are not sufficient, and the resulting pruning algorithm still
suffers from traditional problems of interval methods.

3. The third fundamental step [14] consists of globalizing the pruning by consid-
ering several successive relaxations together. This idea of generating a global
constraint from a set of more primitive constraints is also at the heart of
constraint satisfaction. It makes it possible, in this new context, to address
the problem of dependencies (and hence the accumulation of errors) and the
wrapping effect simultaneously.3

4. The fourth and final step consists of finding an evaluation time for the relax-

2Observe that interval extensions of predictor/corrector methods (e.g., [24]) can also be viewed
as the composition of a predictor and a pruning step.

3Global constraints in ODEs have also been found useful in [6]. The problem and the techniques
in [6] are, however, fundamentally different.



1898 M. JANSSEN, P. VAN HENTENRYCK, AND Y. DEVILLE

ation which minimizes the local error of the relaxation. Indeed, the global
constraint generated in the third step, being a relaxation of the ODE, is
parametrized by an evaluation time. Interestingly, for global filters based on
Hermite interpolation polynomials, the (asymptotically) optimal evaluation
time is independent from the ODE and induces negligible overhead on the
computational cost of the methods.

Theoretical and experimental results show the benefits of the approach. From a
theoretical standpoint, the constraint satisfaction approach provides a quadratic im-
provement in accuracy (asymptotically) over the best interval method we know of
for the same computation costs. The theoretical results also show that our approach
should be significantly faster for a given precision when the ODE contains many oper-
ations. Experimental results, obtained from an object-oriented implementation of our
algorithms, confirm the theory. They show that the constraint satisfaction approach
often produces significant improvements in accuracy over existing methods for the
same computation costs and should produce significant gain in computation times
when the ODE contains many operations. Of particular interest is the versatility of
the approach which can be tailored to the problem at hand.

The rest of the paper is organized as follows. Section 2 introduces the main defini-
tions and notations. Section 3 gives a high-level overview of the constraint satisfaction
approach to parametric ODEs. The next four sections are the core of the paper. Sec-
tion 4 introduces multistep filters, section 5 presents multistep Hermite filters as a
special case of multistep filters, section 6 describes how to choose an evaluation time
to minimize the local error of a multistep Hermite filter, and section 7 presents the
overall algorithm. Sections 8 and 9 report the theoretical and experimental analyses,
and section 10 concludes the paper.

2. Background and definitions.

2.1. Basic notational conventions. Small letters denote real values, vectors,
and functions of real values. Capital letters denote matrices, sets, intervals, vectors,
and functions of intervals. A vector of intervals D ∈ IR

n is called a box. If A ⊆ R
n,

then ✷A denotes the smallest box D ∈ IR
n such that A ⊆ D, and g(A) denotes the

set {g(x) | x ∈ A}. If M is a regular (point or interval) matrix, then M−1 denotes an
enclosure4 of the inverse of M . A relation is a function r : R

n → Bool , where Bool
denotes the booleans. We also assume that ti, te, and t are reals, ui is in R

n, and Di

and Bi are in IR
n (i ∈ N). We use m(D) to denote the midpoint of D and s(D) to

denote D−m(D). Observe that m(D)+s(D) = D. We use ω(D) to denote the width
of a box. More precisely, ω([a, b]) = b− a and ω((I1, . . . , In)) = (ω(I1), . . . , ω(In)) if
Ii ∈ IR. If g : R

m → R
n, x = (x1, . . . , xm) and x̃ = (xi1 , . . . , xip) with i1, . . . , ip ∈

1..m, then Jx̃g(x) denotes the Jacobian matrix




∂g1
∂xi1

(x) . . . ∂g1
∂xip

(x)

...
. . .

...
∂gn
∂xi1

(x) . . . ∂gn
∂xip

(x)


 .

In particular, we write J g(x) = Jxg(x) (differentiation w.r.t. all variables of g). If not
specified, n denotes the dimension of the ODE (i.e., the number of scalar equations),
h > 0 denotes the step size of the integration, and k denotes the number of previous

4By enclosure of a set A, we mean a set containing A.
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values of the solution at times t0, . . . , tk−1 used to compute the new value at time tk
(k-step approach).

Notation 1 (boldface notations). Let A be a set and ai ∈ A, where i ∈ N. We
use the following boldface notations.

a = (a0, . . . , ak) ∈ Ak+1,
ai = (aik, . . . , a(i+1)k−1) ∈ Ak,
ai..i+j = (ai, . . . , ai+j) ∈ Aj+1.

Observe that a0 = (a0, . . . , ak−1), a1 = (ak, . . . , a2k−1), and a = (a0, . . . , ak).
The following asymptotical notations are standard.

Notation 2 (asymptotical notations). Consider two functions f, g : R→ R and
let x > 0. We use the following standard notations:

f(x) =




O(g(x)) if ∃c > 0,∃ε > 0 : x ≥ ε⇒ |f(x)| ≤ c|g(x)|,
O(g(x)) if ∃c > 0,∃ε > 0 : x ≤ ε⇒ |f(x)| ≤ c|g(x)|,
Ω(g(x)) if ∃c > 0,∃ε > 0 : x ≤ ε⇒ |f(x)| ≥ c|g(x)|,
Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

The notations extend componentwise for vectors and matrices of functions.
Finally we assume that the underlying interval arithmetic is exact for the theo-

retical parts of this work (i.e., there are no rounding errors). The implementation of
course uses outwardly directed rounding.

2.2. Basic definitions. As is traditional, when we consider an ODE u′ = f(u)
and an interval of integration T , we assume f ∈ Cr(Ω), where r is sufficiently large
and Ω is an open set such that T × Ω contains the trajectories of the solutions on
T .5 In addition, we restrict our attention to ODEs that have a unique solution for a
given initial value. Techniques to verify this hypothesis numerically are well known
[25, 21, 22, 5, 23]. In order to make the dependence on the initial condition (t0, u0)
explicit, we introduce the following definition of the solution to an ODE.

Definition 1 (solution of an ODE). Let Λ ⊆ R × R
n × R be an open set. The

solution of an ODE u′ = f(u) is the function s : Λ→ R
n such that

∀(t0, u0, t) ∈ Λ :

{
∂s
∂t (t0, u0, t) = f(s(t0, u0, t)),
s(t0, u0, t0) = u0.

Observe that, since we restrict attention to autonomous systems in this work, we
can write

s(t0, x, t) = s(0, x, τ),

where τ = t− t0, and thus

∂js

∂tj
(t0, x, t) =

∂js

∂τ j
(0, x, τ).

In particular, when t = t0, the function

∂js

∂tj
(t0, x, t)

∣∣∣∣
(t0,x,t0)

=
∂js

∂τ j
(t0, x, τ)

∣∣∣∣
(0,x,0)

5The standard mathematical symbol Cr(Ω) denotes the set of all functions whose rth derivative
exists and is continuous on Ω.
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depends only on x. This justifies the following notation, which captures the notions
of real and interval Taylor coefficients of the solution of an ODE as well as their
Jacobians.

Notation 3 (Taylor coefficients and Jacobians). Let s be the solution of an ODE
O, x ∈ R

n, D ∈ IR
n, and let t0 be any real number. Then

1. (x)j =
1
j!
∂js
∂tj (t0, x, t)

∣∣∣
(t0,x,t0)

;

2. {(x)j | x ∈ D} ⊆ (D)j ∈ IR
n;

3. J (x)j = Jx 1
j!
∂js
∂tj (t0, x, t)

∣∣∣
(t0,x,t0)

;

4. {J (x)j | x ∈ D} ⊆ J (D)j ∈ IR
n×n;

5. (x)j,l, (D)j,l, J (x)j,l, and J (D)j,l denote, respectively, the lth component of
(x)j, (D)j, J (x)j, and J (D)j.

In the context of our multistep approach (to be presented in section 3), it is useful
to generalize Definition 1 in order to make the dependence on the last k+1 redundant
conditions (t0, u0), . . . , (tk, uk) explicit.

Definition 2 (multistep solution of an ODE). Let s be the solution of an ODE
O. The multistep solution of O is the partial function ms : A ⊆ R

k+1 × (Rn)k+1 ×
R→ R

n :

ms(t,u, t) =

{
s(t0, u0, t) if ui = s(t0, u0, ti), 1 ≤ i ≤ k,
undefined otherwise.

Since we are dealing with interval methods, we need to introduce the notions of
interval extensions of a function and a relation. These notions were introduced in [31].
However, because the techniques proposed in this work use multistep solutions, which
are partial functions, it is necessary to generalize the notion of interval extension to
partial functions and relations.

Definition 3 (interval extension of a partial function). The interval function
G : IR

n → IR
m is an interval extension of the partial function g : E ⊆ R

n → R
m if

∀D ∈ IR
n : g(E ∩D) ⊆ G(D).

Definition 4 (interval extension of a partial relation). The interval relation
R : IR

n → Bool is an interval extension of the partial relation r : E ⊆ R
n → Bool if

∀D ∈ IR
n : (∃x ∈ E ∩D : r(x))⇒ R(D).

Finally, we generalize the concept of bounding boxes, a fundamental concept
in interval methods for ODEs, to multistep methods. Intuitively, a bounding box
encloses all solutions of an ODE going through certain boxes at given times over a
given time interval. Bounding boxes are needed to enclose error terms in validated
methods for ODEs (see section 5).

Definition 5 (bounding box). Let O be an ODE system, ms be the multistep
solution of O, and {t0, . . . , tk} ⊆ T ∈ IR. A box B is a bounding box of O over T
wrt (t,D) if, for all t ∈ T , ms(t,D, t) ⊆ B.

2.3. The midpoint technique. The midpoint technique is a standard tool in
interval computation. It consists of decomposing a matrix A as the sum of its midpoint
matrix and the remainder matrix composed of symmetric intervals:

A = m(A) + s(A).

In this paper, the midpoint technique is used in the following two cases:
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1. enclosing a set of real matrix-matrix-vector products (see sections 4.4 and
4.5);

2. converting an implicit interval linear system into an explicit one by matrix
inversion (see section 4.2).

Assume that we are interested in enclosing the set

P = {ABd | A ∈ A, B ∈ B, d ∈ D},
where A, B are interval matrices and D is an interval vector. Assume also that ω(A)
is small and that the wrapping effect in the product CD, where C = AB, is small.
A straightforward and cheap way to enclose the set P consists of computing the
product A(BD). In general, this product does not yield accurate results because of
the wrapping effect which occurs in the product E = BD and in the product AE.
Another straightforward way of enclosing the set P is to compute the product (AB)D.
By hypothesis, the wrapping effect is small in this case, and the product is an accurate
enclosure of P . However, the multiplication of the two interval matrices A and B is a
costly process (due to costly sign tests and rounding mode switches in modern RISC
architectures; see [15] for more details). In order to avoid this product, we apply the
midpoint technique on A. By distribution and rearrangement of the parentheses, we
can write

P ⊆ Q = (m(A)B)D + s(A)(BD).(1)

It is interesting to observe that no multiplication between two interval matrices occurs
in Q. (Note the importance of the parentheses!) From an accuracy standpoint,
the wrapping effect in (m(A)B)D is small (by hypothesis) and the remainder term
s(A)(BD) is small (because ω(A) is small). Hence, Q is an accurate enclosure of the
set P which avoids the costly multiplication of two interval matrices.

Now consider the implicit interval linear system

A0X0 + A1X1 = B,
X0 ⊆ D0, X1 ⊆ D1,

(2)

where A0, A1 are interval matrices and B, D0, D1 are interval vectors. We assume
that A0 contains no singular point matrix. The exact solution set to this system is
given by

S = {(x0, x1) ∈ (D0, D1) | ∃A0 ∈ A0, ∃A1 ∈ A1, ∃b ∈ B : A0x0 +A1x1 = b}.
We are interested in converting the system (2) into a system

X0 = CX1 + E,

which is explicit in the variable X0 and such that

S ⊆ {(x0, x1) ∈ (D0, D1) | ∃C ∈ C, ∃e ∈ E : x0 = Cx1 + e}.
A straightforward solution consists of computing an enclosure A−1

0 of the inverse of
A0, multipling both sides of (2) by A−1

0 , and rearranging the parentheses:

X0 = −(A−1
0 A1)X1 + A−1

0 B.(3)

However, the system (3) suffers from two drawbacks:
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• We have to invert the interval matrix A0. Computing an accurate enclosure
of the inverse of an interval matrix is a costly process [23]).
• We have to multiply the two interval matrices A−1

0 and A1.
To eliminate these operations, we apply the midpoint technique both on A0 and A1

in (2). By distributivity, we have

m(A0)X0 = −m(A1)X1 + B − s(A0)X0 − s(A1)X1.(4)

Since X0 ⊆ D0 and X1 ⊆ D1, we can replace X0 by D0 in the term involving s(A0)
and X1 by D1 in the term involving s(A1):

m(A0)X0 = −m(A1)X1 + B − s(A0)D0 − s(A1)D1.(5)

Note that it is important to have precise enclosures D1 and D2. To obtain a system
which is explicit in the variable X0, we compute an enclosure m(A0)

−1 of the inverse of
the point matrix m(A0), we multiply both sides of (5) by m(A0)

−1, and we rearrange
the parentheses:6

X0 = −(m(A0)
−1m(A1))X1 + m(A0)

−1(B − s(A0)D0 − s(A1)D1).

Observe that, in this last system, there is no interval matrix inversion and no product
of two interval matrices.

3. The constraint satisfaction approach. The constraint satisfaction ap-
proach followed in this work was first presented in [7]. It consists of a generic algorithm
for ODEs that iterates three processes:

1. a bounding box process that computes bounding boxes for the current step
and proves (numerically) the existence and uniqueness of the solution;

2. a predictor process that computes initial enclosures at given times from en-
closures at previous times and bounding boxes;

3. a pruning process that reduces the initial enclosures without removing solu-
tions.

The intuition of the successive steps is illustrated in Figure 1. Bounding box and pre-
dictor components are standard in interval methods for ODEs. This paper thus focuses
on the pruning process, the main novelty of the approach. Our pruning component
is based on relaxations of the ODE, a fundamental concept in the field of constraint
satisfaction. To our knowledge, no other approach uses relaxations of the ODE to
derive pruning operators, and the only other approaches using a pruning component
[24, 28] were developed independently. Note also that, in the following, predicted
boxes are generally superscripted with the symbol − (e.g., D−

1 ), while pruned boxes
are generally superscripted with the symbol ∗ (e.g., D∗

1).
The pruning component uses safe approximations of the ODE to shrink the boxes

computed by the predictor process. To understand this idea, it is useful to contrast the
constraint satisfaction to nonlinear programming [30, 31] and to ODEs. In nonlinear
programming, a constraint c(x1, . . . , xn) can be used almost directly for pruning
the search space (i.e., the Cartesian product of the intervals Ii associated with the
variables xi). It suffices to take an interval extension C(X1, . . . , Xn) of the constraint.
Now if C(I ′

1, . . . , I ′
n) does not hold, it follows, by the definition of interval extensions,

that no solution of c lies in I ′
1×· · ·× I ′

n. The interval extension can be seen as a filter

6Note that, even thoughm(A0) is a point matrix, the enclosurem(A0)−1 of its inverse is generally
not a point matrix, because of rounding errors.
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Fig. 1. Successive integration steps.

that can be used for pruning the search space in many ways. For instance, Numerica
uses box(k)-consistency on these interval constraints [31]. ODEs raise new challenges.
In an ODE for all t : u′ = f(u), functions u and u′ are, of course, unknown. Hence,
it is not obvious how to obtain a filter to prune boxes.

One of the main contributions of our approach is to show how to derive effective
pruning operators for parametric ODEs. The first step consists of rewriting the ODE
for all t : u′ = f(u) in terms of its multistep solution ms to obtain

∀ t :
∂ms

∂t
(t,u, t) = f(ms(t,u, t)).(6)

Let us denote this relation for all t : fl(t,u, t). This rewriting may not appear useful
since ms is still an unknown function. However, it suggests a way to approximate the
ODE. Indeed, we show in section 5 how to obtain interval extensions of ms and ∂ms

∂t by
using Hermite polynomial interpolations together with their error terms. This simply
requires a bounding box for the considered time interval and safe approximations
of ms at successive times, both of which are available from the bounding box and
predictor processes. Once these interval extensions are available, it is possible to
obtain an interval relation of the form

∀ t : FL(t,D, t),(7)

which approximates the original ODE safely; i.e., if FL(t,D, t) does not hold for a time
t, it follows that no solution of the ODE can go through boxes D0, . . . , Dk at times
t0, . . . , tk. Relation (7) is still not ready to be used as a filter because t is universally
quantified. The solution here is simpler and consists of restricting attention to a finite
set T of times (possibly a singleton) to obtain the relation

∀ t ∈ T : FL(t,D, t),

which produces a computable filter. The relation FL is a relaxation of the ODE (6)
in a constraint satisfaction sense [32]; i.e., given a time t, it produces a relation that
can be used to prune the domain of the variables. The so-obtained relation is in fact
a conservative approximation of the actual ODE at the given time. The following
definition and proposition capture these concepts more formally.

Definition 6 (multistep filter). Let O be an ODE and s its solution. A multistep
filter for O is an interval relation FL : R

k+1 × (IRn)k+1 × R→ Bool satisfying

ui ∈ Di

s(t0, u0, ti) = ui (0 ≤ i ≤ k)

}
⇒ ∀t : FL(t,D, t).
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The variable t is called the evaluation time of the multistep filter.
Proposition 1 (soundness of multistep filters). Let O be an ODE, and let FL

be a multistep filter for O. If FL(t,D, t) does not hold for some t, then there exists
no solution of O going through D at times t.

How can we use this filter to obtain tighter enclosures of the solution? A simple
technique consists of pruning the last box computed by the predictor process. Assume
that D∗

i is a box enclosing the solution at time ti (0 ≤ i < k) and that we are interested
in pruning the last predicted box D−

k . A subbox D ⊆ D−
k can be pruned away if the

condition

FL(t, (D∗
0 , . . . , D∗

k−1, D), te)

does not hold for some evaluation point te. Let us explain briefly the geometric
intuition behind this relation by considering what we call natural filters. Given in-
terval extensions MS, DMS, and F , respectively, of ms, ∂ms

∂t , and f , it is possible to
approximate the ODE u′ = f(u) by the relation

DMS (t,D, t) = F (MS (t,D, t)).

In this relation, the left-hand side of the equation represents the approximation of
the slope of u while the right-hand side represents the slope of the approximation
of u. Since the approximations are conservative, these two sides must intersect on
boxes containing a solution. Hence an empty intersection means that the boxes used
in the relation do not contain the solution to the ODE system. Figure 2 illustrates
the intuition. It is generated from an actual ODE, considers only points instead of
intervals, uses an interpolation polynomial as an approximation of u, and ignores
error terms for simplicity. It illustrates how this technique can prune away a value
as a potential solution at a given time. In the figure, we consider the solution to the
equation that evaluates to u0 and u1 at t0 and t1, respectively. Two possible points u2

and u′
2 are then considered as possible values at t2. The curve marked KO describes an

interpolation polynomial going through u0, u1, u′
2 at times t0, t1, t2. To determine if

u′
2 is the value of the solution at time t2, the idea is to test if the equation is satisfied

at time te. (We will say more about how to choose te later in this paper.) As can
be easily seen, the slope of the interpolation polynomial is different from the slope
specified by f at time te, and hence u′

2 cannot be the value of the solution at t2 since
we assume that the values u0 and u1 were correct at t0 and t1. The curve marked OK

describes an interpolation polynomial going through u0, u1, u2 at times t0, t1, t2. In
this case, the equation is satisfied at time te, which means that u2 cannot be pruned
away.

The filter proposed earlier generalizes this intuition to boxes. Both the left- and
right-hand sides represent sets of slopes, and the filter fails when their intersection is
empty. Traditional consistency techniques and algorithms based on this filter can now
be applied. For instance, one may be interested in updating the last box computed
by the predictor process using the operator

D∗
k = ✷{r ∈ D−

k | FL(t, (D∗
0 , . . . , D∗

k−1, r), te)},
which is defined in terms of an evaluation time te. One of the main results of this
paper consists of showing that te can be chosen optimally (in an asymptotic sense) to
maximize pruning. The following definition is a novel notion of consistency for ODEs
to capture pruning of the last r boxes.7

7We will give an explicit form for D∗
k later in the paper.
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Fig. 2. Geometric intuition of the multistep filter.

Definition 7 (backward consistency of multistep filters). A multistep filter FL
is backward-consistent in (t,D) for time e if

Dk = ✷ {uk ∈ Dk | ∃u0 ∈ D0 : FL(t,u, e)} .

A system of r successive multistep filters {FLi}0≤i<r is backward(r)-consistent in
(t0..k+r−1,D0..k+r−1) for time vector (e0, . . . , er−1) if

Dk..k+r−1 = ✷{uk..k+r−1 ∈ Dk..k+r−1 | ∃u0 ∈ D0 :

∀ 0 ≤ i < r : FLi(ti..k+i,ui..k+i, ei)}.(8)

Informally speaking, the parameter r in the definition determines the strength of
the consistency, i.e., the number of backward variables each variable depends on. The
following proposition is an immediate consequence of Definition 7. It states that the
strength of the consistency increases with parameter r.

Proposition 2 (property of backward consistency). If a system of r+1 (r > 0)
successive multistep filters {FLi}0≤i≤r is backward(r+1)-consistent in (t0..k+r,D0..k+r)
for time vector (e0, . . . , er), then the system

1. {FLi}0≤i<r is backward(r)-consistent in (t0..k+r−1,D0..k+r−1) for time vec-
tor (e0, . . . , er−1);

2. {FLi}1≤i≤r is backward(r)-consistent in (t1..k+r,D1..k+r) for time vector
(e1, . . . , er).

In the next section, we introduce coordinate transformations in multistep filters
to represent the sets of solutions compactly, i.e., to handle the wrapping effect (see
section 4.5). It is thus useful to generalize the above definition by introducing affine
transformations.

Definition 8 (generalized backward consistency). Let Yi ∈ IR
n (i ∈ N). A mul-

tistep filter FL is backward-consistent in (t,Y) for time e if there exists an invertible
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affine transformation a : R
n(k+1) → R

n(k+1) such that

Yk = ✷{yk ∈ Yk | ∃y0 ∈ Y0 : FL(t,a(y), e)}.

A system of r successive multistep filters {FLi}0≤i<r is backward(r)-consistent in
(t0..k+r−1,Y0..k+r−1) for time vector (e0, . . . , er−1) if there exists an invertible affine
transformation a0..k+r−1 : R

n(k+r) → R
n(k+r) such that

Yk..k+r−1 = ✷{yk..k+r−1 ∈ Yk..k+r−1 | ∃y0 ∈ Y0 :

∀0 ≤ i < r : FLi(ti..k+i,ai..k+i(y0..k+r−1), ei)}.(9)

Note that Proposition 2 also holds for generalized backward consistency. In the
rest of this paper, we use “backward consistency” instead of “generalized backward
consistency” for simplicity. The algorithm used in our computational results enforces
backward(k)-consistency of a system of k filters we now describe.

4. Multistep filters. Filters rely on interval extensions of the multistep solution
and of its derivative w.r.t. t. These extensions are, in general, based on decomposing
the (unknown) multistep solution into the sum of a computable approximation p and
an (unknown) error term e, i.e.,

ms(t,u, t) = p(t,u, t) + e(t,u, t).(10)

There exist standard techniques to build p and ∂p
∂t and to bound e and ∂e

∂t . Section
5 reviews how they can be derived from Hermite interpolation polynomials. Here we
simply assume that they are available, and we show how to use them to build filters.

4.1. Natural filters. Section 3 explained how natural multistep filters can be
obtained by simply replacing the multistep solution ms, its derivative ∂ms

∂t , and the
function f by their interval extensions MS, DMS, and F to obtain

DMS (t,D, t) = F (MS (t,D, t)).

It is not easy, however, to enforce backward consistency on a natural filter since the
variables may occur in complex nonlinear expressions. This problem is addressed by
mean-value filters that we now study.

4.2. Mean-value filters.

Mean-value forms. Mean-value forms (MVFs) play a fundamental role in interval
computations and are derived from the mean-value theorem. They correspond to
problem linearizations around a point and result in filters that are systems of linear
equations with interval coefficients and whose solutions can be enclosed reasonably
efficiently. MVFs are effective when the sizes of the boxes are sufficiently small, which
is the case in ODEs. In addition, being linear equations, they allow for an easier
treatment of the so-called wrapping effect, a crucial problem in interval methods for
ODEs to be discussed in sections 4.3 and 4.5. As a consequence, MVFs are especially
appropriate in our context and will produce filters which are efficiently amenable to
backward consistency. The rest of this section describes how to obtain mean-value
filters.
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Implicit mean-value filters. Consider the function

δ(t,u, e, de, t) =
∂p

∂t
(t,u, t) + de− f(p(t,u, t) + e).

If the multistep solution ms is defined at (t,u), i.e., the ODE has a solution going
through u0, . . . , uk at t0, . . . , tk, then, by (10), we have the relation

δ

(
t,u, e(t,u, t),

∂e

∂t
(t,u, t), t

)
= 0.

Let u∗,u ∈ D0 ∈ IR
n(k+1), e∗, e ∈ E ∈ IR

n, and de∗, de ∈ DE ∈ IR
n . By the

mean-value theorem, we can write (1 ≤ i ≤ n)

δi(t,u, e, de, t) = δi(t,u
∗, e∗, de∗, t)

+J(u,e,de)δi(t, µi, ξi, ζi, t) (u− u∗, e− e∗, de− de∗)
= δi(t,u

∗, e∗, de∗, t) + φi(t, µi, ξi, t)(u− u∗)
+ψi(t, µi, ξi, t)(e

∗ − e) + dei − de∗i ,

where

φi(t, µi, ξi, t) = Ju
∂pi
∂t (t, µi, t)− J fi(p(t, µi, t) + ξi)Jup(t, µi, t),

ψi(t, µi, ξi, t) = J fi(p(t, µi, t) + ξi)

for some µi ∈ D0, ξi ∈ E, and ζi ∈ DE. This allows us to define a new multistep
filter, which we will call an implicit mean-value filter. Such a filter is parametrized by
the initial domain D0 of the variable u.

Definition 9 (implicit mean-value filter). An implicit mean-value filter for ODE
u′ = f(u) in D0 ∈ IR

n(k+1) is an interval relation

FL(t,D, t)⇔
δ(t,m0, me, mde, t) + ∆(t,D0, E(t,D0, t), DE(t,D0, t), t) (X, Em, DEm) = 0,

(11)

where

∆ is an interval extension of the function J(u,e,de)δ,
E and DE are interval extensions, respectively, of e and ∂e

∂t ,
D ⊆ D0,
X = D−m0, Em = E(t,D0, t)−me, DEm = DE(t,D0, t)−mde,
m0 = m(D0), me = m(E(t,D0, t)), mde = m(DE(t,D0, t)).

(12)

Formula (11) is called implicit because D appears implicitly. The Jacobians in
(12) can be computed by means of automatic differentiation tools (see, e.g., [27]). The
following proposition states that an implicit mean-value filter does not eliminate any
solution of the ODE. It is a direct consequence of the mean-value theorem.

Proposition 3. An implicit mean-value filter for ODE O is a multistep filter
for O.

Explicit mean-value filters. In general, for IVPs, we will be interested in pruning
the last predicted box D−

k . Hence, it is convenient to derive a mean-value filter which
is explicit in Dk. Let D

− ∈ IR
n(k+1) be the predicted box of variable u and define X

as D−m(D−). An implicit mean-value filter is an interval constraint of the form

Φ(t)X = Γ(t),
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where Φ(t) ∈ IR
n×n(k+1) and Γ(t) ∈ IR

n. Let us apply the midpoint technique (see
point 2 of section 2.3) on the matrix Φ(t). We can write Φ(t) = m(Φ(t)) + s(Φ(t)),
and

m(Φ(t))X = Γ(t)− s(Φ(t))X.(13)

The term s(Φ(t))X is normally small (of size O(‖ω(D−)‖2)), and we can substitute
X on the right side of (13) for s(D−), since X = D−m(D−) and we are looking for
a pruned box D∗ ⊆ D−. We obtain the system

m(Φ(t))X = Γ(t)− s(Φ(t))s(D−).(14)

Equation (14) can be rewritten as

k∑
i=0

Ai(t)Xi = K(t),

where Ai(t) ∈ R
n×n, i = 0, . . . , k, and K(t) ∈ IR

n. Let us isolate the term involving
Xk:

Ak(t)Xk = K(t)−
k−1∑
i=0

Ai(t)Xi.(15)

Multiplying both sides of (15) by Ak(t)
−1 (recall that Ak(t)

−1 denotes an enclosure
of the inverse of Ak(t)) gives

Xk = Ak(t)
−1K(t)−

k−1∑
i=0

(
Ak(t)

−1Ai(t)
)

Xi.

We are now in position to define explicit mean-value filters which play a fundamental
role in our approach.

Definition 10 (explicit mean-value filter). An explicit mean-value filter for
ODE O in D0 ∈ IR

n(k+1) is an interval relation

FL(t,D, t) ⇔ Xk = Ak(t)
−1K(t)−

k−1∑
i=0

(
Ak(t)

−1Ai(t)
)

Xi,

where

X = D−m(D0),
D ⊆ D0,
(A0(t) · · ·Ak(t)) = m(Φ(t)) ∈ R

n×n(k+1),
K(t) = Γ(t)− s(Φ(t))s(D0) ∈ IR

n,
the relation Φ(t)X = Γ(t) is an implicit mean-value filter for O in D0.

Proposition 4. An explicit mean-value filter for ODE O is a multistep filter
for O.

It is easy to use an explicit mean-value filter to prune the predicted box D−
k at

time tk given the boxes D∗
0 , . . . , D∗

k−1 from the previous integration steps, since Xk

(and thus Dk) has been isolated. The filter simply becomes

Dk = m(D−
k ) + Ak(t)

−1K(t)−
k−1∑
i=0

(
Ak(t)

−1Ai(t)
)
(D∗

i −m(D∗
i )),(16)
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and the pruned box D∗
k at time tk is given by

D∗
k = Dk ∩D−

k .

It follows directly that the explicit mean-value filter is backward-consistent in D∗.

4.3. Problems in mean-value filters. Mean-value filters often produce signif-
icant pruning of the boxes computed by the predictor process. However, they suffer
from two limitations: the wrapping effect which is inherent in interval analysis and a
variable dependency problem induced by the use of a multistep method. We review
both of these before describing how to address them.

Wrapping effect. The wrapping effect is the name given to the overestimation
that arises from enclosing a set by a box. In the context of ODEs, the set of solutions
at each integration step is overapproximated by a box. These overapproximations
accumulate step after step and may result in an explosion in the sizes of the computed
boxes. The standard solution used in interval methods for ODEs to obtain tighter
solution bounds is to choose, at each step, an appropriate local coordinate system to
represent the solutions compactly (see [20, 24]). How does the wrapping effect occur
in our context? Let us rewrite an explicit mean-value filter from (16) as

Xk = K(t) +

k−1∑
i=0

Ai(t)Xi,

and let us assume that A0(t), . . . , Ak−1(t) are point matrices and that K(t) is a point
vector. Given the boxes X0, . . . , Xk−1 computed at the previous steps, the exact
solution set to be enclosed by Xk is

Z =

{
K(t) +

k−1∑
i=0

Ai(t)xi | (x0, . . . , xk−1) ∈ (X0, . . . , Xk−1)

}
.

The set Z is called a zonotope8 (i.e., a generalization of a parallelepiped). Figure 3(a)
illustrates a zonotope in R

2 (for k = 3) and its smallest enclosing box. As can be seen,
the box significantly overestimates the zonotope. Figure 3(b) shows that the zonotope
can be enclosed much more tightly by using a coordinate transformation. It should be
mentioned, however, that finding a good coordinate system is not necessarily a trivial
task (e.g., one idea is to find approximations of the main directions of the zonotope)
and may not be sufficient because of the variable dependency problem that we now
discuss.

Variable dependencies in explicit filters. Consider the application of an explicit
mean-value filter at two successive time steps with respective evaluation times e0 and
e1. We obtain equations of the form

Xk = K0(e0) + A0,0(e0)X0 + · · ·+ A0,k−1(e0)Xk−1,

Xk+1 = K1(e1) + A1,0(e1)X1 + · · ·+ A1,k−1(e1)Xk.

The second equation computes the box Xk+1 assuming that X1, . . . , Xk are indepen-
dent, which is not the case because of the first equation. Hence, the dependencies
between X1, . . . , Xk are lost when moving from the first to the second time step.

8Note that Kühn uses zonotopes in another context, i.e., as compact enclosures of solutions
[17, 18, 19].
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(b)

x2

x1

y2
y1

(a)

Fig. 3. (a) A zonotope in R
2 and the smallest enclosing box. (b) Coordinate transformation

where the enclosing box better fits the zonotope.

The variable dependency problem arises because successive explicit mean-value filters
overlap; i.e., each computed box Xi is used in k successive filters. One-step methods
do not encounter this problem because each computed box Xi is used only at one time
step to compute the following box: Xi+1. Global filters, which are presented in the
next section, avoid this variable dependency problem and make it possible to apply
standard techniques for the wrapping effect.

4.4. Global filters. The main idea underlying global filters is to cluster several
mean-value filters together so that they do not overlap. The intuition is illustrated
in Figure 4 for k = 3. It can be seen that the global filter prunes the three predicted
boxes D−

3 , D−
4 , and D−

5 for times t3, t4, and t5 using the boxes D∗
0 , D∗

1 , and D∗
2

computed for times t0, t1, and t2. Observe also that global filters do not overlap; i.e.,
the boxes D∗

0 , D∗
1 , and D∗

2 are not used in subsequent filters. More precisely, a global
filter is a system of k successive explicit mean-value filters.

Definition 11 (global filter). A global filter for ODE O in D0
0..2k−1 is a sys-

tem {FLi(ti..k+i,Di..k+i, ei)}0≤i<k of k successive explicit mean-value filters for O in
D0

0..k, . . . ,D0
k−1..2k−1 respectively given as




Xk = K0(e0) + A0,0(e0)X0 + · · ·+ A0,k−1(e0)Xk−1,
Xk+1 = K1(e1) + A1,0(e1)X1 + · · ·+ A1,k−1(e1)Xk,

...
X2k−1 = Kk−1(ek−1) + Ak−1,0(ek−1)Xk−1 + · · ·+ Ak−1,k−1(ek−1)X2k−2,

(17)

where X0..2k−1 = D0..2k−1 −m(D0
0..2k−1).

The key idea to remove the variable dependency problem is to solve (17) globally
by transforming the global filter into an explicit form




Xk

...
X2k−1


 = C(e0)




X0

...
Xk−1


+ R(e0)
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t0

1 2 3 4 5

t t t t t1 2 3 4 5

0
* * *D D D D D D - - -

Fig. 4. Intuition of the globalization process (k = 3): Predicted boxes D−
3 , D−

4 , and D−
5 for

times t3, t4, and t5 are pruned globally using boxes D∗
0 , D∗

1 , and D∗
2 computed for times t0, t1,

and t2.

or, more concisely,

X1 = C(e0)X0 + R(e0),(18)

where C(e0) ∈ IR
nk×nk and R(e0) ∈ IR

nk.
An interesting property of global filters is that each pruned box at times t3, t4, or

t5 can be computed only in terms of the predicted boxes and the boxes at times t0, t1,
and t2 by using Gaussian elimination. Hence, it removes the dependencies introduced
in D−

3 and D−
4 . Consider a system with k = 3:


X3 = A00X0 + A01X1 + A02X2 + K0,
X4 = A10X1 + A11X2 + A12X3 + K1,
X5 = A20X2 + A21X3 + A22X4 + K2.

Variable X4 can be eliminated from the last equation to obtain

X5 = A20X2 + A21X3 + A22(A10X1 + A11X2 + A12X3 + K1) + K2.

To avoid multiplying interval matrices (e.g., A22A10), we can apply the midpoint
technique (see point 1 of section 2.3) to obtain

X5 = A20X2 + A21X3 + m(A22)(A10X1 + A11X2 + A12X3 + K1)
+ K2 + s(A22)s(D

−
4 ).

(19)

By distribution and rearrangement of the parentheses, we can rewrite (19) as

X5 = (m(A22)A10)X1 + (A20 + m(A22)A11)X2 + (A21 + m(A22)A12)X3

+ m(A22)K1 + K2 + s(A22)s(D
−
4 ).

Variable X3 can be eliminated from this equation in a similar fashion to obtain a filter
involving only X5, X0, X1, and X2. Similarly, variable X3 can be eliminated from
the second equation to obtain a filter involving only X4, X0, X1, and X2.

9

A generic algorithm for computing an explicit global filter is given in Figure
5. It receives as input the ODE system O, the previous integration times t0, the
pruned boxes D0

0, and the bounding boxes B1..k−1, the new integration points t1, the
predicted boxes D0

1 for these integration points, the bounding boxes B1 for the new
integration points, and the evaluation times for the filters. It generates the matrix
and vectors of the explicit global filter which can be used to compute the pruned
boxes. The resulting filter is backward(k)-consistent w.r.t. the resulting boxes. Its
precise specification is as follows.

9As observed by one of the reviewers, there are still some dependencies, but these are very small.
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function ExplicitGlobalFilter(O, t0,D0
0,B1..k−1, t1,D0

1,B1, e0)
begin

1 for i := 0 to k − 1 do
2 〈Ki, Ai,0, . . . , Ai,k−1〉 := EMVFL(O, ti..i+k,D

0
i..i+k,Bi+1..i+k, ei);

3 endfor
4 for i := k − 1 downto 0 do
5 Ri := Ki;
6 for l := i downto 1 do
7 A∗ := m(Ai,k−1);
8 Ri := Ri + A∗Kl−1 + s(Ai,k−1)s(D

0
k+l−1);

9 for j := k − 1 downto 1 do
10 Ai,j := Ai,j−1 + A∗Al−1,j

11 endfor
12 Ai,0 := A∗Al−1,0

13 endfor
14 endfor
15 return 〈(Ai,j) 0≤i≤k−1

0≤j≤k−1
, (Ri)0≤i≤k−1〉

end

Fig. 5. An algorithm for computing an explicit global filter.

Specification 1 (ExplicitGlobalFilter). Let Bi be a bounding box of ODE
O over [ti−1, ti] w.r.t. (t0, D0) for 1 ≤ i ≤ 2k − 1. Let

〈C(e0), R(e0)〉 = ExplicitGlobalFilter(O, t0,D0
0,B1..k−1, t1,D0

1,B1, e0),

X0 = D0 −m(D0
0), and X1 = D1 −m(D0

1). Then the system S : X1 = C(e0)X0 +
R(e0) is a global filter for O in (D0

0,D0
1).

The algorithm is generic in the sense that it uses the function EMVFL to generate
an explicit mean-value filter. How to generate such a filter is discussed in section 5,
but its specification is given as follows.

Specification 2 (EMVFL). Let Bi be a bounding box of ODE O over [ti−1, ti]
w.r.t. (t0, D0) for 1 ≤ i ≤ k. Let

〈K(t), A0(t), . . . , Ak−1(t)〉 = EMVFL(O, t,D0, (B1, . . . , Bk), t).

Then the interval relation

FL(t,D, t)⇔ Xk = K(t) +

k−1∑
i=0

Ai(t)Xi,

where X = D−m(D0) and D ⊆ D0 is an explicit mean-value filter for O in D0.
Finally, observe that global filters not only remove the variable dependency prob-

lem by globalizing the pruning process, but they also have the advantage of producing
square systems which makes it possible to apply standard techniques to address the
wrapping effect. The next section discusses the wrapping effect in detail.

4.5. The wrapping effect in global filters. The wrapping effect in global
filters arises when multiplying a nk×nk matrix and a box of nk elements. Fortunately,
since the matrices in global filters are square, the wrapping effect can be handled as
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in one-step methods by using local coordinate transformations and QR factorizations
[20]. We now explain this process in detail. Initially, starting from the previous boxes
D∗

0 and predicted boxes D−
1 , we need to solve the system

D1 −m(D−
1 ) = C1(e0)(D

∗
0 −m(D∗

0)) + R1(e0)

or, equivalently, the system

X1 = C1(e0)X0 + R1(e0),

whereX1 = D1−m(D−
1 ) andX0 = D∗

0−m(D∗
0). The pruned boxes are then obtained

by

D∗
1 = D−

1 ∩ (X1 + m(D−
1 )).

The key idea in tackling the wrapping effect is to find a good coordinate system to
represent the solution X1 compactly so that errors will not accumulate drastically in
subsequent integration steps. For this purpose, we introduce a coordinate transfor-
mation

M1y1 = u1 −m(D∗
1)

which can be reexpressed in terms of the x variables as

M1y1 = x1 + m(D−
1 )−m(D∗

1).

We then solve the system

M1Y1 = C1(e0)X0 + R1(e0) + m(D−
1 )−m(D∗

1)

by inverting the matrix M1:

Y1 = (M−1
1 C1(e0))X0 + M−1

1 (R1(e0) + m(D−
1 )−m(D∗

1)).

The matrix M1 and the boxes Y1 and D∗
1 are then sent to the next integration step.

Observe that Y1 is a compact representation of D∗
1 in the local coordinate system.

In the next integration step, the boxes D∗
1 are used (together with other data) to

compute new predicted boxes D−
2 as well as the new global filter

D2 −m(D−
2 ) = C2(e1)(D

∗
1 −m(D∗

1)) + R2(e1)).

Since M1y1 = u1 −m(D∗
1) by the coordinate transformation, the above filter can be

rewritten as

X2 = (C2(e1)M1)Y1 + R2(e1),

where X2 = D2 −m(D−
2 ). Observe the associativity of the multiplication which is

critical in reducing the wrapping effect. The new boxes are computed as

D∗
2 = D−

2 ∩ (X2 + m(D−
2 )).

Once again, we would like to represent the set of solutions X2 compactly, and we use
a local coordinate transformation

M2y2 = u2 −m(D∗
2)
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to obtain the system

M2Y2 = (C2(e1)M1)Y1 + R2(e1) + m(D−
2 )−m(D∗

2).

This equation system can be solved by inverting M2:

Y2 = (M−1
2 (C2(e1)M1))Y1 + M−1

2 (R2(e1) + m(D−
2 )−m(D∗

2)).

Once again, observe the associativity in the multiplication to tackle the wrapping
effect. The hope is that the matrix M−1

2 (C2(e1)M1) is diagonally dominant or tri-
angular. Also, M2, Y2, and D∗

2 will be sent to the next integration step. As a
consequence, at integration step i, we solve

Xi = (Ci(ei−1)Mi−1)Yi−1 + Ri(ei−1),

where Xi = Di −m(D−
i ), and the new boxes are obtained by

D∗
i = D−

i ∩ (Xi + m(D−
i )).

The local coordinate transformation

Miyi = ui −m(D∗
i )

is used to compute the new Yi which is given by

Yi = (M−1
i (Ci(ei−1)Mi−1))Yi−1 + M−1

i (Ri(ei−1) + m(D−
i )−m(D∗

i )).

In addition, in order to avoid the costly (see [15]) product of the two interval matrices
M−1
i and Ci(ei−1)Mi−1, we use the standard midpoint technique (see point 1 of

section 2.3) to obtain

Yi = (m(M−1
i )(Ci(ei−1)Mi−1))Yi−1 + m(M−1

i )(Ri(ei−1) + di)

+ s(M−1
i )((Ci(ei−1)Mi−1)Yi−1 + Ri(ei−1) + di),

where di = m(D−
i )−m(D∗

i ). This last system can be rewritten as

Yi = (m(M−1
i )(Ci(ei−1)Mi−1))Yi−1 + m(M−1

i )(Ri(ei−1) + di)

+ s(M−1
i )(Xi + di)

by the definition of Xi. In this process, the choice of an appropriate matrix Mi is, of
course, crucial. Lohner’s QR factorization technique [20] is a very successful scheme
to obtain such a matrix.

4.6. A pruning algorithm based on global filters. We are now in position to
present a pruning algorithm based on global filters. The pruning algorithm enforces
backward(k)-consistency on a global filter composed of k mean-value filters. The
algorithm is shown in Figure 6, and its specification is as follows.

Specification 3 (Prune). Let ms be the multistep solution of ODE O and Bi

a bounding box of O over [ti−1, ti] w.r.t. (t0, D0) for 1 ≤ i ≤ 2k − 1. Let

〈D∗
1,Y1, M1〉 = Prune(O, t0,D∗

0,B1..k−1,Y0, M0, t1,D−
1 ,B1),

A0 = {M0y0 +m(D∗
0) | y0 ∈ Y0} ∩D∗

0, and A1 = {M1y1 +m(D∗
1) | y1 ∈ Y1} ∩D∗

1.
Then
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function Prune(O, t0,D∗
0,B1..k−1,Y0, M0, t1,D−

1 ,B1)
begin

1 〈C1, R1〉 := ExplicitGlobalFilter(O, t0,D∗
0,B1..k−1, t1,D−

1 ,B1, e0);
2 C∗

1 = C1M0;
3 X1 := C∗

1Y0 + R1;
4 D∗

1 := (X1 + m(D−
0 )) ∩ (D−

0 );
5 M1 := CoordTransfo(C∗

1 ,Y0);
6 d1 := m(D−

1 )−m(D∗
1);

7 Y1 := (m(M−1
1 )C∗

1 )Y0 + m(M−1
1 )(R1 + d1) + s(M−1

1 )(X1 + d1);
8 return 〈D∗

1,Y1, M1〉
end

Fig. 6. The pruning algorithm on global filters.

1. ms((t0, t1), (A0,D−
1 ), ti) ⊆ ms((t0, t1), (A0,A1), ti) for k ≤ i ≤ 2k − 1;

2. D∗
1 ⊆ D−

1 ;
3. there exists a global filter which is backward(k)-consistent in ((t0, t1), (Y0,D∗

1))
and in ((t0, t1), (Y0,Y1)) for a given time vector.

The algorithm receives as input the ODE O, the previous integration times t0, the
pruned boxes D∗

0 computed at times t0, the bounding boxes B1..k−1 for all previous
integration steps, the boxes Y0 and matrix M0 from the previous integration step as
well as the new integration times t1, the predicted boxes D

−
1 , and the bounding boxes

B1 for these integration times. It returns the pruned boxesD
∗
1 for integration steps t1

as well as the new boxes Y1 and the new matrix M1 to be used in the next integration
step. The algorithm itself follows the same steps as outlined in the preceding section.
It computes the explicit form of the global filter (line 1), the new boxes X1 (line 3),
and the pruned boxes D∗

1 (line 4). It then computes the new matrix M1 (line 5) and
the new boxes Y1 (line 7).

5. Hermite filters. In the previous section, we assumed the existence of interval
extensions of p and ∂p/∂t, and we assumed that we could bound the error terms e
and ∂e/∂t. We now show how to use Hermite interpolation polynomials for this
purpose. Informally speaking, a Hermite interpolation polynomial approximates a
function g ∈ Cr (for sufficiently large r) which is known implicitly by its values and
the values of its successive derivatives at various points. A Hermite interpolation
polynomial is specified by imposing that its values and the values of its successive
derivatives at some given points be equal to the values of g and of its derivatives at
the same points. Note that the number of conditions (i.e., the number of successive
derivatives that are considered) may vary at the different points [29, 1].

Definition 12 (Hermite(σ) interpolation polynomial). Consider the ODE u′ =
f(u) and let σ = (σ0, . . . , σk) ∈ N

k+1, σi �= 0 (0 ≤ i ≤ k), and σs =
∑k
i=0 σi. The

Hermite(σ) interpolation polynomial w.r.t. f and (t,u) is the unique polynomial q
of degree ≤ σs − 1 satisfying

q(j)(ti) = j!(ui)j (0 ≤ j ≤ σi − 1, 0 ≤ i ≤ k).(20)

Proposition 5 (Hermite(σ) interpolation polynomial). The polynomial q satis-
fying the conditions (20) is given by
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q(t) =

k∑
i=0

σi−1∑
j=0

j!(ui)jϕij(t),(21)

where

ϕi,σi−1(t) = li,σi−1(t), i = 0, . . . , k,

ϕij(t) = lij(t)−
σi−1∑
ν=j+1

l
(ν)
ij (ti)ϕiν(t), i = 0, . . . , k, j = 0, . . . , σi − 2,(22)

lij(t) =
(t− ti)

j

j!

k∏
ν=0
ν �=i

(
t− tν
ti − tν

)σν

, i = 0, . . . , k, j = 0, . . . , σi − 1.

It is easy to take interval extensions of a Hermite interpolation polynomial and
of its derivative. The Taylor coefficients (Di)j of the solution specifying the deriva-
tive conditions at the various interpolation points, as well as their Jacobians J (Di)j
needed in the mean-value Hermite filters, can be computed by automatic differenti-
ation techniques (see, e.g., [21, 22, 27]). The only remaining issue is to bound the
error terms. The following standard theorem (e.g., [29, 1]) provides the necessary
theoretical basis.

Theorem 1 (Hermite error term). Let p(t,u, t) be the Hermite( σ) interpolation
polynomial in t w.r.t. f and (t,u). Let u(t) = ms(t,u, t), ms(t,u, t) = p(t,u, t) +

e(t,u, t), T = ✷{t0, . . . , tk, t}, σs =
∑k
i=0 σi, and w(t) =

∏k
i=0(t − ti)

σi . We have
(1 ≤ i ≤ n)

1. ∃ ξi ∈ T : ei(t,u, t) = 1
σs!

u
(σs)
i (ξi)w(t);

2. ∃ ξ1,i, ξ2,i ∈ T : ∂ei∂t (t,u, t) = 1
σs!

u
(σs)
i (ξ1,i)w

′(t) + 1
(σs+1)!u

(σs+1)
i (ξ2,i)w(t).

How do we use this theorem to bound the error terms? If B is a bounding box
(produced by the bounding box process) for the ODE over T = ✷{t0, . . . , tk, t} w.r.t.
(t0,u0), it suffices to compute two boxes (B)σs and (B)σs+1 by automatic differenti-
ation. We then obtain

e(t,u, t) ∈ (B)σsw(t);

∂e

∂t
(t,u, t) ∈ (B)σsw′(t) + (B)σs+1w(t).

As a consequence, we can compute an effective relaxation of the ODE by specializing
global filters with a Hermite interpolation polynomial and its error bound. In the
following, filters based on Hermite(σ) interpolation are called Hermite( σ) filters, and
a global Hermite(σ) filter is denoted by GHF(σ). Reference [12] discusses how to
evaluate Hermite polynomials accurately.

6. Optimal Hermite filters. Let us summarize what we have achieved so far.
The basic idea of our approach is to approximate the ODE for all t : u′ = f(u) by a
filter

∀ t : FL(t,D, t).

We have shown that a global filter which prunes the last k boxes by using k successive
mean-value filters addresses the wrapping effect and the variable dependency problem.
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We have also shown that a global filter can be obtained by using Hermite interpolation
polynomials together with their error bounds. As a consequence, we obtain a filter

∀ e0 : GHF (σ)(t,D, e0)

which can be used to prune the last k predicted boxes. The main remaining issue is
to find an evaluation time vector e0 which miminizes the sizes of the solution boxes in

GHF (σ)(t,D, e0).

The purpose of this section is to show that there exists an optimal evaluation time
vector (in a precise sense that we will define) and that it can be approximated or
computed efficiently.

6.1. Preview of the approach. Our goal is to find an evaluation time vector e0

which miminizes the sizes of the solution boxes in a global Hermite filter. However,
this is a difficult problem in general. We will thus solve a simpler problem, which
consists of choosing an evaluation time that minimizes the local error of an individual
filter, i.e., the size of the enclosure of ms(t0,u0, tk) produced by the filter, assuming
that the point values u0, . . . , uk−1 are given (and, of course, that ms(t0,u0, tk) is
defined).10

Definition 13 (local error of a filter). Let FL be a filter for ODE u′ = f(u).
The local error of FL w.r.t. (t0,u0, t), denoted by eloc(FL, t0,u0, t), is defined as

eloc(FL, t0,u0, t) = ω (✷{uk ∈ R
n | FL(t,u, t)}) .

Since in a global filter we compute k boxes in one step, the step size is defined as
h = tk− t0. Our analysis is based on the assumption that the step size h is sufficiently
small. When we talk about an optimal evaluation time, the term optimal is thus to
be understood in an asymptotic sense.

In the following, we restrict our attention to Hermite filters which satisfy a certain
hypothesis (section 6.2). To find an optimal evaluation time, we first derive the
local error (section 6.3). From the local error, we can then characterize the optimal
evaluation time (section 6.4). Two of the main results of this section are as follows:

1. For a sufficiently small step size h, the relative distance (te−tk)/h between the
optimal evaluation time te and the point tk in a Hermite(σ) filter depends
only on the relative distances (ti+1 − ti)/h (i = 0, . . . , k − 1) between the
interpolation points t0, . . . , tk and on σ.11 In particular, it does not depend
on the ODE itself.

2. From a practical standpoint, the computation of the optimal evaluation time
induces a negligible overhead of the method. In particular, if we assume
ti+1 − ti = h/k (i ∈ N), the relative distance between the optimal evaluation
time and tk can be precomputed once for all for given k and σ.

The third main result is concerned with the order of a Hermite((σ0, . . . , σk)) filter

which is shown to be O(hσs+1), where σs =
∑k
i=0 σi when the evaluation point is

chosen carefully.

10As observed by one of the reviewers, the local error may be called more appropriately excess-
width, since the enclosure contains the exact solution. We kept the term “local error” because of the
analogy with traditional methods.

11Note that h = tk − t0 (and not h = tk − tk−1) because of the globalization process.
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6.2. Assumptions and notations. The following assumptions are used in this
section. We assume that the integration times are increasing, i.e., t0 < · · · < tk, and
that t− tk = O(h). We also assume that the function f satisfies a Lipschitz condition
on Ω ⊆ R

n:

∃c ∈ R ∀u, v ∈ Ω : ‖f(u)− f(v)‖ ≤ c‖u− v‖.(23)

Note that (23) holds if we assume f ∈ C1(Ω). We further assume that the interval
extension F of function f satisfies (D ⊆ Ω)

ω(F (D)) = O(ω(D)).(24)

For instance, (24) holds if F is the natural interval extension of f and (23) holds. We
also assume that B is a bounding box of u′ = f(u) over T = ✷{t0, . . . , tk, t} w.r.t.
(t0,u0) and that (see [23])

ω ((B)j) = Θ(ω(B)) = Θ(h), j ∈ N.(25)

From (23), the condition (25) holds if (B)j is a sufficiently tight enclosure of the set
{(x)j | x ∈ B}. In addition, we assume that the multistep solution ms is defined at
(t0,u0) or, in other words, that the ODE has a solution going through u0, . . . , uk−1

at times t0, . . . , tk−1. We also use the notations σ = (σ0, . . . , σk), σs =
∑k
i=0 σi,

and w(t) =
∏k
i=0(t − ti)

σi . Since we are interested in computing an enclosure of
ms(t0,u0, tk) from the point values u0, . . . , uk−1, we will consider a Hermite filter FL
satisfying

FL(t, (u0, v), t)⇒ ∂p

∂t
(t, (u0, v), t) + DE (t)− F (p(t, (u0, v), t) + E(t)) = 0,(26)

where

• F is an interval extension of f ;
• E(t) = (B)σs

w(t);
• DE (t) = (B)σs

w′(t) + (B)σs+1w(t);
• p(t, (u0, v), t) is the Hermite(σ) interpolation polynomial in t w.r.t. f and
(t, (u0, v)).

Let us introduce the function

δ(t, (u0, v), t) =
∂p

∂t
(t, (u0, v), t)− f(p(t, (u0, v), t) + me(t)),

where me(t) = m(E(t)). From the hypothesis (24), the condition (26) can be rewritten
as

FL(t, (u0, v), t)⇒ δ(t, (u0, v), t) = −DE (t) +O(ω(E(t))).(27)

In case (24), the condition (27) is satisfied for natural Hermite filters (see section 4.1),
provided that the interval extensions MS and DMS of ms and ∂ms

∂t yield point values
when evaluated at point arguments. (Recall that we assume exact interval arithmetic
for the theoretical parts of this paper.) If we assume that the interval extension of the
Jacobian of f satisfies the same condition as F , i.e., ω(J (D)0) = O(ω(D)), then (27)
is satisfied for implicit mean-value Hermite filters. It is also a good approximation
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for explicit mean-value Hermite filters if the matrix inversion is accurate (see section
4.2). We will also denote the Jacobian of δ w.r.t. variable v by

Φ(t, v) = Jvδ(t, (u0, v), t)

= Jv ∂p

∂t
(t, (u0, v), t)− J f(p(t, (u0, v), t) + me(t))Jvp(t, (u0, v), t).

Finally, we introduce the following functions:

λ(t) =




σk−2∑

j=0

βj+1
(t−tk)j

j!


+


σk−1∑

j=0

βj
(t−tk)j

j!


 k−1∑
ν=0

σν

t−tν


π(t);

β0 = 1, βj = −π(j)(tk), j = 1, . . . , σk − 1;

π(t) =

k−1∏
ν=0

(
t−tν
tk−tν

)σν

;

γ(t) =

k∑
i=0

σi

t−ti .

6.3. Local error of a natural Hermite filter. To characterize the local error
of a Hermite filter, we first need a technical lemma which characterizes the behavior
of the derivatives of the filter.

Lemma 1. We have
1. Φ(t, v) = Iλ(t) +O(1);
2. λ(t) = O(h−1);
3. λ(t) = Θ(h−1) for tk−1 < t < tk.
This lemma shows that Φ(t, v) is a Θ(h−1) asymptotically diagonal matrix for

tk−1 < t < tk. Its proof is given in [12]. We are now in position to characterize the
local error of a Hermite filter.

Theorem 2 (local error of a Hermite filter). Let FL be a Hermite( σ) filter for
u′ = f(u) satisfying (27). We have

1. eloc(FL, t0,u0, t) = |(Iλ(t) +O(1))−1|Θ(ω(B)) (|w′(t)|+ |w(t)|) ;
2. eloc(FL, t0,u0, t) = Ω(h2) (|w′(t)|+ |w(t)|) ;
3. if tk−1 < t < tk, then eloc(FL, t0,u0, t) = Θ(h2) (|w′(t)|+ |w(t)|).

Proof. Consider two arbitrary vectors v1, v2 ∈ R
n such that

FL(t, (u0, v1), t) and FL(t, (u0, v2), t).

By the mean-value theorem, we can write

δ(t, (u0, v2), t)− δ(t, (u0, v1), t) = Φ(t, ν)(v2 − v1),

where ν is on the straight line between v1 and v2. When the matrix Φ(t, ν) is regular,
we can write by Lemma 1 and (27)

v2 − v1 = Φ−1(t, ν) (δ(t, (u0, v2), t)− δ(t, (u0, v1), t))

= (Iλ(t) +O(1))−1 (DE (t)−DE (t) +O(ω(E(t)))) .

Since the two vectors v1 and v2 are chosen arbitrarily, it follows from (25) that

eloc(FL, t0,u0, t) = |(Iλ(t) +O(1))−1| (ω(DE (t)) +O(ω(E(t))))

= |(Iλ(t) +O(1))−1|Θ(ω(B)) (|w′(t)|+ |w(t)|) ,
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which proves point 1. Points 2 and 3 are now direct consequences of Lemma 1 and
(25).

We are now ready to show how to find an optimal evaluation time for Hermite
filters.

6.4. Optimal evaluation time for a natural Hermite filter. Our first result
characterizes the order of a Hermite filter. It also hints on how to obtain an optimal
evaluation time. Recall that the order of a method (or of a filter) is the order of the
local error minus 1.

Theorem 3 (order of a Hermite filter). Let FL be a Hermite( σ) filter for u′ =
f(u) satisfying (27). Then

1. there exists t such that tk−1 < t < tk, and w′(t) = 0;
2. if tk−1 < t < tk and w′(t) = 0, then eloc(FL, t0,u0, t) = O(hσs+2);
3. if w′(t) �= 0, then eloc(FL, t0,u0, t) = Ω(hσs+1).

Proof. Consider an evaluation time t such that t − tk = O(h). We have w(t) =
O(hσs) and w′(t) = O(hσs−1). First assume that tk−1 < t < tk and w′(t) = 0. By
Rolle’s theorem, since w(tk−1) = w(tk) = 0, there exists such an evaluation time t. By
Theorem 2, eloc(FL, t0,u0, t) = O(hσs+2). Now assume that w′(t) �= 0. By Theorem
2, eloc(FL, t0,u0, t) = Ω(hσs+1).

Theorem 3 indicates that a better order for Hermite filters is obtained when we
choose an evaluation time t that is a root of the polynomial w′. This is the basis of
our next result which describes a necessary condition for optimality.

Theorem 4 (necessary condition for optimal Hermite filters). Let FL be a Her-
mite( σ) filter for u′ = f(u) satisfying (27), and let te ∈ R be such that

eloc(FL, t0,u0, te) = min
t−tk=O(h)

{eloc(FL, t0,u0, t)}

for h sufficiently small. Then te is a zero of the function γ.
Proof. Assume that t − tk = O(h) and that h is sufficiently small. By Theorem

3, w′(te) must be zero to minimize the local error. Note that FL(t, (u0, v), ti) holds
for any v ∈ R

n if w′(ti) = 0 (0 ≤ i ≤ k). Thus te /∈ {t0, . . . , tk} and w(te) �= 0. Since
w′(t) = w(t)γ(t), we conclude that γ(te) = 0.

Our next result specifies the number of zeros of the function γ as well as their
locations.

Proposition 6. The function γ in Theorem 4 has exactly k zeros s0, . . . , sk−1

such that ti < si < ti+1 (0 ≤ i < k).
Proof. We have w′(t) = w(t)γ(t). By Rolle’s theorem, as w(ti) = w(ti+1) = 0, w′

has a root si with ti < si < ti+1 and w(si) �= 0 (0 ≤ i < k). Furthermore, the roots of
w′ are in {s0, . . . , sk−1, t0, . . . , tk} because ti is a root of multiplicity σi−1 (0 ≤ i ≤ k)

and w′ is of degree σs − 1, i.e., k +
∑k
i=0(σi − 1) = σs − 1. Since γ is not defined at

t0, . . . , tk, its zeros are in {s0, . . . , sk−1}.
We are now ready to characterize precisely the optimal evaluation time for a

Hermite filter.
Theorem 5 (optimal evaluation time). Let FL be a Hermite( σ) filter for u′ =

f(u) satisfying (27), let s0 < · · · < sk−1 be the zeros of γ, and let te ∈ R such that

eloc(FL, t0,u0, te) = min
t−tk=O(h)

{eloc(FL, t0,u0, t)}.

Then, for h sufficiently small,

|(w/λ)(te)| = min
s∈{s0,... ,sk−1}

{|(w/λ)(s)|}.
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Table 1
Relative distance between the rightmost zero te of γ and tk when σ0 = · · · = σk.

k 1 2 3 4 5 6
(te − tk)/h −0.5000 −0.2113 −0.1273 −0.0889 −0.0673 −0.0537

Proof. Let us assume that h is sufficiently small. From Theorem 4, we know that
te ∈ {s0, . . . , sk−1}. By definition, for i = 0, . . . , k − 1, w′(si) = w(si)γ(si) = 0 and,
from Theorem 2,

eloc(FL, t0,u0, si) = |(Iλ(si) +O(1))−1|Θ(ω(B))|w(si)|.
From Proposition 6, if t = si (i = 0, . . . , k − 1), B is a bounding box over T =
✷{t0, . . . , tk, si} = [t0, tk] w.r.t. (t0,u0) and the factor Θ(ω(B)) does not depend on
t = si. We have thus to minimize the function

ρ(t) = |(Iλ(t) +O(1))−1||w(t)|
for t ∈ {s0, . . . , sk−1}. By Lemma 1, λ(sk−1) = Θ(h−1). Therefore, we must have
λ(te) = Θ(h−1) and ρ(te) ≈ |(w/λ)(te)|. Let us now assume that there exists i ∈
0..k − 1 such that |(w/λ)(si)| < |(w/λ)(te)|. We can write

|(w/λ)(si)| < |(w/λ)(te)| ⇒ λ(si) = Θ(h−1)

⇒ ρ(si) ≈ |(w/λ)(si)|
⇒ ρ(si) < ρ(te),

which is a contradiction.

6.5. Discussion. It is important to discuss the consequences of Theorem 4 in
some detail. First observe that the relative distance (te − tk)/h between the optimal
evaluation time te and the point tk depends only on the relative distances (ti+1 −
ti)/h (i = 0, . . . , k − 1) between the interpolation points t0, . . . , tk and on the vector
σ. In particular, it is independent from the ODE itself. For instance, for k = 1, we
have γ(t) = σ0

t−t0 +
σ1
t−t1 , and γ has a single zero given by te =

σ1t0+σ0t1
σ0+σ1

. In addition, if
σ0 = · · · = σk, then the zeros of γ are independent from σ. In particular, for k = 1, we
have te = (t0 + t1)/2. From a practical standpoint, the computation of the optimal
evaluation time induces a negligible overhead of the method. In particular, if we
assume ti+1− ti = h/k (i ∈ N), then the relative distance between tk and the optimal
evaluation time can be precomputed and stored for a variety of values of k and σ.
Finally, it is worth stressing that any zero of function γ gives an O(hσs+1) order for
the Hermite filter provided that λ(t) = Θ(h−1) at that zero. Hence any such zero is
in fact a potential candidate for the optimal evaluation time. In our experiments (see
the next section), the rightmost zero was always the optimal evaluation time when
σ0 = · · · = σk, although we have not been able to prove this result.

6.6. Illustration. We now illustrate the theoretical results presented in this
section. Table 1 gives approximative values of the relative distance (te−tk)/h between
the rightmost zero te of the function γ and the point tk (1 ≤ k ≤ 6) for σ0 = · · · = σk
and ti+1−ti = h/k (i = 0, . . . , k−1). For two interpolation points, te is in the middle
of t0 and t1. It then moves closer and closer to tk for larger values of k.

Figure 7 illustrates the functions γ, w, w′, λ, and w/λ for k = 4 and σ =
(2, 2, 2, 2, 2). The top left figure shows the function w′ and γ, as well as the zeros of
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Fig. 7. The functions γ,w,w′, λ and w/λ for the case k = 4, σ = (2, 2, 2, 2, 2).

γ. The top right figure shows the function w with the zeros of γ in superposition.
The bottom left figure shows function λ with the zeros of γ in superposition. The
bottom right picture shows the function w/λ and the zeros of γ. It can be seen that
the rightmost zero minimizes the local error in this example.

6.7. Validity of the asymptotic assumption. Our analysis is based on the
assumption that the step size h is sufficiently small. But how small is sufficiently
small? According to our experiments, the actual step sizes are generally small enough
so that the asymptotically optimal evaluation times produced by the above theory are
good approximations of the real optima. There are two reasons for these small actual
step sizes:

1. the need to bound the local error, which limits the stability of validated
methods and makes stiff problems more challenging;

2. the existing bounding box process, which often impose the strongest restric-
tion on the step size, especially for stiff problems.

Figure 8 illustrates our theoretical results experimentally on a specific ODE. It
plots the local error of several global Hermite filters (GHFs) as a function of the eval-
uation time for the Lorenz system (e.g., [10]). It is assumed that ti+1 − ti is constant
(0 ≤ i ≤ 2k − 2). In addition, we assume that, in each mean-value filter composing
GHF, the distance between the evaluation time and the rightmost interpolation point
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Fig. 8. Local error of GHFs as a function of the evaluation time for the Lorentz system.

is constant. In the graphs, [t0, tk] = [0, 0.01] and h = tk − t0 = 0.01. The figure also
shows the rightmost zero of the function γ as obtained from Table 1. As we can see,
the rightmost zero of γ is a very good approximation of the optimal evaluation time
of the filter for all the cases displayed.

7. The algorithm. We are now in position to present our algorithm for enclos-
ing solutions of IVPs for parametric ODEs. The algorithm is presented in Figure 9,
and Figure 10 gives the specification of the functions not covered so far. The first
two lines initialize the integration process and compute the initial bounding boxes,
pruned domains, and the boxes and matrices needed for the wrapping effect. The
main step of the integration are lines 4-6. Line 4 computes the new bounding boxes,
line 5 uses them to compute the new predicted boxes, and line 6 applies the pruning
step to compute the new pruned boxes.

8. Theoretical analysis. This section presents theoretical results on the effi-
ciency of our method and compares it to the best interval methods we are aware
of.

8.1. Overview of the methods. We analyze the cost of our Solve algo-
rithm based on the GHF method and compare it to Nedialkov’s interval Hermite–
Obreschkoff (IHO) method [24], the best interval method we know of. Indeed, the
IHO method outperforms interval Taylor series methods such as Lohner’s method [20].
Here are the various methods used in the theoretical and experimental comparisons.

The GHF method. In the GHF method, each iteration in the loop of function
Solve is called a step of the integration. The (constant) step size in GHF is given
by h = tk − t0. Assuming that σm = max(σ) and σs = σ0 + · · · + σk, the remaining
components of GHF are specified as follows:
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function Solve(O, D0, t0..mk−1)
begin

1 B0 := BoundingBox(O, t0, D0, t0);
2 〈D∗

0,Y0, M0〉 := InitializeMultistep(O, t0, D0,B1..k−1);
3 for i := 1 to m− 1 do
4 Bi := BoundingBox(O, tik−1, D∗

ik−1, ti);
5 D−

i := Predictor(O, tik−1, D∗
ik−1, ti,Bi);

6 〈D∗
i ,Yi, Mi〉 := Prune(O, ti−1,D∗

i−1,B(i−1)k+1..ik−1,Yi−1, Mi−1,
ti,D

−
i ,Bi);

7 endfor
8 return D∗

1..mk−1;
end

Fig. 9. The constraint satisfaction algorithm for IVPs for parametric ODEs.

Specification 4 (Solve). Let s be the solution of ODE O and D1..mk−1 =
Solve(O, D0, t0...mk−1). Then, for 1 ≤ i ≤ mk − 1, s(t0, D0, ti) ⊆ Di.
Specification 5 (BoundingBox). Let B1..k =BoundingBox(O, t0, D0, t1..k).
Then, for 1 ≤ i ≤ k, Bi is a bounding box of O over [ti−1, ti] w.r.t. (t0, D0).
Specification 6 (InitializeMultistep). Let ms be the multistep solution of ODE
O and Bi be a bounding box of O over [ti−1, ti] w.r.t. (t0, D0) for 1 ≤ i ≤ k− 1. Let

〈D0,Y0, M〉 = InitializeMultistep(O, t0, D0,B1..k−1)

and A = {My0 + m(D0) | y0 ∈ Y0} ∩D0. Then, for 0 ≤ i ≤ k − 1, ms(t0, D0, ti) ⊆
ms(t0,A, ti).
Specification 7 (Predictor). Let s be the solution of ODE O and Bi a bounding
box of O over [ti−1, ti] w.r.t. (t0, D0) for 1 ≤ i ≤ k. Let

D1..k = Predictor(O, t0, D0, t1..k,B1..k).

Then, for 1 ≤ i ≤ k, s(t0, D0, ti) ⊆ Di.

Fig. 10. The specification of the main functions.

1. The BoundingBox function in GHF uses a Taylor series method [21, 5,
25] of order p + q + 1 to compute Bi. Moreover, we assume that Bik =
· · · = B(i+1)k−1; i.e., the function computes a single bounding box over
[tik−1, t(i+1)k−1] (i ≥ 1).

2. The Predictor function uses Moore’s Taylor method [21] of order q + 1 to
compute the boxes D−

i . Note that we compute the Taylor coefficients of f
only once at (tik−1, D∗

ik−1).
3. The evaluation point in Hermite filters (i.e., in function EMVFL) is the

rightmost zero of function γ (see section 6 and Table 1). GHF(σ) is thus a
method of order σs + 1.

4. Function ExplicitGlobalFilter needs σm−1 Jacobians (i.e., J (Dj)1, . . . ,
J (Dj)σm−1) at each interpolation point tj for (i − 1)k ≤ j ≤ (i + 1)k −
1 to compute the k explicit mean-value Hermite filters in EMVFL. GHF
computes only Jacobians at predicted boxes and not at pruned boxes. More
precisely, it computes only k(σm − 1) Jacobians at (ti,D

−
i ) and reuses the
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k(σm−1) Jacobians at (ti−1,D−
i−1) which were computed during the previous

step i− 1.
5. The function CoordTransfo uses Lohner’s QR factorization technique (see

[20]).
6. The function InitializeMultistep uses a one-step mean-value Taylor method.

The IHO method. The IHO method is implemented exactly as described in [24].
Its step size is h as in the GHFmethod. Besides the pruning, there are some interesting
differences between GHF and IHO. First, the predictor function in IHO uses a mean-
value Taylor method of order q + 1. Second, the Jacobians in IHO are recomputed
at pruned boxes. IHO uses a Taylor series method of order p + q + 1 to compute a
bounding box as in GHF.

The IHO∗ method. To obtain experimental results as informative as possible, we
introduce IHO∗, a variant of IHO that is closer to GHF. In particular, the predictor
in IHO∗ uses Moore’s Taylor method of order q + 1 instead of the mean-value Taylor
method of the same order. Also, IHO∗ does not recompute the Jacobians at pruned
boxes; it reuses the Jacobians at predicted boxes instead as in GHF. IHO∗ and GHF
differ only in the pruning step. Interestingly, IHO∗ is extremely close in precision to
IHO on almost all benchmarks for a given step size. There are a few benchmarks
where the loss of precision is significant or where a smaller step size must be used. Of
course, IHO∗ is faster than IHO for a given step size.

8.2. Comparison hypotheses. We make the following assumptions and con-
ventions for simplicity. Consider the ODE u′ = f(u). We assume that (the natural
encoding of) function f contains only arithmetic operations. We denote by N1 the
number of ∗, / operations in f , by N2 the number of ± operations, and by N the
sum N1 + N2. We also assume that the cost of evaluating J (Di)j is n times the
cost of evaluating (Di)j . We report only the main operations of the methods, i.e.,
(1) products of a real and an interval matrix which arise in the pruning step and
(2) the generation of Jacobians.12 These are the main operations for problems of
sufficiently high dimension where f contains sufficiently many operations. Note that
products of a real and an interval matrix can be optimized to substantially reduce
the number of sign tests and rounding mode switches, which are costly tasks (see
[15]). As a consequence, the cost per interval arithmetic operation in a real-interval
matrix product is less than the cost of an operation on two intervals in a Jacobian
computation. We thus report separately the number of interval arithmetic operations
involved in products of a real and an interval matrix in the pruning step (Cost-1) and
the generation of Jacobians (Cost-2). Note that Cost-1 is a fixed cost in the sense
that it is independent from the ODE. Cost-2 is a variable cost which increases as the
expression of f contains more operations.

8.3. Methods of the same order. We first compare the costs of GHF(σ) and
IHO(∗)(p, q) for p+ q = σs and q ∈ {p, p+ 1}. The methods are thus of order σs + 1.
Table 2 reports the main cost of a step in IHO, IHO∗, and GHF. It also shows the
complexity of two particular cases of GHF: GHF-1 is an implementation with only
two interpolation points (k = 1) and |σ1−σ0| ≤ 1, while GHF-2 is an implementation
with two conditions on every interpolation points (σ0 = · · · = σk = 2).

The first main result is that GHF-1 is always cheaper than IHO(∗). Hence a GHF
method with only two interpolation points is guaranteed to run faster than IHO (∗).
The next section shows that an improvement in accuracy is also obtained in this case.

12Matrix inversions and the QR factorization in CoordTransfo are not counted here.
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Table 2
Cost analysis: Methods of the same order.

Cost-1 Cost-2

IHO − 2�σs
2
�2nN1 +O(σsnN2)

IHO∗ − �σs
2
�2nN1 +O(σsnN2)

GHF 7k3n3 ((σm − 1)2 + 1)knN1 + σmknN2

GHF-1 − (�σs−1
2

�2 + 1)nN1 +O(σsnN2)

GHF-2 ( 7
8
σs − 21

4
)σ2sn

3 (σs − 2)nN

Table 3
Cost analysis: Methods of different orders but of similar cost.

Cost-2

IHO 2�σs−1
2

�2nN1 +O(σsnN2)

IHO∗ �σs−1
2

�2nN1 +O(σsnN2)

GHF-1 (�σs−1
2

�2 + 1)nN1 +O(σsnN2)

Observe that Cost-2 in IHO∗ is approximately half as much as in IHO because the
Jacobians are not computed at pruned boxes in IHO∗. Note also that Cost-2 is smaller
in GHF-1 than in IHO∗ because IHO∗ evaluates one more Jacobian, i.e., J (Di)q.

GHF-2 is more expensive than GHF-1 and IHO(∗) when f contains few operations
because the Jacobians are cheap to compute in this case and the fixed cost Cost-1
becomes large w.r.t. Cost-2. However, when f contains many ∗, / operations (which is
the case in many practical applications), GHF-2 becomes substantially faster because
Cost-1 in GHF-2 is independent of f and Cost-2 is substantially smaller in GHF-2
than in GHF-1 and IHO(∗). This result shows the versatility of the approach that can
be tailored to the application at hand.

8.4. One-step methods of different orders but of similar cost. We now
show that GHF methods can be tailored to be asymptotically more precise than IHO
methods for a similar cost. Consider the costs of the IHO(∗)(p, q) and GHF-1 methods
when we assume that p+q = σs−2 and q ∈ {p, p+1}. Under these conditions, IHO(∗)

is a method of order σs−1, while GHF-1 is a method of order σs+1. Table 3 reports
the main cost of a step in IHO, IHO∗, and GHF-1. Cost-2 is similar in GHF-1 and
IHO∗ (and about twice as much in IHO). The GHF-1 method is thus asymptotically
more precise (by two orders of magnitude) than IHO∗ for a similar cost.

9. Experimental analysis. We now report experimental results of a C++ im-
plementation13 of our Solve algorithm based on the GHF method GHF(σ). We
performed our tests on a Sun Ultra 10 workstation with a 333 MHz UltraSparc CPU.
The underlying interval arithmetic and automatic differentiation packages are PRO-
FIL/BIAS [15] and FADBAD/TADIFF [3, 2].

The benchmarks. Many of the benchmarks are standard. They come from var-
ious domains, including chemistry, biology, mechanics, physics, and electricity. The
equation, initial conditions, and interval of integration for each IVP are given in [12].
Note that the comparisons uses only point initial conditions; they could easily be
generalized to interval conditions. The “full Brusselator” (BRUS), the “Oregonator”
(OREG), and HIRES all model famous chemical reactions. Both OREG and HIRES
are stiff problems. The Lorenz system (LOR) exemplifies the so-called strange at-

13The code is available at http://www.info.ucl.ac.be.
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tractors. The two-body problem (2BP) comes from mechanics, and the van der Pol
(VDP) equation describes an electrical circuit. All these problems are described in
detail in [10, 11]. We also consider a problem from molecular biology (BIO) and the
Stiff DETEST problem D1 [9]. Finally, we consider four dynamical systems (LIEN,
P1, P2, P3), where the function f contains more operations. LIEN, P2, and P3 are
taken from [26].

Overview of the experiments. The experimental results obey the same assump-
tions as the theoretical analysis. They include three types of comparisons:

1. one-step methods of the same order;
2. one-step methods of different orders but of similar cost;
3. multistep versus one-step methods of the same order.

The tables report, for a given step size, the global error, the error ratio (an error ratio
higher than 1 means that GHF is more precise), the execution time of both methods
(in seconds), and the time ratio (a time ratio higher than 1 means that GHF is faster).
They also report the execution time of IHO∗ between parentheses. As mentioned, we
observed small precision loss in IHO∗ over IHO and only for the larger step sizes. Since
this was not very significant, we assume that the error values in IHO∗ are nearly the
same as in IHO. A “-” symbol in the tables means that the method failed to integrate
the ODE for the corresponding step size. Finally, note that the global error at point
ti is given by the infinity norm of the width of the enclosure Di at ti, i.e., the quantity
‖ω(Di)‖∞ at the end of the interval of integration.

9.1. One-step methods.

Same order. Table 4 reports the experimental results for the IHO(∗)(p, p) and
GHF(p, p) methods of order 2p + 1 on several benchmarks, orders, and step sizes. In
general, for a given step size, GHF and IHO∗ have a similar accuracy and execution
time. GHF is usually slightly faster as predicted by the theoretical results. The
difference should be larger for higher dimensional problems where f contains many
operations. IHO is slower than GHF and IHO∗. For a given problem and given order,
the error ratio is generally constant w.r.t. the step size, confirming that GHF and
IHO(∗) are methods of the same order.

Different orders. The theoretical results indicated that, given a step size, the
GHF method can always be tailored to be asymptotically more precise than IHO∗

for a similar computation cost. We now validate this claim experimentally. Table
5 compares IHO(p, p) (order 2p + 1) and GHF(p + 1, p + 1) (order 2p + 3). On the
benchmarks, GHF is always faster than IHO, and it produces significant improvements
in accuracy. As expected, the gain in precision increases when the step size decreases,
confirming that GHF is a method of higher order than IHO. GHF is slightly slower
than IHO∗, but, of course, it produces significant improvement in accuracy. GHF and
IHO∗ should have a similar execution time for higher dimensional problems where f
contains many operations, as predicted by the theoretical analysis.

Error w.r.t. time. It is interesting to compare the various methods by plotting
the error as a function of the execution time. Figure 11 plots IHO(∗)(p, p), GHF(p, p),
and GHF(p+ 1, p+ 1) using the results in Tables 4 and 5. We take p = 8 for D1 and
HIRES and p = 3 for the other problems. The curve of IHO∗ is always slightly above
the curve of GHF(p, p) (except for D1). GHF(p + 1, p + 1) is almost always below
the other curves, and IHO is always above the other curves. These results confirm
the theoretical results and indicate that GHF(p + 1, p + 1) is superior to the other
methods.
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Table 4
One-step methods of the same order.

IVP IHO GHF h Error Time
p, q σ IHO GHF Ratio IHO GHF Ratio

BRUS 3,3 (3,3) 1E-1 2.3E-3 1.2E-3 1.9
7.5E-2 4.5E-5 2.4E-5 1.9
5E-2 9.7E-7 4.9E-7 2.0
2.5E-2 5.2E-9 2.7E-9 1.9
1.25E-2 3.2E-11 1.7E-11 1.9
1E-2 6.5E-12 3.5E-12 1.9 5.1 (4.0) 3.9 1.3

4,4 (4,4) 1E-1 1.7E-4 9.9E-5 1.7
7.5E-2 2.0E-6 1.1E-6 1.8
5E-2 1.0E-8 5.0E-9 2.0
2.5E-2 7.4E-12 3.2E-12 2.3 2.8 (2.1) 2.0 1.4

5,5 (5,5) 1E-1 2.4E-5 1.6E-5 1.5
7.5E-2 1.2E-7 7.6E-8 1.6
5E-2 1.6E-10 9.4E-11 1.7 1.9 (1.4) 1.3 1.5

7,7 (7,7) 1E-1 7.6E-7 5.2E-7 1.5
7.5E-2 6.6E-10 4.7E-10 1.4 1.9 (1.4) 1.3 1.5

8,8 (8,8) 1E-1 1.5E-7 1.1E-7 1.4
7.5E-2 5.4E-11 4.0E-11 1.4 2.2 (1.6) 1.5 1.5

LOR 3,3 (3,3) 1.25E-2 4.8E-1 3.2E-1 1.5
1E-2 6.7E-2 4.5E-2 1.5
7.5E-3 7.7E-3 4.9E-3 1.6
5E-3 4.3E-4 2.6E-4 1.7
2.5E-3 3.1E-6 2.0E-6 1.6 11 (8) 8 1.4

4,4 (4,4) 2E-2 1.5E-1 1.0E-1 1.5
1.75E-2 2.7E-2 1.8E-2 1.5
1.5E-2 5.0E-3 3.0E-3 1.7
1.25E-2 8.0E-4 4.6E-4 1.7
1E-2 9.0E-5 5.0E-5 1.8
7.5E-3 6.0E-6 3.1E-6 1.9 4.7 (3.6) 3.6 1.3

7,7 (7,7) 3E-2 3.0E-3 2.4E-3 1.2
2.75E-2 4.5E-4 3.6E-4 1.2
2.5E-2 6.6E-5 5.3E-5 1.2
2.25E-2 7.7E-6 6.2E-6 1.2 3.0 (2.3) 2.2 1.4

2BP 3,3 (3,3) 1E-1 4.5E-3 7.6E-4 6.0
7.5E-2 1.1E-4 3.7E-5 3.0
5E-2 3.3E-6 1.2E-6 2.7
2.5E-2 1.5E-8 4.5E-9 3.3 3.6 (2.9) 2.6 1.4

4,4 (4,4) 1.25E-1 2.9E-4 7.4E-5 3.9
1E-1 1.2E-5 3.0E-6 4.0
7.5E-2 3.4E-7 8.5E-8 4.0
5E-2 3.4E-9 9.2E-10 3.7 2.5 (1.9) 1.7 1.5

7,7 (7,7) 1.5E-1 1.1E-6 5.6E-7 2.0
1.25E-1 2.3E-9 9.7E-10 2.4 2.0 (1.5) 1.3 1.5

VDP 3,3 (3,3) 4E-2 1.5E-2 5.8E-3 2.6
3E-2 5.9E-5 3.8E-5 1.6
2E-2 1.7E-6 9.6E-7 1.8
1E-2 1.0E-8 5.3E-9 1.9
5E-3 7.4E-11 3.8E-11 1.9
2.5E-3 4.7E-13 2.6E-13 1.8 14 (11.2) 11.6 1.2

4,4 (4,4) 4E-2 4.7E-5 4.0E-5 1.2
3E-2 8.4E-7 5.1E-7 1.6
2E-2 9.0E-9 4.5E-9 2.0
1E-2 1.1E-11 4.7E-12 2.3 4.5 (3.7) 3.8 1.2

5,5 (5,5) 4E-2 2.6E-6 2.1E-6 1.2
3E-2 2.3E-8 1.6E-8 1.4
2E-2 6.7E-11 3.9E-11 1.7 2.9 (2.3) 2.4 1.3

BIO 3,3 (3,3) 7.5E-3 4.6E-6 2.0E-6 2.3
5E-3 8.2E-9 3.4E-9 2.4
2.5E-3 2.2E-11 9.2E-12 2.4 7.0 (5.4) 5.1 1.4

4,4 (4,4) 7.5E-3 1.3E-6 7.6E-7 1.7
5E-3 2.9E-10 1.3E-10 2.2
2.5E-3 9.7E-14 3.3E-14 2.9 10 (7.5) 7.0 1.4

OREG 3,3 (3,3) 1.5E-2 1.5E-4 2.2E-4 0.7
1E-2 8.0E-6 1.1E-5 0.7
7.5E-3 1.0E-6 1.4E-6 0.7
5E-3 6.0E-8 7.9E-8 0.8 9.6 (7.7) 7.5 1.3

4,4 (4,4) 2.5E-2 2.4E-4 3.4E-4 0.7
2E-2 1.2E-5 1.6E-5 0.7
1.5E-2 6.1E-7 7.6E-7 0.8
1E-2 1.5E-8 1.9E-8 0.8
7.5E-3 1.1E-9 1.4E-9 0.8 8.2 (6.5) 6.4 1.3

D1 8,8 (8,8) 1.1E-1 1.1E-6 1.3E-6 0.8
1E-1 1.3E-7 1.4E-7 0.9
9E-2 1.5E-8 1.7E-8 0.9
8E-2 1.5E-9 1.7E-9 0.9
7E-2 1.3E-10 1.4E-10 0.9
6E-2 7.3E-12 8.3E-12 0.9
5E-2 2.8E-13 3.1E-13 0.9 2.4 (1.8) 1.9 1.3

HIRES 4,4 (4,4) 2.5E-1 3.2E-7 6.1E-7 0.5
2E-1 2.4E-8 4.3E-8 0.6
1.5E-1 1.1E-9 2.6E-9 0.4
1E-1 2.8E-11 5.0E-11 0.6
5E-2 4.8E-14 6.9E-14 0.7 23 (17) 16 1.4

8,8 (8,8) 4E-1 2.9E-6 1.2E-5 0.2
3.5E-1 4.9E-8 3.9E-8 1.3
3E-1 8.0E-10 6.2E-10 1.3
2.5E-1 7.7E-12 6.0E-12 1.3
2E-1 3.4E-14 2.8E-14 1.2 10.9 (7.4) 7.2 1.5
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Table 5
One-step methods of different orders.

IVP IHO GHF h Error Time
p, q σ IHO GHF Ratio IHO GHF Ratio

BRUS 3,3 (4,4) 1E-1 2.3E-3 1.0E-3 2.3
7.5E-2 4.5E-5 1.3E-5 3.5
5E-2 9.7E-7 1.2E-7 8.1
2.5E-2 5.2E-9 9.5E-11 55
1.25E-2 3.2E-11 2.0E-13 160 4.0 (3.2) 3.6 1.1

4,4 (5,5) 1E-1 1.7E-4 1.0E-4 1.7
7.5E-2 2.0E-6 9.9E-7 2.0
5E-2 1.0E-8 3.2E-9 3.1
2.5E-2 7.4E-12 6.4E-13 12 2.8 (2.1) 2.4 1.2

LOR 3,3 (4,4) 1.25E-2 4.8E-1 1.3E-2 1.5
1E-2 6.7E-2 1.2E-3 56
7.5E-3 7.7E-3 5.7E-5 135
5E-3 4.3E-4 9.7E-7 443 5.4 (4.0) 4.9 1.1

4,4 (5,5) 2E-2 1.5E-1 6.2E-2 2.4
1.75E-2 2.7E-2 9.0E-3 3.0
1.5E-2 5.0E-3 1.2E-3 4.2
1.25E-2 8.0E-4 1.2E-4 6.7
1E-2 9.0E-5 7.2E-6 13
7.5E-3 6.0E-6 2.6E-7 23 4.7 (3.6) 4.1 1.1

2BP 3,3 (4,4) 1E-1 4.5E-3 2.5E-5 180
7.5E-2 1.1E-4 7.6E-7 145
5E-2 3.3E-6 8.9E-9 371
2.5E-2 1.5E-8 4.1E-11 366 3.6 (2.9) 3.0 1.2

4,4 (5,5) 1.25E-1 2.9E-4 1.1E-5 26
1E-1 1.2E-5 3.6E-7 33
7.5E-2 3.4E-7 5.6E-9 61
5E-2 3.4E-9 5.5E-11 62 2.5 (1.9) 2.0 1.3

VDP 3,3 (4,4) 4E-2 1.5E-2 2.5E-3 6.0
3E-2 5.9E-5 9.7E-6 6.1
2E-2 1.7E-6 8.8E-8 19
1E-2 1.0E-8 6.2E-11 161
5E-3 7.4E-11 9.0E-14 822 7.4 (5.6) 7.2 1.0

4,4 (5,5) 4E-2 4.7E-5 3.6E-5 1.3
3E-2 8.4E-7 3.6E-7 2.3
2E-2 9.0E-9 1.6E-9 5.6
1E-2 1.1E-11 2.8E-13 39 4.5 (3.7) 4.2 1.1

BIO 3,3 (4,4) 7.5E-3 4.6E-6 1.7E-6 2.7
5E-3 8.2E-9 1.2E-9 6.8
2.5E-3 2.2E-11 4.8E-13 46 7.0 (5.4) 6.2 1.1

4,4 (5,5) 7.5E-3 1.3E-6 7.7E-7 1.7
5E-3 2.9E-10 9.3E-11 3.1
2.5E-3 9.7E-14 1.0E-14 9.7 10 (7.5) 8.4 1.2

OREG 3,3 (4,4) 2E-2 2.6E-3 7.0E-5 37
1.5E-2 1.5E-4 1.1E-6 136
1E-2 8.0E-6 2.2E-8 364
7.5E-3 1.0E-6 1.5E-9 667
5E-3 6.0E-8 4.6E-11 1304 9.6 (7.7) 8.6 1.1

4,4 (5,5) 2.5E-2 2.4E-4 1.4E-4 1.7
2E-2 1.2E-5 3.9E-6 3.1
1.5E-2 6.1E-7 1.6E-8 38
1E-2 1.5E-8 6.3E-11 238 6.2 (4.9) 5.3 1.2

D1 8,8 (9,9) 1.1E-1 1.1E-6 3.9E-8 28
1E-1 1.3E-7 3.6E-9 36
9E-2 1.5E-8 3.5E-10 43
8E-2 1.5E-9 2.9E-11 53
7E-2 1.3E-10 1.8E-12 72
6E-2 7.3E-12 7.8E-14 94 2.0 (1.5) 1.8 1.1

HIRES 4,4 (5,5) 3E-1 1.3E-5 1.9E-6 6.8
2.5E-1 3.2E-7 6.0E-8 5.3
2E-1 2.4E-8 2.4E-9 10
1.5E-1 1.1E-9 4.6E-11 24
1E-1 2.8E-11 3.2E-13 88 12 (8.5) 9.3 1.3

8,8 (9,9) 4E-1 2.9E-6 2.5E-5 0.1
3.5E-1 4.9E-8 4.1E-8 1.2
3E-1 8.0E-10 6.5E-10 1.2
2.5E-1 7.7E-12 6.2E-12 1.2
2E-1 3.4E-14 2.9E-14 1.2 10.9 (7.4) 7.9 1.4

9.2. Multistep versus one-step methods. We now compare multistep GHF
methods versus IHO(∗) and the one-step GHF method of the same order. We restrict
our attention to problems where the function f contains more operations. Tables 6,
7, 8, and 9 report the results, respectively, for the four tested examples and for several
orders and step sizes.14 For a given step size, multistep GHF methods usually produce
much more precise results than one-step methods (especially for large step sizes); they
also allow for larger step sizes. Multistep GHF methods are generally as fast as the
one-step GHF method and IHO∗; they are faster when f has many operations, as is

14Note that in the LIEN problem, we used a bounding box computation method of order 13 for
σs ≥ 12.
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the case in LIEN (which contains many multiplications). The tables also show that,
for a given step size, the one-step GHF method is slightly more precise and faster
than IHO∗ and that IHO is slower.

Figures 12, 13, 14, and 15 plot the error as a function of the execution time. The
main result is that multistep GHF methods perform better than one-step methods on
these problems. In general, multistep methods produce several orders of magnitude
improvements in precision for a fixed execution time. The one-step GHF method
performs slightly better than IHO∗. Note that, for the LIEN problem, GHF methods
with many interpolation points are more efficient and allow for smaller execution
times.

9.3. Discussion. Before concluding this section, it is important to make a num-
ber of remarks.

In GHF, the enhancement in precision obtained by recomputing the Jacobians at
pruned boxes is insignificant in all problems we tested. Instead, this recomputation
increases the computational cost. Our experimental results showed that this also
holds for the IHO method in general.

As pointed out by Nedialkov [23], the stability of interval methods depends not
only on the stability of the underlying approximation formula (as in standard nu-
merical methods) but also on the corresponding formula for the truncation error.
Hence, interval extensions of standard numerical methods designed for stiff problems
may need smaller step sizes. Another restriction on the step size in interval methods
comes from the bounding box process, whose current implementations require very
small step sizes to be able to compute bounding boxes in the case of stiff problems.
This explains why the differences in efficiency between interval methods are not as
sharp as for traditional methods.

In our experiments, we always chose σ0 = · · · = σk. Indeed, the main cost of the
method is determined by max0≤i≤k{σi}, and the order of the method is maximized
when σ0 = · · · = σk. Since the actual step sizes are sufficiently small, this choice is
thus always better. If we could use larger step sizes (e.g., by improving the bounding
box process), then stability requirements might make other choices preferable.

The results close to machine precision are not very significant since rounding
errors, not the actual method, are determining the accuracy. This explains why the
curves in the figures tend to join for high precisions in some cases (e.g., in LIEN, P1,
and P2).

9.4. Summary. We now summarize our experimental results. The main con-
clusions are as follows:

1. The one-step GHF method is almost always better than existing (one-step)
interval methods.

2. When f contains few operations, the one-step GHF method outperforms mul-
tistep GHF methods (and other existing methods).

3. When f contains many operations, multistep GHF methods outperform the
one-step GHF method (and other existing methods).

4. GHF methods are very versatile and can be tailored to the application at
hand.

5. The experimental results confirm the theoretical analysis.
In particular, the one-step GHF method performs generally better than the IHO∗

method, a variant of Nedialkov’s IHO method we proposed and which performed
better than the original method on almost all our benchmarks. For low dimensional
problems or when f contains few operations, the one-step GHF method is only slightly
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Fig. 11. Comparison of the methods IHO(∗)(p, p), GHF(p, p) and GHF(p + 1, p + 1) for the
problems BRUS, LOR, 2BP, VDP, BIO, OREG, D1, and HIRES.
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Table 6
Multistep versus one-step methods: The LIEN problem.

IVP IHO GHF h Error Time
p, q σ IHO GHF Ratio IHO GHF Ratio

LIEN 3,3 (3,3) 5E-1 8.8E-7 7.2E-7 1.2
4E-1 1.4E-8 1.1E-8 1.3
3E-1 8.4E-10 4.7E-9 0.2
2E-1 2.3E-11 5.4E-11 0.4
1E-1 1.3E-13 1.3E-13 1.0
5E-2 8.7E-16 8.8E-16 1.0 8.3 (6.7) 6.1 1.4

3,3 (2,2,2) 5.5E-1 - 2.1E-6 -
5E-1 8.8E-7 2.5E-7 3.5
4E-1 1.4E-8 3.0E-9 4.7
3E-1 8.4E-10 1.9E-10 4.4
2E-1 2.3E-11 6.9E-12 3.3
1E-1 1.3E-13 3.7E-14 3.5
5E-2 8.7E-16 2.6E-16 3.3 8.3 (6.7) 6.3 1.3

4,4 (4,4) 5E-1 2.5E-7 2.0E-7 1.3
4E-1 1.0E-9 7.6E-10 1.3
3E-1 1.9E-11 1.4E-11 1.4
2E-1 1.1E-13 8.3E-14 1.3
1E-1 8.3E-17 6.5E-17 3.5 6.1 (4.8) 4.4 1.4

4,4 (2,2,2,2) 5.8E-1 - 6.7E-8 -
5.5E-1 - 8.5E-9 -
5E-1 2.5E-7 7.2E-9 35
4E-1 1.0E-9 5.0E-11 20
3E-1 1.9E-11 1.1E-12 17
2E-1 1.1E-13 9.9E-15 11
1E-1 8.3E-17 3.8E-17 2.2 6.1 (4.8) 4.6 1.3

5,5 (5,5) 5E-1 1.2E-7 9.4E-8 1.3
4E-1 1.2E-10 9.1E-11 1.3
3E-1 7.4E-13 5.7E-13 1.3
2E-1 9.9E-16 7.2E-16 1.4 4.2 (3.3) 3.0 1.4

5,5 (2,2,2,2,2) 5.8E-1 - 6.3E-9 -
5.5E-1 - 8.2E-10 -
5E-1 1.2E-7 9.3E-11 1290
4E-1 1.2E-10 2.0E-12 60
3E-1 7.4E-13 2.4E-14 31
2E-1 9.9E-16 1.0E-16 10 4.2 (3.3) 3.1 1.3

6,6 (6,6) 5E-1 7.2E-8 6.0E-8 1.2
4.5E-1 3.5E-10 2.9E-10 1.2
4E-1 1.7E-11 1.4E-11 1.2
3.5E-1 9.1E-13 7.4E-13 1.2
3E-1 4.0E-14 3.3E-14 1.2 3.7 (2.9) 2.7 1.4

6,6 (4,4,4) 5.5E-1 - 1.2E-7 -
5E-1 7.2E-8 2.0E-10 360
4.5E-1 3.5E-10 1.8E-11 19
4E-1 1.7E-11 1.3E-12 13
3.5E-1 9.1E-13 9.0E-14 10
3E-1 4.0E-14 3.9E-15 10 3.7 (2.9) 2.7 1.4

6,6 (3,3,3,3) 5.8E-1 - 3.8E-8 -
5.5E-1 - 8.6E-10 -
5E-1 7.2E-8 3.9E-10 185
4.5E-1 3.5E-10 3.0E-11 12
4E-1 1.7E-11 6.0E-13 28
3.5E-1 9.1E-13 4.8E-14 19
3E-1 4.0E-14 2.3E-15 17 3.7 (2.9) 2.6 1.4

6,6 (2,2,2,2,2,2) 6E-1 - 1.5E-8 -
5.5E-1 - 1.7E-10 -
5E-1 7.2E-8 1.4E-11 5143
4.5E-1 3.5E-10 1.6E-12 219
4E-1 1.7E-11 1.4E-13 121
3.5E-1 9.1E-13 1.3E-14 70
3E-1 4.0E-14 9.0E-16 44 3.7 (2.9) 2.8 1.3

8,8 (8,8) 5E-1 2.5E-8 2.1E-8 1.2
4.5E-1 2.5E-11 2.1E-11 1.2
4E-1 5.1E-13 4.3E-13 1.2
3.5E-1 1.1E-14 9.7E-15 1.2
3E-1 2.0E-16 1.7E-16 1.2 5.1 (3.7) 3.4 1.5

8,8 (4,4,4,4) 5.8E-1 - 1.2E-8 -
5.5E-1 - 8.9E-11 -
5E-1 2.5E-8 1.7E-11 1471
4.5E-1 2.5E-11 6.7E-13 37
4E-1 5.1E-13 6.8E-15 75
3.5E-1 1.1E-14 4.1E-16 27 4.4 (3.2) 2.8 1.6

9,9 (9,9) 5E-1 1.5E-8 1.3E-8 1.2
4.5E-1 7.2E-12 6.2E-12 1.2
4E-1 9.7E-14 8.3E-14 1.2
3.5E-1 1.4E-15 1.2E-15 1.2 5.1 (3.7) 3.4 1.5

9,9 (6,6,6) 5.5E-1 - 1.9E-8 -
5E-1 1.5E-8 5.3E-12 2830
4.5E-1 7.2E-12 1.6E-13 45
4E-1 9.7E-14 4.0E-15 24
3.5E-1 1.4E-15 1.3E-16 11 5.1 (3.7) 3.2 1.6

9,9 (3,3,3,3,3,3) 6E-1 - 3.5E-7 -
5.5E-1 - 2.5E-11 -
5E-1 1.5E-8 7.5E-13 20000
4.5E-1 7.2E-12 2.2E-13 33
4E-1 9.7E-14 2.0E-14 4.8
3.5E-1 1.4E-15 2.5E-14 0.06 5.1 (3.7) 3.1 1.6
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Fig. 12. Multistep versus one-step methods: The LIEN problem.
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Fig. 13. Multistep versus one-step methods: The P1 problem.
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Table 7
Multistep versus one-step methods: The P1 problem.

IVP IHO GHF h Error Time
p, q σ IHO GHF Ratio IHO GHF Ratio

P1 3,3 (3,3) 5E-2 8.1E-5 5.2E-5 1.6
4E-2 4.0E-6 2.3E-6 1.7
3E-2 2.0E-7 1.1E-7 1.8
2E-2 6.1E-9 2.9E-9 2.1
1E-2 3.3E-11 1.4E-11 2.4
5E-3 2.4E-13 9.7E-14 2.5 27 (22) 21 1.3

3,3 (2,2,2) 6.5E-2 - 1.7E-4 -
6E-2 - 3.2E-5 -
5E-2 8.1E-5 2.9E-6 28
4E-2 4.0E-6 2.8E-7 14
3E-2 2.0E-7 2.1E-8 9.5
2E-2 6.1E-9 7.9E-10 7.8
1E-2 3.3E-11 4.0E-12 8.4
5E-3 2.4E-13 3.3E-14 7.3 27 (22) 23 1.2

6,6 (6,6) 5E-2 6.3E-7 4.8E-7 1.3
4E-2 4.8E-9 3.7E-9 1.3
3E-2 1.7E-11 1.3E-11 1.3
2E-2 1.2E-14 9.3E-15 1.3 19 (13.4) 12.8 1.5

6,6 (4,4,4) 7E-2 - 3.6E-5 -
6E-2 - 3.2E-7 -
5E-2 6.3E-7 8.5E-9 74
4E-2 4.8E-9 1.4E-10 34
3E-2 1.7E-11 9.7E-13 18
2E-2 1.2E-14 7.0E-15 1.7 19 (13.4) 13.9 1.4

6,6 (3,3,3,3) 7.5E-2 - 5.9E-5 -
7E-2 - 3.1E-6 -
6E-2 - 9.7E-8 -
5E-2 6.3E-7 3.2E-9 197
4E-2 4.8E-9 6.2E-11 78
3E-2 1.7E-11 4.9E-13 35
2E-2 1.2E-14 2.9E-14 0.4 19 (13.4) 15.4 1.2

8,8 (8,8) 6E-2 1.2E-4 9.9E-5 1.2
5.5E-2 6.8E-7 5.4E-7 1.3
5E-2 3.5E-8 2.8E-8 1.3
4.5E-2 1.9E-9 1.5E-9 1.3
4E-2 8.1E-11 6.4E-11 1.3
3.5E-2 2.7E-12 2.2E-12 1.2
3E-2 6.6E-14 5.4E-14 1.2 19 (13.5) 12.8 1.5

8,8 (4,4,4,4) 7.5E-2 - 3.7E-6 -
7E-2 - 1.8E-7 -
6.5E-2 - 2.3E-8 -
6E-2 1.2E-4 3.2E-9 37500
5.5E-2 6.8E-7 4.1E-10 1659
5E-2 3.5E-8 4.8E-11 729
4.5E-2 1.9E-9 4.6E-12 413
4E-2 8.1E-11 3.7E-13 219
3.5E-2 2.7E-12 5.4E-14 50
3E-2 6.6E-14 3.5E-14 1.9 19 (13.5) 14 1.4

9,9 (9,9) 6E-2 4.5E-5 3.7E-5 1.2
5.5E-2 2.1E-7 1.7E-7 1.2
5E-2 8.6E-9 6.9E-9 1.2
4.5E-2 3.4E-10 2.7E-10 1.3
4E-2 1.1E-11 8.6E-12 1.3
3.5E-2 2.6E-13 2.1E-13 1.2 19 (13.9) 13.4 1.4

9,9 (6,6,6) 7E-2 - 1.3E-6 -
6.5E-2 - 6.0E-8 -
6E-2 4.5E-5 5.6E-9 8393
5.5E-2 2.1E-7 5.1E-10 412
5E-2 8.6E-9 4.1E-11 210
4.5E-2 3.4E-10 2.6E-12 131
4E-2 1.1E-11 1.5E-13 73
3.5E-2 2.6E-13 1.3E-14 20 19 (13.9) 13.6 1.4

better than IHO∗. For higher dimensional problems where f contains many opera-
tions, the one-step GHF method is asymptotically more precise (by two orders of mag-
nitude) than IHO∗ for the same cost. When f contains few operations, the one-step
GHF method is more effective than multistep GHF methods which have a relatively
high fixed cost. When f contains many operations, multistep GHF methods perform
better than one-step methods. They may produce orders of magnitude improvements
in accuracy for a given execution time. Alternatively, they may reduce computation
times substantially for a given precision since they avoid expensive Jacobian compu-
tations. Finally note that, although our implementation used a constant order and
step size, it can be easily enhanced to incorporate standard order and step size control
strategies, e.g., Eijgenraam’s [8] or Nedialkov’s [23] techniques.

10. Conclusion. This paper described a constraint satisfaction approach to
IVPs for parametric ODEs (i.e., ODEs where some data or initial conditions are



CONSTRAINT SATISFACTION FOR PARAMETRIC ODEs 1935

Table 8
Multistep versus one-step methods: The P2 problem.

IVP IHO GHF h Error Time
p, q σ IHO GHF Ratio IHO GHF Ratio

P2 8,8 (8,8) 1E-1 1.9E-5 1.6E-5 1.2
9E-2 4.4E-7 3.6E-7 1.2
8E-2 1.7E-8 1.4E-8 1.2
7E-2 5.7E-10 4.6E-10 1.2
6E-2 1.5E-11 1.2E-11 1.2 5.6 (4.1) 3.9 1.4

8,8 (4,4,4,4) 1.4E-1 - 3.0E-6 -
1.3E-1 - 3.7E-7 -
1.2E-1 - 5.5E-8 -
1.1E-1 - 8.0E-9 -
1E-1 1.9E-5 1.1E-9 17273
9E-2 4.4E-7 1.3E-10 3385
8E-2 1.7E-8 1.7E-11 1000
7E-2 5.7E-10 5.5E-12 104
6E-2 1.5E-11 4.0E-12 3.7 5.6 (4.1) 4.9 1.1

9,9 (9,9) 1E-1 8.5E-6 7.0E-6 1.2
9E-2 1.4E-7 1.1E-7 1.3
8E-2 3.7E-9 3.1E-9 1.2
7E-2 8.9E-11 7.3E-11 1.2
6E-2 1.6E-12 1.4E-12 1.1 7.0 (5.1) 4.8 1.5

9,9 (6,6,6) 1.3E-1 - 3.7E-6 -
1.2E-1 - 2.0E-7 -
1.1E-1 - 1.9E-8 -
1E-1 8.5E-6 1.8E-9 4722
9E-2 1.4E-7 1.5E-10 933
8E-2 3.7E-9 1.1E-11 336
7E-2 8.9E-11 1.5E-12 59
6E-2 1.6E-12 1.0E-12 1.6 7.0 (5.1) 5.2 1.3

Table 9
Multistep versus one-step methods: The P3 problem.

IVP IHO GHF h Error Time
p, q σ IHO GHF Ratio IHO GHF Ratio

P3 4,4 (4,4) 5E-1 1.9E-3 1.4E-3 1.4
4E-1 4.0E-6 2.7E-6 1.5
3E-1 6.2E-8 3.9E-8 1.6
2E-1 3.4E-10 2.0E-10 1.7
1E-1 2.7E-13 9.4E-14 2.9 3.5 (2.7) 2.5 1.4

4,4 (2,2,2,2) 6.5E-1 - 9.1E-5 -
6E-1 - 1.1E-5 -
5E-1 1.9E-3 7.0E-7 2714
4E-1 4.0E-6 4.3E-8 93
3E-1 6.2E-8 1.5E-9 43
2E-1 3.4E-10 1.5E-11 23
1E-1 2.7E-13 1.6E-14 17 3.5 (2.7) 3.3 1.1

8,8 (8,8) 5E-1 2.6E-5 2.1E-5 1.2
4.5E-1 1.5E-7 1.2E-7 1.2
4E-1 5.4E-9 4.4E-9 1.2
3.5E-1 1.7E-10 1.4E-10 1.2
3E-1 3.7E-12 3.0E-12 1.2 3.3 (2.4) 2.2 1.5

8,8 (4,4,4,4) 6.8E-1 - 8.9E-5 -
6.5E-1 - 8.3E-7 -
6E-1 - 4.8E-8 -
5.5E-1 - 6.4E-9 -
5E-1 2.6E-5 7.6E-10 34211
4.5E-1 1.5E-7 8.8E-11 1705
4E-1 5.4E-9 7.9E-12 684
3.5E-1 1.7E-10 5.4E-13 315
3E-1 3.7E-12 5.1E-14 73 3.3 (2.4) 2.5 1.3

9,9 (9,9) 5E-1 1.0E-5 8.2E-6 1.2
4.5E-1 4.3E-8 3.5E-8 1.2
4E-1 1.1E-9 9.2E-10 1.2
3.5E-1 2.4E-11 2.0E-11 1.2
3E-1 3.5E-13 2.9E-13 1.2 3.9 (2.9) 2.7 1.4

9,9 (6,6,6) 6E-1 - 6.8E-7 -
5.5E-1 - 2.0E-8 -
5E-1 1.0E-5 1.6E-9 6250
4.5E-1 4.3E-8 1.2E-10 358
4E-1 1.1E-9 7.1E-12 155
3.5E-1 2.4E-11 3.0E-13 80
3E-1 3.5E-13 1.4E-14 25 3.9 (2.9) 2.9 1.3

uncertain and given by intervals). The main novelty of the constraint satisfaction ap-
proach is to introduce, inside traditional interval methods, a pruning component which
reduces the size of the predicted boxes by using relaxations of the ODE (also called fil-
ters). Then we presented an effective pruning algorithm which uses (1) relaxations
of the ODE based Hermite interpolation polynomials and enclosures of their error
terms; (2) a globalization process to reduce variable dependency problems and evalu-
ation points that minimize the local error of the relaxations. The pruning component
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Fig. 14. Multistep versus one-step methods: The P2 problem.

was integrated in an integration algorithm which also uses traditional techniques to
handle the wrapping effect.

The novel integration algorithm was analyzed both theoretically and experimen-
tally. The theoretical results indicate that, for the same computation costs, our algo-
rithm provides quadratic (asymptotic) improvement in accuracy over the best interval
method we know of. They also show that our algorithm is significantly faster when the
ODE contains many operations. Experimental results on a variety of standard and
new benchmarks validated the theoretical results. The algorithm shows significant
gains in accuracy, while not degrading computational performance. The experimental
results also illustrate that the approach could produce significant gain in computation
time when the ODE contains many operations.

It is also important to stress the versatility of our algorithm and of our approach.
On the one hand, GHFs can be tailored to the problem at hand by choosing the
number of interpolation points as well as the number of derivative conditions imposed
at each interpolation point. On the other hand, the pruning algorithm itself is generic,
and new pruning techniques may easily be incorporated.

There are a wealth of topics for further research:
1. The current algorithm can be enhanced in many ways to include, for instance,

order and step size control strategies, and the automatic selection of the num-
ber of interpolation points and the number of derivative conditions imposed
at each interpolation point.

2. The constraint satisfaction approach is clearly in its infancy and new relax-
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Fig. 15. Multistep versus one-step methods: The P3 problem.

ations (e.g., using splines, trigonometric interpolation, Legendre, Chebyshev,
and Laguerre polynomials) should be investigated.

3. Compared to standard numerical methods, validated methods generally use
smaller step sizes, and stiff problems are particularly challenging. The main
factors that limit the step size are the need to enclose error terms and the
bounding box process. Finding efficient bounding box techniques is probably
the main bottleneck at this point, and it would be interesting to study how
pruning techniques could help in this respect. Once we will be able to increase
the step size, it will be important to analyze the stability of our approach and
to compare it to the stability of other validated methods. The choice of many
of the parameters mentioned in point (1) will be guided by stability require-
ments in the case of stiff problems. Furthermore, our asymptotic theory for
choosing an optimal evaluation time may not be valid anymore, and we may
have to find new techniques for choosing a good evaluation time.

4. A possible alternative to validated methods consists of dropping the enclo-
sures of the error terms and the bounding box process in the interval method.
We can thus keep the parametric aspect of the ODEs, but we lose the vali-
dated aspect of the method. However, the advantage is that larger step sizes
can be used in this case. From our experimental results, we can expect a
higher gain in performance of our GHF method over the IHO(∗) method for
those larger step sizes. In addition, if we consider an ODE for which it is
not possible to compute the Taylor coefficients (u)2, (u)3, . . . of the solution,
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a multistep GHF(σ) method with σi ≤ 2, i = 0, . . . , k, is the only interval
method (we know of) which is able to integrate the ODE, since it does not
need any Taylor coefficient.

5. A very promising direction of further research is the application of our ap-
proach to standard numerical methods for ODEs. Indeed, to our knowledge,
the idea of evaluating a Hermite filter at a point which is different from the
point at which the current value is computed is completely new. We can ap-
ply our asymptotic theory for the choice of an optimal evaluation time in the
case of nonstiff problems. For stiff problems, the choice of a good evaluation
time will be guided by stability requirements. Note that when σ = (1, . . . , 1),
i.e., the Hermite interpolation polynomial reduces to a Lagrange interpolation
polynomial, we can apply the classical linear stability theory to our approach.

6. Finally, it would be interesting to apply the constraint satisfaction approach
to boundary value problems, where pruning arises naturally.

In summary, the constraint satisfaction approach should be a valuable addition to
existing methods for the reliable solutions of differential equations, and there is con-
siderable room for further research in this area.
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Abstract. Difference approximations are derived for the second order wave equation in one and
two space dimensions, without first writing it as a first order system. Both the Dirichlet and the
Neumann problems are treated for the one-dimensional case. Relations between the boundary error
and the interior phase error are derived for a fully second order accurate discretization as well as
a scheme that is fourth order accurate in the interior and second order accurate at the boundary.
General two-dimensional domains are considered for the Dirichlet problem where the domain is em-
bedded in a Cartesian grid and the boundary conditions are approximated by interpolation. A stable
conservative scheme is derived where the time step is determined only by the interior discretization
formula. Discretization cells cut by the boundary are treated implicitly, but the resulting scheme be-
comes explicit because the implicit dependence only is pointwise. Numerical examples are provided
to verify the stability and accuracy of the proposed method.
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1. Introduction. The theory of difference approximations for first order strongly
hyperbolic systems is by now very well developed. However, in many applications like
seismology, acoustics, and general relativity the underlying differential equations are
systems of second order hyperbolic partial differential equations. It is surprising that
in this case the corresponding theory is much less developed. Instead, one often
rewrites the equations as a first order system and then uses methods developed for
such systems. While these methods provide the most natural way to solve problems
that come as first order systems, we will argue that there can be drawbacks with
rewriting second order systems into this form before they are discretized. Instead, we
propose a numerical method that directly discretizes the second order system.
Consider, for example, the wave equation

utt = uxx(1.1)

in the strip 0 ≤ x ≤ 1, t ≥ 0. Thus we have to give initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x),(1.2)

and boundary conditions, for example,

u(0, t) = h0(t), u(1, t) = h1(t).(1.3)
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To solve the problem numerically, we introduce a grid by

tn = nk, k > 0, n = 0, 1, 2, . . . , xν = νh, h = 1/N, ν = 0, 1, 2, . . . , N ,

and approximate (1.1)–(1.3) by a completely centered approximation

Dt
+D

t
−v(xν , tn) = D

x
+D

x
−v(xν , tn), ν = 1, 2, . . . , N − 1 ,

v(xν , 0) = f(xν), v(xν , k) = f(xν) + kg(xν) +
k2

2
Dx

+D
x
−f(xν),(1.4)

v(0, tn) = h0(tn), v(1, tn) = h1(tn).

Here

hDx
+v(xν , t) = v(xν+1, t)− v(xν , t),

hDx
−v(xν , t) = v(xν , t)− v(xν−1, t),

Dx
0 =
1

2
(Dx

+ +D
x
−)

denote the usual forward, backward, and centered difference operators. As we will
see, this approximation and its generalization to more space dimensions work very
well. There are no difficulties with the boundary conditions; i.e., we do not need to
supply any extrapolation conditions.

One can write (1.1) as a first order system

ut = Aux, u =


 u

v


 , A =


 0 1
1 0


(1.5)

with initial conditions

u(x, 0) = f , f =

(
f,

∫ x

0

g(x̃)dx̃

)T
,

and boundary conditions (1.3). The leap-frog scheme is often used to solve wave
propagation problems. For (1.5) it is, in its simplest form, given by

Dt
0u(xν , tn) = AD

x
0u(xν , tn), ν = 1, 2, . . . , N − 1 ,

u(xν , 0) = f(xν), u(xν , k) = f(xν) + kAD
x
0u(xν , 0).(1.6)

There are a number of drawbacks with this procedure:

1. One needs to calculate two variables. (More variables are needed in several
space dimensions.)

2. To obtain the same accuracy as (1.4), one needs to double the number of grid
points in space and time.

3. Since there are no boundary conditions for v, one has to supply extrapolation
conditions to obtain v(0, t) and v(1, t). This can be done, but one has to be
careful not to introduce instabilities; see [5].

4. If the solution is not properly resolved, i.e., if one does not use enough
points/wavelength, then one creates spurious waves which travel in the wrong
direction; see [1].
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To avoid the three latter difficulties, one may introduce a so-called staggered grid.
However, this amounts to nothing else but solving (1.4) in disguise. In more space
dimensions, staggered grids can lead to complications at the boundaries.

In the present paper, we directly approach the wave equation as a second order
system. The equations are discretized on a Cartesian grid that covers the domain of
interest, and the spatial derivatives are approximated by finite differences. On the
boundary, which is embedded in the Cartesian grid, we use interpolation to approx-
imate the boundary condition. This procedure results in a closed second order sys-
tem of ordinary differential equations, and we derive an appropriate time-integration
method for this system.

Numerical methods for first order systems are by now well developed, and many
useful techniques have been established, such as higher order accurate boundary condi-
tions [9], accurate treatment of discontinuous coefficients [4], and nonreflecting bound-
ary conditions for external domains. The method presented here currently lacks these
refinements, so a direct comparison on a realistic problem is hard to make. Instead,
this work should be seen as a starting point for the development of a numerical tech-
nique that directly approaches second order hyperbolic systems.

Embedded boundary techniques for discretizing Laplace’s equation subject to
Dirichlet boundary conditions date back to Weller and Shortley [10], who used a
finite-volume method (perhaps before that term was coined) to set up first order
accurate difference approximations near the boundary. Collatz [2] derived higher order
difference methods for both the Neumann and Dirichlet problems. More recently,
several embedded boundary methods have been presented for various types of partial
differential equations. For example, Pember et al. [8] used a Cartesian grid method for
solving the time-dependent equations of gas dynamics. Zhang and LeVeque [11] solved
the acoustic wave equation with discontinuous coefficients written as a first order
system. They derived special difference stencils that satisfy the jump conditions at the
interior interfaces, where the coefficients are discontinuous. A staggered grid method
was used by Ditkowski, Dridi, and Hesthaven [3] for solving Maxwell’s equations on a
Cartesian grid. The methods described in these papers all solve first order systems (in
time). Johansen and Colella [6] derived a finite-volume scheme for solving Poisson’s
equation with Dirichlet boundary conditions using an embedded boundary technique.
Away from the boundary, the truncation error for the Laplace operator is O(h2), but
in cells cut by the boundary it becomes O(h/Γ). (Here h is the mesh spacing and Γ
is the area fraction of the cut cell.) A potential theoretic argument is used to show
that the solution of Poisson’s equation is still second order accurate, even as Γ → 0.
However, the large truncation error in cells cut by the boundary makes this method
unsuitable for solving the wave equation, where the truncation error for the Laplace
operator also needs to be small near the boundary.

We shall now summarize the remainder of the paper. In section 2 we discuss a
second order accurate time-integration method to solve the system of ordinary dif-
ferential equations that arises after the wave equation is discretized in space. In
particular, we derive a semi-implicit approach to avoid the severe time-step restric-
tion that otherwise can occur from small cells cut by the boundary. When certain
symmetry conditions are satisfied, the time-integration method is shown to be stable
and conservative.

Section 3 contains a discussion of the stability and accuracy of semidiscrete ap-
proximations in one space dimension both for Dirichlet and Neumann boundary con-
ditions. We consider methods that are second order accurate overall and methods
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that are fourth order accurate in the interior and second order accurate at the bound-
ary. Analytically, we derive the relation between the boundary error and the interior
phase error. The analysis clearly shows that for the second order accurate method,
the phase error dominates if we integrate over long distances. By using the fourth
order method in the interior, we show that the phase error is greatly reduced.
The Dirichlet problem for the wave equation in general two-dimensional domains

is treated in section 4. We show that we can construct stable energy conserving
schemes that are either second order accurate overall or second order accurate at the
boundary and fourth order accurate in the interior. We show that the scheme can
be derived “dimension by dimension”, essentially by employing the one-dimensional
scheme in each direction. Since the semi-implicit treatment of the cut cells at the
boundary is pointwise, the resulting scheme is fully explicit and therefore highly ef-
fective.
Numerical examples are provided in section 5, where we solve the two-dimensional

Dirichlet problem to demonstrate the accuracy and stability of the proposed method.
Future research is outlined in section 6.

2. Ordinary differential equations. Consider the initial value problem for
the scalar equation

utt = λu+ F (t)(2.1)

with initial conditions

u(0) = u0, ut(0) = u1.(2.2)

Here F (t) is a smooth function and λ < 0 is a negative constant.
The usual way to solve (2.1), (2.2) numerically is to rewrite the equation as a

first order system and then apply any of the standard schemes. In this paper we
solve the equation directly. Let k be the time step, tn = nk, and denote the discrete
approximation vn ≈ u(tn). We use two different second order accurate schemes:

1. If λ ∼ −1, we use
vn+1 − 2vn + vn−1 = k2(λvn + F (tn)).(2.3)

2. If λ� −1, then we use instead

vn+1 − 2vn + vn−1 = k2

(
λ

2
(vn+1 + vn−1) + F (tn)

)
.

The last method can also be written as(
1− λk

2

2

)
(vn+1 − 2vn + vn−1) = λk2vn + k2F (tn).(2.4)

We initialize the schemes by

v0 = u0, v1 = u(0) + kut(0) +
k2

2
utt(0) = u0 + ku1 +

k2

2
(λu0 + F (0)).

The characteristic equations for (2.3) and (2.4) are given by

(κ− 1)2 − k2λκ = 0,

(
1− λk

2

2

)
(κ− 1)2 − λk2κ = 0,
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respectively. Thus,

κ = 1 +
1

2
ζ ±

√
ζ +
1

4
ζ2,

where

ζ = λk2 for (2.3) and ζ =
λk2

1− λk2/2
for (2.4).

Thus, |κ1| = |κ2| = 1, κ1 
= κ2, for −4 < ζ < 0. Hence, the approximation (2.3) is
stable for k < 2/

√−λ, while the scheme (2.4) is unconditionally stable.
Now we consider systems

utt = Au+ F (t),

u(0) = u0, ut(0) = u1,(2.5)

and the corresponding homogeneous problem

vtt = Av,

v(0) = v0, vt(0) = v1.(2.6)

Lemma 2.1. The solutions of (2.6) are uniformly bounded in time if and only if
the eigenvalues of A are real and negative and there is a complete system of eigenvec-
tors.

Proof. Let λ be an eigenvalue of A and ϕ0 the corresponding eigenvector. Then,
for any constants σ1, σ2,

vλ =



(
σ1e

√
λt + σ2e

−√
λt
)
ϕ0 if λ 
= 0,(

σ1 + σ2t)ϕ0 if λ = 0

is a solution to vtt = Av. Thus, vλ is uniformly bounded in time if and only if λ is
real and negative. If there is a complete eigensystem, then we can write the solutions
to (2.6) as a sum of eigensolutions. The solutions are therefore uniformly bounded if
and only if all the eigenvalues are real and negative.
An easy calculation shows that the solutions of

vtt = Jv,

where J is a Jordan block, are not uniformly bounded. Therefore, if the eigensystem is
incomplete, the solutions of (2.6) are not uniformly bounded. This proves the lemma.
If A = A∗ < 0 is a negative definite symmetric matrix, then all conditions of

the above lemma are satisfied and the solutions are uniformly bounded. We can also
prove this by an energy estimate. We have

∂

∂t
|vt|2 = 〈vt,vtt〉+ 〈vt,vtt〉

= 〈vt, Av〉+ 〈Av,vt〉 = ∂

∂t
〈v, Av〉,

i.e.,

∂

∂t

(|vt|2 + 〈v, (−A)v〉) = 0.(2.7)
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Since −A is positive definite, boundedness follows.
We approximate the system (2.6) by

tn = nk, v
n ≈ v(tn),

and

vn+1 − 2vn + vn−1 = k2Avn if |A| ∼ 1,(2.8)

vn+1 − 2vn + vn−1 =
k2

2
A
(
vn+1 + vn−1

)
if |A| � 1.(2.9)

We can write (2.9) in the form(
I − k

2

2
A

)(
vn+1 − 2vn + vn−1

)
= k2Avn.

Since we can reduce the system to scalar equations, the difference approximation
corresponding to (2.3) is stable if

max
j
|λj |k2 < 4.

The approximation (2.9) is unconditionally stable.
We proceed by using energy methods to derive the discrete counterpart of (2.7)

to show that the discrete energy is conserved by the scheme (2.8). We write (2.8) in
the form

vn+1 + vn−1 = (2I + k2A)vn.

Therefore,

〈vn+1 − vn−1,vn+1 + vn−1〉 = 〈vn+1, (2I + k2A)vn〉 − 〈vn−1, (2I + k2A)vn〉.
Assuming that vn, A are real, we obtain

L(tn+1, A) =: |vn+1|2 + |vn|2 − 〈vn+1, (2I + k2A)vn〉
= |vn|2 + |vn−1|2 − 〈vn, (2I + k2A)vn−1〉
= L(tn, A).

Thus, we obtain an energy estimate if L is positive definite. We have

L(tn+1, A) = 〈vn+1 − vn,vn+1 − vn〉 − k2〈vn+1, Avn〉.
Since A = A∗ is symmetric,

〈vn+1, Avn〉 = 1
4
〈vn+1 + vn, A(vn+1 + vn)〉 − 1

4
〈vn+1 − vn, A(vn+1 − vn)〉.

Hence,

L(tn+1, A) =

〈
vn+1 − vn,

(
I +

k2

4
A

)
(vn+1 − vn)

〉
(2.10)

−k
2

4
〈vn+1 + vn, A(vn+1 + vn)〉.
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Let λj < 0 be the eigenvalues of A. For 4− k2maxj |λj | ≥ k2minj |λj |,〈
v,

(
I +

k2

4
A

)
v

〉
≥ k

2

4
min
j
|λj ||v|2

and

L(tn+1, A) ≥ k
2

4
min
j
|λj |

(|vn+1 − vn|2 + |vn+1 + vn|2) .
Thus, L(tn, A) is positive definite if the time step satisfies

(max
j
|λj |+min

j
|λj |)k2 ≤ 4

and, essentially, we recover the previous time-step restriction.
By comparing (2.11) and (2.7) we note that L(tn+1, A)/k

2 is a second order
accurate approximation of the energy |vt|2 − 〈v, Av〉, evaluated at time tn + k/2.
Often there are only relatively few elements of A which are large, and we can

write

A = A1 +A2, A1 = A
∗
1 ≤ 0, |A1| � 1, A2 = A

∗
2 < 0, |A2| ∼ 1.

To avoid severe restrictions of the step size, we can use the second order approximation

vn+1 − 2vn + vn−1 =
k2

2
A1

(
vn+1 + vn−1

)
+ k2A2v

n,(2.11)

which we write as(
I − k

2

2
A1

)
(vn+1 − 2vn + vn−1) = k2(A1 +A2)v

n

or (
I − k

2

2
A1

)
(vn+1 + vn−1) =

(
2I + k2A2

)
vn.

Thus,〈
vn+1 − vn−1,

(
I − k

2

2
A1

)
(vn+1 + vn−1)

〉
= 〈vn+1 − vn−1,

(
2I + k2A2

)
vn〉.

Similar to the scheme (2.8), we can derive a discrete energy that is conserved. As-
suming that vn, A1, A2 are real, we have

L1(tn+1, A1, A2) =:

〈
vn+1,

(
I − k

2

2
A1

)
vn+1

〉
+

〈
vn,

(
I − k

2

2
A1

)
vn
〉

−〈vn+1, (2I + k2A2)v
n〉

=

〈
vn,

(
I − k

2

2
A1

)
vn
〉
+

〈
vn−1,

(
I − k

2

2
A1

)
vn−1

〉
−〈vn, (2I + k2A2)v

n−1〉
= L1(tn, A1, A2).
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We have now to show that L1(tn, A1, A2) is positive definite. Since −A1 is positive
semidefinite, 〈

vn+1,−k
2

2
A1v

n+1

〉
+

〈
vn,−k

2

2
A1v

n

〉
≥ 0,

and it follows that

L1(tn, A1, A2) ≥ L(tn, A2).

Thus L1(tn, A1, A2) is positive definite since L(tn, A2) is positive definite. Hence,
the previous time-step restriction applies with A replaced by A2. We summarize our
results in the following lemma.

Lemma 2.2. The time-integration scheme (2.11) is stable and the discrete energy
L1(tn, A1, A2) is conserved if A1 = A

∗
1 ≤ 0, A2 = A

∗
2 < 0, and the time step satisfies(

max
j
|λj |+min

j
|λj |
)
k2 < 4,

where λj are the eigenvalues of A2.
All our results are also valid for systems

Butt = Au, A = A∗ < 0, B = B∗ > 0,

because the change of variables B1/2u = ũ gives us

ũtt = Ãũ, Ã = Ã∗ = B−1/2AB−1/2.

3. The wave equation in one space dimension. We consider the wave equa-
tion

utt = uxx(3.1)

for x ≥ l, t ≥ 0. Here l ≥ 0 is a small number. At t = 0 we give initial conditions
u(x, 0) = f(x), ut(x, 0) = g(x).(3.2)

Here f is a smooth function with compact support.

3.1. Second order methods. At x = l we give boundary conditions and we
start by analyzing Dirichlet conditions

u(l, t) = 0.(3.3)

Here we discuss second order difference approximations. We only discretize space. In
the time direction we use the approximation discussed in the previous section. Let
h > 0 be a step size. We assume that l = αh, 0 ≤ α < 1. Grid points are given by
xν = νh and grid functions by w(xν , t) = wν(t). We approximate (3.1), (3.2) by

wνtt = D+D−wν ,
wν(0) = fν , wνt(0) = gν , ν = 1, 2, . . . .(3.4)

We shall use the simplest second order accurate boundary condition given by the
interpolation condition

αw1 + (1− α)w0 = 0.(3.5)
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We can express w0 in terms of w1 and eliminate w0 from (3.4). Then the differential
equation for w1 becomes

w1tt =
w2 − 2w1 + w0

h2
=
1

h2
(aw1 + bw2),

where

a = −
(
2 +

α

1− α
)
, b = 1.

In matrix form (3.4) can be written as

wtt =
1

h2




a 1 0 0 · · · 0
1 −2 1 0 · · ·
0 1 −2 1
...

. . .
. . .

. . .

0



w, w =




w1

w2

w3

...

...



.

The matrix is symmetric and negative definite. Since |a| becomes large as α→ 1, we
split the matrix and use the scheme (2.11) with

A1 =
1

h2



− α

1−α 0 · · ·
0 0 · · ·
...

...
. . .


 .

We now consider Neumann boundary conditions. At x = αh we have

ux(αh) = ux(0) + αhuxx(0) +O(h2).

Also,

D+u0 = ux(0) +
h

2
uxx(0) +O(h2).

Therefore,

ux(αh) = D+u0 + h

(
α− 1
2

)
D2

+u0 +O(h2).

Thus, we approximate the boundary condition

ux(αh) = 0

by

D+w0 + h

(
α− 1
2

)
D2

+w0 = 0,(3.6)



SECOND ORDER WAVE EQUATION 1949

i.e., (
3

2
− α

)
w0 =

(
α− 1
2

)
w2 + (2− 2α)w1.

We eliminate w0 from the differential equations (3.4) and obtain

w1tt =
1

h2
(w2 − 2w1 + w0) =

1

h2

((
1 +

α− 1
2

3
2 − α

)
w2 −

(
2− 2− 2α3

2 − α
)
w1

)

=
1

ah2
(w2 − w1), a =

3

2
− α.

Thus, (3.4) can be written as

Bwtt =:




a 0

1

. . .

0 1



wtt =

1

h2




−1 1 0 0 · · · 0
1 −2 1 0 · · ·
0 1 −2 1
...

. . .
. . .

. . .

0



w := Aw.

(3.7)

The matrix A is symmetric and negative definite on the space of grid functions with
bounded discrete l2-norm. In this way we exclude solutions which are constant in x.
Note that 1/2 ≤ a ≤ 3/2, so the system does not become stiff for 0 ≤ α ≤ 1. We

can therefore apply the scheme (2.8) to integrate in time.

3.2. Higher order methods. It is well known that for the Cauchy problem
fourth order methods are much more effective than second order methods when solv-
ing wave propagation problems. The number of points/wavelength analysis tells us
that the phase error is very much decreased. However, for problems in bounded do-
mains, it is often difficult to construct stable fourth order accurate approximations of
the boundary conditions. We want to show that a method that is fourth order accu-
rate in the interior but only second order accurate at the boundary is an acceptable
compromise. In this way we control the phase error.
We consider the half-plane problem for the wave equation

utt = uxx + F (x, t), x ≥ αh, t ≥ 0,(3.8)

u(x, 0) = f (1)(x), ut(x, 0) = f
(2)(x),(3.9)

with Dirichlet boundary conditions

u(αh, t) = g(t).(3.10)

We approximate (3.8)–(3.10) by

vνtt = D+D−vν , vν = v(xν , t), xν = νh, ν = 0, 1, 2, . . . ,(3.11)

vν(0) = f
(1)
ν , vνt(0) = f

(2)
ν ,(3.12)

with boundary condition

αv0 + (1− α)v1 = g(t).(3.13)
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Here F, f (j), g ∈ C∞
0 .Without restriction we can assume that F ≡ 0, f (j) ≡ 0, because

we can extend F, f (j) to the whole space, solve the Cauchy problem, and subtract its
solution from u. For the Cauchy problem we know that the fourth order method is
much more accurate.
Under the above assumption, we solve the above problems by Laplace transform.

The transformed problems are

s2û = ûxx, û(αh, s) = ĝ, s = iξ + η, η > 0,(3.14)

s2v̂ν = D+D−v̂ν , αv1 + (1− α)v0 = ĝ, ν = 1, 2, . . . ,(3.15)

and their solutions are given by

û(x, t) = e−sxeαhsĝ,(3.16)

v̂ν = κ
ν v̂0,

(
ακ+ (1− α))v̂0 = ĝ,(3.17)

respectively. Here κ with |κ| < 1 is the solution of the characteristic equation
(κ− 1)2
κ

= s2h2.

For the discussion of accuracy, we can assume that |sh| ≤ δ � 1. We obtain

κ = 1 +
s2h2

2
−
√
s2h2 +

s4h4

4
∼ 1− sh+ s

2h2

2
− s

3h3

8

∼ e−sh(1− s2h2

24 ).

By (3.15)

v0 =
ĝ

αe−sh + 1− α ∼ ĝe
αhs

(
1− α− α

2

2
s2h2

)
.

Thus, for x = xν ,

v̂(x, s) ∼ e−sx(1− s2h2

24 )eαhsĝ

(
1− α− α

2

2
s2h2

)

and

|û(x, s)− v̂(x, s)| ≤ |ĝeαhs|
{∣∣∣∣α− α2

2
s2h2

∣∣∣∣+ |e−sx|(1− e sxh2s2

24

)}
(3.18)

∼ |ĝ|
( |sh|2
8
+
|sx|
24
|sh|2

)
=
|ĝ| |sh|2
8

(
1 +
|sx|
3

)
.(3.19)

We can invert the Laplace transform on the imaginary axis s = iξ. Therefore, we can
consider u(x, t), v(x, t) as a superposition of waves which travel into the region. The

error consists of the phase error |sx|
24 (sh)

2 and the boundary error |sh|2
8 , due to the

interpolation on the boundary. It shows that the phase error dominates the boundary
error if |sx| > 3.
We now consider the fourth order method

vνtt = D+D−vν − h
2

12
D2

+D
2
−vν , ν = 1, 2, . . . ,(3.20)
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with boundary condition

αv1 + (1− α)v0 = g.(3.21)

Now the stencil depends also on v−1. Therefore, we have to supply an extra boundary
such that we can eliminate v−1. This condition can have different forms, depending
on our requirements.

3.2.1. A method that is fourth order accurate in the interior and on
the boundary. Using the differential equation, the boundary condition

u(x, 0) = g(t)

implies

uxx(x, 0) = utt(x, 0) = gtt.

Therefore, we obtain a method that is fourth order accurate overall if we add the
condition

αD+D−v1 + (1− α)D+D−v0 = gtt.(3.22)

Another advantage of (3.22) is that in matrix form we obtain a symmetric system.
We write (3.20) and (3.21), (3.22) in the form

vνtt = D+D−vν − h
2

12
D+D−wν , wν = D+D−vν , ν = 0, 1, 2, . . . ,

αv1 + (1− α)v0 = g, αw1 + (1− α)w0 = g.

Then we can eliminate v0 and w0 and obtain

vtt = Av − h
2

12
Aw + F = Av − h

2

12
A2v + F.

Since A − h2

12A
2 is negative definite, we can apply our previous results and obtain

a stable scheme. Unfortunately, this technique cannot easily be generalized to more
space dimensions.

3.2.2. Methods that are fourth order accurate in the interior but only
second order accurate on the boundary. As we have seen earlier, the error at
the boundary is often much smaller than the phase error in the interior. Therefore, it
is reasonable to use a method that is fourth order accurate in the interior and second
order accurate at the boundary.
The simplest way to achieve this it to calculate the fourth order term only if its

stencil does not depend on boundary or exterior points. The resulting scheme is not
symmetric and, unfortunately, it is slightly unstable.
We can also replace (3.20) by

vνtt = D+D−vν − h
2

12
D+D−(γνD+D−vν), ν = 1, 2, . . . ,(3.23)

with γ0 = γ1 = 0, γ2 = γ3 = · · · = 1. Since

h2D+D−(γνD+D−vν) = γν+1D+D−vν+1 − 2γνD+D−vν + γν−1D+D−vν−1,

(3.24)
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the matrix for the semidiscrete problem is again symmetric and negative definite and
we obtain an energy estimate. We shall now discuss the accuracy of the new method.
Since the fourth order terms do not depend on v−1 and v0, we do not need to specify an
extra boundary condition. Thus, we consider (3.23) with boundary condition (3.21)
and solve the problem by Laplace transform.
Since γν = 1 for ν ≥ 2, the Laplace transformed problem becomes, using (3.24),

s2v̂ν = D+D−v̂ν − h
2

12
D2

+D
2
−v̂ν , Re(s) > 0, ν = 3, 4, . . . ,(3.25)

s2v̂2 = D+D−v̂2 − 1
12
D+D−v̂3 +

1

6
D+D−v̂2,(3.26)

s2v̂1 = D+D−v̂1 − 1
12
D+D−v̂2,(3.27)

αv̂1 + (1− α)v̂0 = ĝ.(3.28)

We can eliminate v̂0 by writing (3.27) and (3.28) in the form

−(1− α)
(
h2s2v̂1 − h2D+D−v̂1 +

h2

12
D+D−v̂2

)
= αv̂1 + (1− α)v̂0 − ĝ.(3.29)

We now solve (3.25), (3.26), and (3.29). The general solution of (3.25) is

v̂ν = σ1κ
ν
1 + σ2κ

ν
2 ,(3.30)

where κ with |κ| < 1 are solutions of

s2h2 = µ− 1
12
µ2, µ =

(κ− 1)2
κ

.

For small |sh|, the solutions of
µ2 − 12µ+ 12s2h2 = 0

are

µ1 = 6 +
√
36− 12s2h2 ∼ 12,

µ2 = 6−
√
36− 12s2h2

= 6

(
1−

√
1− 1
3
s2h2

)

∼ 6
(
1−

(
1− 1
6
s2h2 − 1

72
s4h4 − 1

33 · 16s
6h6

))

∼ s2h2 +
1

12
s4h4 +

1

72
s6h6.

The corresponding κ are solutions of

κ2 − (2 + µ)κ+ 1 = 0.
After some painful computations,

κ1 ∼ 1
12
,(3.31)

κ2 = 1 +
µ2

2
−
√
µ2 +

µ2
2

4
∼ e−sh(1+γ(sh)4), γ ∼ 1

120
.(3.32)
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Inserting the ansatz (3.30) into (3.26),

σ1κ
2
1

(
s2h2 − 7

6

(κ1 − 1)2
κ1

+
1

12
(κ1 − 1)2

)

+ σ2κ
2
2

(
s2h2 − 7

6

(κ2 − 1)2
κ2

+
1

12
(κ2 − 1)2

)
= 0,

and entering the above values of κ1 and κ2 yields

σ1

122

(
112

122

(
−14 + 1

12

)
+ s2h2

)
− σ2

(
s2h2

12
+O((sh)3)

)
= 0.(3.33)

Thus we can neglect σ1 in (3.29) and commit an error O(h
2s2) if we replace (3.29) by

(3.28). The result is a solution with essentially the same amplitude as in the second
order case but with a much improved phase error.
Similar arguments can be used for Neumann boundary conditions. In one space

dimension we can obtain an approximation which is fourth order overall by using

ux = g, uxtt = uxxx = gtt,

as boundary conditions. That the approximation is second order accurate for Dirichlet
conditions at the boundary depends crucially on the relation (3.33), which holds only
because the boundary condition (3.28) has no influence on (3.26). Second order
accurate discrete Neumann conditions depend on v0, v1, and v2. Therefore, we will
obtain (3.33) only if we replace (3.23) by

γ0 = γ1 = γ2 = 0, γν = 1 for ν ≥ 3.(3.34)

In one space dimension this new approximation is stable. We will investigate the
two-dimensional Neumann problem in a forthcoming paper.

4. The wave equation in two space dimensions with Dirichlet boundary
condition. In this section we consider the scalar wave equation in the bounded
domain Ω ⊂ �2, subject to Dirichlet conditions on the boundary Γ,

utt = ∆u, x ∈ Ω, t > 0,

u(x, t) = f(x, t), x ∈ Γ, t > 0,(4.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.
4.1. Algorithm. We cover Ω by a Cartesian grid with step size h; see Figure 1.

The grid points are given by xi,j = (xi, yj)
T ,

xi = x
(0) + (i− 1)h, i = 1, 2, . . . , N,

yj = y
(0) + (j − 1)h, j = 1, 2, . . . ,M,

where h = (x(1)−x(0))/(N −1) ≡ (y(1)− y(0))/(M −1). Let all points x = (x, y) ∈ Ω
satisfy xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax. To make sure the grid covers Ω, we require
x(0) ≤ xmin − h, x(1) ≥ xmax + h and y

(0) ≤ ymin − h, y(1) ≥ ymax + h.
Before we can discretize the problem, we need to classify each grid point. We

denote the classification by mi,j ,

mi,j =



0, xi,j outside of Ω,

1, xi,j ∈ Ω,xi±1,j ∈ Ω and xi,j±1 ∈ Ω,
−1 otherwise.
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Γ

Inside

α1

α2h

h

Γ

Inside

Outside

Fig. 1. The computational grid and the embedded boundary (left) and a close-up of one boundary
point (right).

Hence, interior points have mi,j = 1, exterior points have mi,j = 0, and boundary
points have mi,j = −1. Let uni,j denote the difference approximation to u(xi, yj , tn).
At interior points, we use a centered approximation both in space and time,

un+1
i,j − 2uni,j + un−1

i,j

k2
= (Dx

+D
x
− +D

y
+D

y
−)u

n
i,j =: ∆hu

n
i,j , mi,j = 1.(4.2)

At boundary points, the Dirichlet boundary condition is used to eliminate the exterior
points from the centered difference formula. For example, let xi,j be a boundary point
and let the points (xi−α1h, yj)

T and (xi, yj+α2h)
T be on the boundary, as is shown

in Figure 1. The Dirichlet conditions are approximated by linear interpolation,

(1− α1)u
n
i,j + α1u

n
i−1,j = f(xi − α1h, yj , tn),

(1− α2)u
n
i,j + α2u

n
i,j+1 = f(xi, yj + α2h, tn).

Assuming that α1 > 0, α2 > 0,

uni−1,j = −
1− α1

α1
uni,j +

1

α1
f(xi − α1h, yj , tn),

uni,j+1 = −
1− α2

α2
uni,j +

1

α2
f(xi, yj + α2h, tn).

Eliminating uni−1,j and u
n
i,j+1 from (4.2) results in

un+1
i,j − 2uni,j + un−1

i,j

k2
=
1

h2

(−(4 + di,j)uni,j + uni+1,j + u
n
i,j−1

)
+
f̃ni,j
h2

(4.3)

=: ∆̃hu
n
i,j +

f̃ni,j
h2
,(4.4)

where di,j = (1−α1)/α1+(1−α2)/α2 > 0 and f̃
n
i,j = f(xi−α1h, yj , tn)/α1+f(xi, yj+

α2h, tn)/α2. Since α1 and α2 can be arbitrarily close to zero, d can be very large,
which makes the time-step restriction for (4.4) severe. To avoid this problem, we use
the splitting discussed in section 2,

un+1
i,j − 2uni,j + un−1

i,j

k2
=
1

h2

(−4uni,j + uni+1,j + u
n
i,j−1

)

− di,j
2h2

(
un+1
i,j + u

n−1
i,j

)
+
f̃ni,j
h2
, mi,j = −1.
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In the general case, di,j and f̃
n
i,j get contributions from all exterior nearest neighbors,

and the first term on the right-hand side includes all interior or boundary nearest
neighbors,

un+1
i,j − 2uni,j + un−1

i,j

k2
=
1

h2

(
− 4uni,j +

∑
j

|mj |unj
)

− di,j
2h2

(
un+1
i,j + u

n−1
i,j

)
+
f̃ni,j
h2
, mi,j = −1.

(4.5)

Here j is a multi-index and the sum extends over all nearest neighbors j = (i +
1, j), (i− 1, j), (i, j + 1), (i, j − 1).

4.2. Stability. By letting un denote the vector containing the solution uni,j at
all interior and boundary points (using line ordering, for example), we can write the
time-integration scheme (4.2), (4.5) in the form (2.11). The matrix A1, given by

A1u =


 0, mi,j = 1,

−di,jh2 , mi,j = −1,

is negative semidefinite since it is diagonal and −di,j < 0. The matrix A2 is defined
by

A2u =




1
h2

(
−4ui,j +

∑
j uj

)
, mi,j = 1,

1
h2

(
−4ui,j +

∑
j |mj |uj

)
, mi,j = −1.

Again, the sum extends over all nearest neighbors j = (i + 1, j), (i − 1, j), (i, j +
1), (i, j − 1).
To study the symmetry of A2, we note that if (i, j) is an interior point, the

corresponding row in A2u contains the four off-diagonal terms ui+1,j+ui−1,j+ui,j+1+
ui,j−1. On the other hand, the row in A2u corresponding to point (i+ 1, j) includes
the term ui,j , whether (i+1, j) is an interior or a boundary point. The same argument
applies to the other three off-diagonal terms. When (i, j) is a boundary point, the
corresponding row in A2u contains at most three off-diagonal terms. For example, let
one of these terms be ui+1,j . Again, the row in A2u corresponding to point (i+ 1, j)
includes the term ui,j . We conclude that the matrix A2 is symmetric.

Since the sum of all elements on each row of A2 is less than or equal to zero, the
Gershgorin circle theorem implies that A2 is negative semidefinite. We proceed by
showing that A2 is negative definite. We begin with the case when Γ is convex; see
Figure 2. Let us define the inner product between two real-valued grid functions u
and v by

(u,v)h =

N∑
i=1

je(i)∑
j=js(i)

ui,jvi,j ≡
M∑
j=1

ie(j)∑
i=is(j)

ui,jvi,j .
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Γ

i

i=Ni=1
j=1

j=M
j

Inside

i=is(j) i=ie(j)

j=js(i)

j=je(i)

Fig. 2. Notation used to show that A2 is negative definite.

It is convenient to treat the terms in (u, A2u)h “dimension by dimension.” We have

(u, A2u)h =

N∑
i=1

S1(i) +

M∑
j=1

S2(j),

S1(i) =

je(i)−1∑
j=js(i)+1

ui,jD
y
+D

y
−ui,j +

1

h2
ui,js(i)(−2ui,js(i) + ui,js(i)+1)

+
1

h2
ui,je(i)(−2ui,je(i) + ui,je(i)−1),

S2(j) =

ie(j)−1∑
i=is(j)+1

ui,jD
x
+D

x
−ui,j +

1

h2
uis(j),j(−2uis(j),j + uis(j)+1,j)

+
1

h2
uie(j),j(−2uie(j),j + uie(j)−1,j).

The sum in S1(i) satisfies

je(i)−1∑
j=js(i)+1

ui,jD
y
+D

y
−ui,j =

je(i)−1∑
j=js(i)+1

ui,j
1

h
(Dy

−ui,j+1 −Dy
−ui,j)

= −
je(i)−1∑
j=js(i)+1

(Dy
−ui,j)

2 − ui,js(i)
h

Dy
−ui,js(i)+1 +

ui,je(i)−1

h
Dy

−ui,je(i).

Now, the two last terms in S1(i) satisfy

ui,js(i)

h2
(−2ui,js(i) + ui,js(i)+1) +

ui,je(i)

h2
(−2ui,je(i) + ui,je(i)−1)

= −
u2
i,js(i)

h2
+
ui,js(i)

h
Dy

−ui,js(i)+1 −
u2
i,je(i)

h2
− ui,je(i)

h
Dy

−ui,je(i).
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Therefore,

S1(i) = −
je(i)∑

j=js(i)+1

(Dy
−ui,j)

2 −
u2
i,js(i)

h2
−
u2
i,je(i)

h2
.

In the same way,

S2(j) = −
ie(j)∑

i=is(j)+1

(Dx
−ui,j)

2 −
u2
is(j),j

h2
−
u2
ie(j),j

h2
.

Since all terms in (u, A2u)h are less than or equal to zero, (u, A2u)h can only be zero
if all terms are zero. For example, S1(i) = 0 if and only if

Dy
−ui,j = 0, js(i) + 1 ≤ j ≤ je(i),
ui,js(i) = 0,

ui,je(i) = 0,

which implies ui,j ≡ 0, js(i) ≤ j ≤ je(i). In the same way, S2(j) = 0 if and only if
ui,j ≡ 0, is(j) ≤ i ≤ ie(j). This proves that (u, A2u)h = 0 if and only if u ≡ 0. The
nonconvex case can be handled in the same way, except that the terms S1 and S2

must be divided into several parts, corresponding to the number of times the boundary
splits the same grid line. Hence, the matrix A2 is negative definite for both convex
and nonconvex boundaries.
We have shown that both A1 and A2 are symmetric, A1 is negative semidefinite,

and A2 is negative definite. Hence, Lemma 2.2 applies, so the time-step restriction
of (4.2), (4.5) is determined only by A2, i.e., the interior formula, and the solution is
uniformly bounded in time. Moreover, the solution at the new time level, un+1, can
be computed pointwise since the matrix A1 is diagonal.

4.3. Accuracy. We have constructed our difference approximation “dimension
by dimension.” If we write the approximation in matrix form, the coefficient matrix is
symmetric and negative definite. Therefore, there are no stability problems. However,
it is not obvious that the approximation is second order accurate. The reason is that an
exterior point P can have two interior points P1, P2 as neighbors, P1 in the x-direction
and P2 in the y-direction; see Figure 3. In this case the value of u at P is not unique,
since it depends on which interpolation direction we use. For our scheme, this does
not matter because we eliminate u(P ) both from Dx

+D
x
−u(P1) and D

y
+D

y
−u(P2), using

the corresponding interpolation formula. However, the usual truncation error analysis
fails.
We shall now use a more refined argument to show that the approximation is

second order accurate. For simplicity, we study only the semidiscrete problem where
time is left continuous,

∂2uh
∂t2

= ∆̃huh +
f̃

h2
,(4.6)

uh(xj , 0) = u0(xj),
∂uh
∂t
(xj , 0) = u1(xj).

We assume that the solution of the continuous wave equation (4.1) is smooth and can
be extended smoothly from Ω to a larger region Ω1 which contains all external points
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Fig. 3. The outside point P is used when discretizing the Laplacian at both of the inside points
P1 and P2.

with boundary points as neighbors. Let u(x, y, t) be the solution of (4.1). It solves
the inhomogeneous difference equation

utt = ∆hu+ h
2G.(4.7)

Here h2G represents the truncation error. Let P1 = (x, y) be a boundary point
and (x + h, y) an exterior point. The extended solution satisfies an inhomogeneous
interpolation formula:

(1− α1)u(x, y, t) + α1u(x+ h, y, t) = f(x+ α1h, y, t) + h
2g1.(4.8)

If also (x, y + h) is an exterior point, then there is another interpolation formula:

(1− α2)u(x, y, t) + α2u(x, y + h, t) = f(x, y + α2h, t) + h
2g2.(4.9)

We use (4.8) and (4.9) to eliminate u(x+h, y, t) and u(x, y+h, t) from Dx
+D

x
−u(x, y, t)

and Dy
+D

y
−u(x, y, t), respectively. After we have eliminated all exterior points, we

obtain

utt = ∆̃hu+ h
2G+ g +

f̃

h2
for x = xj , |mj | = 1, t > 0.(4.10)

Note that g 
= 0 and f̃ 
= 0 only at boundary points and ∆̃hu = ∆hu at all interior
points. At boundary points (x, y) (which have at least one neighboring exterior point),
we obtain a q-point formula with q ≤ 4 of the form

h2∆̃hu(xi,j , t) = −(4 + di,j)u(xi,j , t) +
∑

j

|mj |u(xj , t),(4.11)

where the sum extends over the nearest neighbors (xi±h, yj), (xi, yj±h), and di,j > 0.
Subtracting the difference approximation (4.6) from (4.10) gives us, for the error

e = u− uh,

ett = ∆̃he+ h
2G+ g,

e(·, 0) = et(·, 0) = 0.

To analyze the effect the term g has on the error, we study

∆̃hϕ = g.
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Away from the boundary, g = 0 and ∆̃h = ∆h. It is easy to show that the solution of

∆hφi,j = 0, mi,j = 1,

φi,j = γi,j , mi,j = −1,
takes its maximum at a boundary point (where mi,j = −1). Let (xi, yj) be the
boundary point where |ϕ(xi, yj)| = |ϕ|∞. From (4.11) we have

(4 + di,j)|ϕ|∞ ≤
∑

j

|mj ||ϕ|∞ + h2|g|∞.

Hence,

|ϕ|∞ ≤ h2

4 + di,j −
∑

j |mj | |g|∞.

Since di,j > 0 and
∑

j |mj | ≤ 3,

|ϕ|∞ ≤ h2|g|∞.
From the definition of g, it is a smooth function of t. Therefore, ẽ = e+ ϕ solves

ẽtt = ∆̃hẽ+ h
2G+ ϕtt, |ϕtt|∞ ≤ h2|gtt|∞,

i.e.,

|e|∞ = O(h2).

This shows that the approximation is second order accurate.

5. Numerical examples. In this section we consider (4.1) with a forcing func-
tion,

utt = ∆u+ F (x, t), x ∈ Ω, t > 0,

u(x, t) = f(x, t), x ∈ Γ, t > 0,(5.1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.
This problem will be solved by both a fully second and an internally fourth order
accurate method, and the forcing functions will be chosen such that an exact solution
is known. The second order scheme is given by (4.2) and (4.5), and the internally
fourth order scheme is obtained by adding the correction term

∆h,4v
n
i,j = −

h2

12

(
Dx

+D
x
−γi,jD

x
+D

x
− +D

y
+D

y
−γi,jD

y
+D

y
−
)
vni,j

to the right-hand sides of (4.2) and (4.5), respectively. Here

γi,j =


 1, mi,j = 1,

0 otherwise,

where mi,j is defined in section 4.1.
The correction term ∆h,4v

n
i,j gives a symmetric negative semidefinite contribu-

tion to the matrix representation of the scheme that does not involve the boundary.
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Table 1
Grid refinement study for the Dirichlet problem for a trigonometric exact solution; CFL = 0.5.

2’nd order error 4’th order error

t N = 100 N = 200 ratio N = 100 N = 200 ratio

0.330 2.54e-02 5.77e-03 4.4 1.27e-02 3.58e-03 3.5

1.980 2.30e-02 5.47e-03 4.2 1.46e-02 3.97e-03 3.7

Hence, the internally fourth order scheme is stable. However, the internally fourth
order scheme can be expected to be only second order accurate near the boundary,
since a second order approximation of the Dirichlet boundary condition is used. For
simplicity, the internally fourth order scheme will henceforth be called the fourth order
scheme.
We start the numerical integration at n = 0. For the cases where an analytical

solution is known, we use this solution to initialize the computation at time levels
t−1 and t0. For the cases where an analytical solution is not known we use the
initialization

v−1
i,j = u0(xi, yj)− ku1(xi, yj) +

k2

2
(Dx

+D
x
− +D

y
+D

y
−)u0(xi, yj),

and v0i,j = u0(xi, yj).
We will denote the CFL-number by CFL≡ k/h. Note that for a two-dimensional

periodic domain, the scheme (4.2) is stable for CFL ≤ 1/√2. Also note that all errors
are measured in the max-norm.

5.1. Convergence study for a trigonometric exact solution. Let us choose
the forcing function F and boundary data f such that the exact solution is the trigono-
metric traveling wave

u(x, y, t) = sin(ω(x− t)) sin(ωy), ω = 4π.(5.2)

The domain Ω is taken to be an ellipse centered at the origin with semiaxes xs = 1 and
ys = 0.75. The Cartesian grid covers the rectangle −1.1 ≤ x ≤ 1.1, −0.85 ≤ y ≤ 0.85.
In Table 1, we present a grid refinement study for the two schemes with CFL= 0.5.
In Table 2 we present the same study with CFL=0.1. Note that the error in the
second order scheme is not improved by decreasing the CFL number, indicating that
the error is dominated by spatial discretization errors. The error for the fourth order
scheme is improved somewhat by decreasing the CFL number, implying that temporal
discretization errors cannot be neglected when CFL= 0.5. For both CFL-numbers,
the error is smaller for the fourth order scheme than for the second order scheme.
However, the order of convergence is only around two for the fourth order scheme and
CFL= 0.1. In section 3.2 the spatial discretization error is shown to consist of a second
order amplitude error arising from the boundary discretization and a fourth order
phase error originating from the discretization in the interior. It is therefore likely
that the dominant errors for the fourth order scheme and CFL= 0.1 are generated at
the boundary.

5.2. Convergence study for an inwards traveling wave solution in a cir-
cle. To illustrate the benefits of using a fourth order scheme away from the boundary,
we select the forcing function F and boundary data f such that the exact solution
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Table 2
Grid refinement study for the Dirichlet problem for a trigonometric exact solution; CFL = 0.1.

2’nd order error 4’th order error

t N = 100 N = 200 ratio N = 100 N = 200 ratio

0.330 2.31e-02 5.77e-03 4.0 1.06e-02 2.23e-03 4.8

1.980 2.40e-02 5.92e-03 4.1 7.55e-03 2.16e-03 3.5

Table 3
Grid refinement study for the Dirichlet problem for an inwards traveling wave solution. Here,

CFL = 0.5.

2’nd order error 4’th order error

t N = 400 N = 800 ratio N = 400

0.315 1.51e-02 3.66e-03 4.12 6.51e-03

0.525 3.29e-02 8.79e-03 3.75 1.15e-02

1.155 8.44e-02 2.67e-02 3.17 3.29e-02

1.365 1.03e-01 3.40e-02 3.03 4.16e-02

(in polar coordinates) is a spatially localized traveling wave,

u(r, t) = φ(r + t), φ(ξ) =
1

4

(
1 + tanh

ξ − ξ0
ε

)(
1− tanh ξ − ξ1

ε

)
.(5.3)

Note that such waves are exact solutions to the unforced wave equation in one and
three space dimensions, but they are not in the two-dimensional case. The domain Ω is
taken to be the circle, |r| ≤ 2, and the Cartesian grid covers the square−2.1 ≤ x ≤ 2.1,
−2.1 ≤ y ≤ 2.1.
The parameters in the exact solution are chosen so that initially the wave is

essentially outside the domain and enters the region through the boundary after some
time. To make the problem challenging to solve numerically, we make the transitions
around ξ = ξ0 and ξ = ξ1 rapid and close together by choosing

ξ0 = 2.2, ξ1 = 2.4, ε = 0.035.

The maximum of the wave reaches the boundary at t = 0.3 and has passed through
the boundary after t ≈ 0.4 − 0.5. In Table 3 we present a study of the errors for
the two schemes with CFL= 0.5 both when the wave has reached the boundary and
after the wave has passed the boundary. In Table 4 we present a similar study but
with CFL= 0.1. Note first that the error in the fourth order scheme is improved by
decreasing the CFL-number for N = 400, indicating again that time discretization
errors are not small when CFL= 0.5. Furthermore, note that the fourth order method
with CFL= 0.1 gives close to fourth order accuracy after the wave has passed the
boundary, implying that the phase error dominates; see the discussions in sections 5.1
and 3.2. Also, the error in the second order scheme does not improve when the CFL
number is decreased, indicating again that the second order scheme is dominated by
spatial discretization errors. When 400 grid points are used in each direction, the
second order scheme produces a solution that has many spurious oscillations, while
the fourth order scheme gives a much cleaner result; see Figure 4.
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Table 4
Grid refinement study for the Dirichlet problem for an inwards traveling wave solution. Here,

CFL = 0.1.

2’nd order error 4’th order error

t N = 400 N = 400 N = 800 ratio

0.315 1.73e-02 4.39e-03 8.37e-04 5.24

0.525 3.98e-02 6.55e-03 8.30e-04 7.89

1.155 9.95e-02 1.09e-02 8.12e-04 13.44

1.365 1.20e-01 1.31e-02 9.64e-04 13.62
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Fig. 4. The inwards traveling wave solution for the Dirichlet problem along the line y = −h/2
at time t = 1.365. The right figure shows a close-up centered around x = 1.2. The exact solution is
a solid line, the computed solution with the second order scheme is denoted by (+), and the fourth
order scheme is marked with (o). In these computations, N = 400 and CFL = 0.1.

5.3. Convergence study for an outwards traveling wave solution in a
circle. To further study the benefits of using a fourth order scheme away from the
boundary, we let the exact solution be an outwards traveling wave,

u(r, t) = φ(r − t),(5.4)

where φ is given by (5.3). The domain Ω is in this case taken to be the unit circle,
|r| ≤ 1, and the Cartesian grid covers the square −1.1 ≤ x ≤ 1.1, −1.1 ≤ y ≤ 1.1.
Here, the parameters in φ are taken to be

ξ0 = 0.2, ξ1 = 0.4, ε = 0.035.

The wave reaches the boundary at t ≈ 0.5−0.6 and has passed through the boundary
after t ≈ 0.8 − 0.9. In Table 5 we present a grid convergence study for the two
schemes with CFL= 0.5 before and after the wave has passed the boundary. In Table
6 we present the same study but with CFL= 0.1. Note that the fourth order method
gives fourth order convergence for the smaller CFL-number before the wave reaches
the boundary and gives second order convergence after the wave has reached the
boundary. When 200 grid points are used in each direction, the second order scheme
produces a solution that has many spurious oscillations, while the fourth order scheme
gives a much cleaner result; see Figure 5.
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Table 5
Grid refinement study for the Dirichlet problem for an outwards traveling wave solution;

CFL = 0.5.

2’nd order error 4’th order error

t N = 200 N = 400 ratio N = 200 N = 400 ratio

0.22 1.99e-02 5.44e-03 3.7 6.70e-03 1.79e-03 3.7

0.33 2.78e-02 7.82e-03 3.6 9.64e-03 2.60e-03 3.7

0.66 5.35e-02 1.40e-02 3.8 1.61e-02 4.47e-03 3.6

0.77 5.77e-02 1.76e-02 3.3 2.30e-02 6.11e-03 3.8

Table 6
Grid refinement study for the Dirichlet problem for an outwards traveling wave solution;

CFL = 0.1.

2’nd order error 4’th order error

t N = 200 N = 400 ratio N = 200 N = 400 ratio

0.22 2.53e-02 7.08e-03 3.6 2.37e-03 1.40e-04 17.0

0.33 3.50e-02 1.01e-02 3.5 3.33e-03 2.03e-04 16.5

0.66 5.73e-02 1.71e-02 3.3 8.50e-03 7.34e-04 11.6

0.77 6.46e-02 2.23e-02 2.9 8.26e-03 1.17e-03 7.1
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Fig. 5. The outwards traveling wave solution for the Dirichlet problem along the line y = −h/2
at time t = 0.66. The right figure shows a close-up centered around x = 0.7. The exact solution is
a solid line, the computed solution with the second order scheme is denoted by (+), and the fourth
order scheme is marked with (o). Here N = 200 and CFL= 0.1.

5.4. Bouncing wave in an ellipse. Here we study the homogeneous problem

F (x, t) ≡ 0, f(x, t) ≡ 0,

in a domain bounded by an ellipse centered at the origin, with semiaxes xs = 2.0 and
ys = 2.54. The Cartesian grid covers the square −2.1 ≤ x ≤ 2.1, −2.64 ≤ y ≤ 2.64.
We take initial data to be

u0(x, y) = φ(r),
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Fig. 6. The bouncing wave reference solution for the Dirichlet problem with the fourth order
scheme at t = 3.15 (left) and t = 4.41 (right). Here N = 800, CFL = 0.1. The contour spacing is
0.2, and the dashed curve in the left plot indicates the boundary.

where φ(r) is given by (5.3) and r =
√
x2 + (y − yF )2. The upper focal point is

located at yF =
√
y2s − x2

s ≈ 1.56 and
u1(x) = u1(r) = −φ′(r).

The parameters in φ(r) are

ξ0 = 0.2, ξ1 = 0.4, ε = 0.035.

Note that the initial data is chosen such that the wave is essentially traveling in
the positive r-direction out from the focal point (0, yF ). By making a ray-tracing
argument, we see that a high frequency wave should reflect the boundary and re-
focus at the other focal point (0,−yF ). To verify this behavior, we make a reference
calculation using a fine grid with N = 800 and the fourth order method with CFL=
0.1. We then make calculations with N = 400 and N = 100 for the fourth and the
second order methods. These solutions are compared to the reference calculation at
the time t = 4.41, just before the solution is refocused at the other focal point. In
Figure 6, we show contour plots of the reference calculation at t = 3.15 and t = 4.41.
In Figure 7, we display contour plots of the solutions using the fourth and second order
schemes for N = 400 at t = 4.41. We also plot the numerical solutions along the line
x = 0, where the deviation from the reference solution is the largest; see Figure 8. In
Figures 9 and 10, the corresponding calculations are presented for N = 100. Clearly,
the fourth order method gives the best result.

6. Conclusions. Numerical methods have been proposed and analyzed for solv-
ing a second order wave equation without first writing it as a first order system. Both
the Dirichlet and the Neumann problems were treated for the one-dimensional case.
The Dirichlet problem was analyzed in detail for general two-dimensional domains,
and we proved that the proposed scheme is stable and conservative both for second and



SECOND ORDER WAVE EQUATION 1965

–1.5 –1 –0.5 0 0.5 1 1.5

–2.5

–2

–1.5

–1

–0.5

x

y

0

0.2

0.4

0.2

0

1.8

–1.5 –1 –0.5 0 0.5 1 1.5

–2.5

–2

–1.5

–1

–0.5

x

y

0

0.2
0.4

1.6

0.2

0

Fig. 7. The bouncing wave solutions for the Dirichlet problem at t = 4.41. Left: the second
order scheme with CFL = 0.5, N = 400. Right: the fourth order scheme with CFL = 0.1, N = 400.
The contour spacing is 0.2.
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Fig. 8. The bouncing wave solutions on a fine grid for the Dirichlet problem along the line
x = 0 at t = 4.41, centered around y = −2 (left) and y = −1.2 (right). Solid: the reference solution,
“+”: the second order scheme with CFL = 0.5, N = 400. “o”: the fourth order scheme with CFL
= 0.1, N = 400. Note the over- and undershoots obtained with the second order scheme.
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Fig. 9. The bouncing wave solutions on a coarse grid for the Dirichlet problem at t = 4.41.
Left: the second order scheme with CFL = 0.5, N = 100. Right: the fourth order scheme with CFL
= 0.1, N = 100. The contour spacing is 0.2, and the dashed curve represents the boundary.
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–2.6 –2.5 –2.4 –2.3 –2.2 –2.1 –2. –1.9 –1.8 –1.7 –1.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

y
–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0 0.2

–1.5

–1

–0.5

0

0.5

y

Fig. 10. The bouncing wave solutions for the Dirichlet problem along the line x = 0 at t = 4.41,
centered around y = −2.1 (left) and y = −0.75 (right). The solid line is the reference solution, and
the dashed line with “+” is the second order scheme with CFL = 0.5, N = 100. The dotted line with
“o” marks the fourth order scheme with CFL = 0.1, N = 100. Note that the spurious oscillations
are much larger with the second order scheme.

fourth order spatial discretizations. We are currently working on the two-dimensional
Neumann problem [7], and we plan to extend the approach to three space dimensions.

For the fourth order spatial discretization, we have seen that the second order
temporal discretization error cannot be neglected unless the CFL-number is reduced
substantially below the stability limit. In future work we intend to develop a higher
order time integration method where the accuracy better matches that of the fourth
order spatial discretization.

In many applications the wave propagation speed varies in space. We see no diffi-
culty modifying our approach to handle smoothly varying coefficients, but additional
work will be required to treat discontinuous coefficients. Systems of second order
wave equations also occur in applications, for example in general relativity. Another
example is Maxwell’s equations for electromagnetic wave propagation, which often is
given as a first order system, but also can be written as a second order system. We
believe that generalizing the proposed method to systems will provide an accurate
and straightforward technique for analyzing these types of problems.
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Abstract. We consider weak solutions of (hyperbolic or hyperbolic-elliptic) systems of con-
servation laws in one-space dimension and their approximation by finite difference schemes in con-
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1. Introduction. In this paper, we are interested in the numerical approxima-
tion of discontinuous solutions of general systems of conservation laws of the form

∂tu+ ∂xf(u) = 0, u = u(x, t) ∈ R
N , x ∈ R, t > 0,(1.1)

endowed with a smooth entropy-entropy flux pair (U,F ) : R
N → R

2. In (1.1), the
flux-function f : R

N → R
N is a smooth given mapping. As is well known, we should

seek solutions satisfying the entropy inequality

∂tU(u) + ∂xF (u) ≤ 0(1.2)

understood in the sense of distributions.
From the numerical standpoint, following Lax and Wendroff [12], it is natural

to search for (fully discrete in space and time) conservative schemes associated with
(1.1) which, furthermore, satisfy a discrete version of the inequality (1.2). Whenever
the Cauchy problem for (1.1)–(1.2) is well-posed (for instance, when (1.1) is a scalar
conservation law with convex flux) such a scheme can converge only to the (so-called)
entropy solution of interest.

Weak (entropy) solutions of (1.1) can be considered as limits of solutions of higher
order systems with vanishing regularization terms. The physical meaning of these
terms comes from viscosity, heat conduction, or capillarity usually leading to a smooth
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solution that satisfies (1.2) in the pointwise sense. In some situations it is necessary
to control explicitly the rate of dissipation that one introduces (in the continuous as
well as in the discrete setting).

In this context it has been suggested that the numerical approximation of (1.1)
should be based on schemes satisfying (1.2) as an equality (cf. [10]), that is

∂tU(u) + ∂xF (u) = 0.(1.3)

High order terms such as viscosity, heat conduction, capillarity, etc., should then be
added to such an entropy conservative scheme in a way to get an entropy dissipative
scheme, i.e., satisfying a discrete (consistent) version of (1.2). The notion of entropy
conservative schemes for conservation laws was introduced first and investigated in a
pioneering work by Tadmor [24, 25] when constructing semidiscrete difference schemes
satisfying a discrete form of (1.2). For another approach we refer to [21]. In a close
context, linear implicit, fully discrete, energy conservative schemes were designed in
Aregba-Driollet and Mercier [4] (in the spirit of a fully nonlinear scheme introduced
by Strauss and Vasquez [22]) to study solutions of semilinear hyperbolic systems
satisfying an energy conservation, i.e., satisfying (1.3) for a (possibly nonconvex)
energy U .

In the light of the above work, attention in the present paper is focused precisely
on constructing fully discrete, conservative, and entropy conservative schemes for
conservation laws, consistent with both (1.1) and (1.3).

The investigation of semidiscrete schemes (keeping the time variable continuous)
was completed only recently. A second order entropy conservative scheme was dis-
covered by Tadmor [24, 25] who introduced this notion in order to construct schemes
satisfying a discrete form of (1.2). Next, the notion was further investigated by
LeFloch and Rohde [16], who discovered a class of third order entropy conservative
schemes.

The study of fully discrete schemes for diffusive-dispersive conservation laws was
initiated by Chalons and LeFloch [5]. The authors made a direct use of the semi-
discrete numerical fluxes proposed in the earlier papers. By enforcing a suitable CFL
stability condition, the entropy inequality (1.2) holds, provided diffusive terms are
taken into account in the right-hand side of (1.1).

Our motivation to construct entropy conservative schemes was to study systems
of conservation laws that either have nonconvex modes or are of hyperbolic-elliptic
type. In this paper we will focus on two representative examples: the first is the
cubic scalar conservation law, a nonconvex hyperbolic equation, for which dynamics
is well understood and which is used as a test model. The second is a p-system
that models adiabatic phase transition dynamics, a hyperbolic-elliptic system; see
Truskinovsky [26], Abeyaratne and Knowles [2, 3], and LeFloch [13] for related results
in the linearly degenerate case, and see Mercier and Piccoli [18] and references therein
for the genuinely nonlinear case. The main difficulty of a nonconvex hyperbolic or
hyperbolic-elliptic system of conservation laws is that the single entropy inequality
(1.2) does not characterize a unique solution of the system and further selection
mechanisms must be added, specifically the so-called kinetic relation. For general
nonconvex systems, we refer to Hayes and LeFloch [9], LeFloch and Thanh [17], and
LeFloch [14].

Kinetic relations can be determined in several situations from physics. From the
mathematical point of view they can be exhibited from regularization terms. Kinetic
regularizations associated with difference schemes were numerically determined and
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compared with analytical kinetic relations in [10]. The dependence of the kinetic
relation upon physical and numerical parameters was discussed therein.

An important point is that capillarity terms require high order schemes (at least
third order). Thus our first aim is to derive a general approach to construct finite
difference schemes for systems of conservation laws that are

(1) fully discrete in space and time,
(2) conservative in the sense of Lax and Wendroff [12],
(3) entropy conservative in the sense of Tadmor [23, 24],
(4) and high order accurate (at least third order).
This program will be carried out in sections 2 and 3. First, we propose a general

approach for the construction of such schemes in section 2. Next, in section 3, several
classes of second and third order schemes are identified, which can be fully implicit,
linear implicit, or explicit methods. This is certainly not a straightforward task.
Recall that, for nonaffine f , there are no two time-level, fully discrete, explicit, and
conservative schemes with smooth numerical flux satisfying a discrete version of the
entropy equality; see [16].

In section 4 we return to the investigation of semidiscrete schemes. We will present
entropy conservative schemes of arbitrarily high order. This can be transferred to the
fully discrete case, however, only for a weaker form of entropy conservation.

Finally in section 5, adding appropriate dissipative terms, we will obtain schemes
for the above mentioned model problems. Numerical experiments presented in par-
ticular in section 6 underline their good performance.

We emphasize that the techniques developed in this paper also apply to other
types of evolution equations for which an energy conservation or dissipation is avail-
able, such as the heat, Schrödinger, or wave equations. A first result in this direction
is given in the second part of subsection 5.2 (Theorem 5.2). Furthermore, these
techniques, considered in the one dimensional case, apply straightforwardly to higher
dimensions when using Cartesian grids.

2. A general approach to construct entropy conservative schemes. In
this section we propose a general method to construct fully discrete, conservative, and
entropy conservative schemes.

We follow the notation in Tadmor [24] and LeFloch and Rohde [16]. Call v(u) =
∇U(u) the entropy variable associated with the given entropy U . When the entropy
is strictly convex, v �→ v(u) is a one-to-one mapping. This can be used as a change of
variable (Friedrichs and Lax [7]); that is, we can set

g(v) := f(u), G(v) := F (u), B(v) := Dg(v).(2.1)

The matrix B(v) is symmetric since Dg(v) = Df(u)D2U(u)−1 is symmetric matrix
for U being a strictly convex entropy. It follows that there exists a scalar-valued
function ψ = ψ(v) such that g = ∇ψ; in fact

ψ(v) = v · g(v)−G(v),(2.2)

uniquely defined up to a constant.
Furthermore, to deal with examples when U is not globally convex, the following

assumption on the flux-function of (1.1) is made:

f(u) and F (u) can be expressed as functions of the entropy variable v;(2.3)
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that is, (2.1) holds for some functions g and G. Then, again, ψ can be defined by
(2.2). The assumption (2.3), which we make from now on, is motivated by several
examples of interest; see [16] and section 5 below. We stress that (2.3) holds in R

N

when U is strictly convex.
For mesh parameters h, τ > 0, let xj = j h, j ∈ Z, and tn = n τ , n ∈ N0. We set

λ ≡ τ/h and start discussing the (multilevel) time discretization. For q ∈ N, choose
a locally Lipschitz continuous mapping

u∗ :
(
u−q+1, . . ., u0

) ∈ R
qN �→ u∗

(
u−q+1, . . ., u0

) ∈ R
N

consistent with the conservative variable u in the sense that

u∗ (u, . . ., u) = u, u ∈ R
N .

It will be called the discrete conservative variable in what follows. The integer q
indicates the number of time-levels used by the scheme and is related to the order of
accuracy in time. Setting u∗nj = u∗(un−q+1

j , . . ., unj ), we approximate the continuous
derivative ∂tu in (1.1) by the following discrete derivative:

u∗n+1
j − u∗nj

τ
.

To guarantee that the difference equation is solvable in terms of the conservative
variable un+1

j , we assume that

the mapping u �→ u∗
(
un−q+1, . . ., un, u

)
is smoothly invertible

for all un−q+1, . . ., un ∈ R
N .

(2.4)

Next, choose some locally Lipschitz continuous mapping

U∗ : (u−q+1, . . ., u0) ∈ R
qN �→ U∗ (u−q+1, . . ., u0

) ∈ R

consistent with the continuous entropy; i.e.,

U∗ (u, . . ., u) = U (u) , u ∈ R
N .

It will be called the discrete entropy function. Also set U∗n
j = U∗(un−q+1

j , . . ., unj ).
As we will see below the two functions u∗ and U∗ cannot be chosen arbitrarily

from each other. We make the following assumption.
Assumption 2.1. There exists a continuous mapping v∗ : R

(N+1)q → R
N with

the properties

(i) v∗(u, . . ., u) = v(u) (v ∈ R
N ),

(ii) U∗ (u−q+1, . . ., u0
)− U∗ (u−q, . . ., u−1

)
=
(
u∗
(
u−q+1, . . ., u0

)− u∗ (u−q, . . ., u−1
) ) · v∗ (u−q, . . ., u0

)
.

(2.5)

v∗ is called a discrete entropy variable.
Finally, we also set

v∗n+1
j = v∗

(
un−q+1
j , . . ., un+1

j

)
.

The validity of Assumption 2.1 will be discussed later on for specific examples.
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We now turn to discuss the space discretization, based on a discrete flux

g∗ : (v−p+1, . . ., vp) ∈ R
2pN �→ g∗ (v−p+1, . . ., vp) ∈ R

N ,

consistent with the continuous flux-function g(v); i.e.,

g∗ (v, . . ., v) = g (v) , v ∈ R
N .

Observe that now we rely directly on the entropy variable v. Here the integer p
indicates that the scheme uses 2p + 1 space-levels and is related to the order of
accuracy in space: setting

g∗n+1
j+1/2 = g

∗ (v∗n+1
j−p+1, . . ., v

∗n+1
j+p

)
,

we are led to a space discretization by replacing the continuous derivative ∂xg(v) =
∂xf(u) in (1.1) with

g∗n+1
j+1/2 − g∗n+1

j−1/2

h
.

Our approach relies on entropy conservative discrete fluxes. Recall from [25] that a
discrete flux g∗ (expressed in the entropy variable v) is entropy conservative if there
exists a discrete entropy flux

G∗ : (v−p+1, . . ., vp) ∈ R
2pN �→ G∗ (v−p+1, . . ., vp) ∈ R

consistent with the entropy flux G(v) such that

v0 ·
(
g∗ (v−p+1, . . ., vp)− g∗ (v−p, . . ., vp−1)

)
= G∗ (v−p+1, . . ., vp)−G∗ (v−p, . . ., vp−1) .

(2.6)

Finally, also set

G∗n+1
j+1/2 = G

∗ (v∗n+1
j−p+1, . . ., v

∗n+1
j+p

)
.

The existence of such entropy conservative fluxes will be discussed below. First we
state the central result of this section, providing a general approach to construct
classes of fully discrete schemes.

Theorem 2.2. Consider a hyperbolic or hyperbolic-elliptic system of conservation
laws (1.1) endowed with an entropy-entropy flux pair (U,F ) satisfying condition (2.3).
Consider a discrete conservative variable u∗ and a discrete entropy function U∗ such
that Assumption 2.1 holds. For n ∈ N fixed, let the sequence {unj }j∈Z in R

N be given.
Then, for any entropy conservative discrete flux g∗ and 0 < λ << 1, the (q + 1)×

(2p+ 1)-point difference equation

u∗n+1
j − u∗nj + λ

(
g∗n+1
j+1/2 − g∗n+1

j−1/2

)
= 0 (j ∈ Z)(2.7)

has a unique solution un+1
j ∈ R

N .
The associated scheme is entropy conservative with respect to U∗ in the sense that

U∗n+1
j − U∗n

j + λ
(
G∗n+1
j+1/2 −G∗n+1

j−1/2

)
= 0 (n ∈ N, j ∈ Z).(2.8)
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Proof. The result follows from the discussion preceding the theorem. Indeed, in
view of (2.4) and (2.5) and by applying the inverse function theorem, there exists
0 < λ << 1 for which (2.7) determines a unique solution un+1

j . Next, multiplying

(2.7) by v∗n+1
j , we obtain(

u∗n+1
j − u∗nj

) · v∗n+1
j = λ

(
g∗n+1
j+1/2 − g∗n+1

j−1/2

)
· v∗n+1
j .

The conservative form (2.8) is a direct consequence of the definitions of discrete en-
tropy variable (2.5) and entropy conservative discrete flux (2.6).

It is the main goal of the following sections to show precisely that the framework
in Theorem 2.2 covers a variety of situations of practical interest.

Note 2.3.
(1) The key points for using Theorem 2.2 are an appropriate choice of the func-

tions u∗, U∗ such that Assumption 2.1 holds and entropy conservative discrete
fluxes g∗ exist. The choice of the functions u∗, U∗ will be discussed in section
3. A second order entropy conservative discrete flux has been designed in [25].
Third order entropy conservative fluxes have been derived in [16]. In section
4 below, we will return to constructing even higher order entropy conservative
fluxes.

(2) The entropy equality (2.8) implies the following nonlinear stability property:

∞∑
j=−∞

U∗n
j = const.

Depending on the properties of the discrete entropy U∗, this may provide
us with some a priori bound on the discrete solution. For instance, if U∗

is strictly convex, essentially we recover the L2-stability of the scheme. In
general, (2.7) is a fully nonlinear implicit scheme. As we have an implicit
scheme we may expect to have stability for large CFL-numbers. However,
convergence of an iterative method for solving the nonlinear system might
enforce a stricter CFL-like condition.

(3) In general, the schemes (2.7) are fully implicit. However, in some situations
of interest we obtain linear implicit or even explicit schemes (section 3).

3. Two and three time-level entropy conservative schemes. In this sec-
tion we give first applications of Theorem 2.2. We start investigating the simplest
case of a two time-level discretization. We will see that such schemes are always
fully nonlinear, except in the case of linear systems of conservation laws. Next we
investigate three time-level schemes, for which there exists more freedom in choosing
a convenient discretization of the entropy. We use this freedom to construct explicit
or linear implicit schemes of third order.

We will rely on the consistent entropy conservative numerical flux-function g∗2
that has been constructed by Tadmor [25]; i.e.,

g∗2(v0, v1) =
∫ 1

0

g(v0 + s (v1 − v0)) ds, v0, v1 ∈ R
N .(3.1)

The associated numerical entropy flux reads as

G∗
2(v0, v1) =

G(v0) +G(v1)

2
+

(v0 + v1)

2
· g∗2(v0, v1)

− 1

2
(v0 · g(v0) + v1 · g(v1)) .

(3.2)
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3.1. A class of two time-level entropy conservative schemes. We first con-
sider schemes based on two time-levels only and on two-point discrete fluxes. Consider
the following discretization

un+1
j = unj − λ

(
g∗n+1
j+1/2 − g∗n+1

j−1/2

)
(3.3)

corresponding to the simple choice q = 1:

u∗
(
u0
)
= u0.

For schemes with q = 1 the only consistent entropy is U∗ (u) = U (u) . The
only two-point entropy conservative flux is the one proposed by Tadmor. We get the
following result from Theorem 2.2.

Theorem 3.1. Let u∗ (u) = u, U∗ (u) = U (u). Let Assumption 2.1 be valid.
Then the scheme (3.3) considered with Tadmor flux (3.1) is entropy conservative with
respect to the entropy U∗. Furthermore, this scheme is second order accurate in space
and time in the sense that its equivalent equation is

∂tu(xj , t
n+1/2) + ∂xg(v(xj , t

n+1/2)) = O(h2).

To satisfy Assumption 2.1 we can choose v∗ to be

v∗(u0, u1) =

∫ 1

0

v(su∗(u1) + (1− s)u∗(u0)) ds.(3.4)

Note that—at least in the linear case and with U(u) = u2/2—the time discretization
in (3.3) is exactly the Crank–Nicholson time discretization.

In general, (3.3) with (3.4) is fully nonlinear in un+1
j . To obtain an at least linear

implicit scheme, g∗2 has to be linear, and v∗ = v∗(u0, u1) has to be linear with respect
to u1. The latter is true if and only if U is quadratic. By definition, the Tadmor
flux g∗2 is linear if and only if g is linear. With U to be quadratic we obtain that the
flux f has to be linear. In the next section we will provide explicit and linear implicit
entropy conservative schemes.

Example 3.2. For the sake of illustration of the scheme (3.3) we present a numer-
ical experiment. We consider the scalar case

f(u) = U(u) =
u2

2
.

This leads to the scheme

un+1
j = unj −

λ

24

(
(unj + u

n+1
j )(unj+1 + u

n+1
j+1 − unj−1 − un+1

j−1 )

+ (unj+1 + u
n+1
j+1 )

2 − (unj−1 + u
n+1
j−1 )

2
)
.

(3.5)

For each time step, the nonlinear difference equation (3.5) is solved by a fixed-point
iteration method which is stopped if the L1-relative difference between two succeeding
approximate solutions is less than a threshold. This fixed-point iteration approach
will be used throughout this paper for all numerical experiments. Results for initial
data u0(x) = sin(2πx) + 1 at different times are shown in the left picture of Figure
3.1. The computational domain is [0, 1] with periodic boundary conditions. Here we
chose 250 cells, and the CFL-number to be 0.25. As expected for a central scheme, the
method leads to a highly oscillating wave pattern after formation of the shock wave,
indicating that the method will not converge in any strong topology when refining the
grid. We note that by adding artificial dissipation the oscillations can be suppressed
(cf. section 5 for examples with nonclassical shocks).
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Fig. 3.1. Numerical approximation of weak solutions of Burgers’ equation with a two time-level
entropy conservative scheme.

3.2. A class of three time-level entropy conservative schemes. We con-
sider three time-level schemes of the type

u∗n+1
j = u∗nj − λ

(
g∗n+1
j+1/2 − g∗n+1

j−1/2

)
,(3.6)

where the discrete conservative variable u∗ is defined by

u∗
(
u0, u1

)
= αu0 + (1− α)u1 (α ∈ R).(3.7)

Straightforwardly we get the following theorem.
Theorem 3.3. Let U∗ (u0, u1

)
be chosen such that Assumption 2.1 is satisfied

for some entropy variable v∗ = v∗
(
u−1, u0, u1

)
.

Then the scheme (3.6) considered with Tadmor flux (3.1) is a three time-level
entropy conservative scheme with respect to the entropy U∗ (u0, u1

)
.

To satisfy Assumption 2.1 we can always choose U∗ and v∗ as

U∗(u0, u1) = U(u∗(u0, u1)),

v∗(u−1, u0, u1) =

∫ 1

0

v(su∗(u0, u1) + (1− s)u∗(u−1, u0)) ds.
(3.8)

If the entropy U is nonnegative, another possible choice for the discrete entropy is
U∗ (u0, u1

)
=
√
U (u1)U (u0), together with the entropy variable v∗ as above.

3.3. Explicit three time-level schemes for quadratic entropies. Symmet-
ric systems yield a general class of hyperbolic systems. For these systems, we can
design three time-level explicit entropy conservative schemes. Let B be any constant
positive symmetric matrix. For symmetric systems, the function

U(u) = u ·B u
is a strictly convex entropy for which the entropy variable is v (u) = Bu.

Let u∗ be given by (3.7) for the special choice α = 1/2, and choose the discrete
entropy function

U∗ (u0, u1
)
=

1

2
u0 ·B u1.
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To satisfy Assumption 2.1 define

v∗
(
u−1, u0, u1

)
= B u0.(3.9)

The Tadmor flux gives an explicit scheme.
Proposition 3.4. Suppose that Df is symmetric. Choose U∗ (u0, u1

)
= 1

2 u
0 ·

B u1 and Tadmor’s flux (3.1) . With v∗ from (3.9) the scheme (3.6) is an explicit
scheme, entropy conservative with respect to the entropy U∗.

3.4. Linear implicit three time-level schemes. As pointed out in section
3.2, the three-point conservative scheme (3.6) allows different choices for the entropy
U∗. Here we consider scalar conservation laws and highlight a choice of U∗ that leads
to a linear implicit scheme.

Consider the case N = 1 with the flux f (u) = u3 and entropy

U(u) =

∫ u

0

f(s) ds =
u4

4
.

The flux written in the entropy variable is g(v) = v. Consider the discrete entropy

U∗n
j = U∗n (unj , un−1

j

)
=

1

4

(
unj u

n−1
j

)2
.

Assumption 2.1 is satisfied if the discrete entropy variable v∗ is defined to be

v∗n+1
j = v∗(un−1

j , unj , u
n+1
j ) =

1

2
(unj )

2(un+1
j + un−1

j ).

For the flux we take

g∗,n+1
j+1/2 = g

∗
2

(
v∗n+1
j , v∗n+1

j

)
=

1

4

(
(unj )

2(un−1
j + un+1

j ) + (unj+1)
2(un−1

j+1 + un+1
j+1 )

)
.

The resulting three time-level scheme (3.6) is linear implicit:

un+1
j = un−1

j − λ
2

((
un+1
j+1 + un−1

j+1

) (
unj+1

)2 − (un+1
j−1 + un−1

j−1

) (
unj−1

)2)
.(3.10)

Example 3.5. We present a numerical experiment for scheme (3.10). Consider the
cubic scalar conservation law for u0(x) = sin(2x/π) on [0, 1] with periodic boundaries.
The results for 250 cells and the CFL-number 0.25 are displayed in the right picture of
Figure 3.2. Again we stress the fact that these schemes produce extreme oscillations
after the shock has formed. When supplementing regularizing terms this effect will
disappear.

3.5. Third order, three time-level entropy conservative schemes. Con-
sider the following choice for the discrete entropy variable:

u∗
(
u0, u1

)
=

(
1

2
− 1√

2

)
u0 +

(
1

2
+

1√
2

)
u1.(3.11)

Theorem 3.6. Consider a hyperbolic or hyperbolic-elliptic system of conserva-
tion laws (1.1) endowed with an entropy-entropy flux pair (U,F ) satisfying condi-
tion (2.3). Consider the discrete conservative variable u∗ from (3.11), U∗ (u0, u1

)
=

U
(
u∗
(
u0, u1

))
, and v∗ to be

v∗
(
u−1, u0, u1

)
=

∫ 1

0

v
(
su∗

(
u0, u1

)
+ (1− s)u∗ (u−1, u0

))
ds.
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Fig. 3.2. Numerical approximation of the cubic scalar conservation law with a three time-level
entropy conservative scheme.

For an entropy conservative flux g∗ of order 2p, p ∈ N, the scheme

u∗n+1
j − u∗nj + λ

(
g∗n+1
j+1/2 − g∗n+1

j−1/2

)
= 0

has a unique solution un+1
j if and only if λ is small enough. The scheme is entropy

conservative and third order accurate in time; i.e., its equivalent equation is

∂tu

(
xj , t

n +
τ√
2

)
+ ∂xg

(
v

(
xj , t

n +
τ√
2

))
= O

(
τ3
)
+O

(
h2p
)
.

The order of accuracy of these scheme can be checked easily. See also section 4.2
for a constructive demonstration.

Note 3.7. Using the Tadmor flux leads to a second order in space accurate
conservative scheme (p = 1 in the previous formula). The next section provides the
explicit construction of conservative fluxes of arbitrary higher order. A numerical
example of this section is considered in section 5.

4. Entropy conservative schemes of arbitrary order.

4.1. Semidiscrete entropy conservative schemes of arbitrary order. Con-
sider the conservation law (1.1) with entropy-entropy flux pair (U,F ). Let xj = jh,
j ∈ Z, be a regular mesh, h denoting the grid point distance. For vj = ∇U(uj), we
consider (2p+ 1)-point semidiscrete schemes of type

u′j(t) = − 1
h

(
g∗2p,j+1/2 − g∗2p,j−1/2

)
= − 1

h

(
g∗2p(vj−p+1, . . ., vj+p)− g∗2p(vj−p, . . ., vj+p−1)

)
,

(4.1)

where uj(t) approximates the solution u of (1.1) in (xj , t) and
′ denotes time deriva-

tion. In this section we show that there exist smooth numerical fluxes g∗2p : R
2pN →

R
N satisfying the following conditions for all j ∈ Z, p ∈ N and all smooth enough



1978 P. G. LEFLOCH, J. M. MERCIER, AND C. ROHDE

functions v = ∇U(u) (denoting vj = v(xj , t)):
(i) g∗(vj , . . ., vj) = g(vj).

(ii)
g∗2p (vj−p+1, . . ., vj+p)− g∗2p (vj−p, . . ., vj+p−1)

h
= ∂xg (vj) +O(h2p).

(iii) There is a function G∗
2p : R

2pN → R consistent with G such that

U(uj(t))
′ = − 1

h

(
G∗

2p(vj−p+1, . . ., vj+p)−G∗
2p(vj−p, . . ., vj+p−1)

)
.

In other words, we will show that there exist consistent semidiscrete entropy conser-
vative schemes (4.1) of arbitrary order. So far, only fluxes of order two [23] or three
[16] have been available.

For α1,p, . . ., αp,p ∈ R, we make an ansatz for g∗2p as a linear combination of
Tadmor’s flux g∗2 (cf. (3.1)):

g∗2p (v−p+1, . . ., vp) =

p∑
i=1

αi,p

(
g∗2(v0, vi) + · · ·+ g∗2 (v−i+1, v1)

)
.(4.2)

So the flux difference is given by

g∗2p (v−p+1, . . ., vp)− g∗2p (v−p, . . ., vp−1) =

p∑
i=1

αi,p

(
g∗2 (v0, vi)− g∗2 (v−i, v0)

)
.(4.3)

Note 4.1 (linear entropy flux). Assume that the function g can be written as an
affine function, say g(v) = Av + b, A ∈ R

N×N , b ∈ R
N (cf. sections 3.4, 3.5). Then

the Tadmor flux difference is simply the centered difference A(v1−v−1)/2, and we get
in our case

g∗2p (v−p+1, . . ., vp)− g∗2p (v−p, . . ., vp−1) = A

p∑
i=1

αi,p (vi − v−i) .(4.4)

We show first that the general ansatz (4.2) leads to a scheme satisfying (i), (iii).
Proposition 4.2. Let p ∈ N. Consider the scheme (4.1) for g∗2p from (4.2) and

α1,p, . . ., αp,p ∈ R satisfying

2

p∑
i=1

iαi,p = 1.(4.5)

Then (i) and (iii) are satisfied for

G∗
2p = G

∗
2p(v−p+1, . . ., vp) =

p∑
i=1

αi,p

(
G∗

2(v0, vi) + · · ·+G∗
2(v−i+1, v1)

)
,(4.6)

where G∗
2 is given by (3.2).

Proof. Using (4.3) and Tadmor entropy fluxes G∗
2(v0, v1), we get

v0 ·
(
g∗2p(v−p+1, . . ., vp)− g∗2p(v−p, . . ., vp−1)

)

= v0 ·
p∑
i=1

αi,p

(
g∗2(v0, vi)− g∗2(v−i, v0)

)

=

p∑
i=1

αi,p

(
G∗

2(v0, vi)−G∗
2(v−i, v0)

)
.
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The last line equals G∗
2p(v−p+1, . . ., vp) − G∗

2p(v−p, . . ., vp−1), which proves (iii). The
consistency of g∗2p, G

∗
2p with g, G follows from (4.5).

Next, we fix the up-to-now free coefficients α1,p, . . ., αp,p to provide a high-order
scheme.

Proposition 4.3. For p ∈ N, assume that α1,p, . . ., αp,p solve the p linear equa-
tions

2

p∑
i=1

iαi,p = 1,

p∑
i=1

i2s−1αi,p = 0 (s = 2, . . ., p).(4.7)

Then the flux g∗2p given by formula (4.2) satisfies (ii); i.e., for smooth enough function
v we have

g∗2p (vj−p+1, . . ., vj+p)− g∗2p (vj−p, . . ., vj+p−1)

h
= ∂xg (vj) +O(h2p).(4.8)

Here we used C2p =
∑p
i=1

αi,pi
2p+1

(2p+1)! and vj = v (xj) for j ∈ Z.

Proof. By Taylor expansion around x0 we obtain for i = 1, . . ., p

g∗2(v0, vi)− g∗2(v−i, v0) = 2

p∑
k=0

(ih)2k+1

(2k + 1)!
∂(2k+1)
x g(v0) +O(h2p+2).

This leads by (4.3) to the expression

g∗2p (v−p+1, . . ., vp)− g∗2p (v−p, . . ., vp−1)

= 2

p∑
i=1

αi,p

(
p∑
k=0

(ih)2k+1

(2k + 1)!
∂(2k+1)
x g(v0)

)
+O(h2p+2).

The definition of α1,p, . . ., αp,p in (4.7) gives the statement of the proposition.
Note that the first equation in (4.7) equals (4.5) and ensures consistency. We

summarize Proposition 4.2 and 4.3 in the following theorem.
Theorem 4.4. Consider a hyperbolic or hyperbolic-elliptic system of conservation

laws (1.1) with an entropy-entropy flux pair (U,F ). Assume that αi,1, . . ., αi,p solve
(4.7).

Then the flux g∗2p given by formula (4.2) satisfies the conditions (i), (ii), (iii).
The scheme (4.1) is an entropy conservative semidiscrete scheme with respect to

U which is of order 2p.

4.2. Fully discrete entropy conservative schemes of arbitrary order. In
this section we present fully discrete schemes of arbitrary order verifying a weaker form
of entropy conservation. For an integer q ≥ 1, the schemes will use q + 1 time-levels
and be of order q + 1 in time.

Let j ∈ Z and n ∈ N. We approximate the continuous derivative ∂tu in (1.1) by

u∗nj − u∗n−1
j

τ
:=

q∑
i=0

βti,qu
n−q+i
j .(4.9)

In the formula above, βt0,q, . . ., β
t
q,q ∈ R are parameters that have to be chosen accord-

ing to the desired (q + 1)st order of accuracy; i.e., for smooth enough function u, we
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have the following expansion around a time t
q
> 0 to be determined:

q∑
i=0

βti,qu
n−q+i
j = ∂tu (xj , t̄

n) +O
(
τ q+1

)
.(4.10)

Consider the q + 1 linear equations

q∑
i=0

(tn−q+i − t̄n)βti,q = 1,

q∑
i=0

(tn−q+i − t̄n)sβti,q = 0 (s = 0, . . . , q, s �= 1).

(4.11)

This last system is a Vandermonde system. If t̄n does not belong to the set of time
grid points {tn}n≥0, it also is nondegenerate. In this last case, the unique solutions

βt0,q, . . ., β
t
q,q ∈ R of (4.11) provides via (4.9) an approximation of ∂tu(xj , t̄

n) with
at least order q, as a straightforward Taylor expansion of u(xj , t

n−q), . . ., u(xj , tn)
around (xj , t̄

n) shows. Note that we are left with one degree of freedom, namely to
choose t̄n. There exists a choice that allows us to gain one order of accuracy in time
and obtain (4.10): choose t̄n satisfying (4.11) and

q∑
i=0

(tn−q+i − t̄n)s+1βti,q = 0.(4.12)

To prove the existence of such an intermediate solution, we introduce the following
polynomial

P (t) =

q∑
i=0

(−1)i∏0≤l≤q
l 
=i

(
tn−l − t)2∏

0≤l≤i
l 
=i
|tn−i − tn−l| .

One can check, using the explicit solution of the Vandermonde system (4.11), that
any root of the previous polynomial provides a solution of (4.11), (4.12). It can be
easily seen that this polynomial has q solutions, the ith solution (i = 0, . . ., q−1) lying
in
[
tn−i, tn−i−1

]
. For stability reasons we always take the solution in [tn−1, tn]. For

instance, in the case q = 1 we get t̄n = tn−1+tn

2 , that is the Crank–Nicholson choice.
For q = 2, we get t̄n = tn − τ√

2
, that is, a third order scheme as considered in section

3.5. For q > 2, we compute numerically the solution that belongs to [tn−1, tn].
In a similar way, define the coefficients βu0,q, . . ., β

u
q,q ∈ R to be such that the

expansion

q∑
i=0

βui,qu
n−q+i
j = u (xj , t̄

q) +O (τ q+1
)

(4.13)

holds, that is, solving the equations

q∑
i=0

βui,q = 1,

q∑
i=0

(tn−q+i − t̄n)sβui,q = 0 (s = 1, . . ., q).(4.14)

The entropy variable being v (u), define the discrete entropy variable v∗nq+1 : R
(q+1)N →

R
N to be

v∗nq+1

(
un−qj , . . ., unj

)
= v

(
q∑
i=0

βui,qu
n−q+i
j

)
,(4.15)
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and denote v∗n+1
q+1,j := v∗n+1

q+1

(
un−qj , . . ., unj

)
. Now using the high order entropy con-

servative numerical fluxes constructed in the preceding section, we obtain arbitrarily
high order fully discrete schemes, however, only satisfying a weaker form of entropy
conservation.

Theorem 4.5. Consider a hyperbolic or hyperbolic-elliptic system of conserva-
tion laws (1.1) endowed with an entropy-entropy flux pair (U,F ) satisfying condition
(2.3). Let u∗nq+1 be a discrete conservative variable defined with (4.9)–(4.10) and a dis-
crete entropy variable v∗q+1 satisfying (4.13). For a 2p-point numerical flux g∗2p from
Theorem 4.4, consider the following (2p+ 1)× (q + 1)-point scheme:

u∗n+1
j = u∗nj − λ

(
g∗n+1
j+1/2 − g∗n+1

j−1/2

)
.

Then, for λ small enough, there exists an unique solution un+1
j . The scheme is entropy

conservative in the sense(
u∗n+1
j − u∗nj

)
v∗n+1
q+1,j + λ

(
G∗n+1
j+1/2 −G∗n+1

j−1/2

)
= 0.(4.16)

Furthermore, it is of order (q + 1) in time and 2p in space in the sense that its
equivalent equation is

∂tu (xj , t̄
n) + ∂xg (v (u (xj , t̄

n))) = O (h2p
)
+O (τ q+1

)
.

Proof. The weak entropy conservation (4.16) follows from multiplying the scheme
difference equation by v∗n+1

q+1

(
un−qj , . . ., unj

)
and using property (2.6) for g∗2p.

The equivalent equation comes from (4.13) and Theorem 4.4.
Note 4.6. For q = 1 (Crank–Nicholson choice) and q = 2, the discrete entropy

variable constructed above, i.e., satisfying (4.13), also verifies Assumption 2.1 for U .
It follows that these schemes are entropy conservative in the sense

U∗n+1
j − U∗n

j + λ
(
G∗n+1
j+1/2 −G∗n+1

j−1/2

)
= 0 (n ∈ N, j ∈ Z)

with U∗n+1
j = U

(
u∗n+1
j

)
.

We illustrate this section with a fully discrete, fourth order accurate entropy
scheme for the system of nonlinear elasticity.

For a stress-strain function w �→ σ(w), consider the system

∂tw − ∂xV = 0, ∂tV − ∂xσ(w) = 0.(4.17)

Here V is the particle velocity and w is the stress, collected in u := (w, V ). The
mathematical entropy pair is

(U(u), F (u)) =

(∫ w

0

σ(s) ds+
V 2

2
, σ(w)V

)
.

We choose the stress-strain function σ given by

σ (w) = w3 − w.

Then (4.17) represents a model for phase transitions in shape memory alloys. Note
that, for w ∈ [−1/√3, 1/√3], the problem is elliptic, and hyperbolic outside this
interval. The flux in (4.17) can be written in terms of the entropy variable v =
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Fig. 4.1. A fourth order in time, fourth order in space conservative scheme for the p-system
(w-component).

(v1, v2)
T = (σ, V )T and—as in the scalar case of section 3.4—is a linear function:

g (v1, v2) = − (v2, v1)T .
To discretize this system we design a four time-level scheme using the construction

given in Theorem 3.6. We compute the values of the parameters β
t/u
0,q , . . ., β

t/u
q,q and t̄n

as described above. Define

v∗n+1
j =

(
v∗n+1
1,j , v∗n+1

2,j

)T
=

(
3∑
i=0

βui,3V
n−3+i
j , σ

(
3∑
i=0

βui,3w
n−3+i
j

))T
.

Consider now the fourth order conservative flux (cf. (4.2))

g∗n+1
j+1/2 = g

(
2

3

(
v∗n+1
j + v∗n+1

j+1

)− 1

12

(
v∗n+1
j−1 + · · ·+ v∗n+1

j+2

))
.

The resulting scheme is, denoting componentwise g∗n+1
j+1/2 = (g∗n+1

1,j+1/2, g
∗n+1
2,j+1/2)

T ,



w∗n+1
j − w∗n

j + λ
(
g∗n+1
1,j+1/2 − g∗n+1

1,j−1/2

)
= 0,

V ∗n+1
j − V ∗n

j + λ
(
g∗n+1
2,j+1/2 − g∗n+1

2,j−1/2

)
= 0

(j ∈ Z).(4.18)

Such a scheme is a fully nonlinear fourth order scheme. The numerical experiment
takes place in the interval [0, 5] with periodic boundaries. Choose initial data

u0(x) =

{
(1,−1)T :x ∈ [0, 2.5) ,
(1, 1)

T
:x ∈ [2.5, 5) .

(4.19)

For such Riemann initial data, an intermediate middle state lying in the opposite
phase, i.e., {w ∈ R |w ≤ −1/√3}, must evolve for positive time [18]. The results for
1000 cells and the CFL-number 0.25 at time 0.1 are displayed in Figure 4.1.
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5. Computation of regularization-sensitive weak solutions.

5.1. Analytical background and the basic numerical scheme. In the phys-
ical context the conservation law (1.1) is embedded into a higher order regularized
but singularly perturbed model. For a small perturbation parameter ε > 0 and
D2, D3 : R

N → R
N×N , let us consider systems of equations involving spatial deriva-

tives up to order three:

∂tu
ε + ∂xf(u

ε) = ε∂x

(
D2(u

ε)∂xu
ε
)
+ ε2∂x

(
D3(u

ε)∂xxu
ε
)
.(5.1)

We are interested in weak solutions u of (1.1) that arise as limits of a sequence of
smooth solutions {uε}ε>0 of (5.1) for vanishing regularization parameter ε. While the
second order derivatives in (5.1) correspond to physical effects like fluid viscosity or
heat conduction, the third order term models capillarity phenomena [11, 15, 26].

A very interesting property of these viscosity-capillarity approximations uε is the
fact that the limit solution u can contain undercompressive regularization-sensitive
shock waves. Changing D2, D3 can produce a different weak solution; in other words,
the limit function depends crucially on the entropy dissipation.

The numerical approximation of such weak solutions is a big challenge since also
for the discrete counterpart the numerical entropy dissipation has to be tuned exactly.
To overcome these difficulties Hayes and Lefloch suggested using entropy conservative
numerical fluxes as a building block for finite difference schemes. To approximate
the weak solution u = limε→0 u

ε of (1.1) they consider the following class of schemes
(written down in the semidiscrete version, for simplicity):

u′j(t) = − 1
h

(
g̃∗2p,j+1/2 − g̃∗2p,j+1/2

)
,

g̃∗2p,j+1/2 := g∗2p,j+1/2 − f2∗
j+1/2 − f3∗

j+1/2.
(5.2)

Here g∗2p is the smooth entropy conservative numerical flux from (4.2), and

f
2/3∗
j+1/2 = f

2/3∗(uj−r+1, . . ., uj+r) (r ∈ N),

where f2/3∗ : R
2rN → R

N are smooth and satisfy for all smooth enough functions u
(denoting uj = u(xj , t))

f2∗ (uj−r+1, . . ., uj+r)− f2∗ (uj−r, . . ., uj+r−1)

h
= h∂x

(
D2(uj)∂xuj

)
+O(h3),

f3∗ (uj−r+1, . . ., uj+r)− f3∗ (uj−r, . . ., uj+r−1)

h
= h2∂x

(
D3(uj)∂xxuj

)
+O(h3).

Then we obtain the following equivalent equation for the scheme (5.2):

u′j(t) + ∂xf(uj(t))

= h∂x

(
D2(uj(t))∂xuj(t)

)
+ h2∂x

(
D3(uj(t))∂xxuj(t)

)
+O(h2p) +O(h3).

(5.3)

We observe that the equivalent equation mimics (5.1) provided we have p ≥ 2. This
is precisely the motivation for considering (5.2) with high order fluxes. While in
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[9, 16] only semidiscrete entropy conservative schemes were available, here we have
constructed fully discrete high order entropy conservative schemes.

In what follows we will consider numerical experiments. Furthermore, in a special
case this construction allows us to consider a discrete counterpart for the entropy
inequality.

5.2. Regularizations that are linear in the entropy variable. In this sec-
tion we consider in this section a regularization mechanism of (1.1) in which the
dissipative terms are linear functions of the entropy variable v:

∂tu
ε + ∂xf(u

ε) = εB2∂xxv + ε
2B3∂xxxv

ε.(5.4)

Here we assume that

B2, B3 are (N ×N) constant matrices,(5.5)

and we make the hypothesis

B2 is positive definite and B3 is symmetric.(5.6)

The advantage of this particular choice is the following. Multiplying (5.4) by vε and
performing integration by parts, the hypothesis (5.6) leads immediately to the entropy
stability estimate

d

dt

∫
R

U (uε (x)) dx ≤ 0.(5.7)

In what follows we assume that there is a classical solution of the Cauchy problem for
(5.4) and a weak solution u of the Cauchy problem for (1.1) such that limε→0 u

ε = u.
As we are interested in the numerical approximation of the function u we consider on

the (semi)discrete level the scheme (5.2) together with smooth fluxes f
2/3∗
j+1/2 : R

2rN →
R
N , r ∈ N, that are linear in v and satisfy for all smooth enough functions u,

f2∗ (uj−r+1, . . ., uj+r)− f2∗ (uj−r, . . ., uj+r−1)

h
= hB2∂

2
xvj +O(h3),

f3∗ (uj−r+1, . . ., uj+r)− f3∗ (uj−r, . . ., uj+r−1)

h
= h2B3∂xxxvj +O(h3).

Note 5.1. Since the estimate (5.7) is the immediate and natural a priori bound
for uε, it should be also possible to prove a discrete entropy dissipation property for
the approximate solution. For a result in a particular case we refer to [16, Theorem
5.1] and [6].

Independent of these analytical issues, the numerical experiments in section 6.2
below clearly demonstrate the benefits of the linear regularization.

In the rest of this subsection we will focus on a somewhat different but strongly
related issue: We consider special high order discretizations for smooth solutions of
(5.4) (and not for weak solutions of (1.1) that arise as vanishing dissipation limits of
(5.4)).

We introduce a discrete version of (5.7): a form g̃∗ (v−p+1, . . ., vp) is entropy
dissipative if, for any compactly supported sequence (vj)j∈Z

in R
N ,

∑
j∈Z

vj · (g∗ (v−p+j+1, . . ., vp+j)− g∗ (v−p+j , . . ., vp+j−1)) ≤ 0.(5.8)
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Note that a conservative form g̃∗ = g̃∗ (v−p+j+1, . . ., vp+j) (i.e., a form satisfying (2.6))
verifies (5.8) as an equality.

To provide a 2p order discretization of the capillarity term ∂3
xv, let us introduce

the coefficients α
(3)
i,1 , . . ., α

(3)
i,p as the solutions of the p linear equations:

2

p∑
i=1

i3αi,p = 1,

p∑
i=1

i2s−1α
(3)
i,p = 0 (s = 1, . . ., p, s �= 2).(5.9)

As for (4.7), the previous system is a Vandermonde system and thus has an unique

solution. Let us introduce the form v
(3)∗
2p , defined by

v
(3)∗
2p (v−p+1, . . ., vp) =

p∑
i=1

α
(3)
i,p (vi + vi−1 + · · ·+ v−i+1) ,(5.10)

Here vi stands for v (xi), v being any smooth enough vector-valued function v (x) ∈
R
N . As for (4.7), the difference

v
(3)∗
2p (v−p+1, . . ., vp)− v(3)∗2p (v−p, . . ., vp−1) =

p∑
i=1

α
(3)
i,p (vi − v−i)(5.11)

provides a formula of order 2p for ∂3
xv0. This is straightforward from Taylor expansions

of order 2p around v0. Also note that such a form is conservative in the sense of (2.6),
because the structure exhibited in (5.11) corresponds to the special form exhibited in
(4.4) .

Now we turn to a 2p order discretization of the viscous term ∂2
xv. Let us introduce

the coefficients α
(2)
i,1 , . . ., α

(2)
i,p as the solutions of the p linear equations

p∑
i=1

α
(2)
i,p = 1,

p∑
i=1

i2sα
(2)
i,p = 0 (s = 1, . . ., p− 1).(5.12)

We also introduce the form v
(2)
2p defined by

v
(2)∗
2p (v−p+1, . . ., vp) =

p∑
i=1

α
(2)
i,p (vi + · · ·+ v1 − v0 − · · · − v−i+1) .(5.13)

Straightforwardly from Taylor expansions around v0, the difference

v
(2)∗
2p (v−p+1, . . ., vp)− v(2)∗2p (v−p, . . ., vp−1) =

p∑
i=1

α
(2)
i,p (vi + v−i − 2v0)(5.14)

provides a 2p order discretization of ∂2
xv0.

To provide a discretization for the whole equation (5.4), denote

g̃∗2p = g
∗
2p − v(2)∗2p − v(3)∗2p ,(5.15)

where g∗2p is defined in the previous section (see formula (4.2)). Set g̃∗n+1
2p,j+1/2 =

g̃∗2p
(
v∗n+1
j−p+1, . . ., v

∗n+1
j+p

)
. The main theorem of this section follows.
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Theorem 5.2. Consider the system of conservation laws (5.4) together with an
entropy pair (U,F ) and the compatibility conditions (5.6). Let p > 1 and consider the
semidiscrete scheme

u′j(t) = −
1

h

(
g̃∗2p,j+1/2 − g̃∗2p,j−1/2

)
, t > 0.

The equivalent equation of this scheme is the system (5.4) evaluated in (xj , t) up to a
term of order 2p in space.

Assume that uj(t) vanishes for |j| big enough for all t > 0. Then the scheme is
entropy decreasing: ∑

j∈Z

U ′(uj(t)) ≤ 0, t > 0.(5.16)

Note 5.3. We could also have stated a fully discrete version of the previous
theorem using the time discretization exhibited in Theorem 4.5: let q + 1 as defined
in Theorem 4.5 be the number of time-levels used by the scheme. Then we are able to
construct a fully discrete scheme of order q + 1 in time, 2p in space with respect to
(5.4) It satisfies the entropy dissipation property∑

j∈Z

(
u∗n+1
j − u∗n+1

j

)
v∗n+1
j ≤ 0.

We notice also that, using an entropy variable satisfying Assumption 2.1, we are led
to a scheme verifying the strongest entropy dissipation property∑

j∈Z

U
(
u∗n+1
j

) ≤ 0.(5.17)

In particular, consider the third order accurate conservative scheme described in sec-
tion 3.5. Following the guidelines described above, we are able to construct fully dis-
crete schemes of accuracy order 3 in time, 2p in space with respect to (5.4), satisfying
the entropy dissipation property (5.17).

Proof of Theorem 5.2. It is enough to prove the dissipation property.∑
i∈Z

(
g̃∗2p,j+1/2 − g̃∗2p,j−1/2

)
vj ≤ 0.

Since g∗2p and v
(3)∗
2p are entropy conservative fluxes (i.e., they satisfy a stronger version

of (5.8)), the only point is to show the statement for v
(2)∗
2p .

Note that the elementary forms (v−i + vi − 2v0) are the building block of (5.14).
We compute

(v−i + vi − 2v0) v0 = − (vi − v0)2 + v2i − viv0 −
(
v20 − v0v−i

)
.

Denoting G
(2)∗
2 (v0, vi) = v

2
i − viv0 and G

(2)∗
2p,j+1/2 =

∑j−1
l=0 G

(2)∗
2 (v−l, vj−l), we have

(v−i + vi − 2v0) v0 = − (vi − v0)2 +G(2)∗
2 (v0, vi)−G(2)∗

2 (v−i, v0)

= − (vi − v0)2 +
i−1∑
l=0

G
(2)∗
2 (v−l, vi−l)−

i−1∑
l=0

G
(2)∗
2 (v−l−1, vi−l−1)

= − (vi − v0)2 +
(
G

(2)∗
2p,i+1/2 −G(2)∗

2p,i−1/2

)
.
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This proves that

∑
j∈Z

(
vj

(
v
(2)
2p,j+1/2 − v(2)2p,j−1/2

))
+

p∑
i=1

α
(2)
i,p

∑
j∈Z

(vi+j − vj)2
2

= 0.

The last sum in the last equation can be estimated from below by a sum inde-

pendent of i. Therefore
∑
i=1,...,p α

(2)
i,p = 1 from (5.12) shows that v

(2)
2p is entropy

decreasing.
Further results on the discrete Laplace operator in this context can be found in

[1], for instance.

6. Numerical experiments.

6.1. A shock-capturing method for the scalar cubic problem. For γ > 0
fixed and some initial data u0 : R→ R, consider as a model problem the (regularized)
scalar Cauchy problem

uγ,εt +
(
(uγ,ε)3

)
x

= ε uγ,εxx + γε2 uγ,εxxx,

uγ,ε(., 0) = u0

(6.1)

corresponding to (5.1).
It is well known [20] that there exists a weak solution uγ of the hyperbolic con-

servation law, i.e., (6.1) with ε = 0, which is the L1-limit of a sequence of solutions
{uγ,ε}ε>0 for vanishing ε. In particular for Riemann problem initial data u0, the
function uγ might contain undercompressive shock waves which depend on u0 and
the coefficient γ [11, 8].

Following subsection 5.1, we choose our viscosity and capillarity fluxes according
to

f2∗(uj−1, . . ., uj+2) =
β

2

(
uj+1 − uj

)
,

f3∗(uj−1, . . ., uj+2) =
δ

6

(
uj+2 − uj+1 − uj + uj−1

)
.

To satisfy (5.3) assume δ/β2 = 3γ/4 for β, δ > 0. With the entropy of choice U(u) =
u4/4 the basic entropy conservative schemes are given by either

I scheme (3.6) with α = 1/2 and p = 1 or

II scheme (3.6) with α = 1/2− 1/
√
2 and p = 2.

In both cases we use U∗ (u0, u1
)
= U

(
u∗
(
u0, u1

))
and v∗ to be

v∗
(
u−1, u0, u1

)
=

∫ 1

0

v
(
su∗

(
u0, u1

)
+ (1− s)u∗ (u−1, u0

))
ds

=
1

4

(
u∗(u0, u1) + u∗(u−1, u0)

)(
u∗(u0, u1)2 + u∗(u−1, u0)2

)
.

The basic entropy conservative scheme in case I (II) is of second (third) order in space
and time.

In all numerical experiments described below, the viscosity and capillarity fluxes

for fluxes f
2/3
j+1/2 are evaluated in un+1

j−1 , . . ., u
n+1
j+2 , i.e., we treat them implicitly.
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Fig. 6.1. Typical wave patterns involving nonclassical shock waves. Results for scheme II are
displayed.

In Figure 6.1 we present the numerical results for two different choices of the
initial data:

u1
0(x) =

{
4 :x < 0,

−5 :x > 0,
u2

0(x) =

{
4 :x < 0,

−3 :x > 0.
(6.2)

For γ = 2 and initial data u1
0, the weak solution uγ consists of a slow nonclassical

shock and a fast rarefaction, while u2
0 enforces a slow nonclassical shock followed by

a fast Lax shock. The numerical results have been performed with the discretization
parameters

β = 5.0, δ = 37.5, h = 0.005.(6.3)

The figures demonstrate the ability of the scheme to reproduce nonclassical shock
waves arising in Riemann problems together with shock and rarefaction waves. We
approximately obtained the value −3.52 for the middle constant state in the sec-
ond experiment with nonclassical and classical shock. This is better than the values
obtained in [10, 16]. However, the correct value of the exact solution uγ is −11/3.

To present a quantitative comparison we run the following experiment. We fix
γ = 2 and choose the parameters according to (6.3). Now we compute the approximate
solutions for both schemes I, II with the initial data

u0(x) =




ul :x < 0,

−5
4
ul :x > 0.

For ul > 1, the exact solution uγ consists of a nonclassical shock and a rarefaction
connected by a middle state um as described above. In Figure 6.2 the approximate
values of the middle state um obtained by schemes I and II are displayed for several
values of ul ∈ [1, 11]. The graphs describing the exact value um = um(uγ) in the cases
γ = 0, γ = 2, γ =∞ are also presented. The cases γ = 0, γ =∞ give the exact middle
value for the classical case, respectively, the extreme nonclassical case. We observe
for small values of ul a good approximation of the exact solution while bigger values
of ul lead to wrong solutions. The approximation of scheme II with the higher order
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Fig. 6.2. The (approximate) middle state um versus the state ul.

basic entropy flux is always better than the approximation by scheme I. We conclude
by saying that our method seems to be reliable for computing nonclassical shocks at
least for small amplitude initial data.

6.2. The “linear” shock capturing method for the scalar cubic problem.
We now present numerical data for schemes approximating nonclassical weak solutions
of the scalar cubic problem that are based on the regularization that is linear in the
entropy variable v = U ′(u) = f(u) = u3 (while in subsection 6.1 the regularization
was linear in the conservative variable u). Therefore, instead of (6.1), we consider

uγ,εt + f(uγ,ε)x = ε f(uγ,ε)xx + γε
2 f(uγ,ε)xxx,

uγ,ε(., 0) = u0.
(6.4)

This leads to the following choice for the viscosity and capillarity fluxes:

f2∗(uj−1, . . ., uj+2) =
β

2

(
f(uj+1)− f(uj)

)
,

f3∗(uj−1, . . ., uj+2) =
δ

6

(
f(uj+2)− f(uj+1)− f(uj) + f(uj−1)

)
.

As the basic entropy scheme we take (corresponding to scheme II in subsection 6.1)
scheme (3.6) with α = 1/2− 1/

√
2 and p = 2. For the numerical parameters, let β, γ

to be 37.5, respectively, 1. In Figure 6.3 we present computations for the Riemann
initial data

u1
0(x) =

{
50 :x < 5,

−62.5 :x > 5,
u2

0(x) =

{
100 :x < 5,

−125 :x > 5.

The calculations have been performed with discretization width h = 0.005. In
the specific cases considered here we obtain a configuration with a slow nonclassical
shock and a fast rarefaction.

Note that these type of schemes allow the stable computation of nonclassical
shocks, even for very large amplitude data. This was not possible for the discretization
based on (6.1).

6.3. The p-system with phase transition: A shape memory material. In
this section, we perform long-time computations for the p-system (4.17). We consider
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Fig. 6.3. Stable computation of nonclassical shocks for large initial data u
1/2
0 .

the weak solution that is obtained as the limit (as ε→ 0) of classical solutions of the
p-system with linear viscous regularization in the entropy variable:

∂tw
ε − ∂xV ε = ε∂xxσ(w

ε),

∂tV
ε − ∂xσ(wε) = ε∂xxV

ε.
(6.5)

The scheme that we consider here is the fourth order entropy conservative scheme
(4.18) to which we add a viscous flux of fourth order. Following the notations intro-
duced for scheme (4.18), we define the complete numerical flux by

g̃∗4 = g∗4 − v(2)∗4 ,

where the entropy conservative flux g∗4 is given by

g∗4 (vj−1, . . ., vj+2) = g

(
2

3
(vj + vj+1)− 1

12
(vj−1 + · · ·+ vj+2)

)
,

whereas the viscous flux is defined by

v
(2)∗
4 (vj−1, . . ., vj+2) =

2h

3
(vj+1 − vj)− h

24
(vj+1 + vj+2 − vj − vj−1) .

Taylor expansion shows that this flux is of fourth order with respect to h∂xxv. The
resulting scheme is, denoting g̃∗n+1

j+1/2 = (g̃∗n+1
1,j+1/2, g̃

∗n+1
2,j+1/2)

T ,

w∗n+1
j − w∗n

j + λ
(
g̃∗n+1
1,j+1/2 − g̃∗n+1

1,j−1/2

)
= 0,

V ∗n+1
j − V ∗n

j + λ
(
g̃∗n+1
2,j+1/2 − g̃∗n+1

2,j−1/2

)
= 0

(j ∈ Z).

We present two computations with periodic boundaries. The results have been ob-
tained on a grid of 1000 cells and with CFL-number 0.25.

The first experiment deals with the same initial Riemann data as in the previous
example (cf. (4.19)). We illustrate the effect of artificial viscous regularization on the
results plotted in Figure 4.1. The numerical experiment is performed in the interval
[0, 1], with initial data

u0(x) =

{
(1, 1)

T
:x ∈ [0, 0.5) ,

(1,−1)T :x ∈ [0.5, 1) .
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Fig. 6.4. Numerical approximation of the p-system with artificial viscosity.
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Fig. 6.5. Time evolution of a diphasic stressed material for short time range (no symbols),
intermediate time range (circles), and long time range (diamonds).

Note that the computed solution (Figure 6.4) corresponds to the four wave “clas-
sical” pattern described by Shearer [19].

The second experiment corresponds to the same initial data, but now we per-
formed a longer time computation. We illustrate the property of these materi-
als to come back to their initial configuration at rest, i.e., the constant solution
(w, V ) = (1, 0). During the computations, numerous phase transitions were created
and canceled out. The evolution in time of the approximate solution is displayed in
Figure 6.5 for different times. The left figure shows the w-component, and the right
figure the V -component.
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2002.

[15] P.G. LeFloch, An introduction to nonclassical shocks of systems of conservation laws, Pro-
ceedings of the International School on Hyperbolic Problems, Freiburg, Germany, Oct.
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Abstract. A finite element method with optimal convergence on nonsmooth three dimensional
domains requires anisotropic mesh refinement towards the edges. Multigrid methods for anisotropic
tensor product meshes are available and are based either on line (or plane) smoothers or on semi-
coarsening strategies. In this paper we suggest and analyze a new multigrid scheme combining semi-
coarsening and line smoothers to obtain a solver of optimal algorithmic complexity for anisotropic
meshes along edges.
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1. Introduction. The finite element simulation of three dimensional problems
described by partial differential equations is a challenging task. To keep the simula-
tion time low at least two aspects have to be taken into account. First, the underlying
triangulation has to be efficient for approximating the (unknown) solution, and, sec-
ond, the chosen algorithm for solving the large scale system of equations should be of
optimal algorithmic complexity.

For two dimensional elliptic problems optimal triangulations for low order finite
elements can be achieved by isotropic mesh refinement based on a posteriori error
indicators [21]. The corresponding approach in three dimensions does not, in general,
lead to optimal triangulations in the sense of an energy error of order N−p/3, p
being the polynomial degree. Besides local refinement towards the corners optimal
triangulations require anisotropic mesh refinement towards the edges of the geometry
[1, 2, 3].

Multigrid methods (see [13, 7] and many references therein) are algorithms of op-
timal (this means linear) complexity for the solution of the systems of linear equations
obtained by the finite element method. Multigrid methods have been suggested and
analyzed for anisotropic problems with tensor product structure. One approach is
to take care of the strong connections by properly designing line or plane smoothers
[22, 14, 20, 9], another is to build up the hierarchy of triangulations by semicoarsening
[24, 12, 17].

Semicoarsening and line/plane smoothing can be combined. In [5], for example,
a certain class of singular perturbed problems is considered, and it is suggested to
use semicoarsening with respect to the “harmless” coordinate and line relaxation in
the direction of the singular perturbation. In the case of edge singularities, the edge
direction could be considered as the harmless direction, but then we need a good plane
smoother in the orthogonal direction. Since this strategy is not easy to implement
for a hierarchical smoother, we propose using a line smoother in the edge direction
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and semicoarsening in the orthogonal plane, which turns out to be easy to implement
and efficient in application. In this paper we prove robust V-cycle convergence rates
of the suggested scheme. The framework is due to Braess and Hackbusch [6].

We note that this multigrid method is essentially a two dimensional standard
multigrid where the third dimension is treated only in the smoother. The two di-
mensional method with mesh refinement towards singular corners is analyzed in [23].
While in that paper regularity and interpolation results have been cited from [4, 15],
we cannot use results from literature immediately. The reason is that the two dimen-
sional plane with mesh refinement is only a trace of the three dimensional domain
where the problem is posed. In order to circumvent the loss of regularity due to trace
theorems, we introduce an intermediate semidiscrete space Ṽ (see (4.4)) and prove
regularity of an auxiliary problem and interpolation results ourselves.

The rest of the paper is organized as follows. In section 2 the investigated problem
is formulated. Section 3 introduces the multigrid scheme. The multigrid analysis is
performed in section 4; two proofs are postponed to sections 5 and 6. In section 7 we
give numerical results confirming our theory.

2. Problem formulation and discretization. Let Ω = G × Z, where G ⊂
R

2 is a polygonal domain and Z is a real interval. By the local nature of corner
singularities (and then edge ones for Ω), we may suppose that G has possibly one
corner with interior angle ω > π at the origin, the other interior angles being smaller
than π. The corresponding edge of Ω is part of the z-axis and will be called the
singular edge of Ω. Spatial variables are written as (x, z) = (x1, x2, z) with x ∈ G
and z ∈ Z. Accordingly, the gradient is split into partial derivatives as ∇ = (∂x, ∂z).
Let V := H1

0 (Ω) be the usual Sobolev space. We consider the Poisson equation with
Dirichlet boundary conditions whose variational form is as follows: Find u ∈ V such
that

A(u, v) = f(v) ∀ v ∈ V(2.1)

with the symmetric, continuous, and elliptic bilinear form A(., .) and the continuous
linear form f(.) on V , namely,

A(u, v) :=

∫
Ω

∇u · ∇v dx and f(v) :=

∫
Ω

fv dx.

The energy norm is defined as ‖u‖A := A(u, u)1/2.
The domain Ω is covered by a tensor product triangulation T = Tx ⊗ Tz, where

Tx and Tz are conforming triangulations of G and Z, respectively [10]. The two di-
mensional triangulation Tx is assumed to fulfill the bounded minimal angle condition.
The triangulation Tz is arbitrary. We define the mesh size functions

hL,x = hL,x(x, z) = diam Tx for x ∈ Tx ∈ Tx, z ∈ Z,(2.2)

hL,z = hL,z(x, z) = diam Tz for x ∈ G, z ∈ Tz ∈ Tz(2.3)

for plane and edge directions. The positive integer L denotes the final refinement
level of the multigrid hierarchy defined below. We do not assume relations between
hL,x and hL,z, and thus anisotropic triangulations are included.

We introduce the piecewise affine finite element spaces

M1
0(Tx) = {u ∈ C0(G) : u|∂G = 0, u|Tx ∈ P1 ∀Tx ∈ Tx},

M1
0(Tz) = {u ∈ C0(Z) : u|∂Z = 0, u|Tz

∈ P1 ∀Tz ∈ Tz}
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with the nodal bases {ϕiL,x}NL,x

i=1 and {ϕiL,z}NL,z

i=1 and space dimensions NL,x and NL,z.
Then the tensor product bilinear finite element space is defined by

VL :=M1
0(Tx)⊗M1

0(Tz) =

u =

∑
i,j

ui,jϕ
i
L,x(x)ϕ

j
L,z(z)


 .

The finite element approximation uL ∈ VL of the variational problem (2.1) is defined
by Galerkin projection:

A(uL, vL) = f(vL) ∀ vL ∈ VL.(2.4)

Finally, we define the distance to the singular edge of Ω (the singular point of G,
respectively) by

r = r(x, z) = r(x) = |x|.(2.5)

For the following a priori estimate we refer to [1, 2].
Theorem 2.1 (a priori estimate). Let (xT , zT ) denote the center of the element

T ∈ T . Assume that the mesh sizes fulfill

hL,x(x, z) � hL r(xT )
β ∀ (x, z) ∈ T ∈ T ,

hL,z(x, z) � hL ∀ (x, z) ∈ T ∈ T(2.6)

with the global (positive) mesh size parameter hL. The grading parameter β is fixed
and is assumed to fulfill

1− π

ω
· p

2p− 2
< β < 1.(2.7)

Then there holds the a priori error estimate

‖u− uh‖1 � hL‖f‖0,p(2.8)

for p > 2. The number of elements is of optimal order h−3
L .

The condition (2.7) shortens for p = 2 to the slightly weaker assumption

1− π

ω
< β < 1,(2.9)

but the estimate (2.8) has been proved in this case in [1] for certain mixed boundary
conditions only. For the Dirichlet problem, only the result as stated in the theorem
has been obtained yet. We underline that our multigrid theory is also valid under the
weaker assumption (2.9).

3. Multigrid algorithm. The multigrid algorithm requires a sequence of tri-
angulations T1, T2, . . ., TL. We may and will assume that the triangulations and the
generated finite element spaces are nested. The proposed refinement strategy is to
perform first full refinement in the z-direction and then generate the hierarchy of
meshes by refinement in the x-plane. Each triangulation in the hierarchy has the
tensor product structure

Tl = Tl,x ⊗ Tz, 1 ≤ l ≤ L.
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This means that there is the full refinement in z-direction for all levels l, 1 ≤ l ≤ L.
We define the mesh size functions hl,x and hl,z = hz as analogies to (2.2) and (2.3).
We assume that the triangulations Tl,x fulfill the bounded minimal angle condition.
Further, the grading of the meshes fulfills

hl,x = hl,x(x, z) � hl r(xT )
β ∀ (x, z) ∈ T ∈ Tl(3.1)

with the global mesh size parameter hl of level l and β from (2.9). The ratio of
successive parameters hl−1/hl is assumed to be bounded.

We mention two methods to generate the sequence of meshes fulfilling (3.1). The
first one is to split each triangle of Tl−1,x into four triangles, and move only new nodes
next to the singular corner towards the corner. Another possibility, the so-called
dyadic partitioning, is to use local mesh refinement of Tx, where the elements with
hl,x > C0hlr(xT )

β (with a suitably defined constant C0) are marked for refinement.
Both methods have advantages. The first one enables a more efficient data structure;
the second one is related to a posteriori mesh size control.

We define the sequence of nested finite element spaces by

Vl :=M1
0(Tl,x)⊗M1

0(Tz)

and the linear operator Al : Vl → Vl by

(Alul, vl)0 = A(ul, vl) ∀ul, vl ∈ Vl,

l = 1, 2, . . ., L. Additionally, we define for uL ∈ VL the L2 and energy projections
Ql : VL → Vl and Pl : VL → Vl by

(QluL, vl)0 = (uL, vl)0 ∀vl ∈ Vl,

A(PluL, vl) = A(uL, vl) ∀vl ∈ Vl,

l = 1, . . ., L. For 1 ≤ l ≤ k ≤ L there holds the equation

Pl = A−1
l QlAk on Vk.

The smoother of the considered multigrid scheme is a line Jacobi or symmetric line

Gauss–Seidel iteration along mesh lines in the z-direction. Let {ϕxl,i}Nl,x

i=1 be the nodal

basis ofM1
0(Tx) and Nl,x = dimM1

0(Tx). We define on each level l the subspaces

Vl,i := span{ϕxl,i} ⊗M1
0(Tz), i = 1, . . ., Nl,x,

and the corresponding energy projections Pl,i : Vl → Vl,i, determined for ul ∈ Vl by

A(Pl,iul, vl,i) = A(ul, vl,i) ∀vl,i ∈ Vl,i.

Then the (damped) line Jacobi smoother

Sl := I − τ

Nl,x∑
i=1

Pl,i

with a suitable damping parameter τ � 1 can be written as

Sl = I − τD−1
l Al.
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The operator D−1
l is indeed the inverse of a self-adjoint and positive definite operator

Dl : Vl → Vl. It leads to the inner product

Dl(ul, vl) := (Dlul, vl)0 ∀ul, vl ∈ Vl

and the associated norm ‖ul‖Dl
:= Dl(ul, ul)

1/2. By the technique of [8] the analysis
of the present paper applies also to the symmetric multiplicative counterpart. The
multiplicative version does not need damping at all.

Since the spaces are nested, the grid transfer operators are canonically defined
by embedding. As usual, we define the V-cycle multigrid preconditioning operators
C−1
l : Vl → Vl by induction beginning with C1 = A1. For l > 1 and f ∈ Vl we define

C−1
l f = x2m+1 where x0 = 0,

xi = xi−1 + τD−1
l (f −Alxi−1), i = 1, 2, . . .,m,

xm+1 = xm + C−1
l−1Ql−1(f −Alxm),

xi = xi−1 + τD−1
l (f −Alxi−1), i = m + 2,m + 3, . . ., 2m + 1.


(3.2)

First, m steps of presmoothing are performed; then, the coarse grid correction takes
place; finally, m steps of postsmoothing are applied. The self-adjoint operator C−1

L

can be used in the multigrid iteration with iteration matrix I − C−1
L AL or as a pre-

conditioner in the conjugate gradient iteration.

4. Multigrid analysis. In this section we analyze the convergence of the multi-
grid scheme formulated above. In order to apply the multigrid framework of Braess
and Hackbusch [6] (see also Theorem 3.6 in [7]), we first need to verify the approxi-
mation property

‖ul − Pl−1ul‖2Dl
≤ C ‖ul‖2A ∀ul ∈ Vl, l = 2, 3, . . . L;(4.1)

see Theorem 4.4. The V-cycle convergence rate estimate is then a corollary. We start
with three lemmata.

Lemma 4.1 (representation of Dl-norm). For the norm induced by the line Jacobi
preconditioner Dl, there holds the following equivalence:

‖ul‖2Dl
� ‖h−1

l,xul‖20 + ‖∂zul‖20 ∀ul ∈ Vl.(4.2)

Proof. Let ul ∈ Vl. The decomposition ul =
∑Nl,x

i=1 ul,i with ul,i ∈ Vl,i is unique.
By the additive Schwarz method [11] (using the most similar notation) we obtain

‖ul‖2Dl
=

Nl,x∑
i=1

‖ul,i‖2A.

Inverse inequalities applied to the basis functions ϕil,x give

‖ul‖2Dl
=

Nl,x∑
i=1

(
‖∂xul,i‖20 + ‖∂zul,i‖20

)

�
Nl,x∑
i=1

(
‖h−1

l,xul,i‖20 + ‖∂zul,i‖20
)
.
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By mapping techniques one verifies the L2 stability of the splitting (see [7, Chapter
5]):

Nl,x∑
i=1

‖ciϕxl,i‖20,Tx
�
∥∥∥∥∥
Nl,x∑
i=1

ciϕ
x
l,i

∥∥∥∥∥
2

0,Tx

∀ c ∈ R
Nl,x , ∀Tx ∈ Tl,x.(4.3)

Since the equivalence is local, we may insert the element-wise constant weight hl,x.
Summing over the elements Tx ∈ Tl,x gives

Nl,x∑
i=1

‖h−1
l,xciϕ

x
l,i‖20,G �

∥∥∥∥∥
Nl,x∑
i=1

h−1
l,xciϕ

x
l,i

∥∥∥∥∥
2

0,G

.

Now set ul,i =: ci(z)ϕ
x
l,i(x). Integration over z ∈ Z leads to

Nl,x∑
i=1

‖h−1
l,xul,i‖20 � ‖h−1

l,xul‖20.

By inserting ∂zul,i =: ci(z)ϕ
x
l,i into (4.3), summing over the elements Tx ∈ Tl,x, and

integrating over z ∈ Z, we obtain

Nl,x∑
i=1

‖∂zul,i‖20 � ‖∂zul‖20,

and the proof is complete.
The sequence of nested spaces Vl is contained in the semidiscrete space

Ṽ := H1
0 (G)⊗M1

0(Tz).(4.4)

For our analysis we consider a subspace of Ṽ ,

V + := {u ∈ Ṽ : ‖u‖V + <∞},
‖u‖2V + := ‖rβ∂x∇u‖20 + ‖rβ−1∂xu‖20,

with r and β defined in (2.5) and (2.9), respectively.

Lemma 4.2 (regularity). Let u ∈ Ṽ be the solution of the variational problem

A(u, v) = (f, v)0 ∀ v ∈ Ṽ(4.5)

with f such that rβf ∈ L2, 1−π/ω < β < 1. Then there holds the regularity estimate

‖u‖V + � ‖rβf‖0.(4.6)

Note that the restriction β < 1 ensures that f ∈ H−1(Ω) [16, Theorem 8.15], and
therefore the right-hand side of (4.5) makes sense.

Lemma 4.3 (interpolation error estimate). There exists an interpolation operator
Il : V

+ → Vl such that the interpolation error satisfies

‖u− Ilu‖A � hl ‖u‖V + ∀u ∈ V +.

The proofs of Lemmata 4.2 and 4.3 are postponed to sections 5 and 6.
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Theorem 4.4 (approximation property). The approximation property (4.1) is
fulfilled for the considered multigrid method (3.2).

Proof. We use the equivalence (4.2) and obtain

‖ul − Pl−1ul‖2Dl
� ‖h−1

l,x (ul − Pl−1ul)‖20 + ‖∂z(ul − Pl−1ul)‖20.
The second term of the right-hand side is simply estimated by

‖∂z(ul − Pl−1ul)‖0 ≤ ‖ul − Pl−1ul‖A ≤ ‖ul‖A.

It remains to show

‖h−1
l,x (ul − Pl−1ul)‖0 � ‖ul‖A.(4.7)

As usual we formulate a dual problem. Since Vl ⊂ Ṽ for all l, we define w ∈ Ṽ by

A(w, v) = (h−2
l,x (ul − Pl−1ul), v)0 ∀ v ∈ Ṽ .

Lemma 4.2 and assumption (3.1) on hl,x yield

‖w‖V + � ‖rβh−2
l,x (ul − Pl−1ul)‖0 � h−1

l ‖h−1
l,x (ul − Pl−1ul)‖0.

Here, no special consideration of the origin is necessary. We continue with Galerkin
orthogonality, approximation, and regularity:

‖h−1
l,x (ul − Pl−1ul)‖20 = A(w, ul − Pl−1ul)

= A(w − Il−1w, ul − Pl−1ul)

≤ ‖w − Il−1w‖A ‖ul − Pl−1ul‖A
� hl‖w‖V + ‖ul‖A
� ‖h−1

l,x (ul − Pl−1ul)‖0 ‖ul‖A.

Dividing by one factor gives (4.7) and thus the desired approximation property.
Theorem 4.5 (convergence rate estimate). For the V-cycle multigrid algorithm

(3.2) with m presmoothing and m postsmoothing steps there holds the convergence rate
estimate

‖I − C−1
L AL‖A ≤ C

C + 2m
.(4.8)

Proof. The result follows from the general multigrid theory of Braess and Hack-
busch [6] (see also Theorem 3.6 in [7]) by using the approximation property (4.1)
which is proved in Theorem 4.4.

5. Regularity.
Proof of Lemma 4.2. First, we use Fourier decomposition in the z-direction to

transform the three dimensional problem into a sequence of two dimensional problems.
For that, let {ei}Nz

i=1 be the Fourier basis in M1
0(Tz); that means ei = ei(z) are the

eigenvectors of

(e′i, v
′)0,Z = λ2

i (ei, v)0,Z ∀ v ∈M1
0(Tz)

with λi > 0, (ei, ej)0,Z = δij , and (e′i, e
′
j)0,Z = λ2

i δij . Inserting u =
∑Nz

i=1 ui(x)ei(z)
into (4.5) yields that ui(x) solves

(∂xui, ∂xv)0,G + λ2
i (ui, v)0,G = (fi, v)0,G ∀ v ∈ H1

0 (G),(5.1)



2000 THOMAS APEL AND JOACHIM SCHÖBERL

x1

x2

r = r1

r = r0

x = (x1, x2)

r

φ

Fig. 5.1. Illustration of the notation.

with fi = (f, ei)0,Z and rβfi ∈ L2(G). Since

‖u‖2V + = ‖rβ∂2
xu‖20 + ‖rβ∂x∂zu‖20 + ‖rβ−1∂xu‖20

=

Nz∑
i=1

{‖rβ∂2
xui‖20,G + λ2

i ‖rβ∂xui‖20,G + ‖rβ−1∂xui‖20,G
}

,

‖rβf‖20 =
Nz∑
i=1

‖rβfi‖20,G,

the lemma follows after proving the regularity estimate

‖rβ∂2
xui‖20,G + λ2

i ‖rβ∂xui‖20,G + ‖rβ−1∂xui‖20,G ≤ C ‖rβfi‖20,G,(5.2)

for the family of two dimensional problems (5.1). The constant C does not depend
on λi. In the following we will skip the subscript G.

Introduce now a cut-off function ξ ∈ C∞(R+), ξ(r) ∈ [0, 1], ξ(r) = 1 for r ≤ r0,
ξ(r) = 0 for r ≥ r1 > r0; see Figure 5.1 for an illustration. The regular part uRi =
(1− ξ)ui satisfies

(∂xu
R
i , ∂xv)0 + λ2

i (u
R
i , v)0 = (fRi , v)0 ∀ v ∈ H1

0 (G),(5.3)

with fRi = −∆[(1− ξ)ui] + λ2
i (1− ξ)ui = (1− ξ)fi − 2(∂xui)∂x(1− ξ)− ui∆(1− ξ).

Observe that uRi = fRi = 0 for r ≤ r0. From

‖ui‖1 � ‖fi‖−1 = sup
w∈H1

0 (G)

(fi, w)

‖w||1 ≤ ‖r
βfi‖0 sup

w∈H1
0 (G)

‖r−βw‖0
‖w‖1 � ‖rβfi‖0

(‖r−βw‖0 �
∑1
j=0 ‖r1−βDjw‖0 � ‖w‖1 for β < 1, see [16, Theorem 8.15], there

follows

‖fRi ‖0 � ‖rβfi‖0.(5.4)



MULTIGRID METHODS FOR ANISOTROPIC EDGE REFINEMENT 2001

Inserting v = uRi into (5.3), applying the Cauchy–Schwarz inequality, and dividing
one factor ‖uRi ‖0 leads to ‖uRi ‖0 � λ−2

i ‖fRi ‖0 and, consequently, to

λi‖∂xuRi ‖0 � ‖fRi ‖0.(5.5)

Since uRi and fRi vanish in an r0-neighborhood of the corner, a smoothed domain
provides the same solution and the full regularity estimate (from the Poisson problem)

‖uRi ‖2 � ‖fRi − λ2
iu
R
i ‖0 � ‖fRi ‖0.

Thus, by using (5.4) and (5.5), the estimate

‖rβ∂2
xu

R
i ‖20 + λ2

i ‖rβ∂xuRi ‖20 + ‖rβ−1∂xu
R
i ‖20 � ‖rβfi‖20

is established, and we are left to prove the corresponding inequality for the singular
part uSi = ξui.

Since uSi and fSi := fi − fRi vanish for r ≥ r1, we can extend both by 0 onto the
infinite cone K := {(r cosφ, r sinφ) ∈ R : 0 < r < ∞, 0 < φ < ω}, where they fulfill
the variational problem

(∂xu
S
i , ∂xv)0,K + λ2

i (u
S
i , v)0,K = (fSi , v)0,K ∀ v ∈ H1

0 (K).

After the change of variables x̂ = λix, we obtain that ûSi (x̂) = uSi (x) is the

solution of the following problem with right-hand side f̂Si (x̂) := fSi (x):

(∂x̂û
S
i , ∂x̂v̂)0,K + (ûSi , v̂)0,K = (λ−2

i f̂Si , v̂)0,K ∀ v̂ ∈ H1
0 (K).

We can now use the regularity result in Proposition 1.1 of [18, p. 385],

‖ûSi ‖E2
β
(K) � ‖λ−2

i f̂Si ‖E0
β
(K) if |β − 1| < π

ω
,

where the space E�
β(K) is the completion of C∞

0 (K \ 0) with respect to the norm

‖v‖2E�
β
(K) :=

∑
|α|≤�

∫
K

r̂2β(1 + r̂|α|−�)2|D̂αv̂|2 dx̂

[18, p. 300], r̂ := |x̂|. By transforming the norms one obtains

∫
G

(
r2β |∂2

xu
S
i |2 + (r2βλ2

i + r2β−2)|∂xuSi |2
)
dx

= λ−2β+2
i

∫
K

r̂2β
(|∂2

x̂û
S
i |2 + (1 + r̂−2)|∂x̂ûSi |2

)
dx̂

� λ−2β+2
i

∫
K

r̂2β |λ−2
i f̂Si |2 dx̂

=

∫
G

r2β |fSi |2 dx.

Estimate (5.4) implies ‖rβfSi ‖0 � ‖rβfi‖0, and the desired result is proved.
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6. Interpolation.
Proof of Lemma 4.3. Let Zh : H1(G) → M1

0(Tl,x) be the Scott–Zhang interpo-
lation operator [19]. For an arbitrary triangle Tx ∈ Tl,x and for m = 0, 1, / = 1, 2,
p ∈ [1,∞], the error estimate

|u− Zhu|m,Tx � |Tx|1/2−1/ph�−ml,x |u|�,p,T̃x
(6.1)

is satisfied [19], with T̃x being the union of Tx and the triangles adjacent to Tx.
Denote by {ϕi}Nz

i=1 the nodal basis in M1
0(Tz) and split u with respect to this

basis,

u =

Nz∑
i=1

ui(x)ϕi(z).

Note that the ui here are different from those used in section 5. Then we define the
interpolation operator Il : Ṽ → Vl by

Ilu =

Nz∑
i=1

(Zhui)(x)ϕi(z).

For an arbitrary element T = Tx× (zj , zj+1), Tx ∈ Tl,x, (zj , zj+1) ∈ Tz, introduce
T̃ := T̃x × (zj , zj+1). Now divide the set Tl into two subsets, Tl = Tl,R ∪ Tl,S ,

Tl,R :=

{
T ∈ Tl : inf

(x,z)∈T̃
|x| > 0

}
,

Tl,S :=

{
T ∈ Tl : inf

(x,z)∈T̃
|x| = 0

}
,

namely (regular) elements away from the edge and (singular) elements close to the
edge. For elements T ∈ Tl,R we obtain from (6.1) the estimates

‖∂x(u− Ilu)‖0,T �
j+1∑
i=j

h1/2
z ‖∂x(ui − Zhui)‖0,Tx

�
j+1∑
i=j

h1/2
z hl,x‖∂2

xui‖0,T̃x

� hl,x‖∂2
xu‖0,T̃ ,

‖∂z(u− Ilu)‖0,T = h−1/2
z ‖(uj+1 − uj)− Zh(uj+1 − uj)‖0,Tx

� h−1/2
z hl,x‖∂x(uj+1 − uj)‖0,T̃x

= hl,x‖∂x∂zu‖0,T̃ .

That means, by using (3.1) and r(xT ) � r(x) for x ∈ T̃ ,∑
T∈Tl,R

‖u− Ilu‖2A �
∑
TTl,R

h2
l,x‖∇∂xu‖20,T̃ � h2

l ‖u‖2Ṽ ,(6.2)

where we have also used that only a finite number of T̃ overlap in any point.
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For elements T ∈ Tl,S we derive estimates in a weighted space, namely

‖∂x(u− Ilu)‖0,T �
j+1∑
i=j

h1/2
z ‖∂x(ui − Zhui)‖0,Tx

�
j+1∑
i=j

h1/2
z ‖∂xui‖0,T̃x

� ‖∂xu‖0,T̃
� h1−β

l,x ‖rβ−1∂xu‖0,T̃x

� hl‖rβ−1∂xu‖0,T̃x
,

which is valid due to r � hl,x, r(xT ) � hl,x (thus h1−β
l,x � hl), and β ≤ 1. Moreover,

we get

‖∂z(u− Ilu)‖0,T � h−1/2
z ‖(uj+1 − uj)− Zh(uj+1 − uj)‖0,Tx

� h−1/2
z |Tx|−1/2hl,x‖∂x(uj+1 − uj)‖0,1,T̃x

� h−1/2
z |Tx|−1/2hl,x‖r−β‖0,T̃x

‖rβ∂x(uj+1 − uj)‖0,T̃x

� h1−β
l,x ‖rβ∂x∂zu‖0,T̃

� hl‖rβ∂x∂zu‖0,T̃ .

Consequently, we get ∑
T∈Tl,S

‖u− Ilu‖2A � h1−β
l,x ‖u‖2Ṽ .(6.3)

With (6.2) and (6.3) the lemma is proved.

7. Numerical results. For verification of the analysis and to demonstrate the
performance of the method, we present the following numerical results. We consider
the three dimensional L-shaped domain

Ω = G× (0, 1) with G = (−1, 1)2 \ [0, 1]2.

An initial triangulation was generated with sixteen nodes and six prismatic elements.
For the first tests (Tables 7.1 and 7.2), the elements were successively bisected in the
vertical direction until the triangulation T1 was obtained. For further tests (Table 7.3),
we first split the prisms at z = 0.05 and proceeded with bisecting as before. The
hierarchy of triangulations was obtained by bisecting the whole stack of elements
based on a priori element markers. All those elements T ∈ Tl were refined for which

hT,xr
−β
T ≥ 0.3 max

T ′∈Tl

{hT ′,xr
−β
T ′ }

holds. We chose the refinement factor β = 1/2, which fulfills the condition β > 1/3
to ensure an asymptotically optimal discretization error. Pictures of the meshes are
shown in Figure 7.1 and Figure 7.2.

For preconditioning the resulting finite element system, the multigrid scheme (3.2)
was applied with one multiplicative presmoothing and one reverse-order multiplicative
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Table 7.1
Results for uniform refinement in the z-direction, 16 layers of elements.

Point smoother Line smoother

Nodes κ{C−1
L AL} CG its. Time [sec] κ{C−1

L AL} CG its. Time [sec]

136 1 2 1 2
289 7.0 18 1.1 5
816 4.8 17 0.1 1.3 7 0.1
1717 2.7 13 0.2 1.5 8 0.2
3536 2.3 12 0.4 1.6 9 0.6
7480 2.1 11 1.0 1.7 10 1.5
20060 2.1 12 3.1 1.9 11 4.3
40766 2.0 12 7.2 1.9 11 9.9
111027 2.5 13 20.2 1.9 11 26.1
241536 3.2 14 50.3 2.2 11 61.9
320093 2.8 13 78.6 2.0 11 104.6

Table 7.2
Results for uniform refinement in the z-direction, 64 layers of elements.

Point smoother Line smoother

Nodes κ{C−1
L AL} CG its. Time [sec] κ{C−1

L AL} CG its. Time [sec]

520 1 2 1 2
1105 100.8 63 0.4 1.1 5 0.2
3120 65.6 63 1.4 1.3 8 0.6
6565 29.9 47 3.2 1.5 8 1.4
13520 19.9 40 6.7 1.6 9 3.4
28600 14.6 32 12.4 1.7 10 8.3
76700 12.2 29 29.9 1.9 11 22.8
155870 10.9 27 62.4 1.9 11 50.6
424515 10.3 26 155.7 1.9 11 129.1
923520 9.9 25 346.6 2.2 11 298.3

Table 7.3
Results for mesh with nonuniform refinement in the z-direction (boundary layer at z = 0), 64

layers of elements.

Point smoother Line smoother

Nodes κ{C−1
L AL} CG its. Time [sec] κ{C−1

L AL} CG its. Time [sec]

520 1 2 1 2
1105 261.2 84 0.6 1.1 5 0.2
3120 237.7 139 3.0 1.3 8 0.6
6565 169.5 122 8.1 1.5 8 1.4
13520 149.1 110 18.3 1.6 9 3.4
28600 114.8 96 36.6 1.7 10 8.3
76700 87.9 81 82.1 1.9 11 22.8
155870 62.6 64 145.2 1.9 11 50.7
424515 36.1 50 293.4 1.9 11 128.6
923520 30.6 45 610.7 2.2 11 297.7

postsmoothing step. For comparison, we did all computations also with a multigrid
method with the standard point smoother on the same hierarchy of meshes.

First we computed the condition numbers κ{C−1
L AL} of the preconditioned ma-

trix. In addition, we solved the Poisson problem

−∆u = 1 in Ω, u = 0 on ∂Ω,

and used the multigrid preconditioner in the CG method to reduce the residual error

(measured by
√

rTC−1
L r) by a factor of 10−8. Tables 7.1, 7.2, and 7.3 show the results
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Fig. 7.1. Mesh with 8 uniform layers and 5013 nodes.

Fig. 7.2. Mesh with boundary layer at z = 0.05 and 5013 nodes.

for various numbers of layers in the vertical direction and numbers of nodes. Processor
time refers to an SGI Octane R 10000, 250 MHz.

The tests show the robust performance of our multigrid method. The iteration
numbers are independent of the refinement depth, and they are also independent of
the mesh in edge direction. In comparison, the point smoother has problems with
strongly anisotropic meshes, expressed through a large condition number and a large
number of CG iterations. The ratio of CPU times is less since our implementation
of the line smoother is about twice as expensive as the point smoother. Finally,
we mention that the proposed multigrid algorithm can be extended to complicated
geometries by macro element techniques.



2006 THOMAS APEL AND JOACHIM SCHÖBERL
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Abstract. We introduce a semidiscretized version of the Wigner equation—discretization con-
cerning the velocity variable. We show that the corresponding discrete velocity problem is well-posed
and permits us to approach the solution of the continuous problem when the mesh size of the dis-
cretization vanishes. The approximation shows spectral accuracy because the rate of convergence
corresponds to the (Sobolev) regularity of the solution of the continuous problem. We also discuss
the behavior of the solution with respect to the Planck constant.

Key words. Wigner equation, discrete velocity models, semiclassical limit.
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1. Introduction. We are concerned with the following Wigner (or “quantum
Liouville”) equation:

∂tf + ξ · ∇xf = Θ(V )(f) in R
+
t × R

N
x × R

N
ξ ,(1.1)

where the right-hand side is defined by the pseudodifferential operator

Θ(V )(f) = iF−1
y→ξ

(
(V (x + y/2)− V (x− y/2))f̂(t, x, y)

)
.(1.2)

Throughout the paper we indifferently denote by F(f) or by f̂ the Fourier transform
given, under suitable integrability conditions on f , by

f̂(y) =

∫
RN

e−iy·ξf(ξ) dξ,

and F−1(f)(ξ) =
∫
e+iy·ξf(y) dy/(2π)N .

This equation is intended to model the quantum transport of electrons in a semi-
conductor device. The unknown f(t, x, ξ) is real valued, but, contrary to what hap-
pens usually in kinetic theory, it is not naturally nonnegative. Usually, the elec-
tric potential V is obtained in a self-consistent way through the Poisson equation
∆V (t, x) =

∫
f dξ−D(x), D being a given doping profile. This relationship describes

the Coulombian interactions between the electrons. Note that this definition is not
obvious at all since the natural framework for f is the space L2(RN × R

N ) so that
it is not clear how the integral of f can make sense. However, here and below, we
restrict ourselves to a linear situation where the potential V is given; it lies at least in
L∞(RN ). Consequently, the operator Θ(V ) is bounded in L2(RN ) (see Lemma 3.1).

Equation (1.1) may be seen as the quantum equivalent of the classical Vlasov
equation

∂tf + ξ · ∇xf −∇xV · ∇ξf = 0,
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where we consider that electrons are moving along the trajectories of the Hamiltonian
ξ2/2 + V . Actually, the integro-differential equation (1.1) can be obtained by con-
sidering the Wigner transform, introduced in [15], of the solution of the Schrödinger
equation with potential V . On the other hand, the Vlasov equation can be recovered
as the Planck constant goes to 0 when dealing with suitably rescaled Wigner trans-
forms. The mathematical analysis of these questions has been performed by Lions
and Paul [11]. We also refer for further details and results on the model to the works
of Markowich [6], Markowich and Ringhofer [9], Degond and Markowich [3], and the
classical treatise of Markowich, Ringhofer, and Schmeiser [10]. We also quote for an
extensive study and application of the Wigner transform the recent paper of Gérard,
Markowich, Mauser, and Poupaud [4, 5].

In this work, we wish to introduce a semidiscrete version of the Wigner equa-
tion (1.1) and to discuss some properties of the approximation obtained in this way.
Discretization here is performed with respect to the ξ variable and we search for a
discrete model that looks like (1.1):

∂twn + ξn · ∇xwn =
(
Θd(V )(w)

)
n

in R
+
t × R

N
x ×Z,(1.3)

where Z is some subset of Z
N , possibly Z

N itself, and ξn belongs to a discrete set of
velocities parametrized by n ∈ Z. Therefore, our aim is two fold:

(1) On one hand, the problem (1.3) should be well-posed; see Theorem 3.4.
(2) On the other hand, we expect that (1.3) “approaches” (1.1) in the sense that

we may construct from the wn’s a function fh(t, x, ξ) which converges to f , solution
of (1.1), as the parameter h, related to some “mesh size,” goes to 0; see Theorem 4.4.

This kind of question has been addressed, for instance, by Ringhofer, with a
slightly different approach, in [13], [14] and in Arnold and Ringhofer [2]; more gen-
erally, we refer to the recent and complete review on computational methods for
semiconductor models [12]. We also mention the work of Arnold, Lange, and Zweifel
in [1] in a monodimensional and stationary framework, with a discussion of relevant
inflow boundary conditions. Here, our approach is rather close to the analysis of fi-
nite difference schemes by Markowich and Poupaud [8]. Also notice the use of Wigner
transform techniques to analyze numerical schemes by Markowich, Pietra, and Pohl
[7]. Our paper is organized as follows. The next section will introduce the main ideas
to achieve the program: it contains basic preliminaries and notations. Section 3 is
devoted to the discrete problem: having defined the discrete operator Θd, we analyze
well-posedness of the corresponding problem (1.3). Roughly speaking, we use the
(formal) interpretation of Θ as a convolution to define the operator Θd as a discrete
convolution. Then, in section 4, we define the approximation fh from the discrete so-
lution and show a convergence result to the solution of (1.1). Our method has infinite
order: the rate of convergence is given by the degree of regularity on the Sobolev scale
with respect to the ξ variable of the solution of the continuous problem. Eventually,
section 5 is concerned with the semiclassical limit: we investigate the behavior of the
solutions as the (scaled) Planck constant goes to 0, and we show convergence to the
solution of the Vlasov equation.

2. Preliminaries. Roughly speaking, the idea consists of neglecting the large
values of the dual variable, which is denoted y ∈ R

N , of ξ: we restrict the band
length. Then, our construction relies on the following simple observation. Let g(ξ)
be a smooth function, in the sense that its Fourier transform has a compact support,
i.e., supp(ĝ) ⊂ B(0, R). Let Y = [−L/2,+L/2]N be a box in R

N with length L/2
larger than R. We denote by L2

# the set of square integrable functions on Y , which
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are Y -periodically extended on R
N . We associate with such a function g a function

G ∈ L2
# as follows:


Y = [−L/2,+L/2]N , 0 < R < L/2,
G(y) = ĝ(y) on B(0, R), G(y) = 0 on Y \B(0, R),
y 
−→ G(y) is Y -periodic.

(2.1)

A simple computation shows that the Fourier coefficients of G are given by discrete
equidistributed values of g; namely, we have

Ĝ(n) = L−N
∫
Y

ei2πy·n/LG(y) dy

= L−N
∫

RN

ei2πy·n/Lĝ(y) dy = (2π/L)Ng(2πn/L)

by the inversion formula. Therefore, we naturally set gM (ξ) = F−1
y→ξ(ĝM )(ξ) with

ĝM (y) =
∑

|n|≤M Ĝ(n)e−i2πn·y/Lχ|y|≤R(y). Here and below |y| and B(0, R) refer to

the infinite norm on R
N and the corresponding ball, while, for a multi-integer n ∈ Z

N ,
|n| stands for the length |n| = |n1|+ · · ·+ |nN |. This actually means that

gM (ξ) =
∑

|n|≤M

∫
RN

eiy·ξei2πn·y/LĜ(n)χ|y|≤R(y) dy/(2π)N

=
∑

|n|≤M
(2π/L)N g(2πn/L)

∫
B(0,R)

exp(iy · (ξ − 2πn/L)) dy/(2π)N

=
∑

|n|≤M


L−N g(2πn/L)

N∏
j=1

2 sin(R(ξj − 2πnj/L))

ξj − 2πnj/L


 .

Since, by definition of the Fourier series,∑
|n|≤M

Ĝ(n)e−i2πn·y/L −−−−→
M→∞

G in L2
#,

it follows that gM tends to g in L2(RN ) as M goes to ∞. Indeed, we have

‖g − gM‖2L2(RN ) = (2π)−N‖ĝ − ĝM‖2L2(RN )

= (2π)−N
∫
B(0,R)

∣∣∣ĝ(y)− ∑
|n|≤M

Ĝ(n)e−i2πn·y/L
∣∣∣2 dy

≤ (2π)−N
∫
Y

∣∣∣ĝ(y)− ∑
|n|≤M

Ĝ(n)e−i2πn·y/L
∣∣∣2 dy

≤ (L/(2π))N
∥∥∥G− ∑

|n|≤M
Ĝ(n)e−i2πn·y/L

∥∥∥2

L2
#

(Y )
.

Let us summarize these simple facts in the following claim (which is known as the
Shannon sampling theorem in signal processing).

Lemma 2.1. Let g(ξ) be a smooth function whose Fourier transform has a com-
pact support supp(ĝ) ⊂ B(0, R). Let Y = [−L/2,+L/2]N with L/2 > R and set

gM (ξ) =
∑

|n|≤M


L−N g(2πn/L)

N∏
j=1

2 sin(R(ξj − 2πnj/L))

ξj − 2πnj/L


 .
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Then, one has limM→∞ ‖g − gM‖2 = 0.
Remark 1. In (1.1) the unknown f is obtained as the Wigner transform of some

density matrix; in turn, the density ρ(t, x) =
∫
f dξ makes sense and remains nonneg-

ative; see [11]. It is worth remarking that if g is given through a truncated Wigner
transform, namely,

g(x, ξ) =

∫
RN

ψ(x + y/2) ψ(x− y/2) χ|y|≤R eiy·ξ dy/(2π)N

with, say, ψ ∈ L2(RN ) (for the sake of simplicity), then the associated discrete density
remains nonnegative. This means that

∑
n∈ZN

Ĝ(x, n) =
∑
n∈ZN

Ĝ(x, n)ein·0 = G(0)

= ĝ(x, 0) =
(
ψ(x + y/2) ψ(x− y/2) χ|y|≤R

)∣∣∣
y=0

= ψ(x) ψ(x) ≥ 0.

For future use, let us set up here the notations and classical formulae. For f, g in
L2

#, we set




(
f, g

)
L2

#

= L−N
∫
Y

f(y)g(y) dy, ‖f‖2L2
#

= L−N
∫
Y

|f(y)|2 dy,

f̂(n) =
(
f, e−i2πy·n/L

)
L2

#

= L−N
∫
Y

f(y)e+i2πy·n/L dy.

Note that in this definition the norm on L2
# depends on the size of the box. For

(complex valued) sequences u, v in !2 = !2(ZN ), we set

(
u, v

)
�2

=
∑
n∈ZN

unvn.

Of course, we have the Parseval formula

(
f, g

)
L2

#

=
∑
n∈ZN

f̂(n)ĝ(n) =
(
f̂ , ĝ

)
�2
,(2.2)

which holds for functions f, g in L2
#. We will also use the notation

(u ∗ v)n =
∑
k∈ZN

ukvn−k,

and we recall that, when u or v belongs to !1, we have

∑
n∈ZN

(u ∗ v)n =
∑
n∈ZN

un
∑
n∈ZN

vn.(2.3)

3. The discrete problem. In this section, we define the discrete operator by
means of discrete convolution. Then, we also discuss its fundamental properties and
the well-posedness of the semidiscrete evolution equation.
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3.1. The discrete operator. We recall that the Vlasov–Wigner operator (1.2)
reads as

Θ(V )(f)(ξ) = iF−1
y→ξ(DV f̂)(ξ) = i

∫
RN

eiξ·yDV (x, y)f̂(y) dy/(2π)N ,

where we note that

DV (x, y) = V (x + y/2)− V (x− y/2).

Then, the Parseval equality gives

‖Θ(V )(f)‖2 = (2π)−N/2‖F(Θ(V )(f)
)‖2 = (2π)−N/2‖DV F(f)‖2

≤ 2(2π)−N/2‖V ‖∞‖F(f)‖2 = 2‖V ‖∞‖f‖2.

As mentioned in the introduction, we deduce the following statement.
Lemma 3.1. Let V belong to L∞(RN ). The operator Θ(V ) is continuous on

L2(RN ) with norm |||Θ|||L(L2(RN )) ≤ 2‖V ‖∞.
Let us consider the action of this operator on the smooth function g studied in

the previous section. The support property implies that

Θ(V )(g)(ξ) = i

∫
B(0,R)

eiξ·yDV (x, y)ĝ(y) dy/(2π)N .

Since Θ(V ) is continuous on L2(RN ), by Lemma 2.1 Θ(V )(gM ) converges to Θ(V )(g)
in L2(RN ) as M →∞. However, we get

Θ(V )(gM )(ξ) = i

∫
B(0,R)

DV (x, y)ĝM (y)eiξ·y dy/(2π)N

= i
∑

|n|≤M
Ĝ(n)

∫
B(0,R)

DV (x, y)ei(ξ−2πn/L)·y dy/(2π)N

=
∑

|n|≤M
g(2πn/L) a(ξ − 2πn/L),

(3.1)

where

a(ζ) = i L−N
∫
B(0,R)

DV (x, y)eiζ·y dy.(3.2)

These formulae will be our guide to write a relevant discrete operator.
In order to construct a discrete model, we set for n ∈ Z

N and a mesh size h > 0,

ξn = 2πnh,

and we interpret the wn’s that will be naturally searched for in !2 as the Fourier
coefficients of a function G ∈ L2

# with an h-dependent box Y h = [−1/(2h),+1/(2h)]N :

G(y) =
∑
n∈ZN

wne
−i2πhy·n ∈ L2

#(Y h).

This idea is reminiscient of the deep interpretation of finite difference schemes by
the pseudodifferential formalism given by Markowich and Poupaud [8]. According to
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(3.1)–(3.2), we define the discrete operator by convolution:


(
Θd(V )(w)

)
n

=
∑
k

wkan−k = (a ∗ w)n,

an = i hN
∫

RN

DV (x, y)χ|y|≤Rh(y) ei2πhn·y dy.
(3.3)

Now notice that the truncation acts on the potential with a radius Rh < (2h)−1,
where Rh is a sequence of positive numbers which tends to ∞ as h→ 0: we truncate
the frequencies at a level less than the inverse of twice the mesh size. Following (2.1),
we introduce{ V(y) = DV (x, y)χ|y|≤Rh(y) on B(0, Rh), V(y) = 0 on Y h\B(0, Rh),

y 
−→ V(y) is Y h-periodic
(3.4)

so that 1
i an appears as the nth Fourier coefficient of the Y h-periodic function V. We

also remark that V ∈ L∞
# . Therefore, we are concerned with the following discrete

problem: {
∂twn + ξn · ∇xwn =

(
Θd(V )(w)

)
n

in R
+
t × R

N
x × Z

N
n ,

wn(t = 0, x) = w0
n(x).

(3.5)

It is not clear at all that (3.3) defines a bounded operator on the natural functional
space !2 for the wn’s since nothing, up to additional regularity assumptions on V ,
ensures that a belongs to !1. (See [1] for some comments on this difficulty.) However,
we are able to establish this property, which is the discrete analogue of Lemma 3.1.

Proposition 3.2. The operator Θd is a bounded linear operator on !2, and its
norm is estimated uniformly with respect to h by |||Θd|||L(�2) ≤ 2‖V ‖∞. Furthermore,
the coefficients an which define the operator Θd are real and even; in turn, the operator
is skew-symmetric.

Proof. Let f and g be two functions in L2
#. In particular, we notice that the

product fg lies in L1
#, and consequently the Fourier coefficients f̂g belong to !∞. We

shall use the following relation:

f̂g(n) = f̂ ∗ ĝ(n).(3.6)

Also note that if f ∈ L2
# and g ∈ L∞

# , we have fg ∈ L2
#; therefore, the corresponding

coefficients f̂g(n) = f̂ ∗ ĝ(n) also belong to !2.
Here, the operator Θd is defined by[

Θd(v)w
]
(n) = a ∗ w(n) = i

(
V̂ ∗ Ĝ

)
(n) = iV̂G(n)

by using the definitions (3.3) and (3.4), while G is the function in L2
# having the wn’s

as Fourier coefficients. Then it yields (recall that the norm ‖ · ‖L2
#

depends on the

size of the box Y h)

‖Θd(V )w‖�2 = ‖V̂G‖�2 = ‖VG‖L2
#
≤ ‖V‖L∞

#
‖G‖L2

#
≤ 2‖V ‖L∞‖w‖�2 ,

which proves the boundedness of Θd.
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Let us go back to (3.6). Relation (2.2) yields

(
fg, ϕ

)
L2

#

=
∑
n∈ZN

f̂g(n)ϕ̂(n) =
(
f, gϕ

)
L2

#

=
∑
n∈ZN

f̂(n)ĝϕ(n),(3.7)

where ϕ is a regular enough test function (so that ϕ̂ ∈ !1 for instance). We can write,
by using (2.3),

gϕ(y) =
∑
n∈ZN

ĝϕ(n)e−i2πn·y/L =
∑
n∈ZN

( ∑
k∈ZN

ϕ̂(k)ĝ(n− k)

)
e−i2πn·y/L,

which leads to

ĝϕ(n) =
∑
k∈ZN

ϕ̂(k)ĝ(n− k) = ϕ̂ ∗ ĝ(n).

Notice that

ĝ(n) = L−N
∫
Y

e+in·zg(z) dz = L−N
∫
Y

e−in·zg(z) dz = ĝ(−n).

Let us temporarily assume that f and g also are regular functions. We can perform
the following computations from (3.7):

(
fg, ϕ

)
L2

#

=
∑
n∈ZN

f̂(n)

( ∑
k∈ZN

ϕ̂(k)ĝ(k − n)

)

=
∑
n∈ZN

f̂(n)

( ∑
k∈ZN

ϕ̂(k)ĝ(k − n)

)

=
∑
k∈ZN

( ∑
n∈ZN

f̂(n)ĝ(k − n)

)
ϕ̂(k)

by using Fubini’s theorem (which requires the regularity of the functions). Identifying
with the second term in (3.7), we are led to

(
fg, ϕ

)
L2

#

=
∑
k∈ZN

(
f̂ ∗ ĝ

)
(k)ϕ̂(k) =

∑
k∈ZN

f̂g(k)ϕ̂(k).

Since this holds for any test function ϕ, we actually have

f̂g(k) = f̂ ∗ ĝ(k).

By a suitable regularization of f and g, but keeping ϕ regular, we justify this equality
that holds in !∞ for f and g in L2

#.
Finally, let us investigate the other properties of the operator Θd. We recall that

an(x) = i hN
∫

RN

DV (x, y)ei2πhn·yχ|y|≤Rh dy.
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Therefore, we get (with z = −y and using DV (x, y) = −DV (x,−y))

an = i hN
∫

RN

DV (x, y)ei2πhn·yχ|y|≤Rh dy

= −i hN
∫

RN

DV (x, y)e−i2πhn·yχ|y|≤Rh dy

= i hN
∫

RN

DV (x, z)ei2πhn·zχ|z|≤Rh dz = an

= −i hN
∫

RN

DV (x, y)ei2πh(−n)·yχ|y|≤Rh dy = −a−n,

which proves that the coefficients an are real and even. In turn, we readily check that
Θd is skew-symmetric.

Let us conclude with some remarks. Since the discrete operator (3.3) is essentially
obtained by truncating the potential, it will be convenient to discuss some properties
of the approximate operator

Θh(V )(f) = F−1
y→ξ

(
DV χ|y|≤Rh f̂(y)

)
defined for any f ∈ L2(RN ). The proof of the following claim is quite obvious.

Lemma 3.3. The approximated operator Θh fulfills the following properties:
(i) if supp(f̂) ⊂ B(0, R) with 0 < R ≤ Rh, then Θh(f) = Θ(f);
(ii) Θh(V )(f) converges to Θ(f) in L2(RN ) as h → 0. If, furthermore, f lies in

the Sobolev space Hs(RN ), s > 0, we get

‖Θh(V )(f)−Θ(V )(f)‖2L2(RN×RN ) ≤
4‖V ‖2∞
(2π)N

‖f‖2Hs(RN )

(1 + (Rh)2)s
.

As an example, it is maybe worth writing the discrete problem in a usual matrix
form, when considering the mono-dimensional situation and restricting to 2M + 1
unknowns (w−M , . . . , wM ) = W . We get

∂tW + Λ∂xW = AW,

where Λ is the (2M + 1)× (2M + 1) diagonal matrix Λ = diag(ξ−M , . . . , ξM ), while
the coefficients of A ∈M(2M+1)×(2M+1) are defined by

Ank = an−k(x) = i h

∫ +Rh

−Rh

DV (x, y)ei2πh(n−k)y dy.

A short computation leads to

Ank = 4h

∫ x+Rh/2

x−Rh/2

V (z) sin(4πh(n− k)(x− z)) dz.

We see easily on this formula that A is skew-symmetric.

3.2. Analysis of the discrete problem. Now it is quite easy to prove existence-
uniqueness for the discrete problem (3.5). It is convenient here to interpret !2(ZN ) =
L2(ZN , dn), where dn stands for the counting measure on Z

N , and to introduce

L2(RNx × Z
N
n ) =

{
w : (x, n) ∈ R

N
x × Z

N
n 
−→ w(x, n) ∈ C,

such that

∫
RN

x ×ZN
n

|w(x, n)|2 dx dn =
∑
n∈ZN

∫
RN

x

|w(x, n)|2 dx <∞
}
.
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Accordingly, in what follows, it is convenient to denote by u(n) instead of un the nth
term of a sequence u parametrized by n ∈ Z

N . When no confusion can arise we will
also drop the variables t, x.

Theorem 3.4. Let w0 ∈ L2(RNx × Z
N
n ), and V ∈ L∞(RN ). The problem (3.5)

has a unique mild solution w ∈ C0([0, T ];L2(RNx × Z
N
n )). Furthermore, if the initial

data w0 is real valued (i.e., w0(x, n) = w0(x, n) for all n ∈ Z
N and a.a. x ∈ R

N ),
then the solution w remains real valued and the following relation

‖w(t)‖L2(RN×ZN ) = ‖w0‖L2(RN×ZN )(3.8)

holds.
Proof. The proof is quite classical, and the argument is the same as for the contin-

uous problem in [3], [9]. The key point is to interpret Θd as a bounded perturbation
of the semigroup generator −ξn ·∇x. Integrating along the characteristic lines x+ tξn
leads to

w(t, x, n) = w0(x− tξn, n) +

∫ t

0

Θd(V )w(τ, x− (t− τ)ξn, n) dτ.

Then, we show the existence-uniqueness of the solution by a classical contraction
argument.

Since the a(n)’s are real, now we deduce that

Θd(w)(n) =
∑
k∈ZN

a(n− k)w(k) =
∑
k∈ZN

a(n− k)w(k) = Θd(w)(n).

It follows that w(n) satisfies the same equation as w(n); hence, if w0(n) = w0(n), we
still have w(n) = w(n). In other words, w is real valued.

Finally, we are left with the task of proving the relation (3.8) in L∞(R+, L2(RN×
Z
N , dx⊗ dn)). Indeed, multiplying (3.5) by whn and integrating yield

‖wh(t)‖2L2(RN×ZN ) +

∫ t

0

∫ (
Θd(w), w

)
�2
(s, x) dx ds = ‖wh(0)‖2L2(RN×ZN ).

Since
(
Θd(w), w

)
�2
∈ iR, we immediately obtain (3.8).

4. Approximation and convergence analysis. In this section, we investigate
the limit of vanishing mesh size h → 0. We thus show that the discrete problem
approaches the continuous one.

4.1. Construction of the approximation. In the previous section, we have
obtained a sequence, parametrized by t ∈ R

+ and x ∈ R
N ,

(
w(t, x, n)

)
n∈ZN ∈ !2,

a solution of (3.5). Of course, this sequence depends on the parameter h through
the truncation acting on the potential and the definition of the discrete velocities
ξn = 2πnh. We emphasize this dependence from now on by denoting the solution
wh(t, x, n).

According to the strategy described in section 2, let us introduce now for (t, x, ξ) ∈
R

+ × R
N × R

N the function

fh(t, x, ξ) = F−1
y→ξ

( ∑
n∈ZN

wh(t, x, n) e−i2πhy·n χ|y|≤Rh

)
.
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It is maybe more explicit to write, as in Lemma 2.1,

fh(t, x, ξ) =
∑
n∈ZN


wh(t, x, n)

N∏
j=1

sin(Rh(ξj − 2πhnj))

π(ξj − 2πhnj)


 .

Since we naturally choose Rh ∼ (2h)−1 for h small, this indicates that f(ξn) is ap-
proximated by (2πh)−Nwhn.

Our final aim is to show that fh approaches the solution f of (1.1) as the mesh
size h goes to 0. Notice that here f is approximated by a formula looking like∑
n∈ZN wh(t, x, n)Sh(ξ − ξn). In comparison to [13], [14], instead of approaching

f by periodic functions, we use an expansion on cardinal sinus functions. In [13], [14]
difficulties arise since we use a basis of functions that are not elements of the same
space as the exact solution; in turn, our proof of convergence becomes very simple.

To this end, we naturally have to prepare in a suitable way the initial data wh,0

for the discrete problem (3.5). They obtained by regularizing the initial data f0 of
the continuous problem. Precisely, we set, still using the arguments of section 2,




fh,0(x, ξ) = F−1
y→ξ

(
f̂0(x, y) χ|y|≤Rh

)
,

Gh,0(x, y) = f̂0(x, y) on B(0, Rh), Gh,0(x, y) = 0 on Y h\B(0, Rh),

Gh,0(x, y) = is Y h-periodic,

wh,0(x, n) = ̂Gh,0(x, ·)(n) = fh,0(x, 2πnh)(2πh)N ,

where f0 is real valued and belongs to L2(RN × R
N ). This construction leads to the

following behavior of the discrete solution with respect to h.
Lemma 4.1. One has the estimate ‖wh,0‖2L2(RN×ZN ) ≤ (2πh)N ‖f0‖2L2(RN×RN ).

Consequently, one deduces that ‖wh(t)‖2L2(RN×ZN ) ≤ (2πh)N ‖f0‖2L2(RN×RN ).

Proof. The estimate on the solution wh is an immediate consequence of (3.8)
combined with the estimate on the initial data. By construction, one has

‖wh,0‖2�2 = ‖Ĝh,0‖2�2 = ‖Gh,0‖2
L2

#

= hN
∫
Y h

|Gh,0(y)|2 dy = hN
∫

RN

|f̂h,0(y)|2 dy

= hN
∫

RN

|f̂0(y)χ|y|≤Rh |2 dy ≤ hN (2π)N ‖f0‖2L2(RN ),

which establishes Lemma 4.1.
One deduces that fh is a bounded sequence in the natural functional space.
Corollary 4.2. The sequence

(
fh
)
h>0

is bounded in L∞(R+, L2(RN × R
N )).

Furthermore, fh is real valued.
Proof. This is a consequence of Lemma 2.1 and Lemma 4.1. It is convenient to

introduce the Y h-periodic function Gh defined by the coefficients whn:

Gh(t, x, y) =
∑
n∈ZN

wh(t, x, n) e−i2πhy·n ∈ L∞(R+, L2(RN ;L2
#(Y h))).
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We have (omiting t, x variables for the sake of clarity)

‖fh‖2
L2(RN

ξ
)
= (2π)−N ‖f̂h‖2L2(RN

y )

= (2π)−N
∫

RN

∣∣∣∣∣
∑
n∈ZN

wh(n) e−i2πhy·n
∣∣∣∣∣
2

χ|y|≤Rh dy

= (2π)−N
∫
B(0,Rh)

∣∣∣∣∣
∑
n∈ZN

wh(n) e−i2πhy·n
∣∣∣∣∣
2

dy

≤ (2πh)−N hN
∫
Y h

∣∣∣∣∣
∑
n∈ZN

wh(n) e−i2πhy·n
∣∣∣∣∣
2

dy

≤ (2πh)−N hN
∫
Y h

|Gh(y)|2 dy

≤ (2πh)−N ‖Gh‖2
L2

#
(Y h)

= (2πh)−N ‖wh‖2�2 ≤ ‖f0‖2L2(RN ),

which proves the asserted bound.

It remains to prove that fh ∈ R. Conjugating f̂h we get

f̂h(y) =
∑
n∈ZN

wh(n) e+i2πhy·nχ|y|≤Rh

=
∑
n∈ZN

wh(n) e−i2πh(−y)·nχ|−y|≤Rh = f̂h(−y)

since, by Theorem 3.4, the whn’s are real valued. This ends the proof.
Now let us show that fh is not far from satisfying (1.1).
Lemma 4.3. The function fh satisfies a approximate form of (1.1) in the sense

that

〈(∂t + ξ · ∇x)fh −Θ(V )(fh), ϕ〉S′;S = 0

holds for all ϕ in S((0, T ) × R
N × R

N ) with supp(ϕ̂) ⊂ (0, T ) × R
N × B(0, R), 0 <

R < Rh.
Proof. Let us set

Th(t, x, n) = (∂t + ξn · ∇x)wh(t, x, n)−Θd(w
h(t, x, ·))(n).

We have to compute the action on ϕ of

F−1
y→ξ

( ∑
n∈ZN

e−i2πhy·n Th(t, x, n) χ|y|≤Rh

)
.

Obviously, there is no difficulty with the time derivative, which commutes with the
other operations. It leads to ∂tf

h. Let us consider the Vlasov term. Since, by
its definition, fh has a Fourier transform compactly supported (with respect to the
variable y) in B(0, Rh), we have, by Lemma 3.3(i), Θh(fh) = Θ(fh), with

Θ̂(fh)(t, x, y) = i DV (x, y) χ|y|≤Rh

∑
n∈ZN

wh(t, x, n) e−i2πhy·n.
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Let us denote this quantity by γh(y). It corresponds to


Γh(t, x, y) = γh(y) = i Vh(x, y) Gh(t, x, y) on y ∈ B(0, Rh),
Γh(t, x, y) = 0 on y ∈ Y h\B(0, Rh),
Γh(t, x, y) is Y h-periodic (with respect to y).

The corresponding Fourier coefficients, therefore, are given by

Γ̂h(n) = i V̂h Gh(n) = i V̂h ∗ Ĝh(n) = ah ∗ wh(n) = Θd(w
h)(n)

by using the definitions of ah,Vh and wh, Gh.
Applying Lemma 2.1 yields the following equality:

Θ(fh) = F−1
y→ξ(γ

h) = F−1
y→ξ

( ∑
n∈ZN

Γ̂h(t, x, n) e−i2πhy·n χ|y|≤Rh

)

= F−1
y→ξ

( ∑
n∈ZN

Θd(w
h)(t, x, n) e−i2πhy·n χ|y|≤Rh

)
,

which is exactly what we need when treating the right-hand side of (3.5). It remains
to deal with the convective term. Difficulties could arise due to the truncation χ|y|≤Rh

in the Fourier variable; however, we have chosen a test function ϕ that does not feel
the action of this operation. Set

Ch(t, x, y)

=
∑
n∈ZN

e−i2πhy·n ξn · ∇xwh(t, x, n) χ|y|≤Rh

= (−i)−1
∑
n∈ZN

∇y∇x
(
e−i2πhy·n wh(t, x, n)

)
χ|y|≤Rh ∈ S ′(R+ × R

N × R
N ).

We compute, by using the exchange formula,

〈F−1
y→ξ(C

h(t, x, ·))(ξ), ϕ〉S′,S

= (2π)−N 〈F(Ch), ϕ〉

= (2π)−N
〈
Ch,F(ϕ)

〉
= (2π)−N

〈
(−i)−1∇y∇x

(
e−i2πhy·n wh(t, x, n)

)
,F(ϕ)

〉
since ϕ̂χ|y|≤Rh = ϕ̂ by using the support assumption. It follows that

〈F−1
y→ξ(C

h(t, x, ·))(ξ), ϕ〉S′,S

= (2π)−N
∫

(−i)−1
∑
n∈ZN

e−i2πhy·n wh(t, x, n) ∇y∇xF(ϕ) dy dx dt.

However, we have

∇yF(ϕ) = ∇y
(∫

RN

e−iy·ξϕ(ξ) dξ

)
= −iF(ξϕ),
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which still has its support in B(0, Rh) (with respect to the variable y). Hence, we
obtain

〈F−1
y→ξ(C

h(t, x, ·))(ξ), ϕ〉S′,S

= (2π)−N
∫

(−i)−1
∑
n∈ZN

e−i2πhy·n wh(t, x, n) (−i)F(ξ · ∇xϕ) dy dx dt.

We go back with the exchange formula to

〈F−1
y→ξ(C

h(t, x, ·))(ξ), ϕ〉S′,S

= −(2π)−N
〈
Fy→ξ

( ∑
n∈ZN

e−i2πhy·nwh(t, x, n)χ|y|≤Rh

)
, ξ · ∇xϕ

〉

= 〈ξ · ∇xfh, ϕ〉.

This ends the proof of Lemma 4.3.

4.2. Convergence. Now we are able to establish the convergence of our scheme,
which is shown to have spectral accuracy.

Theorem 4.4. Assume that f0 belongs to H1(RN × R
N ), and V ∈ L∞(RN ).

Let 0 < T < ∞. Let f ∈ C0(R+;L2(RN × R
N )) ∩ L∞(0, T ;H1(RN × R

N )) be the
associated solution of (1.1). Let Rh ≤ (2h)−1, with 2Rh ∼ 1/h as h goes to 0. Then,
we have on the time interval (0, T )

‖(f − fh)(t)‖L2(RN×RN ) ≤ CT h,

where CT depends on T and on these H1 norms.
If, furthermore, f0 ∈ L2(RNx ;Hs(RNξ )) with f ∈ L∞(0, T ;L2(RNx ;Hs(RNξ ))) and

∇xf ∈ L2((0, T )×R
N
x ;Hs−1(RNξ )) for some s > 0, then the method becomes of order

s since we have ‖(f − fh)(t)‖L2(RN×RN ) ≤ CT hs.
Remark 2. In the statement, the Sobolev regularity of the solution is assumed.

Then, the boundedness of the potential suffices to justify the spectral accuracy. How-
ever, regularity of the solution depends certainly on the regularity of the potential.
For instance, one proves readily the H1 regularity by assuming V ∈W 1,∞(RN ).

Proof. It would be tempting, in order to derive such an estimate, to multiply the
equation satisfied by f − fh by f − fh. However, this function is not an admissible
test function in the sense of Lemma 4.3 since its Fourier transform is not compactly
supported. Then, let us introduce a function ζ that fulfills


ζ(y) = 1 on B(0, 1/2), ζ(y) = 0 on R

N\B(0, 1),

0 ≤ ζ(y) ≤ 1,

ζ ∈ C1(RN ).

Set ζh(y) = ζ(y/Rh), and th(t, x, ξ) = F−1
y→ξ(f̂(t, x, y) ζh(y)). Mainly, the rate of

convergence is determined by the obvious estimate

‖f − th‖2L2(RN×RN ) = (2π)−N‖f̂(1− ζh)‖2L2(RN×RN ) ≤
‖f‖2

L2(RN
x ;Hs(RN

ξ
))

(2π)N (1 + (Rh/2)2)s
.
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Furthermore, let us look at the equation satisfied by th: we shall show that it satisfies
(1.1) up to an error term due to the truncation, which can be controlled in O(Rh)
thanks to the H1 regularity of the solution. From (1.1), we obtain

∂tt
h = F−1(∂tf̂ ζh) = F−1(Θ̂(f) ζh)−F−1( ̂ξ · ∇xf ζh).

The Vlasov term simply gives

F−1(Θ̂(f) ζh) = F−1(DV f̂ ζh)

= F−1(DV FF−1(f̂ ζh)) = F−1(DV F(th)) = Θ(th).

However, error terms are produced by the convective term. Indeed, we have

F−1( ̂ξ · ∇xf ζh) =

∫
RN

eiy·ξ ̂ξ · ∇xf(y) ζh(y) dy/(2π)N

=

∫
RN

y

eiy·ξ
(∫

RN
η

e−iy·η η · ∇xf(η) dη
)
ζh(y) dy/(2π)N

=

∫
RN

η

η · ∇xf(η)
(∫

RN
y

eiy·(ξ−η)ζh(y) dy

)
dη/(2π)N

=

∫
RN

η

η · ∇xf(η)ζ̂h(η − ξ) dη/(2π)N

=

(
η · ∇xf(η) ∗ ˇ̂

ζh(η)

)
(ξ)/(2π)N .

Let us split this expression as follows:

F−1( ̂ξ · ∇xf ζh) = ξ · ∇xth + Eh,

where

Eh =

(
η · ∇xf ∗ ˇ̂

ζh(η)

)
(ξ)/(2π)N − ξ · ∇x

(F−1(f̂ ζh)
)
.

Since

ξ · ∇x
(F−1(f̂ ζh)

)
=

∫
RN

y

eiy·ξζh(y)ξ ·
(∫

RN
η

e−iy·η∇xf(η) dη
)

dy/(2π)N ,

we get

Eh =

∫
RN

∫
RN

eiy·(ξ−η)(η − ξ) · ∇xf(η) ζh(y) dη dy/(2π)N

=

∫
RN

η

∇xf(η)
(∫

RN
y

(η − ξ)eiy·(ξ−η)ζh(y) dy

)
dη/(2π)N

=

∫
RN

η

∇xf(η)
(

1

i

∫
RN

y

eiy·(ξ−η)∇y(ζh(y)) dy/(2π)N
)

dη

=
(∇xf ∗ F−1

y→ξ(∇yζh)/i
)
(ξ).
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This produces the estimate

‖Eh‖L2(RN×RN ) = (2π)−N‖∇̂xf ∇y(ζh)‖L2(RN×RN )

≤ ‖∇xf‖L2(RN×RN ) ‖∇y(ζh)‖L∞(RN )

≤ ‖∇xf‖L2(RN×RN ) ‖∇yζ‖L∞(RN )/R
h.

Therefore, eh = th−fh has a compactly supported Fourier transform in B(0, Rh)
and satisfies, in the sense of Lemma 4.3,

(∂t + ξ · ∇x −Θh)(eh) = Eh.

Standard manipulations lead to the estimate

‖eh(t)‖L2(RN×RN ) ≤ ‖eh(0)‖L2(RN×RN ) +

∫ t

0

‖Eh‖L2(RN×RN ) ≤ CT /R
h,

where CT depends on T , ‖f0‖H1 , and ‖f‖H1 . Now, we can estimate ‖f−fh‖L2(RN×RN )

≤ ‖eh(t)‖L2(RN×RN ) + ‖f − th‖L2(RN×RN ) ≤ CT /R
h, which concludes the proof.

Order s information on f leads to the following slight modification when estimat-
ing Eh:

‖Eh‖2L2(RN×RN )

= (2π)−N
∫

RN

∫
RN

|∇̂xf(y)|2 |∇y(ζh)|2 dy dx

≤ (2π)−N
∫

RN

∫
RN

|∇̂xf(y)| χ|y|≥Rh/2

1

(Rh)2
‖∇yζ‖2L∞(RN ) dy dx

≤ ‖∇xf‖2L2(RN
x ;Hs−1(RN

ξ
))
‖∇yζ‖2L∞(RN )

2 (2π)−N

(1 + (Rh)2)s−1 (Rh)2
.

The announced rate of convergence follows easily.

5. Semiclassical limit. Let us now take into account the (scaled) Planck con-
stant ε > 0. Accordingly, the Wigner operator reads as

Θε(V )f =
i

ε
F−1
y→ξ

((
V (x + εy/2)− V (x− εy/2)

)
f̂(y)

)

=
i

(2π)N

∫
RN

V (x + εy/2)− V (x− εy/2)

ε
f̂(y) eiy·ξ dy.

It is a well-established fact that the corresponding sequence
(
fε
)
ε>0

of solutions of
the Wigner equation

∂tf
ε + ξ · ∇xfε = Θε(V )(fε)

converges, in some weak sense, to a solution F of the Vlasov equation

∂tF + ξ · ∇xF = ∇xV · ∇ξF(5.1)

as ε→ 0. We refer to Lions and Paul [11] for precise statements and rigorous proofs;
this can be formally understood from the following facts:

 i
V (x + εy/2)− V (x− εy/2)

ε
−→ i∇xV · y as ε→ 0,

îy = ∇δξ=0.
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Therefore, we would naturally expect that our discrete scheme reproduces this behav-
ior. Let us first set up some definitions.

Recall that the discrete operator is defined, see (3.3), by


aε,hn = i hN
∫

RN

V (x + εy/2)− V (x− εy/2)

ε
χ|y|≤Rh(y) ei2πhn·y dy,

(
Θε,h
d (V )(w)

)
n

= (aε,h ∗ w)n = iV̂ε,hGh(n),

(5.2)

where w(x, n) belongs to L2(RN×Z
N ), and Vε,h(x, ·) and Gh(x, ·) are the Y h-periodic

functions defined on the cell by



Vε,h(x, y) =

V (x + εy/2)− V (x− εy/2)

ε
χ|y|≤Rh(y),

Gh(x, y) =
∑
n∈ZN

w(x, n) e−i2πhn·y.

For small ε, we expect that Θε,h
d looks like the following discrete operator:(

V
h(V )(w)

)
n

= (uh ∗ w)n = iŶhGh(n),(5.3)

where Yh(x, ·) is the Y h-periodic function given by

Yh(x, y) = ∇xV (x) · y χ|y|≤Rh(y)

for x ∈ R
N and y ∈ Y h. This discrete operator corresponds to our interpretation of

the Vlasov term ∇xV · ∇ξg when reasoning as in section 2 for a function g with ĝ
compactly supported in B(0, R). We remark that

uhn = i

∫
RN

∇xV (x) · y χ|y|≤Rh(y) ei2πhn·y dy = uhn = −uh−n

so that the coefficients are real and even; in turn, V
h is a skew-symmetric operator of

L(!2) for h > 0 fixed, and V ∈W 1,∞(RN ). Hence, reproducing the arguments of the
proof of Theorem 3.4, we show that the corresponding discrete problem is well-posed.

Theorem 5.1. Let vh,0 ∈ L2(RNx × Z
N
n ) and V ∈W 1,∞(RN ). The problem{

∂tvn + ξn · ∇xvn = V
h(V )(v)n in R

+
t × R

N
x × Z

N
n ,

v|t=0 = v0
(5.4)

has a unique mild solution vh ∈ C0([0, T ];L2(RNx × Z
N )). Furthermore, if the initial

data vh,0 are real valued (i.e., vh,0(x, n) = vh,0(x, n) for all n ∈ Z
N and a.a. x ∈

R
N ), then the solution vh remains real valued, and the relation ‖vh(t)‖L2(RN×ZN ) =

‖vh,0‖L2(RN×ZN ) holds.
Let us denote, according to section 4,




fε,h(t, x, ξ) = F−1
y→ξ

( ∑
n∈ZN

wε,h(t, x, n) e−i2πhy·n χ|y|≤Rh

)
,

Fh(t, x, ξ) = F−1
y→ξ

( ∑
n∈ZN

vh(t, x, n) e−i2πhy·n χ|y|≤Rh

)
,
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where wε,h and vh are the solutions of (3.5) and (5.4), respectively, obtained from well-
prepared initial data as in Lemma 4.1. We naturally assume in this construction that
fε,0(x, ξ), which defines wε,ht=0, tends (strongly in L2(RN×R

N )) to F 0(x, ξ), associated
with vht=0, when ε→ 0. Of course, we wish to justify the following diagram:

wε,h, fε,h

discrete Wigner

h → 0−−−−−−−−→ fε

continuous Wigner&ε → 0

&ε → 0, [11]

vh, Fh

discrete Vlasov
−−−−−−−−→

h → 0

F
continuous Vlasov

Obviously, Lemma 4.1 adapts to the scaling.
Lemma 5.2. We have

‖wε,h(t)‖2L2(RN×ZN ) ≤ (2πh)N ‖fε,0‖2L2(RN×RN ) ≤ (2πh)N C0,

‖vh(t)‖2L2(RN×ZN ) ≤ (2πh)N ‖F 0‖2L2(RN×RN ),

and the (real valued) sequences
(
Fh

)
h>0

,
(
fε,h

)
ε>0,h>0

are bounded in L∞(R+, L2(RN

×R
N )), uniformly with respect to ε and h.
Next, the strategy developed in the proofs of Lemma 4.3 and Theorem 4.4 applies

when dealing with vh, Fh, and we are led to the following statement.
Theorem 5.3. Let V ∈ W 1,∞(RN ). The function Fh satisfies an approximate

form of (5.1) in the sense that

〈(∂t + ξ · ∇x)Fh −∇xV · ∇ξFh, ϕ〉S′;S = 0

holds for all ϕ in S((0, T ) × R
N × R

N ) with supp(ϕ̂) ⊂ (0, T ) × R
N × B(0, R), 0 <

R < Rh.
Assume that F 0 belongs to H1(RN×R

N ). Let 0 < T <∞. Let F ∈ C0(R+;L2(RN

×R
N ))∩L∞(0, T ;H1(RN ×R

N )) be the associated solution of (5.1). Let Rh ≤ (2h)−1,
with 2Rh ∼ 1/h as h goes to 0. Then, we have on the time interval (0, T ),

‖(F − Fh)(t)‖L2(RN×RN ) ≤ CT h,

where CT depends on T and on these H1 norms.
If, furthermore, F 0 ∈ L2(RNx ;Hs(RNξ )) with F ∈ L∞(0, T ;L2(RNx ;Hs(RNξ ))),

and ∇xF ∈ L2((0, T )× R
N
x ;Hs−1(RNξ )) for some s > 0, then the method becomes of

order s since we have ‖(F − Fh)(t)‖L2(RN×RN ) ≤ CT hs.

We are left with the task of studying the behavior of wε,h as ε → 0. The con-
vergence to the solution of the discrete Vlasov equation will be a consequence of the
following claim.

Proposition 5.4. Let V ∈ C1 ∩W 1,∞(RN ). The sequence of operators Θε,h
d

converges strongly to V
h: for any h > 0 and w ∈ L2(RN × Z

N ), we have

lim
ε→0
‖Θε,h

d (w)− V
h(w)‖L2(RN×ZN ) = 0.

Proof. We simply remark that

Vε,h(x, y)− Yh(x, y) =

∫ 1

0

(
∇xV (x + εy(θ − 1/2))−∇xV (x)

)
· y χ|y|≤Rh(y) dθ.
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Since ∇xV is continuous and bounded, we can apply the Lebesgue theorem which
yields for h > 0, x ∈ R

N , y ∈ Y h,

lim
ε→0

(Vε,h(x, y)− Yh(x, y)) = 0,

with the domination |Vε,h(x, y) − Yh(x, y)| ≤ 2‖∇xV ‖L∞(RN )R
h. Therefore, we de-

duce that

‖Θε,h
d (w)− V

h(w)‖2L2(RN×ZN )

= ‖(Vε,h − Yh)Gh‖2L2(RN ;L2(Y h))

= hN
∫

RN

∫
Y h

∣∣∣Vε,h(x, y)− Yh(x, y)∣∣∣2 |Gh(x, y)|2 dy dx
−→ 0

as ε→ 0, still by using the Lebesgue theorem.
Theorem 5.5. As ε goes to 0, the following convergences hold:


lim
ε→0
‖wε,h − vh‖L∞(0,T ;L2(RN×ZN )) = 0,

lim
ε→0
‖fε,h − Fh‖L∞(0,T ;L2(RN×RN )) = 0.

Proof. It suffices to establish the convergence at the discrete level since the sec-
ond follows easily (see the proof of Corollary 4.2). Set eε,h(t, x, n) = wε,h(t, x, n) −
vh(t, x, n), which satisfies

∂te
ε,h
n + ξn · ∇xeε,hn −Θε,h

d (V )(eε,h)n =
[(

V
h −Θε,h

d (V )
)
vh
]
n
.

Multiplying by eε,h and using that Θε,h
d is skew-symmetric lead to the estimate

‖eε,h(t)‖L2(RN×ZN ) ≤ ‖eε,h(0)‖L2(RN×ZN ) +

∫ t

0

‖(Θε,h
d − V

h)vh(s)‖L2(RN×ZN ) ds

that tends to 0 when ε→ 0 by Proposition 5.4 and the hypothesis made on the initial
data.

As a concluding remark, let us show that the Vlasov equation can still be obtained
from the discrete model when ε, h → 0 together. Indeed, fε,h satisfies a uniform L2

estimate; see Lemma 5.2. Then, up to a subsequence, we can suppose that it has a
weak limit

fε,h ⇀ g weakly−∗ in L∞(0, T ;L2(RN × R
N )).

Multiplying by a test function ϕ ∈ S(R × R
N × R

N ) with supp(ϕ̂) ⊂ (0, T ) × R
N ×

B(0, R), 0 < R < Rh, we have the formula of Lemma 4.3:

〈(∂t + ξ · ∇x)fε,h, ϕ〉S′;S = 〈fε,h,Θε,∗(V )ϕ〉S′;S .

When ε, h → 0, the weak convergence of fε,h combines to the strong convergence
Θε,∗(V )ϕ→ −∇xV · ∇ξϕ in L2, and we get

〈(∂t + ξ · ∇x)g −∇xV · ∇ξg, ϕ〉S′;S = 0



SEMIDISCRETE WIGNER EQUATION 2025

for any ϕ ∈ S whose Fourier transform is compactly supported. However, the set of
admissible test functions is dense in S so that we deduce that g actually solves the
Vlasov equation.

Theorem 5.6. When ε, h tend to 0 together, the sequence fε,h converges weakly
in L2((0, T )× R

N × R
N ) to a solution of the Vlasov equation.

Unfortunately, this result does not prevent oscillations that can occur in the limit
ε, h → 0: the convergence is obtained only in a weak sense, and we are not able to
provide order of convergence for the norm of the error.
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Abstract. Many polynomial systems have solution sets comprised of multiple irreducible com-
ponents, possibly of different dimensions. A fundamental problem of numerical algebraic geometry
is to decompose such a solution set, using floating-point numerical processes, into its components.
Prior work has shown how to generate sets of generic points guaranteed to include points from every
component. Furthermore, we have shown how monodromy can be used to efficiently predict the par-
tition of these points by membership in the components. However, confirmation of this prediction
required an expensive procedure of sampling each component to find an interpolating polynomial
that vanishes on it. This paper proves theoretically and demonstrates in practice that linear traces
suffice for this verification step, which gives great improvement in both computational speed and
numerical stability. Moreover, in the case that one may still wish to compute an interpolating poly-
nomial, we show how to do so more efficiently by building a structured grid of samples, using divided
differences, and applying symmetric functions. Several test problems illustrate the effectiveness of
the new methods.
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1. Introduction. Polynomial systems arising in scientific and engineering appli-
cations often have positive dimensional solution sets; moreover, the solution set may
have components of different dimensions. For instance, in mechanical engineering, we
may be given a set of rigid parts and a prescription for how they are to be connected
by joints. These specifications can be formulated as a system of polynomial equations
whose solution set describes the locations in space of all the parts. It may happen
that some assemblies of the mechanism are rigid, whereas other assemblies of the same
parts and joints allow an internal motion having one or more degrees of freedom. The
notion of “degrees of freedom of motion” as used by a kinematician is thus equivalent
to the “dimension of a solution set” for the polynomial system. Problems with similar
characteristics arise in other disciplines.

For such polynomial systems, our task is to identify all irreducible components
of the solution set, characterizing each component by its dimension and degree and
providing witness points on the set. This problem is central in a developing new field:
numerical algebraic geometry, a research program initiated in [33]. The goal is to
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design numerically stable algorithms to efficiently solve polynomial systems arising in
science and engineering. In the next two paragraphs we explain the relation of the
current paper to previous work.

In [26], we presented a new method of embedding a polynomial system into a
larger polynomial system, such that the numerical solution of a sequence of homo-
topies computes generic points on all solution components of the original polynomial
system. These witness points form the basic data to decompose the solution sets into
irreducible components, as we showed in [27]. Starting at any solution point, one may
use numerical continuation to sample the component that contains it and construct
an interpolation polynomial vanishing on the component. This polynomial can then
be used as a filter to find all other witness points in the same component. In this way,
all of the points can be sorted into components, eventually producing a list of all the
components and certain properties of them, such as degree and dimension. However,
the construction of the interpolating polynomial is both expensive and numerically
difficult for high degree components in many variables. In [28], we reduced the num-
ber of variables by detecting the linear span of a component and reduced the degree
of the interpolant by using central projections; but even so, numerically challenging
cases remain.

An alternative approach to determining which witness points lie on the same
component is to use monodromy to find paths connecting them [29]. In computational
experiments, this approach has been found to be numerically stable on high degree
components and highly successful in predicting the correct decomposition. However,
it is heuristic in that connections are discovered via randomly generated monodromy
loops, with no a priori way to know when all connections have been found. Thus,
the prediction must still be validated by other means. In [29], this was accomplished
by computing an interpolating polynomial, as before, so the problem of high degree
polynomials was not eliminated.

The most significant contribution of this paper is to prove theoretically and
demonstrate computationally that linear traces are sufficient for validating a proposed
decomposition. Due to the superior numerical stability of linear systems, we are able
to run our decomposition method entirely with standard machine arithmetic. For
polynomial systems with coefficients given as double floating-point numbers, whose
evaluation map is numerically well conditioned, and whose irreducible components
have multiplicity one, our algorithm does not need multiprecision arithmetic to de-
compose the solution sets, even in the occurrence of high degree components. For
components with multiplicity higher than one, multiprecision arithmetic is required
to track the singular paths [31].

In the case that one still wishes to compute polynomials that vanish on a compo-
nent, the higher order traces can be used to good effect. First, the witness points on
a component can be marched forward together to provide a structured grid of sample
points. Then, with a “bootstrapping” technique, we can construct the Newton form
of the interpolating polynomial. The use of traces enables the direct application of
Newton interpolation, eliminating the need for extra bootstrapping samples. A final
improvement in efficiency is gained by using Newton identities to reduce the number
of samples to the number of monomials in the interpolant, which is the minimum
possible. However, this last shortcut is inadvisable for high degree components as our
tests show that it is numerically less stable than using a full grid of samples.

Several test problems illustrate the effectiveness of the methods. Particularly
notable are the results on a problem from mechanical engineering: a special Stewart–
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Gough platform mechanism that has internal motion. For one case in which the
motion is one irreducible component of degree 28, the computing time for validating
the decomposition predicted by monodromy is reduced from 1.3 hours using our former
methods to less than 5 seconds with the linear trace. This is now comparable to the
time required for a related example in which the degree 28 component breaks up
into several low degree irreducibles. Hence the running time of the algorithm is no
longer sensitive to such changes in the geometry of the solution set. Moreover, it
is interesting to note that the automated numerical method discovered a solution
component that was missed by experts using a manual approach aided by computer
symbolic processing.

In brief, the paper proceeds as follows. In the next section, we collect some results
on traces, which are then applied to monodromy in section three. In sections four and
five, we outline the interpolation algorithms and apply them in the last section on the
cyclic 8-roots and 9-roots problems and on the mechanism problem just mentioned.

2. Traces of functions. The results in this section are quite old, e.g., Theo-
rem 2.1 is for the most part just a statement of the constructions that go along with
one of the main approaches to the Weierstrass preparation theorem [8, 9]. Since we
do not know a reference for the full result, we include a proof. The statement in
Corollary 2.2 is equivalent to the zero-sum relations that have been used in a similar
context, e.g., [3, 6, 20, 21, 22, 23, 24].

It is natural to consider functions f(x1, . . . , xd) of points (x1, . . . , xd) ∈ C
d which

are invariant under the symmetric group Sd of permutations of the variables. To be
precise, given any permutation, σ(i) = ji for i = 1, . . . , d, of the integers from 1 to
d, we have a linear transformation of C

d, which by abuse of notation we also label σ,
which takes (x1, . . . , xd) to (xj1 , . . . , xjd). A function on C

d is said to be symmetric if

f ◦ σ = f(xj1 , . . . , xjd) = f(x1, . . . , xd)(2.1)

for all σ ∈ Sd. It is a basic fact of invariant theory that the ring of symmetric polyno-
mials on C

d, denoted by C[x1, . . . , xd]
Sd , is abstractly isomorphic to the ring of poly-

nomials on C
d, i.e., there exists a ring isomorphism C[z1, . . . , zd] ∼= C[x1, . . . , xd]

Sd .
There are many useful choices of assignments of symmetric functions to the zi making
this isomorphism explicit. The two that we use are

1. the assignment leading to the elementary symmetric functions

zi �→ ti :=
1

(d− i)!i!

∑
σ∈Sd

xσ(1) · · ·xσ(i) =
∑

1≤j1<...<ji≤d
xj1 . . . xji(2.2)

for i from 1 to d, and
2. the assignment leading to the power sums

zi �→ pi :=
1

(d− 1)!

∑
σ∈Sd

xiσ(1) =

d∑
j=1

xij(2.3)

for i from 1 to d.
The connection of ti with roots of a polynomial of degree d is easy to see, upon noting
that

(w − x1)(w − x2) · · · (w − xd) = wd − t1w
d−1 + t2w

d−2 − · · ·+ (−1)dtd.(2.4)
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If, in the right-hand side of (2.4), we (like in [16]) substitute w by xi, for i from 1 to
d, and add up these n sums, then we obtain Newton’s relation:

pd − t1pd−1 + t2pd−2 − · · ·+ d(−1)dtd = 0.(2.5)

Equation (2.5) allows us to write the elementary symmetric functions in terms of the
power sums and vice versa.

The following fact is classical.
Theorem 2.1. Let p : X → Y be a proper, finite, d-sheeted surjective complex

analytic morphism from a reduced pure n-dimensional complex analytic space X to
a normal irreducible and reduced complex analytic variety Y . Given a holomorphic
function f : X → C and a symmetric polynomial g : C

d → C, there is a unique
holomorphic function fg : Y → C such that, for all points y in the Zariski open and
dense set U ⊂ Y such that p : p−1(U)→ U is an unramified cover, it follows that for
the d points {x1, . . . , xd} = p−1(y), we have fg(y) := g(f(x1), . . . , f(xd)).

For the symmetric functions ti we denote fti by tri,p(f) and call it the ith trace.

It is traditional to call tr1,p(f), or
tr1,p(f)

d , the trace and trd,p(f) the norm of f . In
fact, the ti all occur naturally as traces, e.g., letting A : C

d → C
d denote a matrix

with eigenvalues {x1, . . . , xd}, ti is the trace of the matrix A induces on ∧iCd ∼= C
(di),

the ith exterior product of C
d. The parameterized version of (2.4) is

fd − tr1,p(f)f
d−1 + tr2,p(f)f

d−2 + · · ·+ (−1)dtrd,p(f) = 0.(2.6)

This line of reasoning is used in one main approach to the Weierstrass preparation
theorem [8, 9].

Proof of Theorem 2.1. The proof that fg is holomorphic follows by a minor variant
of the argument used in [8, Theorem A4]. To see this, note that there is a codimension
one analytic subset B ⊂ Y such that X \p−1(B) and Y \B are smooth and such that
pX\p−1(B) : X \ p−1(B) → Y \ B is a d-sheeted unramified cover. Indeed, define U ′

equal to Y minus the union of
1. the singular set Sing(Y ) of Y , which is an analytic set of complex codimension

2 [8, Theorem Q12], and
2. the image under p of the singular set of X, which is an analytic set by Rem-

mert’s proper mapping theorem [8, Theorem N1].
Thus pp−1(U ′) : p

−1(U ′) → U ′ is a proper and finite map between complex man-
ifolds. The set of branch points R of this map is an analytic set on U ′, since it is
the set defined by the local condition that the determinant of the Jacobian of the
mapping pp−1(U ′) is zero. Define U := U ′ \ p(R).

Thus for y ∈ Y \ B, fg(y) := g(f(x1), . . . , f(xd)) is a holomorphic function.
Since p is proper, given any point y ∈ B, there is a relatively compact open set U
containing y such that p−1(U) is relatively compact and f is bounded in absolute
value on p−1(U). Thus fg is bounded on U \ (B∩U). Thus by the Riemann extension
theorem for bounded holomorphic functions, fg|U has a unique holomorphic extension
to Y \ Sing(Y ), where Sing(Y ) denotes the singular set of Y . Since Y is normal, it
follows from the Levi extension theorem [8, Theorem Q15i] that fg|Y \Sing(Y ) has a
unique holomorphic extension to Y .

In Theorem 2.1, if in addition it is assumed that X, Y , p, and f are algebraic, then
it follows that fg is also algebraic. Rather than introduce all the needed definitions
and algebraicity criteria to state the general case, we prove only a corollary that covers
our needs.
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Corollary 2.2. Let Z ⊂ C
n be a pure k-dimensional algebraic subvariety of

C
n. Assume

1. that π : C
n → C

k is a generic linear projection, and
2. that φ is a linear function on C

n, which is one-to-one on a fiber π−1
Z (y)

for some y ∈ C
k with π−1(y) consisting of smooth points of Z at which the

tangent space, dπZ , has rank k.
Then, it follows that for all j, trj,πZ

(φ) is a polynomial on C
k of degree less than

or equal to j. In particular, tr1,πZ
(φ) is linear or constant.

Proof. Let q denote the map C
n → C

k+1 given by (φ, π). Let z denote the
coordinate on C

k+1 such that z(q(x)) = π(x), and let L denote the projection of
C
k+1 → C

k such that π = L ◦ q. By the Noether normalization theorem it follows
that the genericity of π implies that p := πZ is a proper finite-to-one morphism.
Since πZ = L ◦ qZ , it follows by elementary point set topology that qZ is proper and
finite also. Moreover, by genericity it follows that the degree d of p is degZ, by the
hypothesis on φ that qZ maps Z generically one-to-one to C

k+1, and, therefore, that
deg q(Z) = degZ. Since for a dense open set U ⊂ C

k q gives an isomorphism of
p−1(U) with L−1

q(Z)(U), we conclude that trj,p(φZ) and trj,Lq(Z)
(zq(Z) agree on U and

hence on all of C
k. Thus, with the convention that tr0,Lq(Z)

(zq(Z)) = tr0,p(φZ) = 1, we

have the equivalent relations given in (2.6) fd−tr1,p(f)fd−1+ · · ·+(−1)dtrd,p(f) = 0,

d∑
i=0

(−1)itri,Lq(Z)
(zq(Z))z

d−i
q(Z) = 0,(2.7)

d∑
i=0

(−1)itri,p(φZ)φZd−i = 0.(2.8)

Since q(Z) is a degree d hypersurface and zd−tr1,p(zq(Z))z
d−1+· · ·+(−1)dtrd,p(zq(Z))

vanishes when restricted to it, we conclude that this must be a minimum
degree defining polynomial of q(Z). Thus we have proved the assertions of the
corollary.

Remark 2.3. Note that, assuming the genericity hypothesis on π in Corollary 2.2,
the hypothesis on φ can be replaced by the equivalent more easily checked condition
that φ is a linear function on C

n, which is one-to-one on a fiber π−1
Z (y) for some

y ∈ C
k with π−1(y) consisting of degZ distinct points.
Remark 2.4. Note that, without the genericity assumption, Corollary 2.2 fails

for a number of reasons. First, it might be that πZ is not proper. In this case, the
traces are only rational functions. For example, taking Z := {xy − 1 = 0} ⊂ C

2 and
π : C

2 → C given by π(x, y) = x, we get tr1,πZ
(y) = 1

x . By the Noether normalization
theorem, the genericity assumption about the linear projection π implies that πZ is
proper and finite, but even proper and finite, without the genericity assumption, is
not enough. The key implication of genericity of the linear projection π, beyond the
properness of πZ , is the fact that for generic linear projections π, degZ = deg πZ .
For example, taking Z := {y2 − xd = 0} ⊂ C

2 and π : C
2 → C given by π(x, y) = x,

we get tr2,πZ
(y) = xd. In general, if

1. Z ⊂ C
n is a pure k-dimensional algebraic subvariety of C

n,
2. f is linear on C

n, and
3. π : C

n → C
k is a linear projection with πZ proper, finite, but not necessarily

satisfying degZ = deg πZ ,
then it follows that deg tri,πZ

(f) ≤ degZ − deg π + i.
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3. An application to monodromy. In this section we show that the linear
trace gives necessary and sufficient conditions to determine the breakup of the set
witness points of the algorithm of [27] into the disjoint subsets of generic points
corresponding to the numerical irreducible decomposition. Usually, we use this result
to give a very fast verification of the monodromy breakup of the algorithm of [29],
but it is also called into play if the monodromy breakup is too fine. The algorithms
will be described in the next section.

The important observation that the linear trace is sufficient is due to Rupprecht
[20] in the case of curves. We note that there are two serious gaps in the argument of
[20], which are filled by Theorems 3.3 and 3.4 below.

The strategy is to slice and project to reduce to the case of a curve in P
2. To

do this we need a number of lemmas on linear projections and the intersections with
linear spaces that are general subject to certain constraints. Unless otherwise said,
closure is in either the Zariski topology or the usual topology induced by the Euclidean
metric on C

n.
Lemma 3.1. Let A be a pure k-dimensional reduced algebraic subset of C

n, with
irreducible decomposition ∪ri=1Ai. Assume that L is an (n − k)-dimensional linear
subspace of C

n meeting A in a finite set A consisting of degA distinct isolated points.
Then, taking closures in P

n, L∩A = A. Moreover, if k ≥ 2, then letting L be a general
member of the set of (n − k + 1)-dimensional linear subspaces of C

n that contain L,
it follows that L ∩Ai is an irreducible curve for each i = 1, . . . , r.

Proof. The statement that L ∩ A = A follows from any of a number of related
results, e.g., [5, Example 8.4.6] or [5, Example 12.3.2].

To prove the second statement it suffices to prove the analogous result on P
n

using the closures of the sets Ai, L, L. Since L ∩ A is a set A of cardinality degA,
it follows that A consists of smooth points of A, and that the intersection of A and
L are transverse at the points of intersection. From this it follows from Bertini’s
theorem that the intersection with Ai of a general member of the set M of (n−k+1)-
dimensional linear subspaces of C

n that contain L is smooth away from the singular
locus of Ai. If k = 2, so that the set M consists of hyperplanes, the rest of the
argument follows exactly as in [25, Theorem 3.42]. If k ≥ 2, the result follows by a
straightforward descending induction. For example, if k = 3, then it follows using
[25, Theorem 3.42] that the intersection with Ai of a general member of the set of
(n− 1)-dimensional linear subspaces H of C

n that contain L is irreducible. Keeping
L as it is, taking H in place of C

n, and replacing the Ai with Ai ∩H, we now have
dimAi ∩H = 2, i.e., we have reduced to the proven result.

Lemma 3.2. Let n, L, L, A, A = A1 ∪ · · · ∪ Ar be as in Lemma 3.1. Choose a
general linear projection π : L→ C, which is one-to-one on A. Let π̃ : C

n → C
k+1 be

a linear map extending π, so that the fibers of π̃ are parallel to the fibers of π. Then
π̃A and π̃A∩L are generically one-to-one and proper. Moreover, π̃A (respectively,
π̃A∩L), maps a neighborhood of A in A (respectively, in A∩L) isomorphically onto a
neighborhood of the image of A in A (respectively, in A ∩ L).

Proof. We give the proof that π̃A is generically one-to-one and proper, and we
leave the remaining argument, which follows the same line of reasoning to the reader.
We work in the projective space P

n. As explained in [27], π̃ corresponds to the central
projection from a linear I := P

n−k−2 contained in the linear P
n−1 at infinity, i.e., in

P
n \C

n. The condition that L is mapped to a line corresponds to I ⊂ L \L. Since by
Lemma 3.1 we know that (L\L)∩ (A\A) = ∅, we know, as discussed in [27], that π̃A
is proper and therefore finite-to-one on A. If π̃A was not generically one-to-one, then
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deg π̃(A) would be less than degA. But this does not happen since π̃ is one-to-one on
A, and the degree of π̃(A) is the cardinality of π̃(A), which is equal to the intersection
of π̃(A) with the line π̃(L).

Theorem 3.3. Let A be a reduced pure k-dimensional algebraic subset of C
n.

Let A := A1 ∪ · · · ∪Ar be the decomposition into distinct irreducible components. Let
L ⊂ C

n be a general linear subspace of dimension n− k meeting A transversely in the
set A := A ∩ L. For all i = 1, . . . , r, let Ai := Ai ∩ L, and let di be the cardinality
of the set Ai. Let d denote the cardinality of A, i.e., ∑r

i=1 di. Let U denote the
Zariski open set of the Grassmannian of (n − k)-dimensional linear subspaces of C

n

consisting of linear spaces transverse to A. Let Sym(A) (respectively, Sym(Ai)) denote
the symmetric group of all permutations of A (respectively, Ai). Considering L as a
basepoint of U , the image in Sym(A) of the natural monodromy action of π1(U,L) on
A is the direct sum

⊕r
i=1 Sym(Ai).

Proof. We can assume without loss of generality that no components of A are
linear, since such components do not affect the result.

Choose L and π̃ : C
n → C

k+1 as in Lemma 3.2. Let U ′ denote the Zariski open
set of the projective space of lines in C

k+1, consisting of the lines transverse to π̃(A).
Note that for ! ∈ U ′ we have that π̃−1(!) ∈ U . Thus identifying A with π̃(A), the
homomorphism π1(U

′, π̃(L)) → Aut(A) factors π1(U
′, π̃(L)) → π1(U,L) → Aut(A).

Thus, from here on we can assume without loss of generality that n = k+1. Moreover,
a line in L transverse to L ∩A is transverse to A in C

n. Thus, letting U ′′ denote the
Zariski open set of lines in L ∼= C

2 that are transverse to L∩A, we have a composition
π(U ′′, L)→ π1(U,L)→ Aut(A). Thus, without loss of generality we can assume that
n = 2.

Thus we have n = 2 and k = 1. We have the classical fact [1, Lemma, p. 111]
that the image of π1(U,L) ∈ Aut(A) surjects onto Sym(Ai) for each i = 1, . . . , r.
In particular, we can assume without loss of generality that r ≥ 2. By elementary
algebra, we see that using this surjectivity, we would be done if we showed that, for
each i, there exist two distinct points a, b ∈ Ai and a γ ∈ π1(U,L) such that γ acts on
A by sending a→ b, b→ a and leaves the remaining points of A fixed. The classical
argument for the existence of such a γ in the irreducible case [1, Lemma, p. 111]
carries over with no change to the reducible case if we show that for each i = 1, . . . , r,
and a generic point x ∈ Ai, the tangent line ! ⊂ C

2 to Ai at x is transverse to Aj for
j �= i. To show this, it suffices to work projectively, i.e., show the fact for the closures
Bi in P

2 of the Ai. To see this, consider the dual curves B̂i ⊂ (P2)∗. Here (P2)∗

is the P
2 whose points correspond to lines in the P

2 that the Bi belong to, and B̂i
is the closure in (P2)∗ of the set of points corresponding to tangent lines to smooth
points of Bi. What we need is exactly that Bi and Bj for distinct i, j go to distinct

curves B̂i and B̂j . Noting that none of the Bi are linear, this would follow if we knew

that the dual of B̂i is Bi. This is a basic fact about dual curves (and more generally
varieties) [14].

To prove Corollary 3.5 below, we need the following generalization of the classical
first Lefschetz theorem. This topological result is a special case of a useful general
result of Goresky and MacPherson [7, Theorem, section 5.2, p. 199].

Theorem 3.4 (Goresky–MacPherson). Let D be an arbitrary algebraic subset of
C
n, and let U := C

n \D. Then given a general 1-dimensional linear subspace L ⊂ C
n

and a point x ∈ L∩U , it follows that we have a surjective map of fundamental groups

π1(L ∩ U, x)→ π1(U, x)→ 0.
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Proof. Following the notation of [7, section 5.2, Theorem, p. 199], take X to be
the Zariski open dense set U of P

n with n := N , π the inclusion, c = n − 1, which
gives φ(k) = n− 1 for k = 0, and −∞ for k �= 0, which gives n̂ = 1.

Corollary 3.5. Let A be a reduced pure k-dimensional algebraic subset of C
n.

Let A := A1 ∪ · · · ∪Ar be the decomposition into distinct irreducible components. Let
π : C

n → C
k denote a generic linear projection, and let x, y ∈ C

k denote general
points, with L := π−1(x) ⊂ C

n a general linear subspace of dimension n− k meeting
A transversely in the set A := A ∩ L. For all i = 1, . . . , r, let Ai := Ai ∩ L, and let
di be the cardinality of the set Ai. Let d denote the cardinality of A, i.e., ∑r

i=1 di.
Let U denote the Zariski open set of the line ! ⊂ C

k containing x, y, consisting of the
u ∈ ! such that π−1(u) is transverse to A. Let Sym(A) (respectively, Sym(Ai)) denote
the symmetric group of all permutations of A (respectively, Ai). Considering L as a
basepoint of U , the image in Sym(A) of the natural monodromy action of π1(U,L) on
A is the direct sum

⊕r
i=1 Sym(Ai).

Proof. By the same reduction as in Theorem 3.3, it can be assumed that n = 2,
k = 1, and that we are working with compact curves in P

2. Given the Zariski open
set U ′ of points in (P2)∗ corresponding to lines transverse to A, and given a general
line ! ⊂ (P2)∗, with a point L on !, then setting U := ! ∩ U ′, we will be done if we
show that π1(U,L)→ π1(U,L)→ 0. This is guaranteed by Theorem 3.4.

Theorem 3.6. Let A ⊂ C
n be an affine algebraic set of pure dimension k. Let

A := A1 + · · · + Ar denote the irreducible decomposition of A. Let π : C
n → C

k

be a generic linear projection, and let ! ⊂ C
k be a general line. Let L := π−1(x)

for a general point x ∈ !. Let φ be a linear function on C
n which is one-to-one on

A := π−1
A (x). For all i = 1, . . . , r, let Ai := π−1

Ai
(x). Let U denote the Zariski open

set of the Grassmannian of (n− k)-dimensional linear spaces of C
n corresponding to

(n− k)-dimensional linear spaces transverse to A. Let B denote a subset of A. Then
the following are equivalent:

(1) B is invariant under the monodromy action of π1(U,L) on A;
(2) B = ∪i∈IAi for some subset I ⊂ {1, . . . , r};
(3) The analytic continuation of

∑
b∈B φ(b) as a function of x is linear.

Proof. The equivalence of (1) and (2) follows from Theorem 3.3. Corollary 2.2
shows that (2) implies (3). So it remains to show that (3) implies (1).

To see this, assume that B contains a point b ∈ Ai but not a point a ∈ Ai. Let
y1, . . . , yN denote the points of B \ b. Let U ′ denote the Zariski open subset of !
consisting of the points x′ ∈ ! with π−1(x′) transverse to A. By Corollary 3.5, there
is a γ ∈ π1(U

′, L) which takes yj → yj for all j and interchanges a and b. Thus, since
the analytic continuation of

∑
b∈B φ(b) is linear in x, we conclude that

φ(a) +

N∑
j=1

φ(yj) = φ(b) +

N∑
j=1

φ(yj),(3.1)

and thus that φ(a) = φ(b). But this contradicts φ being one-to-one on A. Thus if
b ∈ Ai for some point b ∈ B, we conclude that Ai ⊂ B.

Remark 3.7. Here is a simple example to show the sort of bad behavior that
genericity rules out. Let A be the curve in C

2 defined by (y2−x)(y2−4x)(y2−9x) = 0.
Consider the projection π : C

2 → C given by π(x, y) = x. Note that πA is proper
and generically six-to-one with degA = 6. For the linear function φ on C

2, choose y.
Over x ∈ C, the values of φ on the fiber π−1

A (y) are

{√x,−√x, 2
√
x,−2√x, 3

√
x,−3√x}.(3.2)



2034 A. J. SOMMESE, J. VERSCHELDE, AND C. W. WAMPLER

The groupings corresponding to the irreducible components are {√x, −√x}, {2√x,
−2√x}, and {3√x, −3√x}. Notice that the sum (−1)√x+ (−2)√x+ 3

√
x is identi-

cally zero, and hence linear, even though the grouping {−√x,−2√x, 3
√
x} does not

correspond to a union of irreducible components of A.
Remark 3.8. In practice, when we use Theorem 3.6, it is convenient to use a

generic projection π : C
n → C

k+1. Letting A := A1 + · · ·+Ar be as in Theorem 3.6,
it follows, e.g., from [27, section 5.2], that

1. the map πA from A to its image π(A) is proper,
2. the images of A,A1, . . . , Ar under π are affine algebraic sets with π(A) having

the irreducible decomposition π(A) := π(A1) + · · ·+ π(Ar),
3. deg π(Ai) = degAi for all i, and
4. πA is one-to-one on π−1

A (U) for some Zariski open dense set of π(A).
Moreover, since the composition of π with the projection C

k+1 → C
k given by

(z1, . . . , zk+1)→ (z1, . . . , zk) is generic, we can use π(A) and this projection in place
of A and the generic projection π of Theorem 3.6. Then, zk+1 has the properties
required of φ in Theorem 3.6, and, since the projection π : C

n → C
k+1 is generic, we

can take one of the coordinate axes, e.g., the zk axis, as !.
It is worth noting that the defining equation of π(A) under a generic projection

will have every monomial of total degree less than or equal to the degree ofA occurring,
no matter how sparse the defining equations of A are.

4. Algorithms for the linear trace. In this section we present an algorithm
to verify the decomposition predicted by the monodromy algorithm. We first define
a projection operator which organizes the samples in a structured grid. The main
part of this section is the algorithm Certify, followed by comments on how to inte-
grate this algorithm in the numerical irreducible decomposition of a pure dimensional
component.

4.1. Sampling on parallel slices. To compute the linear trace, a structured
grid of sample points is useful. The same construction is used in the following section
concerning higher traces. Our technique is to use random slicing hyperplanes to define
the projection operator π, as follows.

Definition 4.1. Consider a k-dimensional component in C
n and suppose we use

the k hyperplanes

ci0 + ci1x1 + ci2x2 + · · ·+ cinxn = 0, i = 1, 2, . . . , k,(4.1)

as slices to obtain generic points on the component. To project the generic points
down to C

k+1, we use the map π : C
n → C

k+1 defined by




x1

x2

...
xn−1

xn


 �→




y1

y2

...
yk

yk+1


 =




c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
ck1 ck2 · · · ckn
a1 a2 · · · an







x1

x2

...
xn−1

xn


 ,(4.2)

where the numbers ai, i = 1, 2, . . . , k are chosen at random.
The main property of this projection operator is highlighted in the following

proposition.
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Proposition 4.2. For a k-dimensional component in C
n, let π : C

n → C
k+1 be

as in (4.2). Then for any generic point x = (x1, x2, . . . , xn) on the slices used in the
definition of π, we have

π(x) = (−c10,−c20, . . . ,−ck0, a1x1 + a2x2 + · · ·+ anxn).(4.3)

To obtained a structured grid of samples from the k-dimensional component, we
let only the constant terms ci0 of the slicing planes vary, for i = 1, 2, . . . , k. Geomet-
rically this means we take samples on slices parallel to each other.

4.2. Certification of monodromy groupings with linear traces. Suppose
we are given a set S of d generic points on random hyperplanes L = (L1, L2, . . . , Lk),
where the points are known to be from the same k-dimensional irreducible component
because the monodromy algorithm found loops connecting them. As the monodromy
algorithm might miss some connections, the actual degree of the component could
be higher than d. With linear traces we verify whether the degree of the component
equals d, described by the Certify algorithm.

Algorithm 4.3. b = Certify(f, L, S, ε)
Input: f(x) = 0 is a polynomial system with x ∈ C

n;
L = (L1, L2, . . . , Lk) is a tuple of k random hyperplanes;
S is set of d generic points satisfying f(x) = 0 and L(x) = 0;
ε is tolerance to decide whether a number is close enough to zero.

Output: b ∈ {false, true}, b is true when S is a set of generic points
on a degree d irreducible component, false otherwise.

let S(0) = S, c
(0)
0 = c0; [notational convenience]

for i = 1, 2 do [sample to get test points]

choose c
(i)
0 ∈ C at random;

L
(i)
k := c

(i)
0 + ck1x1 + ck2x2 + · · ·+ cknxn; [L

(i)
k is parallel to Lk]

compute S(i) as solutions to f(x) = 0, [apply homotopy from Lk to L
(i)
k

and L1(x) = L2(x) = · · · = L
(i)
k (x) = 0; using S as start solutions]

end for;
use L to define π : C

n → C
k+1 as in (4.2); [projection operator]

let φ(x) = zk+1, where z = π(x); [definition of φ in Theorem 3.6]
for i = 0, 1, 2 compute si :=

∑
x∈S(i) φ(x); [sum (k + 1)st coordinate]

find a, b such that si = a+ bc
(i)
0 for i = 0, 1; [linear interpolation of trace]

return (|s2 − (a+ bc
(2)
0 )| < ε). [the comparison certifies]

The justification for this algorithm is Theorem 3.6. The first k coordinates of
π(x) in (4.2) are the generic projection required by the theorem and the (k + 1)st
coordinate is the linear function φ. We test linearity of the trace by sampling in
a generic direction: the kth coordinate of π(x) suffices due to the genericity of the
coefficients used to define it. By the theorem, linearity implies that the set of points
S is the union of witness points for irreducible sets whose degrees sum to d, while
by assumption, monodromy has found that all the points are in one irreducible set.
Thus, there is one set and its degree is d.

4.3. An integrated decomposition algorithm. The linear trace test can be
used as a simple replacement for the filtering polynomials used in our earlier pa-
pers [27, 28, 29], but additional efficiencies can be gained by integrating the technique
more deeply into the algorithms.
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First, we can improve the termination condition for the monodromy method.
Previously, we continued to compute monodromy loops until either all points are
connected into one group or until some preset number of consecutive loops fails to
find any new connections. Setting the number of these stable loops too high is costly,
while too low means that some connections could be missed. With the linear trace test,
one can determine when a group is complete and immediately remove it from further
iterations. Once the number of uncertified groups is reduced to a small number,
combinations of them can be examined to discover which ones sum to form linear
traces, thereby completing the decomposition without further monodromy loops.

In this vein, it is possible to perform the decomposition only using linear traces, as
is done for a single multivariate polynomial in [6, 20]. However, without monodromy,
the algorithm is combinatorial and is likely to be too expensive for high degrees.
The use of traces in [21] (with predecessors [22, 23, 24]) is followed by linear algebra
techniques. Recently, monodromy and traces have been combined to factor a single
multivariate polynomial in [3].

The factorization of a single multivariate polynomial can be regarded as a special
case of the decomposition of the solution sets of polynomial systems. For this general
problem, we indicate a second improvement. In implementing the monodromy algo-
rithm in [29], it is worthwhile to compute the linear span of the components as we
described in [28]. Generic points that lie in different spans lie on different irreducible
components, so we have only to execute the monodromy starting at points that lie
in the same linear span. Also, the restriction to the linear span will give a speedup
when there is a gap between the dimension of the linear span and the dimension of
the ambient space.

Finally, the main decomposition algorithm [27] requires a test to determine if a
generic point obtained from the embedding algorithm at dimension k is a member of
some irreducible set of dimension greater than k. Originally, we used the interpolating
polynomials for these sets to determine membership, but as in [28], it is possible
to use a homotopy test of membership. Using the homotopy membership test for
higher dimensional sets and certifying irreducible groups by linear traces, we eliminate
completely the expensive and numerically difficult step of computing interpolating
polynomials, which represents a big improvement in our overall algorithm.

5. Interpolation algorithms via traces. As just mentioned, the computation
of interpolating polynomials is no longer required to complete the numerical irre-
ducible decomposition. Nevertheless, in the case that one still wishes to compute
such polynomials, the higher order traces can be useful, as we show in this section.
For components of low degree and span, interpolating polynomials can be competitive
with a homotopy membership test.

Our techniques for computing interpolating polynomials can be briefly summa-
rized as follows. Since the witness points for a component lie on a linear slice, they
can be marched forward together to compute a structured grid of sample points. In
[29], a “bootstrapping” technique was used to construct the Newton form of the inter-
polating polynomial. Here, by using traces, we eliminate the expense of extra samples
for bootstrapping and apply Newton interpolation directly. Finally, using the Newton
identities, we reduce the number of samples to the number of monomials, which is
optimal.

5.1. Newton interpolation with divided differences. To interpolate a bi-
variate function f(x, y) with a polynomial p(x, y) of degree d, we need to sample
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the function at points (ai, bj), for all i, j: 0 ≤ i + j ≤ d. The Newton form of the
interpolation polynomial p(x, y) is classical (see, e.g., [12, 16]):

p(x, y) =

d∑
k=0

d−k∑
l=0

f [a0 · · · ak; b0 · · · bl]
k−1∏
i=0

(x− ai)

l−1∏
j=0

(y − bj).(5.1)

The coefficients f [a0 · · · ak; b0 · · · bl] are divided differences, defined inductively. Start-
ing with f [ak; bl] = f(ak, bl), all divided differences are generated by

f [a0a1 · · · ak; bl] = f [a0a1 · · · ak−1; bl]− f [a1a2 · · · ak; bl]
a0 − ak

(5.2)

and

f [a0a1 · · · ak; b0b1 · · · bl]

=
f [a0a1 · · · ak; b0b1 · · · bl−1]− f [a0a1 · · · ak; b1b2 · · · bl]

b0 − bl
,(5.3)

for k = 0, 1, . . . , d and l = 0, 1, . . . , d − k. The efficient computation of divided
differences is organized in a table, requiring only one vector of elements to store.
Generalizing (5.1) to any number of variables is burdened only by notation.

The direct application of Newton interpolation is prevented because the interpo-
lation points must lie on a grid structured for all directions. When we sample curves
or surfaces we always have one last component which is different for all samples. To
overcome this we may apply a “bootstrapping” technique. We explain the idea in
the case of two variables. For x = ak, we construct a univariate polynomial p(y)
interpolating through the roots. Note that at those roots, y is usually different from
the chosen grid points bl. Once we have p(y), we use it to find f(ak, bl) = p(bl), and
we have a complete structured grid on which the above formulas (5.1) apply. This
construction generalizes to the Newton form of the interpolating polynomial to repre-
sent any surface of any degree and dimension. It was implemented and used in [29] to
certify groupings predicted by the monodromy algorithm. We provide an alternative
to the bootstrapping technique using traces, as explained next.

5.2. The trace form with a complete grid. With traces, the classical mul-
tivariate interpolation schemes with generalized divided differences are directly ap-
plicable. We will show how to interpolate with a polynomial p of degree d in three
variables (x, y, z), where p is expressed like

p(x, y, z) = zd − t1(x, y)z
d−1 + t2(x, y)z

d−2 − · · ·+ (−1)dtd(x, y),(5.4)

where ti(x, y) is the ith trace with deg(ti(x, y)) = i. To represent the polynomi-
als ti(x, y) we use the Newton form (5.1) with coefficients constructed with divided
differences, given in formulas (5.2) and (5.3).

The major cost in the construction of the interpolating polynomial is the number
of required sample points. While the number of monomials grows exponentially as
the degree d and dimension k of the irreducible component increases, the number of
samples in a complete grid grows as d(d+1)k, which is much faster than the number
of monomials, as illustrated in Table 5.1.
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Table 5.1
Number of terms for degrees d and dimensions k, respectively, increasing in the rows and

columns, versus d(d+ 1)k, which is the number of samples needed for the trace form using the full
grid, without exploiting Newton identities.

Number of monomials Number of samples
d\k 2 3 4 5 d\k 2 3 4 5

1 3 4 5 6 1 2 4 8 16
2 6 10 15 21 2 6 18 54 162
3 10 20 35 56 3 12 48 192 768
4 15 35 70 126 4 20 100 500 2500
5 21 56 126 252 5 30 180 1080 6480

5.3. Using the Newton identities. Ideally, we would like to take no more
samples than the number of monomials. Exploiting the Newton identities (2.5), we
show how to achieve this goal on an example, the interpolation of a planar quartic.
Figure 5.1 gives a schematic representation of the grid of sample points.

In the interpolation of a planar quartic, we compute the four traces consecutively.
To compute the second trace t2, we may already use t1, and to compute t3, we already
dispose of t1, t2, and for t4, we make use of t1, t2, and t3. We show how this saves
sample points:

1. At x = a2, instead of four, we compute three samples (a2, b21), (a2, b22),
(a2, b23) and compute b24 using the first trace t1, evaluated at x = a2:

b24 := t1(a2)− b21 − b22 − b23.(5.5)

2. At x = a3, we know already the coefficient of the Newton forms of t1 and t2
and use continuation only for two samples: (a3, b31) and (a3, b32). For the
values b33 and b34 we solve the system{

t1(a3) = b31 + b32 + b33 + b34,
t2(a3) = b31b32 + b31b33 + b31b34 + b32b33 + b32b34 + b33b34.

(5.6)

With the Newton identities (2.5), we compute from the values of the ele-
mentary symmetric functions (t1(a3), t2(a3)) the power sums for x = a3:
(s1(a3), s2(a3)). This means that the bij ’s satisfy{

s1(a3) = b31 + b32 + b33 + b34,
s2(a3) = b231 + b232 + b233 + b234

(5.7)

✲
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Fig. 5.1. Two grids of sample points to interpolate a planar quartic: the grid on the left is
complete, while on the right we find the white dots using Newton identities. The semiregularity of
the grid (same x-value in one column, different y-values in each row) is typical.
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or {
b33 + b34 = s1(a3)− b31 − b32,
b233 + b234 = s2(a3)− b231 − b232.

(5.8)

Let s̃1(a3) = s1(a3) − b31 − b32 and s̃2(a3) = s2(a3) − b231 − b232. Then we
invoke the Newton identities (2.5) to compute from the modified powers sums
(s̃1(a3), s̃2(a3)) evaluated at a3 into the values of the elementary symmetric
functions at a3: (t̃1(a3), t̃2(a3)). With (t̃1(a3), t̃2(a3)) we define

y2 − t1(a3)y + t2(a3) = y2 − (b33 + b34)y + b33b34(5.9)

= (y − b33)(y − b34)(5.10)

= 0.(5.11)

Thus, finding the missing samples (white dots on Figure 5.1 for x = a3) has
been reduced to solving a quadratic univariate equation.

3. At x = a4 we apply the Newton identities also twice to construct a univariate
equation of degree three to find the missing samples.

This procedure generalizes to any degree and any dimension, requiring only as
many samples as the number of monomials.

To find the roots of univariate polynomials, we use the method of Weierstrass
(also known as Durand–Kerner), described in [17] as “quite effective and increasingly
popular.” Convergence is global and quadratic in the limit [18]. Our implementation
is basic; see [13] for algorithmic improvements to this method.

5.4. Numerical aspects and experiments. In this section we first compare
our new algorithms with our approach to interpolation in [27], where we solved the
linear system of interpolation conditions directly. Then we illustrate the numerical
stability of the new algorithms on a test polynomial.

Compared to the direct approach of [27], we first observe an improved condi-
tioning of the interpolation problem when a structured grid of samples is used. This
improved conditioning leads to more accurate results regardless of the interpolation
algorithm. In an unstructured grid, errors on the samples creep in with greater fluc-
tuation than on a structured grid, where the ith coordinate, i = 1, 2, . . . , k, is the
same for all samples from a k-dimensional component. The second advantage of our
new algorithms concerns time. Using divided differences to solve the linear system
of N interpolation conditions requires O(N2) operations instead of O(N3) for plain
Gaussian elimination or QR factorization.

The bootstrapping method for Newton interpolation we used in [29] and the basic
interpolation with traces both require more samples than the number of monomials;
see Table 5.1. Exploiting the Newton identities, we get the complete interpolating
polynomial with an optimal number of samples. We next describe an experiment to
illustrate that this exploitation is numerically stable.

We consider to interpolate the polynomial

p(x, y) =
∑

0≤i+j≤d
xiyj , for d = 2, 3, . . . , 10.(5.12)

To this polynomial we apply our general implementation, treating p(x, y) as a polyno-
mial system. Assuming monodromy has shown the d generic points to belong to the
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Table 5.2
Numerics on the dense polynomial with unit coefficients for degrees d from 2 up to 10, on

square and triangular grids (i.e., without and with the exploitation of Newton identities) and in the
last column for the linear traces. Because only magnitudes matter, 8.559E–16 is shortened to –16,
and −∞ stands for a zero residual. We list the accuracy of the grid (eps) and the magnitude of the
highest residual after evaluation at the grid (gres) and at some test points (tres).

Square grid Triangular grid Linear trace
d eps gres tres eps gres tres eps gres tres

2 –16 –15 –13 –15 –16 –13 –16 −∞ –15
3 –15 –15 –14 –16 –15 –15 –16 −∞ –15
4 –14 –14 –13 –15 –15 –14 –16 −∞ –15
5 –14 –13 –12 –15 –15 –14 –16 −∞ –15
6 –15 –13 –14 –16 –14 –12 –16 −∞ –15
7 –15 –13 –10 –15 –14 –12 –16 −∞ –15
8 –15 –12 –13 –15 –13 –11 –15 −∞ –15
9 –15 –12 –14 –15 –13 –11 –16 −∞ –15

10 –15 –11 –08 –14 –12 –10 –16 –16 –15

same connected component, as a test (because in this particular case there is nothing
to certify) we compare three methods of certification:

1. construction of the complete trace form on a square grid;
2. construction of the complete trace form on a triangular grid, exploiting New-

ton identities;
3. construction of only the linear trace.

As in the general method for polynomial systems, we compute the magnitude
of the highest value the interpolation polynomial returns at the grid and at some
extra test points sampled from the component. These residuals would all be zero on
exact data and with exact arithmetic. Due to approximate samples—accurate up to
machine precision—and floating-point arithmetic, we observe errors when evaluating
at the grid and at the test points; see Table 5.2.

In Table 5.2 we see an increasing loss of precision as the degree increases, for
both with and without the exploitation of the Newton identities. This loss is due to
the intrinsic complexity of high degree polynomials. There is no significant difference
between the first two methods. From the last three columns of Table 5.2 we observe
no error propagation; i.e., residuals at test points are of the same magnitude as the
errors on the sample points. Compared to the complete trace form, linear traces are
tolerant to approximate data and require no extra precision, at least not for the case
of moderate degrees.

In Table 5.3 we list timings (on a Pentium III 800 MHz Linux machine) for the
three certification methods. We see an efficiency gain with the exploitation of the
Newton identities and a drastic difference when only the linear traces are computed.

In this experiment, the exploitation of the Newton identities is beneficial: fewer
samples are needed and the loss of accuracy is not significantly different from the
basic construction. However, for higher degrees, in situations where multiprecision
arithmetic is necessary we experienced severe losses of accuracy. In particular, we
applied this exploitation of Newton identities to one of the curves of degree 16 arising
in the cyclic 8-roots problem (described in greater detail below). Even if the roots of
the univariate polynomials were computed at full precision, the evaluation of those
roots at high degree polynomials turned out to be insufficient to reach the same
accuracy as without exploitation of the Newton identities. Based on these experiences,
we recommend the exploitation of Newton identities only for moderate degrees.
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Table 5.3
Timings on the dense polynomial with unit coefficients, for degrees d from 2 to 10 to construct

the complete interpolator plainly on a square grid, exploiting Newton identities on a triangular grid.
In the last column are timings to construct linear traces.

Square Triangular Linear
d grid grid traces

2 40 ms 50 ms 20 ms
3 110 ms 70 ms 30 ms
4 210 ms 170 ms 60 ms
5 420 ms 300 ms 110 ms
6 890 ms 480 ms 130 ms
7 1s 540 ms 760 ms 240 ms
8 2s 570 ms 1s 260 ms 320 ms
9 3s 730 ms 1s 800 ms 410 ms

10 4s 520 ms 3s 40 ms 600 ms

6. Applications. The algorithms have been implemented in a separate module
of PHCpack [34], available online from http://www.math.uic.edu/∼jan and recently
described in [30]. All reported timings are user cpu times on a Pentium III 800 Mhz
Linux machine.

In the applications we consider here, the positive dimensional components are
pure dimensional. Therefore, we restrict the numerical irreducible decomposition
of [27] to the following three stages:

1. computation of the generic points with the embedding of [26];
2. application of monodromy [29], grouping the generic points which belong to

the same irreducible component;
3. validation of the breakup predicted by monodromy by interpolation

(a) either with the complete polynomials,
(b) or with only the linear traces.

The methods presented in this paper only affect the last stage. We report tim-
ings for the other two stages to show the overall impact of our new approach. The
experiments do not exploit the possible improvements that could result by integrating
linear traces into the monodromy phase, as discussed in section 4.3.

6.1. The cyclic 8-roots and 9-roots problems. In [27] we had to limit our-
selves to the reduced versions of those problems. With the recent advances in the
decomposition algorithms we can factor the components into irreducibles without re-
course to multiprecision arithmetic.

6.1.1. The cyclic 8-roots problem. In this section we confirm earlier results
obtained in [2] by computer algebra methods. The timings for the three stages are as
follows:

1. The computation of all 144 generic points on the one-dimensional components
using the embedding in [26] takes 1h 12m 42s 650ms. Note that this compu-
tation also contains the calculation of the start solutions of paths leading to
all isolated roots.

2. The set of 144 generic points breaks up into 8 subsets of 16 points and
8 subsets of 2 points. The monodromy breakup algorithm of [29] requires
6m 24s 930ms.

3. (a) In [29] we did the validation constructing interpolating polynomials,
using standard arithmetic for the eight quadrics and using 32 deci-
mal places for the eight curves of degree 16. This whole process took
41m 54s 780ms to complete. So stage three accounts for 35% of the total
execution time.
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Table 6.1
Numerical results of the certification of cyclic 8-roots. The columns contain the degree d, the

accuracy of the samples in the grid, the largest value of the linear trace polynomial evaluated at the
grid res, and the absolute value of the difference between the predicted and computed sum of the
roots.

Accuracy Residual Difference
d of samples at grid at test pts

2 6.055E–16 1.110E–16 4.929E–14
2 4.733E–16 2.776E–16 4.308E–14
2 1.608E–15 8.882E–16 8.882E–15
2 4.143E–16 5.551E–17 5.551E–15
2 1.812E–15 1.776E–15 1.954E–14
2 1.095E–15 8.882E–16 3.642E–14
2 5.403E–16 2.220E–16 8.238E–14
2 1.815E–15 5.551E–16 2.132E–14
16 1.318E–14 6.661E–16 2.665E–14
16 6.182E–14 8.882E–16 1.199E–13
16 2.991E–14 8.882E–16 9.326E–14
16 1.239E–13 8.882E–16 9.859E–14
16 1.667E–13 8.882E–16 2.167E–13
16 8.589E–14 8.882E–16 7.372E–14
16 9.708E–15 2.220E–16 1.030E–13
16 8.168E–15 1.776E–15 5.418E–14

(b) With linear traces we need fewer samples, and expensive multiprecision
arithmetic can be avoided. This interpolation takes only 27s 540ms.
Compared to the time needed in stage three with the complete interpo-
lation polynomial, this runs more than 150 times faster. The total time
for the three stages reduces from about two hours to one hour and 18
minutes.

We summarize the numerical results of this calculation in Table 6.1. See [28] for
the computation of the linear span of the component.

We wish to point out that the sample points are distributed widely to have a
good conditioning of the interpolating polynomial. Comparing the second column
with column four in Table 6.1, we observe that there is hardly any loss of accuracy
for any of the roots; neither the quadrics nor the 16th degree polynomials show any
significant loss.

6.1.2. The cyclic 9-roots problem. This problem has been solved with Gröbner
basis methods in [4]. The timings for the three stages with our approach are as follows:

1. To compute generic points, we used the mixed-volume calculator of T.Y.
Li and X. Li [15] to set up the homotopy to solve the embedding of [26].
The mixed-volume computation took 13m 4s 540ms, and the total time to
compute all 20,376 paths of the embedding for two-dimensional components
was 9h 11m 27s 820ms. Only 18 of these paths land on two-dimensional
components: the other paths either diverge to infinity or are paths destined
to lead to the isolated solutions at a later stage of the embedding technique.

2. The set of 18 generic points breaks up into 6 subsets of 3 points each. The
monodromy breakup algorithm of [29] requires 2m 32s 400ms.

3. (a) In [29] we did the validation constructing interpolating polynomials, with
32 decimal places, which took 14m 56s 570ms.

(b) The validation using only linear traces took 9s 350ms. Details are in
Table 6.2.
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Table 6.2
Numerical results of the certification of cyclic 9-roots. The columns contain the degree d, the

accuracy of the samples in the grid, the largest value of the linear trace polynomial evaluated at the
grid res, and the absolute value of the difference between the predicted and computed sum of the
roots.

Accuracy Residual Difference
d of samples at grid at test pts

3 3.507E-13 0.000E+00 6.864E-14
3 5.118E-13 2.776E-17 1.456E-13
3 9.343E-13 1.388E-17 2.313E-13
3 1.529E-13 5.551E-17 3.583E-14
3 6.984E-13 0.000E+00 8.460E-14
3 1.165E-13 0.000E+00 4.080E-15

6.2. A moving Stewart–Gough platform. A generic Stewart–Gough plat-
form mechanism has forty isolated solutions, first established by continuation [19]
and later proven analytically [10, 35]. A special case of this mechanism, due to Griffis
and Duffy, has a solution curve of degree forty. This means that a Griffis–Duffy plat-
form has a one-degree-of-freedom motion, whereas a generic Stewart–Gough platform
is rigid. Husty and Karger [11] pointed out this fact and also identified a more spe-
cial Griffis–Duffy platform for which the solution curve breaks up into lower degree
irreducible components. We treat both cases here with our numerical methods and
briefly discuss some differences we found from Husty and Karger’s results.

For the general Griffis–Duffy platform, which herein we call case A, the solution
set consists of 12 lines and one irreducible curve of degree 28. The lines all correspond
to degeneracies that do not give actual assembly configurations of the mechanism. The
specialized case B also has 12 degenerate lines, but now the curve of degree 28 breaks
up into lower degree irreducible components—four sextics and a quartic. The timings
for the three stages in our approach are as follows:

1. To compute forty generic points using the embedding of [26] requires 52s
490ms for case A and 55s 810ms for case B.

2. For case A, the monodromy algorithm of [29] takes 33s 430ms to predict
a single component of degree 28. For case B, it takes 27s 630ms for the
monodromy algorithm to group the 28 generic points into five sets; four of
the five have cardinality six, and one set has four points.

3. (a) For case A, the validation with Newton interpolation for the curve of
degree 28 requires multiprecision (with 64 decimal places) and 812 sam-
ples (for 435 monomials), and it completes in 1h 19m 13s 110ms. For
case B, using 32 decimal places in constructing the complete interpolat-
ing polynomials with divided differences takes 2m 34s 50ms.

(b) With linear traces, case A takes 4s 750ms and case B requires 4s 320ms.
This example shows several advantages of using linear traces for validation of

the monodromy breakup. Compared to the use of interpolating polynomials, the
computation time is not only drastically reduced when using linear traces, but also
becomes nearly identical for both cases A and B. Interpolating a degree 28 polyno-
mial in two variables for case A is expensive and requires high precision arithmetic. In
fact, because of numerical instability of traces in this case, we used the bootstrapping
Newton technique as in [29] to construct the complete interpolation filter. Case B,
comprised of five irreducible curves whose degrees sum to 28, is much more tractable
by interpolating polynomials, but still the use of only linear traces is much superior.
Table 6.3 lists numerical results of the methods, showing that the linear traces are
quite stable using only double precision arithmetic. In summary, compared to inter-
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Table 6.3
Numerical results of the certification of case A (d = 28) and case B (d = 6, 6, 6, 6, 4) for the

irreducible curves occurring in moving Stewart–Gough platforms. The columns contain the accuracy
of the samples in the grid, the largest value of the interpolating filter (or the linear trace) evaluated
at the grid, and the residual at the test points. With linear traces, we list the difference between the
predicted and computed sum at the test points.

With complete interpolation Using linear traces only
Accuracy Residual Residual Accuracy Residual Difference

d of samples at grid at test pts of samples at grid at test pts

28 1.316E–59 3.800E–37 1.107E–20 4.013E–13 1.791E–12 1.791E–12

6 3.259E–28 2.800E–27 1.020E–20 1.272E–12 2.442E–15 4.694E–13
6 5.243E–29 8.495E–28 6.416E–21 9.944E–13 1.332E–15 3.659E–13
6 1.152E–28 6.000E–30 2.502E–21 8.660E–13 2.220E–16 5.853E–13
6 4.730E–29 2.540E–28 4.936E–20 7.438E–14 2.220E–15 1.083E–11
4 4.758E–30 4.300E–31 3.357E–27 1.063E–14 2.220E–16 3.408E–14

polating polynomials, our Certify algorithm, based on linear traces, eliminates the
large fluctuation in timings with superior numerical stability and efficiency.

We show how we can observe the propagation of roundoff errors. Compare the
accuracy of the samples with the residuals at the test points in Table 6.3. For case A,
the accuracy of the samples is 10−59, while the residuals at the test points evaluate to
10−20. During the calculation we lost about 30 decimal places. The loss in case B is
more modest, between 7 and 9 decimal places, and makes the difference in exponents
in the second and fourth columns of Table 6.3. With linear traces, we observe from
the data in Table 6.3 that we lose at most 3 decimal places.

While the reduction in execution times may turn modest in the near future as
more and faster machines will become even more widely available, the major benefit
of using linear traces is that reliable results are solely obtained with standard ma-
chine arithmetic, that is, without using any multiprecision numbers. This means that
errors on the coefficients of the input system that are less than the standard machine
precision can be neglected and the algorithm is numerically stable.

We conclude this section with some remarks not related to numerical performance,
but rather concerning the decomposition itself. The decompositions we have computed
for the Griffis–Duffy platforms differ from the results obtained by Husty and Karger
in [11]; one discrepancy is reconcilable, but others are not. First, for the general
example, case A, we find a degree 28 curve, which at first seems to conflict with their
result of a degree 20 curve. This is not, however, a contradiction, because we have
analyzed the curve in the full space of rotation and translation (represented in Study
coordinates). The degree falls to 20 when the curve is projected onto its rotational
component only, as done by Husty and Karger. However, we also find a significant
difference for the specialized case B: Husty and Karger do not list one of the five
irreducible components in their analysis. Their approach, using a combination of
special reasoning and computer algebra, gives some extra insight in some respects,
but our automated numerical method is less subject to human error. To tackle difficult
problems, it will sometimes be beneficial to use both numeric and symbolic processes.
In this case, knowing about the existence of the fifth irreducible component and seeing
its numerical structure, one might return to the symbolic approach to further elucidate
it. (Of course, one might also pursue a completely automated symbolic approach as
well, but that is another story.)

We refer to [32] for a description of this and other applications of our approach
to polynomial systems in mechanism design.
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7. Conclusions. In [27], we presented a numerical algorithm to decompose so-
lution sets of polynomial systems into irreducible components of various dimensions
and degrees. The main drawback of that algorithm is numerical instability on compo-
nents of high degree, due to the reliance on interpolating polynomials to filter generic
points into irreducible components. To deal with this difficulty, multiprecision arith-
metic was used whenever high degrees were encountered, requiring a high accuracy for
the input coefficients of the polynomial systems and requiring much more computer
time than standard precision for each arithmetic operation. While the sequels [28]
and [29] lessened the need for high precision arithmetic to some extent, it is only in
this paper that we can present a numerically stable decomposition algorithm to solve
the cornerstone problem in numerical algebraic geometry [33].

We summarize how standard machine arithmetic can be employed throughout the
numerical irreducible decomposition algorithm. The sequence of homotopies of [26]
produces generic points on every positive dimensional component, mixed with “junk”:
points on higher solution components. To separate those junk points from the generic
points, we now propose to use the homotopy membership test of [28] instead of the
filtering polynomials in [27]. Unlike with high degree polynomials, this homotopy
membership test does not require multiprecision arithmetic. Also the monodromy
algorithm of [29] predicts the breakup of pure dimensional components using only
standard machine arithmetic. With this paper, we finally remove any need for inter-
polating polynomials, because linear traces suffice to certify the predicted breakup.
As linear polynomials are tolerant to roundoff and efficient to interpolate, our de-
composition algorithms have gained significantly in speed and robustness. Practical
evidence for these claims is provided in the reports on benchmark applications.
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R.C. Laubenbacher, and V. Powers, eds., AMS, Providence, RI, 2001, pp. 37–51.

[29] A.J. Sommese, J. Verschelde, and C.W. Wampler, Using monodromy to decompose solution
sets of polynomial systems into irreducible components, in Application of Algebraic Geom-
etry to Coding Theory, Physics and Computation, C. Ciliberto, F. Hirzebruch, R. Miranda,
and M. Teicher, eds., Kluwer Academic Publishers, Norwell, MA, 2001, pp. 297–315.

[30] A.J. Sommese, J. Verschelde, and C.W. Wampler, Numerical irreducible decomposition
using PHCpack, in Mathematics and Visualization, M. Joswig and N. Takayama, eds.,
Springer–Verlag, to appear.

[31] A.J. Sommese, J. Verschelde, and C.W. Wampler, A method for tracking singular paths
with application to the numerical irreducible decomposition, in Algebraic Geometry, a Vol-
ume in Memory of Paolo Francia, M.C. Beltrametti, F. Catanese, C. Ciliberto, A. Lanteri,
C. Pedrini. and W. de Gruyter, eds., to appear.

[32] A.J. Sommese, J. Verschelde, and C.W. Wampler, Advances in polynomial continuation for
solving problems in kinematics, in Proceedings of the ASME Design Engineering Technical
Conference, Montreal, 2002, CD-ROM, ASME International, Fairfield, NJ, 2002.

[33] A.J. Sommese and C.W. Wampler, Numerical algebraic geometry, in The Mathematics of
Numerical Analysis, Lectures in Appl. Math. 32, J. Renegar, M. Shub, and S. Smale, eds.,
AMS, Providence, RI, 1996, pp. 749–763.

[34] J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation, ACM Trans. Math. Software, 25 (1999), pp. 251–276.

[35] C.W. Wampler, Forward displacement analysis of general six-in-parallel SPS (Stewart) plat-
form manipulators using soma coordinates, Mech. Mach. Theory, 31 (1996), pp. 331–337.



hp-APPROXIMATION THEORY FOR BDFM AND RT FINITE
ELEMENTS ON QUADRILATERALS∗

MARK AINSWORTH† AND KATIA PINCHEDEZ†

SIAM J. NUMER. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 2047–2068

Abstract. We study approximation properties of hp-finite element subspaces of H(div,Ω) and
H(rot,Ω) on a polygonal domain Ω using Brezzi–Douglas–Fortin–Marini (BDFM) or Raviart–Thomas
(RT) elements. Approximation theoretic results are derived for the hp-version finite element method
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w(Ω). These results culminate in
a proof of the characteristic exponential convergence property of the hp-version finite element method
on suitably designed meshes under similar conditions needed for the analysis of the H1(Ω) case. By
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1. Introduction. The variational formulation of several important classes of
problem arising in science and engineering involves the space

H(div,Ω) =
{
v ∈ L2(Ω) : div v ∈ L2(Ω)

}
or the related space H(rot,Ω). We mention flow through porous media, time-harmonic
Maxwell’s equations and elastostatics as particular examples. The finite element ap-
proximation of such problems entails the construction of finite dimensional subspaces
of H(div,Ω) and H(rot,Ω). Many schemes have been proposed, such as Raviart–
Thomas (RT) elements, Brezzi–Douglas–Fortin–Marini (BDFM) elements, and the
related Nédélec, or edge, elements, to name but a few. We refer the interested reader
to the book of Brezzi and Fortin [9] for further information.
If the physical domain Ω is polygonal, then it is well known [11] that the solutions

of the governing equations exhibit singularities in the neighborhood of the vertices of
the domain. The lack of smoothness in the underlying solution manifests itself in
the form of a degraded rate of convergence as the finite element subspace is enriched.
The h-version of the finite element method [10] seeks convergence through reduction
of the mesh-size h (either uniformly or adaptively), whereas the p-version of the finite
element method is based on increasing the degree of the polynomial while maintaining
a fixed mesh. Both versions give at best algebraic rates of convergence on a polygonal
domain. However, a proper combination of each, the hp-version, may deliver exponen-
tial rates of convergence [12, 13]. We refer to the extensive survey article of Babuška
and Suri [7], Babuška and Guo [2], or the book by Schwab [20] for more details.
Although a great deal is known of hp-approximation of problems posed over

the Sobolev space H1(Ω), comparatively little is known in the case of H(div,Ω) and
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H(rot,Ω). Suri [22] and Milner and Suri [18] studied the properties of p-version finite
element approximations of the spaces H(div,Ω) and H(rot,Ω) in two space dimensions
with uniform order p on a regular mesh. Subsequently, the analysis was extended to
the three dimensional case by Monk [19], working in the setting of Maxwell’s equa-
tions again with uniform order p on a regular mesh, and then to the hp-version in two
dimensions on a regular quasi-uniform mesh with uniform order p in [17]. One feature
peculiar to the hp-version is the use of nonuniform polynomial degree distribution
and graded, non-quasi-uniform meshes. Vardapetyan and Demkowicz [23] presented
a construction allowing the generalization of certain types of Nédélec element to the
hp-setting. These finite element subspaces of H(div,Ω) and H(rot,Ω) are part of a
wider picture of discrete differential forms forming a bridge between the standard
H1(Ω)-conforming finite elements and L2(Ω)-conforming elements [8, 14, 15, 16].

Despite increasing interest and use of hp-approximations of the spaces H(div,Ω)
and H(rot,Ω), there has been no detailed study of the approximation properties.
Specifically, there is no proof of the celebrated, characteristic, exponential conver-
gence property of the hp-version. It is the aim of the present work to address this
problem. Earlier work [21] dealt with hp-approximation on regular, globally quasi-
uniform meshes based on regularity in standard Sobolev spaces. Here, we shall deal
with approximation of functions belonging to the weighted Sobolev spaces Hs,�

ω (Ω)
and the related spaces B�w(Ω), studied by Babuška and Guo [2, 3], that play a piv-
otal role in the analysis of the hp-version. We develop the approximation theoretic
results needed to analyze the hp-version including non-quasi-uniform meshes with
hanging nodes, culminating in a proof of exponential convergence for approximation
of H(div,Ω) and H(rot,Ω) under the usual conditions assumed for the H1(Ω) case.
By way of illustration, we deduce exponential convergence rates for mixed hp-finite
element approximation of flow through porous media.

2. Model problem and its regularity. In the following, vector quantities shall
always be represented by bold symbols and, for any real s, [s] shall denote the integer
part of s.

Let Ω ⊂ R
2 be a polygonal domain with vertices located at Ai, i = 1, . . . ,M .

The Sobolev space Hr(Ω), for r ≥ 0 integer, consists of functions defined on Ω whose
derivatives of order up to r are square integrable and is equipped with the usual norm
and seminorm:

‖u‖2Hr(Ω)

r∑
m=0

|u|2Hm(Ω), |u|2Hr(Ω) = ‖ |Dr u| ‖2L2(Ω),

where |Dr u|2 =∑i+j=r |D(i,j) u|2. In particular, observe that H0(Ω) = L2(Ω).

Next, let us introduce definitions and notations for certain weighted Sobolev
spaces [12]. The distance between x and the vertex Ai is denoted by ri(x) = |x−Ai|.
Let ω = (ω1, . . . , ωM ) be an M -tuple of real numbers 0 ≤ ωi < 1 for i = 1, . . . ,M and
ω �= 0. We introduce weight functions defined by

Φω(x) =
∏M
i=1 r

ωi
i (x) and Φω±p(x) =

∏M
i=1 r

ωi±p
i (x),

where, for any integer p, the M -tuple ω ± p is equal to (ω1 ± p, . . . , ωM ± p).
For integers r ≥  ≥ 0, the weighted Sobolev space Hr,�ω (Ω) denotes the completion

of C∞(Ω) under the norm defined by
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‖u‖2Hr,�
ω (Ω) = ‖u‖2H�−1(Ω) + |u|2Hr,�

ω (Ω) for  ≥ 1,(1)

‖u‖2Hr,0
ω (Ω) = ‖u‖2Hr

ω(Ω) = |u|2Hr,0
ω (Ω) for  = 0,(2)

where

|u|2Hr,�
ω (Ω) =

r∑
k=�

∫
Ω

∣∣∣Dk u(x)∣∣∣2 Φ2
ω+k−�(x) dx.(3)

For r =  = 0 we also write H0,0
ω (Ω) = L2

ω(Ω). The weighted Sobolev space Hs,�ω (Ω)
for a noninteger s is defined using the K-method of interpolation [20]:

Hs,�ω (Ω) =
[
Hr,�ω (Ω),H

r+1,�
ω (Ω)

]
θ,∞

for s = r + θ, with r integer and 0 < θ < 1.
For  ≥ 0 integer, a function u belongs to the countably normed space B�ω(Ω) if

there exist constants C > 0 and d ≥ 1 such that, for any integer r ≥ ,

u ∈ Hr,�ω (Ω) with

(∫
Ω

|Dr u|2Φ2
ω+r−� dx

)1/2

≤ C dr−� (r − )!(4)

Furthermore, if u ∈ B�ω(Ω) with the corresponding constants C and d, then u belongs
to the space Hs,�ω (Ω) for any real s ≥  and satisfies the inequality

‖u‖Hs,�
ω (Ω) ≤ C ds−�

√
s Γ(s− + 1),(5)

where Γ is the gamma function.
For given data f ∈ L2(Ω), we shall consider the following model problem: find p

such that

−div A grad p(x) = f(x) in Ω(6)

subject to p = 0 on ∂Ω, where A is a 2×2 symmetric positive definite matrix. Standard
arguments lead to the existence of a unique solution p ∈ H1

0(Ω). The following result
shows that if the data f belong to the space B0

ω(Ω), then the solution p has additional
smoothness properties relative to the countably normed spaces.

Theorem 1. If the data f ∈ B0
ω(Ω), then the solution p of (6) satisfies p ∈ B2

ω(Ω),
and the flux u = A grad p satisfies u ∈ B1

ω(Ω).
Proof. The regularity of p is established in [12], and the regularity of u follows as

an immediate consequence.

3. Finite element discretization.

3.1. Partitions. The polygonal domain Ω is assumed to be partitioned into the
union of finitely many nonoverlapping quadrilaterals T = {K}. Each element K is
assumed to be the image of the reference element K̂ = (−1,+1)2 under a smooth,
invertible mapping FK : K̂ −→ K. More generally, we consider a family of such
partitions, and we suppose that the elements are shape regular in the sense that
the ratio of the diameter hK of the smallest circle containing an element K to the
diameter ρK of the largest circle contained within K is bounded uniformly over the
whole family.
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A standard finite element partition generally consists of elements such that the
nonempty intersection of any pair of distinct elements is either a single common vertex
or a single common edge. In order to facilitate local refinements, this assumption is
relaxed to allow hanging nodes [1]. Thus, in addition to the above conditions, it is
permitted for a nonempty intersection to be a complete side of at least one element
and a single portion of an edge or the neighboring element obtained by bisecting the
edge (see Figure 1). The node located at the midpoint is said to be hanging. An
edge containing a hanging node is said to be broken. It is also possible to break edges
unevenly, which is advantageous in accelerating resolution of corner singularities to
be considered later.

Fig. 1. Geometric mesh with hanging nodes.

3.2. Polynomial spaces on the reference element. For nonnegative integers
k and , the space Q k,� consists of polynomials of degree at most k and  in the first
and second variables, respectively. The notation Q k = Q k,k is adopted in the case
k = . The space Pk consists of polynomials of total degree at most k.

The Brezzi–Douglas–Fortin–Marini space of order k (BDFMk) is defined [9, p.
123] by

BDFMk =
{
Pk+1 \ (ηk+1)

} × {
Pk+1 \ (ξk+1)

}
and is equipped with an interpolation operator Π̂k satisfying Π̂ku ∈ BDFMk and


∫
K̂

(
Π̂k u− u

)
· p dx = 0 ∀p ∈ [Pk−1]

2,

∫
γm

(
Π̂k u− u

)
· n q ds = 0 ∀ q ∈ Rk(γm), m = 1, 2, 3, 4,

(7)

where Rk(γ) denotes polynomials of degree at most k in the arclength s, and n is the
unit outward normal on the edge. The Raviart–Thomas space of order k (RTk) is
defined [9, p. 119] by

RTk = Q k+1,k × Q k,k+1

with corresponding operator Π̂k satisfying Π̂ku ∈ RTk and
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∫
K̂

(
Π̂k u− u

)
· p dx = 0 ∀p ∈ Q k−1,k ×Q k,k−1,

∫
γm

(
Π̂k u− u

)
· n q ds = 0 ∀ q ∈ Rk(γm), m = 1, 2, 3, 4.

(8)

The following result shows that these operators are well defined.
Proposition 2. The interpolation operators Π̂k are unisolvent with respect to

the BDFMk and RTk spaces. Furthermore, for sufficiently smooth functions u ∈
H(div, K̂), the following “commuting diagram” property holds:

div
(
Π̂ku

)
= π̂k(divu),(9)

where π̂k is the L2(K̂)-orthogonal projection onto Pk (respectively, Qk) when Π̂k is
the operator associated with the space BDFMk (respectively, RTk).

Proof. Unisolvence follows using arguments given in [9, section III.3.2]. The com-
muting diagram property follows on observing that divBDFMk = Pk (or divRTk =
Qk) and using [9, Proposition III.3.7].

3.3. Finite element spaces on a single physical element. Let k ≥ 1 denote
the polynomial degree of the space (either BDFMk or RTk) used to construct the finite
element space. The Piola transformation given by

LK û = 1

det (JK)
JK û ◦ F−1

K(10)

defines a contravariant mapping and, in particular, preserves moments of the normal
component of û on element edges [9, p. 97]. Here, JK is the Jacobian matrix of
the mapping FK . The Piola transformation is used to define the local finite element
spaces on the physical element K as follows:

ΓBDFM
k (K) = { u : u = LK û, û ∈ BDFMk }

with ΓRT
k (K) defined in the same fashion. The space ΓBDFM

k (K) is equipped with an

interpolation operator ΠBDFM
k defined in terms of the local operator Π̂k by the rule

Πk = LK Π̂k L−1
K .(11)

The global operator associated with the RTk space is defined by the same expression.

3.4. Global finite element spaces. Let T be a partition of Ω. The global
finite element spaces are defined by

ΓBDFM
k (Ω) = { u ∈ H(div,Ω) : u|K ∈ ΓBDFM

k (K) }(12)

with a similar expression for ΓRT
k (Ω). Although it is also possible to extend the

analysis to the situation where combinations of the two local spaces are used in the
construction of the global space, we shall not pursue this explicitly here.
If the partition T contains no broken edges, then the global interpolation op-

erator Π associated with the global finite element space Γk(Ω) may be defined in
terms of the local interpolation operators in the usual way, as for example in [9,
equation (3.71)]:

(Π u)|K = ΠK,k (u|K) ∀K ∈ T .(13)
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γ K

γ′K ′

Fig. 2. Broken edge γ′ and subedge γ.

This definition, albeit completely standard, does not extend to the situation where
broken edges are present. For instance, consider the configuration shown in Figure 2.
The local interpolantΠK,k u on elementK depends on the function u·n restricted

to the edge γ. Equally well, ΠK′,k u depends on values of u ·n on the entire edge γ′.
It is not difficult to construct examples where the resulting normal components of
ΠK,k u and ΠK′,k u disagree on the common boundary γ:

(ΠK,k u) · n �= (ΠK′,k u) · n on γ.(14)

This shows that it is not possible to define the global interpolant in terms of local
interpolants using expression (13).
This difficulty is resolved by realizing that the degrees of freedom associated with

the edges γ and γ′ must be constrained to ensure H(div,Ω) conformity holds. The
degrees of freedom on the longer edge γ′ take precedence over the values of the degrees
of freedom on the shorter edge. Thus, for sufficiently smooth u ∈ H(div,Ω), the values
of the global interpolant Πu on edge γ′ are defined using global moment conditions
on edge γ′ as follows:∫

γ′
(Πu− u) · n q ds = 0 ∀q ∈ Rk(γ

′)(15)

in place of (7). (Strictly speaking, q is a pull-back polynomial.) This definition
coincides with (13) for a mesh containing no broken edges.

4. Approximation theory. The purpose of this section is to establish some
basic approximation properties of the local interpolation operators Π̂k.

4.1. Explicit form for local interpolation operators. Let k specify the de-
gree of polynomial on a reference K̂, as in Figure 3. First, we introduce the polynomial
extension operator Eγ1k : Rk(γ1) −→ Pk+1 \ {ηk+1} defined by

(Eγ1k w) (ξ, η) =

k∑
i=0

wi
(−1)k−i+1

2

(
Lk−i+1(ξ)− Lk−i(ξ)

)
Li(η), (ξ, η) ∈ K̂,(16)

where w ∈ Rk(γ1) is of the form

w(η) =

k∑
i=0

wi Li(η), η ∈ (−1,+1).(17)

Here, {Li} are Legendre polynomials and (17) uniquely defines the coefficients wi.
Consequently, the extension is well defined by expression (16). Moreover, it possesses
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K̂

(−1,−1)

(1, 1)

γ3

γ1 γ2

γ4

ξ

η

Fig. 3. Notation for the reference element.

the property that, for w in Rk(γ1),

Eγ1k w|
γ1
= w and Eγ1k w|

γ2
= 0.(18)

The extension operators Eγ2k : Rk(γ2) −→ Pk+1 \ {ηk+1} and Eγmk : Rk(γm) −→
Pk+1 \ {ξk+1}, m = 3, 4, are defined in a similar way with properties analogous
to (18).

The L2(K̂)-orthogonal projection onto Pk is denoted by π̂
P
k , the L2(γm)-orthogonal

projector onto Rk(γm) is denoted by Rγmk , and Trγm denotes the trace operator. The

next result provides an explicit expression for the interpolant Π̂k associated with the
space BDFMk.

Lemma 3. Let k ≥ 1. Then the interpolation operator Π̂k for the space BDFMk

is given by

Π̂ku =
(
π̂P
k−1 ux +

∑2
m=1 Eγmk

(
Rγmk Trγm ux − Trγm π̂P

k−1 ux
)
,

π̂P
k−1 uy +

∑4
m=3 Eγmk

(
Rγmk Trγm uy − Trγm π̂P

k−1 uy
))
,

(19)

where u = (ux, uy).
Proof. It is clear that the expression (19) defines a function belonging to BDFMk.

It therefore suffices to verify that conditions (7) hold.
Let ũx denote the first component of (19). Then, for p ∈ Pk−1 we have, thanks

to the orthogonality properties of Legendre polynomials,∫
K̂

ũx p dξ dη =

∫
K̂

π̂P
k−1 ux p dξ dη =

∫
K̂

ux p dξ dη.

Similarly, property (18) implies that, for q ∈ Rk(γm),∫
γm
(Trγm ũx) · q dη

=
∫
γm

(
Trγm π̂

P
k−1 ux

) · q dη + ∫
γm

(
Rγmk Trγm ux − Trγm π̂P

k−1 ux
) · q dη

=
∫
γm
(Rγmk Trγm ux) · q dη =

∫
γm
(Trγm ux) · q dη,
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and the proof is complete.
Extension operators for the RTk space are defined by Eγ1k : Rk(γ1) −→ Q k+1,k,

where

(Eγ1k w) (ξ, η) =
k∑
i=0

(−1)k+1

2
ci (Lk+1(ξ)− Lk(ξ)) Li(η)

with similar definitions for Eγmk , m = 2, 3, 4. There is no danger of confusion in using
the same notation for the extension operators in both the RT and BDFM cases. The
L2(K̂)-orthogonal projection onto the space Q k,� is denoted by π̂

Q
k,�. Then, by analogy

with Lemma 3, we have the following.
Lemma 4. Let k ≥ 1. Then the interpolation operator Π̂k for the space RTk is

given by

Π̂ku =

(
π̂Q
k−1,k ux +

∑2
m=1 Eγmk

(
Rγmk Trγm ux − Trγm π̂Q

k−1,k ux

)
,

π̂Q
k,k−1 uy +

∑4
m=3 Eγmk

(
Rγmk Trγm uy − Trγm π̂Q

k,k−1 uy

))
.

(20)

4.2. Approximation on the reference element. It is convenient to introduce
the shorthand notation

[w]
2

r,Ω̂
=

(
h1

2

)2r

‖D(r,0) w ‖2L2(Ω̂) +

(
h2

2

)2r

‖D(0,r) w ‖2L2(Ω̂)

in the case where Ω̂ = (0, h1) × (0, h2) and w ∈ Hr(Ω̂), r ∈ N. Furthermore, in
what follows, C denotes positive constants that are independent of other quantities
appearing in the same relation and whose values need not be the same in any two
places.
The following result will prove useful.
Lemma 5. Suppose that w ∈ Hr(K̂), r ≥ 0, has Legendre series expansion

w(ξ, η) =
∞∑
i=0

∞∑
j=0

ai,j Li(ξ) Lj(η).(21)

Then, for all integers 0 ≤ r1 ≤ p, 0 ≤ r2 ≤ q, with r1 + r2 ≤ r, there holds
∞∑
i=p

∞∑
j=q

ρi ρj a
2
i,j ≤

(p− r1)!
(p+ r1)!

(q − r2)!
(q + r2)!

‖D(r1,r2) w‖2L2(K̂),(22)

where ρi = (i+ 1/2)
−1.

Proof. If r1 and r2 satisfy the hypothesis, then it is well known (see, e.g.,
Lemma 4.1 [12]), that

∞∑
i=r1

∞∑
j=r2

ρi ρj a
2
i,j

(i+ r1)!

(i− r1)!
(j + r2)!

(j − r2)! =
∫
K̂

(1− ξ2)r1 (1− η2)
r2 |D(r1,r2) w |2 dξ dη.

Now, for p and q as in the statement, we have

∞∑
i=p

∞∑
j=q

ρi ρj a
2
i,j ≤


 ∞∑
i=p

∞∑
j=q

ρi ρj a
2
i,j

(i+ r1)!

(i− r1)!
(j + r2)!

(j − r2)!


 (p− r1)!
(p+ r1)!

(q − r2)!
(q + r2)!

,
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and the result follows at once.
We begin with approximation properties for the L2(K̂)-projections π̂Q

k and π̂
P
k .

Lemma 6. Let π̂Q
k : L2(K̂) −→ Q k and π̂

P
k : L2(K̂) −→ Pk denote orthogonal

projections. Suppose w ∈ Hr(K̂); then for 0 ≤ r ≤ k + 1,

‖w − π̂Q
kw‖

2

L2(K̂)
≤ (k + 1− r)!
(k + 1 + r)!

[w]
2

r,K̂
,(23)

and for 0 ≤ r ≤ [k/2] + 1,

‖w − π̂P
kw‖

2

L2(K̂) ≤
([k/2] + 1− r)!
([k/2] + 1 + r)!

[w]
2

r,K̂
.(24)

Proof. By density, it suffices to consider w of the form (21) so that

π̂Q
kw(ξ, η) =

k∑
i=0

k∑
j=0

ai,j Li(ξ) Lj(η).

Orthogonality of Legendre polynomials implies that

‖w − π̂Q
kw‖

2

L2(K̂)
≤

 ∞∑
i=k+1

∞∑
j=0

+

k∑
i=0

∞∑
j=k+1


 a2

i,j ρi ρj .(25)

The first term on the right-hand side of (25) is bounded using Lemma 5:

∞∑
i=k+1

∞∑
j=0

a2
i,j ρi ρj ≤

(k + 1− r)!
(k + 1 + r)!

‖D(r,0) w‖2L2(K̂).

A similar bound applies for the second term and the first result follows at once.
The second bound follows trivially from the first thanks to the inclusion Q [k/2] ⊂

Pk and optimality of the L2(K̂)-projection π̂P
k .

The following technical lemma will be useful in deriving bounds for the accuracy
of the interpolation operators.

Lemma 7. Let w ∈ Hr(K̂), r > 1, be of the form (21). Then for fixed ε ∈ (0, r−1)
we have, for r ≤ k,

∞∑
j=0

ρj

( ∞∑
i=k

ai,j (−1)i
)2

≤ C k2

ε

(k − r)!
(k + r)!

[w]
2

r,K̂
(26)

while, for r ≤ [k+1
2

]
,

∞∑
j=0

ρj


 ∞∑

ai,j (−1)i
i=max(0,k−j)




2

≤ C k2

ε

([
k+1
2

]− r)!([
k+1
2

]
+ r
)
!
[w]

2

r,K̂
.(27)

Moreover, for r ≤ k,
∞∑
j=k

ρj

( ∞∑
i=0

ai,j (−1)i
)2

≤ C k2

ε

(k − r)!
(k + r)!

[w]
2

r,K̂
.(28)
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In each case, C > 0 is independent of r and k.
Proof. Let ε ∈ (0, r − 1). Then, by the Cauchy–Schwarz inequality,

∞∑
j=0

ρj

( ∞∑
i=k

ai,j (−1)i
)2

≤
∞∑
j=0

∞∑
i=k

ρi ρj a
2
i,j i

2+2ε ·
∞∑
i=k

ρ−1
i i−2−2ε.

Bounding the second factor on the right-hand side by
∑∞
i=k i

−1−2ε ≤ C/ε k−2ε, we
obtain

∞∑
j=0

ρj

( ∞∑
i=k

ai,j (−1)i
)2

≤ C k−2ε

ε

∞∑
i=k

k∑
j=0

ρi ρj a
2
i,j

(i+ r)!

(i− r)! f(i),

where f(x) = x2+2ε (x− r)!/(x+ r)!, x ≥ k. If ε < r − 1, then, for k sufficiently
large, f is decreasing. Hence,

∞∑
j=0

ρj

∞∑
i=k

(
ai,j (−1)i

)2

≤ C k−2ε

ε
f(k)

∞∑
i=k

∞∑
j=0

ρi ρj a
2
i,j

(i+ r)!

(i− r)!

≤ C k2

ε

(k − r)!
(k + r)!

‖D(r,0) w‖2L2(K̂),

arguing as in Lemma 5. This completes the proof of the first result.
Turning to the second result, we begin by observing that

1

2

∞∑
j=0

ρj


 ∞∑

ai,j (−1)i
i=max(0,k−j)




2

≤
∞∑
j=0

ρj

( ∞∑
i=k

ai,j (−1)i
)2

+

∞∑
j=0

ρj


k−1∑

ai,j (−1)i
i=max(0,k−j)




2

.

The first term is bounded using (26), and it suffices to consider the second term.
Employing the Cauchy–Schwarz inequality once again gives

∞∑
j=0

ρj


k−1∑

ai,j (−1)i
i=max(0,k−j)




2

≤
∞∑
j=0

k∑
ρi ρj a

2
i,j

i=max(0,k−j)

k∑
i=0

ρ−1
i .

The second factor is bounded by Ck2, where C is independent of k, whilst the first
factor is bounded by observing that

∞∑
j=0

k∑
ρi ρj a

2
i,j

i=max(0,k−j)
≤ ‖w − π̂P

k−1w‖
2

L2(K̂)
≤
([
k+1
2

]− r)!([
k+1
2

]
+ r
)
!
[w]

2

r,K̂
,

where Lemma 6 has been used. Consequently,

∞∑
j=0

ρj


k−1∑

ai,j (−1)i
i=max(0,k−j)




2

≤ C k2

([
k+1
2

]− r)!([
k+1
2

]
+ r
)
!
[w]

2

r,K̂
,
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and gathering results gives the second estimate.
In order to derive the final estimate, observe that

1

2

∞∑
j=k

ρj

( ∞∑
i=0

ai,j (−1)i
)2

≤
∞∑
j=k

ρj



( ∞∑
i=k

ai,j (−1)i
)2

+

(
k−1∑
i=0

ai,j (−1)i
)2

 .

The first term is bounded by

∞∑
j=0

ρj

( ∞∑
i=k

ai,j (−1)i
)2

and then applying the first part of Lemma 7. The second term is bounded using the
Cauchy–Schwarz inequality to obtain

∞∑
j=k

(
k−1∑
i=0

ai,j (−1)i
)2

≤
k−1∑
i=0

∞∑
j=k

ρi ρj a
2
i,j ·

k∑
i=0

ρ−1
i

≤ C k2
k−1∑
i=0

∞∑
j=k

ρi ρj a
2
i,j

and then using Lemma 5 to obtain, for r ≤ k,
k−1∑
i=0

∞∑
j=k

ρi ρj a
2
i,j ≤

(k − r)!
(k + r)!

‖D(0,r) w‖2L2(K̂).

The estimate follows from these results.
We now present bounds for the interpolation operators.
Lemma 8. Let k ≥ 1. If u ∈ Hr(K̂), then, for 1 < r ≤ k,

‖u− Π̂
RT

k u‖
2

≤ C

ε
k
(k − r)!
(k + r)!

[u]
2

r,K̂
,(29)

and, for 1 < r ≤ [k/2],

‖u− Π̂
BDFM

k u‖
2

≤ C

ε
k2 ([k/2]− r)!
([k/2] + r)!

[u]
2

r,K̂
,(30)

where ε ∈ (0, r − 1).
Proof. Let u = (ux, uy) ∈ Hr(K̂). By a density argument, it suffices to consider

ux of the form (21). By Lemma 4,

(
u− Π̂

RT

k u
)
x
= ux − π̂Q

k−1,kux +

2∑
m=1

Eγmk wm,

where

w1(η) =

k∑
j=0

( ∞∑
i=k

ai,j (−1)i
)
Lj(η)
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with w2 defined analogously. Applying the triangle inequality gives∥∥∥(u− Π̂
RT

k u
)
x

∥∥∥2

L2(K̂)
≤ ‖ux − π̂Q

k−1,kux‖
2

L2(K̂)
+

2∑
m=1

‖Eγmk wm‖2L2(K̂)
,

and the first term is bounded using Lemma 6 after observing that

‖ux − π̂Q
k−1,kux‖L2(K̂)

≤ ‖ux − π̂Q
k−1ux‖L2(K̂)

.

On recalling the definition of the extension operator Eγ1k associated with RT elements,
we obtain

‖Eγ1k w1‖2L2(K̂)
=
1

4
(ρk + ρk+1)

k∑
j=0

ρj

( ∞∑
i=k

ai,j (−1)i
)2

≤ C k

ε

(k − r)!
(k + r)!

[ux]
2

r,K̂
,

where the first part of Lemma 7 has been used along with ρk+1 < ρk ≤ Ck−1. An
analogous estimate holds for the remaining term. In conclusion, we obtain∥∥∥(u− Π̂

RT

k u
)
x

∥∥∥2

L2(K̂)
≤ C

{
(k − r)!
(k + r)!

+
k

ε

(k − r)!
(k + r)!

}
[ux]

2

r,K̂
,

and the result follows at once using since the same estimate holds for the y-component.
The proof of the second estimate follows the same lines using instead the second

parts of Lemmas 6 and 7. The only difference, compared with the RT case, is that
an additional factor of k is present owing to bounding

‖Eγ1k w1‖2L2(K̂)
=
1

4

k∑
j=0

ρj (ρk−j+1 + ρk−j)


 ∞∑
i=k−j

ai,j (−1)i



2

by

1

2
ρ0

k∑
j=0

ρj


 ∞∑
i=k−j

ai,j (−1)i



2

and then using Lemma 7.

4.3. Local approximation on a rectangular element. Consider the case
when K = (a, b)× (c, d) is a rectangular element of size hK = max(b− a, d− c). We
shall be particularly concerned with the situation when the element is located near
to a vertex of the domain Ω. For convenience, we assume the vertex is located at the
origin 0 and assume that the function u belongs to a weighted space Hs,�

ω (K) with
weight function Φω(x) = |x|ω.
First consider the case where the element is located away from the vertex, i.e.,

dist(0,K) = )K > 0. The following result then holds.
Lemma 9. Let K be a rectangular element as above, with degree k ≥ 2. If

u ∈ Hs,�
ω (K) with  ∈ {1, 2}, then, for 2 ≤ s ≤ k,

‖u−ΠRT
k u‖2L2(K) ≤

C h2s
K

)
2(ω+s−�)
K

k
Γ(k − s+ 1)
Γ(k + s+ 1)

|u|2Hs,�
ω (K),(31)
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and, for 2 ≤ s ≤ max(2, [k/2]) = k̃,

‖u−ΠBDFM
k u‖2L2(K) ≤

C h2s
K

)
2(ω+s−�)
K

k̃2 Γ(k̃ − s+ 1)
Γ(k̃ + s+ 1)

|u|2Hs,�
ω (K).(32)

Proof. Let r ∈ [2, k] be an integer. Observe that

‖D(r,0) u‖2L2(K) + ‖D(0,r) u‖2L2(K) ≤ C )
−2(ω+r−�)
K |u|2Hr,�

ω (K),

and consequently

[u]
2
r,K ≤

C h2r
K

)
2(ω+r−�)
K

|u|2Hr,�
ω (K).(33)

Applying Lemma 8, we conclude that

‖u−ΠRT
k u‖2L2(K) ≤

C h2r
K

)
2(ω+r−�)
K

k
(k − r)!
(k + r)!

|u|2Hr,�
ω (K)

This result is valid for integer values of r. Applying a standard interpolation argument
(using the K-method) enables the result to be extended to noninteger s ∈ [2, k]. For
full details, we refer to the proof of Lemma 4.48 [20].
The proof of the second result is divided into the case when [k/2] ≥ 2, i.e.,

k ≥ 4, and the case where k = 2, 3. The argument in the former case mirrors the
one presented above. It therefore suffices to assume k = 2 or 3 and to show that, for
s = 2,

‖u−ΠBDFM
k u‖2L2(K) ≤

C h2s
K

)
2(ω+s−�)
K

|u|2Hs,�
ω (K).

It is shown in [21] that there exists a constant C̃ independent of k and hK such that

‖ΠBDFM
k u‖L2(K) ≤ C̃ ‖u‖H1(K).

Furthermore, thanks to the polynomial reproducing properties of Π̂k, for any first
order pull-back function u1, we have

‖u−ΠBDFM
k u‖L2(K) ≤ (1 + C̃) ‖u− u1‖H1(K).

A routine scaling argument and use of the Bramble–Hilbert lemma reveals that, for
s = 2,

inf
u1

‖u− u1‖H1(K) ≤ C [u]s,K ,

and applying (33) leads to

‖u−ΠBDFM
k u‖2L2(K) ≤

C h2s
K

)
2(ω+s−�)
K

|u|2Hs,�(K)

as claimed.
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Practically the same argument gives bounds for the accuracy of the L2-projection
operators.

Lemma 10. Let K be a rectangular element as above, with degree k ≥ 2. If
p ∈ Hs,�ω (K) with  ∈ {1, 2}, then, for 2 ≤ s ≤ k + 1,

‖p− πQ
k p‖

2

L2(K)
≤ C h2s

K

)
2(ω+s−�)
K

Γ(k − s+ 2)
Γ(k + s+ 2)

|p|2Hs,�
ω (K),(34)

and, for 2 ≤ s ≤ k̃ + 1,

‖p− πP
k p‖

2

L2(K) ≤
C h2s

K

)
2(ω+s−�)
K

Γ(k̃ − s+ 2)
Γ(k̃ + s+ 2)

|p|2Hs,�
ω (K).(35)

The next result deals with the situation where the element K has a vertex at
corner of the domain, so that )K = dist(0,K) = 0.

Lemma 11. Let K be a rectangular element as above, with degree k ≥ 2. If
u ∈ H2,�

ω (K) with  ∈ {1, 2}, then
‖u−Πku‖L2(K) ≤ C h�−ωK |u|H2,�

ω (K),(36)

and if p ∈ H2,�
ω (K), then

‖p− πkp‖L2(K) ≤ C h�−ωK |p|H2,�
ω (K),(37)

where Πk is the interpolant associated with the space BDFMk (respectively, RTk),
and πk is the L2-projection associated with the space Pk (respectively, Qk).

Proof. We deal with the cases  = 1 and  = 2 separately. First, consider  = 1 and
assume K is of unit size (hK = 1) to begin with. By Theorem 2.1 [4], if u ∈ H2,1

ω (K),
then the trace of u on an edge γ ⊂ ∂K satisfies the following properties:

(a) If ω ∈ (0, 1/2), then u|γ ∈ H2,1
ω̃ (γ) for some ω̃ ∈ (1/2, ω + 1/2), and

‖u‖H2,1
ω̃

(γ) ≤ C ‖u‖H2,1
ω (K).

(b) If ω ∈ (1/2, 1), then u|γ ∈ H2,0
ω̂ (γ) for some ω̂ ∈ (ω − 1/2, 1/2), and

‖u‖H2,0
ω̂

(γ) ≤ C ‖u‖H2,1
ω (K).

In order to show that Πk u is well defined, it suffices to show that the degrees of
freedom corresponding to moments on the edges

u �−→
∫
γ

(u · n) p ds for p ∈ Rk(γ)

are well defined. This follows trivially in case (a) since u|L2(γ) and we may bound

the moment by Cp ‖u‖H2,1
ω̃

(γ). In case (b), we use the Cauchy–Schwarz inequality to

deduce that ∣∣∣∣
∫
γ

(u · n) p ds
∣∣∣∣ ≤ ‖ |s|ω̂ |u| ‖L2(γ) ‖ |s|−ω̂ p ‖L2(γ),

and then, since ω̂ < 1/2, we may bound this by Cp,ω ‖u‖H2,0
ω̂

(γ). This shows Πk u

exists. Furthermore

‖Πk u‖L2(K) ≤ C
(
‖u‖L2(K) + ‖u‖H2,1

ω (K)

)
.
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Therefore, for any constant u0 ∈ R
2,

‖u−Πku‖L2(K) ≤ (1 + C) ‖u− u0‖H2,1
ω (K).

According to Lemma 4.3 [5], if v satisfies
∫
K
|x|2ω|D1 v|2dx <∞, then there exists a

constant v̄ such that∫
K

|x|2ω−2 |v − v̄|2 dx ≤ C

∫
K

|x|2ω |D1 v|2 dx.

Strictly speaking, this result was demonstrated for a triangular domain, but the ar-
gument generalizes to a rectangle K. Now, |x|−1 ≥ 1/√2 on K and hence

‖v − v̄‖2L2(K) ≤ C

∫
K

|x|2ω−2 |v − v̄|2 dx ≤ C

∫
K

|x|2ω |D1 v|2 dx.

Applying this result to each component of u gives the existence of u0 ∈ R
2 such that

‖u− u0‖2L2(K) ≤ C ‖ |x|ω |D1 u| ‖2L2(K).

Summarizing, we have shown in the case K = (0, 1)
2
that

‖u− u0‖2L2(K) ≤ C |u|2H2,1
ω (K).

The result for the general rectangular element follows from a scaling argument to
obtain (36).
Next, consider the case when  = 2, and again assume K is of unit size. Arguing

as in the proof of Lemma 9, we find that

‖u−Πku‖L2(K) ≤ (1 + C̃) infu1

‖u− u1‖H1(K),

where u1 is a pull-back bilinear function. By Lemma 4.25 [20], we bound the right-
hand side by

C ‖ |x|ω |D2 u| ‖L2(K).

Hence, in the case when K = (0, 1)
2
, we have

‖u−Πku‖L2(K) ≤ C ‖ |x|ω |D2 u| ‖L2(K).

The result for the general rectangular element again follows by a scaling argument.
The estimate for the L2-projection πk is obtained using similar arguments.

4.4. Approximation properties of the global interpolation operators.
So far, we have restricted our attention to the approximation properties of the local
interpolation operators ΠK,k. In this section, these results are extended to the global
interpolation operator defined in section 3.4. The main difference, it will be recalled,
between the global and local interpolants concerns the values of the degrees of freedom
on a broken edge, in the situation shown in Figure 2. Observe that we may use
definition (10) to define a local counterpart of the global interpolant Π over the
reference element corresponding to K by the rule

Π̂ = L−1
K Π LK ,



2062 MARK AINSWORTH AND KATIA PINCHEDEZ

and hence, without loss of generality, we may assume K is the reference element.
Equally well, we may assume K has only one edge (γ) that lies on a broken edge (γ′).
For convenience, we consider the RT case in the first instance.
The difference betweenΠ and the local interpolantΠk arises from definition (15):∫

γ′
(Πu)|γ′ · n q ds =

∫
γ′
(u · n)|γ′ q ds ∀q ∈ Rk(γ

′).

The definition of the L2(γ′)-projection Rγ
′
k : L

2(γ) −→ Rk(γ
′) reveals that

(Πu)|γ′ · n = Rγ
′
k

(
u · n|γ′

)
on γ′

while the local interpolant satisfies

(Πku)|γ′ · n = Rγk

(
u · n|γ′

)
on γ.

It is not difficult to verify that

(Πk u−Πu)x = Eγk
[
Rγk

(
u · n|γ

)
− Rγ

′
k

(
u · n|γ′

)∣∣∣
γ

]

= Eγk Rγk Trγ
[
u · n− Rγ

′
k

(
u · n|γ′

)]
,

and then, using the definition of the RT-extension Eγk , we deduce that

‖Πk u−Πu‖2L2(K) ≤ C k−1
∥∥∥ Rγk Trγ

[
u · n− Rγ

′
k (u · n|γ′)

] ∥∥∥2

L2(γ)

≤ C k−1
∥∥∥ u · n− Rγ

′
k (u · n)|γ′

∥∥∥2

L2(γ)

thanks to the stability of the projection Rγk . Now, suppose that u|K′ is expanded as
a Legendre series as in (21). Then, if γ′ = γ1,∥∥∥u · n− Rγ

′
k (u · n)|γ′

∥∥∥2

L2(γ)
≤

∥∥∥u · n− Rγ
′
k (u · n)

∥∥∥2

L2(γ′)

=
∑∞
j=k+1 ρj

(∑∞
i=0 ai,j(−1)i

)2

≤ C k2

ε
(k+1−r)!
(k+1+r)! [u]

2
r,K′ for r ≤ k + 1,

where the final part of Lemma 7 has been invoked. Hence,

‖Πk u−Πu‖2L2(K) ≤ C
k

ε

(k + 1− r)!
(k + 1 + r)!

[u]
2
r,K′ .

A similar expression holds for the BDFM elements with an additional factor of k.
Corresponding results hold on a rectangular element using a scaling argument as in
Lemma 9. Consequently, using the triangle inequality

‖u−Πu‖L2(K) ≤ ‖u−Πk u‖L2(K) + ‖Πk u−Πu‖L2(K),
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we conclude the following.
Lemma 12. Let K be a rectangular element of size hK with ρK = dist(0,K), and

degree k ≥ 2. Let K� denote the union of K and any elements with a broken edge
neighboring K. If u ∈ H2,�(K�) with  ∈ {1, 2}, then for 2 ≤ s ≤ k,

‖u−ΠRT u‖2L2(K) ≤
C h2s

K

)
2(ω+s−�)
K

k
Γ(k − s+ 1)
Γ(k + s+ 1)

|u|2Hs,�
ω (K�),(38)

and for 2 ≤ s ≤ max(2, [k/2]) = k̃,

‖u−ΠBDFM u‖2L2(K) ≤
C h2s

K

)
2(ω+s−�)
K

k̃2 Γ(k̃ − s+ 1)
Γ(k̃ + s+ 1)

|u|2Hs,�
ω (K�),(39)

where Π is the global interpolation operator.

5. Finite element approximation of B�
ω(Ω).

5.1. Approximation on a square. Consider the approximation of a function
u ∈ B�ω(Ω̂) with  ∈ {1, 2}, in the case where Ω̂ is the unit square (0, 1)2 with the
weight function given by Φω(x) = |x|ω. This scenario models the typical situation
where the function u is the solution of a boundary value problem in the neighborhood
of a corner located at the origin. Later, we shall consider more general configurations.
The domain Ω̂ is partitioned into elements as follows. Let σ ∈ (0, 1) and M ∈ N0

be given. The basic geometric mesh T̂ Mσ with M + 1 layers and grading factor σ is

defined inductively as follows. The initial mesh T̂ 0
σ is taken to be the whole domain Ω̂.

For nonzero M , the mesh T̂ Mσ is obtained from T̂ M−1
σ by breaking the square ele-

ment K, with a vertex at the origin, into four rectangles by subdividing its sides in
the ratio σ : 1− σ. Figure 4 gives an example of the case of three layers with grading
factor σ = 1/2. The elements forming the jth layer T̂ M,j

σ are numbered {Ki,j}3i=0 for
j > 1, as shown in Figure 4. In general, we find that an element K in the jth layer
satisfies 



σM+2−j ≤ )K = dist(0,K) ≤
√
2 σM+2−j ,

σM+1−j (1− σ) ≤ hK = diam(K) ≤
√
2 σM+1−j (1− σ),

2
κ ≤ hK

�K
≤ κ,

where κ =
√
2 (1 − σ)/σ, for 1 < j ≤ M + 1. The first layer consists of the single

element K1,1 = (0, σ
M )× (0, σM ).

The global finite element space is based on the RT elements defined, as in (12),
by

ΓRT
N =

{
u ∈ H(div, Ω̂) : u|K ∈ ΓRT

k ∀K ∈ T̂ Mσ
}

with the corresponding polynomial subspace of L2 defined by

V Q
N =

{
q ∈ L2(Ω̂) : q ◦ F−1

K ∈ Qk ∀K ∈ T̂ Mσ
}
.

The spaces ΓBDFM
N and V P

N , obtained from the combination of the BDFMk elements
with Pk, are defined in the same fashion.
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K2,3

K3,3 K1,3

K3,4

K2,4

K1,4

K1,1

K1,2

K2,2

K3,2

Fig. 4. Geometric mesh T̂ M
σ for a grading factor σ = 0.5 and M = 3.

The main result of this section can now be stated.
Theorem 13. Let Ω̂ = (0, 1)

2
, and T̂ Mσ is the basic geometric mesh with grading

factor σ ∈ (0, 1) and M+1 layers. Let ΓN–VN denote the mixed finite element spaces
(based on RT or BDFM elements) with degree k = µM ≥ 2, and let ΠN and πN be

the associated interpolation operators. If u ∈ B�ω(Ω̂) and p ∈ B�ω(Ω̂) with  ∈ {1, 2},
then for sufficiently large µ > 0,

‖u−ΠN u‖L2(Ω̂)
≤ C exp(−b N1/3 ),

and

‖p− πN p‖L2(Ω̂)
≤ C exp(−b N1/3 ),

where C, b are positive constants, independent of the dimension N of the space ΓN .
Proof. Let u ∈ B�ω(Ω̂). Then, there exist positive constants C and d such that for

any element K ∈ T̂ Mσ ,
|u|Hs,�

ω (K) ≤ |u|Hs,�
ω (Ω̂)

≤ C ds−�
√
s Γ(s− + 1).

In particular, applying Lemma 11, we conclude that, since k ≥ 2,
‖u−ΠN u‖2L2(K1,1)

≤ Cd−2�σ2M(�−ω).

Consider the contributions from elements belonging to the jth layer T̂ M,j
σ , 2 ≤ j ≤

M + 1. Recall that any element K ∈ T̂ M,j
σ has diameter hK ≤ κ)K and that )K ≤√

2σM+2−j . Inserting these quantities into the bound in Lemma 12 leads to the
conclusion that for 2 ≤ s ≤ k,

‖u−ΠN u‖2L2(K)

≤ C d−2�σ2(M+2−j)(�−ω) Γ(k − s+ 1)
Γ(k + s+ 1)

s k Γ(s− + 1)2 (κd)2s

for K ∈ T̂ M,j
σ . Using Stirling’s approximation Γ(n + 1) ∼ √2πn (n/e)n, it is not

difficult to show that if s = αk, with constant α ∈ [2/k, 1) (to be chosen), then
Γ(k − s+ 1)
Γ(k + s+ 1)

Γ(s− + 1)2(κd)2s ≤ C k1−2� F (2κd, α)
k
,
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where F : (1,∞)× (0, 1] −→ R is the function

F (r, α) =
(1− α)1−α
(1 + α)

1+α

(αr
2

)2α

considered in (3.3.73) [20]. In particular, the function F (2κd, ·) has minimum value
Fmin ∈ (0, 1) at αmin = (1 + κ

2d2)−1/2.
Summing up the layer-wise contributions to the total error reveals that

‖u−ΠN u‖2L2(Ω̂)
≤ C σ2M(�−ω)

{
1 + k3−2�F (2κd, α)k

M+1∑
j=2

σ2(2−j)(�−ω)

}
.(40)

The second term in parentheses may be bounded by

C σ−2M(�−ω)k3−2�F (2κd, α)k,(41)

and, inserting k = µM and choosing α = max(2/µM,αmin) = αmin (for M large),
this is in turn bounded by

C M3−2�

(
Fµmin

σ2(�−ω)

)M
.(42)

Finally, choosing

µ > max

{
1,
2(− ω) lnσ
lnFmin

}

ensures that the factor in parentheses has magnitude less than unity, and as a conse-
quence, the multiplicative term in (40) is bounded above for all M . Hence,

‖u−ΠRT
N u‖2L2(Ω) ≤ C σ2M(�−ω).

The dimension N of the space ΓN satisfies

N = (1 + 3(M − 1)) dimRTµM ≈ µ2M3,(43)

and hence, since σ < 1, it follows that

‖u−ΠRT
N u‖2L2(Ω) ≤ C exp(−bN1/3 ),

where C and b are positive constants independent of M and k. The estimate for
p ∈ B�ω follows similar lines, using the estimate for πk in Lemma 10 in place of
Lemma 12.

5.2. Generalization to polygonal domains. So far, we have obtained expo-
nential convergence for the basic square Ω̂ when the function u has only one singu-
larity. We now generalize to polygonal domains.
For a polygonal domain Ω, the geometric mesh T Mσ , with M + 1 layers and

the grading factor 0 < σ < 1, is constructed by patching together affine images of
basic geometric meshes T̂ Mσ near vertices in conjunction with a fixed, quasi-uniform
partition of uniform polynomial order on the interior. Changes in type of boundary
conditions are treated using two copies of T̂ Mσ , while re-entrant corners use three (see
Figure 5).
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Fig. 5. Typical mesh used on a polygonal domain.

Theorem 14. Let Ω ⊂ R
2 be a polygonal domain partitioned into a geometric

mesh T Mσ of affine elements with grading factor σ ∈ (0, 1) and M + 1 layers. Let
ΓN–VN denote the mixed finite element space (based on RT or BDFM elements) of
degree k = µM , and let ΠN and πN be the associated interpolation operators. Suppose
u ∈ B�ω(Ω) and p ∈ B�ω(Ω), with  ∈ {1, 2}, for ω = (ω1, . . . , ωm), 0 < ωi < 1,
dependent on the angles. Then, there exists µ� > 0 such that if µ > µ�, then

‖u−ΠN u‖L2(Ω) ≤ C exp(−b N1/3 ),

and

‖p− πN p‖L2(Ω) ≤ C exp(−b N1/3 ),

where C, b are positive constants, independent of the dimension N of the space ΓN .
Proof. First consider the situation of a parallelogram Ω̃ with a singularity at only

one corner. The geometric mesh T̃ Mσ on Ω̃ is then constructed using an affine image

of the basic geometric mesh T̂ Mσ on the basic domain Ω̂ = (0, 1)
2
; see Figure 6.

Let F̃ : Ω̂ −→ Ω̃ denote the affine mapping between the basic square Ω̂ and
the parallelogram Ω̃. Let ũ ∈ B�ω(Ω̃) and denote û = L̃ ũ where L̃ is the Piola
transformation. Then

‖ũ−ΠN ũ‖L2(Ω̃) ≤ C‖û− Π̂N û‖L2(Ω̂)
,

where C is a positive constant independent of N , and Π̂N is the interpolation opera-
tor on the domain Ω̂. Since the function û belongs to the space B�ω(Ω̂), we may apply
Theorem 13 and obtain exponential convergence on the parallelogram Ω̃.

Fig. 6. Geometric mesh T̃ M
σ on a parallelogram Ω̃.

The case of a general polygonal domain follows summing contributions to the
error from the interpolant over each corner patch with the error arising from the ap-
proximation using the interpolant over the interior. Observe that the true solution is
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analytic on the interior (see, for example, [20, Exercise 4.45]) so that a uniform poly-
nomial distribution over a fixed meshing of the interior region will deliver exponential
rates of convergence thanks to [21, Theorem 5.1].

6. Application to mixed finite element approximation. We illustrate the
foregoing results by using them to derive exponential rates of convergence for mixed
finite element approximation of problem (6). This problem may be formulated in
mixed variational form as follows: find (u, p) ∈ H(div,Ω)× L2(Ω) such that{

a(u,v) + (p,div v) = 0 ∀v ∈ H(div,Ω),

(divu, q) + (f, q) = 0 ∀ q ∈ L2(Ω),
(44)

where the bilinear form a is defined as follows:

a(u,v) =

∫
Ω

A−1 u(x) · v(x) dx.

Problem (44) will be approximated using a pair of hp-finite element spaces, based
on RT or BDFM elements, ΓN ⊂ H(div,Ω), and VN ⊂ L2(Ω), giving the following
discrete problem: find (uN , pN ) ∈ ΓN × VN such that{

a(uN ,vN ) + (pN ,div vN ) = 0 ∀vN ∈ ΓN ,

(divuN , qN )− (f, qN ) = 0 ∀ qN ∈ VN .
(45)

Mixed approximations of this type are studied by Brezzi and Fortin [9, pp. 137–139].
Theorem 15. Let Ω ⊂ R

2 be a polygonal domain partitioned into geometric
meshes T Mρ with grading factor 0 < ρ < 1 and M + 1 layers, as described above.
Suppose that the data f are analytic and f ∈ B0

ω(Ω) for ω = (ω1, . . . , ωm), 0 < ωi < 1,
dependent on the interior angles. Then, there exists µ� > 0 such that if k = µM , with
µ > µ�, then

‖u− uN‖H(div,Ω) + ‖p− pN‖L2(Ω) ≤ C exp(−b N1/3 ),

where C and b are positive constants independent of N .
Proof. First, observe that thanks to the commuting diagram property,

‖div(u−ΠNu)‖L2(Ω) = ‖divu− πN (divu)‖L2(Ω) = ‖f − πNf‖L2(Ω),

and then, recalling that f is analytic, the approximation properties of the L2-projection
mean that a pure p-version procedure on any fixed partition (and a fortiori on those
partitions considered here) will deliver exponential rates of convergence for this quan-
tity. Applying [9, Proposition IV.1.1] leads to the abstract a priori error estimate

‖u− uN‖H(div,Ω) + ‖p− pN‖L2(Ω) ≤ C
(
‖u−ΠNu‖H(div,Ω) + ‖p− πNp‖L2(Ω)

)
,

and the result follows from the above observation and Theorem 14.
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[7] I. Babuška and M. Suri, The p and h-p versions of the finite element method, basic principles
and properties, SIAM Rev., 36 (1994), pp. 578–632.

[8] A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity,
Edge Elements, Academic Press, Orlando, FL, 1998.

[9] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Elements Methods, Springer–Verlag, New
York, 1991.

[10] P. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
1978.

[11] P. Grisvard, Singularities in Boundary Value Problems, Springer–Verlag, Berlin, Masson,
Paris, 1992.

[12] B. Guo and I. Babuška, The hp version of the finite element method. Part I: The basic
approximation method, Comput. Mech., 1 (1986), pp. 21–41.
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Abstract. Numerical integration of ODEs on the orthogonal Stiefel manifold is considered.
Points on this manifold are represented as n × k matrices with orthonormal columns, of particular
interest is the case when n � k. Mainly two requirements are imposed on the integration schemes.
First, they should have arithmetic complexity of order nk2. Second, they should be intrinsic in the
sense that they require only the ODE vector field to be defined on the Stiefel manifold, as opposed
to, for instance, projection methods. The design of the methods makes use of retractions maps.
Two algorithms are proposed, one where the retraction map is based on the QR decomposition of
a matrix, and one where it is based on the polar decomposition. Numerical experiments show that
the new methods are superior to standard Lie group methods with respect to arithmetic complexity,
and may be more reliable than projection methods, owing to their intrinsic nature.

Key words. time integration, geometric integration, numerical integration of ordinary differen-
tial equations on manifolds, numerical analysis, Stiefel manifold, homogeneous spaces

AMS subject classification. 65L05

PII. S0036142901385143

1. Introduction. The elements of the orthogonal Stiefel manifold are often rep-
resented as n× k matrices with orthonormal columns, where n ≥ k,

Vn,k = {Q ∈ R
n×k : QTQ = Ik×k}.

In particular, one has Vn,n = O(n), the Lie group of n× n orthogonal matrices.
Many applications involve computations with such matrices. One is the calcula-

tion of Lyapunov exponents; see [7, 14] for an overview. Another involves optimization
problems in multivariate data analysis [26].

In this paper, we shall study the problem of approximating a solution of an ODE
system on Vn,k. We think of Vn,k as a special case of a manifold M , and we let TM

denote the tangent bundle of M. A vector field on M is then a section F : M→ TM

which assigns to each Q ∈ M a tangent vector F (Q) ∈ TQM. The ODE system is
also allowed to be nonautonomous, thus the vector field may also depend on t ∈ R,

Q̇ = F (t, Q), Q(t0) = Q0 ∈M.

As indicated above, the orthogonal Stiefel manifold is naturally embedded in the
Euclidean space of all real n × k matrices, and it is also quite common to use this
representation in computer programs. The situation is similar for other manifolds M

embedded in a Euclidean space E. Nevertheless, one should distinguish numerical
methods which are intrinsic and those which are extrinsic. The latter type of meth-
ods make use of an extension of the vector field F to all of E, or at least to some
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neighborhood of M. Such methods include the projection methods; see, for instance,
[18, 13, 20]. More recently, symmetric projection methods have been proposed in [1]
to enforce conservation of energy, and later in a more general setting by [16]. Another
approach is to apply direct solvers for index-2 DAEs. In this case, it is useful to
formulate the problem in terms of a constrained system with Lagrange multipliers,
say

Q̇ = F (t, Q) +QH, QTQ = Ik, Q ∈ R
n×k, H ∈ R

k×k,

H being a symmetric matrix. Its elements are the Lagrange multipliers which can be
determined by the differentiated constraint

Q̇QT +QQ̇T = 0.

More recently, there has been an increased interest in designing intrinsic integra-
tion methods for manifolds in general. Examples of such methods are the Crouch–
Grossman methods [6] and the RKMK methods proposed by Munthe-Kaas; see, e.g.,
[21]. At least when used in a naive manner, these intrinsic methods are not en-
tirely satisfactory from the point of view of computational complexity when applied
to problems on Stiefel manifolds with n 	 k. The reason is that they usually de-
mand operations to be performed on n × n matrices. In particular, one typically
applies operations that cost O(n3) flops. In comparison, the projection of a matrix
in R

n×k onto M by means of the QR factorization cost only O(nk2) flops. In this
paper, we will consider maps known as retractions to impose local coordinates on
the Stiefel manifold. The methods presented here fall in the same category as the
so-called methods based on local charts, the ones proposed by Potra and Rheinboldt
in [23]; see also [24] and the recent monograph by Hairer, Lubich, and Wanner [17].
Our coordinate space is always the tangent space at the initial value of the next time
step. The evaluation of the retraction map and its (inverse) derivative can be shown
to have complexity O(nk2). Thus, if the evaluation of the ODE vector field can be
done with the same complexity, we obtain an integration method which has an overall
complexity of O(nk2).

We present numerical results which demonstrate the low cost compared to Lie
group methods implemented in the standard way. We also give numerical evidence to
show that intrinsic methods in some cases are more preferable than extrinsic methods
like projection methods.

2. Using retraction as a coordinate map. To begin with, let us consider in
general a differentiable manifold M and a differential equation given by means of a
vector field F (t, y) such that for each t, F (t, ·) is a vector field M→ TM, so

y′(t) = F (t, y(t)).(1)

We will here use a particular choice of local charts for the manifold M and obtain
resulting locally defined vector fields similar to what is called state-space formulations
in the DAE literature.

It has been proposed by Shub [25] to use a smooth mapping R : TM→M in the
design of Newton iterations on manifolds. For the restriction Rp of R to the tangent
space TpM of M at the point p ∈M we require the following:

1. Rp is defined in some open ball B(0, rp) of radius rp about 0 ∈ TpM.
2. Rp(v) = p if and only if v = 0 ∈ TpM.
3. R′

p

∣∣
0
= IdTpM.
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The essence of the idea we present here lies in the fact that Rp serves to define
local coordinates of the manifold M in a neighborhood of the point p. We can thus
represent the solution of the differential equation in the form

y(t) = Rp(σ(t)), σ(t) ∈ TpM.(2)

By differentiating with respect to t and by using (1) we get

y′(t) = R′
p

∣∣
σ(t)

(σ′(t)) = F (t,Rp(σ(t))).

For σ(t) sufficiently close to 0 ∈ TpM the map R′
p

∣∣
σ(t)

is invertible, so we obtain

a differential equation for σ(t) as follows:

σ′(t) =
( R′

p

∣∣
σ(t)

)−1
(F (t,Rp(σ(t)))).(3)

We may now approximate (3) by using a standard ODE solver, and we may subse-
quently transform the result back to M via (2).

This approach is intrinsic in the sense that it does not depend on whether M has
been embedded in a bigger (say Euclidean) space with a corresponding extension of
the vector field F .

2.1. Lie group methods. The procedure we have just described is very similar
to the Lie group methods proposed by, for instance, Munthe-Kaas [21], Owren and
Marthinsen [22], and Diele, Lopez, and Peluso [10]. It also has a lot in common with
the approach based on Givens–Householder transformations proposed by Dieci and
Van Vleck [9]. In fact, the coordinates based on Givens’s rotations is a special case
of canonical coordinates of the second kind discussed in [22].

In the case where M = G is a Lie matrix group, the Lie groups methods are
equivalent to what we get in the approach above by setting

Rp(v) = Φ(v · p−1) · p,
where Φ is some sufficiently smooth mapping from g to G and g is the Lie algebra
corresponding to the Lie group G. Typically, one may use Φ = exp, the matrix
exponential Munthe-Kaas used in his first papers, but other choices are possible, as
discussed in the other papers cited above.

For homogeneous spaces, of which the orthogonal Stiefel manifold is an example,
the methods by Munthe-Kaas apply an action by a Lie group. Vn,k is acted upon by
SO(n), the group of n×n matrices with unit determinant. As an example of a group
action, one may use left multiplication:

Λ(g, p) := Λp(g) = g · p, p ∈ Vn,k, g ∈ SO(n).

The linear space of n × n skew-symmetric matrices, denoted so(n), is mapped by
the matrix exponential into SO(n), and by composing this with the action Λ one
obtains a map λp = Λp ◦ exp : so(n) → Vn,k. This map λp is a smooth map from
some neighborhood of 0 ∈ so(n) onto some neighborhood of p ∈ Vn,k. We thus get a
representation of the solution y(t) near the point p ∈ Vn,k quite similar to (2):

y(t) = λp(σ(t)).

By differentiation, this leads again to a differential equation for σ(t) but now on
the space so(n) of skew-symmetric n × n matrices. The obvious drawback with this
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approach is that we have replaced a differential system on the manifold Vn,k having
dimension nk − k(k − 1)/2 by an equation on a linear space which has dimension
n(n − 1)/2. Whenever n 	 k this may lead to a large increase in the number of
degrees of freedom. The advantage in using the retraction approach is that we always
obtain a coordinate mapping for the manifold with exactly the same number of degrees
of freedom as the dimension of the manifold.

2.2. Riemannian manifolds. In the context of a Riemannian manifold, one
may use the exponential mapping as defined in terms of geodesics (geodesic flow) as
a retraction map. Following, for instance, Chavel [5], we define

Rp(v) = expp(v) = γv(1),

where γv(t) is the geodesic emanating from p with γ̇(0) = v. It is known that expp is
defined and of maximal rank in a neighborhood of 0 ∈ TpM. The derivative map of
Rp is related to the Jacobi field Y satisfying the Jacobi equation; see [5, pp. 70—82].
We let ∇ be the Levi-Civita connection with respect to the Riemannian metric on M

and let R be the corresponding curvature tensor. We consider the vector field defined
along the geodesic γ, γ(0) = p, γ̇(0) = v, satisfying the boundary value problem

∇2
tY +R(γ̇, Y )γ̇ = 0, Y (0) = 0, Y (1) = w.

Then (R′
p

∣∣
v

)−1
(w) = (∇tY )(0).

In practice, Riemannian manifolds are often given naturally as a submanifold of
a Euclidean space, say V = R

n. In this case one can define at each point p ∈ M

the orthogonal complement to TpM which we denote by NpM, the normal space, so
V = TpM⊕NpM for every p ∈M. Similar to what has been described in [17, 23], we
introduce a map np : TpM→ NpM and define a retraction as

Rp(v) = p+ v + np(v),

where np(v) is defined such that Rp(v) ∈ M for each v belonging to a sufficiently
small neighborhood of 0 ∈ TpM. One calculates the derivative

R′
p

∣∣
v
(w) = w + n′

p

∣∣
v
(w),

so the image of the derivative in TRp(v)M is naturally split into components in TpM
and NpM. It follows that the inverse of the derivative map is obtained by applying
the orthogonal projector Pp : V → TpM:

(R′
p

∣∣
v

)−1
(y) = Ppy, y ∈ TRp(v)M ⊂ V.(4)

One may further characterize the map np in the case that the manifold is given
locally in terms of constraint functions, say g : V → R

m, and we characterize open
sets U ∈M as

U = {x ∈ V : g(x) = 0}.
In fact, in many interesting cases, the constraint function defines the whole manifold;
for instance, for Stiefel manifolds we obviously have m = k(k + 1)/2 with the whole
manifold Vn,k characterized by g inferred from the constraints Y TY = Ik, Y ∈ Vn,k.
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Denote by g′(x) the Jacobian matrix of g evaluated at x and suppose that
rank g′(x) = m. Clearly, in this setting, one can take TxM = ker g′(x), and fol-
lowing, for instance, Potra and Yen [24], one may calculate an orthonormal basis for
TxM by computing a QR decomposition

g′(x)T = QxRx =
[

Vx Ux
] · [ R0

0

]
.

A basis for TxM is then given by the first n−m columns of Ux. A map Rp : TpM→M

is constructed by setting q = Rp(v), where q−(p+v) ∈ NpM. Using the representation
v = Upy, y ∈ R

m, it follows immediately that the point q is obtained by solving the
equations

UT
p (q − p)− y = 0, g(q) = 0.(5)

It is straightforward to check that this map is a retraction. In [24] it is proposed
to solve (5) by Newton iteration, but we shall see later that when applied on Stiefel
manifolds one can find retraction maps which can be computed by direct methods,
i.e., methods which do not involve iteration.

3. A retraction based on the reduced QR decomposition. The tangent
spaces TPVn,k can be characterized in various different ways, and we refer to [12] for
an introduction. In the following we shall just need the following characterization:

TPVn,k = {v ∈ R
n×k : PT v ∈ so(k)}.

This fact follows easily by letting Q(t) be a smooth curve on Vn,k satisfying Q(0) = P

and Q̇(0) = v, and thereafter differentiating the relationQTQ = Ik at t = 0. Using the
Frobenius inner product 〈P,Q〉 = tr(QTP ), one has the normal space characterization

NPVn,k = {PS |S k × k symmetric}.

The retraction in section 2.2 applied to the Stiefel manifold was discussed in [17], and
one uses the map

RP (v) = P + v + nP (v), nP (v) = PSP (v),

where SP (v) =: S is a symmetric matrix satisfying the Riccati equation

S2 + 2S + vT v + vTPS + SPT v = 0.

It is straightforward to check that this map is a retraction. The Riccati equation can
be solved by iteration. The important thing to note is that the iteration involves only
computations with k×k matrices once the coefficient matrices have been set up. One
therefore expects a complexity of order k3 for each subsequent iteration.

From (4) we have

(R′
P |v)−1

(w) = PP (w), w ∈ TRP (v)Vn,k,

and PP : R
n×k → TPVn,k is the orthogonal projector with respect to the Frobenius

inner product on R
n×k. Setting M = (PTw+wTP )/2, one get the simple expression

PP (w) = w − PM.
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We proceed to propose a retraction based on the QR decomposition which does not
involve iteration. Now let S(n, k) be the manifold of n× k matrices of rank k. Given
any matrix A ∈ S(n, k) one can apply an orthogonalization procedure to the columns
of A and obtain a decomposition of the form A = QR, where Q ∈ Vn,k and R ∈
T+(k), i.e., R being an upper triangular k×k matrix with positive diagonal elements.
The complexity of this operation is 2nk2 flops [15, p. 232]. The decomposition is
unique as described above. We denote the QR decomposition map (coproduct) by
qr : S(n, k)→ Vn,k ×T+(k), and we let π1 be the projection onto the first factor. For
any vector v ∈ TPVn,k we define the retraction map RP relative to P ∈ Vn,k as

RP (v) = (π1 ◦ qr)(P + v).

In other words, calculate the QR decomposition of the matrix P + v and keep the
matrix Q. In addition to being well defined, we can also show by construction that
the inverse of RP exists in some neighborhood of P . By writing

P + v = QR,(6)

and showing that for a given Q ∈ Vn,k sufficiently close to P in some sense to be made
clear below, we can calculate v satisfying (6) by an explicit procedure. Looking at (6)
columnwise, we have

vj =

j∑
i=1

RijQi − Pj .(7)

We take the inner product on each side by Pm, m = 1, . . . j, and exploit the skew-
symmetry of the matrix PT v:

j∑
i=1

Rij〈Pm, Qi〉 = δmj − 〈vm, Pj〉, m = 1, . . . , j,(8)

where δmj is the Kronecker function. This is a linear system of j equations for
R1j , . . . , Rjj and can be solved as long as the jth principal minor of PTQ is nonsingu-
lar. One obtains successively vj from (7). It is a crucial observation that 〈vj , Pj〉 = 0
such that the right-hand side of (8) depends only on v1, . . . , vj−1. The arithmetic
complexity of this algorithm is O(nk2 + k3).

For the derivative mapping (R′
P |v)−1, we first use the chain rule to infer that

(
R′
P

∣∣∣
v

)−1

=
( R−1

P

∣∣
Q

)′
, where Q = RP (v).

Thus, we let Q(t) be a curve in Vn,k such that Q(0) = Q ∈ Vn,k and Q̇(0) = w ∈
TQVn,k. By setting v(t) = R−1

P (Q(t)) we get the relation

P + v(t) = Q(t) ·R(t),
which we differentiate with respect to t, and set t = 0 to obtain v̇ := v̇(0) =
(R−1

P |Q)
′
(w). Due to the triangular structure of the matrix R, it makes sense to

consider the differentiation columnwise, so we get

v̇j =

j∑
i=1

(
wiRij +QiṘij

)
.(9)
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Here Rij = Rij(0) and Ṙij = Ṙij(0). We can solve for R1j , . . . , Rjj by the procedure
described above. However, in using retractions for solving ODEs on manifolds, we
will see that the map (R−1

P |Q)
′
is always evaluated just after one has computed Q =

RP (v), and thus we would in practice store the R-matrix obtained as a by-product
from this calculation.

Now we can use the fact that v̇ ∈ TPVn,k and take again the inner product with
Pm:

j∑
i=1

〈Pm, Qi〉Ṙij = −
j∑
i=1

〈Pm, wi〉Rij − 〈v̇m, Pj〉, m = 1, . . . , j.

Thus, we have a linear system of j equations for the unknowns Ṙ1j , . . . , Ṙjj whose
solution exists whenever the principal minors of PTQ are nonsingular. Finally, we
substitute the obtained values for Ṙij into (9) to obtain the desired tangent matrix v̇.

Note that the linear systems for Rij , i = 1, . . . , j, and Ṙij , i = 1, . . . , j, are the
samep; thus one may use the same LU factorization of PTQ. Note also that when the
point Q ∈ Vn,k is “close” to the reference point P , we will have PTQ ≈ I, and the
LU factorization can be done without pivoting. All the k linear systems of equations
can be solved by means of the same factorization.

See also Appendix A of [3] for the Matlab implementation of this algorithm.
Complexity. The evaluation of RP involves one addition of two n× k matrices

and a reduced QR factorization. Using, for instance, the modified Gram–Schmidt
algorithm [15], the cost of the QR decomposition is about 2nk2 flops.

The computation of R−1
P itself is not needed in our algorithm, but we count a

complexity of

(4k2 + k)n+
4

3
k3 − 1

2
k2 − 5

6
k

flops. Now, for the calculation of the derivative
(R−1

P |Q
)′
, we found that it requires

(7k2 + k)n+ 2k3 +
3

2
k2 +

1

2
k

flops in the case that the matrix R ∈ T+(k) is already given where R−1
P (Q) + P =

QR. This is a reasonable assumption when integrating ODEs on the Stiefel manifold,
because in the use of integration methods one first applies the retraction to a vector
v ∈ TPVn,k to obtain Q ∈ Vn,k where the vector field F is to be evaluated, and the
matrix R is obtained as a by-product.

We conclude this section by noting that in using the retraction approach for
solving ODEs on the Stiefel manifold it is required to compute the retraction map
and its inverse derivative an equal number of times. The dominating cost of these
two operations together is about 9nk2 when 1� k � n. This is comparable to using
the retraction proposed by Hairer, Lubich, and Wanner in [17]. However, a possible
advantage with our approach is that we do not need any iteration and need not
worry about convergence, etc. In the other approach one needs to iterate to machine
accuracy when solving the Riccati equation to ensure that the retraction maps an
element of the tangent space into the manifold.

4. A retraction based on the reduced polar decomposition. As an alter-
native toQR, one can use the reduced polar decomposition where a matrixA ∈ S(n, k)
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is factored as

A→ QH, Q ∈ Vn,k, H ∈ Sym+(k),

where Sym+(k) are the k × k symmetric positive definite matrices. Thus, in a very
similar fashion to the retraction with QR decomposition above, we now define

RP (v) = (π1 ◦ pol)(P + v),

where pol : S(n, k) → Vn,k × Sym+(k) is the polar decomposition coproduct. It is
well known that for any matrix S(n, k) the factors Q and H above can be calculated
via the reduced singular value decomposition, say A = V ΣWT , V ∈ Vn,k, Σ is k × k
diagonal and nonsingular, and W ∈ O(k). In this case, one obtains Q = VWT and
H = WΣWT .

The derivative map v̇ = (R−1
P |Q)

′
(w) is obtained in a similar way as for the QR

case, and we consider the curve P + v(t) = Q(t)H(t) of a continuous reduced polar
decomposition. Differentiating, we get

v̇ := v̇(0) = wH +QḢ,(10)

where we have set Q = Q(0) ∈ Vn,k, w = Q̇(0) ∈ TQVn,k, H = H(0) ∈ Sym+(k),

Ḣ = Ḣ(0) ∈ Sym(k). Now we multiply (10) by PT from the left and consider
the symmetric part of the resulting equation. This leads to the following Lyapunov
equation for Ḣ:

MḢ + ḢMT + C = 0.

Here M = PTQ and C = PTwH +HwTP . It is well known that this system has a
unique solution H ∈ Sym(k) if and only if the eigenvalues of the matrix M = PTQ
have nonzero real parts. So R′

P |Q is invertible for every Q in some neighborhood of

P ∈ Vn,k. After solving for Ḣ we obtain v̇ by substituting it into (10). The matrix
H ∈ Sym+(k) can be obtained by solving another Lyapunov equation, but as in the
QR case it is for the applications we have in mind feasible to assume that this matrix
is already known whenever needed in the calculation of (R−1

P |Q)
′
.

See also Appendix A of [3] for Matlab implementations of these algorithms.

Complexity. Using the algorithm by Golub and Reinsch, it costs approximately
14nk2 + 22

3 k3 flops to form the matrices V and Σ, and an additional 2nk2 flops to
form U and then k3/2 flops to form H. In conclusion, the dominating complexity
terms for calculating RP (v) is

16nk2 + 7.83 k3

flops.
To obtain the corresponding map (R−1

P |Q)′, the dominating cost consists of cal-
culating two products of n × k with n × k matrices, then another two products of
n × k with k × k, each multiplication costing 2nk2 flops. The Lyapunov equation is
solved only for a k × k matrix, and by using, e.g., the Bartels–Stewart algorithm the
cost will be approximately 25k3 flops. For details about this and other algorithms
for solving the Lyapunov equation, see [15, p. 367], [19], and the references therein.
Summing up, we get approximately

8nk2 + 25 k3

flops for calculating (R−1
P |Q)′(w).
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5. Runge–Kutta methods based on retractions. We now consider in more
detail how to solve ODEs on manifolds by using a retraction map. We will now
assume that the problem is given by the user in the form (1) meaning that there is a
procedure, say F, available which for any (t, y) ∈ D ⊂ R ×M returns the derivative
F (t, y) ∈ TyM. In addition, the user must provide an initial value y0 ∈ M and an
initial stepsize h.

Suppose a Runge–Kutta (RK) method is given, with coefficients (aij), where
i, j = 1, . . . , s, and (bi), i = 1, . . . , s. As usual we denote ci =

∑
j aij . The method is

generally defined over one step as follows:

ui = h
∑
j aijkj

ki =
(R′

yn |ui

)−1(
F (tn + hci,Ryn(ui))

)
}

, i = 1, . . . , s,

yn+1 = Ryn
(
h
∑
i biki

)
.

In particular, the method is explicit if aij = 0, j ≥ i. The following algorithm
generalizes an explicit RK method to an arbitrary manifold in which a retraction R
is defined.

Algorithm 5.1.

Input y0, stepsize h, and RK parameters aij , bi.
for n = 0, 1, . . .

for i = 1, . . . , s
ui := h

∑
j aijkj

Y := Ryn(ui)
mi := F (tn + hci, Y )

ki :=
(R−1

yn |Y
)′(

mi

)
end for
v := h

∑
i biki

yn+1 := Ryn(v)
[Update stepsize h if desired]

end for

In the approach presented here, explicit methods are recommended because im-
plicitness may cause an even higher increase in computational complexity than is the
case for standard RK methods.

Remark. It is instructive to note that the algorithm described above is intrinsic in
the sense that it works entirely within the realm of the manifold M, and no reference
is made to any Euclidean space. However, if this requirement is relaxed, suppose that
M ⊂ V , where V is a linear space, and that we consider instead

ẏ = F̄ (t, y), F̄ : R× V → V

such that F̄ (t, ·)∣∣
M

= F (t, ·). Given a projector P : V → M, we could consider the
method defined simply as

Zi = P(yn + h
∑

aijKj)
Ki = F̄ (tn + cih, Zi),

}
, i = 1, . . . , s,

yn+1 = P(yn + h
∑

biKi).

(11)



2078 ELENA CELLEDONI AND BRYNJULF OWREN

Since now Yi ∈M, the extended vector field F̄ is never evaluated outside M, and the
perturbation introduced by the projector P does not affect the order of the method.
We have not pursued this approach any further, since in this particular paper we
are primarily interested in methods that can be phrased independently of how the
manifold is represented.

However, there is an interesting connection between this method and the method
based on the retraction described in section 2.2. Suppose that we define a local
projector Pyn to be used in the step from tn to tn+1 such that for points m ∈ V near
yn we have

Pyn(m) = m+ n̄yn(m− yn), n̄yn : V → Nyn ,

where n̄yn
∣∣
TynM

= nyn . Thus, the retraction is related to the projector as Ryn(v) =
Pyn(yn + v) whenever v ∈ TynM. The map nyn is extended naturally to all of V so
that n̄yn(vt + vn) = n̄yn(vt) + n̄yn(vn) = nyn(vt) − vn when vt ∈ Tyn and vn ∈ Nyn ,
and we get

Pyn(m) = yn + (I + nyn) ◦ Pyn(m− yn).(12)

Now considering Algorithm 5.1 with this retraction, we get

Yi = Pyn

(
yn + h

∑
aijkj

)
,

ki = PynF (tn + cih, Yi),

yn+1 = Pyn

(
yn + h

∑
biki

)
.

Now consider (11) with P = Pyn where we calculate by using (12)

Zi = Pyn

(
yn + h

∑
aijKj

)
= yn + (I + nyn) ◦ Pyn

(
h
∑

aijKj

)
= Pyn

(
yn + h

∑
aijPynKj

)
so we see that Yi = Zi and ki = PynKi and the two methods are equivalent.

6. Numerical experiments. All the numerical experiments are performed in
Matlab. We compare the methods presented in this paper, RK methods based on
retractions, RKRqr (based on the qr decomposition), and RKRp (based on the polar
decomposition), with the following methods:

• Projection Runge–Kutta (PRK) method: the method that performs a pro-
jection based on the QR factorization at each time step of an explicit RK
method (extrinsic).
• The method recently proposed in [2] (SPRK): a splitting method applied to
the perturbed problem obtained by adding the term −τy(Ik − yT y) to the
original vector field. The parameter τ is suitably chosen in order to make Vn,k
an attracting manifold. (We took hτ = 1

2 , which is indicated as the optimal
choice in [2].) The resulting method is a projection method (extrinsic).
• Runge–Kutta Munthe-Kaas [21] (RKMK) methods: generalization of the
classical RKmethods based on the use of the Lie group actions Λ(g, Y0) = g·Y0

and g = exp(σ) for σ ∈ so(n) and Y0 ∈ Vn,k (intrinsic).
The results obtained with the RKMK methods are not reported in the plots, but

we will comment on their performance in the experiments in various points of this
section.
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All the methods are based on the classical explicit RK method of order 4.
The numerical experiments are divided in two parts. In the first section we will

compare the intrinsic methods with the extrinsic ones.
In the second section we will illustrate the performance of the methods based on

retractions when applied to the computation of the Lyapunov exponents of a ring of
oscillators.

6.1. Intrinsic versus extrinsic. As a first experiment we consider the following
initial value problem:

y′ = F (y) = A(y)y + λy(Ik − yT y)(13)

for y(0) ∈ Vn,k, n = 1000, k = 4. Here A(y) is a banded skew-symmetric n×n matrix
whose nonzero entries are

Ai,i+m = −Ai+m,i = yi,m, 1 ≤ i ≤ n−m, 1 ≤ m ≤ k.(14)

The initial value, y0, is obtained as the first factor of the reduced QR factoriza-
tion of a random 1000× 4 matrix, using the command [y0,r]=qr(rand(n,k),0) in
Matlab.

Note that the term y(Ik − yT y) in (13) is zero for any y ∈ Vn,k, thus the solution
of (13) is independent of λ as long as y0 ∈ Vn,k. It might be desirable that the
numerical approximation inherits this property. Although the extra term above may
look artificial, it serves the purpose of illustrating that the way the vector field is
extended affects the numerical solution obtained by a projection method.

In some cases it might be necessary or advantageous to rewrite (13) in a “strong
skew-symmetric form”; i.e., F (t, y) = H(t, y)y with H(t, y) ∈ so(n) (for the RKMK
methods for example). Note that in the numerical experiments we always assume the
value of the vector field F (t, y) to be given by a black box program that we are not
allowed to modify. Since A(y) is a banded matrix the cost of computing F , as given
in (13), is effectively O(nk2) flops.

Given F = F (t, y) in the tangent space at y to the Stiefel manifold we then
consider the following strong skew-symmetric formulation:

F =
(
α(y)yT − yαT (y)

)
y, α(y) = y tril(yTF ) + (F − yyTF ).(15)

Formulation (15) is then computed just assuming the knowledge of F and requires
O(nk2) flops.. Note that the formulation in the strong skew-symmetric form, as
pointed out in [2], can be of crucial importance for extrinsic methods, as it makes Vn,k
a strong invariant manifold. We apply the projection methods to this reformulation
for problem (13) in the case λ �= 0.

In Figure 1, for different values of the stepsize h, we plotted the norm of the
difference of the numerical approximations produced by the methods after one time
step for problem (13) with λ = 0 and λ = 10, respectively. The dependence on λ is
quite evident for both the extrinsic methods, although the norm of the difference of
the two numerical solutions decreases as the stepsize goes to zero. Note that the lines
of the PRK and the SPRK lie on top of each other in the plot.

For the intrinsic methods the global error remains more or less the same for the
two different values of λ, and as we can see from the figure the difference of the two
approximate solutions is of the order of machine accuracy. Similar experiments gave
analogous results for the RKMK methods.
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Fig. 1. Difference in the solution for λ = 0 and λ = 10.

In the next two figures we compare the cost of the four methods as applied to
problem (13). We plot the global error at T = 1 on the y-axis against the number of
flops on the x-axis in Figure 2 for λ = 0, and in Figure 3 for λ = 10.

As we can notice in the case λ = 0, the achieved global error per amount of flops
for the two extrinsic methods is lower in norm than for the intrinsic methods.

However, for λ = 10 the RKRqr and the RKRp perform better than the two
extrinsic methods.

The use of the RKMK methods in these experiments led to much more time
consuming calculations. It seems that a naive implementation of these techniques
causes unacceptable computational costs. Recently, new implementation techniques
that can reduce the cost of the RKMK methods to a cost of O(nk2) flops have been
investigated [4].

6.2. Computing Lyapunov exponents. The Lyapunov exponents LEs of a
continuous dynamical system x′ = F (x), (x(t) ∈ R

n) provide a qualitative measure
of its complexity and can be defined as follows. Consider the linearization A(t) of
x′ = F (x) along a trajectory x(t) and the solution U of the matrix problem

U̇ = A(t)U, U(0) = U0, n× n;

then the logarithms of the eigenvalues of the matrix

Λ = lim
t→∞

(
U(t)TU(t)

) 1
2t

are the LEs for the given dynamical system. In [8] the authors describe a procedure
for computing just k of the n LEs of a dynamical system. The strategy is based on
solving a suitable initial value problem on Vn,k and computing a quadrature of the
diagonal entries of a k×k matrix valued function. The initial value problem is defined
as follows:

Q̇ =
(
A−QQTA+QSQT

)
Q,
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Fig. 2. Global error versus the number of
flops for λ = 0.
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Fig. 3. Global error versus the number of
flops for λ = 10.

with random initial value in Vn,k and

Sk,j =




(QTAQ)k,j , k > j,
0, k = j,
−(QTAQ)j,k, k < j,

k, j = 1, . . . , p.

It can be shown that the ith LE λi can be obtained as

λi = lim
t→∞

1

t

∫ t

0

Bi,i(s)ds, i = 1, . . . , k,(16)

and

B = QTAQ− S.

In the numerical experiments we use the trapezoidal rule to approximate integral (16)
and compute λi (i = 1, . . . , k), and we refer to the original paper [8] for further details
on the method.

We first consider the following test problem previously proposed in [2]. Given a
n× n diagonal matrix D we define the time dependent ODE

ẋ = A(t)x, x ∈ R
n, A(t) = W (t)DW (t)T + J,

where J is the skew-symmetric part of a randomly generated matrix and W (t) =
exp(tJ). The diagonal entries of D are the LEs of the constructed linear system. We
took Di,i = C(3 − i)/n for i = 1, . . . , n and C a constant. Only the first three LEs
are positive.

We considered the methods PRK, SPRK, RKRqr. In the tables we report the
2-norm of the error in the first k LEs and in the Stiefel matrix Q whose columns
approximate the first k columns of W (t), and in the last column we report the number
of flops per step. The stepsize is the same for all methods and is h = 0.1.

The results of the first experiment are reported in Table 1, where we considered
n = 20, k = 6, and C = 1, and the methods perform similarly.

In Table 2 are reported the results of the second experiment, where we have taken
n = 25, k = 4, and C = 27.5.



2082 ELENA CELLEDONI AND BRYNJULF OWREN

Table 1
LE, first experiment: n = 20, k = 6, C = 1.

Methods Error in LEs Error in Q Megaflops
PRK 0.0031 4.1361e-05 1.537
SPRK 0.0031 4.7595e-05 1.536
RKRqr 0.0030 2.6738e-05 1.566

Table 2
LE, second experiment: n = 25, k = 4, C = 27.5.

Methods Error in LEs Error in Q Megaflops
PRK 0.0023 0.0013 2.992
SPRK 0.0023 0.0013 2.991
RKRqr 0.0014 0.0012 3.008

In the last numerical experiment we apply the RKRqr method to the computation
of the LEs of the following ODEs system describing a ring of m Duffing oscillators:

ÿ + α
(
y2 − 1

)
ẏ + ω2y = 0,

ẍi + dẋi + β [V ′(xi − xi−1)− V ′(xi+1 − xi)] = σyδi,1, i = 1, . . . ,m.
(17)

The ring is forced externally by y(t). Here V (x) = (x
2

2 ) + (x
4

4 ), δi,j = 0 for i �= j and
δi,i = 1, and we impose periodic boundary conditions (x0 = xm and xm+1 = x1). In
the experiments m = 15 and α = 1, ω = 1.6, β = 1, σ = 2, and d = 0.4. This test
problem has been considered in [11, 8, 2].

In this experiment we have considered a time interval [0, 4000] and the stepsize
h = 0.01. The trajectory is computed numerically using a midpoint rule with stepsize
h/8.

Considering the error introduced by substituting the integral (16) with the quadra-
ture, the results are in good agreement with those obtained in [11] and give the correct
qualitative information about the considered dynamical system. (All LEs are nega-
tive.) The results are reported in Figures 4 and 5.

7. Conclusion. We have developed intrinsic integration methods of complexity
O(nk2) for solving ODEs on orthogonal Stiefel manifolds. We would like to emphasize
that in order to see this complexity in actual computations it is important that the
evaluation of the vector field F (as in y′ = F (t, y)) does not involve cost of higher
arithmetic complexity. It is, for instance, quite common to phrase problems on Vn,k
in the form

ẏ = F (t, y) = A(t, y)y,(18)

where A(t, y) : R×Vn,k → so(n). If there is no sparsity in A(t, y), it seems impossible
to calculate F (t, y) in less than O(n2 k) flops, and the gain in using the presented
type of integration methods may not be significant. However, since each tangent
space TpVn,k has only dimension dn,k = nk − k(k − 1)/2 it is always possible to find
local parametrizations of the vector field F using only dn,k degrees of freedom.

There is no doubt that the methods presented here seem to have something in
common with projection methods. Although we have seen no precise definition of a
projection method, we still claim that there are important differences between the
methods presented here and those normally referred to as projection methods. We
have therefore chosen to focus on intrinsicness as the main feature to distinguish
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Fig. 4. LEs for a ring of oscillators: RKRqr
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Fig. 5. LEs for a ring of oscillators: RKRqr
detail on the interval [3000, 4000].

the two types of methods. The term projection often indicates a map from higher
to lower dimension, but in our case the retraction map is seen as a map from each
tangent space TpVn,k onto a neighborhood of p ∈ Vn,k, and in this sense it is a local
diffeomorphism. Following the recent threads in the area of geometric integration,
we find it useful to make a point out of constructing and analyzing schemes without
appealing to the particular embedding of the manifold in a Euclidean space. This
means, for instance, that we aim to avoid as much as possible working directly with
algebraic constraints since they are closely linked to the realization of the manifold.
Only in the explicit construction of specific retraction maps have we found it useful
to apply properties of the embedding as a tool. Still, considering the retraction map
as a black box, there are no traces of the embedding to be found in the method
design. Furthermore, we have been reluctant to allow linear combinations of tangent
vectors belonging to different tangent spaces. One may, of course, ask whether there
are good reasons for requiring such properties in an integration method for ODEs on
manifolds. We believe that there might be situations where intrinsic properties of
the manifold itself are of importance for the behavior of the method, and it seems
natural in such cases to apply integration methods that are not affected by how the
manifold is embedded in a Euclidean space. Nevertheless, these new methods should
be thought of as complementing rather than substituting the vast selection of DAE
and projection methods available today. We also believe that more studies should be
done towards understanding better the relation between established DAE methods
and the approach presented here.

The main feature of the proposed methods is that they make no use of an extension
of the vector field F to points not lying on the Stiefel manifold. It is certainly true
that one can for all practical purposes find such an extension of the vector field F to
all of R

n×k; for instance, the imbedding theorem of Nash ensures this for Riemannian
manifolds. However, the extension is not unique, and we find it unnatural that the
numerical approximation produced should depend on the particular extension which
is chosen. Our numerical experiments confirm that different extensions can lead to
completely different numerical approximations for projection methods, whereas the
ones presented here yield identical results modulo rounding errors.

Acknowledgments. The authors would like to thank Luciano Lopez and Nico-
letta Del Buono for inspiring discussion on this topic, and Nick Higham for providing
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Matlab functions for the polar decomposition.
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Abstract. We propose in this paper an alternative approach for computing p-harmonic maps
and flows: instead of solving a constrained minimization problem on SN−1, we solve an unconstrained
minimization problem on the entire space of functions. This is possible, using the projection on the
sphere of any arbitrary function. Then we show how this formulation can be used in practice, for
problems with both isotropic and anisotropic diffusion, with applications to image processing, using
a new finite difference scheme.
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1. Introduction. This paper is concerned with the minimization of constrained
functionals, and in particular with p-harmonic maps. This problem has applications
to liquid crystals, as well as to directional diffusion and chromaticity denoising.
Let Ω ⊂ R

M be an open and bounded domain, and let SN−1 be the unit sphere
in R

N , for M ≥ 1 and N ≥ 2.
We first recall the following notations and terminology. The Euclidean norm of

a vector y will be denoted by | · |. The vector-valued function U : Ω → R
N belongs

to SN−1 if and only if |U(x)| = 1, a.e. (for almost every) x ∈ Ω.
The component gradient ∇Ui and its Euclidean norm are, respectively, defined

by

∇Ui =
(
∂Ui
∂x1

,
∂Ui
∂x2

, . . . ,
∂Ui
∂xM

)
, |∇Ui| =

√(
∂Ui
∂x1

)2

+

(
∂Ui
∂x2

)2

+ · · ·+
(
∂Ui
∂xM

)2

,

and the gradient matrix and its norm of the vector-valued function U are, respectively,
defined by

∇U =

 ∇U1

:
∇UN


 =


 ∂U1

∂x1
. . . ∂U1

∂xM

: :
∂UN

∂x1
. . . ∂UN

∂xM


 , |∇U | =

√√√√ N∑
i=1

M∑
j=1

(
∂Ui
∂xj

)2

.

For U : Ω→ SN−1 and p ≥ 1, we consider the p-energy

Ep(U) =

∫
Ω

|∇U |pdx,(1.1)
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which is finite if U belongs to the Sobolev class

W 1,p(Ω, SN−1) = {U ∈W 1,p(Ω,RN ), |U | = 1 a.e.}.

Minimizing Ep over U : Ω→ SN−1, with associated boundary conditions on ∂Ω,
is a constrained minimization problem. Mappings which are stationary for Ep are
called p-harmonic maps.
The associated boundary conditions can be, for example, the following: U |∂Ω

equals a given map in SN−1(∂Ω), or the Neumann boundary conditions ∂U∂
n |∂Ω = 0,
where �n denotes the exterior unit normal to ∂Ω.
Many authors have studied harmonic maps between manifolds (existence, unique-

ness or nonuniqueness, regularity; essentially most of them worked on the case p = 2):
Bethuel, Brezis, and Coron [5]; Bethuel, Brezis, and Helein [6], [7]; Schoen and Uh-
lenbeck [29], [30], [31]; Struwe [34], [35], [36]; Courilleau and Demengel [15]; Coron
and Gulliver [14]; Brezis, Coron, and Lieb [8]; and others. There are fewer results for
the case p = 1 (for example by Giaquinta, Modica, and Soucek [19]).
We would also like to mention the following important contributions on harmonic

maps for liquid crystals, both in theory and practice: Hardt, Kinderlehrer, and Luskin
[20]; Lin and Luskin [24]; Cohen, Lin, and Luskin [12]; Cohen et al. [13]. The work
on computational aspects of harmonic maps [13] was proposed before the analysis
results on this problem. This paper deals with alternative formulations and numerical
methods for computing harmonic maps.
There are difficulties finding numerically the minimizers or the p-harmonic maps,

due to nonconvexity (the constraint |U(x)| = 1 a.e. is not convex), nonregularity, and
nonuniqueness of minimizers.
There are several classical approaches used to solve the minimization problem

(1.1).
A first approach is to solve the Euler–Lagrange equations associated with the

minimization problem. These consist of a set of coupled PDEs:

−div(|∇U |p−2∇U) = U |∇U |p.(1.2)

The above system of equations holds if and only if U ∈ SN−1. However, in practice,
the numerical solution does not necessarily satisfy the constraint |U | = 1 everywhere.
To correct the numerical error, several authors [18], [38], [39] replace the solution Un∗
obtained at each iteration n by Un =

Un
∗

|Un∗ | , but then the question is whether one still
decreases the energy. In this framework, we also refer the reader to [13]. It is known [1]
that the energy decrease is guaranteed after this renormalization if |Un∗ | ≥ 1, but the
behavior of the energy is not known if |Un∗ | < 1. Also, if we would like to extend this
numerical procedure involving the projection at each step to other manifolds, then the
energy decrease is guaranteed only when the manifold is the boundary of a convex set,
and again if, in addition, Un∗ does not belong to the interior of that convex domain.
This problem has been solved in [1] for the S2 case and in three dimensions, where

an interesting convergent algorithm is proposed, but it still involves a renormalization
step at each iteration (ensuring now that the energy decreases after the renormaliza-
tion step). Numerical methods for p-harmonic flows are also proposed in [18] and [13],
again based on the renormalization procedure at each step.
The second classical approach is given by the Ginzburg–Landau functionals [6], [7].

Here, the problem is solved by approximation to eliminate the constraint. The mini-
mization of the energy Ep from (1.1) under the constraint |U(x)| = 1 a.e. is approxi-



NUMERICAL METHOD, HARMONIC FLOW, IMAGE PROCESSING 2087

mated by the unconstrained minimization of the following energies, as ε→ 0:

Eε(U) =

∫
Ω

|∇U |pdx+ 1
ε

∫
Ω

(1− |U |2)2dx.(1.3)

In this paper, we introduce a different approach to solving minimization problems
on SN−1. We solve an unconstrained minimization problem on the entire space of
functions and not only on SN−1. The method uses the projection of an arbitrary
function V to the sphere SN−1. We will present our alternative approach for the
case of SN−1. Then we discuss how this approach can be extended to more general
manifolds, and in particular to manifolds defined implicitly, via a level set function.
By proposing numerical schemes in the S1 and S2 cases, we also show how our for-
mulations can be used in practice, and in particular for applications to directional
diffusion and color image denoising.

In the framework of image processing and directional diffusion, related works are
[27], [33], [9], [38], [22], [39], [42], and [32], [23]. We also refer the reader to [17] for
manifold constrained variational problems. In the framework of energy minimization
with values in S2, we refer the reader to [16], where the algorithm from [1] is applied
in the presence of a data term.

Our main idea is as follows. For U : Ω → SN−1, with Ω ⊂ R
M , consider

V : Ω→ R
N \�0 such that

U =
V

|V | .

We minimize without constraint the corresponding energy with respect to V :

inf
V

{
F (V ) =

∫
Ω

∣∣∣∣∇
(
V

|V |
)∣∣∣∣

p

dx

}
,(1.4)

and then we recover U , a minimizer of (1.1), projecting back on SN−1, by U = V
|V | ,

where V is a minimizer of (1.4).

We would like to mention that the idea of solving constrained minimization prob-
lems for harmonic maps by associating unconstrained minimization problems has been
used as a theoretical tool by Chen and Lin [10] and Struwe [37]. They find a smooth
energy-minimizing harmonic map U as a weak limit of minimizers UL to an uncon-
strained variational problem for L→∞.
The outline of the paper is as follows. In section 2, we consider the S1 case: we

derive the Euler–Lagrange equations associated with the unconstrained minimization
problem, and in subsection 2.1 we propose a numerical scheme for this case. Similarly,
section 3 and subsection 3.1 are devoted to the S2 case. In section 4 we validate the
proposed models and numerical schemes on several experimental results: in subsec-
tion 4.1, we consider the case with prescribed boundary conditions, and we make a
comparison with the classical formulation (1.2) with the renormalization step at each
iteration (we will see that, by the proposed approach, the numerical accuracy is im-
proved in a test case where we know the exact solution); in subsection 4.2, we consider
the case of directional diffusion, with Neumann boundary conditions, and applications
to chromaticity denoising for color images. Finally, in section 5 we conclude with a
discussion for more general manifolds.
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2. The S1 case. To develop our main idea, let us first consider the particular
case N = 2 of S1. Then, for U : Ω → S1, consider V = (u, v) : Ω → R

2 such that
U = V

|V | .
In order to obtain in an elegant way the Euler–Lagrange equations associated

with the minimization problem (1.4), we consider the orientation formulation (which
is not always equivalent with the directional formulation). Let U = (cos θ, sin θ), and
let V = (r cos θ, r sin θ). Then u2 + v2 = r2, and we have

∣∣∣∣∇
(
V

|V |
)∣∣∣∣

2

= |∇θ|2.

For p = 2 (the heat flow for harmonic maps), solving

inf
θ

∫
Ω

|∇θ|2dx,

and parameterizing the descent direction by an artificial time t, we obtain (denoting
ut =

∂u
∂t , vt =

∂v
∂t )

θt = θ, rt = 0.

Using

θ = tan−1
( v
u

)
, ∇θ = u∇v − v∇u

u2 + v2
,

we first deduce that

uvt − vut
u2 + v2

= div

(
u∇v − v∇u
u2 + v2

)
.

Now, using uut + vvt = 0 (from rt = 0), we obtain the associated Euler–Lagrange
equations for p = 2:

ut = −vdiv
(
u∇v − v∇u
u2 + v2

)
, vt = +udiv

(
u∇v − v∇u
u2 + v2

)
.(2.1)

For p = 1 (the total variation minimization of Rudin, Osher, and Fatemi [28]),
on solving

inf
θ

∫
Ω

|∇θ|dx,

we obtain

θt = div

( ∇θ
|∇θ|

)
, rt = 0.

Then, in a similar way, the associated Euler–Lagrange equations for p = 1 are

ut = −vdiv
(
u∇v − v∇u
|u∇v − v∇u|

)
, vt = +udiv

(
u∇v − v∇u
|u∇v − v∇u|

)
.(2.2)
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In the general case, i.e., for any p ≥ 1, the corresponding linear system in ut and vt
is

uut + vvt = 0,

uvt − vut
u2 + v2

= div

[( |u∇v − v∇u|
u2 + v2

)p−2(
u∇v − v∇u
u2 + v2

)]
.

Solving this linear system in the unknowns ut and vt yields similar equations in
u and v, like those for the cases p = 2 and p = 1 from (2.1) and (2.2), respectively.
We will associate with the problems (2.1) and (2.2) initial conditions in the follow-

ing form: u(0, x) = u0(x) and v(0, x) = v0(x) in Ω; at the boundary, we can prescribe
either Dirichlet boundary conditions V (t, x)/|V (t, x)| = F (x), with F : ∂Ω → S1

given, for t ≥ 0 and x ∈ ∂Ω; or Neumann boundary conditions ∂u∂
n = 0 and ∂v
∂
n = 0

on ∂Ω.
We could add data terms in the energy, as in [9] or [16].
Remark. With these formulations, with both p = 1 and p = 2 (and, in fact, for

any p ≥ 1), we always have, for any fixed x ∈ Ω, u(t, x)ut(t, x) + v(t, x)vt(t, x) = 0,
or u2(t, x) + v2(t, x) = constant in time for fixed x.

Remark. Note that we have used an artificial time, even if we compute a stationary
solution of the problem. This is a common technique, and this artificial time represents
a parameterization of the descent direction. It can be shown, in general, that the
energy is decreasing in time, under such a time-dependent flow, for both Dirichlet or
Neumann boundary conditions (as explained in detail in the appendix).

2.1. The numerical algorithm for the S1 case. To discretize the systems
(2.1) and (2.2), we use finite differences. Assume for simplicity that U : [0, 1]M → S1,
let h be the space step, and let t be the time step. We denote by un and vn
the approximations of u(nt, x) and of v(nt, x), respectively, where x is a grid
point. (To simplify the notation, we will not explicitly indicate the discrete point xi,j
where the approximation is considered; for instance, if M = 2, un means uni,j , etc.;
similarly, any expression of the form (E)n denotes an approximation of the quantity E
at (nt, x), at the same discrete point x; this notational convention will allow us to
consider any dimension M ≥ 1.)
We use the following semi-implicit scheme for (2.1) (p = 2):

un+1 − un
t = −v

n+1 + vn

2

[
div

(
u∇v − v∇u
u2 + v2

)]n
,

vn+1 − vn
t = +

un+1 + un

2

[
div

(
u∇v − v∇u
u2 + v2

)]n
,

and similarly for (2.2) (p = 1).
Denoting by (Div)n an approximation of the expression div

(
u∇v−v∇u
u2+v2

)
evaluated

at (nt, ih, jh, . . .), and solving the previous algebraic system in un+1 and vn+1,
we obtain, for both p = 1 and p = 2,

un+1 =
un −

(
2vn + un�t(Div)n

2

)
�t(Div)n

2

1 +
(

�t(Div)n
2

)2 ,

vn+1 =
vn +

(
2un − vn�t(Div)n

2

)
�t(Div)n

2

1 +
(

�t(Div)n
2

)2 .
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To discretize the expression div
(
u∇v−v∇u
u2+v2

)
, we use the finite difference scheme

proposed in [28] for div
( ∇u
|∇u|

)
and which has also been used in [2] for a more general

case.
Remark. As in the continuous case, it is easy to verify that the numerical solution

exactly satisfies

(un+1)2 + (vn+1)2 = (un)2 + (vn)2

at any grid point x. This proves that the scheme produces bounded solutions inde-
pendent of the relation between t and h.

Remark. Note that we do not need to apply a renormalization step at every
iteration. Only in the end of the algorithm we let U = V

|V | , with V = (u, v). Note
also that if the initial data V0 = (u0, v0) already satisfies |V0| = 1 everywhere, then,
due to the previous remark, this equality will be preserved in time, and therefore, in
the end, the numerical solution U will be directly given by V . (In other words, in
this case, there is no need to renormalize V at the steady state; we will simply have
U = V .)

Remark. Although the solutions remain bounded regardless of the magnitude
of t, the numerical domain of dependence of un+1, vn+1 is such that convergence
for p = 2 is possible only if t ≤ Ch2. This follows from the fact that θ satisfies
the heat equation. We verified this by numerical experiments, and found that the
quantity θ is noisy if t is too large, although the solution is bounded. (See Fig-
ure 7 for a comparison of results obtained for several values of t.) Convergence for
p = 1 requires a more restrictive constraint on t, typical of that for total variation
minimization [28] in θ.

Remark. Note that additional penalty terms obtained by imposing constraints
on V or on V

|V | could be added to the energy or to the Euler–Lagrange equations
without any difficulty.

3. The S2 case. We will follow the same idea as in the previous case, in order to
derive the Euler–Lagrange equations associated with the unconstrained minimization
problem (1.4), for any M ≥ 1 and N = 3.
Using spherical coordinates, we let

U = (cos θ1 cos θ2, cos θ1 sin θ2, sin θ1) ∈ S2

and

V = (r cos θ1 cos θ2, r cos θ1 sin θ2, r sin θ1) = (u, v, w).

We then have r2 = u2 + v2 + w2,

θ1 = tan
−1

(
w√

u2 + v2

)
, θ2 = tan

−1
( v
u

)
,

and it can be shown that

|∇U |2 = |∇θ1|2 + cos2 θ1|∇θ2|2.
Let us consider first the case p = 2. From

inf
θ1,θ2

∫
Ω

|∇θ1|2 + cos2 θ1|∇θ2|2dx,
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we obtain (parameterizing the descent directions by an artificial time t)

θ1,t = θ1 + sin θ1 cos θ1|∇θ2|2,(3.1)

θ2,t = div(cos
2 θ1∇θ2).(3.2)

Let us denote by E1 and E2, respectively, the expressions on the right-hand sides
of (3.1) and (3.2), i.e.,

θ1,t = E1, θ2,t = E2.(3.3)

Again, from rt = 0, we deduce that

uut + vvt + wwt = 0.(3.4)

Computing and using

∇θ1 = (u
2 + v2)(∇w)− uw(∇u)− vw(∇v)
(u2 + v2 + w2)

√
u2 + v2

,(3.5)

∇θ2 = u(∇v)− v(∇u)
u2 + v2

,(3.6)

we can then express E1 and E2 as functions of (u, v, w) by

E1 = θ1 + w
√
u2 + v2

u2 + v2 + w2
|∇θ2|2, E2 = div

(
u(∇v)− v(∇u)
u2 + v2 + w2

)
.

On the other hand, we have

θ1,t =
(u2 + v2)wt − uwut − vwvt
(u2 + v2 + w2)

√
u2 + v2

, θ2,t =
uvt − vut
u2 + v2

.

We now consider the system formed by (3.3), (3.4) in the unknowns ut, vt, and wt:

uut + vvt + wwt = 0,
(u2 + v2)wt − uwut − vwvt
(u2 + v2 + w2)

√
u2 + v2

= E1,
uvt − vut
u2 + v2

= E2.

Solving this linear system in the unknowns ut, vt, and wt, we deduce the associated
Euler–Lagrange equations

ut = − uw√
u2 + v2

E1 − vE2,(3.7)

vt = − vw√
u2 + v2

E1 + uE2,(3.8)

wt =
√
u2 + v2E1.(3.9)

For the case p = 1 of the total variation minimization of Rudin, Osher, and
Fatemi [28], we consider first the problem in θ = (θ1, θ2) ∈ [−π2 , π2 ]2:

inf
θ1,θ2

∫
Ω

√
|∇θ1|2 + cos2 θ1|∇θ2|2dx,
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which yields the equations

θ1,t = div

(
∇θ1√|∇θ1|2 + cos2 θ1|∇θ2|2

)
+

sin θ1 cos θ1|∇θ2|2√|∇θ1|2 + cos2 θ1|∇θ2|2 ,
θ2,t = div

(
cos2 θ1

∇θ2√|∇θ1|2 + cos2 θ1|∇θ2|2
)
.

Denoting again by E1 and E2 the expressions on the right-hand sides of the above
equations (corresponding now to the case p = 1), these can be expressed as functions
of (u, v, w) using (3.5) and (3.6). The Euler–Lagrange equations for the case p = 1,
in (u, v, w), are therefore as in (3.7)–(3.9) but with the corresponding differential
operators E1 and E2 for p = 1.

3.1. The numerical algorithm for the S2 case. The expressions E1 and E2

are discretized following [28] and [2] for both p = 1 and p = 2. (We will still denote
their discretizations at a given point by E1 and E2.)
Let us denote by un, vn, wn the discrete solutions at a discrete point in two or

three dimensions (but without writing uni,j or u
n
i,j,k, for simplicity). We discretize the

system (3.7)–(3.9) using the following implicit scheme:

un+1 = un − t√
(un)2 + (vn)2

un
(
wn+1 + wn

2

)
E1 −

(
vn+1 + vn

2

)
E2t,

vn+1 = vn − t√
(un)2 + (vn)2

vn
(
wn+1 + wn

2

)
E1 +

(
un+1 + un

2

)
E2t,

wn+1 = wn +t
√
(un)2 + (vn)2E1.

We will use the notations

A =
E1t

2
√
(un)2 + (vn)2

, B =
E2t
2

, C = t
√
(un)2 + (vn)2E1.

The linear system in un+1, vn+1, wn+1 is nonsingular and has the unique solution

un+1 =
R1 −BR2

1 +B2
, vn+1 =

R2 +BR1

1 +B2
, wn+1 = wn + C,

where R1 = u
n −Aun(2wn + C)− vnB and R2 = v

n −Avn(2wn + C) + unB.
Remark. The numerical scheme will exactly satisfy the relation

(un+1)2 + (vn+1)2 + (wn+1)2 = (un)2 + (vn)2 + (wn)2

at each grid point, if in the above discretizations the expression
√
(un)2 + (vn)2 is

replaced by
√
un
(
un+un+1

2

)
+ vn

(
vn+vn+1

2

)
, but this yields a nonlinear system in the

unknowns un+1, vn+1, and wn+1, which could be solved by a fixed-point iteration.

4. Numerical experiments. In this section we present numerical experiments
in the cases M = 2, N = 2, and M = 2, 3 and N = 3. We will consider the cases with
Dirichlet boundary conditions (subsection 4.1) and Neumann boundary conditions
(subsection 4.2).
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Fig. 1. Left: initial condition for the Dirichlet problem, as a perturbation of x−x0
|x−x0| in (0, 1)2,

given by (4.1)–(4.2), and agreeing with x−x0
|x−x0| at the boundary, where x0 = (0.5, 0.5). Right:

corresponding initial angle θ = tan−1
(

v0

u0

)
.

4.1. Numerical results for prescribed boundary conditions. In the S1

case, we first consider the Dirichlet problem, with the boundary condition U(x) =
x−x0

|x−x0| on ∂Ω, with x0 = (0.5, 0.5), where Ω = (0, 1)
2. In this case, it is known that

the map x �→ x−x0

|x−x0| is an exact solution and minimizer in Ω. We will show that
the numerical solution has the correct behavior, approximating very well the exact
solution.

Following [13], an initial condition V 0 = (u0, v0) inside Ω can be a perturbation
of x−x0

|x−x0| (shown in Figure 1, after normalization):

u0(x1, x2) =
x1 − .5
|x− x0| + .6(1 + x

2
1 − x2

2)− .8η,(4.1)

v0(x1, x2) =
x2 − .5
|x− x0| + .6(x1 − 2x2) + .8η,(4.2)

for all (x1, x2) ∈ Ω, where η is random noise.
We will also consider another initial condition in this case, defined using the

distance function to the boundary as follows: for (x, y) ∈ Ω, find (xb, yb) ∈ ∂Ω as the
closest point to the boundary ∂Ω from (x, y). Then let (u0(x, y), v0(x, y)) = U(xb, yb),
where U defines the boundary conditions on ∂Ω. (This second initial condition is
shown in Figure 2.)

We now consider the case p = 2 for these two initial conditions. For the initial
data 1, we also compare the results (the error and the energy decrease) with the
classical harmonic map formulation with numerical renormalization at each time step
by solving the semidiscrete problem (using central difference approximations for the
space derivatives, and with the same prescribed boundary conditions and the same
time and space steps):
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Fig. 2. Left: another initial condition for the Dirichlet problem, constructed using the closest
point to the boundary, and agreeing with x−x0

|x−x0| at the boundary, where x0 = (0.5, 0.5). Right:

corresponding initial angle θ = tan−1
(

v0

u0

)
.

un+1
∗ − un
t = un + un

[
(unx)

2 + (uny )
2 + (vnx )

2 + (vny )
2
]
,

vn+1
∗ − vn
t = vn + vn

[
(unx)

2 + (uny )
2 + (vnx )

2 + (vny )
2
]
,

(un+1, vn+1) =
(un+1

∗ , vn+1
∗ )

|(un+1∗ , vn+1∗ )| .

We show the energy decrease and the error versus iterations for the results ob-
tained with the classical harmonic maps applied to the initial data 1, and with the
proposed model applied to both initial data 1 and 2 (see Figure 3). Using the proposed
model, the error is much smaller. Also, note that the initial data 2 produces a result
very fast. For both initial data 1 and 2, by our proposed model, the numerical solution

U(x) = V (x)
|V (x)| at the steady state approximates very well the exact solution

x−x0

|x−x0| in
Ω = [0, 1]2, and it is better than using the classical harmonic map scheme with the
renormalization at each step.
The results obtained with the proposed model for p = 2, for both data, are shown

in Figure 4, together with the angle θ = tan−1
(
v
u

)
.

Corresponding results obtained with the proposed model for p = 1 are shown in
Figures 5 and 6.
In Figure 7 we show the angle θ = tan−1

(
v
u

)
, obtained with the initial data 1, for

p = 2, at the steady state using the proposed model, for different decreasing values
of t. This test proves again that if t is too large, then θ is noisy, but the numerical
solution (un, vn) remains bounded. Similar results can be obtained for p = 1, with a
slightly stronger condition on t, to guarantee the stability of the numerical scheme.
We show next a numerical result for maps with values in S2 in the three-dimen-

sional case. Following [1], we perform a test, which shows again that, for the Dirichlet
boundary conditions, the numerical solution approximates well the exact solution for
p = 2: in Figure 8, the initial data is to the left, and the result is on the right. We
see that the singularity has moved in the center of the domain, this being therefore
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Fig. 3. Energy and error versus iterations, for the classical harmonic map scheme applied to
the initial data 1, and for the proposed model applied to both initial data 1 and 2. Note a much
better accuracy obtained with the proposed model, compared with the classical formulation (we use
the same �t = 0.0001, h = 1./21), for both formulations.

an approximation of x−x0

|x−x0| , with x0 = (0.5, 0.5, 0.5).

4.2. Application to directional denoising and color image denoising.
Next, we consider the case with Neumann boundary conditions. For the initial data
in Figure 9, the results for p = 1 and p = 2 are presented in Figure 10. Note that,
for p = 1 (left), the “edges” are very well preserved, thanks to the total variation
minimization [28], while denoising in the homogeneous regions. (We show the results
at the steady state and without any fitting term.)

Finally, we show applications more related to denoising of color RGB images. In
the first test (Figure 11), we consider a map from R

2 → S2, but instead of vectors
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Fig. 4. Left: numerical result, approximating well the exact solution and minimizer for p = 2,
with Dirichlet boundary conditions (�t = 0.0001, h = 1/21). Right: corresponding angle θ =

tan−1
(

v
u

)
.

we plot colors, using the rectangular color space RGB: in Figure 11 (left), we show
an initial image of noisy directions. (The components of the unit vector (u, v, w) are
visualized as channels in a color RGB picture.) We show in Figure 11 (middle and
right) two numerical results in the case of directional diffusion, with p = 1 (middle)
and p = 2 (right), with Neumann boundary conditions. As expected, in the case of
the total variation [28], the edges are well preserved, while these are smeared out with
the heat flow.
We end the paper with an application to denoising of color RGB images. We

consider a color image I = (IR, IG, IB) ∈ R
3 from which we can extract the intensity

or brightness |I| =√I2
R + I

2
G + I

2
B and the chromaticity

I

|I| =
(

IR√
I2
R + I

2
G + I

2
B

,
IG√

I2
R + I

2
G + I

2
B

,
IB√

I2
R + I

2
G + I

2
B

)
∈ S2.

Let us assume that noise has been added to the image but only to the chromaticity I
|I| .
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Fig. 5. Left: numerical result, approximating well the exact solution and minimizer for p = 1,
with Dirichlet boundary conditions (�t = 0.00001, h = 1/21). Right: corresponding angle θ =

tan−1
(

v
u

)
.

Then we can apply the above directional denoising method, with p = 1, to the chro-
maticity. (In this test case, we do not add noise to the brightness |I|.) If noise were
also added to the brightness, then this could have been denoised, for example, with
the corresponding total variation minimization [28] or any other anisotropic diffusion
PDE. With the processed result, we obtain a denoised version of the image, using the
unchanged brightness. We mention that the idea of decomposing a color RGB image
into its brightness and chromaticity, and processing these two quantities separately,
has been already used in other works (for example in [21], [40], [41], [38], [39], [9],
[32], [23], [33]).

This type of application is illustrated in the last numerical example. In Figure 12,
we show an original color RGB image I = (IR, IG, IB) ∈ R

3 (left), a noisy version
(middle), where only the directions I

|I| (the chromaticity) were noisy, keeping the
brightness |I| or magnitude of the vectors unchanged, and a denoised version obtained
with p = 1 (right), where only the chromaticity or directions were denoised, keeping
the brightness or magnitude unchanged from the original image, equal to |I|.
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Fig. 6. Energy and error versus iterations for p = 1 with Dirichlet boundary conditions,
corresponding to the results in Figure 5.

5. Concluding remarks and discussions for more general manifolds. In
this paper, we have proposed an alternative approach for computing harmonic maps
and harmonic flows. We have illustrated the proposed methods by experimental re-
sults and comparisons with classical schemes, and applications to directional diffusion
and image processing.

It is easy to see that the minimization problems (1.1) and (1.4) have the same
infimum, and that solving one problem yields a minimizer for the other one, and
vice versa. Of course we cannot expect to have uniqueness of minimizers for (1.4),
because λV is a minimizer for any nonzero constant λ if V is a minimizer. Showing
the existence of minimizers for (1.4) may be a difficult problem, because the energy
is not convex. We have also posed the following question: given Dirichlet boundary
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t = .0004 t = .0002 t = .0001

Fig. 7. The angle θ = tan−1
(

v
u

)
at the steady state for p = 2, obtained using the proposed

model with Dirichlet boundary conditions, for decreasing values of �t. (If �t is too large, θ is noisy,
but the numerical solution (un, vn) always remains bounded.)

INITIAL DATA NUMERICAL SOLUTION

Fig. 8. Top: initial flow x−x1
|x−x1| from (0, 1)3 into S2 with prescribed Dirichlet boundary con-

ditions equal to x−x0
|x−x0| , where x0 = (0.5, 0.5, 0.5) and x1 = (0.64, 0.64, 0.64). Bottom: numerical

solution obtained for p = 2. The singularity has moved to the center of the domain, approximating
well the exact solution and minimizer (�t = 0.00001, h = 1/7).
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Fig. 9. Initial noisy data for the case with Neumann boundary conditions.
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Fig. 10. Numerical results with the initial noisy data from Figure 9, for Neumann boundary
conditions and p = 1 (left), with �t = 0.00005, h = 1, steady state, and p = 2 (right), with
�t = 0.00005, h = 1, steady state.

Initial directions p = 1 p = 2

Fig. 11. Directions denoising with p = 1 (middle) and p = 2 (right). The unit vectors are
represented as RGB colors (�t = 0.01, h = 1).
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Original image Noisy image Denoised image
Brightness Brightness unchanged Brightness unchanged
Chromaticity Noisy chromaticity Denoised chromaticity

Fig. 12. Chromaticity denoising with p = 1. The brightness is kept unchanged from the original
image (�t = 0.01, h = 1, 50 iterations).

conditions on ∂Ω, what would be a good initial condition in Ω to guarantee a fast
computation of a minimizer? (To find a particular initial condition, we have used the
distance function to the boundary ∂Ω, although perhaps other choices could also be
constructed.)
This method can be extended to more general manifolds. For instance, if we

consider a manifoldM⊂ R
N , then the associated constrained minimization problem

can be formulated as follows:

inf
U :Ω→M

F (U) =

∫
Ω

|∇U |pdx.

The proposed method for the case whenM = SN−1 can be extended to such general
cases if we assume, for example, thatM can be represented implicitly, via a level set
function, given by the signed distance function toM, from any other point in R

N . (We
refer the reader to [26] for definitions and dynamics of closed hypersurfaces defined
implicitly, via level set functions and signed distance functions.) Then we can write
M = {x ∈ R

N : d(x) = 0}, where d is the signed distance function to M (in
particular a Lipschitz function, taking real values). To any U : Ω→M, we associate
V : Ω → R

N such that U is the projection of V on the manifold M. This can be
done using the closest point or the projection U = V − d(V )∇V d(V ), and we have
d(U) = 0. Then we can associate the unconstrained minimization problem

inf
V :Ω→RN

∫
Ω

|∇(V − d(V )∇V d(V ))|pdx.

This is a generalization of the caseM = SN−1, because in this case we have d(V ) =
|V | − 1, and V − d(V )∇V d(V ) = V

|V | . We plan to consider in the future the solution
of this general unconstrained minimization problem.
We would like to mention that the case of more general manifolds, and in partic-

ular of manifolds defined implicitly, has been considered in [3], [4] for the manifold of
origin and in [25] for the target manifold, but using different formulations.
We would also like to mention that the idea of solving constrained minimization

problems for harmonic maps by associating unconstrained minimization problems
has been used as a theoretical tool by Chen and Lin [10], Chen and Struwe [11], and
Struwe [37]. They find a smooth energy-minimizing harmonic map U as a weak limit
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of minimizers UL to an unconstrained variational problem for L→∞. They construct
in a different way the unconstrained variational problems.

Appendix. We show here that, parameterizing the descent direction by an ar-
tificial time, the energy is still decreasing under the associated flow. (See the last
remark from subsection 2.1.) We show this property in a general framework. In order
to solve the minimization problem

inf
u1,...,uN

∫
Ω

f(u1, . . . , uN ,∇u1, . . . ,∇uN )dx,

where Ω ⊂ R
N , x = (x1, . . . , xM ) ∈ R

M , we associate the time-dependent coupled
PDEs for 1 ≤ i ≤ N (the functions ui take real values, and we use the notations
u = (u1, . . . , uN ), ∇u = (∇u1, . . . ,∇uN ), (ui)xj

= ∂ui

∂xj
):

∂ui
∂t
= −∂f(u,∇u)

∂ui
+

M∑
j=1

∂

∂xj

(
∂f(u,∇u)
∂((ui)xj

)

)
,

with the initial conditions ui(0, x) = u0,i(x) in Ω. On the boundary ∂Ω, we can
assume Dirichlet boundary conditions ui(t, x) = u0,i(x) for x ∈ ∂Ω and t > 0, or free
boundary conditions in the form

∑M
j=1

∂f(u,∇u)
∂((ui)xj

)nj = 0, where �n = (n1, . . . , nM ) is the

exterior unit normal to ∂Ω.
We formally compute now d

dt

∫
Ω
f(u1, . . . , uN ,∇u1, . . . ,∇uN )dx = d

dt

∫
Ω
f(u,∇u)dx,

and we show that this quantity is always negative or zero; therefore the energy is de-
creasing in time:

d

dt

∫
Ω

f(u,∇u)dx

=

N∑
i=1

∫
Ω

(
∂f(u,∇u)

∂ui

)(
∂ui
∂t

)
dx+

N∑
i=1

∫
Ω

[ M∑
j=1

(
∂f(u,∇u)
∂((ui)xj )

)(
∂(ui)xj

∂t

)]
dx

=
N∑
i=1

∫
Ω

(
∂f(u,∇u)

∂ui

)(
∂ui
∂t

)
dx+

N∑
i=1

∫
Ω

[ M∑
j=1

(
∂f(u,∇u)
∂((ui)xj )

)(
∂(ui)t
∂xj

)]
dx

=
N∑
i=1

∫
Ω

(
∂f(u,∇u)

∂ui

)(
∂ui
∂t

)
dx+

N∑
i=1

∫
Ω

{
−

M∑
j=1

[
∂

∂xj

(
∂f(u,∇u)
∂((ui)xj )

)](
∂ui
∂t

)}
dx

+
N∑
i=1

{∫
∂Ω

(
∂ui
∂t

)( M∑
j=1

∂f(u,∇u)
∂((ui)xj )

nj

)
dS

}

=
N∑
i=1

∫
Ω

(
∂ui
∂t

)[
∂f(u,∇u)

∂ui
−

M∑
j=1

∂

∂xj

(
∂f(u,∇u)
∂((ui)xj )

)]
dx

= −
N∑
i=1

∫
Ω

(
∂ui
∂t

)2

dx ≤ 0.
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pp. 485–491.

[37] M. Struwe, Uniqueness of harmonic maps with small energy, Manuscripta Math., 96 (1998),
pp. 463–486.

[38] B. Tang, G. Sapiro, and V. Caselles, Diffusion of general data on non-flat manifolds via
harmonic maps theory: The direction diffusion case, Int. J. Comput. Vision, 36 (2000),
pp. 149–161.

[39] B. Tang, G. Sapiro, and V. Caselles, Color image enhancement via chromaticity diffusion,
IEEE Trans. Image Process., 10 (2001), pp. 701–707.

[40] P. E. Trahanias and A.N. Venetsanopoulos, Vector directional filters—a new class of mul-
tichannel image processing filters, IEEE Trans. Image Process., 2 (1993), pp. 528–534.

[41] P. E. Trahanias, D. Karakos and A.N. Venetsanopoulos, Directional processing of color
images: Theory and experimental results, IEEE Trans. Image Process., 5 (1996), pp. 868–
880.

[42] D. Tschumperle and R. Deriche, Regularization of orthonormal vector sets using coupled
PDE’s, in Proceedings of the 1st IEEE Workshop on Variational and Level Set Methods
in Computer Vision, Vancouver, BC, Canada, 2001, pp. 3–10.



PIECEWISE SELF-SIMILAR SOLUTIONS AND A NUMERICAL
SCHEME FOR SCALAR CONSERVATION LAWS∗

YONG-JUNG KIM†

SIAM J. NUMER. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 2105–2132

Abstract. The solution of the Riemann problem was a building block for general Cauchy
problems in conservation laws. A Cauchy problem is approximated by a series of Riemann problems
in many numerical schemes. But, since the structure of the Riemann solution holds locally in time
only, and, furthermore, a Riemann solution is not piecewise constant in general, there are several
fundamental issues in this approach such as the stability and the complexity of computation.

In this article we introduce a new approach which is based on piecewise self-similar solutions.
The scheme proposed in this article solves the problem without the time marching process. The
approximation error enters in the step for the initial discretization only, which is given as a similarity
summation of base functions. The complexity of the scheme is linear. Convergence to the entropy
solution and the error estimate are shown. The mechanism of the scheme is introduced in detail
together with several interesting properties of the scheme.
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1. Introduction. Self-similarity of the Cauchy problem for one-dimensional
conservation laws,

vt + f(v)x = 0,
v(x, 0) = v0(x),

x, v ∈ R, t > 0,(1.1)

with Riemann initial data

v(x, 0) =

{
v−, x ≤ 0,
v+, x > 0,

(1.2)

has been the basis of various schemes devised for general initial value problems; see
Glimm [10] and Godunov [11], for example. The self-similarity of the Riemann prob-
lem is the property that the solution is a function of the self-similarity variable ξ = x/t.
In other words, the solution is constant along the self-similarity lines

x

t
= constant.(1.3)

The basic idea of the Godunov scheme for a general initial value problem is to approxi-
mate the initial data by a piecewise constant function and then apply the self-similarity
structure to the series of Riemann problems.

There are two basic issues we have to consider immediately in this approach.
First, since the self-similarity for a piecewise constant solution holds locally in time
only, the structure of the Riemann solution can be applied for a small time period.
In other words, the scheme is not free from the CFL condition (see [4], [5]), and,
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hence, the scheme can march just a little amount of time every time step and it costs
computation time. Furthermore, since rarefaction waves appear immediately, the
solution is not piecewise constant anymore. So a numerical scheme contains a process
which rearranges the rarefaction wave into a piecewise constant function every time
step. The numerical viscosity enters in this process, and tracking down the behavior
of the scheme becomes extremely hard.

LeVeque [20] considers a large time step technique based on the Godunov method
for the genuinely nonlinear problem. In the scheme the CFL number may go beyond 1,
and it is even possible to solve the propagation of a simple wave in a single step, i.e.,
∆t = T for the given final time T > 0. However, the scheme handles interactions
between waves incorrectly if the CFL number is so large.

One way to avoid the rearranging process is to consider a modified equation,

ut + h(u)x = 0,
u(x, 0) = u0(x),

x, u ∈ R, t > 0,(1.4)

where h and u0 approximate f and v0, respectively. Dafermos [7] considers a polygonal
approximation h ∼ f , i.e., h is continuous and piecewise linear. In this case the exact
solution of (1.4) is piecewise constant. So the method does not require a rearranging
process, and, therefore, the numerical viscosity is not introduced and the error is
controlled by refining the polygonal approximation h. In this approach, the exact
behavior of the numerical solution can be monitored more closely and we may get a
more detailed understanding of the scheme. This idea has been developed in Holden
and Holden [12], and it has been extended to multidimensional problems in Holden
and Risebro [14] and to systems of conservation laws in Holden, Lie, and Risebro [13].
In particular, we refer to Bressan [2], [3] for systems. This front tracking method has
been developed as a computational tool (e.g., [21], [22]).

Lucier [24] approximates the actual flux f by a piecewise parabolic function h
and achieves a second order scheme. In this case, the initial data v0(x) are approx-
imated by a piecewise linear function u0 and the solution remains piecewise linear.
The difference between the solutions of the original problem (1.1) and the modified
problem (1.4) is estimated by

||v(·, t)− u(·, t)||1 ≤ ||v0 − u0||1 + t||f ′ − h′||∞||v0||BV .(1.5)

Since the linear approximation is of second order, he achieves a second order scheme
for a fixed time t > 0.

If we want to design a numerical scheme which represents the exact solution,
we have to find a way to choose grid points correctly. If they are simply fixed, it
is clear that the scheme cannot represent the exact solution and, hence, we need to
rearrange the solution to fit the solution to the fixed grid points. So it is natural to
consider the moving mesh method; see Miller [25]. In Lucier [24] the moving mesh
method is used to find the exact solution of (1.4), where mesh points move along
characteristics. Another option is not to use any grid point. In numerical schemes
based on the front tracking method mentioned earlier, grid points are used just for
the initial discretization. The scheme we develop in this article does not use any grid
point either.

This article has two goals. The first one is to introduce the mathematical idea
which is behind the piecewise self-similar solutions. The second one is to demonstrate
how to implement the idea into a numerical scheme and show properties of the scheme.
From the study of the Burgers equation (see [17] or Whitham [26]), it is well known
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that the primary structure which dominates the evolution is a saw-tooth profile. In
fact, this profile is a series of N-waves and eventually the solution evolves to a single
N-wave; see Liu and Pierre [23]. The starting point of our scheme is to use this
structure as the unit of the scheme.

If a solution u(x, t) is a function of the self-similarity variable ξ = x/t, then we
can easily derive from (1.1) that

f ′(u(x, t)) = x/t.

Roughly speaking, a piecewise self-similarity (initial) profile has the structure of

f ′(u(x, 0)) =
x− ck
tk

, x ∈ (ak, bk), ck, tk ∈ R.(1.6)

Note that the time index tk can be a negative number. In this article, we observe that
the solution of (1.1) with piecewise self-similarity initial profile has such a structure
for all t > 0, i.e.,

f ′(u(x, t)) =
x− ck
t+ tk

, x ∈ (ak(t), bk(t)), ck, tk ∈ R, t ∈ R+,(1.7)

and we give the explicit formula for this kind of solution in several situations. First
we consider a convex flux with positive wave speed,

(H) f ′′(u) ≥ 0, f ′(u) ≥ 0,
where f is locally Lipschitz continuous. The convexity of the flux f ′′(u) ≥ 0 is used
to get the explicit formula g(x) of the self-similarity profile such that f ′(g(x)) = x,
and the self-similarity profile (1.7) can be written as

u(x, t) = g
(x− ck
t+ tk

)
, x ∈ (ak(t), bk(t)), ck, tk ∈ R, t ∈ R+.(1.8)

Note that the equality is included for the second derivative of the flux in (H), and,
hence, the monotonicity of f ′ is not strict and g(x) is not exactly the inverse function
of f ′, and g(f ′(u)) �= u in general. In this approach, we may include a piecewise linear
flux of the front tracking method; see Remark 6.4.

Our approach is as follows. We start our discussion reviewing the self-similarity
property in conservation laws in section 2. This discussion leads us to the study
of piecewise self-similar solutions, which is the case when the self-similarity lines and
characteristics are compatible. In section 3 we consider a piecewise self-similar solution
which can be written as a self-similarity summation (or simply S-summation),

n⊙
k=1

Bmk,tk,ck(x), cn < · · · < c2 < c1,(1.9)

of a finite number of base functions. We give definitions for the S-summation and base
functions in the section and show that u(x, t) =

⊙n
k=1Bmk,t+tk,ck(x) is the solution

of (1.1) with initial data u0(x) =
⊙n

k=1Bmk,tk,ck(x); see Theorem 3.6. We consider
u as an approximation of the solution v with the original initial data v0. Then the
L1 contraction theory of conservation laws (see Hörmander [15], Kruzhkov [18], [19])
implies

||v(·, t)− u(·, t)||1 ≤ ||v0 − u0||1.(1.10)
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It is the estimate corresponding to the error estimate (1.5), which does not have the
time dependent term anymore. It is natural to expect that the error increases in
time if the flux is changed. In our approach, we use the original flux and the error
decreases in time. In fact, the left-hand side of (1.10) is of order O(t−1); see [16].
The convergence of the scheme is now clear (see Theorem 3.6, Corollary 3.7). Note
that the S-summation (1.9) represents only a special kind of piecewise self-similar
profile in (1.6), which has positive indexes tk > 0 and is ordered appropriately, i.e.,
cn < · · · < c2 < c1 if an ≤ bn ≤ · · · ≤ a2 ≤ b2 ≤ · · · ≤ a1 ≤ b1.

The S-summation is successfully coded for a numerical scheme in section 4. This
scheme has several unique properties. First, it does not require a time marching
procedure. So the complexity of the scheme is of order O(N), not O(N2). CPU
times for several cases are compared in section 4.3. Second, it captures the shock
location very well even if a small number of base functions (or mesh points) are used;
see Figure 4.5. In the figure it is clearly observed that the solution with finer mesh
always passes through bigger artificial shocks. Since it does not introduce numerical
viscosity at all, we obtain a very good resolution for an inviscid problem. This scheme
also distinguishes physical shocks and artificial ones clearly. Table 4.4 shows the time
when the physical shock appears.

In section 5 we generalize the method. For a general convex flux, i.e.,

(H1) f ′′(u) ≥ 0,
the method is applied through the transformations (5.1) and (5.3). If the flux has
inflection points, then the scheme becomes considerably complicated and it is beyond
the purpose of this article. But, if the flux has only one inflection point, for example,

(H2) f ′′(u) ≤ 0 for u ≤ A, f ′′(u) ≥ 0 for u ≥ A,

then we can easily apply the scheme through a similar transformation (5.4). Dafer-
mos [8] considers a flux with a single inflection point through generalized characteris-
tics. The Buckley–Leverett equation satisfies this condition. The flux f(u) = u2−u3,
which appears in thin film flows (see Bertozzi, Münch, and Shearer [1]), also belongs to
this category. Figure 5.2 shows the strength of our scheme over the Godunov scheme
in this case.

The scheme is not good enough for a short time behavior t 	 1 since the ini-
tial error ||v0 − u0||1 is not controlled efficiently. To resolve this issue we add an
extra structure to base functions in section 6. Using these base functions, we can
approximate the initial data with second order accuracy and solve the solution for the
modified initial datum. Furthermore, a general piecewise self-similarity profile (1.6)
can be written in terms of S-summation of these modified base functions.

2. Self-similarity in conservation laws. Consider one-dimensional scalar con-
servation laws,

ut + f(u)x = 0,
u(x, 0) = u0(x),

x, u ∈ R, t > 0,(2.1)

where the flux f is locally Lipschitz continuous. For a nonlinear flux f(u) the solution
may have a singularity, and hence the solution is considered in the weak sense with
the entropy admissibility condition:

f(ũ)− f(u−)
ũ− u− ≥ f(u+)− f(u−)

u+ − u− ,(2.2)
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for any number ũ lying between u+ = u(x+, t) and u− = u(x−, t). It is well known
that the self-similarity of a conservation law is inherited from the fact that a rescaled
function,

w(x, t) = u(ax, at), a > 0,(2.3)

is also the solution of (2.1) if and only if the initial profile u0(x) satisfies

u0(x) = u0(ax), a > 0.(2.4)

It is clear that, if the Riemann initial value,

u(x, 0) =

{
u−, x < 0,
u+, x > 0,

(2.5)

is given, (2.4) is satisfied and, hence, u(x, t) = u(ax, at) for all a > 0. Therefore,
u(x, t) is a function of the self-similarity variable,

u(x, t) = u(ξ), ξ = x/t.(2.6)

The structure of a Riemann solution is given in Figure 2.1 together with charac-
teristic lines. Note that, even though a self-similarity line x/t = ξ, ξ ∈ R, is not a
characteristic line, the solution is constant along it. This is a special property of the
Riemann problem, and it is not expected in a general Cauchy problem.

x

t

u = u+u = u
�

6

-

x = st

x

t

u = u+u = u
�

6

-

�

(a) Characteristic lines (b) Self-similarity lines

Fig. 2.1. Let f ′(u+) = 0 and f ′(u−) = 1. Then self-similarity lines are different from charac-
teristic lines. However, the solution is constant along self-similarity lines.

If the total mass of the initial data u0(x) is finite, i.e.,∫
|u0(x)|dx <∞,(2.7)

then the relation (2.4) cannot be satisfied since the transformation u0(x) → u0(ax)
does not preserve the total mass. So the solution cannot be a function of self-similarity
variable ξ = x/t. In the following, we consider techniques to achieve the Riemann
solution like self-similarity for general Cauchy problems.

Suppose that characteristic lines of the solution u(x, t) pass through the origin.
Then the relation between the wave speed and characteristics gives

f ′(u) =
x

t
.(2.8)
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Since the right-hand side diverges as t → 0, we consider the initial datum as the
profile at a given time t0 > 0. The simplest case of L

1 initial datum of the kind is

f ′(u(x, 0)) =
x

t0
if 0 < x < s0, u(x, 0) = 0 otherwise.(2.9)

Characteristic lines of this initial profile are given in Figure 2.2. Nonvertical charac-
teristics pass through the point (0,−t0), and there is a region in which characteristic
lines overlap with each other. The solution is given by finding the shock characteristic
x = s(t) correctly. In this case, the shock characteristic x = s(t) is not a straight line
and the solution is not a function of x/(t+ t0). However, the solution is a function of
x/(t+ t0) in the region 0 < x < s(t), i.e.,

f ′(u(x, t)) =
x

t+ t0
if 0 < x < s(t), u(x, t) = 0 otherwise.(2.10)

t x = s(t)

x

Fig. 2.2. Characteristic lines of a self-similarity solution are similar to self-similarity lines.
The main difference is that the shock characteristic is not a straight line anymore.

Since the shock speed s′(t) satisfies the Rankine–Hugoniot jump condition, the
shock location s(t) can be found by its integral form. On the other hand, if the
convexity of the flux f is assumed, i.e.,

f ′′(u) ≥ 0,
we may consider the self-similarity profile g(x) such that f ′(g(x)) = x. In this case
we obtain

u(x, t) = g
(
x/(t+ t0)

)
, 0 < x < s(t),(2.11)

and we can easily find the shock location s(t) using the equal area rule,

∫ s(t)

0

g(x/(t+ t0))dx =

∫ s0

0

g(x/t0)dx, t > 0.(2.12)

Since the conservation law (2.1) does not explicitly depend on the x variable, we
may translate the initial data (2.9) in the x-direction. We can also consider initial
data which consist of a finite number of structures in (2.9). A simple example is

u0(x) =

N∑
k=1

g
(x− ck

tk

)
χ(ck,sk),(2.13)
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where centers ck and shock locations sk satisfy

−∞ < cN < sN < · · · < c1 < s1 <∞.(2.14)

The time indexes tk > 0 in (2.13) decide the slope of the initial profile, and
they do not need to be identical. Condition (2.14) implies that all the profiles in
(2.13) are separated. If not, the simple summation in (2.13) breaks down the self-
similarity structure we want to keep. In section 3 we consider an S-summation which
preserves this structure. Figure 2.3 shows characteristic lines for initial data (2.13)
with N = 4. In this case, tracking down a shock is more complicated and (2.12) is
not valid anymore. The following section is devoted to handling the general case.

t

x

Fig. 2.3. Shock characteristics (dots) are merged together after contacts among them, and a
bigger shock appears which is a physical one.

3. Piecewise self-similar solutions. In this section we define the S-summation
and show that, if the initial value u0(x) is given as an S-summation, then so is the
solution u(x, t) of (2.1) at any given time t > 0. We consider the flux under the
hypothesis,

(H) f ′′(u) ≥ 0, f ′(u) ≥ 0,
and the self-similarity profile g(x) satisfies f ′(g(x)) = x. We may assume f ′(0) = 0
without the loss of generality, and it implies that the solution is actually assumed to
be positive under (H). The results in this section are generalized in section 5.

3.1. Base functions. As was mentioned earlier, the self-similarity profile

u(x, t) = g(x/t), t > 0,(3.1)

represents the asymptotic behavior of the conservation law (1.1). A triple index
function Bt,c,s(x), defined by

Bt,c,s(x) =

{
g
(
(x− c)/t), c < x < s,
0, otherwise,

(3.2)

serves as a base function in this article. A base function has the self-similarity profile
over the interval between the center c and the shock location s. The area (or mass)
m enclosed by the x-axis and the base function is given by

m =

∫ s

c

Bt,s,c(x)dx =

∫ s−c

0

g(x/t)dx =: m(t, c, s).(3.3)
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It is convenient to consider the mass m as the fourth index of the base function, say,
Bm,t,c,s(x), or any three of them as an index set. In any case we always assume that
indexes m, t, c, s satisfy the relation (3.3), i.e., if any three of them are given, the
fourth one is decided by the relation.

Consider a Cauchy problem,

ut + f(u)x = 0,
u(x, 0) = Bm0,t0,c0,s0(x).

(3.4)

It is already observed in (2.10) that the solution u(·, t) has the self-similarity profile
with time index t + t0 between the original center c0 and a new shock location s(t).
Since the initial total mass m0 should be preserved, the solution of (3.4) is

u(x, t) = Bm0,t+t0,c0(x),(3.5)

where the shock location x = s(t) is decided by the relation (3.3).
Remark 3.1. If we take a δ-function as the initial datum, for example, u0(x) =

m0δ(x − c0), then the solution is u(x, t) = Bm0,t,c0(x). So the slope of the base
function represents the time of the evolution starting from the δ-function-like initial
data, and that is why we take index t for the base function.

Remark 3.2. For the Burgers case, f(u) = u2/2, the self-similarity profile is the
identity function, g(x) = x. In this case, (3.3) gives explicit relations,

m = (s− c)2/(2t), t = (s− c)2/2m, s = c+
√
2mt, c = s−

√
2mt .(3.6)

Remark 3.3. The rescaling (2.3) does not preserve the total mass. So it can
not measure the invariance property for L1 solutions of conservation laws. For the
Burgers case, f(u) = u2/2, we may consider

v(x, t) = au(ax, a2t), a > 0,(3.7)

where the rescaling preserves the total mass. We can easily check that variables

w =
√
t+ t0 u, ζ = (x− c0)/

√
t+ t0, τ = ln(t+ t0),(3.8)

are invariant under the rescaling after the translation x− c0 → x, t+ t0 → t. These
variables are called self-similarity variables for L1 Cauchy problems, and the Cauchy
problem (3.4) is transformed to

wτ +
1
2 (w

2 − ζw)ζ = 0,
w(ζ, ln(t0) ) = Bm0,t0=1,c0=0(ζ).

(3.9)

We can easily check that Bm0,t0=1,c0=0(ζ) is an admissible steady state of the equation,
and hence w(ζ, τ) = Bm0,t0=1,c0=0(ζ) is the solution of (3.9). If we transform the
variables back to u, t, x, then we get u(x, t) = Bm0,t+t0,c0=0(x). This is another way
to show (3.5). In this example we can see that the approach with piecewise self-similar
solutions captures the self-similarity of the general Cauchy problems exactly. For a
detailed study of the transformed problem (3.9), we refer to [17].

3.2. S-summation. Since the solution of (3.4) is given by (3.5), we can easily
guess that

u(x, t) =
n∑
k=1

Bmk,tk+t,ck(x)(3.10)
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is the solution of the conservation law with initial data

u0(x) =

n∑
k=1

Bmk,tk,ck(x), cn < · · · < c2 < c1,(3.11)

if all the supports of the base functions in (3.10) are disjoint. But it is not usually
the case since the support of a base function expands in time. The S-summation,

Bn(x) =

n⊙
k=1

Bmk,tk,ck(x), cn < · · · < c2 < c1,(3.12)

is to handle the case that supports of base functions overlap with each other. The
definition is given inductively in the following.

Let B1(x) = Bm1,t1,c1(x). Suppose that Bj−1(x) =
⊙j−1

k=1Bmk,tk,ck(x), j ≤
n, is well defined, supp(Bj−1) ⊂ [cj−1,∞), and that

∫∞
cj−1

Bj−1(x)dx =
∑j−1
k=1mk.

Consider a point ξj ∈ R such that cj < ξj ,

g
(
(x− cj)/tj

)
> Bj−1(x), cj < x < ξj ,(3.13)

∫ ξj

cj

g
(
(x− cj)/tj

)
dx+

∫ ∞

ξj

Bj−1(x)dx =

j∑
k=1

mk.(3.14)

Under assumption (3.13), the left-hand side of (3.14) is monotone in ξj and, hence,
such a point is unique. If there exists such a point ξj > cj , we define

Bj(x) =

j⊙
k=1

Bmk,tk,ck(x) =

{
g
(
(x− cj)/tj

)
, cj < x < ξj ,

Bj−1(x), otherwise.
(3.15)

Clearly, supp(Bj) ⊂ [cj ,∞) and
∫∞
cj

Bj(x)dx =
∑j
k=1mk, and we may continue the

inductive argument. If not, the S-summation (3.12) is not defined.
Base functions are ordered by centers ck, and then the S-summation is given from

the right-hand side. It is because of the positiveness assumption for the wave speed,
f ′(u) ≥ 0, in (H). If the order of the summation is changed, the result is different. So
the S-summation is not associative.

Remark 3.4. If the time indexes are identical, tk = t0, for all k, then we can show
the S-summation (3.12) is well defined. Then, since the self-similarity profile g(x) is
an increasing function, we have g

(
(x − cj)/t0

)
> g

(
(x − ck)/t0

)
for all k < j. Since

Bj−1(x) has values of g
(
(x−ck)/t0

)
, k < j, piecewise, the inequality (3.13) is satisfied

for all ξj > cj . Furthermore the left-hand side of (3.14) has value
∑j−1
k=1mk for ξj = cj

and diverges to ∞ as ξj → ∞. So there exists a point ξj satisfying (3.14), and the
S-summation is well defined.

Remark 3.5. We may consider ξj as the location of the jth (artificial) shock
generated by the base function Bmj ,tj ,cj . Suppose that ξj−1 < ξj , i.e., the jth shock
caught up the (j − 1)st shock. The definition (3.15) implies that the self-similarity
profile g

(
(x− cj−1)/tj−1

)
disappears. We can easily check that we will get the same

S-summation (3.15) if we remove the (j − 1)st base function and increase mj by
adding mj−1. This property represents the irreversibility of conservation laws and
plays the key role in the numerical scheme (see section 4.2, Step 2).
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Theorem 3.6. Suppose that f ′′(u) ≥ 0 and f ′(u) ≥ 0. If the S-summation
u0(x) ≡

⊙n
k=1Bmk,tk,ck(x) is well defined, then u(x, t) ≡⊙n

k=1Bmk,tk+t,ck(x) is also
well defined for all t > 0 and it solves (1.1) with its initial value u0(x). If v(x, t) is
the entropy solution of (1.1) with its initial value v0 ∈ L1, then

||v(·, t)− u(·, t)||1 ≤ ||v0 − u0||1.(3.16)

Proof. We may assume f ′(0) = 0 without the loss of generality. The proof is
completed through inductive arguments. In section 2, we have shown the theorem for
n = 1. Now we show the theorem for n = j > 1 assuming that it holds for n = j − 1.
Note that, from the definition, the S-summation

⊙i
k=1Bmk,tk,ck(x) is well defined for

any i ≤ n.
Let uj−1(x, t) be the solution of (1.1) with its initial value

⊙j−1
k=1Bmk,tk,ck(x).

From the assumption, uj−1(x, t) =
⊙j−1

k=1Bmk,tk+t,ck(x). Let uj(x, t) be the solution

with uj(x, 0) =
⊙j

k=1Bmk,tk,ck(x) and x = ξj(t) be the shock characteristic given by
the jth base function, i.e., ξj(0) is the same as the ξj in (3.13)–(3.14). Consider a
backward characteristic, associated with uj(x, t), that emanates from a point (x, t),
x > ξj(t). From the admissibility of the shock, it does not interact with x = ξj(τ),
τ < t, and, hence, it is actually the one associated with uj−1(x, t). So we have
uj(x, t) = uj−1(x, t).

For x < cj , uj(x, t) = 0 since the (vertical) forward characteristic that emanates
from a point (x, 0), x < cj , does not intersect with shock characteristics which move
to the right-hand side under the assumption f ′(u) ≥ 0. The backward characteristic
that emanates from a point (x, t), cj < x < ξj(t), is a straight line connecting (cj ,−tj)
since the initial profile over the interval (cj , ξj(0)) is self-similar. Hence, uj(x, t) =
g
(
(x− cj)/(t+ tj)

)
for cj < x < ξj(t), and the shock location x = ξj(t) should satisfy

∫ ξj(t)

cj

g
(
(x− cj)/(t+ tj)

)
dx+

∫ ∞

ξj(t)

uj−1(x, t)dx =

j∑
k=1

mk

since the total mass is preserved. So uj(x, t) =
⊙j

k=1Bmk,tk+t,ck(x) from the defi-
nition of the S-summation, and the first part of the proof is complete. The second
part (3.16) is simply the L1 contraction theory for conservation laws.

In the proof we employ the theory of characteristics (see [9, Chap. 11]). The error
estimate (3.16) implies that the initial error decreases in time. In fact, the error is of
order O(t−1) as t → ∞ (see [16] for detail). The scheme has ideal properties for the
study of asymptotic behavior.

Now we consider u0(x) =
⊙n

k=1Bmk,tk,ck(x) as an approximation of L
1 initial

value v0. Let a partition C = {cn < · · · < c1} be the set of centers. Its norm is defined
by ||C|| = max |ck − ck−1|. There can be many ways to discretize the initial value. To
guarantee the convergence of the scheme, we need the existence of δ, L > 0 such that

||v0(x)− u0(x)||1 ≤ ε if ||C|| ≤ δ and cn < −L,L < c1,(3.17)

where a constant ε > 0 is given. An example of such a discretization is given in
section 4.2. The convergence of the scheme satisfying (3.17) is clear from (3.16).

Corollary 3.7 (convergence). The scheme of the S-summation u(x, t) =⊙n
k=1Bmk,t+tk,ck(x) with initial discretization u0(x) =

⊙n
k=1Bmk,tk,ck(x) satisfy-

ing (3.17) converges to the entropy solution v(x, t) with initial data v0 ∈ L1(R) as
δ → 0, L→∞.
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Remark 3.8. Now we consider the S-summation between two base functions,⊙2
k=1Bmk,tk,ck(x), c2 ≤ c1 (see Figure 3.1). It gives a good example for figuring

out the meaning of the S-summation. Furthermore, in the numerical computation,
we can possibly compare only two base functions each time and, hence, it is worth
considering it in detail. If these two base functions are separated, i.e., s2 < c1, then
the shock place ξ of the definition (3.15) is simply ξ = s2. If c1 < s2, then ξ satisfies

∫ ξ

c2

g
(x− c2

t2

)
dx+

∫ max(ξ,s1)

ξ

g
(x− c1

t1

)
dx = m1 +m2.(3.18)

If ξ > s1, (3.15) implies that two base functions are merged, i.e.,

2⊙
k=1

Bmk,tk,ck(x) = Bm1+m2,t2,c2(x) if s1 < ξ.(3.19)

For the Burgers case, f(u) = u2/2, (3.18) implies that the trapezoid BCs2ξ in Fig-
ure 3.1 has the same area as the triangle Ac1ξ.

A

B

C

c2 c1 s2 � s1

�

^

Fig. 3.1. The equal area rule gives the shock location when two base functions interact together.

4. S-summation as a numerical scheme. In this section we show how the
S-summation can be implemented into a numerical scheme. We assume that the flux
is convex f ′′(u) ≥ 0 and the solution is positive and compactly supported. More
general cases are considered in the following sections. To see what is really happening
in each step, we consider a Cauchy problem for the Burgers equation,

vt + vvx = 0,
v(x, 0) = v0(x),

v0(x) =

{
sin(πx)/π, 0 < x < 1,

0, otherwise.
(4.1)

This simple example helps us to visualize the mechanism of the scheme. In section 4.3
we consider more complicated examples and compare CPU times of each computation
to check the complexity of the method which is of order O(N). Several properties of
this scheme are compared with those of the Godunov method.
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4.1. Preliminaries. First, we consider basic properties of the self-similarity pro-
file g(x), x > 0. If the flux is strictly convex, f ′′(u) > 0, then f ′(u) is invertible and
the self-similarity profile is simply the inverse function of f ′(u). For example, if the
flux is given by a power law

f(u) =
1

γ
uγ , u ≥ 0, γ > 1,(4.2)

then the self-similarity profile g(x) is simply

g(x) = γ−1
√
x, x > 0.(4.3)

This is a case that the self-similarity profile is given explicitly. In general, the value
of the self-similarity profile ū = g(x̄) at a given point x̄ ≥ 0 is obtained from the basic
relation f ′(g(x̄)) = x̄, i.e., we need to solve

f ′(ū)− x̄ = 0, ū ≥ 0.(4.4)

The relation between the self-similarity profile and the wave speed, f ′(g(x)) = x,
also makes it easy to handle the integrals of a base function. Let ū = g(x̄/t). Using
the change of variables u = g(x/t), we obtain∫ ū

0

tf ′(u)du =
∫ x̄

0

x

t
g′
(x
t

)
dx = x̄g

( x̄
t

)
−
∫ x̄

0

g
(x
t

)
dx.

So the integral of the self-similarity profile is written as a function of ū or x̄ only, i.e.,∫ x̄

0

g
(x
t

)
dx = x̄g

( x̄
t

)
− tf

(
g
( x̄
t

))
= tūf ′(ū)− tf(ū).(4.5)

Now we consider a simple lemma which is used in deciding the initial time index
t0 > 0. This lemma implies that the graph y = g((x − c)/t0), x > c, crosses over
y = v0(x) just once.

Lemma 4.1. Suppose that the (smooth and bounded) initial value v0(x) satisfies

v′0(x) <
1

t0f ′′(v0(x))
.(4.6)

Then the point x̄ ≥ c satisfying g((x̄− c)/t0) = v0(x̄) is unique.
Proof. Differentiating both sides of f ′(g(x)) = x, we obtain

g′(x) =
1

f ′′(g(x))
=

1

f ′′(v)
,(4.7)

where v = g(x). Let g((x1 − c)/t0) = v0(x1) for a point x1 ≥ c. Since

v′0(x1) <
1

t0f ′′(v0(x1))
=
1

t0
g′
(x1 − c

t0

)
= ∂xg

(x1 − c
t0

)
,(4.8)

we may choose δ > 0 such that g((x − c)/t0) > v0(x) for x ∈ (x1, x1 + δ). Now we
show that g((x − c)/t0) > v0(x) for all x > x1, which completes the proof. Suppose
that g((x2 − c)/t0) = v0(x2) for x2 > x1. We may take x2 as the smallest one.
Then g((x − c)/t0) > v0(x) on (x1, x2) and it implies v

′
0(x2) ≥ ∂xg((x2 − c)/t0). It

contradicts the fact that (4.8) holds for x = x2.
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4.2. Implementation. Here we introduce a gridless scheme based on the S-
summation.

Step 1 (initial discretization). The first step is to design a method to approximate
the initial value v0(x) by an S-summation u0(x) which satisfies (3.17). Consider
n base functions B[k], k = 1, 2, . . . , n. Each element B[k] consists of two members
B[k].m,B[k].c, which represent the mass (or area) and the center of the base function.
We use the identical time index tk = t0 for all k, and, hence, we do not need an extra
member for the time index. The first thing to do is to choose the time index t0 > 0
satisfying (4.6). If (4.6) does not hold for any t0 > 0, we need to use a different
discretization (see section 6).

Next we decide the two members of the kth base function, B[k].c and B[k].m.
Let [L1, L2] be the support of the initial value v0(x) and L1 = xn < · · · < x1 <
x0 = L2 be mesh points. Consider the self-similarity profiles that emanate from
points (xk, v0(xk)). Then the center ck satisfies g((xk − ck)/t0) = v0(xk). Taking the
wave speed f ′ to both sides we get ck = xk − t0f

′(v0(xk)). We assign this center
to B[k].c, i.e.,

B[k].c = xk − t0f ′(v0(xk)).(4.9)

Since g((x̄ − c1)/t0) = g((x̄ − c2)/t0) at any point x̄ > c1, c2 implies c1 = c2, we can
easily see that two self-similarity profiles with the same time index never cross over
to each other. So Lemma 4.1 implies that those centers are ordered by L1 = B[n].c <
· · · < B[2].c < B[1].c. Note that there is no self-similarity profile that emanates from
the point (x0, v0(x0)).

The value of the second member B[k].m is given as the area enclosed by four (or
three) curves, y = v0(x), y = 0, y = g((x− ck)/t0), and y = g((x− ck−1)/t0), i.e.,

B[k].m =

∫ xk−1

xk

v0(x)dx+

∫ xk

ck

g
(x− ck

t0

)
dx−

∫ xk−1

ck−1

g
(x− ck−1

t0

)
dx,

where c0 = L2. Using relation (4.5), this is written in terms of the initial value and
the flux:

B[k].m =

∫ xk−1

xk

v0(x)dx+ t0v0(xk)f
′(v0(xk))− t0f(v0(xk))

− t0v0(xk−1)f
′(v0(xk−1)) + t0f(v0(xk−1)).

(4.10)

Consider the Cauchy problem (4.1) as an example. Since f ′′(v) = 1 and vx(x, 0) ≤
1, we may take any t0 < 1. In the following examples we use t0 = 0.5. In Figure 4.1(a),
10 self-similarity profiles are shown which emanate from 10 points (j/10, v0(j/10)),
j = 0, 1, . . . , 9. The centers are their x-intercepts.

In Figure 4.1(b), 10 base functions are displayed with initial value v0(x). Supports
of these base functions are overlapped with each other. Their S-summation u0(x) =⊙n

k=1B[k] is considered as the initial discretization, which is the saw-tooth profile
(solid lines) in Figure 4.1(a). Let uε0 be such an approximation with a uniform mesh
size xk−1−xk = ε. Then the sizes of the triangle-like areas in Figure 4.1(a), added to
and subtracted from the area enclosed by y = v0(x) and the x-axis, are proportional
to ε2, and the total number of them has order O(1/ε). So we have ||v0−uε0||1 = O(ε)
as ε→ 0, where uε0(x) =

⊙n
k=1B[k] with tk = t0 for all k. (Step 1 is complete.)

Theorem 3.6 implies that u(x, t) =
⊙n

k=1B[k] with tk = t0 + t is the solution
with the modified initial data u0. So the rest of the scheme is focused on how to
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(a) The equal area rule (b) Base functions with overlaps

Fig. 4.1. The initial value is approximated by a piecewise self-similar function, which is a
saw-tooth profile in (a). It turns out to be an S-summation of base functions in (b).

display the given solution. Even if it is possible to follow the inductive arguments of
the definition, we will get serious complexity in the coding if behind shocks capture
the front ones, ξj−1 < ξj , where ξj is the shock location generated by the jth base
function (see the definition (3.13)–(3.15)). Since the S-summation is not changed even
if these two base functions are merged before the summation (see Remark 3.5), we
consider the merging process first.

Suppose that
⊙j−1

k=1B[k] is achieved and ξj−1 < ξj−2 < · · · < ξ1. To obtain⊙j
k=1B[k] we need to check if ξj < ξj−1. Since ξj−1 �= sj−1 in general, an equation

corresponding to (3.18) does not provide the information we need. In the following
we define an operator using a modified version of (3.18).

Definition 4.2. We define a binary operator “ ∗” between two base functions
Bmk,tk,ck,sk , k = 1, 2, satisfying c2 < c1. First, if s2 ≤ c1, we define Bm2,t2,c2 ∗
Bm1,t1,c1 ≡ s2. If c1 < s2, Bm2,t2,c2 ∗Bm1,t1,c1 (≡ ξ) is defined as the solution of

F (ξ) ≡
∫ ξ

c2

g
(x− c2

t2

)
dx−

∫ ξ

c1

g
(x− c1

t1

)
dx−m2 = 0.(4.11)

Let ξ = B[j] ∗B[j − 1]. From (3.14) we can clearly see that ξ = ξj if and only if
ξ ≤ ξj−1. If ξj−1 < ξ, we also have ξj−1 < ξj and we may merge two base functions,
B[j] and B[j−1], before the S-summation. On the other hand, since we have assumed
ξj−1 < ξj−2 < · · · < ξ1, we have ξj−1 = B[j − 1] ∗B[j − 2]. So we may conclude that

ξj > ξj−1 if and only if B[j] ∗B[j − 1] > B[j − 1] ∗B[j − 2].(4.12)

So this operator gives the criterion for deciding if two base functions should be merged
together or not. Furthermore, after the merging process, it gives the correct (artificial)
shock locations ξj(t) for the S-summation.

Step 2 (merging). In this step base functions are re-indexed for k = 1, 2, . . . , n′

whenever two base functions are merged together and the total number of base func-
tions is decreased. Suppose that this merging procedure has been completed for
all k < j and ξj−1 < · · · < ξ2 < ξ1 = s1 holds. Then ξk = B[k] ∗ B[k − 1] for
k = 2, . . . , j − 1. Now we check the next base function B[j].

If B[j] ∗B[j − 1] < B[j − 1] ∗B[j − 2], then ξj = B[j] ∗B[j − 1] and this step is
completed for k ≤ j. Suppose that B[j] ∗B[j − 1] > B[j − 1] ∗B[j − 2]. Then (4.12)
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implies that ξj > ξj−1, and we may merge B[j] and B[j − 1] (see Remark 3.5). Put
B[j].m = B[j].m+B[j − 1].m,(4.13)

remove B[j−1], and then rearrange the array B[·] from k = 1 to k = n′−1, where n′ is
the total number of base functions left after the previous step. Since the combined
base function may take over another one again, we continue this process until we get
ξj < ξj−1 or j = 1, decreasing the index j by 1. We continue this procedure from
j = 2 to j = n′. Note that there is no base function B[0] and we use a convention
B[1] ∗B[0] := B[1].s in (4.12) for j = 2, where B[1].s is the shock location of the base
function given by the relation (3.3).

In Figure 4.2(a), 40 base functions Bmk,ck,t+t0 , k = 1, . . . , 40, are given at t = 1.5
together with the exact solution we want to find. During the merging step, Step 2,
16 of them are merged together and a big base function emerges. The location and
the size of the discontinuity of the newborn base function are almost identical to those
of the physical shock. This big base function can be considered as an accumulation
of small artificial shocks, and it represents the physical shock. (Step 2 is complete.)
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(a) 40 base functions before merging (b) 25 base functions left after merging

Fig. 4.2. 40 base functions have the slope 1/(t0 + t) at time t > 0, which is 0.5 in (a). After
the merging process, Step 2, 16 of them are merged together and a big base function emerges in (b).
The outside wave is the exact solution we want to approximate.

Remark 4.3. In the previous algorithm, we solve (4.11) instead of doing the time
marching. This relation gives the correct location of artificial shocks if the merging
step is completed. Using the relation (4.5), the function F (ξ) in (4.11) is written as

F (ξ) ≡ (ξ−c2)g
(ξ − c2

t2

)
−t2f

(
g
(ξ − c2

t2

))
−(ξ−c1)g

(ξ − c1
t1

)
+t1f

(
g
(ξ − c1

t1

))
−m2.

(4.14)

So we can simplify the integral equation (4.11). To find the zero of F (ξ) we may
use the bisection method. If B[j] ∗ B[j − 1] > B[1].s, clearly we need to merge B[j]
and B[j − 1]. So we may use (B[j − 1].c, B[1].s) as the initial interval.

If we use Newton’s method, we need to study the structure of the self-similarity
profile first. Let t1 = t2 (≡ t). The first two derivatives of F (ξ) are

F ′(ξ) = g
(ξ − c2

t

)
− g
(ξ − c1

t

)
, F ′′(ξ) =

1

t

(
g′
(ξ − c2

t

)
− g′

(ξ − c1
t

))
.

Since the self-similarity profile g(x) is an increasing function, we have F ′(ξ) > 0
and (4.11) has a unique solution. On the other hand, since there is no monotonicity
on g′(x) in general, we need to consider the structure g(x) for the initial guess.
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Remark 4.4. With the power law f(u) = uγ/γ, u > 0, and the identical time
index t1 = t2 ≡ t, (4.11) is written as

F (ξ) = (ξ − c2)
γ

γ−1 − (ξ − c1)
γ

γ−1 − γ

γ − 1m2t
1

γ−1 = 0.

For the Burgers case, γ = 2, the operator is explicitly given by

Bm2,t,c2 ∗Bm1,t,c1 =
2m2t+ c21 − c22
2(c1 − c2) .(4.15)

Remark 4.5. If there is no base function merged, there will be n− 1 comparisons
of (4.12). If m base functions are merged, then n−m base functions are left and the
maximum number of comparisons (4.12) is n+m− 1 < 2n, which is of order O(N).

Step 3 (displaying). Now we are ready to display the solution. Suppose that base
functions B[j], j = 1, . . . , n′, are left after the merging step. Let ξj = B[j] ∗B[j − 1].
Then the right- and the left-hand side limits are

u(ξj+, T ) = g
(
(ξj −B[j − 1].c)/(t+ t0)

)
,

u(ξj−, T ) = g
(
(ξj −B[j].c)/(t+ t0)

)
.

(4.16)

So to display the solution it is enough to plot the points (ξj , u(ξj+, T )), (ξj , u(ξj−, T ))
for j = 1, . . . , n′. Between these points the solution has the self-similarity profile. So
if we connect these points with the self-similarity profile with time index t + t0 and
center B[j].c, we get the solution.

In Figure 4.3(b), the S-summation of the 25 base functions at time t = 1.5 (see Fig-
ure 4.2(b)) has been displayed. We may observe that the exact solution passes through
the artificial discontinuities of the approximation. Furthermore, we can clearly see
that the initial error ||v0(x)− u0(x)||1 has been decreased a lot. (Step 3 is complete.)
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(a) Initial discretizations (b) Solutions at t = 1.5

Fig. 4.3. The initial value of the problem (4.1) has been discretized using 40 base functions
in (a). 25 base functions are left after the merging step with t = 1.5, Figure 4.2(b), and the
S-summation gives the final approximation for the solution. We may observe that the exact solution,
which has obtained using finer mesh points, passes through each of the artificial shocks.

Remark 4.6. One of the main features of the scheme introduced is that it has
a complexity of order O(N). Even though we have introduced extra complexities for
solving (4.4) and (4.11), this does not increase the order of the complexity. On the
other hand, for the convenience of the explanation, we have rearranged the whole array
of base functions whenever one of them is merged to another. Since this rearranging
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Table 4.1
CPU time comparison: Computations for (4.17) with t0 = π/2, t = 4.0. The number of base

functions used initially is N, and L of them are left after the merging step. CPU times for each step
of the scheme are compared.

N L Discretization Merging Displaying Total Order α
10 8 0 0 1 1
100 64 0 5 4 9 0.954
1000 628 0 57 34 91 1.005
10000 6272 2 617 357 976 1.030
100000 62707 22 7763 3956 11741 1.080

process will increase the order of the complexity, we need to use a different strategy in
the actual computation. We may link the base functions pointing the adjacent ones
so that one of them can be easily removed. These kinds of techniques are classical
and we omit the details.

4.3. CPU time comparison. In this section we consider several numerical
examples and show the CPU time for each case. In fact, the Burgers equation is
the case that the self-similarity profile g(x) and the binary operator “∗” between
base functions are given explicitly, (4.3) and (4.15). So that case does not show the
complexity of the scheme well. In the examples in this section, we numerically solve
(4.4) and (4.11) using Newton’s method.

First, consider a Cauchy problem with the cubic law, f(v) = v3/3,

vt + v2vx = 0,
v(x, 0) = v0(x),

v0(x) =

{
sin(πx)/π, 0 < x < 1,

0, otherwise.
(4.17)

In this case the self-similarity profile g(x) is concave. Since v′0(x) = cos(πx) and
f ′′(v) = 2v, the condition (4.6) is written as

cos(πx) <
π

2t0 sin(πx)
, 0 < x < 1.

We can easily check that it is satisfied for t0 = π/2. In Table 4.1 we have compared
the CPU time of the computations as we increase the number of base functions (or
mesh points). The solution is computed for time t = 4.

Suppose that the CPU time T (N) for the computation with N mesh points is
T (N) = cNα for some constants c, α > 0. Then we can easily check that

α =
ln(T (N1)/T (N2))

ln(N1/N2)
.(4.18)

This number represents the complexity order of the scheme, and it is computed and
shown in Table 4.1. We may observe that the order is about α = 1.08. These
computational results confirm that the complexity of the scheme is almost linear.
The extra growth in the CPU time is caused by Newton’s method. If we use finer
base functions, we need to use smaller tolerances in finding the shock location.

Next we consider a problem with the flux f(u) = 2
3u

3/2, where the self-similarity
profile g(x) is convex. In this case we cannot find the time index t0 > 0 that satis-
fies (4.6) for the initial value given in the previous example. So we consider

vt +
√
v vx = 0,

v(x, 0) = v0(x),
v0(x) =

{
5x2(x− 1)2, 0 < x < 1,

0, otherwise.
(4.19)
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Table 4.2
CPU time comparison: Computations for (4.19) with t0 = 0.1, t = 1.0. The number of base

functions used initially is N, and L of them are left after the merging step. CPU times for each step
of the scheme are compared.

N L Discretization Merging Displaying Total Order α
10 7 0 1 1 2
100 62 0 13 7 20 1.000
1000 610 0 209 92 301 1.178
10000 6092 1 2785 1113 3899 1.112
100000 60914 12 34068 13105 47185 1.083

Table 4.3
CPU time comparison: Computations for (4.20) with t0 = 0.1, t = 0.5. The number of base

functions used initially is N, and L of them are left after the merging step. CPU times for each step
of the scheme are compared.

N L Discretization Merging Displaying Total Order α
10 7 0 1 0 1
100 60 0 7 5 12 1.079
1000 589 1 113 53 167 1.144
10000 5878 1 1635 633 2269 1.133
100000 58767 13 19965 7114 27092 1.077

Since v′0(x) = 10x(x− 1)(2x− 1) and f ′′(v) = 1/2
√
v in this case, the condition (4.6)

is written as

−10(2x− 1) < 2/t0, 0 < x < 1.

It is satisfied for t0 < 0.2, and we choose t0 = 0.1. The solution has been computed
at time t = 1, and their CPU times and the complexity of the scheme have been
compared in Table 4.2. We observe a similar complexity order, α = 1.083, as we do
in the previous example.

As the last example, we consider a combination of three power laws,

vt + (
√
v + v + v2) vx = 0,

v(x, 0) = v0(x),
v0(x) =

{
5x2(x− 1)2, 0 < x < 1.

0, otherwise.
(4.20)

The solution has been computed at time t = 0.5 using an initial time index t0 = 0.1.
Their CPU times and the complexity of the scheme have been compared in Table 4.3.
We observe a complexity order α = 1.077 which is similar to the previous examples.

4.4. Comparison with Godunov. A typical way to discretize the initial data
is to take the cell average (see Figure 4.4(a)). The Godunov scheme solves a series
of Riemann problems between each cell for a short amount of time ∆t and then
repeats the process until it reaches a given time t > 0. In Figure 4.4(b) we can see
that the numerical solution converges to the same limit as the S-summation shown in
Figure 4.3(b), as ∆x→ 0.

Remark 4.7 (computation time). Let N be the number of mesh points. Then the
number of operations for the S-summation is of order O(N) since the time marching
process is not required, Theorem 3.6. The number of operations is almost independent
from the final time t > 0. On the other hand, the Godunov scheme has operations of
order O(N2) and the situation becomes worse if the final time t is increased.

Remark 4.8 (error estimate). We can clearly observe that the exact solution v
of (4.1) (or ||C|| → 0 limit of the S-summation) passes through artificial shocks of



PIECEWISE SELF-SIMILAR SOLUTIONS 2123

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1 1.2

(a) Data discretization (b) Solutions at t = 1.5

Fig. 4.4. Three approximations by Godunov using ∆x = 1/10, 1/40, 1/160. The scheme is
convergent to the same limit of the S-summation. We can observe that numerical solutions are
separated near the shock, and it is hard to guess where the limit is from a single computation.
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Fig. 4.5. A magnification of Figure 4.3(b) near the physical shock shows that an S-summation
with a finer mesh passes through the middle of the artificial shocks. 10, 40, and 160 base functions
are used.

self-similarity solutions (see Figure 4.3(b)). In Figure 4.5 a part of Figure 4.3(b) near
the physical shock is magnified together with other similarity summations consisting
of 10 and 160 base functions. In this figure we can also observe that S-summations
are attached to each other in the middle of self-similar profiles. Noting that the sizes
of artificial shocks decrease in time with order of O(1/(t + t0)), these observations
show the possibility for a good error estimate.

Remark 4.9 (shock appearance time). In a numerical scheme the solution is
approximated by piecewise continuous functions, and it is hard to see if a discontinuity
represents the physical shock or not. In our scheme, as we can see from Figure 4.2, the
accumulation of base functions represents the physical shock. So, if a base function
is merged to its behind one in the sense of (4.12), we may conclude that a physical
shock has appeared. The physical shock appears at time t = 1 in the example (4.1)
since min(∂xv0(x)) = −1. We can easily check whether (4.12) happens around that
time. Table 4.4 shows the time when the number of initial base functions decreases
by one.
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Table 4.4
Shock appearance time. The exact solution with initial data (4.1) blows up at t = 1. The time

of shock appearance can be measured by counting the base functions after the merging step.

Initial number of base functions The time when the number is decreased by 1
25 T = 1.02
50 T = 1.005
100 T = 1.0015
200 T = 1.0008
400 T = 1.0002
800 T = 1.00005

5. General cases. The S-summation has been considered under hypothesis (H).
In this section we generalize it under hypotheses (H1) and (H2).

5.1. General convex flux. We consider L1 initial function u0 which is uni-
formly bounded, say, −A ≤ u0(x) ≤ B. Then the solution of (2.1) is bounded above
and below:

−A ≤ u(x, t) ≤ B, A,B ∈ R+.

Consider a general convex flux, i.e.,

(H1) f ′′(u) ≥ 0.
If the flux satisfies f ′′(u) ≤ 0, we may change the variable y = −x and get an
equation ut + f̄(u)y = 0 with f̄(u) = −f(u), where f̄ satisfies (H1). Note that we
include the equality in (H1) and a piecewise linear flux can be considered.

We can easily check that a new flux,

h(w) = f(w −A)− f ′(−A)w − f(−A),(5.1)

satisfies the hypothesis (H) and h′(0) = 0. Let w(x, t) be the solution of

wt + h(w)x = 0, w(x, 0) = u0(x) +A.(5.2)

We can easily check that

u(x, t) = w(x− f ′(−A)t, t)−A(5.3)

is the solution with the original flux f and initial data u0. Since u ≥ −A, the
solution w(x, t) is positive. Now we are in the exact same situation as in the pre-
vious sections, except with respect to the structure of the initial data. The initial
data w(·, 0) is not L1 anymore. To handle the situation, we consider two special base
functions with infinite mass,

Bt,c=−∞,s(x) =

{
A, x < s+ t h(A)/A,
0, x > s+ t h(A)/A,

Bt,c,s=∞(x) =
{
max

(
g(x−ct ), A

)
, x > c,

0, x < c,

where h′(g(x)) = x, i.e., g(x) is the similarity profile under the flux h(w), not f(u).
These base functions handle the transformation u0(x) → u0(x) + A. Note that the
speed of the shock connecting the state w = A and w = 0 is h(A)/A in our case. The
S-summation including these two base functions can be defined in a similar way. We
omit the details. Figure 5.1 shows how the self-similar solution evolves for the Burgers
case. In the figure even the solution with very rough initial discretization with only
16 base functions represents the asymptotic behavior very correctly.
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(a) Data discretization (b) Solutions at t = 30

Fig. 5.1. Three S-summations are displayed using 16, 64, and 256 base functions. It handles
sign changing solutions correctly. This figure shows the time convergence to an inviscid N-wave.

5.2. Flux without convexity. Consider a flux with a single inflection point:

(H2) f ′′(u) ≤ 0 for u ≤ A, f ′′(u) ≥ 0 for u ≥ A.

Then, under the change of variables,

h(w) = f(w +A)− f ′(A)w − f(A), u(x, t) = w(x− f ′(A)t, t) +A,(5.4)

the problem (2.1) is transformed to

wt + h(w)x = 0, w(x, 0) = u0(x)−A.
Then the new flux h satisfies

h′′(w) ≤ 0 for w ≤ 0, h′′(w) ≥ 0 for w ≥ 0, h′(w) ≥ 0 for all w,(5.5)

and h(0) = h′(0) = h′′(0) = 0. Since A is not the lower bound of the solution u(x, t)
in general, we cannot expect w ≥ 0. So in this case we have to consider the posi-
tive part and the negative part together. It is possible since h′(w) is monotone on
(−∞, 0) and (0,∞), respectively. All we have to do is to consider negative base
functions together with positive ones. Since the wave speed h′(w) is positive, the
S-summation is defined from the right-hand side as in the previous cases.

Example 5.1. Consider an inviscid thin film flow in [1],

ut + (u
2 − u3)x = 0,

u(x, 0) = u0(x),
(5.6)

where the initial datum is compactly supported supp(u0) ⊂ [L1, L2]. The flux f(u) =
u2 − u3 has a single inflection point A = 1/3 and, under the transformation (5.4), we
get the flux h(w) = −w3. It satisfies

h′′(w) ≥ 0 for w ≤ 0, h′′(w) ≤ 0 for w ≥ 0, h′(w) ≤ 0 for all w,
which is not exactly the same as (5.5) but has the opposite direction in the inequalities.
We may do the S-summation from the left-hand side instead of changing the space
variable using y = −x. Now the original problem (5.6) is transformed to

wt − (w3)x = 0,
w(x, 0) = w0(x) := u0(x)−A.(5.7)
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In this case the self-similarity profile (2.8) is given by

g±(x) = ±
√
−x/3 , x < 0,(5.8)

and the corresponding base functions are

B±
t,s,c(x) =

{
g±((x− c)/t), s < x < c,

0, otherwise.
(5.9)

The initial data v0(x) converges to −A as x→ ±∞, and we need to consider two base
functions with infinite mass that are

Bt,s=L2,c=∞(x) =
{ −A, x > L2 + t h(−A)/(−A),

0, x < L2 + t h(−A)/(−A),

Bt,s=−∞,c=L1
(x) =

{
max

(
g−((x− L1)/t),−A

)
, x < L1,

0, x > L1.

Note again that in our example (5.6) the infinite state is −A = −1/3 and the shock
speed is h(−A)/(−A) = −1/9.

Numerical solutions of (5.6) with initial data,

u0(x) =

{
2
3 |sin(2πx)|, 0 < x < 2,

0, otherwise,
(5.10)

are shown in Figure 5.2. The first picture shows the initial data and the S-summation
of 200 base functions at time t = 6. A part of the summation has been magnified
with numerical approximations of the Godunov scheme in the second picture. We can
clearly see that the solution of the Godunov scheme converges to the S-summation.
This example shows that the S-summation gives a very accurate resolution using a
small number of mesh points.
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(a) Initial data and S-summation at t = 6 (b) Comparison with Godunov

Fig. 5.2. Flux is f(u) = u2 − u3. (a) shows the initial data and the S-summation at t = 6.
(b) shows that the Godunov scheme converges to the S-summation. 200 base functions are used in
the S-summation and 800 and 4,000 meshes are used in the Godunov scheme.
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5.3. Space dependent flux in multidimensional space. The self-similarity
of the problem (2.1) relies on the fact that the flux depends only on the solution, i.e.,
f = f(u). We have no clue how to generalize our scheme to a problem with a general
space dependent flux, f = f(u, x). However, if the space dependence is given by

ut + a(x)f ′(u)ux = 0,(5.11)

the equation is transformed into

ut + f(u)y = 0(5.12)

under the change of variable y(x) =
∫ x
0
1/a(s)ds, and our scheme can be applied.

Since the self-similarity of hyperbolic conservation laws is the one-dimensional
property, it should be possible to expand the scheme to multidimensional problems.
Consider a two-dimensional problem,

ut + f ′(u)(a(x1, x2)ux1
+ b(x1, x2)ux2) = 0,(5.13)

with a velocity vector field satisfying

∂x1
a(x1, x2) + ∂x2

b(x1, x2) = 0.(5.14)

Cvetkovic and Dagans [6] suggest space variables y1, y2 satisfying

dy1

dx1
=

1

a(x1, η)
, y2 = x2 − η, dη

dx1
=

b(x1, η)

a(x1, η)
,(5.15)

which transform (5.14) into

ut + f(u)y1 = 0, u = u(y1, y2, t).(5.16)

Problem (5.16) can be considered as a set of one-dimensional problems, and, hence,
the complexity of the scheme for it is of order O(N2). Since the transformation (5.15)
also has the complexity of O(N2), we eventually get a scheme of O(N2) for a two-
dimensional problem. In this approach, each channel of the velocity vector field is
considered separately and, hence, it seems useful to channel problems.

6. Second order approximation. The scheme introduced in the previous sec-
tions exactly solves the problem with modified initial data, and the size of the initial
error decreases in time. However, the scheme is not good enough for the short time
behavior since the error generated by the initial discretization can be huge. Here we
add an extra structure to base functions and make the initial data discretization to
be of second order. In this way we can handle general piecewise self-similar solutions
in (1.7).

6.1. Modified base functions. The base function considered in the previous
sections has three indexes, say, m, t, c. In this section we introduce two extra indexes,
h and t̄. Note that there are two time indexes t and t̄ which play different roles. We
assume 0 ≤ t <∞ and −∞ < t̄ ≤ ∞. For simplicity we assume (H). It can be easily
generalized, as it was in section 5.

To figure out the structure of the new base function Bh,t̄m,t,c(x), we introduce

x∗ = c+ tf ′(h), 0 ≤ t <∞,(6.1)



2128 YONG-JUNG KIM

and

c̄ = x∗ − t̄f ′(h), −∞ < t̄ <∞,(6.2)

(see Figures 6.1 and 6.2). Let g(x) be the self-similarity profile. As an intermediate

step we define Bh,t̄t,c (x) first. For 0 < t̄ <∞ it is defined by

Bh,t̄t,c (x) =




g
(
(x− c)/t), c < x < x∗,

g
(
(x− c̄)/ t̄ ), x∗ < x,

0, otherwise,
(6.3)

and, for −∞ < t̄ ≤ 0, it is defined by

Bh,t̄t,c (x) =




g
(
(x− c)/t), c < x < x∗,

g
(
(x− c̄)/ t̄ ), x∗ < x < c̄,

0, otherwise.
(6.4)

The constant c̄ is the center of the top self-similarity profile with time index t̄,
and the constant x∗ is the x-coordinate of the intersection point between two self-
similarity profiles with indexes t and t̄ (see Figures 6.1 and 6.2). We can easily see

from (6.2) that c̄ < x∗ for t̄ > 0 and c̄ > x∗ for t̄ < 0. The function Bh,t̄t,c (x) is well
defined for t = 0, t̄ = 0 since the corresponding domain is empty. For t̄ = ∞, we
consider

Bh,∞t,c (x) =




g
(
(x− c)/t), c < x < x∗,

h, x∗ < x,
0, otherwise.

(6.5)

Now we introduce the indexm > 0, which decides the support of the base function.
Let ξ > c be the solution of

∫ ξ

c

Bh,t̄t,c (x)dx = m.(6.6)

For t̄ > 0 it always has a solution. For t̄ ≤ 0 it has a solution only ifm <
∫ c̄
c
Bh,t̄t,c (x)dx.

The base function is now defined by

Bh,t̄m,t,c(x) =

{
Bh,t̄t,c (x), c < x < ξ,
0, otherwise.

(6.7)

Let u(x, t) be the solution of the conservation law ut + f(u)x = 0 with its ini-

tial value u(x, 0) = Bh,t̄m,0,c(x). Then, from the well-known technique of equal area

construction, we may easily see that the solution is simply u(x, t) = Bh,t̄+tm,t,c (x) (see
Figures 6.1 and 6.2). For this solution u(x, t), the point x∗ = x∗(t) in (6.1) satisfies

x∗(t) = c+ tf ′(h) = c+ tf ′(u(x∗(t), t)), x∗(t) < ξ(t),

where ξ = ξ(t) is the solution of (6.6). So x = x∗(t) is a characteristic line for
x∗(t) < ξ(t). On the other hand, c̄ is a constant with respect to t > 0:

c̄ = x∗(t)− (t+ t̄)f ′(h) = c− t̄f ′(h).
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Fig. 6.1. If the flux is f(v) = v3/3, the self-similarity profile is g(x) =
√
x. Base func-

tion Bh,t̄
m,0,c(x) with c = 1, t̄ = 0.5, h =

√
2, m =

∫ 2

1
g(x/0.5)dx is given in (a) (solid lines).

We can easily check that c̄ = 0. If u(x, 0) = Bh,t̄
m,0,c(x), the solution of the conservation law is

u(x, t) = Bh,t+t̄
m,t,c (x) and it is given in (b) (solid lines) with t = 0.2.
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(a) Base function Bh,t̄m,0,0(x), t̄ < 0 (b) Base function Bh,t+t̄m,t,0 (x)

Fig. 6.2. If the flux is f(v) = v3/3, the self-similarity profile is g(x) =
√
x. Base func-

tion Bh,t̄
m,0,c(x) with c = 0, t̄ = −0.7, h =

√
2/0.7, m =

∫ 1

0
g(2 − x/0.7)dx is given in (a) (solid

lines). We can easily check that c̄ = 2. If u(x, 0) = Bh,t̄
m,0,c(x), the solution of the conservation law

is u(x, t) = Bh,t+t̄
m,t,c (x) and it is given in (b) (solid lines) with t = 0.4.

In Figures 6.1 and 6.2 base functions are displayed for positive and negative t̄ together
with self-similarity profiles. In these figures we can clearly observe the different roles
of two self-similarity profiles generated by two index sets {c, t} and {c̄, t̄ }.

The S-summation among these base functions can be similarly defined using the
profile g

(
(x− c)/t) in the domain c < x < x∗ and the profile g

(
(x− c̄)/ t̄ ) for x∗ < x.

We omit the details. We may consider the base function (3.2) as a special case of (6.7)
with t̄ = 0.

6.2. Initial discretization and the approximation. Suppose the initial func-
tion v0 ∈ L1 has a compact support supp(v0) ⊂ [L1, L2]. Let C = {cn = L1 < · · · <
c1 < c0 = L2} be a partition of the interval [L1, L2]. We can approximate v0 with
self-similarity profiles over interval (ck, ck−1) with time index t̄k ∈ R, which is sec-
ond order. For the Burgers case it is simply a piecewise linear approximation. The
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approximation u0 can be written as

u0(x) =

n⊙
k=1

Bhk,t̄k
mk,0,ck

(x) =

n∑
k=1

Bhk,t̄k
mk,0,ck

(x),(6.8)

where mk =
∫ ck−1

ck
u0(x)dx and hk = u0(ck). Initially, the supports of base functions

are disjoint, and, hence, the self-similarity summation is the usual summation. The
exact solution v(x, t) of the conservation law (1.1) is approximated by

u(x, t) =

n⊙
k=1

Bhk,t+t̄k
mk,t,ck

(x),(6.9)

and we expect an error estimate similar to (3.16), i.e.,

||v(x, t)− u(x, t)||1 ≤ ||v0(x)− u0(x)||1 = O(||C||2) as ||C|| → 0.(6.10)

Remark 6.1. The initial discretization (6.8) is trivial in comparison with Step 1 in
section 4.2. It is an additional advantage we obtain when the modified base function
is used in a numerical scheme. However, this additional structure may cause extra
complexity when it is used as an analytical tool.

Remark 6.2 (piecewise constant data). In many cases initial data are given as
piecewise constant functions from the beginning. In this case the initial data can be
considered as a summation of base functions with t̄ = ∞; see (6.5). In Figure 6.3
we consider the Burgers case (4.1) using base functions Bh,∞m,t,c(x). We can clearly see
that these approximations represent the shock location very well. Unlike the previous
case, the solution with finer mesh always passes though the constant parts of coarse
ones.
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(a) Data discretization (b) Solutions at t = 1.2

Fig. 6.3. The S-summation for the modified base functions (6.7) with t̄ = ∞ gives a piecewise
constant, piecewise self-similar solution. In the figure, 3 summations are displayed together using
10, 20, 40 base functions. We observe that the finer one always passes the constant parts.

Remark 6.3 (singular initial data). If singular initial data are given, then extra
mesh points are usually introduced to capture the effect of the singularity of the data.
But since our method handles initial data individually, extra mesh points are not
needed. In Figure 6.4(a) the Burgers equation is solved with singular initial data. We
use 6 modified base functions with t̄ =∞.

Remark 6.4 (front tracking). It is possible to consider the front tracking method
in terms of the S-summation. Consider an L1 solution of the Burgers equation



PIECEWISE SELF-SIMILAR SOLUTIONS 2131

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1 1.2

(a) Singular initial data (b) Solutions at t = 0.7

Fig. 6.4. The scheme does not require extra meshes to handle singular initial data (a). In the
S-summation every datum is handled exactly by a base function. Only 6 base functions solve this
example.

bounded by 0 ≤ u(x, t) ≤ 1. Let h(u) be the polygonal approximation of the flux
f(u) = u2/2 with the partition {0, 1/n, . . . , n/n = 1}. Then h′(u) is a step function,

h′(u) = (2k − 1)/2n, (k − 1)/n < u < k/n, k = 1, . . . , n,(6.11)

and the self-similarity profile g(x) is given by

g(x) = (k − 1)/n, (2k − 1)/2n < x < (2k + 1)/2n, k = 1, . . . , n.(6.12)

So the values of g(x) are the breaking points of the flux h(u). We can approximate
the given initial data v0 by taking a cell average, not just breaking points. Then the
initial discretization u0 can be written in the form of (6.8) with t̄k = ∞. This is a
simplified version of the front tracking method under (H).
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Abstract. A new superconvergence result is established for numerical solutions of elliptic prob-
lems obtained from the mixed finite element method of Raviart–Thomas over rectangular parti-
tions. The well-known optimal order error estimate in L2-norm for the flux approximation is of
order O(hk+1), where k ≥ 0 is the order of polynomials employed in the Raviart–Thomas element.
The new superconvergence shows an improved accuracy of order O(hk+3) between the mixed fi-
nite element approximation and an appropriately defined local projection of the flux variable when
k > 0. A postprocessing technique using local projection methods is proposed and analyzed in order
to provide a new approximate solution with the superconvergent order O(hk+3).

Key words. superconvergence, mixed finite element method, error estimates, elliptic problems
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1. Introduction. In this paper we are concerned with error analysis for numer-
ical solutions of elliptic problems by mixed finite element methods over rectangular
finite element partitions. In particular, we shall investigate some superconvergence
properties of the numerical solution obtained from the Raviart–Thomas rectangular
element [15, 7].

The model problem under consideration seeks p ∈ H1(Ω) satisfying

−∇ · (a∇p) = f in Ω(1.1)

and the boundary condition

a∇p · n = g on ∂Ω,(1.2)

where Ω is an open bounded domain in R
2, a = a(x, y) is a 2 × 2 tensor which

is symmetric and uniformly positive definite in Ω, n is the outward unit normal
vector on ∂Ω, and f = f(x, y), g = g(x, y) are two given functions defined on Ω
and its boundary ∂Ω, respectively. The functions f and g are assumed to satisfy the
compatibility condition

∫
Ω
f(x, y)dΩ+

∫
∂Ω
g(x, y)ds = 0 so that (1.1) and (1.2) has a

solution. The mixed finite element method [15, 7, 8] is a method that approximates
the scalar p = p(x, y) and the flux variables u = −a∇p simultaneously in two different
finite element spaces. The corresponding scheme is outlined in section 2.

Optimal order error estimates have been derived in [8] for all the existing mixed
finite elements [4, 5, 6, 10, 15] satisfying the inf-sup condition of Brezzi [3] and
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Babus̆ka [1]. For the Raviart–Thomas element of order k ≥ 0 on triangles or rectan-
gles, the optimal order error estimate in L2-norm for the flux and the scalar variables
is of order O(hk+1), where h is the mesh size of the corresponding finite element
partition. The optimal order error estimate is generally the best one can get between
the exact solution and its numerical approximation when measured globally on the
computational domain. But when compared with a certain local projection of the
exact solution, the finite element solution often possesses a supercloseness property
over the optimal order error estimate. More precisely, if uh is the finite element ap-
proximation, then for an appropriately defined local projection πhu [8, 7, 9] one may
have

‖uh − πhu‖L2(Ω) ≤ C(u)hk+s(1.3)

for some parameters s > 1. For example, for rectangular finite element partitions, the
mixed finite element solution from using either the Raviart–Thomas or the Brezzi–
Douglas–Fortin–Marini (BDFM) [5] elements was proved to satisfy

‖uh − πhu‖L2(Ω) ≤ C(u)hk+2,(1.4)

where C(u) is a constant independent of the mesh size h. The estimate (1.4) is
certainly much better than the optimal order error estimate and can be used to
construct a new numerical solution with the same order of accuracy. We refer to
[9, 13, 11, 12, 16] for a detailed discussion of (1.4) on rectangular elements. The
estimate (1.4) was also derived for the triangular Raviart–Thomas element of order
k = 0 when the underlying partition is uniform [2].

In their numerical experiments conducted in 1989 for reservoir simulation, Ewing
and Shen [14] observed that the numerical flux uh actually approximates the exact
solution u at an order of O(h4) on the two diagonal lines of each rectangular ele-
ment when k = 1 for the Raviart–Thomas element. This means that the true rate of
superconvergence for the mixed finite element approximation was significantly under-
estimated by the supercloseness estimate (1.4). Our main objective of this paper is to
provide a theoretical justification for the super-superconvergence observed by Ewing
and Shen. In particular, for diagonal tensors a = a(x, y) with piecewise constant
entries, we show that there is a constant C = C(u) independent of the mesh size h
such that

‖uh − πhu‖L2(Ω) ≤ C(u)hk+3(1.5)

for any k ≥ 1.
The analysis for (1.5) is different from that of (1.4) as presented in [9, 13, 11, 12].

The difference lies in the treatment of a linear form

F(v) = (a−1(u− πhu),v)(1.6)

for any finite element function v. Traditionally, this linear form is estimated by
expanding the interpolation error u − πhu as a Taylor-like series. Leading terms in
the expansion are proved to be orthogonal with arbitrary finite element functions v.
If so, one would be able to derive a superconvergence estimate. In the analysis to be
presented in this paper, the above linear form is studied by expanding v as a Taylor
series involving only finite number of terms. Each of the terms in the Taylor expansion
is a polynomial. The orthogonality of u − πhu with a certain class of polynomials
then plays an important role for the desired superconvergence result.
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The paper is organized as follows. In section 2, we provide a short review of
the mixed finite element method. In section 3, we establish a general framework of
superconvergence. In section 4, we derive some estimates useful for analyzing the
linear form (1.6). In section 5, we obtain some superconvergence results for the mixed
finite element solutions by combining the results of sections 3 and 4. In section 6, we
present a local projection method that can be used to provide a numerical solution
with the desired superconvergence.

2. Preliminaries in mixed methods. With the flux variable u = −a∇p, our
model problem (1.1) can be rewritten as a system of linear equations

a−1u+∇p = 0 in Ω,

∇ · u = f in Ω,

u · n = −g on ∂Ω.

(2.1)

The new variable u is known as Darcy’s velocity in the numerical simulation of fluid
flow in porous media.

The mixed finite element method for (1.1) is based on a weak form for the
mixed formulation (2.1). To this end, let (·, ·) denote the standard inner product

in L2(Ω) or
[
L2(Ω)

]2
, as appropriate. The corresponding norm is denoted by ‖ · ‖0.

Let

V = {v = v(x) : v ∈ L2(Ω), ∇ · v ∈ L2(Ω)}

be a Sobolev space equipped with the norm

‖v‖V =
(‖v‖20 + ‖∇ · v‖20)1/2 .

Let W = L2
0(Ω) consisting of functions in L2(Ω) with mean value zero, and

Vg = {v : v ∈ V, v · n = g on ∂Ω},

where g = g(x, y) ∈ H−1/2(∂Ω) is a given function on the boundary ∂Ω. A weak form
for (2.1) seeks u ∈ Vg and p ∈W satisfying

(a−1u,v)− (∇ · v, p) = 0, v ∈ V0,

(∇ · u, w) = (f, w), w ∈W.(2.2)

The mixed finite element method for (1.1)–(1.2) is based on the weak formula-
tion (2.2) and two finite element subspaces Vh ⊂ V and Wh ⊂ W associated with a
prescribed finite element partition Th for the domain Ω. For the purpose of this paper,
we consider a special case of the finite element partition Th consisting of rectangular
elements only. This means that the domain Ω would have to be made of rectangular
subdomains with boundaries parallel to either the x or y axis.

Of particular interest in this paper, we consider the Raviart–Thomas finite ele-
ments on the rectangular partition Th. Let Qr,s be the space of polynomials with
degree no more than r in the x direction and no more than s in the y direction. The
Raviart–Thomas finite element space of order k ≥ 0 is given as follows:

Vh = {v ∈ V, v|e ∈ Qk+1,k ×Qk,k+1, e ∈ Th},
Wh = {w ∈W, w|e ∈ Qk,k, e ∈ Th}.
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Fig. 1. A rectangular element e and its four edges.

Let Λh be a finite element space on ∂Ω obtained as the normal component of
functions in Vh:

Λh = {v · n ∀v ∈ Vh}.
It is not hard to see that Λh contains piecewise polynomials of degree k in either the
x or y directions. Denote by gh ∈ Λh an approximation of the boundary data g such
that

〈gh, χ〉 = g(χ), χ ∈ Λh,

where g(χ) is the duality pair and 〈·, ·〉 denotes the standard inner product in L2(∂Ω).
Let

Vg,h = {v ∈ Vh, v · n = gh on ∂Ω}
be a hyper-plane in Vh. The Raviart–Thomas mixed finite element approximation is
given by uh ∈ Vg,h and ph ∈Wh satisfying

(a−1uh,v)− (∇ · v, ph) = 0, v ∈ V0,h,

(∇ · uh, w) = (f, w), w ∈Wh.
(2.3)

We emphasize that V0,h consists of all finite element functions which have a vanishing
component on the boundary ∂Ω in the normal direction.

The discrete problem (2.3) is known to satisfy the inf-sup condition of Brezzi [3]
and Babus̆ka [1]. The inf-sup condition can be verified by using a projection operator
πh : V→ Vh satisfying

(∇ · (v − πhv), w) = 0(2.4)

for all w ∈Wh. The required boundedness of the projection operator πh can be easily
verified.

To construct such a projection operator πh, let e be any rectangular element
depicted in Figure 1. For any sufficiently smooth vector-valued function v ∈ V,
define its projection πev ∈ Qk+1,k × Qk,k+1 by using the following system of linear
equations: ∫

i

(v − πev) · niφds = 0, φ ∈ Pk(�i), i = 1, 2, 3, 4,∫
e

(v − πev) · ψdxdy = 0, ψ ∈ Qk−1,k(e)×Qk,k−1(e),
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where {�i, i = 1, 2, 3, 4} stand for the edges of the element e.
Using the local operator πe, we can define a global projection operator πh : V→

Vh by setting

(πhv) (x, y) = πev(x, y) ∀(x, y) ∈ e, e ∈ Th.(2.5)

It is not hard to see that the projection operator πh satisfies the desired relation (2.4).
In addition, the operator πh can be split into two components:

πhv = (π1v1, π2v2),

where π1 and π2 are defined independently to each other.
Denote by Ph the L2 projection from L2(Ω) onto the pressure finite element

space Wh.

3. A general framework in superconvergence. Let (uh; ph) be the mixed
finite element approximation of (2.1) arising from the scheme (2.3). Our objective
here is to establish a general framework for superconvergence estimation of the errors

eh = uh − πhu; ξh = ph − Php.
Theorem 3.1. Assume that (u; p) solves the mixed problem (2.2). Let (uh; ph)

solve (2.3). Assume that there is a constant M = M(u, p) and a parameter s ≥ 0
satisfying

sup
v∈V0,h

(a−1(u− πhu),v)
‖v‖V ≤M(u, p)hk+s.(3.1)

Then there is a generic constant C independent of h and the solution p such that

‖uh − πhu‖0 + ‖ph − Php‖0 ≤ CM(u, p)hk+s.

Proof. By subtracting (2.3) from (2.2) we obtain

(a−1(u− uh),v)− (∇ · v, p− ph) = 0, v ∈ V0,h,

(∇ · (u− uh), w) = 0, w ∈Wh.
(3.2)

Using the error equation (3.2) and (2.4) we see that

(a−1eh,v)− (∇ · v, ξh) = (a−1(u− πhu),v), v ∈ V0,h,

(∇ · eh, w) = 0, w ∈Wh.
(3.3)

The second equation in (3.3) implies that

∇ · eh = 0.(3.4)

By letting v = eh in the first equation and w = ξh in the second equation of (3.3),
we arrive at

(a−1eh, eh)− (∇ · eh, ξh) = (a−1(u− πhu), eh).
Substituting (3.4) into above equation we obtain

(a−1eh, eh) = (a−1(u− πhu), eh).(3.5)
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It follows from the condition (3.1) that

(a−1eh, eh) ≤ Chk+sM(u, p)‖eh‖V,
which, along with (3.4), leads to

(a−1eh, eh) ≤ Chk+sM(u, p)‖eh‖0.(3.6)

Thus,

‖eh‖0 ≤ Chk+sM(u, p).(3.7)

This completes the estimate for the vector component.
Next, we estimate the L2-norm of ξh. From the inf-sup condition and (3.2) we

obtain

‖ξh‖0 ≤ C sup
v∈V0,h

(∇ · v, ξh)
‖v‖V

= C sup
v∈V0,h

(∇ · v, ph − p)
‖v‖V

= C sup
v∈V0,h

(a−1v,uh − u)

‖v‖V

= C sup
v∈V0,h

(a−1v,uh − πhu) + (a−1v, πhu− u)

‖v‖V ,

≤ C sup
v∈V0,h

(a−1v,u− πhu)
‖v‖V + C‖uh − πhu‖0,

(3.8)

which, together with the error estimate (3.7) and the condition (3.1), gives

‖ξh‖0 ≤ Chk+sM(u, p).(3.9)

The proof is then completed by combining (3.7) with (3.9).

4. Some estimates for linear forms. Theorem 3.1 indicates that a supercon-
vergence is guaranteed if one can establish a corresponding estimate for the linear
form F(v) = (a−1(u−πhu),v) in the mixed finite element space V0,h. Our objective
here is to study this linear form and derive some useful estimates.

Denote by

|u|m,q;Ω =
∑

|α|=m
‖Dαu‖Lq(Ω)

the seminorm in the Sobolev space Wm,q(Ω) with integer m ≥ 0 and real number
q ≥ 1. The norm in Wm,q(Ω) is denoted by

‖u‖m,q;Ω =

m∑
j=0

|u|j,q;Ω.

In addition, denote by

|w|m,q,h =
∑

|α|=m

(∑
e∈Th

‖Dαw‖qLq(e)

)1/q
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a discrete seminorm for any piecewise polynomials w = w(x, y). The following esti-
mate turns out to be critical in our analysis.

Lemma 4.1. Let e ∈ Th be a rectangular element as illustrated in Figure 1 with
e = [xi, xi+1] × [yj , yj+1]. Let ψ be a sufficiently smooth function defined on e, and
satisfy ∫

i

ψdy = 0, i = 1, 3,(4.1) ∫
e

xjψdxdy = 0, 0 ≤ j ≤ k̃ − 1.(4.2)

Then for any integer m ≤ k̃ + 1, we have∫
e

(x− xe)mψdxdy = (−1)mm!

(2m+ 2)!

∫
e

Em+1(x)∂m+2
x ψdxdy,(4.3)

where �1, �3 are two vertical edges of the element e, 2he = xi+1 − xi is the length
of �2, (xe, ye) is the center of e, and E(x) = (x− xe)2 − h2

e.
Proof. Let us apply the integration by parts to∫

e

Em+1(x)∂m+2
x ψ(x, y)dxdy.

Notice that the function E(x) vanishes at edges �1 and �3 where x = xj+1 and x = xi,
respectively. Thus,∫

e

Em+1(x)∂m+2
x ψdxdy = (−1)m+1

∫
e

∂m+1
x Em+1(x)∂xψdxdy,(4.4)

where contributions from the boundary integral are trivial due to the fact that
∂txE

m+1(x) = 0 for 0 ≤ t < m + 1 at x = xi and x = xi+1. Next, using the
integration by parts again we obtain∫

e

Em+1(x)∂m+2
x ψdxdy = (−1)m

∫
e

∂m+2
x Em+1(x)ψdxdy,(4.5)

where the boundary contribution vanishes because of the assumption (4.1).
Now we observe that

∂m+2
x Em+1(x) =

(2m+ 2)!

m!
(x− xe)m + r(x),(4.6)

where r(x) is a polynomial of degree no more than m − 2 ≤ k̃ − 1. By substituting
(4.6) into (4.5) and then using the condition (4.2) we obtain∫

e

Em+1(x)∂m+2
x ψdxdy =

(−1)m(2m+ 2)!

m!

∫
e

(x− xe)mψdxdy,

which is (4.3).
Let a−1 be a diagonal tensor given by

a−1 =

[
α1 0
0 α2

]
.(4.7)
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By expressing the vector-valued function v as v = (v1, v2), we arrive at

F(v) = (α1(u1 − π1u1), v1) + (α2(u2 − π2u2), v2).(4.8)

The following lemma is concerned with the first linear form on the right-hand side
of (4.8).

Lemma 4.2. Let k ≥ 1 be an integer and u1 be a sufficiently smooth function
on the rectangle depicted in Figure 1. Let v1 be a polynomial of degree no more than
k + 1 in x and k in y, respectively. Let v2 be any sufficiently smooth function on e
and v = (v1, v2). Then there is a J1,e such that

(u1 − π1u1, v1)e = J1,e +
(−1)k

(2k + 2)!

(∫
4

−
∫
2

)
Ek+1(x)∂k+2

x u1∂
k−1
x v2dx.(4.9)

The term J1,e can be represented as area integrals over the element e with the following
estimate:

|J1,e| ≤ h2k+2
e

(2k + 2)!

(
h2
e

2k + 3
|u1|k+3,p;e|v1|k+1,q;e

+ |u1|k+2,p;e|∇ · v|k−1,q;e + |u1|k+3,p;e|v2|k−1,q;e

)
,

(4.10)

where 2he = xi+1 − xi is the width of the element and q is the conjugate of p ≥ 1
satisfying 1/p+ 1/q = 1.

Proof. Let us expand the polynomial v1 in x as follows:

v1(x, y) =

k+1∑
i=0

1

i!
(x− xe)i∂ixv1(xe, y).

Each of ∂ixv1(xe, y) is a polynomial of degree no more than k in y. The definition of π1

implies that u1 − π1u1 is orthogonal to the polynomial space Qk−1,k (polynomials of
degree no more than k − 1 in x and k in y). Thus,

(u1 − π1u1, v1)e =
1

k!

∫
e

(x− xe)k(u1 − π1u1)∂
k
xv1(xe, y)dxdy

+
1

(k + 1)!

∫
e

(x− xe)k+1(u1 − π1u1)∂
k+1
x v1(xe, y)dxdy

= I1 + I2,

(4.11)

where Ij , j = 1, 2, are defined accordingly. Notice that ∂kxv1(xe, y) ∈ Q0,k. By let-
ting ψ = (u1−π1u1)∂

k
xv1(xe, y) we see that conditions of Lemma 4.1 are satisfied with

k̃ = k − 1 and m = k. Thus, it follows from (4.3) that

I1 =
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k
xv1(xe, y)dxdy.(4.12)

Since ∂kxv1(x, y) is linear in x, then

∂kxv1(xe, y) = ∂
k
xv1(x, y) + (xe − x)∂k+1

x v1(x, y).
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Substituting the above into (4.12) gives

I1 =
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k
xv1(x, y)dxdy

− (−1)k
(2k + 2)!

∫
e

(x− xe)Ek+1(x)∂k+2
x u1∂

k+1
x v1(x, y)dxdy.

(4.13)

To deal with the second term of (4.13), we use

(x− xe)Ek+1(x) =
1

2k + 4
∂xE

k+2(x)

to obtain ∫
e

(x− xe)Ek+1(x)∂k+2
x u1∂

k+1
x v1(x, y)dxdy

=
1

2k + 4

∫
e

∂xE
k+2(x)∂k+2

x u1∂
k+1
x v1(x, y)dxdy

=
−1

2k + 4

∫
e

Ek+2(x)∂k+3
x u1∂

k+1
x v1(x, y)dxdy.

(4.14)

Substituting (4.14) into (4.13) yields

I1 =
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k
xv1(x, y)dxdy

+
(−1)k

(2k + 4)(2k + 2)!

∫
e

Ek+2(x)∂k+3
x u1∂

k+1
x v1(x, y)dxdy

= I11 + I12.

(4.15)

With any given smooth function v2, we rewrite the first term I11 of I1 as follows:

I11 =
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k−1
x (∂xv1 + ∂yv2)dxdy

− (−1)k
(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k−1
x ∂yv2dxdy.

(4.16)

The second term above can be further simplified by using the integration by parts in y,
yielding

I11 =
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k−1
x ∇ · v dxdy

+
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂y∂
k+2
x u1∂

k−1
x v2dxdy

+
(−1)k

(2k + 2)!

(∫
4

−
∫
2

)
Ek+1(x)∂k+2

x u1∂
k−1
x v2dx.

(4.17)
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Combining the above equations we see that

(u1 − π1u1, v1)e = I1 + I2 = I11 + I12 + I2,

where I11 is given in (4.17), I12 can be seen in (4.15), and I2 is the corresponding
integral in (4.11). By letting J1,e represent the combined area integrals,

J1,e = I12 + I2 +
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k−1
x ∇ · vdxdy

+
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂y∂
k+2
x u1∂

k−1
x v2dxdy,

(4.18)

we arrive at

(u1 − π1u1, v1)e = J1,e +
(−1)k

(2k + 2)!

(∫
4

−
∫
2

)
Ek+1(x)∂k+2

x u1∂
k−1
x v2dx.

Now we estimate the total area integrals J1,e. The term I12 is given in (4.15),
which is already well expressed. The term I2 can be estimated by using Lemma 4.1.
To this end, observe that the conditions of Lemma 4.1 are satisfied with k̃ = k,
m = k + 1, and ψ = (u1 − π1u1)∂

k+1
x v1. Thus, it follows from Lemma 4.1 that

I2 =
1

(k + 1)!

∫
e

(x− xe)k+1(u1 − π1u1)∂
k+1
x v(x, y)dxdy

=
(−1)k+1

(2k + 4)!

∫
e

Ek+2(x)∂k+3
x u1∂

k+1
x v1dxdy.

(4.19)

Substituting the above into (4.18) we obtain

J1,e = I12 +
(−1)k+1

(2k + 4)!

∫
e

Ek+2(x)∂k+3
x u1∂

k+1
x v1dxdy

+
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂k+2
x u1∂

k−1
x ∇ · vdxdy

+
(−1)k

(2k + 2)!

∫
e

Ek+1(x)∂y∂
k+2
x u1∂

k−1
x v2dxdy.

(4.20)

Since |E(x)| ≤ h2
e, using the Hölder inequality, we obtain the following estimate:

|J1,e| ≤ h2k+2
e

(2k + 2)!

(
h2
e

2k + 3
|u1|k+3,p;e|v1|k+1,q;e

+ |u1|k+2,p;e|∇ · v|k−1,q;e + |u1|k+3,p;e|v2|k−1,q;e

)
,

(4.21)

which is the desired inequality in Lemma 4.2.
A similar estimate can be derived for the second linear form on the right-hand

side of (4.8). The result is stated as follows without any proof.
Lemma 4.3. Let k ≥ 1 be an integer and u2 be a sufficiently smooth function

on the rectangle depicted in Figure 1. Let v2 be a polynomial of degree no more than
k + 1 in y and k in x, respectively. Let v1 be any sufficiently smooth function on e
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and v = (v1, v2). Then there is a term J2,e such that

(u2 − π2u2, v2)e = J2,e +
(−1)k

(2k + 2)!

(∫
3

−
∫
1

)
Ek+1(y)∂k+2

y u2∂
k−1
y v1dy.(4.22)

The term J2,e can be represented as area integrals over the element e with the following
estimate:

|J2,e| ≤ τ2k+2
e

(2k + 2)!

(
τ2
e

2k + 3
|u2|k+3,p;e|v2|k+1,q;e

+ |u2|k+2,p;e|∇ · v|k−1,q;e + |u2|k+3,p;e|v1|k−1,q;e

)
,

(4.23)

where 2τe = yj+1 − yj is the height of the element and q is the conjugate of p ≥ 1
satisfying 1/p+ 1/q = 1.

5. Superconvergence. Our objective here is to derive some superconvergence
for the mixed finite element methods by combining Theorem 3.1 with the estimates
established in the previous section. From Theorem 3.1, it is sufficient to investigate
the condition (3.1) with a maximum value for the parameter s.

Let us recall that the linear form F(v) consists of two components:

F1(v1) = (α1(u1 − π1u1), v1), F2(v2) = (α2(u2 − π2u2), v2).

We intend to deal with F1(v1) and F2(v2) by using Lemmas 4.2 and 4.3, respectively.

Assume that α1 and α2 are two constants in the computational domain Ω. It is
easy to see that

F1(v1) = α1

∑
e∈Th

(u1 − π1u1, v1)e.

On each element e, Lemma 4.2 can be employed to give

F1(v1) = α1

∑
e∈Th

J1,e + α1,k

∑
e∈Th

(∫
4

−
∫
2

)
Ek+1(x)∂k+2

x u1∂
k−1
x v2dx,(5.1)

where α1,k = (−1)kα1

(2k+2)! and v2 is chosen to be the second component of the vector-

valued function v. Observe that the line integral over �4 is given as an integral along
the bottom edge and the integral over �2 is given as one on the top edge of e. If �4
is not a boundary edge, then there will be another element, say ẽ, for which �4 is
seen as the top edge and the corresponding integral on �4 has an opposite sign from
the contribution of e. Thus, all the line integrals over interior edges must cancel each
other in the second summation of (5.1). The line integrals on the boundary edges
vanish due to the fact that v2 = 0 along all the horizontal boundary edges (which
stems from v ∈ V0,h). Thus, we obtain

F1(v1) = α1

∑
e∈Th

J1,e.(5.2)
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Now we use the estimate (4.10) with p = q = 2 to obtain

|F1(v1)| ≤ α1

∑
e∈Th

|J1,e|

≤ α1

∑
e∈Th

h2k+2
e

(2k + 2)!

(
h2
e

2k + 3
|u1|k+3,2;e|v1|k+1,2;e

+ |u1|k+2,2;e|∇ · v|k−1,2;e + |u1|k+3,2;e|v2|k−1,2;e

)

≤ α1
h̃2k+2

(2k + 2)!

(
h̃2

2k + 3
|u1|k+3,2,h|v1|k+1,2,h

+ |u1|k+2,2,h|∇ · v|k−1,2,h + |u1|k+3,2,h|v2|k−1,2,h

)
,

(5.3)

where h̃ = maxe∈Th
he. By applying the standard inverse inequality to various norms

of v in (5.3), we arrive at

|F1(v1)| ≤ Ch̃k+3‖u1‖k+3,2;Ω (‖v‖0 + ‖∇ · v‖0)
≤ Ch̃k+3‖u1‖k+3,2;Ω‖v‖V.

(5.4)

The above argument can be extended to the linear form F2(v2) by using Lem-
ma 4.3. With τ̃ = maxe∈Th

τe, the corresponding estimate is given by

|F2(v2)| ≤ Cτ̃k+3‖u2‖k+3,2;Ω‖v‖V.(5.5)

Substituting (5.4) and (5.5) into (4.8), we obtain

|F(v)| ≤ C(h̃k+3 + τ̃k+3)‖u‖k+3,2;Ω‖v‖V.

Thus, the condition (3.1) holds true with s = 3 and h = max(h̃, τ̃). To summarize,
we have proved the following superconvergence result.

Theorem 5.1. Assume that (u; p) solves the mixed problem (2.2) and u ∈[
Hk+3

]2
. Let the tensor a−1 in (2.2) be given by (4.7) with constant entries αi. Let

(uh; ph) solve (2.3). Then there is a generic constant C independent of h and the
solution p such that

‖uh − πhu‖0 + ‖ph − Php‖0 ≤ Chk+3‖u‖k+3,2;Ω.(5.6)

The cancellation of line integrals in (5.1) is crucial for the superconvergence es-
timate (5.6). Let us recall that in (5.1), the line segments �2 and �4 correspond to
the top and bottom edge of the element e (see Figure 1). The cancellation of the line
integral over �2 occurs if either �2 is on the boundary of Ω (hence, v2 = 0) or there is
another integral over �2 with opposite sign that was contributed from the element ẽ
right above e. In the later case, the function α1 = α1(x, y) must have the same
value on e and ẽ in order to have a complete cancellation. Thus, all the line integrals
in (5.1) cancel each other as long as the function α1 = α1(x, y) is a constant on each
vertical strip {[xi, xi+1]× (−∞,∞)} ∩ Ω. Similarly, the function α2 = α2(x, y) must
be a constant on each horizontal strip {(−∞,∞)× [yj , yj+1]} ∩ Ω in order to have a
full cancellation of the line integrals in the linear form F2(v2). The remaining area
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integrals can be handled in the same manner by using the estimates (4.10) and (4.23).
The result is summarized as follows.

Theorem 5.2. Assume that (u; p) solves the mixed problem (2.2) and u ∈[
Hk+3

]2
. Let the tensor a−1 be given in (4.7), where α1 = α1(x) and α2 = α2(y)

are piecewise constant functions. Let (uh; ph) solve (2.3). Then there is a generic
constant C independent of h and the solution p such that

‖uh − πhu‖0 + ‖ph − Php‖0 ≤ Chk+3‖u‖k+3,2;Ω.(5.7)

In the rest of this section, we derive a superconvergence for (2.3) when the ten-
sor a−1 has piecewise constant entries in both x and y direction. To this end, let
Ω̄ =

⋃m
s=1 Ω̄s be a nonoverlapping coarse partition of the domain Ω. Assume that the

entries αi = αi(x, y), i = 1, 2, have constant values on each subdomain Ωs. Assume
that the finite element partition Th aligns with the above coarse partition in the sense
that each element e = [xi, xi+1] × [yj , yj+1] ∈ Th intersects with one and only one of
the subdomains Ωs, s = 1, . . . ,m.

How do the line integrals cancel each other in the representation (5.1) for the
linear form F(v)? It is clear that all the line integrals which are interior to any
subdomain Ωs cancel each other in the way that was explained earlier. But the line
integrals along the boundary of Ωs will not go away from (5.1) because there is no
counterpart from their neighbors for a complete cancellation. Let Γs be the part of the
boundary of Ωs where the line integrals do not vanish. Using the Hölder inequality,
such line integrals can be estimated by

B = Ch2k+2|u1|k+2,∞;Ωs

∫
Γs

|∂k−1
γ v2|dΓs,(5.8)

where ∂γ is the tangential derivative operator along Γs. It is routine to show that∫
Γs

|∂k−1
γ v2|dΓs ≤ C

(
h−1/2|v2|k−1,2;Ωs + h

1/2|v2|k,2;Ωs

)
.(5.9)

By first substituting the above into (5.8) and then using the inverse inequality on
|v2|k−1,2;Ωs and |v2|k,2;Ωs , we obtain

B ≤ Chk+2.5|u1|k+2,∞;Ωs‖v2‖0,2;Ωs .

The corresponding superconvergence is summarized as follows.
Theorem 5.3. Assume that (u; p) solves the mixed problem (2.2) and u ∈[

Hk+3
]2

. Let the tensor a−1 be given in (4.7), where α1 = α1(x, y) and α2 = α2(x, y)
are piecewise constant functions on Ω. Let (uh; ph) solve (2.3). Then there is a
generic constant C independent of h and the solution p such that

‖uh − πhu‖0 + ‖ph − Php‖0 ≤ Chk+2.5 (‖u‖k+2,∞;Ω + ‖u‖k+3,2;Ω) .(5.10)

6. Postprocessing by patch recovery. The results developed in Theorems
5.1–5.3 indicate a supercloseness between the mixed finite element approximation uh
and the locally defined projection πhu of the exact flux variable u. This superclose-
ness estimate does not mean any superconvergence between u and its finite element
approximation uh because no superconvergence is known between πhu and the exact
solution u. In general, πhu does not have any superconvergence to u globally in the
L2-norm.
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Our objective in this section is to provide a new approximation based on a patch
recovery approach that postprocesses uh locally on each element. A general framework
can be described as follows. Let uh be a certain finite element approximation of the
exact solution u with the following error estimate:

‖uh − πhu‖0 ≤ Chk+3‖u‖k+3,(6.1)

where πhu is a projection of u into the same finite element space. The interpolation
error between u and πhu is assumed to be worse than the order O(hk+3). However,
thanks to the estimate (6.1) and the locality of πhu, it is possible to construct a new
approximate solution based on uh which approximates u with the superconvergence
order of O(hk+3). This new approximate solution is often realized through an opera-
tor Qh from the finite element space to a new finite element space consisting of high
order (e.g., of order k+s on each element) of polynomials with the following property:

Qhπhu = Qhu.(6.2)

If so, the accuracy of the new approximate solution Qhuh can be justified as follows:

‖u−Qhuh‖0 ≤ ‖u−Qhu‖0 + ‖Qhu−Qhuh‖0
≤ ‖u−Qhu‖0 + ‖Qh(πhu− uh)‖0(6.3)

≤ Chk+s+1‖u‖k+s+1 + Ch
k+3‖u‖k+3.

Here we have assumed the L2-boundedness of the operator Qh. In general, the bound-
edness of Qh depends on the property of the corresponding finite element partition
and the choice of interpolating spaces.

The rest of this section will give a constructive approach to a postprocessing
operator Qh for the mixed finite element approximations.

6.1. Some technical tools. It is well known that polynomials can be uniquely
determined by their values at a set of points. In the mixed finite element method, the
local projection operator πh is defined by using both line and area moments which
must be examined carefully in the construction of our postprocessing operator Qh.
Let us provide some new characterization for polynomials by using line moments. To
this end, let

M0(x) = 1− x, M1(x) = 1 + x, Mj(x) =
dj−2

(
(1− x2)j−1

)
dxj−2

, j ≥ 2,

be a set of polynomials. The set of derivatives {Lj(x) ≡ M ′
j+1(x), j = 0, 1, . . . } is

the set of well-known Legendre polynomials.
Lemma 6.1. Let I = [−1, 1] and x0 be a fixed, but arbitrary, point in (−1, 1).

Then any polynomial w = w(x) ∈ Pk+2(I) is uniquely determined by the following set
of degrees of freedom:

w(±1),
∫ 1

−1

w(s)φ(x)dx,

∫ x0

−1

w(s)(x− x0)
k−1dx(6.4)

for all φ ∈ Pk−1(I).
Proof. The total number of degrees of freedom in (6.4) is given by 2+k+1 = k+3,

which is the same as the dimension of the polynomial space Pk+2(I). It is therefore
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sufficient to verify the uniqueness. To this end, let w ∈ Pk+2(I) satisfy

w(±1) = 0,(6.5) ∫ 1

−1

w(s)φ(x)dx = 0 ∀φ ∈ Pk−1(I),(6.6) ∫ x0

−1

w(s)(x− x0)
k−1dx = 0.(6.7)

Let us show that w ≡ 0. We express w = w(x) as follows:

w(x) =

k+2∑
i=0

αiMi(x),(6.8)

where αi are real numbers. Notice that Mj(±1) = 0 for any j ≥ 2. Thus, the
condition w(±1) = 0 implies that α0 = α1 = 0.

Next, let us test (6.8) against any M
′′
j (x) for 2 ≤ j ≤ k + 1. It follows from the

condition (6.6) that

∫ 1

−1

w(x)M
′′
j (x)dx = 0.

On the other hand, using the integration by parts, we obtain

∫ 1

−1

w(x)M
′′
j (x)dx = −

∫ 1

−1

w′(x)M
′
j(x)dx = αjcj

for some constant cj �= 0. Hence, αj = 0 for any 2 ≤ j ≤ k + 1.

It remains to show that αk+2 = 0. To this end, we use the condition (6.7) to
obtain

0 =

∫ x0

−1

w(x)(x− x0)
k−1dx

= αk+2

∫ x0

−1

Mk+2(x)(x− x0)
k−1dx

= αk+2

∫ x0

−1

(
(1− x2)k+1

)(k)
(x− x0)

k−1dx

= αk+2(−1)k−1(k − 1)!

∫ x0

−1

((1− x2)k+1)
′
dx

= αk+2(−1)k−1(k − 1)!(1− x2
0)
k+1,

which implies that αk+2 = 0. This completes the proof.

Our next result will determine a polynomial of degree k + 2 by using a different
set of degrees of freedom.
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Lemma 6.2. Let w = w(x) ∈ Pk+2(I) be a polynomial of degree k + 2 satisfying∫ 1

−1

w(s)φ(x)dx = 0 ∀φ ∈ Pk(I),(6.9)

∫ x0

−1

(x− x0)
k−iw(x)dx = 0, i = 0, 1,(6.10)

where x0 ∈ (−1, 1) is a fixed, but arbitrary, point. Then one has w ≡ 0.
Proof. The polynomial w = w(x) can be represented by using the Legendre

polynomials as follows:

w(x) =
k+2∑
i=0

αiLi(x),

where Li(x) =M
′
i+1(x) is the Legendre polynomial of order i. From (6.9) we have

αi = 0, i = 0, 1, . . . , k.

It remains to show that αk+1 = αk+2 = 0. To this end, we use the second momentum
condition (6.10) to obtain

0 =

∫ x0

−1

(x− x0)
kw(x)dx

=

k+2∑
i=k+1

αi

∫ x0

−1

(x− x0)
kLi(x)

=

k+2∑
i=k+1

αi

∫ x0

−1

(x− x0)
kM

′
i+1(x)

= (−1)kk!αk+1(1− x2
0)
k+1 + αk+2(−1)kk!

∫ x0

−1

d2
(
(1− x2)k+2

)
dx2

dx

= (−1)kk!(1− x2
0)
k+1 (αk+1 − 2x0αk+2(k + 2))

and

0 =

∫ x0

−1

(x− x0)
k−1w(x)dx

=

k+2∑
i=k+1

αi

∫ x0

−1

(x− x0)
k−1M

′
i+1(x)

= (−1)k−1(k − 1)!

(
αk+1

d
(
(1− x2)k+1

)
dx

+ ck+2
d2(1− x2)k+2

dx2

)∣∣∣∣∣
x=x0

= 2(−1)k(k − 1)!(1− x2
0)
k
(
αk+1(k + 1)x0 + αk+2(k + 2)(1− 2x2

0(k + 1))
)
.

The above two equations imply that

αk+1 − 2x0(k + 2)αk+2 = 0,

x0(k + 1)αk+1 + (k + 2)(1− 2x2
0(k + 1))αk+2 = 0,
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Fig. 2. A patch K of four rectangular elements.

which has only a trivial solution since the determinant of the coefficient matrix is

(k + 2)(1− 2x2
0(k + 1)) + 2x2

0(k + 1)(k + 2) = k + 2 �= 0.

This completes the proof of the lemma.

6.2. Patch recovery for mixed finite element approximations. Recall
that the general theory requires a locally defined operator Qh satisfying the prop-
erty (6.2). Here we construct such an operator by using the technical results developed
in the previous subsection.

Let e1 ∈ Th be any element in the finite element rectangular partition. First, we
find three neighboring elements, ei, i = 2, 3, 4, such that K =

⋃4
i=1 ei forms a larger

rectangle (it is a patch of rectangular elements). Second, we construct a polynomial
of degree k + 2 in both x and y direction on the patch K by using certain degrees
of freedom. Does πhu contain enough information on K to guarantee the existence
of an operator Qh satisfying (6.2)? To answer this question, let us take for example
k = 1 and consider only the first component of πhu. As a piecewise polynomial, the
first component πhu1 has 20 degrees of freedom on K (dotted points in Figure 2).
On the other hand, the new interpolation space Q3,3(K) has dimension 16. This
simple dimension counting indicates that πhu may contain enough information for
the construction of a projection operator Qh satisfying (6.2). The rest of this section
gives a rigorous approach.

For the sake of discussion, let the patch K be given by

K = [−1, 1]× [−1, 1],
which consists of four elements:

e1 := [−1, x0]× [−1, y0], e2 = [x0, 1]× [−1, y0],
e3 := [x0, 1]× [y0, 1], e4 := [−1, x0]× [y0, 1].

Notice that the patch K is normally nonuniform. Our projection operator Qh can be
given as the product of two operators Sx1 and Sy2 defined in the x and the y direction,
respectively. More precisely, the operator Sx1 takes a function to a polynomial φ =
φ(x) of degree k + 2 by using the degrees of freedom specified in Lemma 6.1 and
the operator Sy2 makes use of the degrees of freedom given in Lemma 6.2. On the
target element e1, the first component of Qhu is defined as the restriction of Sy2S

x
1u1

to e1. Similarly, the second component of Qhu is defined as the restriction of Sx2S
y
1u2

to e1. This operator Qh can be easily verified to satisfy the crucial condition (6.2) on
the target element e1. It is also not hard to see that Qh is bounded in the L2-norm
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for regular partitions. Consequently, we have proved the following superconvergence
result.

Theorem 6.1. Let Qh be the locally defined operator outline as above and uh be
the mixed finite element approximation obtained from (2.3). Under the same assump-
tion of Theorem 5.1, there exists a constant C independent of the exact solution (u; p)
and the mesh size h such that

‖u−Qhuh‖0 ≤ Chk+3‖u‖k+3.

Similar superconvergence can be established for the mixed finite element method
by using Theorems 5.2 and 5.3. The details are omitted.
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Abstract. A local discontinuous Galerkin (LDG) method using approximating spaces of order
k + 1 for the gradient and order k for the state variable, with k ≥ 0, is presented for an elliptic
boundary value problem. A priori error estimates are derived and numerical results presented, which
demonstrate that this method is order k + 1 for both the gradient and state variable in the L2

norm. This improves upon earlier LDG methods which use equal order approximating spaces for
both variables, but lose an order of accuracy in the gradient approximation. This approach is also
the first convergent LDG method which allows for piecewise constant approximations for the state
variable.
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1. Introduction. In this paper, we consider the solution (u, p) of the second
order elliptic problem,

cp+∇ · u = f in Ω,(1)

u = −K∇p in Ω,(2)

satisfying the boundary conditions

p = gD on ∂Ω,(3)

by a local discontinuous Galerkin (LDG) approach. Because of the similarity to porous
media flow, we will often refer to the variable p as a fluid “pressure” and u as fluid
“velocity.” In this context, c is a compressibility factor and K a permeability tensor.
We assume K is uniformly symmetric and positive definite, with

K∗ ≥ K−1 ≥ K∗ > 0,(4)

and throughout most of the paper, we assume

c∗ ≥ c(x) ≥ c∗ > 0.(5)

We will consider the case c = 0 in section 6.
The LDG method is a type of classical mixed method, whereby the state variable

(p) and its flux (u) are simultaneously approximated. The LDG method was intro-
duced by Cockburn and Shu in [13], and since then has been rigorously studied by
a number of researchers for convection-diffusion problems [9, 1, 8, 15], purely elliptic
problems [7, 11, 6], and Stokes problems [12]. The analysis and implementation of
the LDG method to date has primarily used equal order approximating spaces for
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the state variable and the gradient. We refer to this approach as the Pk − Pk LDG
method, where Pk denotes the set of complete polynomials of degree k. This method
has been shown to give optimal order (hk+1) convergence for p in the L2 norm, but
loses an order of accuracy for u. It also requires that k ≥ 1. In [12], an LDG method
with the gradient approximated in Pk−1 and the state variable in Pk was investi-
gated for the Stokes system, but no advantage in efficiency was seen over the Pk−Pk
method.

The initial motivation for the work presented here was to develop an LDG method
that allows for the pressure to be approximated in P0, as the ability to use piecewise
constant approximations is often desirable in practice. This led to the development
of the so-called P1 − P0 LDG method [14], which uses a piecewise constant approx-
imation of p and a piecewise linear approximation of u. This approach relies on
the construction of a sufficiently accurate and stable numerical flux on the interface
between elements. The construction of this flux differs from that proposed in any dis-
continuous Galerkin (DG) method to date. In fact, the method does not fall within
the unified approach for DG methods given in [2], and thus cannot be analyzed using
the techniques described therein. Still, first order convergence in L2 for p and u was
demonstrated in [14].

In this paper, we outline an extension of the P1−P0 method to any order k ≥ 0.
We call the resulting approach the Pk+1 − Sk LDG method. In this approach, u
is approximated by polynomials of degree k + 1, and p is approximated in a space
Sk predominantly consisting of polynomials of degree k, although some terms of
order k + 1 may be needed in the approximation of p when k > 0, as we will see
below. Thus, in general Sk is somewhere “between” Pk and Pk+1, but in the case
k = 0, S0 = P0. A primary motivation for this approach is that, unlike the standard
LDG methods mentioned above, pressure and velocity are approximated to the same
order of accuracy. In many physical applications, porous media flow being a prime
example, it is the velocity u that is the quantity of interest, therefore it is important to
approximate this variable as accurately as p is approximated. The Pk+1−Sk method
gives hk+1 convergence for both variables, while still requiring only the solution of a
linear system for the approximation to p. As in the P1 − P0 method, a necessary
ingredient in our approach is the construction of a stable, accurate numerical flux. We
will also improve upon our earlier results in [14] for the P1−P0 method by extending
our analysis to the case c = 0 in (1).

Since the LDG method is a type of classical mixed method, the Pk+1 − Sk LDG
scheme is very similar in spirit to the mixed finite element method as described in, for
example, [20, 5]. Mixed finite element approximating spaces, for example the Raviart–
Thomas spaces, typically employ polynomials of degree k + 1 for the velocity and k
for pressure, with convergence rates of order hk+1 for both variables. In the standard
mixed method, the velocities are constrained to be in H(Ω; div), which requires that
the normal component of velocity must be continuous across element faces. In the
LDG method, we drop this continuity requirement on the normal flux, the result being
that the velocity unknowns can be resolved locally (element by element) in terms of
the pressure unknowns.

In the next section, we will outline the Pk+1 − Sk LDG method. We then give
an error analysis of the method in standard L2 norms. In section 4, we discuss in
some detail the construction of a numerical flux, ŵ, which is crucial to the method.
In section 5, we present some numerical results which confirm our theory. Finally, in
section 6, we consider the case k = 0 again with the assumption that the coefficient
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c = 0.

2. The Pk+1 − Sk LDG method. In this section, we define the Pk+1 − Sk
LDG method. First, we introduce some notation.

Let Th denote a triangulation of Ω into elements Ωe. We will make the following
fairly standard assumptions on Th; see [4]. We assume each element Ωe is affinely
equivalent to one of several reference elements. We also assume Th is regular; that is,
the ratio of the diameter he of Ωe and the diameter ρe of the largest ball contained
in Ωe (the “chunkiness parameter” [4]) is bounded by a positive constant:

he
ρe
≤ σ1 ∀Ωe.(6)

The interior element boundaries need not align; however, we assume that Ωe has a
fixed, maximum number of neighbors. A neighbor of Ωe is defined to be any element
Ωe′ such that

interior of ∂Ωe ∩ ∂Ωe′ �= ∅.(7)

For such neighboring elements, we will assume a local quasi uniformity; that is, we
assume a positive constant σ2 < 1 exists, independent of Ωe and Ωe′ , such that

σ2 ≤ he
he′
≤ σ−1

2 .(8)

Finally, let

h = max
e
he.

We denote by (·, ·)R the usual L2 inner product over a d dimensional domain R;
to emphasize that the integration is over (d−1) dimensional surfaces, we write 〈·, ·〉∂R.
We denote by || · ||R the L2 norm on R. Norms in other Sobolev spaces H(R) will be
denoted by || · ||H(R).

Suppose Ω−
e and Ω+

e are adjacent elements with unit outward normals n− and
n+, and (v, w) are smooth functions defined on these elements, with v vector-valued
and w a scalar. Let (v±, w±) denote the traces of (v, w) on the face γ between Ω+

e

and Ω−
e from the interiors of the elements. We define the average {·} and jump [[·]]

for x ∈ γ as follows:

{w} = (w− + w+)/2, {v} = (v− + v+)/2,(9)

[[w]] = w+n+ + w−n−, [[v]] = v+ · n+ + v− · n−.(10)

Let Wh, Vh denote discontinuous, piecewise polynomial approximating spaces
defined on the triangulation Th. The variable p will be approximated in the space
Wh. We will assume Wh on Ωe contains Pk(Ωe) and may also contain some but not
necessarily all polynomial terms of degree k + 1. For example, an xy term may be
included with terms of degree one. We call the resulting space Sk. Therefore,

Wh = {w ∈ L2(Ω) : w|Ωe ∈ Sk(Ωe) ∀ Ωe ∈ Ω},
where Pk(Ωe) ⊂ Sk(Ωe) ⊂ Pk+1(Ωe). The variable u will be approximated in the
space Vh, where

Vh = {v ∈ L2(Ω)d : v|Ωe ∈ (Pk+1(Ωe))
d ∀ Ωe ∈ Ω}.
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We will utilize the fact that

∇ ·Vh|Ωe ⊂Wh|Ωe(11)

in our analysis.
The Pk+1−Sk LDG solution (uh, ph) ∈ Vh×Wh is determined by requiring that

ALDG(uh, ph;wh) ≡
∑
e

[(cph, wh)Ωe + (∇ · uh, wh)Ωe ]− 〈[[uh]], ŵh〉Ei

=
∑
e

(f, wh)Ωe ,(12)

BLDG(uh, ph;vh) ≡
∑
e

[(K−1uh,vh)Ωe
− (ph,∇ · vh)Ωe

] + 〈p̂h, [[vh]]〉Ei

= −〈gD,vh · n〉∂Ω(13)

for all (vh, wh) ∈ Vh×Wh, where n is the outward unit normal to ∂Ω, and Ei denotes
the set of all interior faces in the triangulation Th. It remains to define the numerical
flux ŵh on each interior face for wh ∈Wh.

The numerical flux ŵh should be easy to compute. We also need it to be suffi-
ciently accurate, as we will see below. We will give specific examples of ŵh in section
4. For now, we outline two requirements on ŵh needed for the error analysis to go
through.

The numerical flux ŵh should be constructed on each interior face γ from the
degrees of freedom of wh in an O(h) neighborhood of γ. Let {Ωeγ} denote the collec-
tion of elements adjacent to γ, that is, the interior of ∂Ωeγ ∩ γ �= ∅, along with any
other elements used to compute ŵh. Let hγ = maxeγ heγ . The requirements on ŵh
are outlined as follows.

(A1) We require ŵh to satisfy the trace (or stability) inequality,

||ŵh||2γ ≤ C1h
−1
γ

∑
eγ

||wh||2Ωeγ
, wh ∈Wh,(14)

where C1 is independent of h. In the examples in section 4, we will see that C1 can
depend on σ1 and σ2.

(A2) For φ a smooth function, let πφ be the L2 projection of φ into Wh:

(φ− πφ,wh)Ωe
= 0, wh ∈Wh.(15)

We require the following accuracy condition, namely,

||φ− π̂φ||γ ≤ C2,γh
k+3/2
γ ,(16)

where ∑
γ

C2
2,γ ≡ C2

2 ,(17)

and C2 is independent of h. In general, C2 will depend on the smoothness of φ (e.g.,
φ ∈ Hk+2(Ω) as we will see in section 4) and the triangulation Th (i.e., σ1 and σ2).

Returning to (12)–(13), note that in (13) the variable uh can be easily eliminated
from the equations since it can be expressed locally on each element Ωe in terms of ph
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by choosing vh such that it is zero everywhere except on Ωe. Substituting into (12),
the system can be reduced to a system in the variable ph alone.

If we define the bilinear form

A(q, r;v, w) = ALDG(q, r;w) + BLDG(q, r;v)(18)

and the linear form

C(v, w) = (f, w)Ω − 〈gD,v · n〉∂Ω,(19)

then we can characterize the approximate solution (uh, ph) of the method as the
element of Vh ×Wh such that

A(uh, ph;v, w) = C(v, w) ∀ (v, w) ∈ Vh ×Wh.(20)

Existence and uniqueness of the approximate solution can be easily shown. Set-
ting the data to zero, that is, f = 0 and gD = 0, implies that

A(uh, ph;v, w) = 0 ∀ (v, w) ∈ Vh ×Wh.

Setting v = uh and w = ph and using the definitions of ALDG and BLDG, we see that

0 = A(uh, ph;uh, ph) =
∑
e

[(K−1uh,uh)Ωe + (cph, ph)Ωe ];(21)

thus, by (4) and (5), uh = ph = 0.

3. Error estimates. In this section, we present our main results: error bounds
for ||u− uh||Ω and ||p− ph||Ω.

Theorem 3.1. Let (u, p) be the solution of problem (1), (2), (3) and let (uh, ph)
be the approximate solution given by the Pk+1 − Sk LDG method (12)–(13) for k ≥
0. Assume the numerical flux ŵh satisfies (14) and (16), and the triangulation Th
satisfies (6) and (8). Assume K and c satisfy the bounds (4) and (5). Then for (u, p)
sufficiently smooth,

||u− uh||Ω + ||p− ph||Ω ≤ C3h
k+1,

where C3 is a constant independent of h, but depends on C1, C2, c
∗, c∗, K∗, K∗, σ1,

σ2, ||p||Hk+1(Ω), and ||u||Hk+2(Ω).

3.1. Proof of Theorem 3.1. In the arguments below, C will denote a generic,
positive constant, independent of h, and ε will denote a generic, small positive con-
stant. The dependence of C on quantity a will be denoted by C(a).

We begin by noticing that the error (eu, ep) = (u− uh, p− ph) satisfies
A(eu, ep;v, w) = 〈p̂− p, [[v]]〉Ei ∀ (v, w) ∈ Vh ×Wh.(22)

If we write (eu, ep) = (ψu−θu, ψp−θp), where (θu, θp) = (uh−πu, ph−πp) belongs to
the finite element space Vh×Wh, and (ψu, ψp) = (u−πu, p−πp) is the interpolation
error, we find, setting (v, w) = (θu, θp),∑

e

[
||K−1/2θu||2Ωe

+ ||c1/2θp||2Ωe

]
= A(θu, θp; θu, θp)

= A(ψu, ψp; θu, θp)− 〈p̂− p, [[θu]]〉Ei .
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From this equality, and using the assumed lower bounds on K−1 and c, we obtain
an estimate of

∑
e[||θu||2Ωe

+ ||θp||2Ωe
]. The theorem then follows from the triangle

inequality and an estimate on
∑
e[||ψu||2Ωe

+ ||ψp||2Ωe
], given below.

Thus∑
e

[||K−1/2θu||2Ωe
+ ||c1/2θp||2Ωe

] = A(ψu, ψp; θu, θp)− 〈p̂− p, [[θu]]〉Ei

= Θ1 +Θ2,(23)

where

Θ1 =
∑
e

[
(K−1ψu, θu)Ωe

− (ψp,∇ · θu)Ωe

]
+ 〈p− π̂p, [[θu]]〉Ei

,(24)

and

Θ2 =
∑
e

[(cψp, θp)Ωe + (∇ · ψu, θp)Ωe ]− 〈[[ψu]], θ̂p〉Ei .(25)

We take πp and πu to be the standard L2 projections of p and u into Wh and
Vh, respectively. It is well known that

||p− πp||Ωe
≤ C(σ1)||p||Hk+1(Ωe)h

k+1
e ,(26)

||u− πu||Ωe + he||u− πu||H1(Ωe) ≤ C(σ1)||u||Hk+2(Ωe)h
k+2
e .(27)

With these definitions of πp and πu, we immediately see by (11) that

Θ1 =
∑
e

(K−1ψu, θu)Ωe + 〈p− π̂p, [[θu]]〉Ei .(28)

To bound Θ1 and Θ2, we will utilize the following well-known results [4]. For a
function w in any of the finite dimensional spaces described above, we have that

||w||H1(Ωe) ≤ C(σ1)h
−1
e ||w||L2(Ωe).(29)

Also, for any sufficiently smooth function φ,

||φ||2L2(∂Ωe)
≤ C(σ1)||φ||L2(Ωe)||φ||H1(Ωe).(30)

Thus if φ is in one of the finite dimensional spaces above,

||φ||2L2(∂Ωe)
≤ C(σ1)h

−1
e ||φ||2L2(Ωe)

.(31)

We will also use the Cauchy–Schwarz inequality, and the standard inequality,

ab ≤ 1

2δ
a2 +

δ

2
b2(32)

for real numbers a, b, and δ > 0.
It is easily seen that Θ2 is bounded by∑

e

[||c1/2ψp||Ωe ||c1/2θp||Ωe + ||c−1/2∇ · ψu||Ωe ||c1/2θp||Ωe ]− 〈[[ψu]], θ̂p〉Ei .(33)
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For the last term, let γ be an interior face, and {Ωeγ} and hγ defined as above. Then

〈[[ψu]], θ̂p〉γ ≤ ||[[ψu]]||γ ||θ̂p||γ
≤ C(ε−1)h−1

γ ||[[ψu]]||2γ + εhγ ||θ̂p||2γ
≤ C(σ1, σ2, ε

−1)
∑
eγ

h−1
eγ ||ψu||Ωeγ

||ψu||H1(Ωeγ ) + C1ε
∑
eγ

||θp||2Ωeγ
,(34)

where we have used (30), (8), and (14). Summing over γ, choosing ε appropriately,
and applying (27), we find

〈[[ψu]], θ̂p〉Ei
≤ C(C1, σ1, σ2, c

−1
∗ )

∑
e

h2(k+1)
e ||u||2Hk+2(Ωe)

+
c∗
4

∑
e

||θp||2Ωe
.(35)

Thus, by (33), (35), (26), and (27),

Θ2 ≤ 1

4

∑
e

||c1/2θp||2Ωe
+
c∗
4

∑
e

||θp||2Ωe

+ C(c−1
∗ , c∗, C1, σ1, σ2)

∑
e

[
||u||2Hk+2(Ωe)

+ ||p||2Hk+1(Ωe)

]
h2k+2
e .(36)

Now we turn to Θ1. By (27), we easily see that

∑
e

(K−1ψu, θu)Ωe ≤ C(σ1,K
∗)
∑
e

||u||2Hk+2(Ωe)
h2k+4
e +

1

4

∑
e

||K−1/2θu||2Ωe
.(37)

Next, consider 〈p− π̂p, [[θu]]〉Ei . By (30), (16), and (8),

〈p− π̂p, [[θu]]〉γ ≤ C(ε−1)h−1
γ ||p− π̂p||2γ + εhγ ||[[θu]]||2γ

≤ C(ε−1)C2
2,γh

2k+2
γ + C(σ1, σ2)ε

∑
eγ

||θu||2Ωeγ
.(38)

Summing over γ and choosing ε appropriately, we find

〈p− π̂p, [[θu]]〉Ei ≤ C(K−1
∗ , σ1, σ2)C

2
2h

2k+2 +
K∗
4

∑
e

||θu||2Ωe
.(39)

Substituting the bounds (36), (37), and (39) into (23), we obtain

K∗||θu||2 + c∗||θp||2
≤ C(C1, c

−1
∗ , c∗,K∗,K−1

∗ , σ1, σ2)

×
{∑

e

[
||u||2Hk+2(Ωe)

+ ||p||2Hk+1(Ωe)

]
h2k+2
e + C2

2h
2k+2

}
,

from which the result follows.

4. Examples of ŵ. Suppose w ∈ Wh. In this section, we discuss the construc-
tion of ŵ in more detail and show that, in fact, (14) and (16) can be satisfied for
certain standard choices of meshes and spaces Wh. Recall the space Sk used to define
Wh contains Pk and possibly some functions in Pk+1.

On most standard elements Ωe, we have or can construct an orthogonal set of
polynomials B = {li(x)}{i∈I,|i|≤k+1} which serve as basis functions for Wh. In one
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dimension, for example, we can use standard Legendre polynomials. In higher dimen-
sions on rectangular or hexahedral elements, tensor products of Legendre polynomials
can be used to construct an orthogonal basis. On triangles, such a basis is given in
[16]. In general, Gram–Schmidt orthogonalization can be used to construct such a
basis on each element.

If φ is a smooth function, and πφ its L2 projection into Wh, then we have an
error expansion

φ(x)− πφ(x) =
∑

{i:|i|=k+1,i/∈I}
αili(x) +O(hk+2), x ∈ Ωe.(40)

Thus, at the common roots x̄ of the functions li(x), where |i| = k + 1 and i /∈ I (if
such roots exist), we have superconvergence of πφ:

φ(x̄)− πφ(x̄) = O(hk+2).(41)

If we define πk+1φ to be the L2 projection of φ into Pk+1, then

πk+1φ(x) = πφ(x) +
∑

{i:|i|=k+1,i/∈I}
αili(x),(42)

and the superconvergence at x̄ can be easily seen since

πφ(x̄) = πk+1φ(x̄).(43)

At such superconvergence points, one can interpolate πφ by a higher order polynomial,
say a complete polynomial of degree k + 1, and this interpolant is a more accurate
approximation to φ. Such an interpolation procedure will be used in defining the
numerical flux ŵ. Furthermore, by (43),

π̂φ = π̂k+1φ.(44)

We consider some examples.
k = 0. Suppose Wh is the space of piecewise constants; then as we stated in the

introduction, S0 = P0. It is well known that the L2 projection πφ of φ into piecewise
constants is superconvergent at the barycenter xe of each element Ωe. The barycentric
values can be interpolated to construct a linear approximation to φ which is second
order accurate. This linear approximation can then be used to define the numerical
flux ŵ on interior faces.

In one space dimension, given any interior face point γ, we can linearly interpo-
late the piecewise constant values of w on either side of γ and evaluate this linear
interpolant at γ to determine ŵ. In particular, if Ω1,γ and Ω2,γ are elements on either
side of γ with midpoints x1, x2, and diameters h1 and h2 satisfying (8), let αi be the
linear satisfying

αi(xj) = δij , i, j = 1, 2.

At γ, define

ŵ(γ) =
2∑
i=1

w(xi)αi(γ).
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Let Ωγ = Ω1,γ ∪ Ω2,γ , hγ = max(h1, h2).
By the trace inequality (30),

||ŵ||2γ =
∣∣∣∣∣

2∑
i=1

w(xi)αi(γ)

∣∣∣∣∣
2

≤ C
2∑
i=1

|w(xi)|2||αi||L2(Ωγ)||αi||H1(Ωγ).

It is easily seen that

||αi||L2(Ωγ) ≤ Ch1/2
γ ,

||αi||H1(Ωγ) ≤ C(σ2)h
−1/2
γ .

Thus,

||ŵ||2γ ≤ C(σ2)

2∑
i=1

|w(xi)|2 = C(σ2)h
−1
γ

2∑
i=1

||w||2Ωi,γ
,

and (14) is satisfied.

If φ is a smooth function, then φ̂ is the linear interpolant of φ given by

φ̂ =
2∑
i=1

φ(xi)αi.(45)

By interpolation theory [4],

|(φ− φ̂)(γ)|2 ≤ Ch2m+1
γ ||φ||2Hm+1(Ωγ),(46)

where m = 1 in this case, thus 2m+ 1 = 3. Recalling (44), consider

|(φ̂− π̂1φ)(γ)|.
The error in the L2 projection into the space Pk+1 satisfies

|φ(xi)− πk+1φ(xi)| ≤ Chk+2−n/2
i ||φ||Hk+2(Ωi,γ),(47)

where n = 1 (space dimension) and k = 0 in this case; hence k+2−n/2 = 3/2. Thus

|(φ̂− π̂1φ)(γ)|2 = |(φ(x1)− π1φ(x1))α1(γ) + (φ(x2)− π1φ(x2))α2(γ)|2
≤ Ch3

γ ||φ||2H2(Ωγ).

Writing

φ− π̂φ = φ− φ̂+ φ̂− π̂1φ,

(16) is satisfied, with C2
2,γ dependent on ||φ||2H2(Ωγ). Summing on γ we find

∑
γ

C2
2,γ = C

∑
γ

||φ||2H2(Ωγ)

≤ C||φ||2H2(Ω)

≡ C2.
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For a mesh consisting of rectangles and/or triangles in two space dimensions, the
construction of ŵ is similar to the piecewise linear reconstruction procedures com-
monly used in finite volume schemes for conservation laws; see, for example, [3, 10, 17].
In order to simplify the discussion, suppose Th is a regular, conforming triangulation.
If γ is an interior face, suppose Ω1,γ and Ω2,γ are the two elements sharing face γ;
see Figure 1. Given a piecewise constant w associated with the barycenter of each
triangle, to construct a linear interpolant from these values we obviously need three
triangles. If we look to the neighbors of the two elements to obtain this third value,
we have many possibilities from which to choose. One such procedure for constructing
ŵ then would be the following.

First, suppose Ω1,γ and Ω2,γ are interior elements, each with two other neighbor-
ing elements. Label these four elements Ω3,γ , . . . ,Ω6,γ . Consider the four triangles
obtained by connecting the midpoints of Ω1,γ , Ω2,γ and each of the four neighboring
elements. Let Tγ be the triangle with smallest chunkiness parameter hTγ/ρTγ ; see
Figure 1. Construct a linear interpolant Lγ(w) using the values of w at the three
vertices of Tγ . Take

ŵ|γ = Lγ(w)|γ .
The chunkiness parameters for Tγ should satisfy

hTγ

ρTγ

≤ C(σ1, σ2).(48)

If this is not the case, then one can widen the search for Tγ , for example, by examining
the triangle obtained by connecting the midpoint of Ω1,γ with those of the other two
neighbors of Ω2,γ .

If Ω1,γ (and/or Ω2,γ) is near the boundary, the number of possible triangles to
construct a Tγ satisfying (48) may be limited. In the most extreme case, if Ω1,γ is
a boundary element, it may have no neighbor other than Ω2,γ , and Ω2,γ could have
only one other neighbor. In this case, it is possible (but highly unlikely) that the
three midpoints of these triangles could be colinear, and it would be impossible to
construct a linear interpolant using these midpoints. In any case where (48) is not
satisfied to within some reasonable tolerance, we may have to widen our search to
include neighbors of neighboring elements. Essentially, any three triangles near the
interface γ could be used to construct Tγ .

Consider the construction of Lγ and assume (48) holds. For ease of notation,
denote by Ω1, Ω2, and Ω3 the triangles whose midpoints are used to construct Tγ .
Let (xi, yi) denote the barycenter of Ωi (which is also a vertex of Tγ), let hi denote
the element diameter, and let wi denote the value of ŵ at (xi, yi), i = 1, 2, 3. Define
linear basis functions αi by

αi(xj , yj) = δij , i, j,= 1, 2, 3.

Since we are working in two space dimensions, (48) implies

||αi||Ωj,γ ≤ C(σ1, σ2)hj,γ ,(49)

||αi||H1(Ωj,γ) ≤ C(σ1, σ2),(50)

where hj,γ is the diameter of Ωj,γ , j = 1, 2. To show that (14) is satisfied, by (30)
and the above bounds on αi,

||ŵ||2γ = ||Lγ(w)||2γ =
∥∥∥∥∥

3∑
i=1

wiαi

∥∥∥∥∥
2

γ
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γ

Ω

Ω

1,γ

2,γ

T γ

Fig. 1. An interior face γ with neighbors Ω1,γ and Ω2,γ .

≤ C
3∑
i=1

|wi|2||αi||Ωj,γ
||αi||H1(Ωj,γ)

≤ Chj,γ
3∑
i=1

|wi|2

≤ Ch−1
γ

3∑
i=1

||w||2Ωi
,(51)

where C depends on σ1 and σ2.
To derive (16), let Ωγ denote ∪3

i=1Ωi ∪ Ω1,γ ∪ Ω2,γ . Applying (30) and error
estimates similar to (46) and (47) with m = 1, k = 0, and n = 2, and using (49) and
(50), we find for smooth φ,

||φ− Lγ(π1φ)||2γ ≤ C||φ− Lγ(π1φ)||Ωj,γ
||φ− Lγ(π1φ)||H1(Ωj,γ)

≤ Ch3
γ ||φ||2H2(Ωγ),

where C depends on σ1 and σ2. Thus (16) holds, with

C2,γ = C(σ1, σ2)||φ||H2(Ωγ).

Summing on all faces γ we find∑
γ

C2
2,γ ≤ C(σ1, σ2)||φ||2H2(Ω) ≡ C2,

and C2 is independent of h.
We remark that the above procedure can be applied to nonconforming triangula-

tions as long as a triangle Tγ in a neighborhood of γ satisfying (48) can be found.
k = 1. Next, suppose Wh contains the space of piecewise linears. In this case,

we may need to add second degree terms into the definition of S1. The procedure is
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then to find the common roots of the quadratic orthogonal polynomials omitted from
the definition of S1, use these roots in interpolating w by a complete quadratic, and
evaluate this interpolant on interior faces to determine ŵ.

In one dimension, we can take S1 = P1. The L2 projection πφ of φ into the
space of piecewise linears is superconvergent at the roots of the quadratic Legendre
polynomial. On any interval [a, b], these roots are located at

a+ b

2
− b− a

2
√
3
,

a+ b

2
+
b− a
2
√
3
.(52)

At an interface γ between two elements Ω1,γ and Ω2,γ , one can interpolate w at
any collection of three such roots within these two elements by a quadratic (or if
desired, at all four roots by a cubic) and evaluate this interpolant at γ to determine
ŵ. For example, labeling the four roots xj , j = 1, . . . , 4, we construct four cubic basis
functions αi(x), satisfying αi(xj) = δij . Then

ŵ(γ) =
4∑
i=1

w(xi)αi(γ).

Following the above arguments with k = 1, m = 2, and n = 1, one can show this
interpolant satisfies (14) and (16), with C2 dependent on ||φ||H3(Ω).

On rectangles, using tensor product linears to define S1 and hence Wh, the L
2

projection is superconvergent at the tensor products of the roots in (52). Thus there
are four roots per element. Given rectangles Ω1,γ and Ω2,γ sharing a face γ, we can
interpolate w at any six of these roots in the two elements by a quadratic in x and
y (or at all eight roots by a tensor product quadratic without the x2y2 term). By
arguments similar to those above with k = 1, m = 2, and n = 2, this quadratic
satisfies (14) and (16).

On triangles, a set of orthogonal polynomials through second degree on the ref-
erence element Ω̂ bounded by ξ = 0, η = 0, ξ + η = 1 is given by

l0,0(ξ, η) = 1,

l1,0(ξ, η) = 1− 3ξ,

l0,1(ξ, η) = 1− ξ − 2η,

l0,2(ξ, η) = (5ξ − 4)ξ + (−15η + 12)η − 1,

l1,1(ξ, η) = (3ξ + 8η − 4)ξ + (3η − 4)η + 1,

l2,0(ξ, η) = (10ξ − 8)ξ + 1.

We choose S1(Ω̂) to be the span of the linear terms plus one of the quadratic terms,
in this case l0,2. A basis for S1(Ωe) and hence Wh is obtained by mapping these

functions through an affine map from Ω̂ to Ωe. Thus the L
2 projection πφ into Wh is

superconvergent to φ at the common roots of l2,0 and l1,1. There are three such roots
in the master element, located at

(.155051, .706707), (.155051, .213157), (.644949, .191431).

For neighboring triangles Ω1,γ and Ω2,γ sharing face γ, we interpolate w by a complete
quadratic at the six roots contained in these two elements and evaluate the quadratic
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Table 1
Case 1-1D: P1 − S0 LDG method, uniform mesh.

N ||p− ph|| rate ||u − uh|| rate
16 .0916 – .3701 –
32 .0459 1.0 .1879 1.0
64 .0230 1.0 .0943 1.0
128 .0115 1.0 .0472 1.0

Table 2
Case 1-1D: P1 − S0 LDG method, nonuniform mesh.

N ||p− ph|| rate ||u − uh|| rate
16 .0696 – .4266 –
32 .0347 1.0 .2169 1.0
64 .0174 1.0 .1088 1.0
128 .0087 1.0 .0545 1.0

at γ to determine ŵ. That is, labeling the six roots (xj , yj), j = 1, . . . , 6, we construct
six quadratic basis functions αi satisfying αi(xj , yj) = δij ; then

ŵ|γ =
6∑
i=1

w(xi, yi)αi|γ .

5. Numerical results. In this section, we give one and two dimensional ex-
amples which confirm our theoretical results, and in one dimension, we compare the
results of our method to a more standard implementation of the LDG method with
equal order approximating spaces for p and u (the Pk − Pk method).

5.1. One dimensional results. First, we consider the method (12)–(13) in one
space dimension with k = 0. Recall that in this case, S0 = P0. The numerical flux
ŵ is constructed using the linear interpolation procedure outlined in section 4. We
consider the problem

cp− pxx = (c+ π2) sin(πx), 0 < x < 1,(53)

p(0) = p(1) = 0,(54)

which has the solution p(x) = sin(πx). We will take c = 1. Suppose the domain Ω =
[0, 1] is partitioned into subintervals Ωi = [xi−1/2, xi+1/2] of length hi, i = 1, . . . , N ,
with midpoint xi.

First, consider a sequence of uniform meshes hi = 1/N . The L2 errors for p
and u for the P1 − S0 method are given in Table 1. First order convergence for
both variables is seen, as expected from the theory. Next, we consider a sequence of
nonuniform meshes, given by

hi =

{
1

2N , i odd,
3

2N , i even.
(55)

The L2 errors for p and u are given in Table 2. Again, first order convergence for
both variables is observed, with errors comparable to the uniform mesh case, though
somewhat smaller for p and somewhat larger for u.

Next, we consider (12)–(13) with k = 1. For comparison purposes, we also con-
sider the standard P1−P1 LDG method. To avoid confusion, we denote the numerical
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Table 3
Case 1-1D: P2 − S1 LDG method, uniform mesh.

N ||p− ph|| rate ||u − uh|| rate
16 .0080 – .0117 –
32 .0020 2.0 .0029 2.0
64 .0005 2.0 .0007 2.0
128 .000124 2.0 .00019 2.0

Table 4
Case 1-1D: P1 − P1 LDG method, C11 = 0, uniform mesh, w̃ = {w}.

N ||p− ph|| rate ||u − uh|| rate
16 .0061 – .1349 –
32 .0017 1.84 .0627 1.1
64 .00053 1.64 .0335 .90
128 .00021 1.33 .0167 1.0

Table 5
Case 1-1D: P1 − P1 LDG method, C11 = 1, uniform mesh, w̃ = {w}.

N ||p− ph|| rate ||u − uh|| rate
16 .0059 – .1297 –
32 .00147 2.0 .063 1.0
64 .00037 2.0 .032 1.0
128 .00009 2.0 .016 1.0

flux for this method by w̃ instead of ŵ. We will consider two choices for the numerical
flux: w̃ = {w} = (w− + w+)/2 and w̃ = w−. In [8], it was shown that in one space
dimension, with the latter choice of w̃, the Pk−Pk method gives optimal convergence
for both p and u. We also add a stabilization term involving [[ph]] to (12). Thus, we
define the standard LDG method by

AsLDG(uh, ph;wh) ≡
∑
e

[(cph, wh)Ωe + (∇ · uh, wh)Ωe ]− 〈[[uh]], w̃h〉Ei

+ 〈C11[[ph]], [[wh]]〉Ei

=
∑
e

(f, wh)Ωe
,(56)

BsLDG(uh, ph;vh) ≡
∑
e

[(K−1uh,vh)Ωe − (ph,∇ · vh)Ωe ] + 〈p̃h, [[vh]]〉Ei

= −〈gD,vh · n〉∂Ω,(57)

where C11 ≥ 0.
For the P2 −S1 method, following section 4, the numerical flux ŵ is constructed

by interpolating w at the roots of the second degree Legendre polynomial on each
interval Ωi, given by (52). Specifically, in neighboring intervals Ω1,γ , Ω2,γ between
interface point γ, we compute the cubic Lagrange polynomial which interpolates w at
each of the two roots in each element and evaluate this interpolant at the interface
point γ to obtain ŵ.

First, consider (53)–(54) with the domain discretized with a sequence of uniform
meshes. The L2 errors for p and u for the P2 − S1 method are given in Table 3.
Second order accuracy is observed for both ph and uh, as expected from the theory.

We also computed the P1 − P1 LDG solution given by (56)–(57), with C11 = 0
(Table 4) and C11 = 1 (Table 5), and w̃ = {w}. These tables indicate that to obtain
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Table 6
Case 1-1D: P1 − P1 LDG method, C11 = 0, uniform mesh, w̃ = w−.

N ||p− ph|| rate ||u − uh|| rate
16 .246 – .0074 –
32 .087 1.5 .0019 1.96
64 .030 1.54 .00048 1.98
128 .010 1.58 .00011 2.12

Table 7
Case 1-1D: P1 − P1 LDG method, C11 = 1, uniform mesh, w̃ = w−.

N ||p− ph|| rate ||u − uh|| rate
16 .0048 – .0074 –
32 .0011 2.12 .0018 2.0
64 .00026 2.08 .00047 1.98
128 .00007 1.90 .00011 2.12

Table 8
Case 2-1D: P2 − S1 LDG method, nonuniform mesh.

N ||p− ph|| rate ||u − uh|| rate
16 .014 – .0228 –
32 .0035 2.0 .0057 2.0
64 .0009 2.0 .0014 2.0
128 .00022 2.0 .00036 2.0

Table 9
Case 2-1D: P1 − P1 LDG method, C11 = 1, nonuniform mesh, w̃ = w−.

N ||p− ph|| rate ||u − uh|| rate
16 .0105 – .0140 –
32 .0023 2.19 .0036 1.96
64 .00053 2.11 .0009 2.0
128 .00013 2.03 .00023 1.97

full second order accuracy for p in this version of the LDG method, C11 > 0 is
necessary. First order accuracy in uh was observed; furthermore, note that the errors
in uh are an order of magnitude larger when compared to the P2 − S1 solution. We
repeated this experiment with w̃ = w−. Again, the accuracy of the pressure solution
depends on having a positive penalty parameter C11. In this case, as seen in Tables 6
and 7, full second order accuracy for u is observed for both choices of C11, with errors
actually smaller than the P2 − S1 method. This optimal convergence for u agrees
with the one dimensional theory in [8].

Next, we consider the nonuniform mesh given by (55). The errors for ph and uh
for the P2 − S1 LDG method are given in Table 8. We compare these results to the
P1 − P1 LDG method results with w̃ = w− and C11 = 1 given in Table 9.

5.2. Two dimensional results. In this section, we present two dimensional
results for the P1 − S0 and P2 − S1 methods on triangular grids. Convergence tests
for the Pk − Pk LDG method (k ≥ 1) in two dimensions can be found in [7], which
demonstrate order k + 1 convergence for p and k for u in L2. We consider

cp−∆p = f, Ω,(58)

p = g, ∂Ω.(59)
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1

2

1 20

Fig. 2. Domain Ω for two dimensional test problem (58), discretized by six triangles.

Table 10
Case 3-2D: P1 − S0 LDG method for two dimensional case with c = 1, p = x3 + y3.

mesh ||p− ph|| rate ||u − uh|| rate
1 3.3309 – 4.6800 –
2 1.7554 .92 3.5178 .41
3 .8691 1.0 2.1460 .71
4 .4299 1.0 1.0352 1.05
5 .2146 1.0 .5863 .82
6 .1071 1.0 .2674 1.13

Table 11
Case 3-2D: P2 − S1 LDG method for two dimensional case with c = 1, p = x3 + y3.

mesh ||p− ph|| rate ||u − uh|| rate
1 .5714 – .5006 –
2 .1343 2.1 .1691 1.56
3 .0398 1.75 .0463 1.86
4 .0081 2.3 .0121 1.94

The domain Ω is given in Figure 2, with a coarse mesh of six elements discretizing Ω.
All subsequent meshes are obtained from uniform refinements of this initial mesh.

For this test case, we have chosen c = 1 and f and g so that p = x3 + y3. The
construction of the numerical flux ŵ follows the procedures described in section 4.
The errors in L2 for p and u for the two methods are given in Tables 10 (k = 0) and
11 (k = 1). Here mesh 1 refers to the initial coarse mesh, meshes 2–6 are uniform
refinements of this mesh. As seen in the tables, first order convergence is observed
for p when k = 0 and second order convergence when k = 1. The errors in u are also
approaching first (k = 0) and second order (k = 1) as the mesh is refined.

6. The case c = 0 and k = 0. We again consider the important case whereWh

is the space of piecewise constant functions and Vh is in the space of piecewise linears.
We will consider the purely elliptic case with c = 0 and assume that Ω is discretized
by a triangulation Th as defined above, with the exception that Th is conforming.
Let (Wh,RT ,Vh,RT ) denote the lowest order Raviart–Thomas mixed finite element
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space on Th. The lowest order space consists of piecewise constant approximations
for p (Wh,RT = Wh) and piecewise linear approximations for u. The properties of
(Wh,Vh,RT ) we require are

Vh,RT ⊂ H(div; Ω),(60)

Vh,RT ⊂ Vh,(61)

and

∇ ·Vh,RT =Wh.(62)

(60) implies that if v ∈ Vh,RT , then the normal component of v is continuous across
interior faces. See [20, 19] for descriptions of such spaces on standard types of elements
(rectangular parallelepipeds, triangles, tetrahedra, and prisms).

The method is given by (12)–(13) with c = 0. The numerical flux p̂h is assumed
to still satisfy (16). Assuming zero data, existence and uniqueness of uh is proved
by the same arguments which lead to (21). Uniqueness of ph is proved by a duality
argument. Let σh ∈ Vh,RT be such that ∇ · σh = ph. This is possible by (62). Then
by (13),

||ph||2 =
∑
e

(ph,∇ · σh)Ωe

=
∑
e

(K−1uh, σh)Ωe + 〈p̂h, [[σh]]〉Ei

= 0,

since uh = 0 and [[σh]] = 0 (by (60)) on interior faces. Thus existence and uniqueness
of ph are established.

The error estimates follow slightly different arguments. In particular, instead of
comparing uh to the L2 projection of u, we compare it to the “divergence projection”
πu ∈ Vh,RT satisfying∑

e

(∇ · (u− πu), w)Ωe = 0, w ∈Wh.(63)

This projection is a standard projection used in mixed finite element analysis. In [20],
it is shown that

||u− πu|| ≤ C(σ1, σ2)||u||H1(Ω)h.(64)

Furthermore [[πu]] = 0 across interior faces. Again using the L2 projection πp of p,
and defining θu, θp, ψu, and ψp as in section 3, we find that

||K−1/2θu||2 = A(ψu, ψp; θu, θp)− 〈p̂− p, [[θu]]〉Ei

= Θ1 +Θ2,(65)

where

Θ1 =
∑
e

(K−1ψu, θu)Ωe + 〈p− π̂p, [[θu]]〉Ei ,(66)

and

Θ2 = 0.(67)
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Following the same arguments given above to bound Θ1, we find that

||K−1/2(u− uh)||Ω ≤ C(σ1, σ2,K
−1
∗ ,K∗)

[||u||H1(Ω) + C2

]
h.(68)

To estimate the error in ph, we again use a duality argument and define φ and σ
to satisfy

∇ · σ ≡ −∇ · (∇φ) = ep, Ω,(69)

φ = 0, ∂Ω.(70)

By elliptic regularity [18], we have that

||σ||H1(Ω) ≤ C||ep||Ω.(71)

Therefore, letting σh be the divergence projection of σ,

||ep||2Ω =
∑
e

(ep,∇ · σ)Ωe

=
∑
e

[(ep,∇ · (σ − σh))Ωe
+ (ep,∇ · σh)Ωe

]

=
∑
e

[(ep,∇ · (σ − σh))Ωe + (K−1eu, σh)Ωe ],(72)

where in the last step we have used (13) and the fact that [[σh]] = 0. By the definition
of σh, ∑

e

(ep,∇ · (σ − σh))Ωe
=
∑
e

(p,∇ · (σ − σh))Ωe

=
∑
e

(p− πp,∇ · (σ − σh))Ωe

≤
∑
e

||p− πp||Ωe ||∇ · (σ − σh)||Ωe

≤ C(σ1)h||p||H1(Ω)||σ||H1(Ω)

≤ C(σ1)h||p||H1(Ω)||ep||Ω.

Furthermore, by (68) and (71),∑
e

(K−1eu, σh)Ωe ≤ C(K∗)||eu||Ω ||σh||Ω

≤ Ch||ep||Ω.

Substituting these bounds into (72), we obtain the following result.
Theorem 6.1. Let (u, p) be the solution of problem (1), (2), (3) with c = 0.

Assume K satisfies (4). Let (uh, ph) be the approximate solution given by the P1−S0

LDG method (12)–(13). Assume a conforming triangulation Th, with the lowest order
Raviart–Thomas mixed finite element space Wh ×Vh,RT satisfying (60)–(62) defined
on Th. Assume the numerical flux p̂ satisfies (16) with k = 0. Then for (u, p)
sufficiently smooth,

||u− uh||Ω + ||p− ph||Ω ≤ C4h,
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Table 12
Case 2-1D: P1 − S0 LDG method, nonuniform mesh, c = 0.

N ||p− ph|| rate ||u − uh|| rate
16 .0917 – .3695 –
32 .0459 1.0 .1878 1.0
64 .0230 1.0 .0943 1.0
128 .0115 1.0 .0472 1.0

Table 13
Case 3-2D: P1 − S0 LDG method for two dimensional case with c = 0, p = x3 + y3.

mesh ||p− ph|| rate ||u − uh|| rate
1 3.3403 – 4.6781 –
2 1.7665 1.0 3.5167 .41
3 .8717 1.0 2.1455 .71
4 .4302 1.0 1.0351 1.05
5 .2146 1.0 .5863 .82
6 .1072 1.0 .2674 1.13

where C4 is a constant independent of h but depends on C2, K
−1
∗ , K∗, σ1, σ2,

||u||H1(Ω), and ||p||H1(Ω).

Numerical validation of this result in one and two dimensions can be seen as
follows. First, consider (53)–(54), now with c = 0. We consider the nonuniform mesh
given by (55). In Table 12, we measure the errors ||p− ph||Ω and ||u− uh||Ω for the
P1 − S0 approximation. In this case, we obtain the expected first order convergence
rates for p and uh. Second, we consider (58) with c = 0 and p = x3 + y3. The L2

errors for p and u are given in Table 13; again, first order convergence is observed.

Theorem 6.1 can be extended to the case k > 0 if spacesWh and Vh,RT satisfying
(16) and (60)–(62) can be found. Since Wh must be a rich enough space so that (16)
is satisfied, it may not in general be possible to satisfy both this property and (62).

7. Concluding remarks. In this paper, we have formulated and analyzed a
variant of the LDG method which uses higher degree polynomials for approximating
the flux u = −K∇p over those used for approximating p. The advantage of this
approach over the standard LDG method, which uses equal order spaces for u and p
is that it gives a more accurate approximation of the flux. Furthermore, this approach
allows for the possibility of piecewise constant approximations to p, which is useful
for a number of fluid applications.
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1. Introduction. Discontinuous Galerkin (DG) methods for incompressible flow
problems allow one to use discrete velocity spaces consisting of piecewise polynomial
functions with no interelement continuity. Well-posedness of the discrete formulations
is then achieved by numerical fluxes, i.e., by introducing suitable bilinear forms defined
on the interfaces between the elements of the mesh. This choice presents considerable
advantages for certain types of problems, especially those modeling phenomena where
transport is dominant; see the state-of-the-art surveys in [18], the monograph [15],
the recent review [20], and the references therein. In addition, DG approximations
allow for nonconforming meshes.

Even if transport may be the dominant effect of a problem, diffusive terms still
need to be accounted for and correctly discretized in a DG framework. For the Oseen
or the incompressible Navier–Stokes equations, for instance, if advective terms are
properly treated by, e.g., suitable upwinding techniques, stability and convergence
only depend on the diffusive part of the operator and can then be studied for the
simpler Stokes problem; see, e.g., [39, 25, 10, 33, 9]. In particular, suitable velocity-
pressure space pairs are required to ensure stability and convergence. This separation
of advective and diffusive effects was employed in [5] for the first definition of DG
methods for convection-diffusion problems, in [19, 16, 7] for the so-called local discon-
tinuous Galerkin and Baumann–Oden methods, respectively, and also in [27] for the
hp-DG approximation of scalar advection-diffusion problems.

The recent works in [32] and [2] have unified the formulation and analysis of DG
approximations for purely diffusive problems, where virtually all the available DG
methods can be analyzed in a unified framework. In particular, several assumptions
on the discrete spaces and bilinear forms have been given and analyzed that can be
used to ensure a priori error estimates for the methods.

While extensive work has been done for diffusion or advection-diffusion problems,
there are considerably fewer works for DG discretizations of saddle-point problems
describing, e.g., nearly incompressible solids or incompressible fluid flows. We men-
tion [4, 28], where an interior penalty approximation with discontinuous, piecewise
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divergence-free velocities and continuous pressures is employed for the Stokes and
incompressible Navier–Stokes equations, respectively. In [17], a local discontinuous
Galerkin approximation for the Stokes problem is proposed. There, the introduc-
tion of certain pressure stabilization terms allows one to choose velocity and pressure
spaces of the same polynomial order k. Optimal error estimates for h-approximations
are proved. In [26], an h-approximation for incompressible and nearly incompress-
ible elasticity based on an interior penalty DG method is introduced and studied.
Triangular and tetrahedral meshes are employed, together with polynomial spaces of
total degree k and k − 1 for the velocity and pressure, respectively. Optimal error
estimates in h are derived, which remain valid in the incompressible limit. A similar
approach was considered in [40] for hp-approximations of the Stokes problem on ten-
sor product meshes in two and three dimensions. Stability estimates for the discrete
divergence bilinear form that are explicit in h and k are obtained. Numerical results
point out that these estimates are not sharp in the order k, at least for conforming
two-dimensional meshes. In the present work we indeed prove sharper estimates for
the same DG approximation.

The present work has two purposes. In the first part, we develop an abstract
framework for mixed DG approximations of the Stokes problem. In particular, we give
a set of assumptions on the approximation spaces and on the velocity and divergence
bilinear forms which allows us to obtain a priori error estimates. All available mixed
DG methods for the Stokes problem can be analyzed in the presented framework by
introducing lifting operators similar to the ones used in [2] for the Laplace equation.
However, unlike in the analysis of [2], our error estimates are derived by using a variant
of Strang’s lemma, combined with the techniques developed in [40] that give abstract
estimates for the errors in the velocity and the pressure. With respect to the use of
Strang’s lemma, our approach is closely related to the setting proposed in [30, 31] for
the analysis of local discontinuous Galerkin methods for purely elliptic problems.

Our second result is a new proof of the inf-sup condition of the discrete DG
divergence bilinear form for tensor product meshes and Qk − Qk−1 elements. In
particular, we prove a bound sharper than that given in [40]. Our analysis is valid
for shape-regular two- and three-dimensional tensor product meshes, possibly with
hanging nodes. Even though our estimate does not appear to be sharp, at least in
two dimensions (see the numerical results in [40]), we are able to ensure the same
convergence rate for the velocity and the pressure as that of conforming Qk − Qk−2

elements in three dimensions, but with a gap in the polynomial degree of the velocity-
pressure pair of just one.

Our framework and analysis can be adapted to the case of nearly incompress-
ible elasticity in a straightforward way. We note that equal-order conforming dis-
cretizations are possible both in nearly incompressible elasticity and incompressible
flows, but that the bilinear forms need to be suitably modified. These stabilization
techniques typically rely on local terms that are added to the bilinear forms and
are constructed with the residual of the differential equations on each element; see
[22, 21, 24]. The calculation of these terms is not often a simple matter for higher-
order hp-approximations. On the other hand, DG approximations allow us to narrow
or eliminate the polynomial degree gap between the velocity and pressure spaces by
employing a discontinuous velocity space and suitable bilinear forms on the interfaces.
This results in an increase of the velocity degrees of freedom that, in the case of p- and
hp-approximations, is not, however, of the same order of magnitude as the number of
degrees of freedom of the corresponding conforming discretization, as is the case for
lower-order approximations.
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The rest of this paper is organized as follows: We start by reviewing the Stokes
problem in section 2 and then present our abstract framework in section 3. Suit-
able assumptions on the bilinear forms allow us to derive a priori error estimates in
section 4. In section 5 we discuss some particular choices for the bilinear forms and
the approximation spaces. Section 6 contains the proofs of the inf-sup condition of
the discrete divergence bilinear form. In sections 7 and 8 we establish the remain-
ing assumptions for our DG approximations. Finally, we derive hp-error estimates in
section 9.

2. The Stokes problem. Let Ω be a bounded polygonal or polyhedral domain
in R

d, d = 2, 3, respectively, with n denoting the outward normal unit vector to its
boundary ∂Ω. Given a source term f ∈ L2(Ω)d and a Dirichlet datum g ∈ H1/2(∂Ω)d

satisfying the usual compatibility condition
∫
∂Ω

g · n ds = 0, the Stokes problem in
incompressible fluid flow is to find a velocity field u and a pressure p such that

−ν∆u +∇p = f in Ω,

∇ · u = 0 in Ω,(2.1)

u = g on ∂Ω.

If we define

V := H1(Ω)d, Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
,

and

A(u,v) =

∫
Ω

ν∇u : ∇v dx, B(u, p) = −
∫

Ω

p∇ · u dx,

then the corresponding variational problem consists of finding (u, p) ∈ V × Q, with
u = g on ∂Ω, such that{

A(u,v) + B(v, p) =
∫
Ω
f · v dx,

B(u, q) = 0
(2.2)

for all v ∈ H1
0 (Ω)d and q ∈ Q.

The well-posedness of (2.2) is ensured by the continuity of A(·, ·) and B(·, ·), the
coercivity of A(·, ·), and the following inf-sup condition

inf
0 �=q∈L2

0(Ω)
sup

0 �=v∈H1
0 (Ω)d

− ∫
Ω

q∇ · v dx

|v|1‖q‖0 ≥ γ > 0,(2.3)

with an inf-sup constant γ only depending on Ω; see, e.g., [10, 25]. Here, we denote
by ‖ · ‖s,D and | · |s,D the norm and seminorm of Hs(D) and Hs(D)d, s ≥ 0. In case
D = Ω, we drop the subscript.

3. Mixed discretizations with nonconforming velocity spaces. Let Vh

be a nonconforming finite element space approximating the velocities. We introduce
the space

V(h) := V + Vh

and endow it with a suitable norm ‖ · ‖h. Furthermore, let Qh ⊂ Q be a conforming
finite element space for the pressure, equipped with the L2-norm ‖ · ‖0.
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Given linear forms Ah : V(h) ×V(h) → R, Bh : V(h) × Q → R and continuous
linear functionals Fh : Vh → R, Gh : Qh → R, chosen to discretize the Laplacian
and the divergence constraint, we consider mixed methods of the following form: find
(uh, ph) ∈ Vh ×Qh such that{

Ah(uh,v) + Bh(v, ph) = Fh(v),

Bh(uh, q) = Gh(q)
(3.1)

for all (v, q) ∈ Vh ×Qh.
Let us make precise our assumptions on the forms Ah and Bh. First, they are

assumed to satisfy the following continuity properties:

|Ah(v,w)| ≤ α1‖v‖h‖w‖h, v,w ∈ V(h),(3.2)

|Bh(v, q)| ≤ α2‖v‖h‖q‖0, (v, q) ∈ V(h)×Q,(3.3)

with constants α1 > 0 and α2 > 0. Further, let us define Z(Gh) ⊂ Vh by

Z(Gh) = {v ∈ Vh : Bh(v, q) = Gh(q) ∀q ∈ Qh }.(3.4)

We require the form Ah to be coercive on the kernel of Bh, i.e.,

Ah(v,v) ≥ β‖v‖2h, v ∈ Z(0),(3.5)

for a coercivity constant β > 0. The form Bh is assumed to satisfy the discrete inf-sup
condition

inf
0 �=q∈Qh

sup
0 �=v∈Vh

Bh(v, q)

‖v‖h‖q‖0 ≥ γh,(3.6)

with a stability constant γh > 0. Finally, we assume the exact solution u ∈ V to
fulfill the consistency condition

Bh(u, q) = Gh(q) ∀q ∈ Qh.(3.7)

We do not impose any consistency requirements on the form Ah; instead we will work
with the residual

Rh(u, p;v) := Ah(u,v) + Bh(v, p)− Fh(v), v ∈ Vh,(3.8)

where (u, p) ∈ V × Q again is the exact solution. Our abstract error estimates will
then be expressed in terms of Rh(u, p) given by

Rh(u, p) := sup
0 �=v∈Vh

|Rh(u, p;v)|
‖v‖h .(3.9)

For all the DG methods we introduce in section 5, the quantity Rh(u, p) is optimally
convergent.

The mixed problem (3.1) has a unique solution (uh, ph) ∈ Vh×Qh and Z(Gh) is
nonempty.

Remark 3.1. If Vh ⊂ V is chosen to be a conforming finite element space,
the setting of this section coincides with the standard mixed finite element setting;
see [10].

Remark 3.2. For the DG forms in section 5 the constants α1 and β depend on
the viscosity ν whereas α2 and γh are independent of ν. More precisely, we have that
α1 = νᾱ1 and β = νβ̄ with ᾱ1 and β̄ independent of ν.
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4. Abstract error estimates. Abstract error bounds for the mixed method in
(3.1) can be obtained by proceeding as in [40, sect. 8]. We give the details of the
proofs for the sake of completeness.

4.1. Error in the velocity. First, we prove an error estimate for the velocities
following [40, Lemma 8.1].

Proposition 4.1. Let (u, p) ∈ V×Q be the exact solution of the Stokes problem
and (uh, ph) ∈ Vh ×Qh the mixed finite element approximation. Under the assump-
tions of section 3, we have

‖u− uh‖h ≤
(

1 +
α1

β

)(
1 +

α2

γh

)
inf

v∈Vh

‖u− v‖h +
α2

β
inf
q∈Qh

‖p− q‖0 + β−1Rh(u, p).

Proof. First, we fix w ∈ Z(Gh) and q ∈ Qh. Since w − uh ∈ Z(0), (3.5) and the
definition of the residual yield

β‖w − uh‖2h ≤ Ah(w − uh,w − uh)

= Ah(w − u,w − uh)−Bh(w − uh, p− ph) + Rh(u, p;w − uh).

Since w − uh ∈ Z(0), we can replace ph by q in the form Bh. Using the continuity
properties in (3.2), (3.3), and the triangle inequality, we obtain

‖u− uh‖h ≤
(

1 +
α1

β

)
‖u−w‖h +

α2

β
‖p− q‖0 + β−1Rh(u, p)(4.1)

for any w ∈ Z(Gh) and q ∈ Qh.
Second, we fix v ∈ Vh and consider the problem of finding z(v) ∈ Vh such that

Bh(z(v), q) = Bh(u− v, q) ∀q ∈ Qh.

Thanks to the discrete inf-sup condition in (3.6), the continuity of Bh in (3.3) and
[10, Proposition 1.2, p. 39], a solution z(v) is defined. Furthermore,

γh‖z(v)‖h ≤ sup
0 �=q∈Qh

Bh(z(v), q)

‖q‖0 = sup
0 �=q∈Qh

Bh(u− v, q)

‖q‖0 ≤ α2‖u− v‖h,(4.2)

where we have used the continuity of Bh. By construction and assumption (3.7), we
have z(v) + v ∈ Z(Gh). Inserting z(v) + v in (4.1) yields

‖u− uh‖h ≤
(

1 +
α1

β

)
‖u− v‖h +

(
1 +

α1

β

)
‖z(v)‖h +

α2

β
‖p− q‖0 + β−1Rh(u, p).

This, together with (4.2), proves the assertion.
Remark 4.2. Assuming that α1, α2, and β are independent of the discretization

parameter h, the bound in Proposition 4.1 can be expressed in a simpler fashion as

‖u− uh‖h ≤ C
[
γ−1
h inf

v∈Vh

‖u− v‖h + inf
q∈Qh

‖p− q‖0 +Rh(u, p)
]
.

4.2. Error in the pressure. Next, we prove an error estimate for the pressure
following the arguments in [40, Lemma 8.2].

Proposition 4.3. Let (u, p) ∈ V×Q be the exact solution of the Stokes problem
and (uh, ph) ∈ Vh ×Qh the mixed finite element approximation. Under the assump-
tions of section 3, we have

‖p− ph‖0 ≤
(

1 +
α2

γh

)
inf
q∈Qh

‖p− q‖0 +
α1

γh
‖u− uh‖h + γ−1

h Rh(u, p).
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Proof. Fix q ∈ Qh. From the inf-sup condition in (3.6) we have

γh‖q − ph‖0 ≤ sup
0 �=v∈Vh

Bh(v, q − ph)

‖v‖h .

Since Bh(v, q − ph) = Bh(v, q − p)−Ah(u− uh,v) + Rh(u, p;v) for any v ∈ Vh, we
obtain from the continuity properties in (3.2) and (3.3) and the definition of Rh in
(3.9)

γh‖q − ph‖0 ≤ α2‖p− q‖0 + α1‖u− uh‖h +Rh(u, p).

The assertion then follows from the triangle inequality.
Remark 4.4. Taking into account the estimate for ‖u−uh‖h in Proposition 4.1

and assuming again that α1, α2, and β are independent of the discretization parame-
ter h, the bound in Proposition 4.3 reduces to

‖p− ph‖0 ≤ C
[
γ−1
h inf

q∈Qh

‖p− q‖0 + γ−2
h inf

v∈Vh

‖u− v‖h + γ−1
h Rh(u, p)

]
.

5. Discontinuous Galerkin discretizations. In this section, we give several
examples of mixed discontinuous Galerkin methods that can be cast into the setting
of section 3 by using lifting operators similar to the ones introduced in [2] for the
Laplacian.

5.1. Triangulations and finite element spaces. Let Th be a shape-regular
affine quadrilateral or hexahedral mesh on Ω. We denote by hK the diameter of the
element K ∈ Th. Further, we assign to each element K ∈ Th an approximation order
kK ≥ 1. The local quantities hK and kK are stored in the vectors h = {hK}K∈Th

and k = {kK}K∈Th
, respectively. We set h = maxK∈Th

hK and |k| = maxK∈Th
kK .

Finally, nK denotes the outward normal unit vector to the boundary ∂K.
An interior face of Th is the (nonempty) interior of ∂K+∩∂K−, where K+ and K−

are two adjacent elements of Th. Similarly, a boundary face of Th is the (nonempty)
interior of ∂K ∩ ∂Ω which consists of entire faces of ∂K. We denote by EI the union
of all interior faces of Th, by ED the union of all boundary faces, and set E = EI ∪ED.
Here and in the following, we refer generically to a “face” even in the two-dimensional
case.

We allow for irregular meshes, i.e., meshes with hanging nodes (see [37, sect.
4.4.1]), in general, but suppose that the intersection between neighboring elements
is either a common vertex, or a common edge, or a common face, or an entire face
of one of the two elements. We also assume the local mesh-sizes and approximation
degrees to be of bounded variation, that is, there is a constant κ > 0 such that

κhK ≤ hK′ ≤ κ−1hK , κkK ≤ kK′ ≤ κ−1kK ,(5.1)

whenever K and K ′ share a common face.
We wish to approximate the velocities and pressures in the discontinuous finite

element spaces Vh and Qh given by

Vh = {v ∈ L2(Ω)d : v|K ∈ QkK (K)d, K ∈ Th },
Qh = { q ∈ L2

0(Ω) : q|K ∈ QkK−1(K), K ∈ Th },
(5.2)

respectively, where Qk(K) is the space of polynomials of maximum degree k in each
variable on K.
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For the derivation and analysis of the methods, we will make use of the auxiliary
space Σh defined by

Σh := { τ ∈ L2(Ω)d×d : τ ∈ QkK (K)d×d, K ∈ Th }.

Note that ∇hVh ⊂ Σh, where ∇h is the discrete gradient, taken elementwise, and
given by [∇v]ij = ∂jvi = ∂vi

∂xj
on K ∈ Th.

5.2. Trace operators. In this section, we define the trace operators needed in
our discontinuous Galerkin discretizations. To this end, let e ⊂ EI be an interior face
shared by K+ and K−. Let (v, q, τ) be a function smooth inside each element K±

and let us denote by (v±, q±, τ±) the traces of (v, q, τ) on e from the interior of K±.
Then, we define the mean values {{·}} and normal jumps [[·]] at x ∈ e as

{{v}} := (v+ + v−)/2, [[v]] := v+ · nK+ + v− · nK− ,

{{q}} := (q+ + q−)/2, [[[[[[q]]]]]] := q+ nK+ + q− nK− ,

{{τ}} := (τ+ + τ−)/2, [[[[[[τ]]]]]] := τ+ nK+ + τ− nK− .

Note that the jumps [[[[[[q]]]]]] and [[[[[[τ]]]]]] are both vectors whereas the jump [[v]] is a scalar.
We also need to define a jump of the velocity v which is a matrix, namely,

[[v]] := v+ ⊗ nK+ + v− ⊗ nK− ,

where, for two vectors a and b, we set [a⊗ b]ij = aibj .
On a boundary face e ⊂ ED given by e = ∂K ∩ ∂Ω, we accordingly set

{{v}} := v, {{q}} := q, {{τ}} := τ ,

as well as

[[v]] := v · n, [[v]] := v ⊗ n, [[[[[[q]]]]]] := qn, [[[[[[τ]]]]]] := τ n.

We remark that, for the exact solution (u, p) ∈ V × Q, there holds [[u]] = 0 and

[[[[[[ν∇u−pI]]]]]] = 0 on EI . The last property follows from the fact that ν∇u−pI belongs
to H(div; Ω); see [40].

5.3. Lifting operators. We introduce the following lifting operators. First, for
a face e ⊂ E we define Le : V(h)→ Σh by∫

Ω

Le(v) : τ dx =

∫
e

[[v]] : {{τ}} ds ∀τ ∈ Σh.

Note that the support of Le(v) is contained in the elements that share the face e. For
a boundary face e ⊂ ED, we introduce the lifting Ge ∈ Σh of the Dirichlet datum g
given by ∫

Ω

Ge : τ dx =

∫
e

(g ⊗ n) : τ ds ∀τ ∈ Σh.

For the exact solution u ∈ V, we have

Le(u) = 0 ∀e ⊂ EI , Le(u) = Ge ∀e ⊂ ED.(5.3)
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Globally, we define L : V(h)→ Σh and G ∈ Σh by

L :=
∑
e⊂E
Le, G :=

∑
e⊂ED

Ge.

These operators can be characterized by∫
Ω

L(v) : τ dx =

∫
E

[[v]] : {{τ}} ds ∀τ ∈ Σh,∫
Ω

G : τ dx =

∫
ED

(g ⊗ n) : τ ds ∀τ ∈ Σh.

Finally, we need the lifting operator M : V(h)→ Qh defined by∫
Ω

M(v)ϕdx =

∫
E

[[v]] {{ϕ}} ds ∀ϕ ∈ Qh.

For the exact solution u ∈ V, there holds∫
Ω

M(u)ϕdx =

∫
ED

ϕg · n ds ∀ϕ ∈ Qh.(5.4)

5.4. Mixed discontinuous Galerkin problems. We introduce mixed discon-
tinuous Galerkin methods of the form (3.1) for the mixed-order spaces in (5.2): find
(uh, ph) ∈ Vh ×Qh such that{

Ah(uh,v) + Bh(v, ph) = Fh(v),

Bh(uh, q) = Gh(q)
(5.5)

for all (v, q) ∈ Vh ×Qh.
The form Bh : V(h) × Q → R and the functional Gh : Qh → R will always be

chosen as

Bh(v, q) = −
∫

Ω

q [∇h · v −M(v)] dx, v ∈ V(h), q ∈ Q,

Gh(q) =

∫
ED

q g · n ds, q ∈ Qh,

Restricted to discrete functions (v, q) ∈ Vh ×Qh, we have

Bh(v, q) = −
∫

Ω

q∇h · v dx +

∫
E
{{q}}[[v]] ds.(5.6)

Thus, we exactly obtain the form Bh and the functional Gh considered in the mixed
DG approaches in [17, 26, 40]. We remark that (3.7) is satisfied thanks to (5.4).

For discrete functions, we equivalently have

Bh(v, q) =

∫
Ω

∇hq · v dx−
∫
EI

[[[[[[q]]]]]] · {{v}} ds, (v, q) ∈ Vh ×Qh.(5.7)

This follows from integration by parts and elementary manipulations; see equation
(4.7) in [40].
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The space V(h) = V + Vh is endowed with the broken norm

‖v‖2h =
∑
K∈Th

|v|21,K +

∫
E
σ|[[v]]|2 ds, v ∈ V(h),(5.8)

where σ ∈ L∞(E) is the so-called discontinuity stabilization function that we choose
in terms of the local mesh-sizes and the polynomial degrees as follows. Define the
functions h ∈ L∞(E) and k ∈ L∞(E) by

h(x) :=

{
min{hK , hK′}, x in the interior of ∂K ∩ ∂K ′,
hK , x in the interior of ∂K ∩ ∂Ω,

k(x) :=

{
max{kK , kK′}, x in the interior of ∂K ∩ ∂K ′,
kK , x in the interior of ∂K ∩ ∂Ω.

Then we set

σ = σ0h
−1k2,(5.9)

with a parameter σ0 > 0 that is independent of h and k.
For the form Ah related to the Laplacian, several choices are possible. Let us

discuss the stable and consistent forms in the sense of [2].

The interior penalty forms Ah. The symmetric interior penalty (IP) form
has been used in the mixed DG method introduced in [26]. It is obtained by first
defining the stabilization form Iσh as

Iσh (u,v) := ν

∫
E
σ[[u]] : [[v]] ds, u,v ∈ V(h),(5.10)

where σ is the discontinuity stabilization function in (5.9), and then by taking, for
u,v ∈ V(h),

Ah(u,v) =

∫
Ω

ν
[∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu

]
dx + Iσh (u,v),

Fh(v) =

∫
Ω

f · v dx− ν

∫
Ω

G : ∇hv dx + ν

∫
ED

σg · v ds.

(5.11)

Restricted to discrete functions u,v ∈ Vh, we have

Ah(u,v) =

∫
Ω

ν∇hu : ∇hv dx−
∫
E

({{ν∇hv}} : [[u]] + {{ν∇hu}} : [[v]]
)
ds + Iσh (u,v).

The nonsymmetric variant of the IP form has been studied in the mixed DG approach
in [40] (see also [35, 27] for scalar convection-diffusion problems). It is obtained by
choosing, for u,v ∈ V(h),

Ah(u,v) =

∫
Ω

ν
[∇hu : ∇hv + L(u) : ∇hv − L(v) : ∇hu

]
dx + Iσh (u,v),

Fh(v) =

∫
Ω

f · v dx + ν

∫
Ω

G : ∇hv dx + ν

∫
ED

σg · v ds.

(5.12)

Remark 5.1. For σ ≡ 0 the form Ah in (5.12) coincides with the form given
by the so-called Baumann–Oden method [7, 29]. Further, realizations of the meth-
ods of Baker, Jureidini, and Karakashian [4] and Karakashian and Jureidini [28] are

obtained with the IP form Ah in (5.11), if we choose the spaces Ṽh = {v ∈ Vh :

v|K is divergence free on each K ∈ Th } and Q̃h = Qh ∩ C0(Ω), respectively.
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The LDG form Ah. The local discontinuous Galerkin (LDG) form is closely
related to the IP forms since it is also expressed in terms of the stabilization form
Iσh in (5.10). In the context of the Stokes problem, it has been studied in [17] (see
also [19, 13, 31]). In the primal variables, the LDG form is given by taking, for
u,v ∈ V(h),

Ah(u,v) =

∫
Ω

ν
[∇hu− L(u)

]
:
[∇hv − L(v)

]
dx + Iσh (u,v),

Fh(v) =

∫
Ω

f · v dx− ν

∫
Ω

G :
(∇hv − L(v)

)
dx + ν

∫
ED

σg · v ds.

(5.13)

The Bassi–Rebay forms Ah. These forms were inspired by the original Bassi–
Rebay method in [5], which, in fact, is unstable. They are defined by introducing a
different stabilization form Iηh given by

Iηh(u,v) = ν
∑
e⊂E

∫
Ω

ηLe(u) : Le(v) dx, u,v ∈ V(h),(5.14)

for a parameter η > 0. The first form we present here was introduced in [6] and is
obtained by choosing, for u,v ∈ V(h),

Ah(u,v) =

∫
Ω

ν
[∇hu : ∇hv − L(u) : ∇hv − L(v) : ∇hu

]
dx + Iηh(u,v),

Fh(v) =

∫
Ω

f · v dx− ν

∫
Ω

G : ∇hv dx + ν
∑
e⊂ED

∫
Ω

η Ge : Le(v) dx.
(5.15)

In [11], the following variant of the Bassi–Rebay form has been proposed:

Ah(u,v) =

∫
Ω

ν
[∇hu− L(u)

]
:
[∇hv − L(v)

]
dx + Iηh(u,v),

Fh(v) =

∫
Ω

f · v dx− ν

∫
Ω

G : ∇hv dx + ν
∑
e⊂ED

∫
Ω

η Ge : Le(v) dx.
(5.16)

6. Divergence stability. In this section, we establish an inf-sup condition for
the form Bh(·, ·) with respect to the norm ‖ · ‖h in (5.8)–(5.9) and for the Qk −Qk−1

spaces in (5.2). We recall that the divergence bilinear form is the same for all the
methods that we consider.

6.1. The discrete inf-sup condition. Let us begin by stating our main sta-
bility result.

Proposition 6.1. Let kK ≥ 2 for all K ∈ Th. Then there are constants c1 > 0
and c2 > 0, independent of h and k, such that for each q ∈ Qh there exists a discrete
velocity field v ∈ Vh such that

Bh(v, q) ≥ c1‖q‖20, ‖v‖h ≤ c2|k| ‖q‖0.
From the above result, we immediately find the following stability result.
Theorem 6.2. There exists a constant c > 0, independent of h and k, such that,

for kK ≥ 2,

inf
0 �=q∈Qh

sup
0 �=v∈Vh

Bh(v, q)

‖v‖h‖q‖0 ≥ γh ≥ c |k|−1.(6.1)
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Remark 6.3. Theorem 6.2 establishes an hp-version divergence stability result
for the Qk−Qk−1 element family where the difference in the approximation orders for
the velocity and the pressure is exactly one. It is well known that these elements are
unstable in a conforming setting, although they are optimal in terms of the approx-
imation properties of the finite element spaces. The use of discontinuous velocities
overcomes these usual stability problems in a natural way. In addition, the bound
(6.1) holds in two and three dimensions, and it is identical to the bound established
in [38] for conforming mixed hp-FEM in three dimensions, although there Qk −Qk−2

spaces have been used.
Remark 6.4. The technique we use to prove this result is a combination of the

h-version approach in [26] that makes use of H(div)-conforming projectors and of the
work [40] that allows us to deal with hanging nodes. Indeed, we also decompose the
pressure into piecewise constants and polynomials whose mean values vanish element-
wise as in [40] (see also the analysis for conforming hp-methods in [38]) and use the
low-order stability results in two and three dimensions of [36, 41] for Q2−Q0 elements
on irregular meshes. That is the reason why we assume kK ≥ 2 in Proposition 6.1.
We remark that for Q1 − Q0 elements and conforming meshes, divergence stability
can be obtained by establishing directly a Fortin property. We report on this case in
more detail in section 6.5.

Remark 6.5. The numerical tests in [40] show that in two dimensions a stability
constant independent of h and k is expected, indicating that the dependence on k in
(6.1) is not likely to be sharp.

Remark 6.6. As can be inferred from its proof, the result of Theorem 6.2 holds,
in fact, for the strictly smaller velocity space Ṽh ⊂ Vh given by

Ṽh = {v ∈ Vh ∩H0(div; Ω) : v|K ∈ RTkK−1(K), K ∈ Th},

for the Raviart–Thomas space RTkK−1(K) of degree kK − 1 introduced in the next
section. Here, H0(div; Ω) = {v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω), v · n = 0 on ∂Ω}.
Whether or not the dependence of the inf-sup constant γh on the polynomial degree in
(6.1) is sharp for this space is an open issue.

The remaining part of this section is devoted to the proof of Proposition 6.1. We
will carry out the proof for the three-dimensional case and note that the result in two
dimensions is obtained completely analogously. We start in section 6.2 by defining
Raviart–Thomas interpolation operators that we shall use as Fortin operators. In
section 6.3, we establish new stability results for these operators. The proof of Propo-
sition 6.1 is then given in section 6.4. In section 6.5, we report on some extensions
of our stability result to uniform approximation orders and conforming meshes, also
including Q1 −Q0 elements.

6.2. Raviart–Thomas spaces and interpolants. Given the reference cube
K̂ = (−1, 1)3 and an integer k ≥ 0, we consider the space

RTk(K̂) = Qk+1,k,k(K̂)×Qk,k+1,k(K̂)×Qk,k,k+1(K̂),

where Qk1,k2,k3(K̂) is the space of polynomials of degree at most ki in the ith variable.
For an affinely mapped element K ∈ Th the space RTk(K) is defined by suitably
mapping functions in RTk(K̂) using a Piola transformation; see [10, sect. 3.3] or [1,
sect. 3.3] for further details.
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We denote the faces of K̂ by γm, m = 1, . . . , 6. In particular, we set

γ1 = {x = −1}, γ2 = {x = 1},
γ3 = {y = −1}, γ4 = {y = 1},
γ5 = {z = −1}, γ6 = {z = 1}.

We use the same notation for an affinely mapped element K, where the faces are
obtained by mapping the corresponding ones of K̂. Moreover, we denote by Qk,k(γm)
the space of polynomials of degree at most k in each variable on the face γm.

On the reference cube, there is a unique interpolation operator ΠK̂ : H1(K̂)3 →
RTk(K̂) such that∫

K̂

(
ΠK̂w −w

) · r dx = 0, r ∈ Qk−1,k,k(K̂)×Qk,k−1,k(K̂)×Qk,k,k−1(K̂),

∫
γm

(
ΠK̂w −w

) · nϕds = 0, ϕ ∈ Qk,k(γm), m = 1, . . . , 6;

(6.2)

see [10] or [1]. For k = 0, the first condition in (6.2) is void. For an element K ∈ Th,
the interpolant ΠK : H1(K)3 → RTk(K) can be defined by using a Piola transform
in such a way that the orthogonality conditions in (6.2) also hold for ΠK ; see, e.g.,
[1, sect. 3.5].

6.3. Stability of the Raviart–Thomas interpolant. In order to prove our
stability results for the operator ΠK , we need to introduce a representation formula,
originally proposed in [1] for the two-dimensional case. We start by defining some
additional operators for the reference cube K̂. Given integers k1, k2, and k3, we
define

Q̂k1,k2,k3 = πzk3 ⊗ πyk2 ⊗ πxk1 : L2(K̂)→ Qk1,k2,k3(K̂)

as the L2-orthogonal projection onto Qk1,k2,k3(K̂). We note that Q̂k1,k2,k3 is the tensor
product of one-dimensional L2-projections πki on the reference interval I = (−1, 1).

We next introduce extension operators from the faces γm. To that end, we denote
by Lk, k ≥ 0, the Legendre polynomial of degree k in I; see [9, sect. 3]. For the face
γ1, we define Eγ1k : Qk,k(γ1)→ Qk+1,k,k(K̂) as

(Eγ1k ϕ)(x, y, z) := Mγ1
k (x)ϕ(y, z), Mγ1

k (x) :=
(−1)k+1

2
(Lk+1(x)− Lk(x)).

We note that

(Eγ1k ϕ)|γ1 = ϕ, (Eγ1k ϕ)|γ2 = 0,

and that (Eγ1k ϕ)|γm , m = 3, . . . , 6, does not vanish in general. Analogous definitions
hold for the other faces γm, m = 2, . . . , 6.

Similar to [1, Lemma 3], for w = (wx, wy, wz) ∈ H1(K̂)3, the interpolant v =
ΠK̂w can be written as v = (vx, vy, vz) with

vx = Q̂k−1,k,kwx +

2∑
m=1

Eγmk (πyk ◦ πzk)
(
wx − Q̂k−1,k,kwx

)
,

vy = Q̂k,k−1,kwy +

4∑
m=3

Eγmk (πxk ◦ πzk)
(
wy − Q̂k,k−1,kwy

)
,

vz = Q̂k,k,k−1wz +

6∑
m=5

Eγmk (πxk ◦ πyk)
(
wz − Q̂k,k,k−1wz

)
,

(6.3)
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where, e.g., (πyk◦πzk)(wx−Q̂k−1,k,kwx) is understood as πyk◦πzk applied to the restriction

of (wx − Q̂k−1,k,kwx) to γm, m = 1, 2.
Before proving our stability results, we need some technical lemmas. The results

in the following lemma can be found using similar techniques as in Theorem 2.2 in
[12], Lemma 3.9 in [27], and Theorems 3.91 and 3.92 in [37].

Lemma 6.7. We have the following estimates.
1. Let w ∈ H1(K̂). Then there exists a constant C > 0 independent of k such

that

|Q̂k−1,k,kw|21,K̂ ≤ C k |w|2
1,K̂

,(6.4)

‖w − Q̂k−1,k,kw‖20,γm ≤ C k−1 |w|2
1,K̂

, m = 1, . . . , 6.(6.5)

2. Let I = (−1, 1) and w ∈ Qk(I). Then there exists a constant C > 0 such that

|w|1,I ≤ Ck2‖w‖0,I ,(6.6)

‖w‖∞,I ≤ Ck‖w‖0,I .(6.7)

The following lemma can be proved by using the properties of the Legendre poly-
nomials given, e.g., in Theorem 3.2 and Remark 3.2 in [9], and Theorem 3.96 in [37].

Lemma 6.8. Let

Mγ1
k (x) =

(−1)k+1

2
(Lk+1(x)− Lk(x)).

Then

‖Mγ1
k ‖20,I ≤ Ck−1, |Mγ1

k |21,I ≤ Ck3.

Similar estimates hold for the other faces γm.
We have the following stability result.
Lemma 6.9. There exists a constant C > 0, independent of hK and k, such that,

for w ∈ H1(K)3,

|ΠKw|21,K ≤ Ck2|w|21,K .

Proof. Let w = (wx, wy, wz). We set v = ΠKw and v = (vx, vy, vz). We only find
a bound for the first component vx. Bounds for vy and vz can be similarly obtained.

In addition, we only consider the reference cube K̂ = (−1, 1)3 since a bound for an
affinely mapped K can be easily deduced using a scaling argument. We consider the
two terms of vx in (6.3). Thanks to (6.4), we have

|Q̂k−1,k,kwx|1,K̂ ≤ Ck
1
2 |wx|1,K̂ .(6.8)

We now consider the face γ1. Using Lemma 6.8 and the stability of the L2-projection,
we can write

‖∂x(Eγ1k (πyk ◦ πzk)(wx − Q̂k−1,kwx))‖2
0,K̂

= |Mγ1
k |21,I ‖(πyk ◦ πzk)(wx − Q̂k−1,k,kwx)‖20,γ1

≤ Ck3‖wx − Q̂k−1,k,kwx‖20,γ1 ,
and, thanks to the estimate (6.5),

‖∂x(Eγ1k (πyk ◦ πzk)(wx − Q̂k−1,k,kwx))‖2
0,K̂
≤ Ck2|wx|21,K̂ .(6.9)
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Using Lemma 6.8 and the inverse estimate (6.6), we find

‖∂y(Eγ1k (πyk ◦ πzk)(wx − Q̂k−1,k,kwx))‖2
0,K̂

= ‖Mγ1
k ‖20,I ‖∂y((πyk ◦ πzk)(wx − Q̂k−1,kwx))‖20,γ1

≤ Ck−1k4‖wx − Q̂k−1,k,kwx‖20,γ1 ,
and, due to the estimate (6.5),

‖∂y(Eγ1k (πyk ◦ πzk)(wx − Q̂k−1,k,kwx))‖2
0,K̂
≤ Ck2|wx|21,K̂ .(6.10)

Analogously,

‖∂z(Eγ1k (πyk ◦ πzk)(wx − Q̂k−1,k,kwx))‖2
0,K̂
≤ Ck2|wx|21,K̂ .(6.11)

Similar estimates can be found for the face γ2. The proof is completed by combining
(6.3), (6.8), (6.9), (6.10), and (6.11) with a scaling argument.

On the boundary ∂K of an element K, we have the following bound.
Lemma 6.10. There exists a constant C > 0, independent of hK and k, such

that, for w ∈ H1(K)3,

‖w −ΠKw‖20,∂K ≤ ChK |w|21,K .

Proof. Let v = ΠKw. First, we find a bound for the first component vx of v on
the reference cube K̂ = (−1, 1)3.

On the face γ1, we have

wx − vx = wx − Q̂k−1,k,kwx − (πyk ◦ πzk)(wx − Q̂k−1,k,kwx).

Hence, by the triangle inequality, (6.5), and by the stability of the L2-projection, we
obtain

‖wx − vx‖20,γ1 ≤ Ck−1|wx|21,K̂ .

An analogous estimate holds on γ2.
Consider now the face γ3. We have

‖wx − vx‖20,γ3 ≤ C‖wx − Q̂k−1,k,kwx‖20,γ3

+ C

2∑
m=1

∥∥∥Eγmk (πyk ◦ πzk)
(
wx − Q̂k−1,k,kwx

)∥∥∥2

0,γ3
.

The first term above can be bounded again by using (6.5). Further, using Lemma 6.8,
the inverse estimate (6.7), and the estimate (6.5), we find, for m = 1, 2,∫

γ3

(
Eγmk (πyk ◦ πzk)

(
wx − Q̂k−1,k,kwx

))2

dx dz

= ‖Mγm
k ‖20,I

∫ 1

−1

(
(πyk ◦ πzk)

(
wx − Q̂k−1,k,kwx

))2

|y=−1

dz

≤ C k−1 k2

∫
γm

(
(πyk ◦ πzk)

(
wx − Q̂k−1,k,kwx

))2

dy dz

≤ C |wx|21,K̂ .
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Hence, we obtain

‖wx − vx‖20,γ3 ≤ C |wx|21,K̂ .

The analogous bounds are obtained on γ4, γ5, and γ6. This gives the desired result
for the first component of w −ΠKw.

The proof is completed by observing that the same techniques give analogous
bounds for the other components of w −ΠKw and by a scaling argument.

6.4. Proof of Proposition 6.1. Fix q ∈ Qh. We first proceed as in [40,
Lemma 6.3] (see also [38] for conforming mixed hp-FEM) and decompose q into

q = q0 + q̄,(6.12)

where q0 is the L2-projection of q into the subspace of L2
0(Ω) consisting of piecewise

constant pressures.
Owing to the results in [25, 38] for conforming meshes and the results in [36, 41]

(valid for two- and three-dimensional domains) for meshes with hanging nodes (see
also [40]), there exists a piecewise quadratic velocity field v0 ∈ Vh∩H1

0 (Ω)3 such that

Bh(v0, q0) = −
∫

Ω

q0∇ · v0 dx ≥ ‖q0‖20, ‖v0‖h = |v0|1 ≤ C0‖q0‖0.(6.13)

Further, for K ∈ Th, we set q̄K = q̄|K and have, by construction,
∫
K

q̄K dx = 0.
Due to the continuous inf-sup condition [10, 25], there is a velocity field w̄K ∈ H1

0 (K)3

such that

−
∫
K

q̄K∇ · w̄K dx ≥ ‖q̄K‖20,K , |w̄K |1,K ≤ C‖q̄K‖0,K ,(6.14)

with a constant C > 0 solely depending on the shape-regularity of the mesh. Define
w̄ ∈ H1

0 (Ω)3 by w̄|K = w̄K for all K ∈ Th, and let v̄ ∈ Vh be given by

v̄|K = v̄K := ΠKw̄K ∈ RTkK−1(K), K ∈ Th,
for the Raviart–Thomas projector ΠK of degree kK − 1 on K. Since w̄K ∈ H1

0 (K)3,
we have

v̄K · nK = 0 on ∂K(6.15)

due to the second conditions in (6.2) (valid for an affinely mapped element), and hence
[[v̄]] = 0 on E . From the definition of Bh in (5.6), we thus have

Bh(v̄, q̄) = −
∫

Ω

q̄∇h · v̄ dx =
∑
K∈Th

∫
K

∇q̄K · v̄K dx.

Mapping q̄K to ˆ̄qK̂ via the usual pullback operator and v̄K to ˆ̄vK̂ via the Piola
transformation, we obtain from [10, sect. 3.1]∫

K

∇q̄K · v̄K dx =

∫
K̂

∇̂ˆ̄qK̂ · ˆ̄vK̂ dx̂.

We then note that, since ˆ̄qK̂ ∈ QkK−1(K̂), we have

∇̂ˆ̄qK̂ ∈ QkK−2,kK−1,kK−1(K̂)×QkK−1,kK−2,kK−1(K̂)×QkK−1,kK−1,kK−2(K̂).
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Using the orthogonality conditions in (6.2), we obtain∫
K̂

∇̂ˆ̄qK̂ · ˆ̄vK̂ dx̂ =

∫
K̂

∇̂ˆ̄qK̂ · ˆ̄uK̂ dx̂ =

∫
K

∇q̄K · w̄K dx

and, therefore, from (6.14),

Bh(v̄, q̄) =
∑
K∈Th

∫
K

∇q̄K · w̄K dx = −
∑
K∈Th

∫
K

q̄K∇ · w̄K dx ≥ ‖q̄‖20.(6.16)

Further, from the stability result in Lemma 6.9 and (6.14), we obtain∑
K∈Th

|v̄K |21,K ≤ C
∑
K∈Th

k2
K |w̄K |21,K ≤ C|k|2‖q̄‖20.(6.17)

Then, since [[w̄]] = 0 on E , we have with Lemma 6.10 and (5.1)∫
E
σ[[v̄]]

2
ds =

∫
E
σ[[w̄ − v̄]]

2
ds

≤ C
∑
K∈Th

k2
K

hK
‖w̄K − v̄K‖20,∂K ≤ C|k|2

∑
K∈Th

|w̄K |21,K ≤ C|k|2‖q̄‖20.

Combining this estimate with (6.16) and (6.17) yields

Bh(v̄, q̄) ≥ ‖q̄‖0, ‖v̄‖2h ≤ C̄|k|2‖q̄‖0.(6.18)

Next, we define

v = v0 + δv̄

for a parameter δ > 0 still at our disposal. First, we note that from (5.6) and (6.15),

Bh(v̄, q0) = −
∑
K∈Th

q0|K
∫
K

∇ · v̄K dx = −
∑
K∈Th

q0|K
∫
∂K

v̄K · nK ds = 0

since q0 is piecewise constant. Further, v0 ∈ Vh ∩H1
0 (Ω)3 and, therefore, we obtain

from (6.13) and the arithmetic-geometric mean inequality

|Bh(v0, q̄)| =
∣∣∣∣
∫

Ω

q̄∇ · v0 dx

∣∣∣∣ ≤ C‖q0‖0‖q̄‖0 ≤ C1

ε
‖q0‖20 + εC2‖q̄‖20,

with another parameter ε > 0 to be properly chosen. Combining the above results
with (6.13) and (6.18) gives

Bh(v, q) = Bh(v0, q0) + Bh(v0, q̄) + δBh(v̄, q̄)

≥
(

1− C1

ε

)
‖q0‖20 + (δ − εC2)‖q̄‖20.

It is then clear that we can choose δ and ε in such a way that

Bh(v, q) ≥ c1‖q‖20,(6.19)

with a constant c1 independent of h and k. Furthermore, from (6.13) and (6.18),

‖v‖h ≤ |v0|1 + δ‖v̄‖h ≤ c2|k|‖q‖0,(6.20)

with c2 independent of h and k. The assertion of Proposition 6.1 follows from (6.19)
and (6.20).
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6.5. Uniform approximation degrees and conforming meshes. For uni-
form approximation degrees kK = k, K ∈ Th, and conforming meshes, the decompo-
sition (6.12) is not necessary and we can establish the inf-sup condition directly via
a Fortin property. In particular, this allows us to cover the case of Q1 −Q0 elements
as well.

To do this, define the global interpolation operator Π by

Πw|K = ΠKw, K ∈ Th,
where ΠK is the Raviart–Thomas projector of degree k − 1 on K. We note that Πw
belongs to Vh and, in case w ∈ H1

0 (Ω)3, the normal component of Πw is continuous
across the interelement boundaries and vanishes on ∂Ω, i.e., [[Πw]] = 0 on E . This
last property is no longer true if the mesh has hanging nodes.

We have the following Fortin property.
Lemma 6.11. Assume that Th is conforming and kK = k, K ∈ Th. We have, for

w ∈ H1
0 (Ω)3 and k ≥ 1,

Bh(Πw, q) = −
∫

Ω

q∇ ·w dx, q ∈ Qh,(6.21)

‖Πw‖h ≤ Ck|w|1,(6.22)

where C > 0 is independent of h and k.
Proof. We first note that, from (5.7), we have

Bh(Πw, q) =
∑
K∈Th

∫
K

Πw · ∇qdx−
∫
EI

(q+ − q−)
(Πw)+ · nK+ + (Πw)− · nK−

2
ds

=
∑
K∈Th

∫
K

Πw · ∇qdx−
∫
EI

(q+ − q−) Πw · nK+ ds,

where we have used obvious notation to express the jumps and mean values. Again
using the orthogonality conditions in (6.2), valid for an affinely mapped element K,
we find

Bh(Πw, q) =
∑
K∈Th

∫
K

w · ∇qdx−
∫
EI

(q+ − q−)w · nK+ ds

= −
∫

Ω

q∇ ·w dx.

The stability estimate in (6.22) follows from Lemma 6.9 and Lemma 6.10 as in the
proof of Proposition 6.1.

We note that the previous lemma is not true for irregular meshes. Combining
Lemma 6.11 and the inf-sup condition (2.3) of the continuous problem, we find the
following stability result.

Theorem 6.12. Assume that Th is conforming and kK = k, K ∈ Th. There
exists a constant c > 0, independent of h and k, such that for k ≥ 1

inf
0 �=q∈Qh

sup
0 �=v∈Vh

Bh(v, q)

‖v‖h‖q‖0 ≥ γh ≥ ck−1.(6.23)

We emphasize that, in particular, this result holds true for k = 1, thus covering
Q1 − Q0 elements. We also remark that a similar nonconforming Stokes element,
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the so-called Q̃1 − Q0 element, has been proposed and studied in [34, 8]. However,
this element can be viewed as a natural quadrilateral analogue of the well known
Crouzeix–Raviart element whereas the Q1 −Q0 element here is based on completely
discontinuous finite element spaces.

7. Continuity and coercivity. In this section, we establish the continuity and
coercivity of the forms Ah(·, ·) and Bh(·, ·) with respect to the norm ‖·‖h in (5.8)–(5.9).

7.1. Stability of the lifting operators. We start by investigating the stability
properties of the lifting operators. To this end, we need the following lemma concern-
ing traces of polynomials, where we denote by Qk(γm) the polynomials of degree at
most k in each variable on the face γm.

Lemma 7.1. Let K ∈ Th and γm be a face of ∂K. Then we have

‖ϕ‖0,γm ≤ Ch
− 1

2

K k‖ϕ‖0,K ∀ϕ ∈ Qk(K),(7.1)

with a constant C > 0 just depending on the shape-regularity of the mesh.
Conversely, for ϕ ∈ Qk(γm) there is a polynomial extension E(ϕ) ∈ Qk(K) with

E(ϕ)|γm = ϕ and

‖E(ϕ)‖0,K ≤ Ch
1
2

Kk−1‖ϕ‖0,γm ,(7.2)

with a constant C > 0 just depending on the shape-regularity of the mesh.
Proof. The first assertion follows from standard inverse inequalities; see, e.g., [37,

Theorem 4.76].
We prove the second assertion only in three dimensions (the two-dimensional

case is completely analogous). To this end, we consider first the reference cube K̂ =
(−1, 1)3 and may assume that the face γm is given by x = 1. Fix ϕ ∈ Qk(γm).
Moreover, we consider the case where k is even and set

E(ϕ)(x, y, z) =


2

k

k∑
j= k

2 +1

Lj(x)


 ϕ(y, z),

where Lj denotes the Legendre polynomial of degree j on (−1, 1). Since Lj(1) = 1,
we have

E(ϕ)|γm = E(ϕ)(1, y, z) =
2

k

k

2
ϕ(y, z) = ϕ(y, z).

Further,

‖E(ϕ)‖2
0,K̂

= ‖ϕ‖20,γm
4

k2

k∑
j= k

2 +1

2

2j + 1
.

We have

k∑
j= k

2 +1

2

2j + 1
=

k∑
j= k

2 +1

1

(j + 1)− 1
2

≤
∫ k+1

k
2 +1

1

t− 1
2

dt

= log

(
k +

1

2

)
− log

(
k

2
+

1

2

)
= log

(
2k + 1

k + 1

)
.
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The bound log(2k+1
k+1 ) ≤ C, independent of k, proves the assertion for k even. If k is

odd, the extension E(·) can be constructed similarly. This proves the assertion on the
reference cube; the general case follows from a standard scaling argument.

We are now ready to prove the following stability result for the lifting Le.
Lemma 7.2. For a face e ⊂ E, we have

‖Le(v)‖20 ≥ C1

∫
e

k2h−1|[[v]]|2 ds ∀v ∈ Vh,

‖Le(v)‖20 ≤ C2

∫
e

k2h−1|[[v]]|2 ds ∀v ∈ V(h),

with constants C1 > 0 and C2 > 0 depending on the shape-regularity of the mesh. If
e contains a hanging node, C1 also depends on κ in (5.1).

Proof. To prove the first estimate, fix v ∈ Vh and let K be the element such that
e is an entire face of ∂K. By Lemma 7.1, we can find a polynomial τ ∈ QkK (K)d×d

such that τ |e = [[v]] and such that

‖τ‖0,K ≤ Ch
1
2

Kk−1
K ‖[[v]]‖0,e.

Extending τ by zero, we obtain a function also denoted by τ in the finite element
space Σh. By definition of Le and construction of τ , we have

1

2
‖[[v]]‖20,e =

∫
e

[[v]] : {{τ}} ds ≤
∫
K

|Le(v) : τ | dx ≤ Ch
1
2

Kk−1
K ‖Le(v)‖0‖[[v]]‖0,e.

If e is also an entire face of a possible neighboring element K ′, we combine the above
bound with the one for K ′ and obtain the desired result. If e is not an entire face of
a neighboring element, we invoke (5.1) and obtain the bound.

Conversely, for v ∈ V(h), we have

‖Le(v)‖0 = sup
τ∈Σh

∫
Ω
Le(v) : τ dx

‖τ‖0 = sup
τ∈Σh

∫
e

[[v]] : {{τ}} ds
‖τ‖0

≤ sup
τ∈Σh

( ∫
e
k2h−1|[[v]]|2 ds) 1

2
(
C
∑
K∈Th

k−2
K hK‖τ‖20,∂K

) 1
2

‖τ‖0

≤ sup
τ∈Σ

h

( ∫
e
k2h−1|[[v]]|2 ds) 1

2
(
C
∑
K∈Th

‖τ‖20,K
) 1

2

‖τ‖0

≤ C

(∫
e

k2h−1|[[v]]|2 ds
) 1

2

,

where we used the definition of Le, the Cauchy–Schwarz inequality, and the trace
estimate (7.1) from Lemma 7.1.

Remark 7.3. Due to (5.3), we also have

‖Ge‖20 ≤ C

∫
e

k2h−1|g|2 ds

for any boundary face e ⊂ ED.
In the same manner, we obtain the following stability estimates for L,M, and G.
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Lemma 7.4. We have the stability estimates

‖M(v)‖20 ≤ C

∫
E
k2h−1|[[v]]|2 ds, v ∈ V(h),

‖L(v)‖20 ≤ C

∫
E
k2h−1|[[v]]|2 ds, v ∈ V(h),

as well as

‖G‖20 ≤ C

∫
ED

k2h−1|g|2 ds,

with constants C > 0 solely depending on the shape-regularity of the mesh.

7.2. Continuity. The continuity conditions of Ah(·, ·) and Bh(·, ·) with respect
to the the discrete norm ‖ · ‖h in (5.8) are established in the following lemma.

Lemma 7.5. Let σ be given as in (5.9) with σ0 > 0. Then, we have the following.
1. All the forms Ah considered in section 5.4 are continuous,

|Ah(v,w)| ≤ νᾱ1‖v‖h‖w‖h, v,w ∈ V(h),

with a constant ᾱ1 > 0 independent of h and k. Hence, condition (3.2) is
satisfied with α1 = νᾱ1.

2. The form Bh is continuous,

|Bh(v, q)| ≤ α2‖v‖h‖q‖0, (v, q) ∈ V(h)×Q,

with a constant α2 > 0 independent of h and k.
Proof. This follows immediately from Lemma 7.2, Lemma 7.4, and Cauchy–

Schwarz inequalities.

7.3. Coercivity of Ah. The coercivity condition in (3.5) of the different forms
Ah is established in the following lemma.

Lemma 7.6. Let σ be given as in (5.9) with σ0 > 0. Then, we have the following.
1. There is a constant σmin > 0 (independent of h and k) such that for σ0 ≥

σmin the symmetric interior penalty form Ah in (5.11) is coercive,

Ah(v,v) ≥ νβ̄‖v‖2h, v ∈ Vh,

with a constant β̄ > 0 independent of h and k. Hence, condition (3.5) is
satisfied with β = νβ̄.

2. The nonsymmetric interior penalty form Ah in (5.12) is coercive on V(h) for
any σ0 > 0, with coercivity constant β = ν.

3. The LDG form Ah in (5.13) is coercive onVh for any σ0 > 0, with a coercivity
constant β = νβ̄, where β̄ > 0 is independent of h and k.

4. There is a constant ηmin > 0 (independent of h and k) such that for η ≥
ηmin the Bassi–Rebay form Ah in (5.15) is coercive on Vh, with a coercivity
constant β = νβ̄, where β̄ > 0 is independent of h and k.

5. The Bassi–Rebay form Ah in (5.16) is coercive on Vh for any η > 0, with a
coercivity constant β = νβ̄, where β̄ > 0 is independent of h and k.

Proof. These coercivity properties are obtained from Lemma 7.2, Lemma 7.4,
and the arithmetic-geometric mean inequality 2ab ≤ εa2 + ε−1b2 for all ε > 0;
see [2].
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Remark 7.7. We chose to express the continuity and coercivity properties of the
Bassi–Rebay methods in terms of the discrete norm ‖ · ‖h in (5.8)–(5.9) since this
norm is explicit in the mesh-sizes and the approximation degrees. Instead, it is also
possible to work with

‖v‖2h =
∑
K∈Th

|v|21,K +
∑
e⊂E

∫
Ω

η|Le(v)|2 dx.

8. The residual. In this section, we study the residual Rh(u, p;v) in (3.8) for
our DG methods and show that it is optimally convergent.

Proposition 8.1. Let the exact solution (u, p) of the Stokes system (2.1) be in
HsK+1(K)d×HsK (K) for all K ∈ Th and sK ≥ 1. Let Q and Q be the L2-projections
onto Σh and Qh, respectively. Then the residual in Rh(u, p;v) in (3.8) is given by

Rh(u, p;v) = ν

∫
E
{{∇u−Q(∇u)}} : [[v]] ds−

∫
E
{{p−Qp}}[[v]] ds ∀v ∈ Vh,

for all forms discussed in section 5.4.
Furthermore, we have that Rh(u, p) in (3.9) can be estimated by

Rh(u, p)2 ≤ C
∑
K∈Th

h2 min(sK ,kK)

k2sK+1
K

[
ν‖u‖2sK+1,K + ν−1‖p‖2sK ,K

]
,

with a constant C > 0 independent of h, k, and ν.
Proof. By (5.3), we have L(u) = G and obtain for all forms

Rh(u, p;v) = ν

∫
Ω

[∇u : ∇hv −∇u : L(v)] dx−
∫

Ω

p[∇ · v −M(v)] dx−
∫

Ω

f · v dx.

Note that ∫
Ω

∇u : L(v) dx =

∫
Ω

Q(∇u) : L(v) dx =

∫
E
{{Q(∇u)}} : [[v]] ds

and ∫
Ω

pM(v) dx =

∫
Ω

QpM(v) dx =

∫
Ω

{{Qp}}[[v]] ds.

If now the exact solution belongs to H2(K)d ×H1(K) for all K ∈ Th, we obtain by
integration by parts and elementary manipulations

Rh(u, p;v) =

∫
Ω

[−ν∆u +∇p− f ] · v dx

+ ν

∫
E
{{∇u−Q(∇u)}} : [[v]] ds−

∫
E
{{p−Qp}}[[v]] ds.

Here, we also used that [[[[[[ν∇u − pI]]]]]] = 0 on EI . From the Stokes equations in (2.1)
we obtain the first assertion.

From (5.1) and since |[[v]]|2 ≤ C|[[v]]|2, the Cauchy–Schwarz equation yields

Rh(u, p;v)

≤ C‖v‖h
(
ν
∑
K∈Th

hK
k2
K

‖∇u−Q(∇u)‖20,∂K + ν−1
∑
K∈Th

hK
k2
K

‖p−Q(p)‖20,∂K
) 1

2

,

from where the error estimate follows with the hp-approximation properties of the
L2-projection in [27].
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9. Error estimates. In this section, we make the abstract error estimates in
section 4 explicit for our DG methods.

9.1. The main result. First, we consider general meshes with hanging nodes.
We have the following result.

Theorem 9.1. Let the exact solution (u, p) of the Stokes system (2.1) be in
HsK+1(K)d ×HsK (K) for all K ∈ Th and sK ≥ 1. Then we have

‖u− uh‖2h ≤ C
∑
K∈Th

[
γ−2
h

h
2 min(sK ,kK)
K

k2sK−1
K

‖u‖2sK+1,K +
h

2 min(sK ,kK)
K

k2sK
K

‖p‖2sK ,K
]
,

‖p− ph‖20 ≤ C
∑
K∈Th

[
γ−4
h

h
2 min(sK ,kK)
K

k2sK−1
K

‖u‖2sK+1,K + γ−2
h

h
2 min(sK ,kK)
K

k2sK
K

‖p‖2sK ,K
]
,

with C > 0 independent of h and k.
Proof. This follows from the choice of the stabilization parameter σ in (5.9),

Proposition 4.1, Proposition 4.3, Proposition 8.1, and standard approximation prop-
erties of the finite element spaces; see, e.g., [3, Lemma 4.5] or [37]. In particular,
we choose v in Proposition 4.1 and q in Proposition 4.3 as the locally constructed
interpolants of u and p, respectively, given in [3, Lemma 4.5].

Remark 9.2. The above hp-version estimates are optimal in the mesh-size h,
and slightly suboptimal in k (half a power is lost), up to the inf-sup constant γh (which
depends on the polynomial degree k). In the mesh-size h, the same optimal bounds
have been obtained in [26] for the IP method on simplicial and conforming meshes and
for Pk −Pk−1 elements, with Pk denoting polynomials of total degree at most k. We
further note that, in the hp-version context, the same result was recently obtained in
[40] for the nonsymmetric interior penalty method, with different techniques.

Remark 9.3. The loss of half a power of k is typical of DG methods for second-
order problems. Indeed, in the case of elliptic diffusion problems in two- or three-
dimensional domains, no better p-bounds can be found in the DG literature on general
unstructured grids (see, e.g., the hp-version analyses in [27, 32, 35, 31]). Improved p-
bounds have been obtained in [14] for one-dimensional convection-diffusion problems,
and recently in [23] for two-dimensional reaction-diffusion problems on affine quadri-
lateral grids containing hanging nodes and for solutions that belong to augmented
Sobolev spaces. The latter results can be immediately carried over to the Stokes set-
ting considered here.

Remark 9.4. Combining the above bound with the inf-sup constant γh in Theo-
rem 6.2 results in a loss of k3/2 in the approximation of the velocity and in a loss of
k5/2 for the approximation of the pressure.

9.2. Uniform approximation degrees and conforming meshes. In this
section, we specialize the result of Theorem 9.1 to the case of uniform approximation
orders, kK = k, and conforming meshes with no hanging nodes. We also assume that
the Dirichlet boundary datum g is piecewise polynomial; more precisely, we assume
that there is a finite element function Gh ∈ Vh such that Gh|∂Ω = g.

In this particular situation, as in the analysis of [31] for the LDG method for pure
diffusion problems, we can choose v in Proposition 4.1 as an optimal hp-approximant
for the velocity which is continuous in the whole domain Ω according to [3, Theo-
rem 4.6]. The discrete pressure q in Proposition 4.3 can be chosen as before. Since
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the residual Rh(u, p) is optimally convergent, we obtain the following result.
Theorem 9.5. Let the exact solution (u, p) of the Stokes system (2.1) be in

Hs+1(Ω)d ×Hs(Ω) for s ≥ 1. Then we have

‖u− uh‖h ≤ C
hmin(s,k)

ks

[
γ−1
h ‖u‖s+1 + ‖p‖s

]
,

‖p− ph‖0 ≤ C
hmin(s,k)

ks

[
γ−2
h ‖u‖s+1 + γ−1

h ‖p‖s
]
,

with C > 0 independent of h and p.
This estimate is optimal in h and k, up to the inf-sup constant (which is inde-

pendent of h). With Theorem 6.2, we obtain exactly the same result as Stenberg and
Suri in [38] for conforming mixed hp-FEM in three dimensions, but with an optimal
gap of one order in the finite element spaces for the velocity and the pressure.

Remark 9.6. The estimate in Theorem 9.5 also holds on meshes with certain
kinds of hanging nodes provided that a conforming and optimal hp-approximant can
be constructed. In two dimensions, results in this direction can be found in, e.g., [37].

REFERENCES

[1] M. Ainsworth and K. Pinchedez, hp-approximation theory for BDFM and RT finite elements
on quadrilaterals, SIAM J. Numer. Anal., 40 (2002), pp. 2047–2068.

[2] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779.

[3] I. Babuška and M. Suri, The hp-version of the finite element method with quasiuniform
meshes, RAIRO Anal. Numér., 21 (1987), pp. 199–238.

[4] G.A. Baker, W.N. Jureidini, and O.A. Karakashian, Piecewise solenoidal vector fields and
the Stokes problem, SIAM J. Numer. Anal., 27 (1990), pp. 1466–1485.

[5] F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the
numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131
(1997), pp. 267–279.

[6] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini, A high-order accurate
discontinuous finite element method for inviscid and viscous turbomachinery flows, in
Proceedings of the Second European Conference on Turbomachinery–Fluid Dynamics and
Thermodynamics (Antwerpen, Belgium), R. Decuypere and G. Dibelius, eds., 1997, pp. 99–
108.

[7] C.E. Baumann and J.T. Oden, A discontinuous hp-finite element method for convection-
diffusion problems, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 311–341.

[8] R. Becker and R. Rannacher, Finite element solution of the incompressible Navier-Stokes
equations on anisotropically refined meshes, in Proceedings of the 10th GAMM Seminar,
Notes Numer. Fluid Dynamics, Vieweg, Braunschweig, Germany, 1995, pp. 52–62.

[9] C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis 5, North–
Holland, Amsterdam, 1997, pp. 209–485.

[10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput.
Math. 15, Springer–Verlag, New York, 1991.

[11] F. Brezzi, M. Manzini, D. Marini, P. Pietra, and A. Russo, Discontinuous Galerkin approx-
imations for elliptic problems, Numer. Methods Partial Differential Equations, 16 (2000),
pp. 365–378.

[12] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev
spaces, Math. Comp., 38 (1982), pp. 67–86.

[13] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of
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Abstract. The transport of substances back and forth between surface water and groundwater
is a very serious problem. We study herein the mathematical model of this setting consisting of
the Stokes equations in the fluid region coupled with the Darcy equations in the porous medium,
coupled across the interface by the Beavers–Joseph–Saffman conditions. We prove existence of weak
solutions and give a complete analysis of a finite element scheme which allows a simulation of the
coupled problem to be uncoupled into steps involving porous media and fluid flow subproblems.
This is important because there are many “legacy” codes available which have been optimized for
uncoupled porous media and fluid flow.
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1. Introduction and the model. There are many serious problems currently
facing the world in which the coupling between groundwater and surface water is
important. These include questions such as predicting how pollution discharged into
streams, lakes, and rivers makes its way into the water supply. This coupling is also
important in technological applications involving filtration.

The aim of our research is to begin the study of the following problem: an incom-
pressible fluid in a region Ω1 can flow both ways across an interface ΓI into a domain
Ω2 which is a porous medium saturated with the same fluid. The mathematical the-
ory and numerical analysis of each subproblem is well developed, and reliable codes
are available. Nevertheless, the mathematical theory of the coupled problem seems
to be not completely understood. The model of this situation which is most acces-
sible to large scale computations consists of the Navier–Stokes equations (or Stokes
equations) in the fluid region coupled across an interface with the Darcy equations for
the filtration velocity in the porous medium. This leads to mathematical difficulties
arising from the coupled system of equations of different orders in different regions.
See Jäger and Mikelić [16], Payne and Straughan [22] for the beginning of analytical
studies of this problem. (For the Brinkman model of porous media flow this difficulty
does not occur; see Jäger and Mikelić [17], Angot [1].) The second issue concerns
the correct transmission conditions on the interface. The Beavers–Joseph–Saffman
interface conditions [3, 25] are now well established. The third difficulty is technical:
where the interface meets the other boundaries, there are incompatibilities between
the imposed boundary conditions.
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Fig. 1. The model problem.

One goal of this report is to find a variational formulation (section 2) for which
weak solutions can be guaranteed to exist (section 3) and which can be used as a
basis for a domain decomposition strategy for its approximate solution. The main
goal is then to develop a finite element procedure with mathematical support (section
4). The method we study imposes the interface conditions using Lagrange multipli-
ers. Thus, it can be used in a heterogeneous domain decomposition procedure in
which each subproblem is alternately or simultaneously solved with codes (possibly
“legacy” codes) developed and optimized for the physics of fluid motion and of porous
media flow. In section 4 we give a complete analysis of this convergent finite element
procedure. Because of the importance of the coupled problem, there are many com-
putations of coupled surface water-groundwater flows in the applied literature, using
various ad hoc interface decoupling strategies. See, for example, Salinger, Aris, and
Derby [26], Gartling, Hickox, and Givler [14], and Prasad [23] for recent and interest-
ing computational studies of the coupled problem.

The coupling strategy via Lagrange multipliers we consider herein has been proven
in other applications and we are working towards practical tests of our ideas.

1.1. The model. The model we consider consists of Stokes flow in the fluid
region Ω1 and Darcy’s law in the porous medium domain Ω2. These are separated
by an interface ΓI . Here Ωj ⊂ R

d (d = 2 or 3) are bounded domains with outward
unit normal vectors n̂j , j = 1, 2. Let Γj := ∂Ωj \ ΓI . Each interface and boundary is
assumed to be polygonal (d = 2) or polyhedral (d = 3). Figure 1 gives a schematic
representation of the geometry.

The fluid velocities and pressures in Ω1 and Ω2 are denoted by

uj : Ωj → R
d, fluid velocity in Ωj ,

pj : Ωj → R , fluid pressure in Ωj .

It is important to keep in mind that the velocities and pressures play different math-
ematical (and physical) roles in the fluid region and in the porous medium.

Recall that the deformation rate tensor D and stress tensor T associated with
(u1, p1) are defined by

D(u1) :=
1

2

(
∂u1i

∂xj
+

∂u1j

∂xi

)
, T(u1, p1) := −p1I+ 2µD(u1),
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where µ is the viscosity. Assuming Stokes flow, (u1, p1) satisfies on Ω1

−∇ ·T(u1, p1) = f1 in Ω1 (conservation of momentum),
∇ · u1 = 0 in Ω1 (conservation of mass),
u1 = 0 on Γ1 (no slip).

(1.1)

Assuming Darcy’s law and no flow through Γ2, (u2, p2) satisfies on Ω2

u2 = −k∇p2 in Ω2 (Darcy’s law),
∇ · u2 = f2 in Ω2 (conservation of mass),
u2 · n̂2 = 0 on Γ2 (no flow),

(1.2)

where k is a symmetric and uniformly positive definite tensor representing the rock
permeability divided by the fluid viscosity. The source f2 is assumed to satisfy the
solvability condition ∫

Ω2

f2 dx = 0,(1.3)

which makes physical sense due to the no-flow boundary condition on ∂Ω and to (1.4)
below. The mixed formulation (1.2) is the most natural one for computations in the
porous medium region since it leads to direct approximation of the velocity.

1.2. Interface conditions. The problems (1.1)–(1.2) must be coupled across
ΓI by the correct interface conditions. Mass conservation across ΓI is expressed by

u1 · n̂1 + u2 · n̂2 = 0 on ΓI .(1.4)

The second interface condition is balance of normal forces across ΓI . Recall from,
e.g., Serrin [28], that the Cauchy stress vector or traction vector t is the force on ∂Ω1

acting on the fluid volume inside Ω1 and that

t(u1, p1) = n̂1 ·T(u1, p1)

(see Figure 2). Thus, the force on ΓI exerted by the fluid volume is −t. The only
force in Ω2 acting on ΓI is the Darcy pressure p2. Continuity of forces gives

−t(u1, p1) · n̂1 = p2 on ΓI .

This gives the interface condition

p1 − 2µn̂1 ·D(u1) · n̂1 = p2 on ΓI .(1.5)

Finally, since the fluid model is viscous, a condition on the tangential fluid velocity
on ΓI must be given. Let τ̂j , j = 1, d− 1, denote an orthonormal system of tangent
vectors on ΓI . The simplest assumption is no-slippage along ΓI , i.e., u1 · τ̂j = 0, j =
1, d− 1. This is not in good accord with experiment. The boundary condition in best
agreement with experimental evidence evolved from the work of Beavers and Joseph
[3] and states that

(slip velocity along ΓI) is proportional to (shear stress along ΓI).

Mathematically, this can be represented by

(u1 − u2) · τ̂j =


√

k̃j

µα1


 (−t(u1, p1)) · τ̂j , j = 1, d− 1, on ΓI ,
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Fig. 2. The traction vector on ΓI .

where k̃j = τ̂j · µk · τ̂j . However, it is still unclear if this leads to a well-posed
problem and it has been observed that the term on the left-hand side “u2 · τ̂j” is
much smaller than the other terms. Thus, its inclusion in this linear approximation
is unclear. The most accepted interface condition was derived by Saffman [25] using
a statistical approach and the Brinkman approximation and also by Jones [18] (also
see Jäger and Mikelić [17]). This condition, which drops this term, is now known as
the Beavers–Joseph–Saffman law and is thus given by

u1 · τ̂j = −
√

k̃j

α1
2n̂1 ·D(u1) · τ̂j , j = 1, d− 1, on ΓI .(1.6)

Here the form
√

k̃j/α1 for the friction constant arises from dimensional analysis and

experimental evidence. The parameter α1 must be experimentally determined; it
seems to depend on many particular features of ΓI , including its geometry. See,
e.g., Beavers and Joseph [3], Payne and Straughan [22], Saffman [25], and Jäger and
Mikelić [16, 17] (among roughly 500 papers studying or using this interface condition)
for more information.

2. Weak formulation of the coupled problem. This section is devoted to
developing suitable weak formulations of the problem (1.1)–(1.6). The weak formula-
tions have two important purposes. One formulation is used to show well-posedness of
(1.1)–(1.6). This is already nontrivial because of the incompatibility of the boundary
and interface conditions where ΓI , Γ1, and Γ2 meet. Thus, the conditions at these
points must be interpreted correctly. A second closely related weak form is developed
which is suitable for efficiently splitting the coupled problem into two subproblems.
In this formulation the coupling conditions (1.4)–(1.5) are viewed as constraints and
imposed via Lagrange multipliers.
Notation. For a subdomain G ⊂ R

d, the L2(G) inner product (or duality pair-
ing) and norm are denoted (·, ·)G and ‖·‖G, respectively, for scalar, vector, and tensor
valued functions. For example, for tensor valued functions A,B : G→ R

d×d,

(A,B)G :=

d∑
i,j=1

∫
G

Aij(x)Bij(x)dx =

∫
G

A : B dx.

For a connected open subset of the boundary Γ ⊂ ∂Ω1 ∪ ∂Ω2, we write 〈·, ·〉Γ and
‖ · ‖Γ for the L2(Γ) inner product (or duality pairing) and norm, respectively, for
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scalar valued functions λ, µ and vector valued functions u, v:

〈λ, µ〉Γ :=
∫

Γ

λµ ds, 〈u, v〉Γ :=
∫

Γ

d∑
i=1

uivi ds.

The Sobolev spaces Hk(Ω) = W k,2(Ω) are defined in the usual ways for Ω = Ω1 or
Ω2 with the usual norm and seminorm ‖ · ‖k,Ω and | · |k,Ω, respectively. Let

X1 := {v1 ∈ (H1(Ω1))
d : v1 = 0 on Γ1}, M1 := L2(Ω1)

denote the usual velocity-pressure spaces on Ω1. The norm on X1 is given by

‖v1‖X1 := |v1|1,Ω1
:= ‖∇v1‖Ω1 .

The velocity space X2 on Ω2 [24, 15, 7] is the subspace of

H(div; Ω2) = {v2 ∈ (L2(Ω2))
d : ∇ · v2 ∈ L2(Ω2)}

consisting of functions with zero normal trace on Γ2 and equipped with the norm

‖v2‖H(div;Ω2) := (‖v2‖2Ω2
+ ‖∇ · v2‖2Ω2

)1/2.

It is well known [24, 15, 7] that for all v2 ∈ H(div; Ω2), v2 · n̂2 ∈ H−1/2(∂Ω2) and
there exists a positive constant C such that

‖v2 · n̂2‖−1/2,∂Ω2
≤ C‖v2‖H(div;Ω2)

.(2.1)

The restriction of v2 · n̂2 to Γ2, however, may not lie in H−1/2(Γ2). We define the
velocity-pressure spaces on Ω2 as follows [30], [7, sect. III.1]:

X2 := {v2 ∈ H(div; Ω2) : 〈v2 · n̂2, w〉∂Ω2
= 0 for all w ∈ H1

0,ΓI
(Ω2)}, M2 := L2(Ω2),

where

H1
0,ΓI

(Ω2) = {w ∈ H1(Ω2) : w = 0 on ΓI}.
Defining X := X1 × X2, a typical v ∈ X takes the form (v1, v2) with vi ∈ Xi. The
norm on X is, as usual,

‖v‖X := (‖v1‖2X1
+ ‖v2‖2X2

)1/2 for all v ∈ X.

If V ⊂ X is any closed subspace, then ‖ ·‖X is also the induced norm on V . Similarly,
let

M :=

{
q = (q1, q2) : qi ∈Mi and

2∑
i=1

(qi, 1)Ωi = 0

}
,

with norm

‖q‖M := (‖q1‖2M1
+ ‖q2‖2M2

)1/2.

The coupling across ΓI between the subproblems in Ω1 and Ω2 occurs in the
interface conditions (1.4)–(1.5). The procedure for uncoupling the two subproblems
is to pick one (we pick the second) and introduce the Lagrange multiplier λ:

p1 − 2µn̂1 ·D(u1) · n̂1 = λ = p2 on ΓI .(2.2)
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Considering λ to be known data for each subproblem, the weak formulation is then
derived in the usual manner as follows. Beginning with a classical solution of (1.1),
multiplying by a sufficiently smooth v1 ∈ X1, and integrating by parts gives

(f1, v1)Ω1
= (−2µ∇ ·D(u1) +∇p1, v1)Ω1

= 2µ(D(u1),D(v1))Ω1 − (p1,∇ · v1)Ω1

+ 〈{p1 − 2µn̂1D(u1)n̂1}, v1 · n̂1〉ΓI

+

d∑
j=1

〈{−2µn̂1D(u1)τ̂j}, v1 · τ̂j〉ΓI
.

The first term in the braces {·} is replaced by λ using (2.2) and the second by

(µα1/
√

k̃j) u1 · τ̂j using (1.6). Therefore, introducing the bilinear forms

a1(u1, v1) := 2µ(D(u1),D(v1))Ω1 +

d−1∑
j=1

µα1√
k̃j

〈u1 · τ̂j , v1 · τ̂j〉ΓI
for all u1, v1 ∈ X1,

and

b1(v1, q1) := −(q1,∇ · v1)Ω1 for all v1 ∈ X1, q1 ∈M1,

we obtain for all v1 ∈ X1 and q1 ∈M1

a1(u1, v1) + b1(v1, p1) + 〈λ, v1 · n̂1〉ΓI
= (f1, v1)Ω1

,

b1(u1, q1) = 0.

In the porous medium region, multiplication of the first equation in (1.2) by v2 ∈ X2,
integration over Ω2, and integration by parts gives

0 = (k−1u2 +∇p2, v2)Ω2
= (k−1u2, v2)Ω2

− (p2,∇ · v2)Ω2
+ 〈λ, v2 · n̂2〉ΓI

,

where, by (2.2), p2 is replaced by λ in the last term. Introducing

a2(u2, v2) := (k−1u2, v2)Ω2 , b2(v2, p2) := −(p2,∇ · v2)Ω2 ,

we have

a2(u2, v2) + b2(v2, p2) + 〈λ, v2 · n̂2〉ΓI
= 0 for all v2 ∈ X2,

b2(u2, q2) = −(f2, q2) for all q2 ∈M2.

The linking across ΓI occurs through the condition u1 · n̂1+u2 · n̂2 = 0 on ΓI and
the definition (2.2) of λ. This linkage is the key to the well-posedness of the coupled
problem and it hinges on the choice of the space Λ for the Lagrange multipliers. Define

bI(v, λ) := 〈v1 · n̂1 + v2 · n̂2, λ〉ΓI
: X × Λ→ R,

where Λ is not yet specified. The flux continuity condition (1.4) on ΓI is then

bI(v, λ) = 0 for all λ ∈ Λ.
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Since v2 ∈ H (div, Ω2), it holds that v2·n̂2 ∈ H−1/2(∂Ω2). We wish to pick Λ ⊂ L2(ΓI)
to be the largest space for which the pairing 〈v2 · n̂2, λ〉ΓI

is well defined. We show in
Lemma 2.1 below (see also [20]) that

v2 · n̂2|ΓI
∈ (H1/2

00 (ΓI))
∗,

where H
1/2
00 (ΓI) is the completion of the smooth functions with compact support in

ΓI with respect to the norm

‖µ‖1/2,∂Ω2
:=

(
‖µ‖2∂Ω2

+

∫
∂Ω2

∫
∂Ω2

|µ(t1)− µ(t2)|2
|t1 − t2|d dst1dst2

)1/2

.

It is well known that H
1/2
00 (ΓI) is the interpolation space

H
1/2
00 (ΓI) = [L2(ΓI), H

1
0 (ΓI)]1/2.

Any function µ ∈ H
1/2
00 (ΓI) has the property that its extension by zero to ∂Ωj gives

a function µ̃j ∈ H1/2(∂Ωj) with

‖µ̃j‖1/2,∂Ωj
≤ C‖µ‖

H
1/2
00 (ΓI)

, j = 1, 2.(2.3)

See Lions and Magenes [19] for background information on H
1/2
00 (ΓI).

Accordingly, choose

Λ := H
1/2
00 (ΓI) (⊂ L2(ΓI)).

Lemma 2.1. The bilinear form bI(·, ·) is continuous on X × Λ.
Proof. First note that vj · n̂j ∈ H−1/2(∂Ωj), j = 1, 2. Let µ ∈ H

1/2
00 (ΓI) and let

µ̃j be its extension by zero to ∂Ωj . We have, for j = 1, 2,∫
ΓI

vj · n̂jµ ds =

∫
∂Ωj

vj · n̂jµ̃j ds ≤ ‖vj · n̂j‖−1/2,∂Ωj
‖µ̃j‖1/2,∂Ωj

≤ C‖v‖X‖µ‖Λ,
using (2.1) and (2.3) in the last inequality.

Further, define

a(u, v) :=
2∑
i=1

ai(ui, vi) : X ×X → R,

b(v, p) :=

2∑
i=1

bi(vi, pi) : X ×M → R,

#(v) := (f1, v1)Ω1 , g(q) := −(f2, q2)Ω2 .

Then, (1.1)–(1.6) has the following weak formulation: find (u, p, λ) ∈ X ×M × Λ
satisfying 


a(u, v) + b(v, p) + bI(v, λ) = #(v) for all v ∈ X,

b(u, q) = g(q) for all q ∈M,

bI(u, µ) = 0 for all µ ∈ Λ.
(2.4)
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We next derive another weak formulation using the space V of functions in X
with trace-continuous normal velocities:

V := {v ∈ X : bI(v, µ) = 0 for all µ ∈ Λ}.
The connection between the two formulations (2.4) and (2.5) is considered in Remark
3.1 in section 3. Note that, due to Lemma 2.1, V is a closed subspace of X, e.g., Brezzi
and Fortin [7]. The next lemma indicates that a trace-continuous normal velocity has
a well-defined divergence on the whole domain. Let

Ω := interior(Ω1 ∪ Ω2).

For a given v = (v1, v2) ∈ X, define ṽ ∈ (L2(Ω))d by ṽ|Ωj
:= vj , j = 1, 2. To simplify

notation we will omit the tilde in this construction since the meaning whether it is v
or ṽ is clear from the context.

Lemma 2.2. If v ∈ V , then v ∈ H(div; Ω).
Proof. Define

g(x) = ∇ · vj(x) for x ∈ Ωj , j = 1, 2.

We will show that g = ∇ · v. Since vj ∈ H(div; Ωj), j = 1, 2, we can apply the
divergence theorem in each Ωj . This gives, for all φ ∈ C∞

0 (Ω),∫
Ω

v∇φ dx =

∫
Ω1

v1∇φ dx+

∫
Ω2

v2∇φ dx

= −
∫

Ω1

(∇ · v1)φ dx−
∫

Ω2

(∇ · v2)φ dx

+

∫
ΓI

(v1 · n̂1 + v2 · n̂2)φ dx.

The last term vanishes since φ ∈ C∞
0 (Ω) implies φ|ΓI

∈ H
1/2
00 (ΓI). Thus,∫

Ω

v∇φ dx = −
∫

Ω

gφ dx.

Since∇·vj ∈ L2(Ωj), g ∈ L2(Ω), and hence g is the weak L2 divergence of v ∈ V .
We next define the subspace Z,

Z := {v ∈ V : b(v, q) = 0 for all q ∈M}.
Lemma 2.3. The space Z is a closed subspace of V and X. Moreover, if v ∈ Z,

then ∇ · v = 0, a.e. x ∈ Ω.
Proof. Let v ∈ Z. Since Z ⊂ V , we know by Lemma 2.2 that v ∈ H(div; Ω).

Thus, for any q ∈M

b(v, q) = −
∫

Ω

∇ · v q dx.

We claim that ∇ · v ∈ M . Indeed, ∇ · v ∈ L2(Ω) and ∇ · v has zero mean value over
Ω: ∫

Ω

∇ · v dx =

∫
∂Ω

v · n̂ ds = 0
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using the divergence theorem. Thus, ∇·v ∈M . The second part of the lemma follows
by setting q = ∇ · v.

The space Z is a closed subspace of V since

b(v, q) = −
∫

Ω

∇ · v q dx ≤ ‖∇ · v‖Ω‖q‖Ω
≤ ‖v‖X‖q‖M ,

i.e., b(·, ·) is continuous on V ×M .
Since V is a closed subspace of X, we can write the following variational formu-

lation: find (u, p) ∈ V ×M satisfying{
a(u, v) + b(v, p) = #(v) for all v ∈ V,

b(u, q) = g(q) for all q ∈M.
(2.5)

We end this section noting that, under the solvability condition (1.3), any solution
of (2.5) satisfies the mass conservation equations in (1.1) and (1.2). Indeed, define
f ∈ L2(Ω) such that f = 0 on Ω1 and f = f2 on Ω2. If (u, p) is a solution to (2.5),
then ∇ · u ∈ L2(Ω) due to Lemma 2.2. The second equation in (2.5) implies that
∇ · u− f = c, where c is a constant. The divergence theorem gives

c|Ω| =
∫

Ω

(∇ · u− f) dx =

∫
∂Ω

u · n̂ ds−
∫

Ω

f dx = −
∫

Ω2

f2 dx = 0

using (1.3). Therefore ∇ · u = 0 on Ω1 and ∇ · u = f2 on Ω2.

3. Analysis of the weak formulation. This section is devoted to a proof of
existence of weak solutions to (1.1)–(1.6) based on the weak formulations (2.4) and

(2.5). Existence depends on our choice of the Lagrange multiplier space Λ = H
1/2
00 (ΓI)

so that the problem is neither over nor underconstrained.
We begin with a few simple but useful estimates. Let

W2 := {v2 ∈ X2 : ∇ · v2 = 0, a.e. x ∈ Ω2} ⊂ X2

denote the (closed) subspace of div-free functions in X2.
Lemma 3.1. For vi ∈ H1(Ωi)

d ∩Xi (i = 1, 2) we have

C1‖vi‖Ωi ≤ ‖vi‖Xi ≤ C2‖vi‖1,Ωi .(3.1)

Furthermore, for i = 1, 2, there holds

|ai(ui, vi)| ≤ C3‖ui‖Xi‖vi‖Xi for all ui, vi ∈ Xi,(3.2)

a1(v1, v1) ≥ C4‖v1‖2X1
for all v1 ∈ X1,(3.3)

a2(v2, v2) ≥ C5‖v2‖2X2
for all v2 ∈W2,(3.4)

|bi(vi, pi)| ≤ C6‖vi‖Xi , ‖pi‖Mi for all vi ∈ Xi, pi ∈Mi,(3.5)

|a(u, v)| ≤ C3‖u‖X‖v‖X for all u, v ∈ X,(3.6)

|b(v, p)| ≤ C6‖v‖X‖p‖M for all v ∈ X, p ∈M,(3.7)

a(v, v) ≥ min{C4, C5}‖v‖2X for all v ∈ X1 ×W2.(3.8)

Proof. Inequalities (3.1) and (3.2) follow from the Poincaré–Friedrich inequality
and the trace theorem. The Korn inequality implies (3.3) while (3.4) and (3.5) are
immediate. Inequalities (3.6), (3.7), and (3.8) follow by combining earlier ones.
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The next lemma establishes the Ladyzhenskaya–Babuška–Brezzi condition re-
quired for the formulation (2.5) in V ×M .

Lemma 3.2. There is a constant β > 0 such that

inf
q∈M\{0}

sup
v∈V \{0}

b(v, q)

‖v‖X ‖q‖M ≥ β.(3.9)

Proof. Let q ∈M \ {0} be fixed but arbitrary. We construct a v ∈ V satisfying

b(v, q) ≥ β‖v‖X ‖q‖M .

Given q = (q1, q2) ∈ M , the function q̃(x) defined by q̃|Ωi = qi has mean value zero
over Ω; thus q̃ ∈ L2

0(Ω). Thus, (see, e.g., [15, 13]) there exists ṽ ∈ (H1
0 (Ω))

d satisfying

∇ · ṽ = q̃, in Ω, ṽ = 0, on ∂Ω, ‖ṽ‖1,Ω ≤ C7‖q̃‖Ω.
Given this ṽ, define v = (v1, v2) ∈ X by vi = ṽ|Ωi , (i = 1, 2). Since

ṽ ∈ H1
0 (Ω)

d, it follows that v1|Γ1 = 0 and v2 · n̂2|Γ2 = 0.

Further, v1|ΓI
= v2|ΓI

= ṽ|ΓI
∈ (H1/2

00 (ΓI))
d so that vi · n̂i ∈ L2(ΓI) (i = 1, 2) and

bI(v, µ) = 〈v1 · n̂1 + v2 · n̂2, µ〉ΓI
= 0

for all µ ∈ L2(ΓI). Thus, v ∈ V . Using (3.1) we find

‖v‖X ≤ C2‖ṽ‖1,Ω ≤ C2C7‖q̃‖0,Ω = C2C7‖q‖M .

Finally, for this v

b(v, q) =
2∑
i=1

(−∇ · vi, qi) = −(∇ · ṽ, q̃)Ω(3.10)

= ‖q̃‖20,Ω ≥ (C2C7)
−1‖v‖X‖q‖M ,(3.11)

completing the proof with β = (C2C7)
−1.

To apply the abstract theory of mixed problems in, e.g., Girault and Raviart [15],
Brezzi and Fortin [7], we must show a(·, ·) is coercive on the constraint set Z. This is
accomplished in the next lemma.

Lemma 3.3. a(·, ·) is coercive on Z: there is an α > 0 such that

a(v, v) ≥ α‖v‖2X for all v ∈ Z.

Proof. Note that by Lemma 2.3 if v = (v1, v2) ∈ ker(B), ∇ · v2 = 0, a.e. x ∈ Ω,
i.e., v2 ∈W2. Coercivity now follows from (3.8) of Lemma 3.1.

Lemmas 2.1, 3.2, and 3.3, together with the abstract theory of mixed problems
[15, 7], immediately imply existence of a weak solution (u, p) ∈ V ×M satisfying (2.5).

Theorem 3.1. There exists a unique solution (u, p) ∈ V ×M to the problem
(2.5).

To verify that the solution to (2.5) is also the solution to the formulation (2.4) in
X ×M ×Λ using the general saddle point problem theory [15, 7], we must verify the
inf-sup condition

inf
0 �=λ∈Λ

sup
0 �=v∈X

bI(v, λ)

‖v‖X‖λ‖Λ ≥ β > 0.(3.12)
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Due to technical difficulties related to the restriction of H−1/2(∂Ω2) functions to ΓI ,
we are only able to show a modified inf-sup condition:

inf
0 �=λ∈Λ

sup
0 �=v∈X

bI(v, λ)

‖v‖X‖λ‖1/2,ΓI

≥ β > 0.(3.13)

Lemma 3.4. The inf-sup condition (3.13) holds.

Proof. Fix λ ∈ H
1/2
00 (ΓI) and let λ̃ ∈ H1/2(∂Ω2) be its extension by zero to ∂Ω2.

Since H
1/2
00 (ΓI) ⊂ H1/2(ΓI), there exists λ̂I ∈ H−1/2(ΓI) such that

〈λ̂I , λ〉ΓI

‖λ̂I‖−1/2,ΓI

≥ 1

2
‖λ‖1/2,ΓI

.(3.14)

We next define λ̂ ∈ H−1/2(∂Ω2) by

〈λ̂, w〉∂Ω2
:= 〈λ̂I , w〉ΓI

for all w ∈ H1/2(∂Ω2).

We then have

‖λ̂‖−1/2,∂Ω2
= sup

0 �=w∈H1/2(∂Ω2)

〈λ̂I , w〉ΓI

‖w‖1/2,∂Ω2

≤ ‖λ̂I‖−1/2,ΓI
.(3.15)

Since the normal trace operator maps H(div,Ω2) onto H−1/2(∂Ω2) (see [15, Corollary
2.8]) and it is continuous (see (2.1)), by the open mapping theorem there exists v2 ∈
H(div,Ω2) such that v2 · n̂2 = λ̂ on ∂Ω2 and

‖v2‖X2
≤ C‖λ̂‖−1/2,∂Ω2

≤ C‖λ̂I‖−1/2,ΓI
,(3.16)

using (3.15) for the second inequality. We note that v2 ∈ X2 since, for all w ∈
H1

0,ΓI
(Ω2),

〈v2 · n̂2, w〉∂Ω2 = 〈λ̂, w〉∂Ω2 = 〈λ̂I , w〉ΓI
= 0.

Choosing v = (0, v2) ∈ X and using (3.14) and (3.16) we get

bI(v, λ)

‖v‖X =
〈v2 · n̂2, λ̃〉∂Ω2

‖v2‖X2

=
〈λ̂, λ̃〉∂Ω2

‖v2‖X2

=
〈λ̂I , λ〉ΓI

‖v2‖X2

≥ 1

C

〈λ̂I , λ〉ΓI

‖λ̂I‖−1/2,ΓI

≥ β‖λ‖1/2,ΓI
.

Remark 3.1. If the porous medium is entirely enclosed within the fluid region,
then ΓI = ∂Ω2. In this case there are no incompatible points and it is easy to extend
slightly the proof of Lemma 3.4 to show that the stronger inf-sup condition (3.12)
holds. In this case, the unique weak solution to (2.5) is also the unique weak solution
to (2.4) and the two formulations are equivalent.

4. Finite element discretization. This section considers the finite element
discretization of the coupled problem. The interface conditions on ΓI separate into
tangential and normal conditions. This splitting on ΓI introduces interesting features
into the finite element procedure and its analysis.



2206 W. J. LAYTON, F. SCHIEWECK, AND I. YOTOV

Introduce upon Ωj a mesh T hj (j = 1, 2) with Ωj = ∪K∈T h
j
K. To simplify the

notation we shall assume that the cells K ∈ T hj are affine equivalent, the grids T h1 and

T h2 match at ΓI , that ΓI is polyhedral, and that no point of the interface boundary
∂ΓI belongs to the interior of an element face. We use the notation

Eh(K) := the set of all faces of the element K,

Eh(ΓI) := the set of all element faces E with E ⊂ ΓI .

For the discretization of the fluid’s variables we choose finite element spaces Xh
1

and Mh
1 which are assumed to be div-stable (also called LBB-stable),


Xh

1 ⊂ X1, Mh
1 ⊂M1, and

inf
0 �=q1∈Mh

1

sup
0 �=v1∈Xh

1

b1(v1,q1)
‖v1‖X1

‖q1‖M1
≥ β1 > 0,(4.1)

and to satisfy a discrete Korn inequality

(D(v1),D(v1))Ω1
≥ α1|v1|21,Ω1

for all v1 ∈ Xh
1 .(4.2)

We assume that Xh
1 and Mh

1 include at least polynomials of degree r1 and r1 − 1,
respectively, (r1 ≥ 1). Specifically, we assume that there exist (quasi) interpolation
operators

IhX1
: X1 ∩ (Hs(Ω1))

d → Xh
1 and IhM1

: M1 ∩Hs(Ω1) →Mh
1

such that for all K ∈ T h1{
|v1 − IhX1

v1|m,K ≤ Chs−mK |v1|s,δ(K), m = 0, 1, 1 ≤ s ≤ r1 + 1,

‖q1 − IhM1
q1‖0,K ≤ ChsK |q1|s,δ(K), 0 ≤ s ≤ r1.

(4.3)

Here δ(K) is equal to K in most cases of usual interpolation operators. However,
in cases of quasi interpolation operators suited for H1 functions like the Clement-
operator [9] or the Scott–Zhang-operator [27], δ(K) denotes the vicinity of K consist-

ing of all elements K̃ ∈ T h1 that touch element K. We assume the grids T h1 and T h2
to be shape-regular in the usual sense such that cases with local grid refinement are
allowed. For shape-regular grids, changes of the mesh size within the vicinity δ(K) of
an element K are uniformly bounded by a constant C, i.e., in particular for T h1 ,

C−1 hK ≤ h
K̃
≤ C hK for all K̃ ⊂ δ(K), K̃,K ∈ T h1 .(4.4)

This estimate is used to get rid of the δ(K)-terms in final error estimates.
Examples of spaces satisfying (4.1)–(4.3) include the MINI elements [2], the

Taylor–Hood elements [29], and the conforming Crouzeix–Raviart elements [10]. See,
e.g., [15, 7], for a more complete list of such spaces.

Remark 4.1. The discrete Korn inequality (4.2) is inherited from the continuous
inequality for all conforming elements. However, nonconforming spaces, in general,
do not satisfy (4.2); see [12].

Remark 4.2. The inf-sup condition (4.1) differs from the usual one verified in
the literature [15, 7] for various spaces because the pressure space Mh

1 is not restricted
to have zero mean over Ω1, i.e., Mh

1 ⊂ L2(Ω1), not L2
0(Ω1). However, the usual

discrete inf-sup condition is almost enough to prove (4.1). The main extra ingredient
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needed is the existence of a (typically locally constructed, see [7, section VI.4]) operator
Ph

1 : X1 → Xh
1 (not necessarily the same as IhX1

) satisfying, for all K ∈ T h1 and all
v1 ∈ X1, ∫

K

∇ · (Ph
1 v1 − v1) dx = 0 and ‖Ph

1 v1‖1,Ω1 ≤ C8‖v1‖1,Ω1 ,(4.5)

where C8 is a constant independent of v1 and h. In, e.g., [7], such an operator is
locally constructed for all the aforementioned spaces.

The following lemma gives sufficient conditions for the discrete LBB-stability (4.1)
of the spaces Xh

1 and Mh
1 .

Lemma 4.1. Suppose that an operator Ph
1 : X1 → Xh

1 satisfying the condition
(4.5) exists. Suppose also the spaces Xh

1 ∩ (H1
0 (Ω1))

d and Mh
1 ∩ L2

0(Ω1) satisfy the
usual discrete inf-sup condition. Then, the spaces Xh

1 and Mh
1 satisfy (4.1).

Proof. Let qh1 ≡ q0 ∈ R be an arbitrary constant function of Mh
1 . We first show

that there exists a vh1 ∈ Xh
1 such that

b1(v
h
1 , q

h
1 ) ≥ β0 ‖vh1 ‖X1

‖qh1 ‖M1

with a constant β0 > 0 independent of vh1 and h. To this end, let ṽ1 be a solution of
the following problem: find ṽ1 ∈ X1 satisfying

∇ · ṽ1 = qh1 in Ω1, ṽ1 = g1 on ∂Ω1,

where g1 is chosen suitably such that the compatibility condition 〈g1 · n̂1, 1〉∂Ω1 =
(qh1 , 1)Ω1

= q0|Ω1| is fulfilled and g1 ∈ (H1/2(∂Ω1))
d. By, e.g., [13, sect. III.3, Exercise

3.4], such a ṽ1 exists and satisfies the estimate

‖ṽ1‖1,Ω1 ≤ C9{‖qh1 ‖Ω1 + ‖g1‖1/2,∂Ω1
}.

For the construction of g1, let ϕ0 ∈ C(∂Ω1) be such that ϕ0 ≡ 0 on Γ1, ϕ0 is quadratic
on ΓI , and 〈ϕ0, 1〉ΓI

= 1. Then, we choose g1 as g1 := |Ω1|q0ϕ0n̂1. One can easily
verify that g1 belongs to (H1/2(∂Ω1))

d and satisfies the compatibility condition as
well as the estimate ‖g1‖1/2,∂Ω1

≤ c(Ω1, ϕ0)‖qh1 ‖Ω1 . This implies

‖ṽ1‖1,Ω1 ≤ C9{1 + c(Ω1, ϕ0)} ‖qh1 ‖Ω1 .

Defining vh1 := −Ph
1 ṽ1, we have

b1(v
h
1 , q

h
1 )

‖vh1 ‖X1‖qh1 ‖M1

=
(∇ · ṽ1, q

h
1 )Ω1

‖Ph
1 ṽ1‖X1‖qh1 ‖M1

≥ ‖qh1 ‖2M1

C8‖ṽ1‖X1‖qh1 ‖M1

≥ β0(4.6)

with β0 := (C8C9{1+ c(Ω1, ϕ0)})−1. Now, using this result and the assumed discrete
inf-sup condition for the spaces Xh

1 ∩ (H1
0 (Ω1))

d and Mh
1 ∩ L2

0(Ω1), we can show in
the same way as in the proof of Theorem 1.12, section II.1.4 in [15] that the spaces
Xh

1 and Mh
1 satisfy the inf-sup condition (4.1).

For the discretization of the porous medium problem in Ω2, we choose X
h
2 ×Mh

2 ⊂
X2×M2 to be any of the well-known mixed finite element spaces (see [7, section III.3]),
the RT spaces [24, 21], the BDM spaces [6], the BDFM spaces [5], the BDDF spaces
[4], or the CD spaces [8]. We assume that Xh

2 and Mh
2 contain at least polynomials

of degree r2 and l2, respectively. It is known for these choices that

∇ ·Xh
2 = Mh

2
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and that there exists an interpolation operator IhX2
: (H1(Ω2))

d → Xh
2 such that for

all v2 ∈ (H1(Ω2))
d

(∇ · IhX2
v2, w)Ω2 = (∇ · v2, w)Ω2 , w ∈Mh

2 .(4.7)

Let IhM2
: M2 →Mh

2 be the L2 orthogonal projection such that for all q2 ∈M2

(IhM2
q2, w)Ω2 = (q2, w)Ω2 , w ∈Mh

2 .(4.8)

Our next lemma will collect some known useful results for these spaces. Their proof
can be found in [7, section III.3].

Lemma 4.2. There holds, for all v2 ∈ (H1(Ω2))
d,

〈IhX2
v2 · n̂2, µ〉E = 〈v2 · n̂2, µ〉E(4.9)

for all µ ∈ Rr2(E) and for all E ∈ Eh(ΓI),

where

Rr2(E) :=

{Pr2(E) if d = 2 or E is a triangle,
Qr2(E) if d = 3 and E is a quadrilateral,

(4.10)

where Pr2(E) and Qr2(E) are the usual polynomial spaces (see, e.g., [7].) For the
restrictions to the element faces,

vh2 · n̂2|E ∈ Rr2(E) for all vh2 ∈ Xh
2 , E ∈ E(K), K ∈ T h2 .(4.11)

Further, the operators IhX2
and IhM2

satisfy, for all K ∈ T h2 ,

‖q2 − IhM2
q2‖0,K ≤ ChsK |q2|s,K , 0 ≤ s ≤ l2 + 1,(4.12)

|v2 − IhX2
v2|m,K ≤ Chs−mK |v2|s,K , m ∈ {0, 1}, 1 ≤ s ≤ r2 + 1,(4.13)

‖∇ · (v2 − IhX2
v2)‖0,K ≤ ChsK |∇ · v2|s,K , 0 ≤ s ≤ l2 + 1.(4.14)

4.1. The space V h. Define the finite element spaces over Ω:

Xh := Xh
1 ×Xh

2 , Mh :=

{
(q1, q2) ∈Mh

1 ×Mh
2 :

∫
Ω1

q1dx+

∫
Ω2

q2dx = 0

}

and

Λh := {µh ∈ L2(ΓI) : µ
h|E ∈ Rr2(E) for all E ∈ Eh(ΓI)}.

Note that, since function µh ∈ Λh does not in general vanish on ∂ΓI ,

Λh �⊂ Λ.

With this Λh define

V h := {v = (v1, v2) ∈ Xh : bI(v, µ) = 0 for all µ ∈ Λh}.

These choices result in an approximation which is nonconforming (since Λh �⊂ Λ) and
exterior (since V h �⊂ V ).

Remark 4.3. The space Λh is the normal trace of Xh
2 on ΓI .
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Fig. 3. Degrees of freedom on ΓI .

We consider the following discrete problem: find (uh, ph) ∈ V h ×Mh satisfying{
a(uh, vh) + b(vh, ph) = #(vh) for all vh ∈ V h,

b(uh, qh) = g(qh) for all qh ∈Mh.
(4.15)

This is the natural discretization of (2.5). Since V h �⊂ V , conservation of mass
across ΓI holds only in an approximate sense.

It is important to understand in exactly what sense mass conservation across ΓI
holds. To this end, a local characterization of the functions v = (v1, v2) ∈ V h is
needed.
Characterization of v = (v1, v2) ∈ V h. If a function v = (v1, v2) ∈ Xh

belongs to V h, then the nodal values of v2 · n̂2 ∈ Xh
2 on ΓI are linked to those of

v1 · n̂1 on ΓI . To be specific, let Fi denote the set of nodes of Xh
i , i = 1, 2, and Fi(E)

the set of nodes j ∈ Fi belonging to an element face E, and let φ
(i)
j , j ∈ Fi (i = 1, 2),

be the associated basis functions of Xh
i . Let E ∈ Eh(ΓI) be an element face on ΓI

associated with elements K1 ⊂ Ω1 and K2 ⊂ Ω2,

E ∈ E(K1) ∩ E(K2), Ki ∈ Ωi,
as depicted in Figure 3.

From the construction of the basis functions, we have for v = (v1, v2) ∈ Xh

vi · n̂i|E =
∑

j∈Fi(E)

(v
(i)
j φ

(i)
j ) · n̂i, i = 1, 2,(4.16)

where v
(i)
j ∈ R are the nodal values of vi. By (4.10)

dim(Rr2(E)) = cardinality(F2(E))

so that there is a one-to-one correspondence between nodes i ∈ F2(E) and basis func-
tions λE,i ∈ Rr2(E) such that

Rr2(E) = span {λE,i : i ∈ F2(E)}.(4.17)

Consider a degree of freedom associated with a node i ∈ F2(E) that is precisely the
nodal functional

N
(2)
i (v2) := |E|−1〈v2 · n̂2, λE,i〉E , |E| = measure (E).(4.18)
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The basis functions are, by construction, dual with respect to these functionals:

N
(2)
i (φ

(2)
j ) = δij for all i, j ∈ F2.(4.19)

From (4.18), (4.19), and the formula (4.16) for vi · n̂i|E , we get

v
(2)
i = |E|−1〈v2 · n̂2, λE,i〉E(4.20)

for all i ∈ F2(E), E ∈ Eh(ΓI), v2 ∈ Xh
2 .

Consider the condition defining V h, bI(v, µ) = 0 for all µ ∈ Λh. Restricting µ to a
generic basis function λE,i for Λ

h gives

〈v2 · n̂2, λE,i〉E = −〈v1 · n̂1, λE,i〉E for all i ∈ F2(E), E ∈ Eh(ΓI).(4.21)

Combining this with (4.20) gives

v
(2)
i = −|E|−1〈v1 · n̂1, λE,i〉E for all i ∈ F2(E), E ∈ Eh(ΓI).(4.22)

Inserting the expression of v1 in terms of its nodal values (4.16) into (4.22) gives the
following pointwise characterization of the space v ∈ V h.

Proposition 4.1. Let v = (v1, v2) ∈ Xh be given. Then v ∈ V h is equivalent to

the following relation between the nodal values v
(1)
i and v

(2)
i of v1 and v2 on E being

satisfied:

v
(2)
i = −|E|−1

∑
j∈F1(E)

v
(1)
j 〈φ(1)

j · n̂1, λE,i〉E(4.23)

for all i ∈ F2(E), E ∈ Eh(ΓI).

Remark 4.4. The relation (4.23) can be interpreted to mean that the nodes

i ∈
⋃

E∈Eh(ΓI)

F2(E)

are “hanging nodes” in that values of the function v ∈ V h are determined by the
corresponding values at the nodes j ∈ ∪E∈Eh(ΓI) F1(E).

4.2. Inf-sup conditions for the coupled problem. The discrete formulation
(4.15) leads to the question of an inf-sup condition in V h ×Mh. We show next that
the usual fluid’s velocity-pressure discrete inf-sup condition (4.1) in fact implies the
needed V h ×Mh inf-sup condition.

Lemma 4.3. Suppose that (Xh
1 ,M

h
1 ) satisfies the discrete inf-sup condition (4.1).

Then, (V h,Mh) is LBB-stable as well. Specifically,

inf
qh∈Mh

sup
V h∈V h

b(vh, qh)

‖vh‖X ‖qh‖M ≥ β > 0.(4.24)

Proof. Let qh = (qh1 , q
h
2 ) ∈ Mh ⊂ M be given and let q̃ ∈ L2

0(Ω) denote the
function with q̃|Ωi = qhi . Then it is known, e.g., [13, 15, 7], that there exists ṽ ∈
H1(Ω)d with

∇ · ṽ = −q̃ in Ω, ṽ = 0 on ∂Ω,
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satisfying

‖ṽ‖1,Ω ≤ C‖q̃‖0,Ω.
Define v = (v1, v2) ∈ X by vi = ṽ|Ωi , i = 1, 2, so that

b(v, qh) = −(∇ · ṽ, q̃)Ω = ‖q̃‖20,Ω = ‖qh‖2M .

The above a priori bound on ṽ implies

b(v, qh) ≥ 1

C
‖ṽ‖1,Ω ‖qh‖M ,

which implies an inf-sup condition, similar to (4.24), only over (V,Mh) rather than
(V h,Mh).

To prove the condition (4.24) over (V h,Mh), we now construct (following Fortin’s
idea) an operator Πh : X1 × (X2 ∩ (H1(Ω2))

d)→ V h with

b(Πhv − v, qh) = 0 for all qh ∈Mh and ‖Πhv‖X ≤ C‖ṽ‖1,Ω.
Indeed, if such an operator exists, then we have

1

C
‖qh‖M ≤ b(v, qh)

‖ṽ‖1,Ω =
b(Πhv, qh)

‖ṽ‖1,Ω ≤ b(Πhv, qh)
1
C ‖Πhv‖X

for all qh ∈Mh,

which would prove (4.24).
Let Πhv = (Πh1v,Π

h
2v) ∈ Xh

1 × Xh
2 . To define Π

h
1 , note that since (X

h
1 ,M

h
1 ) is

LBB-stable, by Lemma 1.1 in Chapter II section 1.1 of [15], there exists an operator
ih1 : X1 → Xh

1 satisfying, for all v1 ∈ X1,

b1(i
h
1v1 − v1, q

h
1 ) = 0 for all qh1 ∈Mh

1

and

‖ih1v1‖X1 ≤ C‖v1‖X1 .

Thus, define

Πh1v := ih1v1 ∈ Xh
1 .

Next, construct a w2 ∈ (H1(Ω2))
d with{ ∇ · w2 = ∇ · v2 in Ω2,

w2 = 0 on Γ2 and w2 = Πh1v on ΓI .
(4.25)

Indeed, let g ∈ L2(∂Ω2) be given by

g =

{
0 on Γ2,
Πh1v on ΓI .

Since Πh1v = 0 on ∂ΓI ,Π
h
1v ∈ H

1/2
00 (ΓI)

d. Thus, g ∈ H1/2(∂Ω2)
d and

‖g‖1/2,∂Ω2
≤ C‖Πh1v‖1/2,ΓI

≤ C‖Πh1v‖1/2,∂Ω1

≤ C‖Πh1v‖1,Ω1
≤ C‖ih1v1‖X1

≤ C‖v1‖1,Ω1
.
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Thus, there exists an extension z ∈ H1(Ω2)
d with

z = g on ∂Ω, ‖z‖1,Ω2 ≤ C‖g‖1/2,∂Ω2
≤ C‖v1‖1,Ω1 .

Next, write w2 = z + w0, where w0 satisfies

∇ · w0 = ∇ · (v2 − z) in Ω2, w0 = 0 on ∂Ω2.

The solution to this problem w0 ∈ H1(Ω)d exists [15] and satisfies

‖w0‖1,Ω2 ≤ C‖∇ · (v2 − z)‖0,Ω2 ≤ C(‖v2‖1,Ω2 + ‖z‖1,Ω2)

≤ C{‖v2‖1,Ω2
+ ‖v1‖1,Ω1

} ≤ C‖ṽ‖1,Ω.

The function w2, so constructed, satisfies (4.25) and

‖w2‖1,Ω2 ≤ C‖ṽ‖1,Ω.(4.26)

Finally, define Πh2v as the finite element (quasi) interpolant of w2 ∈ X2,

Πh2v := IhX2
w2 ∈ Xh

2 .

From the assumed properties of IhX2
, (4.14) with s = m = 1, we get

‖IhX2
w2‖1,K ≤ C‖w2‖1,K ,

so that (squaring and summing over K ∈ T h2 )

‖IhX2
w2‖2X2

=
∑
K∈T h

2

{‖IhX2
w2‖20,K + ‖∇ · IhX2

w2‖20,K}

≤ C‖w2‖21,Ω2
.

This with (4.26) gives

‖Πh2v‖X2 ≤ C‖ṽ‖1,Ω,

which is one of the two required conditions on Πh. Next, we show

b(Πhv − v, qh) = 0 for all qh ∈Mh.

Let qh = (qh1 , q
h
2 ) ∈ Mh. Then, for all K ∈ T h2 , qh2 |K ∈ Pr2(K). We thus get from

(4.7) and (4.25) that

(∇ ·Πh2v, qh2 ) = (∇ · IhX2
w2, q

h
2 )K = (∇ · w2, q

h
2 )K = (∇ · v2, q

h
2 )K .

Thus, by summing over K, we get

b2(Π
h
2v, q

h
2 ) = b2(v2, q

h
2 ) for all qh2 ∈Mh

2 .(4.27)

Now, let E ∈ Eh(ΓI) be an element face on the interface and let µ ∈ Rr2(E). Then,
(4.9) in Lemma 4.2 implies (noting that Πh2v = IhX2

w2)

〈Πh2v · n̂2, µ〉E = 〈IhX2
w2 · n̂2, µ〉E = 〈w2 · n̂2, µ〉E = 〈Πh1v · n̂2, µ〉E ,
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where the fact that w2 = Πh1v on ΓI (see (4.25)) was used. Thus

〈Πh1v · n̂1 +Πh2v · n̂2, µ〉E = 0 for all µ ∈ Rr2(E).

The definition of Λh and summing over E ⊂ ΓI now implies that

〈Πh1v · n̂1 +Πh2v · n̂2, µ
h〉ΓI

= 0 for all µh ∈ Λh.(4.28)

In other words, Πhv = (Πh1v1,Π
h
2v2) ∈ V h. Since we have shown

bj(Π
h
j v, q

h
j ) = bj(vj , q

h
j ), j = 1, 2,

it follows that

b(Πhv, qh) = b(v, qh),

completing the proof.

4.3. Approximation of the coupled problem in V h. The finite element
spaces Xh

1 and Xh
2 are well understood so the approximation properties of Xh =

Xh
1 ×Xh

2 are known and asymptotically optimal. On the other hand, the finite element
space arising in the error analysis is V h rather than Xh. If Xh×Λh satisfied a discrete
inf-sup condition similar to (3.13), then the abstract theory of mixed methods [15, 7]
would imply that the error in approximation in V h would be comparable to that in
Xh×Λh. However, Λh �⊂ Λ since functions in Λh do not vanish at ∂ΓI (a key condition
in the continuous case). Therefore, we do not, in general, expect this discrete inf-sup
condition to hold.

Thus, the approximation properties of

V h = {vh ∈ Xh : 〈vh1 · n̂1 + vh2 · n̂2, µ〉ΓI
= 0 for all µ ∈ Λh}

must be delineated by a direct construction. Herein, we shall construct an interpola-
tion operator

Ih := W → V h,

where W is a subspace of V of sufficiently smooth functions. To that end, we choose
si sufficiently large and define W as follows:

W := {v = (v1, v2) ∈ X : vi ∈Wi := Xi ∩ (Hsi(Ωi))
d, i = 1, 2,

and v1 · n̂2|ΓI
= v2 · n̂2|ΓI

in L2(ΓI)}.(4.29)

The construction of Ih will be based on the finite element interpolation operators:
IhXi

: Wi → Xh
i (i = 1, 2). Define Ih = (Ih1 v, I

h
2 v) ∈ V h via

Ih1 v = IhX1
v1 ∈ Xh

1 , Ih2 v = IhX2
v2 − δh2 ∈ Xh

2 ,

where the (small) correction δh2 ∈ Xh
2 is chosen to enforce in a discrete sense continuity

of the normal velocities across ΓI in (4.29).
Construction of the correction δh

2 enforcing I
hv ∈ V h. By the choice of

IhX2
and Λh we get the following relation for all µh ∈ Λh:

〈Ih1 v · n̂1 + Ih2 v · n̂2, µ
h〉ΓI

= −〈IhX1
v1 · n̂2, µ

h〉ΓI
+ 〈v2 · n̂2, µh〉ΓI

− 〈δh2 · n̂2, µ
h〉ΓI

(4.30)

= 〈(v1 − IhX1
v1) · n̂2, µ

h〉ΓI
− 〈δh2 · n̂2, µ

h〉ΓI
.
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To construct δh2 we shall first construct δ2 ∈ X2 ∩ (H1(Ω2))
d such that

δ2 = v1 − IhX1
v1 on ΓI , and ‖δ2‖1,Ω2 ≤ C|v1 − IhX1

v1|1,Ω1 .(4.31)

To this end, let g2 extend v1 − IhX1
v1 by zero to ∂Ω2:

g2 :=

{
v1 − IhX1

v1 on ΓI ,
0 on Γ2 = ∂Ω2 \ ΓI .

Since (v1− IhX1
v1) = 0 on ∂ΓI , (v1− IhX1

v1) ∈ H
1/2
00 (ΓI) so g2 ∈ H1/2(∂Ω2)

d. Further,
we have the bound

‖g2‖1/2,∂Ω2
≤ C‖v1 − IhX1

v1‖1/2,ΓI
≤ C‖v1 − IhX1

v1‖1/2,∂Ω1

≤ C‖v1 − IhX1
v1‖1,Ω1

≤ C|v1 − IhX1
v1|1,Ω1

.

Since H1/2(∂Ω2)
d is the range of the trace operator on H1(Ω2)

d, we can find a δ2 ∈
H1(Ω2)

d extending g2 onto Ω2 and satisfying

‖δ2‖1,Ω2
≤ C‖g2‖1/2,∂Ω2

≤ C|v1 − IhX1
v1|1,Ω1

.

Define δh2 as the interpolant of this extension:

δh2 := IhX2
δ2.(4.32)

The property (4.9) of IhX2
(·) implies that for µh ∈ Λh

〈δh2 · n̂2, µ
h〉ΓI

= 〈δ2 · n̂2, µ
h〉ΓI

= 〈(v1 − IhX1
v1) · n̂2, µ

h〉ΓI
.

Combining this with (4.30) gives

〈Ih1 v · n̂1 + Ih2 v · n̂2, µ
h〉ΓI

= 0 for all µh ∈ Λh,(4.33)

implying that (Ih1 v, I
h
2 v) ∈ V h. Thus, this completes the construction of Ih : W →

V h. We shall need an estimate of the correction term ‖δh2 ‖X2 developed as follows.
From the interpolation error estimates we get, for every K ∈ T h2 ,

‖δh2 ‖1,K ≤ ‖δ2‖1,K + ‖δ2 − IhX2
δ2‖1,K ≤ C‖δ2‖1,K .

Thus, (summing over K ⊂ Ω2)

‖δh2 ‖X2 =
{‖δh2 ‖20,Ω2

+ ‖∇ · δh2 ‖20,Ω2

}1/2 ≤


∑
K∈T h

2

‖δh2 ‖21,K




1/2

,

which implies

‖δh2 ‖X2 ≤ C‖δ2‖1,Ω2 ≤ C|v1 − IhX1
v1|1,Ω1 .(4.34)

Bound (4.34) now gives interpolation error estimates for Ih1 v = IhX1
v1 and Ih2 v =

IhX2
v2 − δh2 :

‖v − Ihv‖X ≤ |v1 − Ih1 v|1,Ω1
+ ‖v2 − Ih2 v‖X2

≤ C|v1 − IhX1
v1|1,Ω1 + ‖v2 − IhX2

v2‖X2 .(4.35)
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Combining these with the estimates for IhXj
(see (4.3)),

|v1 − IhX1
v1|1,Ω1 ≤ C



∑
K∈T h

1

(hr1K |v1|r1+1,δ(K))
2




1/2

,

‖v2 − IhX2
v2‖X2 ≤ C



∑
K∈T h

2

(
hr2+1
K (|v2|r2+1,K + |∇ · v2|r2+1,K)

)2
1/2

,

and using (4.4) and the fact that an element K̃ can belong at most to a finite number

n(K̃) ≤ C of local patches δ(K) leads to the following result.
Proposition 4.2. For all v ∈ W ⊂ V (given by (4.29)), the interpolation

operator Ih : W → V h satisfies

‖v − Ihv‖X ≤ C



∑
K∈T h

1

(hr1K |v1|r1+1,K)
2

+
∑
K∈T h

2

(
hr2+1
K (|v2|r2+1,K + |∇ · v2|r2+1,K)

)2
1/2

.

4.4. Discretization error estimates. Since, as noted above, Λh �⊂ Λ and
V h �⊂ V , the associated discretizations of either saddle point formulations contain
an extra consistency error which must be estimated using the earlier constructions.
Indeed, the abstract error estimates from Brezzi and Fortin [7, Chap. II, sect. 2.6,
Proposition 2.16] give the following.

Lemma 4.4. Let (u, p) ∈ V ×M be the solution of the weak formulation (2.5) of
the coupled problem. Let (uh, ph) ∈ V h ×Mh be the solution of the discrete problem
(4.15). Let the finite element spaces be chosen as in subsection 4.1, satisfying LBB-
stability (subsection 4.2) and approximability (subsection 4.3). Then,

‖u− uh‖X + ‖p− ph‖M ≤ C

{
inf

vh∈V h
‖u− vh‖X + inf

qh∈Mh
‖p− qh‖M

}
+Hh,

where

Hh := sup
vh∈V h

|a(u, vh) + b(vh, p)− #(vh)|
‖vh‖X

is the consistency error.
The error analysis thus depends on obtaining a bound on the consistency error

term Hh. To this end, suppose the weak solution (u, p) to the coupled problem is
smooth enough (to be made precise soon) and that λ ∈ Hs(ΓI) (for some s depending
on the smoothness of (u, p)), where λ is defined in (2.2).

The variational formulation (2.4) of (u, p, λ) in (X,M,Λ) implies that

a(u, vh) + b(vh, p) + 〈λ, vh1 · n̂1 + vh2 · n̂2〉ΓI
= #(vh) for all vh ∈ Xh.

Thus, if we define the consistency error functional

θ(vh) := a(u, vh) + b(vh, p)− #(vh), vh ∈ Xh,
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it follows that

θ(vh) = −〈vh1 · n̂1 + vh2 · n̂2, λ〉ΓI
for all vh ∈ V h ⊂ Xh.

Lemma 4.5 (consistency error estimate). For all vh ∈ V h, there holds

|θ(vh)| ≤ C




∑
E∈Eh(Γi)

(hsE |λ|s,E)2



1/2

‖vh‖X ,(4.36)

for 0 ≤ s ≤ r2 + 1.
Proof. Let µh ∈ Λh denote the L2(ΓI) projection of λ into Λh. Since Λh consists

of discontinuous piecewise polynomials, the orthogonality relation for µh holds edge
by edge:

〈λ− µh, w〉E = 0 for all w ∈ Rr2(E), for all E ∈ Eh(ΓI).(4.37)

From the definition of V h it follows that, for all vh ∈ V h,

θ(vh) = 〈vh1 · n̂1 + vh2 · n̂2, µh − λ〉ΓI

= 〈vh1 · n̂1, µ
h − λ〉ΓI

+
∑

E∈Eh(ΓI)

〈µh − λ, vh2 · n̂2〉E .

By Lemma 4.2 we have that

w = vh2 · n̂2|E ∈ Rr2(E) for all E ∈ E(K), K ∈ T h2 ,

which implies

〈µh − λ, vh2 · n̂2〉E = 0 for all E ∈ Eh(ΓI).
Thus, θ(vh) = 〈vh1 · n̂1, µ

h − λ〉ΓI
, for all vh ∈ V h, and it follows that

|θ(vh)| ≤
∑

E∈Eh(ΓI)

‖vh1 ‖0,E‖λ− µh‖0,E

≤

 ∑
E∈Eh(ΓI)

‖λ− µh‖20,E




1/2

‖vh1 ‖0,ΓI
.(4.38)

By the trace theorem and the Poincaré–Friedrichs inequality,

‖vh1 ‖0,ΓI
≤ C‖vh‖X .

Since µh is the L2(E) projection of λ into Rr2(E) by (4.37), it follows that

‖λ− µh‖0,E ≤ ChsE |λ|s,E , for 0 ≤ s ≤ r2 + 1, E ∈ Eh(ΓI).
Using the last two bounds in (4.38) completes the proof.

Lemma 4.4 immediately yields a bound on the consistency error term Hh.
Corollary 4.1. There holds

Hh ≤ C




∑
E∈Eh(ΓI)

(hsE |λ|s,E)2



1/2

, for 0 ≤ s ≤ r2 + 1.
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This bound can now be used in the abstract error estimate in Lemma 4.3 to yield
a convergence theorem.

Theorem 4.1. Let the weak solution (u, p) to (2.5) be sufficiently smooth (that
the norms in (4.39) are finite). Let (uh, ph) ∈ V h×Mh be the finite element approx-
imation to (u, p). Then,

‖u− uh‖X + ‖p− ph‖M ≤ C





∑
K∈T h

1

(
hs1K (|u1|s1+1,K + |p1|s1,K )

)2
1/2

+



∑
K∈T h

2

(
hs̃2K |u2|s̃2,K + hs2K (|p2|s2,K + |∇ · u2|s2,K)

)2
1/2

(4.39)

+




∑
E∈Eh(ΓI)

(hs2E |λ|s2,E)2



1/2

 ,

1 ≤ s1 ≤ r1, 1 ≤ s̃2 ≤ r2 + 1, 0 ≤ s2 ≤ l2 + 1.

Remark 4.5. Theorem 4.1 implies optimal error bounds in both the fluid region
and in the porous medium region.

Remark 4.6. We have just learned of the concurrent work of Discacciati, Miglio,
and Quarteroni [11] on a closely related problem. They consider Stokes–Darcy cou-
pling with a free slip condition on ΓI (i.e., α1 = 0 in (1.6)) and the formulation of
the Darcy model as a Poisson problem rather than as a mixed method, and they obtain
interesting results.
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Abstract. Flexible Krylov methods refers to a class of methods which accept preconditioning
that can change from one step to the next. Given a Krylov subspace method, such as CG, GMRES,
QMR, etc. for the solution of a linear system Ax = b, instead of having a fixed preconditioner M and
the (right) preconditioned equation AM−1y = b (Mx = y), one may have a different matrix, say Mk,
at each step. In this paper, the case where the preconditioner itself is a Krylov subspace method is
studied. There are several papers in the literature where such a situation is presented and numerical
examples given. A general theory is provided encompassing many of these cases, including truncated
methods. The overall space where the solution is approximated is no longer a Krylov subspace
but a subspace of a larger Krylov space. We show how this subspace keeps growing as the outer
iteration progresses, thus providing a convergence theory for these inner-outer methods. Numerical
tests illustrate some important implementation aspects that make the discussed inner-outer methods
very appealing in practical circumstances.

Key words. flexible or inner-outer Krylov methods, variable preconditioning, nonsymmetric
linear system, iterative solver
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1. Introduction. Consider the iterative solution of large sparse (symmetric or)
nonsymmetric linear systems of equations of the form

Ax = b.(1.1)

In recent years, several authors studied Krylov subspace methods with variable (or
flexible) preconditioning, i.e., preconditioning with a different (possibly nonlinear)
operator at each iteration of a Krylov subspace method. These include [1], [17], [27],
[29], [36], [37], and [39]. The usual (right) preconditioning consists of replacing (1.1)
by

AM−1y = b, with Mx = y,(1.2)

for a suitable preconditioner M . One of the motivations for methods with variable
preconditioners is the need to solve each preconditioning equation

Mz = v(1.3)

only inexactly, as is done, e.g., in [12], using multigrid or, in [40], using a two-stage pre-
conditioner, one of which is inexact; see also [4]. This implies that we have (implicitly)
a different M at the kth step of the Krylov method. One can also consider precondi-
tioners which might improve using information from previous iterations; cf. [2], [13],
[21].
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Experiments have been reported in the literature, where the preconditioner in
(1.3) is itself a Krylov subspace method. For example, some versions of GMRESR
[37] fit this description [6]. We refer to [39] for a more detailed analysis specific to
GMRESR versus FGMRES. In [5], [29], one has GMRES for the preconditioner, or
inner iterations, and FGMRES as the (outer) flexible method. In [36], QMR is the
preconditioner and FQMR is the outer method. In all these cases, we can say that
at the kth outer step (or cycle) the inner iterative method is stopped after a certain
number mk of (inner) iterations. This number is either fixed a priori, such as in [5],
[29], [37], or is the consequence of some stopping criteria often involving the inner
residual [1], [17], [36], [38].

In this paper we analyze the convergence theory of these inner-outer methods,
i.e., flexible Krylov subspace methods preconditioned by (a possibly different) Krylov
subspace method. The resulting class of methods can be characterized as those choos-
ing at the kth cycle the approximate solution to (1.1) from a particular k-dimensional
subspace of a larger Krylov subspace; see sections 2–5. We show that, as the method
progresses, the dimensions of this subspace keeps growing, and thus the method con-
verges. This finite termination property is not available for restarted methods, such
as GMRES(m). In other words, by restricting ourselves to preconditioners which are
Krylov methods, we maintain the global iteration within a larger Krylov subspace.

An alternative view of these inner-outer methods is to consider a Krylov method
with polynomial preconditioning (see, e.g., [2], [11], [15], [20], [21], [28], [30]), where a
new polynomial is implicitly chosen at each cycle by a Krylov method; cf. [14], [37],
[38].

Our approach is very general, and thus our analysis applies to a variety of
inner-outer methods. In particular, it applies to truncated Krylov methods, such
as DQGMRES [32], when preconditioned with a Krylov subspace method. Several
authors have suggested strategies on how to choose which vectors to keep in the trun-
cated basis; see, e.g., [7], [38]. Our results in section 5 provide a theoretical foundation
for some of these empirical recommendations.

In section 6 we discuss the possibility of breakdown and stagnation of the inner-
outer methods. Since the residual of the inner method is deflated with respect to the
previous vectors in the outer basis, stagnation is much less prevalent than in restarted
methods.

In section 7 we show in some particular cases why these methods behave better
than the corresponding restarted counterparts and illustrate this with additional nu-
merical experiments. In our (albeit limited) computational experience, even in cases
where at intermediate steps the restarted methods have a lower residual norm, the
inner-outer methods outperform the restarted methods. These experiments demon-
strate how competitive these inner-outer methods are. They are a very good alterna-
tive to restarted methods such as GMRES(m). We hope that the theory presented
here, assuring convergence, together with the numerical evidence, will encourage more
practitioners to try these inner-outer methods.

In this paper we concentrate on nonsymmetric systems, but most of our obser-
vations are valid for symmetric systems as well, where flexible CG-type methods can
be employed [17], [27]. We also note that in our descriptions the coefficient matrix is
assumed to be A, as in (1.1), although everything applies to a preconditioned matrix
AP−1 as in (1.2), or P−1A, for a suitable fixed preconditioner P . In fact, some of
our experiments in section 8 are of this type, where P corresponds to an incomplete
factorization of A.
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Finally, we note that exact arithmetic is assumed throughout the paper, and
that numerical experiments were carried out using Matlab 5.3 with machine epsilon
ε = 2.2 · 10−16 [23].

2. General setup. Given an initial guess x0 to the solution of (1.1), and the
corresponding residual r0 = b − Ax0, a Krylov subspace method generates a basis
{v1, v2, . . . , vm} of the Krylov subspaceKm(A, r0) = span{r0, Ar0, A2r0, . . . , A

m−1r0}.
Let Vm = [v1, v2, . . . , vm]. An approximation to the solution of (1.1) is sought in
x0 + Km(A, r0), i.e., of the form xm = x0 + Vmym for some ym ∈ R

m. The different
methods arise by different choices of the basis defined by Vm and by different choices
of ym; see, e.g., [19], [30], for detailed description of these methods.

For example, in GMRES [31], the vectors in Vm are orthonormal, produced by
the Arnoldi method with v1 = r0/β, β = ‖r0‖, the norm of the initial residual. Thus,
the following relation holds:

AVm = Vm+1Hm,(2.1)

where Hm is upper Hessenberg of size (m + 1) × m. The vector ym is chosen to
minimize the norm of the residual rm = b−Axm, i.e., find ym which is the minimizer
of

min
y∈Rm

‖r0 −AVmy‖ = min
y∈Rm

‖Vm+1(βe1 −Hmy)‖,(2.2)

where e1 is the first Euclidean vector. Our general analysis also includes truncated
methods such as DQGMRES [32] as a possible outer subspace method, where only
certain vectors of Vm are kept in storage. For example, one can keep the last �
columns of Vm (denote the n× � matrix containing these by Vm[�]). In this case, the
minimization (2.2) is replaced by the minimization of

min
y∈Rm

‖βe1 −Hmy‖,(2.3)

where Hm is banded with upper semibandwidth �. In QMR [16], a relation like (2.1)
holds, but Vm is not an orthogonal matrix (the basis is bi-orthogonal to a basis of
another Krylov subspace; these bases are obtained via a two-sided Lanczos process),
the minimization of (2.3) is performed, and Hm is tridiagonal.

When a standard right preconditioner is used, as in (1.2), the expression (2.1)
becomes

AM−1Vm = Vm+1Hm.

When flexible preconditioning is used, this relation is replaced with

AZm = Vm+1Hm,(2.4)

cf. (1.3), and storage has to be allocated for both the matrices Zm and Vm, i.e., one
needs approximately twice the storage of the standard preconditioned case; see, e.g.,
[29], [36].

In order to analyze the inner-outer method, when the outer method is a flexible
Krylov subspace method and the inner is a Krylov subspace method, we consider the
approximations of the solution of (1.1) at the kth (outer) cycle to be taken from the
affine space x0 + span{z1, . . . , zk}, where Zk = [z1, . . . , zk], i.e., of the form

xk = x0 + Zkuk for some uk ∈ R
k.(2.5)
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We change the notation a bit, to make a distinction with the inner method, and
rewrite (2.4) as

AZk =Wk+1Tk,(2.6)

i.e., Wk = [w1, . . . , wk] is the matrix containing a basis of the outer subspace, and
the (k + 1) × k matrix Tk contains the coefficients used in the orthogonalization (or
deflation). The matrix Tk is either upper Hessenberg (if orthogonalization is used via
the Arnoldi method), banded (if a truncated method is used), or tridiagonal (if the
two-sided Lanczos method is used).

In other words, given x0 and the corresponding residual

r0 = b−Ax0, w1 = r0/β, β = ‖r0‖,(2.7)

for each cycle k, first a new vector zk is computed, which approximates the solution
of

Az = wk(2.8)

(using an inner Krylov method). Then, the vector Azk is computed, orthogonalized
with respect to the previous vectors wi, i ≤ k (or with respect to the � vectors kept
in the truncated version), and normalized (or bi-orthogonalized with respect to some
other vectors) to obtain the new vector wk+1; cf. (2.6). Thus, the residual at the kth
cycle is

rk = b−Axk = r0 −AZkuk = r0 −Wk+1Tkuk =Wk+1(βe1 − Tkuk).(2.9)

We point out that in the case of using an Arnoldi method in the outer scheme,
orthogonalizing Azk with respect to the vectors in Wk is equivalent to deflating the
inner residual wk − Azk with respect to the vectors in Wk, i.e., with respect to all
previous inner Krylov subspace starting vectors. In fact, we have

tk+1,kwk+1 = (I −WkW
T
k )Azk(2.10)

= wk − (wk −Azk)− wk +WkW
T
k (wk −Azk)

= −(I −WkW
T
k )(wk −Azk),(2.11)

where WT
k stands for the transpose of Wk.

As we said, at the kth cycle a new vector zk is computed, which approximates the
solution of (2.8), using an inner Krylov method. The corresponding (inner) Krylov

subspace is Km(A,wk), with m = mk, and its basis is {v(k)
1 , . . . , v

(k)
m }, with

v
(k)
1 = wk(2.12)

(of unit norm). The matrix V
(k)
m = [v

(k)
1 , . . . , v

(k)
m ] satisfies (2.1), i.e.,

AV (k)
m = V

(k)
m+1H

(k)
m ,(2.13)

and we have

zk = V (k)
m yk for some yk ∈ R

m, m = mk.(2.14)

It is important to realize that when the inner system is preconditioned from the
right, this can be viewed as a global preconditioning strategy. More precisely, consider
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preconditioning the inner system (2.8) from the right with a fixed matrix P , so that
the inner system transforms into AP−1ẑ = wk, with z = P−1ẑ. An approximation
to ẑ is determined in Km(AP−1, wk), from which an approximation to z can be

readily recovered. Note that we can write ẑk = V
(k)
m yk, where V

(k)
m is now a basis for

Km(AP−1, wk). Let Zk = P−1Ẑk = [P−1ẑ1, . . . , P
−1ẑk]. Relation (2.6) transforms

into

AP−1Ẑk =Wk+1Tk,

which immediately shows that inner preconditioning corresponds to applying the flex-
ible method to the system AP−1x̂ = b, with x̂ = Px. In light of these considerations,
from now on we shall work with the coefficient matrix A, where A could actually
stand for any preconditioned matrix AP−1.

The description of flexible inner-outer methods by (2.5), (2.6), (2.13), and (2.14)
is pretty general, and many of our results, including the following proposition, apply
to this general setting.

Proposition 2.1. Each new vector of the outer basis wk+1 is a linear combina-

tion of the orthogonal projections of the columns V
(k)
m+1 (i.e., of the basis of the inner

space Km+1(A,wk)), onto the (bi-)orthogonal complement of R(Wk) (or R(Wk[�])).

Proof. From (2.14) and (2.13), we have Azk = AV
(k)
m yk = V

(k)
m+1(H

(k)
m yk), and

from (2.10) the proposition follows.

Note that while for each of the cycles we have the columns of V
(k)
m being a basis

of a Krylov subspace, neither R(Wk) nor R(Zk), the range of Wk or Zk, respectively,
is a Krylov subspace. This is in contrast to the standard (nonflexible) preconditioned
case. As pointed out, e.g., in [9], minimal residual or orthogonal residual methods
with these bases would converge, as long as dimR(Wk) = k and dimR(Zk) = k, i.e.,
as long as the new vectors zk and wk are linearly independent of the previous ones so
that the subspaces keep growing. As we shall see, this is the case for the inner-outer
methods studied here.

We can say more; the columns of Zk and those of Wk are bases of (different)
subspaces (of dimension k) of a larger Krylov subspace generated by the initial residual
r0.

Lemma 2.2. Assume that Zk and Wk+1 are full column rank. Then, R(Zk) ⊂
Kq−1(A, r0), and R(Wk+1) ⊂ Kq(A, r0), where q = qk = pk + k and pk is given by

p = pk =
∑k
j=1mj .

Proof. We use induction on k. From (2.7), span{w1} = span{r0}. Therefore
z1 ∈ Km1(A,w1) = Km1(A, r0) and w2 ∈ span{Az1, w1} ⊂ Km1+1(A, r0), so that
R(W2) ⊂ Kq(A, r0) with q = p1 + 1 = m1 + 1. Assume that the assertions hold for
k− 1, and thus wk ∈ R(Wk) ⊂ Kq(A, r0), with q = qk−1. From (2.12), it follows that
zk belongs to the inner Krylov subspace Km(A,wk) (m = mk), which is a subspace
of Kq(A, r0) with q = qk−1 +mk = pk−1 + k − 1 +mk = qk − 1. We then have that
wk+1 ∈ span{Azk,Wk} ⊂ Kq(A, r0), with q = qk.

This lemma also applies to truncated Krylov methods, since the vectors kept in
storage are chosen from Wk+1, i.e., we have

R(Wk+1[�]) ⊂ R(Wk+1) ⊂ Kq(A, r0).(2.15)

In the special case that all inner subspaces have the same dimension mj = m, we
have p = km and q = km+ k = k(m+ 1); cf. [37, Lemma 4.2], where a result similar
to Lemma 2.2 is shown for this special case.
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We also remark that in [18] and [34] the situation is analyzed when (2.1) is replaced
with AUk−1 = UkBk for some matrix Bk andR(Uk) is some general subspace; cf. (2.6).
The question there is to find an appropriate matrix E for which the columns of Uk
are the basis of a Krylov subspace of A + E, i.e., R(Uk) = Kk(A + E, r0). Here we
instead have subspaces of a larger Krylov subspace of A.

3. The subspaces of the inner-outer methods. In this section, we further
characterize the k-dimensional subspaces R(Zk) and R(Wk). Our characterization is
of interest but does not necessarily reveal the intrinsic form of these subspaces. It
does help us, though, in providing part of the setup used in section 5, where we show
how these subspaces grow with each cycle.

The first simple observation is that the approximation xk can be expressed as a
particular linear combination of all the bases of the k inner Krylov subspaces. Indeed,
from (2.5) and (2.14), it follows that

xk = x0 +

k∑
j=1

(uk)j zj = x0 +

k∑
j=1

(uk)j V
(j)
mj

yj = x0 +

k∑
j=1

mj∑
i=1

(uk)j (yj)i v
(j)
i .

Equivalently, if we define

Bk = [V (1)
m1
, V (2)
m2
, . . . , V (k)

mk
] ∈ R

n×p , Yk =



y1 O O · · ·
O y2 O · · ·
...

. . .

O · · · O yk


 ∈ R

p×k ,(3.1)

where O stands for a submatrix with zero entries (in this case m× 1 submatrices, for
different values of m), we have, from (2.14),

Zk = BkYk,(3.2)

and thus xk = x0 + Zkuk = x0 + Bk(Ykuk). If we write the n × q matrix B′k =

[V
(1)
m1+1, V

(2)
m2+1, . . . , V

(k)
mk+1] and the q×p matrix Hk as the “block diagonal collection”

of all H
(i)
m ’s, we obtain the relation

ABk = B′kHk,(3.3)

reminiscent of (2.13) or (2.1). Therefore, using (3.2) and (3.3),

rk = r0 −AZkuk = r0 −ABkYkuk = r0 − B′k(HkYkuk),(3.4)

providing an explicit representation of the residual in terms of the complete set of
inner bases collected in B′k.

Remark 3.1. In light of Proposition 2.1 and (2.12), the columns of B′k are not
linearly independent. We then consider the n× (p+ 1) matrix

Vk = [w1, V
(1)
2:m1+1, V

(2)
2:m2+1, . . . , V

(k)
2:mk+1],(3.5)

where V
(j)
2:m+1 = [v

(j)
2 , . . . , v

(j)
m ], m = mj . If the matrix Vk is of full rank, we have

R(Vk) = Kp+1(A, r0).
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In other words, the columns of the matrix Vk (if full rank) provides us with a basis
for the Krylov subspace Kp+1(A, r0) from where the global iterates are computed; see
[33], where a similar construct is used. In general, we can conclude only that

R(Vk) ⊆ Kp+1(A, r0).(3.6)

In light of Lemma 2.2, the relation (3.2) is natural, and by Remark 3.1 we can
improve upon the dimension of the Krylov subspace from Lemma 2.2 to obtain

R(Zk) ⊂ Kp(A, r0), p = pk.(3.7)

We now want to find a similar explicit dependence of Wk+1 on B′k or Vk. We consider
two cases: when the columns of Wk+1 are produced by an Arnoldi method or by a
two-sided Lanczos algorithm.

Lemma 3.2. If the Arnoldi method is used to generate Zk, Wk, the bases of the
outer spaces, related by (2.6), and these have full column rank, then,

Wk+1 = VkRk,(3.8)

with Rk = GkS
−1
k , where the (p + 1) × (k + 1) matrix Gk and the (k + 1) × (k + 1)

matrix Sk are given by

Gk =




1 0 0 0 · · ·
O −ĝ1 O O · · ·
O O −ĝ2 O · · ·
...

. . .

O O O · · · −ĝk


 , Sk =




1 0 t1,2 t1,3

0 t2,1 0 t2,3
. . .

0 0 t3,2 0
. . .

0 0 0 t4,3
. . .

...
...

0 0 0 0 tk+1,k



,

ĝk ∈ R
m is defined through gk = e1 −H(k)

m yk = [γk; ĝ
T
k ]
T , and the (k + 1) × k upper

Hessenberg matrix Tk has entries tij.
Proof. Using (2.13), (2.14), and the definition of gk,

Azk = AV (k)
m yk = V

(k)
m+1H

(k)
m yk = V

(k)
m+1(e1 − gk).

Then, by (2.12) and the fact that we use the Arnoldi method,

tk,k = wTk Azk = wTk V
(k)
m+1(e1 − gk) = eT1 (e1 − gk) = 1− γk.(3.9)

We can use these relations to write wk+1 as a linear combination of the inner bases.

wk+1tk+1,k = Azk −WkT1:k,k

= V
(k)
m+1(e1 − gk)−Wk−1T1:k−1,k − wktk,k

= v
(k)
1 (1− γk)− [v

(k)
2 , . . . , v

(k)
m+1]ĝk −Wk−1T1:k−1,k − wktk,k

= −[v(k)
2 , . . . , v

(k)
m+1]ĝk − [w1, w2, . . . , wk−1]T1:k−1,k,

that is,

[w1, w2, . . . , wk+1]


 T1:k−1,k

0
tk+1,k


 = −V (k)

2:m+1ĝk.
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Collecting all terms, we obtain

Wk+1Sk = [w1, V
(1)
2:m+1, V

(2)
2:m+1, . . . , V

(k)
2:m+1]




1 0 0 0 · · ·
O −ĝ1 O O · · ·
O O −ĝ2 O · · ·
...

. . .

O O O · · · −ĝk


 .

The lemma follows from the nonsingularity of the upper triangular matrix Sk.
The same result (3.8) holds in the case of two-sided Lanczos. The difference is

that the matrix Tk is tridiagonal, so that the entries above the third diagonal in Sk
are zero. The proof proceeds in the same manner as that of Lemma 3.2, except that in
(3.9) wk is replaced by the corresponding vector of the bi-orthogonal basis to R(Wk).

It follows from (3.8) and Remark 3.1 that

R(Wk+1[�]) ⊂ R(Wk+1) ⊂ Kp+1(A, r0), p = pk;

cf. (2.15), Lemma 2.2, and (3.7).
To complete the picture, we want to obtain relations of the form (3.3) and (3.4),

using the matrix Vk. If full rank, its columns are a basis of the global subspace
Kp+1(A, r0).

Let P be the q × q permutation matrix that moves all vectors v
(2)
1 , v

(3)
1 , . . . , v

(k)
1

in B′k to the end (that is, as the last columns of the whole matrix). Then we can

write B′kP = [Vk, v(2)
1 , v

(3)
1 , . . . , v

(k)
1 ] = [Vk,W2:k], where W2:k = [w2, w3, . . . , wk] =

Wk+1[O, Ik−1, O]
T , Ik−1 is the identity of order k − 1. Thus, using (3.8), we write

B′k = Vk [I,Rk[O, Ik−1, O]
T ]PT ,(3.10)

where I is the identity of order p+ 1, obtaining from (3.3) the desired relation

ABk = Vk [I,Rk[O, Ik−1, O]
T ]PTHk =: VkNk.(3.11)

Similarly, using the definition of Nk in (3.11), replacing (3.10) in (3.4), and using
(2.7), we obtain,

rk = r0 − VkNkYkuk = Vk(βe1 −NkYkuk).(3.12)

4. Minimal residuals and other methods. The discussion so far applies to
any Krylov subspace method including CG, MINRES, GMRES, QMR, FOM, BiCG,
etc. In principle, the outer (flexible) method can be any one of them, while the inner
method can be any other. In practice, FGMRES-GMRES(m), GCR-GMRES(m), and
FQMR-QMR were considered [5], [6], [29], [36], [37]. GMRES is a minimal residual
method [31], while QMR [16] can be seen as one if the appropriate inner product and
associated norm are considered; see [9]. In fact, the proof in [9, section 4.3] applies
equally well to truncated GMRES methods such as DQGMRES; we more generally
call these flexible truncated GMRES (FTGMRES). Therefore, when we consider
that the inner-outer method is FGMRES-GMRES(m), our analysis will equally apply
to the cases of FQMR-QMR and FTGMRES-GMRES(m) with the proviso that the
norm at each cycle is a different one.

In FGMRES-GMRES(m), zk in (2.14) is chosen as to minimize the inner residual
in the kth cycle, i.e.,

‖wk −Azk‖ = ‖wk −AV (k)
m yk‖ = ‖V (k)

m (e1 −H(k)
m yk)‖ = min

y∈Rm
‖e1 −H(k)

m y‖,



FLEXIBLE INNER-OUTER KRYLOV SUBSPACE METHODS 2227

while uk in (2.5) is chosen as to minimize the outer residual (2.9), i.e.,

‖rk‖ = min
u∈Rk

‖Wk+1(βe1 − Tku)‖ = min
u∈Rk

‖βe1 − Tku‖.(4.1)

Remark 4.1. We emphasize that the inner-outer methods we discuss do not
consist of just the concatenation of the inner and the outer minimizations—there is
also the orthogonalization with respect of the outer basis (see, e.g., Proposition 2.1),
i.e., before the outer minimization takes place, there is also a deflation step, cf. [7],
[10], where some Krylov spaces with deflation are studied; see further section 7.

In light of the discussion in section 3, the minimization (4.1) can be interpreted as
being performed on a subspace of dimension k of the global Krylov space Kp+1(A, r0).
Indeed, from (3.12), now we can write

‖rk‖ = min
u∈Rk

‖Vk(βe1 −NkYku)‖.

We note that the columns of Vk are not necessarily orthogonal.

One can explicitly say that the subspace of Kp+1(A, r0) where the minimization
takes place is spanned by the (k linearly independent) columns of VkNkYk. Another
characterization of this subspace can be obtained from (2.6) and (3.8) giving us the
k columns of AZk = VkRkTk.

5. The growing subspaces. The main result of this section is that the subspace
from where the approximations are chosen keeps growing. This provides convergence
of the inner-outer methods. In exact arithmetic, these methods would then terminate
in at most n steps, where n is the order of the matrix A.

We have noted that, in general, we have the inclusion (3.6). It is also well known
that the matrix [r0, Ar0, . . . , A

pr0] may have vectors which are almost linearly depen-
dent. We therefore want to study what we can say about the rank of Bk defined in
(3.1) or, equivalently, that of Vk defined in (3.5). We show here that as k grows, i.e.,
as a new cycle is computed, the rank of Bk is guaranteed to grow as well.

For simplicity of the exposition, we assume in this section that mk = m for all k,
and thus p = mk. We further assume that the minimal polynomial of A has degree

larger than p. (More precisely, this is assumed with respect to v
(k−1)
1 ; see (5.2) below.

In other words, we assume that the grade of v
(k−1)
1 is less than p.) We comment at

the end of the section the implications of these assumptions.

Lemma 5.1. Let R(V (k−1)
m ) = Km(A, v(k−1)

1 ) and R(V (k)
m ) = Km(A, v(k)

1 ) be both

of dimension m (i.e., V
(k−1)
m and V

(k)
m are of full rank), with

v
(k)
1 ∈ R(AV (k−1)

m )(5.1)

and v
(k)
1 and v

(k−1)
1 being linearly independent. Then dimR([V (k−1)

m , V
(k)
m ]) > m.

Proof. Let v = v
(k−1)
1 ; then any element w ∈ R(V (k−1)

m ) = Km(A, v) can be
written as w = p(A)v, with p a polynomial of degree m − 1 at most. Thus, from

(5.1) we have that v
(k)
1 = Ap(A)v = q(A)v, with q(z) a nonzero polynomial of degree

at most m, such that q(0) = 0. In other words, 1 ≤ deg q(z) ≤ m. In fact, since

0 �= v
(k)
1 �= αv, for any α ∈ R, we have 2 ≤ deg q(z) ≤ m. Now consider

Am−1v
(k)
1 = Am−1q(A)v = q̂(A)v,(5.2)
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where deg q̂(z) = (m − 1) + deg q(z) ≥ m + 1; then Am−1v
(k)
1 �∈ Km(A, v(k−1)

1 ).
Therefore,

dim R
(
[V (k−1)
m , Am−1v

(k)
1 ]
)
= m+ 1,

from which the result follows.
We note that in Lemma 5.1 (as well as Theorem 5.2 below) the hypothesis on the

bases V
(j)
m of Km(A, v(j)

1 ) is that they be of full column rank. There is no requirement

that they be orthogonal. Similarly, the vectors v
(j)
1 and v

(j−1)
1 need only be linearly

independent. This implies that Lemma 5.1 and Theorem 5.2 apply to any method
that produces these pairwise linearly independent vectors. In particular, they apply
to the cases when either Arnoldi or two-sided Lanczos are used for the construction
of the matrix Wk.

In [7] and [38, section 3] it is recommended that when using truncated Krylov

methods the last vector of the previous basis, say V
(k−1)
m , be kept in the new ba-

sis. This recommendation was based on empirical evidence on symmetric matrices.
Lemma 5.1 provides a theoretical basis for such a recommendation. In fact, the last

column of V
(k−1)
m has a nonzero component in the direction of (5.2) (or of (5.6) below),

which is the key quantity for the subspace to grow.

To evaluate how the subspaces V
(k−1)
m and V

(k)
m generated during the inner step

behave vis-á-vis Lemma 5.1, we shall compute for some specific examples their canon-

ical angles [35]; see later section 7. Consider the two subspaces R(V (k−1)
m ) and

R(V (k)
m ), and let m∗ be the smallest integer such that dim R(V (j)

m∗ ) = dimR(V (j)
m∗+1),

j = k−1, k. We define m̄ = m if 2m ≤ m∗ or m̄ = m∗−m if 2m > m∗. The canonical
angles between these two subspaces can be computed as the nonzero singular values

σ1 ≥ σ2 ≥ · · · ≥ σm̄ of P
(k−1)
m (I − P (k)

m ), where P
(j)
m = V

(j)
m (V

(j)
m )T , j = k − 1, k, are

the orthogonal projectors onto R(V (j)
m ), j = k − 1, k, respectively.

We present now the main result of this section.

Theorem 5.2. Let R(V (j)
m ) = Km(A, v(j)

1 ) be of dimension m, for j = 1, . . . , k.

Assume that each v
(j)
1 is such that

v
(j)
1 = AV (j−1)

m yj−1 + Bj−2dj ,(5.3)

with 0 �= yj−1 ∈ R
m, j = 2, . . . , k, and that

v
(j)
1 and v

(j−1)
1 are linearly independent.(5.4)

Then

dimR(Bk) ≥ m+ k − 1, k ≥ 2.(5.5)

Proof. We use induction on k. For k = 2, (5.5) holds by Lemma 5.1. Assume
that (5.5) holds for k − 1 > 1. We prove it for k. That is, we show that the next

basis V
(k)
m of Km(A, v(k)

1 ) contains at least a vector that is not a linear combination

of elements in Bk−1. Consider the starting vector v
(k)
1 for the new basis V

(k)
m . From

(5.3) we have

v
(k)
1 = AV (k−1)

m yk−1 + Bk−2dk = A

m−1∑
j=0

Ajv
(k−1)
1 ηj + Bk−2dk
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for some values ηj , not all of which are zero. Therefore, for Am−1v
(k)
1 ∈ Km(A, v(k)

1 )
we have

Am−1v
(k)
1 = Am

m−1∑
j=0

Ajv
(k−1)
1 ηj +Am−1Bk−2dk.(5.6)

Since not all ηj ’s are zero, using the same argument as in the proof of Lemma 5.1,

Am
m−1∑
j=0

Ajv
(k−1)
1 ηj /∈ Km(A, v(k−1)

1 ),(5.7)

while the second term of (5.6) lies in Bk−1; thus, A
m−1v

(k)
1 /∈ Bk−1, and the result

follows.
Remark 5.3. The hypothesis for Lemma 5.1 and Theorem 5.2 that the degree of

the minimal polynomial of A is larger than m and mk, respectively, though seldom
violated in practice, is crucial. Otherwise the Krylov subspace might be invariant and

one may have, e.g., dim R([V (k−1)
m , V

(k)
m ]) = m. We will assume that this hypothesis

holds, else one may experience some early breakdown; see section 6 for the definition
of breakdown and also [6] for a similar situation.

Several comments on Theorem 5.2 are in order. First, we comment on the hy-
pothesis (5.4). In the case of (flexible) Arnoldi, this is automatically satisfied, since
the columns of Wk are orthogonal. In the case of (flexible) two-sided Lanczos, one

has a vector ŵ = ŵj−1 in the basis bi-orthogonal to Wk such that (v
(j−1)
1 , ŵ) �= 0,

while (v
(j)
1 , ŵ) = 0, implying (5.4); for details about two-sided Lanczos see, e.g., [19],

[30]. We mention also that (5.4) implies that these vectors are not the zero vectors,
i.e., wk �= 0, k = j − 1, j. As described in section 6 this is equivalent to assuming
that there is no breakdown of the inner-outer method.

Second, this theorem applies to the inner-outer methods described so far, includ-
ing the truncated methods. The hypothesis (5.3) expresses what we have said in
Proposition 2.1 and Lemma 3.2.

Third, we want to emphasize that while the proof of Theorem 5.2 implies that
R(Bk) grows in each cycle, (5.5) really provides a lower bound on its dimension, and
we expect the dimension of R(Bk) to be higher. We comment, though, that (5.5) can
be rephrased as

dim R(Bk) ≥ dim R([V (1)
m ,Wk]) = m+ k − 1,

where the last equality holds when V
(1)
m and Wk are full rank.

Finally, a careful review of the proofs of Lemma 5.1 and Theorem 5.2 indicates
that, for the case wheremk changes from one cycle to the next, (5.5) holds form = m1,
and that one needs mj ≥ mj−1 to guarantee (5.7).

6. Stagnation and breakdown. In this section we discuss the possibility of
breakdown in the construction of the outer basis Wk+1, as well as the possibility of
stagnation of the inner-outer methods. Some of our observations apply to the general
setting described in sections 2, 3, and 5. In some other cases the discussion relates
specifically to a minimal residual method, such as FGMRES-GMRES(m).

As we shall see, there are two elements that relate to the possibility of stagnation
and breakdown: one is T̄k, the k × k principal matrix of Tk, and the other is the
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next (outer) vector wk+1. The situation on breakdown can be summarized as follows:
If wk+1 �= 0, there is no breakdown, even if T̄k is singular. If wk+1 = 0, then the
singularity of T̄k matters. When T̄k is singular we have (real) breakdown, while if
T̄k is nonsingular, we have what is usually called a “lucky” breakdown, meaning that
this implies that xk is the exact solution of (1.1); see [29, Proposition 2.2] where
breakdown for FGMRES (using any inner solver) is considered. Stagnation of the
inner-outer method is discussed at the end of the section.

In the case of FGMRES-GMRES(m), one example of breakdown (wk+1 = 0)
occurs when there is stagnation in the inner iteration, i.e., in GMRES(m). In other
words, given wk, the approximation zk ∈ Km(A,wk) is such that wk − Azk = wk,
cf. (2.11), implying zk = 0. Unless the exact solution was found at the previous
outer step, inner stagnation yields incurable breakdown, as the outer iteration no
longer proceeds. Prevention of stagnation of the inner iteration has been addressed
by other authors. In [37], if inner stagnation occurs, the inner step is replaced by a
minimization step. At the end of section 2.2 of [29] there is a comment indicating that
all that is needed to avoid stagnation is a direction of steepest descent. This is exactly
what is guaranteed by the choice of the stopping criteria of the inner iterations in [17].
We also remark that in [1] a condition on the matrix A is introduced to avoid inner
stagnation in the inner-outer generalized conjugate gradient method. Let Q[w] denote
the inner outcome. It is shown in [1] that if AQ[·] is coercive, that is, there exists
δ > 0 such that (w,AQ[w]) ≥ δ(w,w) for all w �= 0, then the inner iteration does not
stagnate. Here (x, y) denotes the usual inner product. Note that in the symmetric
positive definite case, coercivity implies that a steepest descent direction is obtained in
the inner method; see, e.g., [22]. In the context of FGMRES-GMRES(m), coercivity
also implies that the inner GMRES does not stagnate. Indeed, for each outer basis
vector wk and using zk = Q[wk], we have

(wk, AQ[wk]) = (wk, Azk) = 1− ‖wk −Azk‖2,
where wk − Azk is the inner residual. Therefore, imposing (wk, AQ[wk]) > 0 implies
‖wk−Azk‖2 < 1 = ‖wk‖, which is equivalent to lack of stagnation. We should mention
however that coercivity in our context is a very strong assumption. For GMRES
as inner, it holds that Q[wk] = pm−1(A)wk for some polynomial pm−1 of degree
not greater than m − 1, where the polynomial changes at each outer cycle. Hence,
(wk, AQ[wk]) > 0 is satisfied if the operator Ap(A) is coercive for any polynomial p
of degree at most m− 1.

There are many examples where T̄k is singular, even if Tk is of full rank. In
these cases, having tk+1,k = ‖wk+1‖ = 0 implies real breakdown. In Lemma 5.1 and
Theorem 5.2 it is assumed that there is no breakdown, see (5.4) and (2.12), and it is
concluded that the space from where the solution is drawn keeps growing.

In the absence of breakdown (wk+1 �= 0), T̄k singular indicates stagnation of the
outer process and thus of the overall inner-outer method. The following result is an
adaptation of [3, Theorem 3.1] for FGMRES. The proof given in [3] can be used
verbatim here, so we do not reproduce it.

Theorem 6.1. Suppose that k steps of the (outer) Arnoldi method have been
taken, wk+1 �= 0, and assume that T̄k is singular. Then

min
u∈Rk

‖βe1 − Tku‖ = min
u∈Rk−1

‖βe1 − Tk−1u‖.(6.1)

If we denote by uj the minimizer in (4.1) with j replacing k, for j = k or k − 1,
then uk = ((uk−1)

T , 0)T , and it follows that xk = xk−1. Conversely, suppose that k
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steps of the (outer) Arnoldi method have been taken and that (6.1) holds; then T̄k is
singular.

Note, however that since we assume that there is no breakdown, this stagnation
can only be “temporary,” since by Theorem 5.2 the subspace keeps growing, and
therefore the inner-outer method converges [9].

7. Comparison with restarted methods. Let us consider restarted GMRES,
i.e., GMRES(m). This method generates an approximate solution as sum of approx-
imations obtained at each restart, that is,

xk = x0 + x(1) + x(2) + · · ·+ x(k).(7.1)

The single approximations are obtained in the following subspaces:

Km(A, r0), r0 = b−Ax0,

Km(A, r
(1)
0 ), r

(1)
0 = r0 −Ax(1) ≡ b−Ax1,

Km(A, r
(2)
0 ), r

(2)
0 = r

(1)
0 −Ax(2) ≡ b−Ax2,

...

where each starting vector r
(j)
0 is the residual in the previous Krylov subspace.

Intuitively, one can think of improving upon GMRES(m) by considering a linear
combination (or weighted average) of the single approximations, say

x̃k(α) = x0 + α1x
(1) + α2x

(2) + · · ·+ αkx
(k),(7.2)

instead of (7.1); cf. [41, section 3]. One could require the parameters α ∈ R
k to be

constructed, for example, so as to minimize the norm of the residual, in which case
we have

‖r̃k‖ = min
α∈Rk

‖b−Ax̃k(α)‖ ≤ ‖b−Axk‖,

where the last inequality follows from considering α = (1, . . . , 1)T . In other words,
such a method cannot be worse than restarted GMRES in terms of residual norms.

The inner-outer methods we study, such as FGMRES-GMRES(m), do more than
just implicitly choose the k parameters in (7.2). It follows from Proposition 2.1 that
one obtains an iteration of the form (7.2), but where the residual obtained for each
single (inner) Krylov method is in turn deflated with respect to the previous (outer)
vectors; cf. [13], [26]. We thus expect that the overall inner-outer method will perform
at least as well as the restarted counterpart.

We prove this explicitly in some particular cases below (k = 1 or m = 1). For
other cases, we show examples where at particular points in the computations, the
inner-outer method may have a residual norm which is larger than the corresponding
restarted one. Nevertheless, for these, as well as for all other numerical examples
we ran, FGMRES-GMRES(m) always converges using fewer matrix-vector multipli-
cations than GMRES(m).

In the following proposition we show that at the very first outer cycle the residual
computed by FGMRES-GMRES(m) is the same as that of GMRES(m). Therefore,
possible improvements versus the restarted approach are expected starting with the
second outer cycle of the flexible method.
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Proposition 7.1. Let rFk , r
G
k be the FGMRES-GMRES(m) and GMRES(m)

residuals after k cycles, respectively. For k = 1 we have rF1 = rG1 .
Proof. After m iterations of the first cycle of GMRES(m), we solve the problem

(2.2) where Vm spans Km(A, r0), and we obtain yG = (HT
mHm)

−1HT
me1β, so that

rG1 = b−AVm(HT
mHm)

−1HT
me1β.

On the other hand, let w1 = r0β
−1 be the first outer basis vector in FGMRES-

GMRES(m). After m iterations of the first inner step we solve the problem

min
y∈Rm

‖w1 −AVmy‖ = min
y∈Rm

‖e1 −Hmy‖,

where Vm spans Km(A, r0) = Km(A,w1). We obtain yF = (HT
mHm)

−1HT
me1 so that

z1 = Vmy
F . At the end of the first outer cycle we thus solve the problem

min
u∈R

‖b−Az1u‖ = βmin
û∈R

‖w1 −Az1û‖, û =
1

β
u.

We obtain û = ((Az1)
T (Az1))

−1(Az1)
Tw1. Explicitly writing Az1 = Vm+1Hmy

F and
substituting into the previous expression, we derive û = ((yF )THT

mHmy
F )−1(yF )THT

me1
= 1, from which it follows that u = βû = β. Therefore, rF1 = b − Az1u = b −
AVm(H

T
mHm)

−1HT
me1β = rG1 .

Later in this section we provide an example that shows that Proposition 7.1
cannot be generalized to k > 1 for general m. Nonetheless, we can prove for m = 1
and for any k > 0 that the FGMRES-GMRES(m) iterates coincide with those of full
GMRES.

Proposition 7.2. Let xFk be the approximate solution obtained after k outer
cycles of FGMRES-GMRES(1), and assume that GMRES(1) does not stagnate. Let
xGk be the approximate solution after k iterations of full GMRES. Then xFk = xGk .

Proof. At each outer cycle k of FGMRES, the inner solver GMRES approximately
solves Az = wk. If GMRES(1) is used, then zk = δkwk for some scalar δk �= 0. Setting
Dk =diag(δ1, . . . , δk), we can write Zk =WkDk so that (2.6) becomes

AWk =Wk+1TkD
−1
k ,

and the latter is an Arnoldi relation so that R(Wk) = Kk(A,w1). Let AVk = Vk+1Hk
be the Arnoldi relation associated with full GMRES. Since R(Wk) = R(Vk), there
exists an orthogonal k×k matrix Rk such thatWk = VkRk andHk = Rk+1TkD

−1
k R−1

k .
Since w1 = v1, (Rk)1,1 = 1. Using (HT

k Hk)
−1HT

k = RkDk(T
T
k Tk)

−1TTk R
T
k+1, the

solution xGk = Vk(H
T
k Hk)

−1HT
k e1β becomes

xGk = VkRkDk(T
T
k Tk)

−1TTk R
T
k+1e1β = Zk(T

T
k Tk)

−1TTk e1β = xFk .

Unfortunately, the result of Proposition 7.2 and the implication that ‖rFk ‖ ≤ ‖rGk ‖
do not carry over to larger values of m, as experimentally shown in the next example.

Example 7.3. We consider the linear system Ax = b of size n = 100, where
A =bidiag(d, 1), with d = [0.01, 0.02, 0.03, 0.04, 10, 11, . . . , 105] ∈ R

n. In Table 7.1
we report the residual norms for both FGMRES-GMRES(m) (F/G(m) for short)
and GMRES(m) (GM(m) for short), with m = 10, when the right-hand side is
b1 = (1, 2, 1, 2, . . .)T (left) and b2 = (1,−2, 1,−2, . . .)T (right). Both vectors were
normalized so that ‖b1‖ = ‖b2‖ = 1. The reported results clearly show that ‖rFk ‖
is larger than ‖rGk ‖ at an early stage of the iterative process, highlighted in italics.
Nonetheless, convergence is achieved after a few more iterations in the flexible method,
whereas the restarted approach stagnates.
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Table 7.1
FGMRES/GMRES(10) vs. GMRES(10) on bidiagonal matrix, with right-hand sides b1 and b2.

b1 b2
k F/G(10) GM(10) k F/G(10) GM(10)

1 0.197966 0.197966 1 0.168170 168170
2 0.175303 0.170102 2 0.153462 0.153675
3 0.145040 0.150841 3 0.139839 0.138271
4 0.145022 0.147060 4 0.139510 0.137050
...

...
12 6.4 · 10−5 0.144093 13 0.00029268 0.136947

We recall here that each new vector is deflated before it is used as the initial
vector for the inner iteration; see (2.11) or Proposition 2.1. As discussed in section 3,

this deflation helps in providing inner subspaces V
(k)
m , which have a larger angle

between them, justifying the good overall performance of the flexible method. This
is illustrated in Table 7.2 below, where we considered the matrix in Example 7.3 and,
as right-hand side b, the left singular vector corresponding to the smallest singular
value of A; see [33]. Note that full GMRES reaches a residual norm less than 10−16

in 21 iterations; therefore in our tests we considered that an invariant subspace of A
was found for m∗ = 20.

For both FGMRES-GMRES(m) and GMRES(m), in Table 7.2 we report the

smallest sine value of the canonical angles between the subspaces spanned by V
(k−1)
m

and V
(k)
m for k = 2, 3; see the discussion in section 3. When using GM(12), we collected

the value of the m̄th singular value, with m̄ = m∗ −m = 20− 12 = 8.

Table 7.2
Smallest nonzero singular value of V

(k−1)
m (V

(k−1)
m )T (I −V

(k)
m (V

(k)
m )T ), measuring the sines of

canonical angles between R(V
(k−1)
m ) and R(V

(k)
m ).

k F/G(5) F/G(10) GM(5) GM(10) GMRES(12)

2 σmin 7 · 10−5 4 · 10−8 2 · 10−16 1 · 10−16 5 · 10−6

3 σmin 1 · 10−2 9 · 10−4 4 · 10−17 3 · 10−16 3 · 10−4

Table 7.2 shows that, for restarted GMRES, the distance between V
(1)
m and V

(2)
m is

around machine precision for m = 5, 10, implying that the Krylov subspace generated
after one restart is very close to the previous one. The same happens at the next outer

cycle, for V
(2)
m and V

(3)
m . Only for m = 12 do the subspaces generated after the first

restart of GMRES provide new information. This is confirmed by the convergence
history of the method, shown in the right plot of Figure 1.

Table 7.2 and Figure 1 also report results for the flexible method. In particular, by
only deflating the starting vector of the first inner Krylov subspace, F/G(10) seems to
be capable of capturing the information missed by restarted GMRES after one cycle,
resulting in faster convergence. On the other hand, we notice that F/G(5) achieves
its final approximation to the exact solution with a large delay.

8. Computational considerations. Computational efficiency leads us to
consider truncated and restarted versions of optimal algorithms. This is the
case both for the original GMRES method as well as for FGMRES [31], [32], [37].
In the case of a flexible method, Theorem 5.2 ensures that in exact arithmetic the
method converges as long as condition (5.4) is satisfied. Therefore, if, for example,
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Fig. 1. Convergence history of flexible and restarted methods for various values of m. Left:
Entire picture. Right: Initial phase. See also Table 7.2.

GMRES is used as the outer method, finite termination is obtained by orthogonaliz-
ing only the next outer basis vector wk+1 with respect to the previous vector wk. By
orthogonalizing wk+1 with respect to more basis vectors, i.e., to more columns of Wk,
we expect the convergence to be faster.

In order to make fair comparisons, we recall that k cycles of FGMRES require
m vectors for the inner space plus 2k vectors for the outer bases. These should
be compared with the m vectors required by GMRES(m). A truncated version of
FGMRES will instead require 2kt outer vectors, where kt is fixed beforehand. In our
experiments, when using truncated flexible GMRES, we used mt inner vectors and
kt outer vectors so that mt + 2kt = m, where m is the number of vectors used in
restarted GMRES. We remark that such memory constraint on mt, kt forces us to
work with a much smaller inner space than in restarted GMRES if outer orthogonality
is maintained with respect to several vectors. Different selections of these parameters
were analyzed and some of them are reported here. In addition, we mention that
the larger kt, the more expensive the reorthogonalization step. Clearly, the worst
case scenario in this context is given by FGMRES, where all outer vectors are kept
orthogonal.

We also remark that the matrix-vector multiplication required at each outer step
of the flexible method can be avoided by exploiting the available inner residual. There-
fore, at least for a low number of outer cycles, restarted and (truncated) flexible
methods can be compared in terms of number of matrix-vector products, which in
our experiments represents the highest computational cost. It is also customary to
further precondition the flexible approach with a matrix P by applying the flexible
method to the preconditioned matrix AP−1. Due to the implementation consid-
eration just mentioned, preconditioning the inner-outer method amounts to simply
preconditioning the inner solver; see also the discussion in section 2.

Example 8.1. We consider the 900 × 900 matrix originating from the centered
finite difference discretization of the operator

L(u) = −∆u+ µxux, for µ = 100, 1000,(8.1)
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on [0, 1] × [0, 1] with zero Dirichlet boundary conditions. As a right-hand side we
selected b = Ae, where e is a vector of all ones.

Figure 2 reports the convergence history of restarted GMRES(20), FGMRES-
GMRES(20), and its truncated variant, using FTGMRES-GMRES(mt, kt) (FT/G(m-
k) for short) as discussed above. In the left plot we displayed the results for µ = 100,
in the right plot for µ = 1000. We observe that for µ = 100 truncation is not
harmful, especially when the generated inner space is sufficiently large, yielding similar
convergence for the flexible method and its truncated variant. For µ = 1000 the
picture changes considerably and the convergence of the truncated methods reflects
the influence of the two parameters mt, kt. Restarted GMRES clearly shows lack of
information that is eventually recovered after many more iterations.
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Fig. 2. Convergence history for operator L(u) in (8.1). Left: µ = 100. Right: µ = 1000.

Example 8.2. We consider the operator

L(u) = −1000∆u+ 2e4(x
2+y2)ux − 2e4(x

2+y2)uy(8.2)

on [0, 1]× [0, 1], which was studied in [7, Problem 2]. Here we assume zero Dirichlet
boundary conditions and a centered finite difference discretization, yielding a coef-
ficient matrix A of size n = 40000. The right-hand side is determined as b = Ae,
where e is the vector of all ones, and then normalized so as to have unit norm. The
convergence history of restarted GMRES with m = 30 is reported in Figure 3 (left).
The figure also shows the curves of the flexible variant and its truncated versions
for two different values of the truncation parameter. On this problem, truncation
is particularly effective. The results seem to suggest that on this problem, an inner
subspace of small dimension suffices for the flexible method to converge rapidly. In
the right plot of Figure 3 we show the convergence history of all methods for a larger
Krylov subspace dimension, m = 50. Restarted GMRES considerably improves its
performance; cf. [7]. On the other hand, flexible schemes do not seem to necessitate
of a larger inner dimension, implying that information gathering in the outer process
is very effective. Our findings corroborate similar experimental evidence in [7]. We
also notice that for m = 50, the truncated variants converged in less than 20 outer
iterations. Therefore, when large values of kt are selected, truncation takes place only
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very late in the convergence stage. As a consequence, the curves in the right plots
of Figure 3 associated with the truncated methods FT/G(30-10) and FT/G(20-15)
closely resemble the curves one would obtain with FGMRES(m) with m = 30 and
m = 20; cf. the left plot of Figure 3 for m = 30.
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Fig. 3. Convergence history for operator L(u) in (8.2). Left: m = 30. Right: m = 50.

Example 8.3. Our last set of experiments involves three matrices from the “Ma-
trix Market” [8], [24]. For the first two matrices, the right-hand side was chosen to be
the vector of all ones. Additional (fixed) incomplete LU preconditioning was applied
[25], [30]. In our experiments, we used the Matlab function luinc with tolerance tol
to build the preconditioning matrix P . As mentioned earlier in this section, in the
flexible algorithm this amounts to run the inner solver with the preconditioned matrix
AP−1.
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Fig. 4. Convergence history for flexible and restarted methods on matrix Sherman5. Left: no
preconditioning. Right: preconditioning using incomplete LU with tolerance tol = 10−2.

In Figure 4 we report experiments with the matrix sherman5 from the Harwell–
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Boeing set, a nonsymmetric 3312× 3312 matrix stemming from a fully implicit black
oil simulation [8]. The matrix was scaled using the absolute values of its diagonal
entries. The fixed ILU preconditioner was built using tol = 10−2.

The plots show that the behavior of the methods is more homogeneous after
fixed preconditioning, while when no preconditioning is applied the convergence of
the truncated flexible method is less predictable.
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Fig. 5. Convergence history for flexible and restarted methods on Preconditioned Oilgen (left)
and on Scaled Fidap ex11 (right).

The second matrix in the set is the oilgen 2205 × 2205 matrix from the same
matrix set, originating from a three-dimensional oil reservoir simulation [8]. The fixed
ILU preconditioning was applied with tolerance tol = 0.5. Convergence histories are
reported in the left plot of Figure 5. The difference in the behavior of the methods is
less pronounced.

Finally, we consider a larger matrix from the FIDAP group in the University of
Florida collection [8], namely matrix ex11 of size n = 16614, which stems from a
fully coupled Navier–Stokes problem. We set b = Ae, normalized so as to have unit
norm, and we use diagonal preconditioning. The results reported in the right plot
of Figure 5 show the dramatic improvements of the flexible methods over restarted
GMRES with m = 20. These results are consistent with the other experiments on
smaller matrices reported earlier.

We end this section with some comments on the behavior of the truncated schemes.
By comparing the results in Figures 2, 4, and 5, we see that, except for Example 8.2,
the curves of the flexible truncated variants quickly abandon the optimal curve of
the flexible method, confirming that orthogonalization with respect to the previous
inner starting vectors is crucial to obtain fast convergence. Among the choices we
have analyzed, however, we see that maintaining orthogonality with respect to the
two previous starting vectors (kt = 2) seems to provide the closest to optimal conver-
gence curve. Although in exact arithmetic kt = 1 is sufficient to ensure termination, a
larger value of kt seems to pay off in our tests at the cost of a smaller inner subspace
dimension (mt). Not surprisingly, however, the performance for kt = 4 indicates that
a value of mt that is too small may slow down convergence.
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9. Conclusion. We have analyzed a class of flexible inner-outer iterative Krylov
subspace methods in an unified manner. These are Krylov methods where the pre-
conditioner is itself a (preconditioned) Krylov method. We have shown convergence
of this class of methods by showing that the subspace from where the approxima-
tion is chosen keeps growing. This convergence is guaranteed as long as there is no
stagnation in the inner iterations.

We have shown experimentally (and in some cases theoretically) that these meth-
ods can compete favorably with the standard restarted methods such as GMRES(m).

In the case of truncated methods, our theory indicates one way in which to choose
the vectors to keep in order to guarantee convergence. Our experimental evidence
confirms the effectiveness of this choice. These truncated methods appear to perform
better than the standard restarted versions using the same amount of storage, and
in some cases they are almost as good as the untruncated flexible method (which
requires more storage).

Further analysis is needed to determine which vectors in the outer basis are the
important ones to keep, allowing us to use the storage for more vectors in the inner
basis; cf. [7].
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Abstract. We consider a class of semi-Lagrangian high-order approximation schemes for con-
vex Hamilton–Jacobi equations. In this framework, we prove that under certain restrictions on the
relationship between ∆x and ∆t, the sequence of approximate solutions is uniformly Lipschitz con-
tinuous and hence, by consistency, that it converges to the exact solution. The argument is suitable
for most reconstructions of interest, including high-order polynomials and ENO reconstructions.
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1. Introduction. Although the numerical solution of first-order Hamilton–
Jacobi equations is a widely studied topic in many applications, it is well known that,
when high-order schemes are considered (see [OS], [JP], [LT1]), very few convergence
results are available. A key tool for proving convergence of numerical approximations
would be some stability property for discrete solutions; when working with contin-
uous solutions it is common to require boundedness of the family in W 1,∞, so that
compactness would be proved by the classical Ascoli–Arzela theorem. Bounds on the
Lipschitz norm can generally be proved with reasonable effort in the case of low-order
(usually monotone) schemes but can be really troublesome in high-order schemes, in
which oscillations may occur. Lack of monotonicity also prevents using the result
of Barles and Souganidis (see [BS]) which, roughly speaking, states that consistency,
monotonicity, and L∞ stability imply convergence. In the framework of Hamilton–
Jacobi equations, we must also mention that a recent paper (see [LT2]) has proposed
a different stability concept, that is, uniform semiconcavity of discrete solutions. A
bound on the second incremental ratio is also exploited in [LS] to prove convergence
of modified upwind scheme for conservation laws (MUSCL)-type schemes.

This paper is devoted to the study of the Hamilton–Jacobi equation

(1.1)

{
vt(x, t) +H(∇v(x, t)) = 0 in R

N × [0, T ],
v(x, 0) = v0(x).

The function H(p) will be assumed to be smooth and to satisfy, for some mH > 0,
the condition

(1.2) (Hppξ, ξ) ≥ mH |ξ|2.
The purpose of the paper is precisely to obtain a result of convergence via uniform
Lipschitz continuity for a semi-Lagrangian, high-order scheme. The scheme is de-
scribed in several versions in [FF1], [FF3], [FFM], [FG], [CFF] (see also [SC] for a
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general review on semi-Lagrangian approach in computational fluid dynamics), and
its convergence for the low-order case is discussed in [FG], [FF3]. The high-order,
linear case is analyzed in [FF2], whereas for the nonlinear equation (1.2) a weaker
preliminary result of W 1,∞ boundedness is given in [F].

For the reader’s convenience, we briefly sketch the construction of the scheme for
the Hamilton–Jacobi equation (1.1). Since the solution (see [L]) may be represented
as

(1.3) v(x, t) = inf
α∈RN

{tH∗(α) + v0(x+ αt)}

(where H∗(α) is the Legendre transform of H(p)), using the representation formula
(1.3) at each node and over each single time step, we get

v(xj , tn−1 +∆t) = inf
α
{∆tH∗(α) + v(xj + α∆t, tn−1)},

and further replacing v(xj+α∆t, tn−1) with a numerical reconstruction I[V
n−1](xj+

α∆t), we obtain at last the general form of the scheme for (1.1), namely,

(1.4)

{
vnj = min

α
{∆tH∗(α) + I[V n−1](xj + α∆t)},

v0
j = v0(xj).

In (1.4), we have omitted for simplicity the treatment of boundary conditions, for
which an explicit form can be found in [FFM].

It is worth pointing out that in (1.4) there is no need to let ∆t→ 0 since charac-
teristics are straight lines and the best accuracy is achieved with ∆t = t as in (1.3).
However, this is no longer true if H(p) is replaced by H(x, p) (the scheme can also
handle this case, see [FFM]), and in order for this simplified convergence analysis to
give indications for the more general case, we will let ∆t→ 0 anyway.

The outline of the paper is the following. We will prove in section 2 a bound on
the second increment and deduce Lipschitz continuity for numerical solutions under
suitable assumptions on the reconstruction operator and on the ∆t/∆x relationship.
Section 3 takes into consideration polynomial reconstructions and checks the appli-
cability of the theory. Lastly, section 4 gives the main result of convergence for the
scheme.

2. Uniform Lipschitz continuity. Let (1.1) be discretized on an infinite grid
with nodes xj ; moreover, let ∆x be the space discretization parameter, so that

C−∆x ≤ |xi − xj | ≤ C+∆x

for any couple (xi, xj) of nodes on the boundary of the same cell. (For shortness
of notation, nodes satisfying this condition will be referred to in what follows as
neighboring nodes.) We will identify the numerical solution at time n∆t with the
sequence V n = {vnj }j , whose l∞ norm will be defined as usual by |V n|∞ := supj |vnj |.
We will denote by I[V ](·) the reconstruction (interpolation) operator which extends
a sequence V on the whole of R

N , by U(x) the stencil of I[V ](x), and by I1[V ] the
P1 (piecewise linear) interpolation on the sequence V .

For simplicity, the main technical difficulty of the paper, Lemma 2.1, will be
stated in the one-dimensional case. In this case, we assume that xj = j∆x (j =
0,±1,±2, . . .) and that given a Lipschitz continuous function v(x) and the sequence
V = {vj}j = {v(xj)}j , the operator I[V ] satisfies, for some constant C < 1,

(2.1) I[V ](xj) = v(xj) , |I[V ](x)− I1[V ](x)| ≤ C max
xj−1,xj ,xj+1∈U(x)

|vj+1−2vj+vj−1|,
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where I1[V ] and U(x) have the same meaning as before. In R, we can write U(x) as
U(x) = (x−h−∆x, x+h+∆x); for example, a quadratic Lagrange reconstruction can
be performed taking one node on the left and two nodes on the right of the point x
(in this case, h− = 1, h+ = 2), or two nodes on the left and one on the right (and
in this case, h− = 2, h+ = 1). In a second-order ENO reconstruction (see [S]), both
cases are possible depending on the solution (and thus, h− = h+ = 2). A third-order
Lagrange reconstruction is typically performed using two nodes on the left and two
on the right, so that h− = h+ = 2. In the third-order ENO case, h− = h+ = 3, and
so forth.

We recall that condition (1.2) in the one-dimensional case reads as

H ′′(p) ≥ mH ,

and this implies in terms of the Legendre transform that

(2.2) H∗′′
(α) ≤ 1

mH
.

It will also be useful to define the function

Fj(α) := ∆tH
∗(α) + I[V n−1](xj + α∆t).

In what follows, we will denote by ᾱj the value of α achieving the minimum in (1.4)
and in Fj . In order to stress the “locality” in the above definition, the notation
explicitly shows the dependence of F on the node index j, although for simplicity the
dependence on the time step n has been dropped.

We give now a bound on the second increment of the numerical solution. The
bound is globally one-sided, but becomes two-sided at the foot of characteristics (that
is, in a neighborhood of fixed radius h∆x, with h > max(h+, h−), around the point
xj + ᾱj∆t). More precisely, we have the following technical result.

Lemma 2.1. Consider the scheme (1.4) applied to equation (1.1), with N = 1. If
(2.2) holds, then, for any j ∈ Z and n ≥ 1,

(2.3) vnj+1 − 2vnj + vnj−1 ≤
∆x2

mH∆t
.

Moreover, assuming, in addition, that (2.1) holds, then, for any j ∈ Z and n ≥ 2,

(2.4) max
xi−1,xi,xi+1∈U(xj+ᾱj∆t)

|vn−1
i+1 − 2vn−1

i + vn−1
i−1 | ≤ C̄

∆x2

∆t

with U(x) = (x − h∆x, x + h∆x) (h being a fixed positive integer such that h >
max(h+, h−)) and for some positive constant C̄ depending on C, h, and mH .

Proof. We start by proving (2.3). By (1.4) we have, for n ≥ 1,
vnj = ∆tH

∗(ᾱj) + I[V n−1](xj + ᾱj∆t),

vnj−1 = ∆tH
∗(ᾱj−1) + I[V n−1](xj−1 + ᾱj−1∆t)

≤ ∆tH∗
(
ᾱj +

∆x

∆t

)
+ I[V n−1](xj + ᾱj∆t),

vnj+1 = ∆tH
∗(ᾱj+1) + I[V n−1](xj+1 + ᾱj+1∆t)

≤ ∆tH∗
(
ᾱj − ∆x

∆t

)
+ I[V n−1](xj + ᾱj∆t)
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(where the inequalities come from the use of ᾱj ±∆x/∆t instead of the actual mini-
mizers ᾱj∓1), so that

(2.5) vnj+1 − 2vnj + vnj−1 ≤ ∆t
[
H∗
(
ᾱj − ∆x

∆t

)
− 2H∗(ᾱj) +H∗

(
ᾱj +

∆x

∆t

)]

≤ ∆t
(
∆x

∆t

)2

supH∗′′
,

which gives (2.3).
In order to prove (2.4), we take into consideration the values of Fj(α) for xj+α∆t

coinciding with a grid node, that is for α = k∆x/∆t. Let kj denote the index of
the node for which xj + ᾱj∆t ∈ [xj+kj , xj+kj+1]. We will denote by δj the (signed)

maximal second increment of the numerical solution in the neighborhood U(xj+ᾱj∆t)
and by j + kj + lj the index of the node at which this second increment occurs. If
δj ≥ 0, then (2.4) follows from (2.3) and we have nothing else to prove. We will
assume, therefore, that δj < 0, so that

(2.6) δj = − max
xi−1,xi,xi+1∈U(xj+ᾱj∆t)

|vn−1
i+1 − 2vn−1

i + vn−1
i−1 |

= vn−1
j+kj+lj+1 − 2vn−1

j+kj+lj
+ vn−1

j+kj+lj−1.

We recall that |lj | < h, and will also assume in what follows that lj ≥ 0, the reverse
case being similar to prove.

As a first step, we can bound the second increment of the function Fj as follows:

(2.7) Fj

(
(k + 1)

∆x

∆t

)
− 2Fj

(
k
∆x

∆t

)
+ Fj

(
(k − 1)∆x

∆t

)

= ∆t

[
H∗
(
(k + 1)

∆x

∆t

)
− 2H∗

(
k
∆x

∆t

)
+H∗

(
(k − 1)∆x

∆t

)]

+ vn−1
j+k+1 − 2vn−1

j+k + vn−1
j+k−1

≤ ∆x2

mH∆t
+ vn−1

j+k+1 − 2vn−1
j+k + vn−1

j+k−1 ≤
2∆x2

mH∆t
,

where the second increment of H∗ has been estimated as in (2.5), and the last in-
equality holds for n ≥ 2.

In the second step, we prove that

(2.8) Fj(ᾱj) ≥ min
[
Fj

(
kj
∆x

∆t

)
, Fj

(
(kj + 1)

∆x

∆t

)]
− ∆x2

8mH∆t
− C|δj |.

In fact, set ᾱj = (1 − θ̄)kj∆x/∆t + θ̄(kj + 1)∆x/∆t, with θ̄ ∈ [0, 1]. Taking into
account the uniform convexity of H∗ implied by (2.2), we have

(2.9) H∗(ᾱj) ≥ (1− θ̄)H∗
(
kj
∆x

∆t

)
+ θ̄H∗

(
(kj + 1)

∆x

∆t

)

− 1

2
θ̄(1− θ̄)

(
∆x

∆t

)2

supH∗′′

≥ (1− θ̄)H∗
(
kj
∆x

∆t

)
+ θ̄H∗

(
(kj + 1)

∆x

∆t

)
− ∆x2

8mH∆t2
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in which the third term has been minimized with respect to θ̄.
In a similar way, we also get, using (2.1) and the inclusion of U(x) in U(x),

I[V n−1](xj + ᾱj∆t)

≥ I1[V
n−1](xj + ᾱj∆t)− Cmaxxi−1,xi,xi+1∈U(xj+ᾱj∆t) |vi+1 − 2vi + vi−1|

≥ I1[V
n−1](xj + ᾱj∆t)− Cmaxxi−1,xi,xi+1∈U(xj+ᾱj∆t)

|vi+1 − 2vi + vi−1|
= (1− θ̄)vj+kj + θ̄vj+kj+1 − C|δj |
= (1− θ̄)I[V n−1]

(
xj + kj

∆x

∆t
∆t

)
+ θ̄I[V n−1]

(
xj + (kj + 1)

∆x

∆t
∆t

)
− C|δj |,

which, combined with (2.9), gives

Fj(ᾱj) ≥ (1− θ̄)Fj

(
kj
∆x

∆t

)
+ θ̄Fj

(
(kj + 1)

∆x

∆t

)
− ∆x2

8mH∆t
− C|δj |,

which in turn implies (2.8).
In the third step, we derive from (2.8) an estimate of the increment of Fj between

kj∆x/∆t and (kj + 1)∆x/∆t.
Assume first that Fj(kj∆x/∆t) < Fj((kj + 1)∆x/∆t). Using (2.8) and the opti-

mality of ᾱj , we obtain

Fj

(
(kj − 1)∆x

∆t

)
≥ Fj(ᾱj) ≥ Fj

(
kj
∆x

∆t

)
− ∆x2

8mH∆t
− C|δj |,

that is, considering the extreme terms

Fj

(
kj
∆x

∆t

)
− Fj

(
(kj − 1)∆x

∆t

)
≤ ∆x2

8mH∆t
+ C|δj |.

On the other hand, from (2.7) written with k = kj , we also have

Fj

(
(kj + 1)

∆x

∆t

)
− Fj

(
kj
∆x

∆t

)
≤ Fj

(
kj
∆x

∆t

)
− Fj

(
(kj − 1)∆x

∆t

)
+
2∆x2

mH∆t

and therefore, combining the last two inequalities, we get the desired bound on the
first increment:

(2.10) Fj

(
(kj + 1)

∆x

∆t

)
− Fj

(
kj
∆x

∆t

)
≤ 17∆x2

8mH∆t
+ C|δj |.

Moreover, if Fj((kj + 1)∆x/∆t) < Fj(kj∆x/∆t), then

Fj

(
(kj + 1)

∆x

∆t

)
− Fj

(
kj
∆x

∆t

)
≤ 0

and (2.10) is also trivially satisfied.
As a fourth step, we show that in order for ᾱj to be a minimizer for Fj , δj must

satisfy (2.4). To this end, we first assume that Fj(kj∆x/∆t) ≤ Fj((kj+1)∆x/∆t) and

bound the values Fj(k∆x/∆t) from above using a function F̃j(k∆x/∆t) constructed
so as to coincide with Fj at kj∆x/∆t and to have first and second increments greater
or equal to the corresponding increments of Fj . Taking into account the bounds on
the first and second increment of Fj obtained in the previous steps of the proof, we
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could define F̃j so that its first increment between kj∆x/∆t and (kj+1)∆x/∆t would
be given by the right-hand side of (2.10), and the second increment would be obtained
in view of (2.6), (2.7) as

(2.11) F̃j

(
(k + 1)

∆x

∆t

)
− 2F̃j

(
k
∆x

∆t

)
+ F̃j

(
(k − 1)∆x

∆t

)

=



2∆x2

mH∆t
if k = kj + lj ,

∆x2

mH∆t
+ δj if k = kj + lj .

We recall that, as it is easy to prove by induction, if a sequence fi has a constant
second increment,

fi+2 − 2fi+1 + fi ≡ d,

then the values of the elements and of the first increments are given by

fk+l = fk + l(fk+1 − fk) + (1 + 2 + · · ·+ (l − 1))d,

fk+l+1 − fk+l = (fk+1 − fk) + ld.

Using the previous equalities, a function F̃j suitable for our purpose could be
defined more explicitly as

F̃j

(
kj
∆x

∆t

)
= Fj

(
kj
∆x

∆t

)
,

F̃j

(
(kj + 1)

∆x

∆t

)
= Fj

(
kj
∆x

∆t

)
+
17∆x2

8mH∆t
+ C|δj |,

F̃j

(
(kj + 2)

∆x

∆t

)
= Fj

(
kj
∆x

∆t

)
+ 2

(
17∆x2

8mH∆t
+ C|δj |

)
+
2∆x2

mH∆t
,

...

F̃j

(
(kj + lj)

∆x

∆t

)
= Fj

(
kj
∆x

∆t

)
+ lj

(
17∆x2

8mH∆t
+ C|δj |

)
+(1+ · · ·+(lj−1)) 2∆x

2

mH∆t
,

F̃j

(
(kj + lj + 1)

∆x

∆t

)
= Fj

(
kj
∆x

∆t

)
+ lj

(
17∆x2

8mH∆t
+ C|δj |

)

+ (1+ · · ·+(lj−1)) 2∆x
2

mH∆t
+

(
17∆x2

8mH∆t
+ C|δj |

)

+ lj
2∆x2

mH∆t
+ δj
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(note that the computation of F̃j((kj+ lj+1)∆x/∆t) is “restarted” because of (2.11))
and last, for any integer m > 0,

(2.12) F̃j

(
(kj + lj +m)

∆x

∆t

)
= Fj

(
kj
∆x

∆t

)

+ (lj +m)

(
17∆x2

8mH∆t
+ C|δj |

)

+ (1 + · · ·+ (lj +m− 1)) 2∆x
2

mH∆t
+mδj

≤ Fj

(
kj
∆x

∆t

)
+ (h+m)

(
17∆x2

8mH∆t
+ C|δj |

)

+ (1 + · · ·+ (h+m− 1)) 2∆x
2

mH∆t
+mδj .

On the other hand, by (2.8) and the optimality of ᾱj , we also have, for any m > 0,

(2.13) F̃j

(
(kj + lj +m)

∆x

∆t

)
≥ Fj

(
(kj + lj +m)

∆x

∆t

)

≥ Fj(ᾱj)

≥ min
[
Fj

(
kj
∆x

∆t

)
, Fj

(
(kj + 1)

∆x

∆t

)]

− ∆x2

8mH∆t
− C|δj |.

We explicitly note that in (2.13) the first inequality follows from the construction
of F̃j as an upper bound for Fj , the second one from the optimality of ᾱj in Fj , and
the third one from the lower bound (2.8).

Recalling that we have assumed Fj(kj∆x/∆t) ≤ Fj((kj + 1)∆x/∆t) and δj < 0,
and using (2.12), we obtain from the two extreme terms of (2.13)

Fj

(
kj
∆x

∆t

)
+ (h+m)

(
17∆x2

8mH∆t
− Cδj

)

+ (1 + · · ·+ (h+m− 1)) 2∆x
2

mH∆t
+mδj

≥ Fj

(
kj
∆x

∆t

)
− ∆x2

8mH∆t
+ Cδj ;

that is,[
17

8
(h+m) + 2(1 + · · ·+ (h+m− 1)) + 1

]
∆x2

mH∆t
≥ [C(h+m)−m+ C] δj ,

which gives, solving for δj ,

(2.14) −m(1 + o(1))

1− C

∆x2

mH∆t
≤ δj < 0

in which it is easy to recognize that the maximum of the left-hand side is O(∆x2/∆t),
provided C < 1. Using the reverse estimate (2.3), we get at last (2.4).
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If otherwise Fj((kj + 1)∆x/∆t) < Fj(kj∆x/∆t), it is possible to redefine the

function F̃j so that F̃j((kj + 1)∆x/∆t) = Fj((kj + 1)∆x/∆t), and the same upper
bounds are used on the first and second increments. In this way, we replace (2.12)
with

(2.12′) F̃j

(
(kj + lj +m)

∆x

∆t

)
= Fj

(
(kj + 1)

∆x

∆t

)

+ (lj +m− 1)
(
17∆x2

8mH∆t
+ C|δj |

)

+ (1 + · · ·+ (lj +m− 1)) 2∆x
2

mH∆t
+mδj ,

which again implies (2.14). This construction completely parallels the previous one
and is therefore left to the reader.

Remark 2.1. The technique used in this lemma is not specifically suited for
the one-dimensional case, although for higher dimensions (especially on unstructured
grids), assumption (2.1) should be suitably redefined. The first part of Lemma 2.1 may
be soon extended to higher dimensions, by using the same technique of making the
feet of different characteristics coincide. The second part of the lemma would require
a more technical construction of the function F̃j . Also, the treatment of Dirichlet
boundary conditions is not a major problem. Simply, the foot of characteristics might
coincide with a point on the boundary, requiring again a proper, more technical
definition of the functions Fj and F̃j .

We can now prove Lipschitz continuity. We will assume that, given a Lipschitz
continuous function v(x) and the sequence V = {vj}j = {v(xj)}j , the condition

(2.15) |I[V ](x)− I1[V ](x)| ≤ C̃∆x

holds for any x ∈ R, with a positive constant C̃. In the one-dimensional setting, this
is a consequence of (2.1) since

|I[V ](x)− I1[V ](x)| ≤ C max
xi−1,xi,xi+1∈U(x)

|vi+1 − 2vi + vi−1|

≤ C (sup |vi+1 − vi|+ sup |vi−1 − vi|) = 2CL∆x.

We will also assume that at the foot of a characteristic the stronger condition

(2.16) |I[V n−1](xi + ᾱj∆t)− I1[V
n−1](xi + ᾱj∆t)| ≤ Ĉ

∆x2

∆t

holds for any j ∈ Z, n ≥ 2 and for any node xi neighboring xj , with some positive

constant Ĉ. In the case of one-dimensional problems, (2.16) follows from (2.1) and
Lemma 2.1. (In fact, U(xj + ᾱj∆t) contains all the nodes involved in the reconstruc-
tions I[V n−1](xj±1 + ᾱj∆t).)

Theorem 2.1. Consider the scheme (1.4) applied to (1.1). Assume that (2.15),
(2.16) hold, that ∆x = O(∆t2), and that v0 is Lipschitz continuous with Lipschitz
constant L0. Then, the numerical solutions V

n satisfy, for any i and j, the discrete
Lipschitz estimate

|vni − vnj |
|xi − xj | ≤ L
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for a constant L independent of ∆x and ∆t, and for 0 ≤ n ≤ T/∆t, as ∆t→ 0.
Proof. It clearly suffices to prove the claim for i, j such that xi and xj are

neighboring nodes. Assume that at the previous step the discrete solution satisfies,
for any i and j,

|vn−1
i − vn−1

j |
|xi − xj | ≤ Ln−1.

Making the argmin explicit and using (2.16), we have

(2.17) vnj = minα

{
∆tH∗(α) + I[V n−1](xj + α∆t)

}
= ∆tH∗(ᾱj) + I[V n−1](xj + ᾱj∆t)

≥ ∆tH∗(ᾱj) + I1[V
n−1](xj + ᾱj∆t)− Ĉ

∆x2

∆t
.

In order to estimate the discrete incremental ratio of V n, we give on vni the bound

(2.18) vni = ∆tH
∗(ᾱi) + I[V n−1](xi + ᾱi∆t)

≤ ∆tH∗(ᾱj) + I[V n−1](xi + ᾱj∆t)

≤ ∆tH∗(ᾱj) + I1[V
n−1](xi + ᾱj∆t) + Ĉ

∆x2

∆t
,

which results from both the optimality of ᾱi and (2.16) and holds for any n ≥ 2. If
n = 1, applying (2.15) instead of (2.16), we obtain

(2.19) v1
i = ∆tH

∗(ᾱi) + I[V 0](xi + ᾱi∆t)

≤ ∆tH∗(ᾱj) + I[V 0](xi + ᾱj∆t)

≤ ∆tH∗(ᾱj) + I1[V
0](xi + ᾱj∆t) + C̃∆x.

From (2.17) and (2.18) we obtain, for n ≥ 2, the unilateral estimate

(2.20)
vni − vnj
|xi − xj | ≤

1

|xi − xj |
[
I1[V

n−1](xi + ᾱj∆t)− I1[V
n−1](xj + ᾱj∆t)

]

+ 2Ĉ
∆x2

∆t

≤ Ln−1 +
2Ĉ

C−
∆x

∆t
,

in which C− is the constant defined at the start of the section, and we have used the
fact that the first-order reconstruction I1 at step n − 1 has also Lipschitz constant
Ln−1. Interchanging the role of ᾱj and ᾱj+1, we get the reverse estimate

vnj − vni
|xi − xj | ≤ Ln−1 +

2Ĉ

C−
∆x

∆t
,

and therefore

(2.21)
|vnj − vni |
|xi − xj | ≤ Ln−1 +

2Ĉ

C−
∆x

∆t
.
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A similar computation yields, for n = 1,

(2.22)
|v1
j − v1

i |
|xi − xj | ≤ L0 +

2C̃

C−
,

so that combining (2.21) with (2.22) and iterating back, we have

(2.23) Ln ≤ Ln−1 +
2Ĉ

C−
∆x

∆t

≤ · · · ≤ L1 +
T −∆t
∆t

2Ĉ

C−
∆x

∆t
≤ L0 +

T −∆t
∆t

2Ĉ

C−
∆x

∆t
+
2C̃

C−
.

Last, it is possible to get a finite limit in (2.23), if and only if ∆x =
O(∆t2).

Remark 2.2. Once we have proved Lipschitz continuity, we can also obtain L∞

boundedness using the same arguments as in [F].
Remark 2.3. The condition ∆x/∆t→ 0 is not unnatural in this class of schemes.

As has been remarked elsewhere, the numerical domain of dependence enlarges (as it
is easy to see from (1.4)) as ∆t increases, so that very large Courant numbers are al-
lowed without loss of stability. Of course, managing this larger domain of dependence
requires some caution to keep the computational complexity as low as possible in the
minimization phase. Roughly speaking, practical implementations of the scheme per-
form the minimization of Fj at any node and any time step by some suitable descent
method. (The interested reader can find details in [CFF], [FF3].)

Remark 2.4. The local truncation error of the scheme (see [FF3]) is of order

∆tp +
∆xr+1

∆t

(with order p of approximation of characteristics, order r of space interpolation) so
that at least in the case r = 0 (piecewise constant reconstruction), the consistency of
the scheme itself requires that the Courant number should diverge.

3. Applications to various reconstruction operators. In this section we
prove the applicability of the previous results to one-dimensional high-order recon-
struction of polynomial type. We assume the reconstruction to be of rth order in the
Newton form

(3.1) I[V ](x) = V [xj0 ] + V [xj0 , xj1 ](x− xj0) + · · ·
+ V [xj0 , . . . , xjr ](x− xj0) · · · (x− xjr−1),

where xj0 , . . . , xjr are r+1 adjacent nodes so that max(xj0 , . . . , xjr )−min(xj0 , . . . , xjr )
= r∆x and, moreover,

(3.2) x ∈ (min(xj0 , . . . , xjr ),max(xj0 , . . . , xjr )) ⊂ U(x).

This definition includes both Lagrange polynomial interpolations, for which the re-
construction stencil is fixed once x is fixed, and ENO reconstructions, for which it
depends on the solution itself (see [S]). The divided differences are defined, as usual,
by

V [xj0 ] = vj0 ,

V [xj0 , . . . , xjk ] =
V [xj1 , . . . , xjk ]− V [xj0 , . . . , xjk−1

]

xjk − xj0
(k = 1, . . . , r).
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Note that, although in principle the nodes xj0 , . . . , xjk need neither to be adjacent
nor to satisfy x ∈ (minxji ,maxxji), it is possible to reorder the nodes so that both
conditions would be satisfied.

According to its definition, we can bound a generic kth order divided difference
as follows:

(3.3) |V [xj0 , . . . , xjk ]| ≤
2max |V [xji , . . . , xjk+i−1

]|
k∆x

in which the max is performed for xji , . . . , xjk+i−1
∈ U(x). Let us now denote more

precisely the constant C in (2.1) by Cr (depending on the order r of the reconstruc-
tion). To prove (2.1), we start from the second divided difference

|V [xj0 , xj1 , xj2 ]| =
|vj0 − 2vj1 + vj2 |

2∆x2
,

and, hence,

|V [xj0 , xj1 , xj2 , xj3 ]| ≤
2max |vji − 2vji+1 + vji+2 |

3!∆x3

...

|V [xj0 , . . . , xjr ]| ≤
2r−2max |vji − 2vji+1 + vji+2 |

r!∆xr
.

Plugging such bounds into (3.1), we get an estimate in the form (2.1); that is,

(3.4) |I[V ](x)− I1[V ](x)| ≤ |V [xj0 , xj1 , xj2 ](x− xj0)(x− xj1)

+ · · ·+ V [xj0 , . . . , xjr ](x− xj0) · · · (x− xjr−1)|

≤ |vj0 − 2vj1 + vj2 |
2∆x2

M2∆x
2

+ · · ·+ 2
r−2max |vji − 2vji+1 + vji+2 |

r!∆xr
Mr∆x

r

≤ max |vji − 2vji+1 + vji+2 |
r∑

k=2

Mk2
k−2

k!
,

where

Mk :=
1

∆xk
max

x∈(xj0 ,xjk−1
)
|(x− xj0) · · · (x− xjk−1

)|

= max
t∈(0,k−1)

|t(t− 1) · · · (t− k + 1)|.

It remains to check that Cr < 1; that is,

(3.5)

r∑
k=2

Mk2
k−2

k!
< 1.

Indeed, the first values Mk may be either computed by algebraic manipulations (up
to M5), or estimated by simply plotting the polynomials t(t − 1) · · · (t − k + 1) on
the interval [0, k − 1]. It turns out that M2 = 1/4, M3 = 2

√
3/9 ≈ 0.3849, M4 = 1,
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M5 ≈ 3.6314, M6 < 17, and so on. Accordingly, the computation of the left-hand
side of (3.5) for various values of r gives C2 = 1/8 = 0.125, C3 ≈ 0.2533, C4 ≈ 0.42,
C5 ≈ 0.6621, C6 ≈ 1.04. We can conclude that by this technique, polynomial and
ENO reconstructions up to the fifth order can be proved to satisfy (2.1).

Remark 3.1. While this paper was under review, we realized (see [CFR]) a
property which allows us to extend this theory to Lagrange and weighted essentially
nonoscillatory (WENO) interpolations up to the degree r = 9, provided the recon-
struction stencil is “balanced” in the sense that

(3.6) |h+ − h−| ≤ 1.
Roughly speaking, the idea is that the interpolation I[V ](x) could be obtained as a
sum

(3.7) I[V ] = w1(x)p1(x) + · · ·+ wq(x)pq(x)

in which the polynomials wi and pi are such that degwi + deg pi = r and the pi are
constructed on smaller stencils which include the point x (this form is at the base
of WENO interpolations). With deg pi ≤ 5, one has r ≤ 9, and it turns out that
wi(x) ≥ 0 for all i and

∑
i wi(x) = 1, so that by (3.7)

min(p1(x), . . . , pq(x)) ≤ I[V ](x) ≤ max(p1(x), . . . , pq(x))

and therefore (2.1), being satisfied by all pi, is also satisfied by I[V ].

4. The main convergence result. Last, we present in this section the main
result of the paper, that is, a convergence theorem for the scheme (1.4).

Theorem 4.1. Consider the scheme (1.4) applied to (1.1). Assume that (2.15),
(2.16) hold, that ∆x = O(∆t2), and that v0 is Lipschitz continuous. Then, the nu-
merical solutions V n satisfy

‖I[V n]− v(n∆t)‖∞ → 0

for 0 ≤ n ≤ T/∆t, as ∆t→ 0.
Proof. We rewrite exact and approximate solutions at node xj and time n∆t as

(4.1) v(xj , n∆t) = ∆tH
∗(aj) + v(xj + aj∆t, (n− 1)∆t),

(4.2) vnj = ∆tH
∗(ᾱj) + I[V n−1](xj + ᾱj∆t),

where the argmin in (1.3) and (1.4) has been made explicit. Working as in Theorem
2.1, we give a first unilateral bound as

(4.3) vnj − v(xj , n∆t) ≤ v(xj + aj∆t, (n− 1)∆t)− I[V n−1](xj + aj∆t)

≤ |v(xj + aj∆t, (n− 1)∆t)− I[Wn−1](xj + aj∆t)|
+ |I[Wn−1](xj + aj∆t)− I[V n−1](xj + aj∆t)|,

in which we have used the sequence

W k := {v(xi, tk)}i.
Under our assumptions, the numerical solution is Lipschitz by Theorem 2.1. Since

this is also true for the exact solution (see [L]), all reconstructions in the right-hand
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side of (4.3) are performed on Lipschitz sequences and therefore (2.15) applies. (We
note that, even in the one-dimensional case, we cannot apply the bound of Lemma
2.1 since aj is used in the scheme instead of ᾱj .) Now, the first term of the right-hand
side of (4.3) is the reconstruction error for the Lipschitz continuous function v, and
we have

|v(xj + aj∆t, (n− 1)∆t)− I[Wn−1](xj + aj∆t)|
≤ |v(xj + aj∆t, (n− 1)∆t)− I1[W

n−1](xj + aj∆t)|
+|I1[Wn−1](xj + aj∆t)− I[Wn−1](xj + aj∆t)| → 0

with first-order convergence with respect to ∆x, resulting from the convergence of P1

interpolation to a Lipschitz function and from (2.15) (written with Wn−1 instead of
V ). For the second term in the right-hand side of (4.3) we can write, using (2.15) and
the monotonicity of the reconstruction I1,

(4.4)

|I[Wn−1](xj + aj∆t)− I[V n−1](xj + aj∆t)| ≤ |I1[Wn−1](xj + aj∆t)

− I1[V
n−1](xj + aj∆t)|+ 2C̃∆x

≤ |Wn−1 − V n−1|∞ + 2C̃∆x,

and therefore, using the reverse estimate which can be obtained in the same way,

|Wn − V n|∞ ≤ |Wn−1 − V n−1|∞ + 2C̃∆x,

which implies |Wn − V n|∞ → 0 since |W 0 − V 0|∞ = 0 and ∆x = O(∆t2). Last, by
(2.15) and the Lipschitz continuity of v, we easily get

‖I[V n]− v(n∆t)‖∞ ≤ |Wn − V n|∞ + Č∆x

and this proves the theorem for ∆t,∆x→ 0.
Remark 4.1. In this theorem, the condition ∆x = O(∆t2) is only required in

order to ensure Lipschitz stability. The proof itself requires the weaker condition
∆x = o(∆t), which is in turn related to consistency as already remarked in section 2.

Remark 4.2. Since the scheme experimentally appears to be convergent under
any ∆t/∆x relationship, we should infer that this convergence result is not optimal.
This might be due to an intrinsic limitation of this technique of proof, as well as
to the very weak assumptions on the reconstruction operator. In fact, assumption
(3.2) alone does not even allow the scheme to be stable in the sense of Von Neumann
(see [FF2] where a sort of “balancing” of the reconstruction stencil turns out to be
necessary). Here, the nonlinear min operation plays a crucial role in stabilizing the
scheme.
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Abstract. In this paper, we consider a model eigenvalue problem with discontinuous coefficients
in order to study the convergence of the Fourier methods applied to this problem. We prove that the
rate of convergence of the Fourier–Galerkin method is third order for the eigenvalues and order 2.5
for the eigenfunctions. For the Fourier collocation method we obtained only second order accuracy.

We also show that the Fourier collocation method can be improved by a preprocessing of the
coefficients.

The theory is confirmed by numerical results.
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1. Introduction. The paper is motivated by an issue arising in the use of spec-
tral methods in nonlinear optics. The Fourier methods when applied to problems in
nonlinear optics are extremely fast, and if the problem is smooth they provide high
order accuracy. However, when different media are considered, the coefficients are
only piecewise smooth and the accuracy is lost.

In order to understand the phenomenon, and as a first step to improve the accu-
racy of the Fourier schemes in those circumstances, we consider in this paper a model
eigenvalue problem with piecewise constant coefficients and study the convergence
of the Fourier–Galerkin and Fourier collocation methods to the eigenvalues and the
eigenfunctions of this problem. The surprising fact is that the order of convergence of
the eigenvalues obtained by the Fourier–Galerkin method is cubic. When the Fourier
collocation method is applied, the results are only second order. Those results are
proven and supported by numerical computations.

It turns out that, by preprocessing the discontinuous coefficients, one can improve
the accuracy of the collocation method. In fact, if one uses the point values of the
finite Fourier series of the coefficients instead of the point values of the coefficients
themselves, one recovers third order accuracy for the eigenvalues and order 2.5 for the
eigenfunction.

The paper is organized as follows. In section 2, we present the problem and show
some of the eigenvalues and eigenfunctions. In section 3, we rewrite the problem in its
variational form and quote some relevant facts. In section 4, we discuss the Fourier–
Galerkin method and prove the order of accuracy. Section 5 is devoted to the Fourier
collocation method and the error estimates of this method. In section 6, we show how
to improve the accuracy of the collocation method.
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We regard this paper as the first step toward recovering exponential accuracy for
this problem.

2. The discontinuous eigenvalue problem. Consider the following eigen-
value problem with a piecewise constant coefficient:

−d2u

dx2
= λε(x)u for x ∈ (−π, π),(2.1)

where ε(x) = 1 in (−π, 0) and ε(x) = β2 in [0, π), β �= 1. The H2
p [−π, π] eigenfunction

ul(x) (the p stands for periodic) is given by

ul(x) =

{
C cos(

√
λlx) + βD sin(

√
λlx), −π ≤ x ≤ 0,

C cos(β
√

λlx) + D sin(β
√

λlx), 0 ≤ x ≤ π,
(2.2)

where the constants C,D and the eigenvalue λl are determined by the demand that
the system

C(cos
√

λπ − cosβ
√

λπ) +D(−β sin
√

λπ − sinβ
√

λπ) = 0,

C(sin
√

λπ + β sinβ
√

λπ) +D(β cos
√

λπ − β cosβ
√

λπ) = 0

has a nontrivial solution. Considering the case β = 2, for y = cos
√

λπ, the eigenvalues
λ satisfy the equation

(y − 1)(9y2 + 9y + 2) = 0,

and so there are families of eigenvalues determined by

cos
√

λπ = 1,−1
3
, or − 2

3
.(2.3)

The first five analytic eigenvalues (with six digits of precision) and the corresponding
eigenvectors are shown in Figure 1. For comparison, we also carry the same procedure
for β = 3, where the analytic eigenvalues are determined by

cos
√

λπ = ±1 or ± 1

4
.(2.4)

In this paper, we examine the rate of convergence of the Fourier methods (Galerkin
and collocation) as a first step in an effort to improve the rate of convergence and be
able to also apply the Fourier methods for this discontinuous problem.

3. The variational formulation. We define two inner products:

a(u, v) =

∫ π

−π
u′(x)v′(x)dx,(3.1)

(u, v) =

∫ π

−π
u(x)v(x)ε(x)dx.(3.2)

Following Strang and Fix [7, p. 220], the eigenvalue problem (2.1) can be presented in
the following variational form: finding a scalar λ and a function u ∈ H1

p [−π, π] such
that

a(u, v) = λ(u, v)(3.3)
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Fig. 1. The first five analytic eigenvalues and eigenfunctions.

for all v in the Hilbert space H1
p [−π, π]. Note that a(u, v) is Hermitian.

Our proofs will use extensively the minmax principle [3].
Theorem 3.1. Let λl denote the eigenvalues of (2.1) and Sl be any l-dimensional

subspace of H1
p [−π, π]. Then, for λ1 ≤ λ2 ≤ · · · ≤ λl . . . ,

λl = min
Sl⊂H1

p [−π,π]
max
v∈Sl

a(v, v)

(v, v)
.(3.4)

In this paper, we will use sharper characterizations of the eigenvalues.
Lemma 3.2. Let λi be arranged in an ascending order and define

Ei,j = span{ui, . . . , uj},
where ui is the eigenfunction corresponding to the eigenvalue λi. Then

λl = max
v∈Ek,l

a(v, v)

(v, v)
, k ≤ l,(3.5)

λl = min
v∈El,m

a(v, v)

(v, v)
, l ≤ m.(3.6)

4. Fourier–Galerkin method. It is natural to consider the Fourier method to
approximate the periodic problem. Here, we introduce the Fourier–Galerkin method
applied to the variational formulation for approximating the eigenvalues and eigen-
functions.

Let PN be the space of the trigonometric polynomials of degree N/2 defined as

PN = span{eikx| −N/2 ≤ k ≤ N/2}.(4.1)

In this subspace, we look for λN and uN such that

a(uN , vN ) = λN (uN , vN ) for all vN ∈ PN ;(4.2)

in other words, ∫ π

−π
(uN (x))′(vN (x))′dx = λN

∫ π

−π
uN (x)vN (x)ε(x)dx.(4.3)
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4.1. Numerical scheme and its results. The approximate eigenfunction uN

in the subspace PN is expanded by

uN =

N
2∑

k=−N
2

(ûN )ke
ikx.(4.4)

Substituting uN into the variational formulation (4.2) with vN = einx, and denoting
the vector of the coefficients by ûN , we get a generalized eigenvalue problem in a
matrix form as

KûN = λNM ûN ,(4.5)

where

Knk =

∫ π

−π
(k · n)ei(k−n)xdx and Mnk =

∫ π

−π
ei(k−n)xε(x)dx.(4.6)

Solving the matrix eigenvalue problem (4.5) computationally using a proper eigen-
solver, we obtain the approximate lth eigenvalues, λNl (l ≤ N), and the set of orthog-

onal vectors ûl
N = [(ûNl )−N/2, . . . , (ûNl )N/2]

T which is used to approximate the lth
eigenfunction ul as a finite Fourier series uNl . In Tables 1 and 2, the orders of the
relative errors for λNl − λl and the discrete L2-errors of ul − uNl are provided for the
first five eigenvalues in ascending order and for the associated eigenfunctions. We
note the surprising fact that the Galerkin approximation to the eigenvalue problem
(2.1) converges with third order accuracy for the eigenvalues and order 2.5 for the
eigenfunctions even though the eigenfunctions are only in H2

p . In fact, we will show

in Lemma 4.5 that the eigenfunctions are in H
5
2−ε
p for any ε > 0.

4.2. Error estimates for eigenvalues and eigenfunctions. In this section,
we provide the error estimates for the approximate eigenvalues and eigenfunctions for
the Fourier–Galerkin method.

We first treat the approximate eigenvalues. Let PNu be the N
2 th order truncated

Fourier series of u. (We will denote also P = PN .) It is clear that it satisfies

a(u− PNu, vN ) = 0 for all vN ∈ PN .(4.7)

It is true that the minmax principle is also valid for the Galerkin procedure:

λNl = min
Sl⊂PN

max
v∈Sl

a(v, v)

(v, v)
.(4.8)

Lemma 4.1. Let λNl be the approximation to λl which is obtained by the Galerkin
procedure. Then

λl ≤ λNl ≤ λl max
v∈E1,l

(v, v)

(Pv, Pv)
.

Proof. Due to the minmax principle (3.4) and (4.8), we have

λl = min
Sl⊂H1

p [−π,π]
max
v∈Sl

a(v, v)

(v, v)

≤ min
Sl⊂PN

max
v∈Sl

a(v, v)

(v, v)
= λNl .
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Table 1
The relative errors of eigenvalues for the case β = 2 and the discrete L2-errors of ui − uNi for

the Fourier–Galerkin method.

λi N λNi
(λN

i −λi)

λi
Order ‖ui − uNi ‖l2 Order

16 0.36991 1.0269(-4) 4.1430(-4)
32 0.36988 1.5247(-5) 2.7517 8.9399(-5) 2.2124

0.36987 64 0.36988 2.0853(-6) 2.8702 1.7382(-5) 2.3627
128 0.36988 2.7295(-7) 2.9335 3.2192(-6) 2.4328
256 0.36987 3.4960(-8) 2.9649 5.8234(-7) 2.4668
16 0.53628 8.6637(-5) 5.7658(-4)
32 0.53624 1.0678(-5) 3.0203 1.0045(-4) 2.5210

0.53623 64 0.53623 1.3287(-6) 3.0066 1.7617(-5) 2.5114
128 0.53623 1.6580(-7) 3.0025 3.1020(-6) 2.5057
256 0.53623 2.0643(-8) 3.0057 5.4732(-7) 2.5028
16 1.60758 2.8694(-4) 1.8606(-3)
32 1.60717 3.2907(-5) 3.1243 3.0781(-4) 2.5957

1.60712 64 1.60712 4.0121(-6) 3.0360 5.3130(-5) 2.5344
128 1.60712 4.9821(-7) 3.0095 9.3136(-6) 2.5121
256 1.60712 6.2253(-8) 3.0005 1.6412(-6) 2.5046
16 1.93833 5.9203(-4) 2.4795(-3)
32 1.93734 8.1996(-5) 2.8520 4.8917(-4) 2.3416

1.93718 64 1.93720 1.0998(-5) 2.8983 9.2481(-5) 2.4031
128 1.93718 1.4324(-6) 2.9408 1.6966(-5) 2.4465
256 1.93718 1.8343(-7) 2.9651 3.0582(-6) 2.4719
16 4.00094 2.3385(-4) 3.4923(-3)
32 4.00002 5.9398(-6) 5.2990 2.6560(-4) 3.7168

4.00000 64 4.00000 1.7675(-7) 5.0706 2.2714(-5) 3.5476
128 4.00000 5.4572(-9) 5.0174 1.9917(-6) 3.5115
256 4.00000 1.6993(-10) 5.0051 1.7822(-7) 3.4822

Table 2
The relative errors of eigenvalues for the case β = 3 and the discrete L2-errors of ui − uNi for

the Fourier–Galerkin method.

λi N λNi
(λN

i −λi)

λi
Order ‖ui − uNi ‖l2 Order

16 0.17606 1.5651(-4) 8.6969(-4)
32 0.17604 2.3223(-5) 2.7526 1.7589(-4) 2.3059

0.17603 64 0.17603 3.1759(-6) 2.8703 3.2960(-5) 2.4159
128 0.17603 4.1565(-7) 2.9337 5.9857(-6) 2.4611
256 0.17603 5.3176(-8) 2.9665 1.0719(-6) 2.4814
16 0.33704 4.3531(-4) 2.1237(-3)
32 0.33691 5.3609(-5) 3.0215 3.7423(-4) 2.5046

0.33690 64 0.33690 6.6757(-6) 3.0055 6.6210(-5) 2.4988
128 0.33690 8.3365(-7) 3.0014 1.1722(-5) 2.4978
256 0.33690 1.0418(-7) 3.0004 2.0744(-6) 2.4984
16 1.00005 4.7257(-5) 2.1107(-3)
32 1.00000 1.8636(-6) 4.6643 3.6870(-4) 2.5172

1.00000 64 1.00000 6.6628(-8) 4.8059 6.5495(-5) 2.4930
128 1.00000 2.2386(-9) 4.8955 1.1610(-5) 2.4959
256 1.00000 7.2292(-11) 4.9526 2.0544(-6) 2.4986
16 2.02204 3.4072(-3) 2.6579(-2)
32 2.01587 3.4220(-4) 3.3157 3.0104(-3) 3.1423

2.01518 64 2.01526 4.0586(-5) 3.0758 4.5219(-4) 2.7349
128 2.01519 5.0069(-6) 3.0190 7.4652(-5) 2.5987
256 2.01518 6.2380(-7) 3.0048 1.2792(-5) 2.5449
16 2.50541 3.0620(-3) 1.0310(-2)
32 2.49866 3.5823(-4) 3.0955 2.1636(-3) 2.2526

2.49776 64 2.49788 4.6049(-5) 2.9596 4.2364(-4) 2.3525
128 2.49778 5.9303(-6) 2.9570 8.0203(-5) 2.4011
256 2.49776 7.5555(-7) 2.9725 1.4749(-5) 2.4430
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Thus only the upper bound of the approximate eigenvalue is left to be investigated.
Let PE1,l be spanned by Pu1, . . . , Pul. Then it is clear that PE1,l is the l-

dimensional subspace of PN . Using the minmax principle (4.8),

λNl ≤ max
v∈PE1,l

a(v, v)

(v, v)
= max
v∈E1,l

a(Pv, Pv)

(Pv, Pv)
.(4.9)

Note that in [7] we have

a(v, v) = a(Pv, Pv) + 2a(v − Pv, Pv) + a(v − Pv, v − Pv).(4.10)

From (4.7), we know that a(v − Pv, Pv) always vanishes for all Pv in the space PN .
Then we have a(Pv, Pv) ≤ a(v, v). Thus,

λNl ≤ max
v∈E1,l

a(v, v)

(Pv, Pv)
= max
v∈E1,l

a(v, v)

(v, v)
· (v, v)

(Pv, Pv)
≤ λl · max

v∈E1,l

(v, v)

(Pv, Pv)
.

The last inequality is a by-product of (3.5). Thus the lemma is proven.
The issue is how close (PNv, PNv) is to (v, v) for v ∈ E1,l. One would expect

the second order accuracy in N because of the smoothness of the eigenfunctions ui.
However, we will show that it is really third order. We start by examining the Fourier
coefficients of the eigenfunctions.

Lemma 4.2. The Fourier coefficients (ûl)k of the eigenfunction ul decay as
O(k−3); in fact,

(ûl)k ≤ Ck−3

{
|ul(0)|+ 1

k
|u′
l(0)|+

λl
k
||ul||

}
,(4.11)

where ||ul|| is the L2-norm of ul.
Proof. Letting ul = u for simplicity, and using the fact that u

′
is continuous,

ûk =
1

2π

∫ π

−π
ue−ikxdx =

1

2πik

∫ π

−π
u′e−ikxdx = − 1

2πk2

∫ π

−π
u′′e−ikxdx.(4.12)

Substituting u′′ = −λεu into (4.12) and, for convenience, using the notation µ =
β2 − 1, we have

ûk =
1

2πk2

∫ π

−π
λεue−ikxdx =

λ

2πk2

(∫ 0

−π
ue−ikxdx+ β2

∫ π

0

ue−ikxdx

)

=
λ

2πik3

(
µ{(−1)ku(π)− u(0)}+

∫ 0

−π
u′e−ikxdx+ β2

∫ π

0

u′e−ikxdx

)

=
λ

2πik3

(
µ[(−1)ku(π)− u(0)] +

µ

ik
[(−1)ku′(π)− u′(0)] +

1

ik

∫ π

−π
λεue−ikxdx

)
.

Therefore, the lemma is proven.
We are ready now for the next lemma.
Lemma 4.3.

max
v∈E1,l

(v, v)

(Pv, Pv)
≤ 1 + ClN−3,

where the constant C is independent of N and l.
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Proof. We first note that

(v, v)

(Pv, Pv)
=

1

1− (v,v)−(Pv,Pv)
(v,v)

.(4.13)

Since v is in E1,l, it can be represented by v =
∑l
i=1 αiui. We also have

(Pv, Pv) = (v, v)− (v − Pv, v)− (v − Pv, v) + (v − Pv, v − Pv).

Thus we get

(v, v)− (Pv, Pv)

(v, v)
≤ 2|(v − Pv, v)|

(v, v)

=
2
∑l
i,j=1 |αi||ᾱj ||(ui − Pui, uj)|

(
∑l
i=1 |αi|2)

≤ 2l max
i,j=1,... ,l

|(ui − Pui, uj)|.

Now we have

|(ui − Pui, uj)| =
∣∣∣∣∣∣

 ∑

|k|>N
2

ˆ(ui)ke
ikx,

∞∑
n=∞

ˆ(uj)ne
inx



∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

|k|>N
2

∞∑
n=∞

ˆ(ui)k
ˆ(uj)n

∫ π

−π
ei(k−n)xε(x)dx

∣∣∣∣∣∣
≤
∑

|k|>N
2

∞∑
n=∞
n�=k

| ˆ(ui)k| ·
∣∣∣ ˆ(uj)n

∣∣∣ · (β2 − 1)|((−1)k−n − 1)|
|k − n|

+
∑

|k|>N
2

∞∑
n=∞
n=k

| ˆ(ui)k| ·
∣∣∣ ˆ(uj)n

∣∣∣ · (β2 + 1)π.

Recalling (4.11), where |ûk| decays like O(k−3) at least, we get

|(ui − Pui, uj)| ≤ CN−3,

where C is a positive constant. Finally, we have

(v, v)

(Pv, Pv)
=

1

1− (v,v)−(Pv,Pv)
(v,v)

≤ 1 + 2
(v, v)− (Pv, Pv)

(v, v)

≤ 1 + ClN−3.

Thus the lemma is proven.
We can now state the following theory.
Theorem 4.4. Let λNl be the Fourier–Galerkin approximation to the eigenvalue

λl. Then

|λl − λNl | ≤ ClλlN
−3,
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where the constant C depends only on the values of ui(0), u′
i(0), and the L2-norm of

ui for all i ≤ l.
Now we are ready to treat the eigenvectors. Following Strang and Fix [7, p. 234],

we can state

||ul − uNl || ≤ ||ul − PNul||,

where PNul is the finite Fourier series of ul. For the right-hand side we have the
following estimate.

Lemma 4.5.

||ul − PNul|| ≤ CN−2.5.

Proof. By the Parseval equality, and using Lemma 4.2, which states the Fourier
coefficients of ul decay cubicly, we get

||ul − PNul|| =

 ∑

|k|>N
2

|(ûl)k|2



1
2

≤ C


 ∑

|k|>N
2

|k|−6




1
2

≤ CN−2.5.

Thus the lemma is proven.
We can therefore conclude the following theorem.
Theorem 4.6. Let ul be the lth eigenfunction, and let uNl be the solution of the

Fourier–Galerkin approximation (4.2); then

||ul − uNl || ≤ CN−2.5.(4.14)

The numerical results presented in Tables 1 and 2 conform to the theory.

5. Fourier collocation method. Let IN be the space of the trigonometric
polynomial of degree N/2, defined as

IN = span{(cos(kx)|0 ≤ k ≤ N/2) ∪ (sin(kx)|1 ≤ k ≤ N/2− 1)}.(5.1)

For an even integer N > 0, we consider the set of points

xj = −π +
2πj

N
, j = 0, . . . , N.(5.2)

The discrete approximations of the inner products (3.1) and (3.2) are defined by

a(u, v)h =
2π

N

N−1∑
j=0

u′(xj)v′(xj),(5.3)

(u, v)h =
2π

N

N−1∑
j=0

u(xj)v(xj)ε(xj).(5.4)



2262 M. S. MIN AND D. GOTTLIEB

Alternatively, defining cj = 1, 0 �= j �= N , and cN = c0 = 2, we can redefine

a(u, v)h =
2π

N

N∑
j=0

u′(xj)v′(xj)
1

cj
,(5.5)

(u, v)h =
2π

N

N∑
j=0

u(xj)v(xj)ε(xj)
1

cj
.(5.6)

Remark 5.1. Note that the bilinear form a(u, v)h coincides with the inner product
a(u, v) for trigonometrical polynomials of the right order:

a(u, v)h = a(u, v) for all u, v ∈ IN .(5.7)

This is a result of the exactness of the quadrature formula if u′v′ is up to degree
N−1 [1]. One can observe that the highest degree N for u′v′ is obtained when choosing
cos(N2 x) for both u and v. However, {cos(N2 x)}′ = −N2 sin(N2 x) and sin(N2 x) vanishes
at the grid points xj so that the quadrature formula still remains valid also for the
case of highest degree N . Thus (5.7) is true for any u, v in IN .

Remark 5.2. Equation (5.6) can be rewritten as

(v, v)h =
π

N
(|v(x0)|2ε(x0) + |v(xN

2
)|2ε(xN

2
)) +

2π

N

N
2 −1∑
j=1

|v(xj)|2ε(xj)

+
2π

N

N−1∑
N
2 +1

|v(xj)|2ε(xj) + π

N
(|v(xN )|2ε(xN ) + |v(xN

2
)|2ε(xN

2
)).

The first two terms can be identified as the trapezoidal rule [6] for
∫ 0

−π |v(ξ)|2ε(ξ)dξ,

whereas the other two terms are the same rule for
∫ π
0
|v(ξ)|2ε(ξ)dξ. We can therefore

state

|(v, v)− (v, v)h| ≤ CN−2 max

{
max

−π≤x<0
(|v|2 · ε)′′, max

0≤x≤π
(|v|2 · ε)′′

}
.(5.8)

5.1. Numerical scheme and its results. The collocation methods can be
defined as finding λc and uc ∈ IN such that

a(uc, vc)h = λc(uc, vc)h for all vc ∈ IN .(5.9)

There are several ways to realize the abstract definition of the collocation methods,
and we will quote one of them: uc can be presented using the Lagrange trigonometrical
polynomials as interpolation polynomials [4] as follows:

uc =

N−1∑
j=0

uc(xj)lj(x),(5.10)

where

lj(x) =
1

N
sin

[
N
(x− xj)

2

]
cot

[
x− xj

2

]
.(5.11)
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Taking vc(x) = ln(x), we have

a(u, v)h =
2π

N

N−1∑
i=0

N−1∑
j=0

uc(xj)l
′
j(xi)l

′
n(xi)

=
2π

N

N−1∑
j=0

uc(xj)

N−1∑
i=0

l′j(xi)l
′
n(xi)

=
2π

N

N−1∑
j=0

uc(xj)D
2
nj ,

where D2 = −D ·D and D is the first order differentiation matrix for even grid points
[2], [4], [5]. Also,

(u, v)h =
2π

N

N−1∑
i=0

N−1∑
j=0

uc(xj)lj(xi)ln(xi)ε(xi)

=
2π

N

N−1∑
j=0

uc(xj)

N−1∑
i=0

lj(xi)ln(xi)ε(xi)

=
2π

N

N−1∑
j=0

uc(xj)Ajn,

where A = diag{ε(x0), . . . , ε(xN−1)}. Then we solve the matrix equation

D2uc = λcAuc(5.12)

to get the approximate eigenvalues λc and eigenfunctions uc = [uc(x0), . . . , uc(xN−1)]
T .

Remark 5.3. In order to make (5.12) compatible with definition (5.6), we should

replace ε(x0) by the average ε(x0)+ε(xN )
2 .

The variational formulation with odd grids can be obtained in a similar way. In
Tables 3 and 4, we present the relative error for λcl −λl. It is clear that we see second
order accuracy with even grids as well as with odd grids as N increases. The discrete
L2-error of ul − ucl converges with second order accuracy with even and odd grids as
N increases.

5.2. Error estimates for eigenvalues and eigenfunctions. Here we provide
error estimates for the approximate eigenvalues and eigenfunctions of the Fourier
collocation method. We first consider the approximate eigenvalues. Let Sl be any
l-dimensional subspace of IN .

Lemma 5.1. Let λcl be the approximation to λl obtained by the collocation proce-
dure, and let Sl be any l-dimensional subspace of IN . Then

λcl ≤ max
v∈Sl

a(v, v)h
(v, v)h

.(5.13)

Proof. The space Sl is spanned by the eigenfunctions uck1 , . . . , uckl for k1 < · · · <
kl. It follows that kl ≥ l. Now

a(uckl , u
c
kl
)h

(uckl , u
c
kl
)h

= λckl ≥ λcl .(5.14)
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Table 3
Fourier collocation with even grids: The relative errors of eigenvalues for the case β = 2 and

the discrete L2-errors of ui − uci .

λi N λci
(λc

i−λi)

λi
Order ‖ui − uci‖l2 Order

16 0.37224 6.3993(-3) 4.4960(-3)
32 0.37049 1.6710(-3) 1.9372 1.1755(-3) 1.9354

0.36987 64 0.37003 4.2818(-4) 1.9644 3.0154(-4) 1.9628
128 0.36992 1.0846(-4) 1.9811 7.6428(-5) 1.9801
256 0.36989 2.7298(-5) 1.9903 1.9243(-5) 1.9897
16 0.53024 -1.1169(-2) 7.3926(-3)
32 0.53477 -2.7366(-3) 2.0290 1.7725(-3) 2.0603

0.53623 64 0.53587 -6.7697(-4) 2.0152 4.3472(-4) 2.0276
128 0.53614 -1.6834(-4) 2.0077 1.0771(-4) 2.0130
256 0.53621 -4.1974(-5) 2.0038 2.6811(-5) 2.0062
16 1.63690 1.8531(-2) 1.1564(-2)
32 1.61442 4.5477(-3) 2.0267 3.0650(-3) 1.9157

1.60712 64 1.60895 1.1432(-3) 1.9920 7.9696(-4) 1.9433
128 1.60758 2.8754(-4) 1.9913 2.0372(-4) 1.9679
256 1.60723 7.2160(-5) 1.9945 5.1533(-5) 1.9830
16 1.89597 -2.1273(-2) 1.7356(-2)
32 1.92826 -4.6037(-3) 2.2081 4.8491(-3) 1.8396

1.93718 64 1.93510 -1.0746(-3) 2.0991 1.2694(-3) 1.9336
128 1.93668 -2.5988(-4) 2.0478 3.2443(-4) 1.9682
256 1.93706 -6.3921(-5) 2.0235 8.1999(-5) 1.9842
16 4.00439 1.0977(-3) 6.8315(-2)
32 4.00012 2.9270(-5) 5.2288 1.5700(-2) 2.1214

4.00000 64 4.00000 8.7981(-7) 5.0561 3.8391(-3) 2.0319
128 4.00000 2.7229(-8) 5.0140 9.5432(-4) 2.0082
256 4.00000 8.4864(-10) 5.0039 2.3823(-4) 2.0021

Table 4
Fourier collocation with odd grids: The relative errors of eigenvalues for the case β = 2 and

the discrete L2-errors of ui − uci .

λi N λci
(λc

i−λi)

λi
Order ‖ui − uci‖l2 Order

17 0.37037 1.3299(-3) 1.0195(-2)
33 0.37002 3.8441(-4) 1.7906 2.6389(-3) 1.9499

0.36987 65 0.36991 1.0289(-4) 1.9016 6.7366(-4) 1.9698
129 0.36988 2.6595(-5) 1.9519 1.7035(-4) 1.9835
257 0.36988 6.7596(-6) 1.9761 4.2842(-5) 1.9914
17 0.53491 -2.4693(-3) 8.0457(-3)
33 0.53589 -6.4469(-4) 1.9374 2.0181(-3) 1.9952

0.53623 65 0.53615 -1.6437(-4) 1.9717 5.0695(-4) 1.9931
129 0.53621 -4.1480(-5) 1.9864 1.2715(-4) 1.9953
257 0.53623 -1.0418(-5) 1.9933 3.1846(-5) 1.9973
17 1.61319 3.7829(-3) 1.6275(-2)
33 1.60879 1.0434(-3) 1.8581 4.5235(-3) 1.8471

1.60712 65 1.60756 2.7480(-4) 1.9249 1.2086(-3) 1.9041
129 1.60723 7.0552(-5) 1.9616 3.1368(-4) 1.9460
257 1.60714 1.7876(-5) 1.9806 7.9996(-5) 1.9713
17 1.92848 -4.4933(-3) 3.7036(-2)
33 1.93509 -1.0779(-3) 2.0595 9.7683(-3) 1.9228

1.93718 65 1.93667 -2.6181(-4) 2.0416 2.5446(-3) 1.9407
129 1.93706 -6.4278(-5) 2.0261 6.5220(-4) 1.9641
257 1.93715 -1.5904(-5) 2.0149 1.6529(-4) 1.9803
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This concludes the proof.
We are now ready to estimate λcl from above.
Lemma 5.2.

λcl ≤ λl(1 + CN−2),(5.15)

where C is independent of N (but may depend linearly on l).
Proof. Let JN (= J) be the orthogonal projection (in the usual L2 sense) of H2

to IN . Let Sl = JE1,l = span{Ju1, . . . , Jul} in Lemma 5.1 to get

λcl ≤ max
v∈JE1,l

a(v, v)h
(v, v)h

= max
v∈E1,l

a(Jv, Jv)h
(Jv, Jv)h

.

Then

λcl ≤ max
v∈E1,l

a(v, v)

(v, v)
· a(Jv, Jv)h

a(v, v)
· (v, v)

(Jv, Jv)
· (Jv, Jv)

(Jv, Jv)h
.(5.16)

From Lemma 3.2, we have

max
v∈E1,l

a(v, v)

(v, v)
= λl.

Also from the exactness of the trapezoidal rule and the fact that J is an orthogonal
projection, it is true that

a(Jv, Jv)h = a(Jv, Jv) ≤ a(v, v).

Due to Lemma 4.3 (with the same proof for J replacing P ), we have

max
v∈E1,l

(v, v)

(Jv, Jv)
≤ 1 + ClN−3.

Also, Remark 5.2 gives

(Jv, Jv)

(Jv, Jv)h
≤ 1 + CN−2,

and so the lemma is proven.
We will now try to get a lower bound for λcl . Define Ec

1,l = span{uc1, . . . , ucl }.
From the minmax theorem, we have

λl ≤ max
v∈Ec

1,l

a(v, v)

(v, v)
.

It is also clear that

λcl = max
v∈Ec

1,l

a(v, v)h
(v, v)h

.

We can now state the following lemma.
Lemma 5.3.

λl ≤ λcl (1 + CN−2),(5.17)
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where C is independent of N (but may depend linearly on l).
Proof. We start from

λl ≤ max
v∈Ec

1,l

a(v, v)

(v, v)

= max
v∈Ec

1,l

a(v, v)h
(v, v)h

· a(v, v)

a(v, v)h
· (v, v)h
(v, v)

.

Since v ∈ IN , we have a(v, v) = a(v, v)h. Also, because of the trapezoidal rule
estimate

|(v, v)h − (v, v)| ≤ CN−2,

and therefore the lemma is proven.
We can now conclude the following theorem.
Theorem 5.4. Let λcl be the approximation to λl obtained by the collocation

procedure. Then

|λcl − λl| ≤ CλlN
−2,(5.18)

where C is independent of N .
We now turn to the eigenfunctions. The set uc1, u

c
2, . . . , ucN forms an orthogonal

basis for IN . Then we can express the orthogonal projection Jul of ul into the
subspace IN as the following:

Jul =

N∑
j=1

(Jul, u
c
j)hu

c
j .(5.19)

By subtracting the following variational formulations,

λl(ul, u
c
j) = a(ul, u

c
j),

λcj(Jul, u
c
j)h = a(Jul, u

c
j)h = a(Jul, u

c
j),

we have

(λcj − λl)(Jul, u
c
j)h = a(Jul, u

c
j)− a(ul, u

c
j)− λl[(Jul, u

c
j)h − (ul, u

c
j)]

= −a(ul − Jul, u
c
j) + λl[(ul, u

c
j)− (Jul, u

c
j)h].

Since a(ul − Jul, u
c
j) = 0, we have

|(Jul, u
c
j)h| ≤

λl
|λcj − λl| · |(ul, u

c
j)− (Jul, u

c
j)h|

≤ λl
|λcj − λl| · {|(ul, u

c
j)− (ul, u

c
j)h|+ |(ul, ucj)h − (Jul, u

c
j)h|}.

From the Schwarz inequality and (ucj , u
c
j)h = 1, we have

|(ul − Jul, u
c
j)h| ≤ ‖ul − Jul‖h · ‖ucj‖h
≤ CN−2,
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where ‖u‖h =
√
(u, u)h. Using the trapezoidal rule as in (5.8), we have

|(ul, ucj)− (ul, u
c
j)h| ≤ CN−2.

Then, following [7],

‖Jul − βucl ‖h =
√√√√√ N∑

j=1
j �=l

|(Jul, ucj)h|2 ≤ ρCN−2,

where β = (Jul, u
c
l )h and ρ is a separation constant for the eigenvalues as in [7,

pp. 234–235]. From (5.8) and ‖ul‖ = ‖ucl ‖h = 1,

‖ul‖h ≤ ‖ul‖+ CN−2 = ‖ucl ‖h + CN−2.

Then, following [7], we have

‖ul − ucl ‖h ≤ ‖ul − Jul‖h + ‖Jul − βucl ‖h + ‖βucl − ucl ‖h ≤ CN−2.

We can therefore conclude the following theorem.
Theorem 5.5. Let ul be the lth eigenfunction, and let ucl be the solution of the

Fourier collocation approximation (5.9); then

||ul − ucl ||h ≤ CN−2.

Due to the equivalence of the norms in finite space, the discrete L2-error of ul−ucl
also converges with O(N−2).

6. Accuracy enhancement for the collocation method. A simple trick can
be used in order to enhance the accuracy of the Fourier collocation method. We ex-
pand the discontinuous coefficient function ε(x) in the finite Fourier series represented
by

εN (x) =

N
2∑

k=−N
2

(ε̂N )ke
ikx,

where the Fourier coefficients are defined as

(ε̂N )k =
1

2π

∫ π

−π
ε(x)e−ikxdx.

Now, instead of (5.4), defining

(u, v)h =
2π

N

N−1∑
j=0

u(xj)v(xj)ε
N (xj)(6.1)

in the variational formulation (5.9), we have the scheme as follows:

D2uc = λcAuc,(6.2)

where A = diag{εN (x0), . . . , εN (xN−1)} and D2 is the same as defined in (5.12).
The numerical results are presented in the Tables 5 and 6 for even and odd grids,

respectively. The accuracy is now the same accuracy as for the Galerkin method! An
analysis for this will appear in a future paper.
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Table 5
The accuracy enhancement for collocation with even grids: The relative errors of eigenvalues

for the case β = 2 and the discrete L2-errors of ui − uci using ε
N (x).

λi N λci
(λc

i−λi)

λi
Order ‖ui − uci‖l2 Order

16 0.36995 2.0453(-4) 5.1956(-4)
32 0.36988 2.1664(-5) 3.2389 1.0071(-4) 2.3671

0.36987 64 0.36988 2.4904(-6) 3.1208 1.9120(-5) 2.3970
128 0.36988 2.9842(-7) 3.0609 3.5138(-6) 2.4440
256 0.36987 3.6546(-8) 3.0296 6.3363(-7) 2.4713
16 0.53624 7.7676(-6) 9.7460(-4)
32 0.53624 5.7076(-6) 0.4445 1.4544(-4) 2.7444

0.53623 64 0.53623 1.0179(-6) 2.4873 2.2753(-5) 2.6764
128 0.53623 1.4643(-7) 2.7973 3.7110(-6) 2.6161
256 0.53623 1.9435(-8) 2.9135 6.2557(-7) 2.5686
16 1.60674 -2.3345(-4) 4.9371(-3)
32 1.60714 1.5379(-5) 3.9241 4.7815(-4) 3.3681

1.60712 64 1.60712 3.2157(-6) 2.2577 6.7468(-5) 2.8250
128 1.60712 4.5610(-7) 2.8177 1.0873(-5) 2.6334
256 1.60712 5.9832(-8) 2.9304 1.8450(-6) 2.5591
16 1.94119 2.0698(-3) 6.8043(-3)
32 1.93744 1.3393(-4) 3.9500 6.3418(-4) 3.4235

1.93718 64 1.93721 1.3685(-5) 3.2908 1.0359(-4) 2.6140
128 1.93718 1.5887(-6) 3.1067 1.8498(-5) 2.4855
256 1.93718 1.9292(-7) 3.0418 3.3183(-6) 2.4789
16 3.92531 -1.8673(-2) 3.9832(-2)
32 3.99878 -3.0425(-4) 5.9395 1.8962(-3) 4.3927

4.00000 64 3.99995 -1.3559(-5) 4.4880 2.0989(-4) 3.1754
128 4.00000 -7.3809(-7) 4.1993 2.5516(-5) 3.0402
256 4.00000 -4.3296(-8) 4.0915 3.1659(-6) 3.0107

Table 6
The accuracy enhancement for collocation with odd grids: The relative errors of eigenvalues

for the case β = 2 and the discrete L2-errors of ui − uci using ε
N (x).

λi N λci
(λc

i−λi)

λi
Order ‖ui − uci‖l2 Order

17 0.36994 1.7576(-4) 5.8880(-4)
33 0.36988 1.9991(-5) 3.1362 1.0629(-4) 2.4698

0.36987 65 0.36988 2.3892(-6) 3.0647 1.9258(-5) 2.4644
129 0.36988 2.9220(-7) 3.0315 3.4570(-6) 2.4778
257 0.36987 3.6169(-8) 3.0141 6.1624(-7) 2.4880
17 0.53626 4.4494(-5) 8.1441(-4)
33 0.53624 8.1111(-6) 2.4556 1.2636(-4) 2.6882

0.53623 65 0.53623 1.1708(-6) 2.7924 2.0471(-5) 2.6259
129 0.53623 1.5604(-7) 2.9075 3.4310(-6) 2.5768
257 0.53623 2.0042(-8) 2.9608 5.8871(-7) 2.5430
17 1.60723 7.1745(-5) 3.5514(-3)
33 1.60716 2.4805(-5) 1.5323 3.9880(-4) 3.1547

1.60712 65 1.60712 3.6264(-6) 2.7740 6.0783(-5) 2.7139
129 1.60712 4.7742(-7) 2.9252 1.0143(-5) 2.5832
257 1.60712 6.1050(-8) 2.9672 1.7484(-6) 2.5364
17 1.93983 1.3694(-3) 5.1304(-3)
33 1.93740 1.1435(-4) 3.5820 6.1267(-4) 3.0659

1.93718 65 1.93721 1.2826(-5) 3.1563 1.0292(-4) 2.5736
129 1.93718 1.5433(-6) 3.0550 1.8186(-5) 2.5006
257 1.93718 1.9029(-7) 3.0197 3.2305(-6) 2.4930



DISCONTINUOUS EIGENVALUE PROBLEMS 2269

Acknowledgments. The authors would like to thank Bertil Gustafsson, Sey-
mour Parter, and Wai-Sun Don for several useful suggestions and discussions regard-
ing this paper.

REFERENCES

[1] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid
Dynamics, Springer Ser. Comput. Phys., Springer-Verlag, New York, 1988.

[2] D. Funaro, Polynomial Approximation of Differential Equations, Springer-Verlag, New York,
1991.

[3] G. H. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 1996.

[4] D. Gottlieb, M. Y. Hussaini, and S. A. Orszag, Theory and Applications of Spectral Meth-
ods, in Spectral Methods for Partial Differential Equations, R. Voigt, D. Gottlieb, and
M.Y. Hussaini, eds., SIAM, Philadelphia, 1984, pp. 1–54.

[5] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Appli-
cation, CMBS-NSF Regional Conf. Ser. Appl. Math. 26, SIAM, Philadelphia, 1977.

[6] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966.

[7] G. Strang and G. Fix, An Analysis of The Finite Element Method, Prentice–Hall, Englewood
Cliffs, NJ, 1973.



SYMMETRIC ERROR ESTIMATES FOR MOVING MESH MIXED
METHODS FOR ADVECTION-DIFFUSION EQUATIONS∗

YINGJIE LIU† , RANDOLPH E. BANK‡ , TODD F. DUPONT§ , SONIA GARCIA¶, AND

RAFAEL F. SANTOS‖

SIAM J. NUMER. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. 2270–2291

Abstract. A mixed method allowing a general class of mesh movements is proposed for an
advection-diffusion equation in either conservative or nonconservative form. Several symmetric error
estimates are derived for the method under certain conditions. In one space dimension, optimal order
L2 convergence and superconvergence are proved as corollaries of the symmetric estimates.
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1. Introduction. Moving mesh finite element methods have been widely stud-
ied; in [10, 9] methods based on Galerkin formulations were given. In [5, 2] error
analysis was provided for related classes of moving mesh finite element methods which
allow piecewise time continuous mesh movements. In this work, we examine moving
mesh methods for mixed methods that incorporate some of the ideas in [4], where a
procedure for including characteristics within finite element methods for advection-
diffusion equations was proposed.

A symmetric error estimate is, to within a constant, a best approximation result.
That is, if the error can be made small in the given norm, then it is small in that
norm. Somewhat more precisely, there is a norm ||| · ||| and a constant C such that

|||error||| ≤ C|||best approximation error|||.
Dupont [5], Bank and Santos [2], Dupont and Liu [6], and sections 5 and 7 of this

work establish bounds of this type. In [6] and this paper, the constant C does not
increase as the advective term increases in size, provided that the mesh movement ap-
proximates the advective term sufficiently well. These results thus make it clear that
the mesh movement is actually modeling the advection. Also, the norms in section 5
involve the convective derivative instead of the partial with respect to time, and as
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Douglas and Russell pointed out in [4], for advection dominated problems the convec-
tive derivative will typically be much smoother, and therefore easier to approximate
well. While symmetric error estimates for parabolic equations have a certain attrac-
tiveness in the simplicity of the statement that they make, it is sometimes hard to see
the precise meaning of the result because the norms involved are made up of several
parts. We exploit the idea of [6] to weaken some of these parts to “concentrate” the
norm on certain terms.

Although the motivation for this research was an improved understanding of
moving mesh methods, it is worth remarking that the symmetric error estimates
provided here are valid even if the mesh does not move. While such estimates for
parabolic equations have a thirty year history in the context of Galerkin methods,
these are the first symmetric error estimates for mixed methods for parabolic problems
even in the fixed mesh case.

Characteristics-type mixed methods have been studied in several papers (see,
e.g., Yang [12] and Arbogast and Wheeler [1]), but the analytical understanding of
mixed methods in combination with moving meshes is far from complete. Unlike
Galerkin methods using conforming finite element spaces, moving mesh methods us-
ing mixed formulations and discontinuous approximation spaces can develop singu-
larities in the time derivative at the edges between elements. Therefore it is critical
to use directional time derivatives along the mesh movement direction throughout
the analysis. The mesh movement that is considered here is more general than just
a fixed mesh or a mesh that follows characteristics, for several reasons; two of the
most significant are the following. First, the best mesh may not be fixed or follow
the characteristics. Diffusion spreads things out and a mesh can follow such patterns;
in fact, in [8] it is shown that in some situations mesh movement alone can model
diffusion. Thus when diffusion and advection are both present, one may want to use a
mesh that reflects the action of the two together. Second, the choice of mesh moving
strategy will usually involve in a strong way considerations of the complexity of the
program used to implement the mesh movement. One technique that we have used
is to guess an analytic form for the mesh transformation based on a coarse grid cal-
culation. Since the estimates here say that if you can approximate the solution, you
will, this very simple-to-code approach is seen as a legitimate way to proceed. This
technique is illustrated in an example in section 6.

In this paper, we first introduce our method and prove our symmetric error esti-
mates. Next, an optimal order L2 error estimate and a superconvergence result are
proved for one space dimension as a corollary of the symmetric error estimate. The er-
ror bound gives considerable insight into the effectiveness of a given mesh movement.
Aligning the mesh movement with the characteristics is not necessary as long as the
difference between the advection velocity and the velocity of mesh movement remains
bounded. The fact that the constants in the error bounds don’t depend directly on
the advection coefficient reflects the fact that mesh movement does indeed model ad-
vection. Furthermore, the analysis also shows that if the mesh is moved in such a way
that it has a finer mesh where the solution has hard-to-approximate regions, then the
bound on the error is decreased. These two observations give insight into what are
good choices of mesh movement.

The remainder of this paper is organized as follows. In section 2, we discuss
the advection-diffusion equation in conservative form, introduce several notations,
and formulate the mixed method for general mesh movements. In section 3, we
introduce a pseudoinverse operator “A” of “div,” and in section 4 we develop the basic
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properties of the directional derivative “D/Dt”; these concepts are used in section 5
to get symmetric error estimates. Optimal order error bounds are proved in section 6,
and an example is presented that illustrates some of the issues associated with these
techniques. In section 7, we consider a mixed method for an advection-diffusion
equation in nonconservative form, allowing general mesh movements. Symmetric
error analysis and one-dimensional applications are derived in a manner that parallels
the earlier analysis.

2. Model problem and mixed method. Consider the following advection-
diffusion model problem on Q = Ω× (0, T ):


∂tu−∇ · (a∇u+ bu) = f

u = 0

u = u0

on Q,

on ∂Ω× (0, T ),

for t = 0,

(2.1)

where a(x), b(x), and f(x, t) are smooth and bounded and a1 ≥ a(x) ≥ a0 > 0 for
some constants a0, a1. Here Ω is a bounded domain in Rn. For simplicity, we assume
that Ω is a fixed polyhedron.

We use || · ||s to denote the Hs(Ω) norm. When s = 0, we usually use || · ||. If
we use domains other than Ω, we will use || · ||Hs(Ωi) or || · ||L2(Ωi). The norm for the
dual space of H1

0 (Ω) is denoted || · ||−1, and ||ξ||Lp(0,T ;X) denotes the Lp(0, T ) norm of
||ξ(·, t)||X . We will use (·, ·) as the inner product on L2(Ω) and on (L2(Ω))n, and will
rely on context to indicate which is intended.

We will study methods that approximate the solution u of (2.1) on a moving
mesh, which is given as a time-dependent image of a fixed reference mesh. Suppose
that D̄ = ∪Di is a fixed polyhedron, where Di’s are closed sets with nonvoid disjoint
interiors. We need few assumptions on the Di’s for much of the argument, but to
keep the discussion simple, we suppose that each Di is a simplex and that they form
a tessellation of D̄. Further, we suppose that there is a continuous mapping G from
D̄ × [0, T ] onto Ω̄ such that

1. for each t, G(·, t) is a one-to-one piecewise linear mapping (with respect to
{Dj}) of D̄ onto Ω̄;

2. G is continuously differentiable on each Di × [0, T ]; and
3. ∂Ω = G(∂D, t).

Let Ωi(t) = G(Di, t), hi(t) be the diameter of Ωi(t), and h(t) = maxi{hi(t)}. Then
Ωi(t) is also a simplex and {Ωi(t)} becomes the moving partition of Ω. It is sometimes
convenient to think of this moving mesh as being generated by a mapping of Ω onto
itself. Let G−1 = G−1(·, t) denote the inverse of G as a map of D onto Ω; thus this
function can be viewed as being defined on Q̄. The partial derivative with respect to
t of G is denoted Gt. The finite element mesh is advected with a flow that is given by

ẋ(t) = Gt(G−1(x, t), t).

Given the assumptions on G, the function ẋ is a continuous piecewise linear function
over the partition {Ωi} of Ω. Let Ṽh be a finite-dimensional subspace of L2(D). Then
the corresponding finite element space on Ω is defined by

Vh(t) = {φ(x, t) : φ(G(·, t), t) ∈ Ṽh}.

We will take Hh(t) to be a finite-dimensional subspace of H(div,Ω) so that div Hh =
Vh for any t. In particular, we will take Vh to be the space of discontinuous polynomials
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of total degree at mostm, andHh to be the Raviart–Thomas flux space. Let Ph denote
the L2 projection onto Vh. Let Πh be the linear operator H(div,Ω)→ Hh satisfying
(div (W − ΠhW ), r) = 0 ∀r ∈ Vh and divΠh = Phdiv as defined by Raviart and
Thomas in [11].

Let h(x, t) denote the function that has the value hi(t) on each Ωi(t). For a
function ϕ such that its restriction to Ωi is in Hs(Ωi), let

||ϕ||2Hs =
∑
i

||ϕ||2Hs(Ωi)
.

We denote a particular directional derivative DF/Dt as follows:

DF (x, t)

Dt
=
∂F (x, t)

∂t
+ ẋ · ∇xF (x, t).

Note that if F (·, t) ∈ Vh(t) is differentiable on each Ωi, then DF/Dt is also in Vh.
Even though it might seem that both ∂F/∂t and ∇xF are singular on the boundaries
∂Ωi, the directions involved in DF/Dt never cross the boundary of any Ωi.

The first mixed method we consider uses a mesh movement induced flux across
subdomain boundaries. Let σ = −(a∇u+ bu+ ẋu) and α = 1/a, β = b/a. The exact
solution u satisfies

Du

Dt
+ div σ + (∇ · ẋ)u = f.

This leads to the following mixed formulation:


(ασ + (β + αẋ)u,X )− (u, divX ) = 0 ∀X ∈ H(div,Ω),(
Du

Dt
+ div σ + (∇ · ẋ)u, r

)
= (f, r) ∀r ∈ L2(Ω).

(2.2)

We define the mixed approximation to be functions uh : [0, T ]→ Vh and σh : [0, T ]→
Hh such that uh(0) = Phu(0) and


(ασh + (β + αẋ)uh,X )− (uh, divX ) = 0 ∀X ∈ Hh,(
Duh
Dt

+ div σh + (∇ · ẋ)uh, r

)
= (f, r) ∀r ∈ Vh.

(2.3)

Note that this method is locally conservative, because the rate of change of the
integral of u over each subdomain is given by the integral around the boundary of
the normal component of σ, and the normal component of σ is continuous across
subdomain boundaries. (If this is less than clear, please see the proof of Lemma 7.)

In proving the symmetric error estimates, we don’t need specific approximation
properties, but we will need such properties in order to obtain a priori error bounds
based on the mesh size and the smoothness of the solution u. We summarize these
additional conditions here.

Condition 1 (approximation). There exists a constant C1 such that for any
w ∈ Hs1(Ω), s1 ≥ 0, and any t ∈ [0, T ],

||w − Phw|| ≤ C1||hmin{m+1,s1}w||Hs1 ,

and for any W ∈ (Hs2(Ω))n, s2 ≥ 1, and any t ∈ [0, T ],

||W −ΠhW || ≤ C1||hmin{m1+1,s2}W ||Hs2 ,

where m1 = m+ 1 in one dimension and m1 = m in higher space dimensions.
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This condition holds for the Raviart–Thomas spaces, where C1 depends on m and
on a bound for hi/h̃i, where h̃i is the diameter of the largest ball in Rn contained
in Ωi.

Condition 2 (stability of Πh). There exists a constant C2 such that for any
W ∈ (H1(Ω))n and any t ∈ [0, T ]

||ΠhW || ≤ C2||W ||1.

If Condition 1 holds, then C2 can be taken to be 1 + C1h. But this condition is
strictly weaker than Condition 1; it allows controlled degeneracy in the elements as
the mesh size decreases.

Condition 3 (H2 regularity). The domain Ω is regular enough that there exists
a C3 such that, for any ξ ∈ L2(Ω), the boundary value problem

{
∆g = ξ

g = 0

in Ω,

on ∂Ω,
(2.4)

has a unique solution and ||g||2 ≤ C3||ξ||.
3. A pseudoinverse of div. In this section we define and explore the properties

of a smoothing mapping that appears naturally in the symmetric error estimates. Let
A : L2(Ω)→ Hh be the pseudoinverse of div in the sense that

ϕ− div (Aϕ) ⊥ Vh,
||Aϕ|| is minimal.

Note that A(ϕ) = A(Phϕ); thus we can factor A as AVh
Ph, where AVh

is A restricted
to Vh. Note that this factorization gives that A∗ maps Hh into Vh. Let Hh = O⊕O⊥,
where O = {X ∈ Hh : divX = 0} and O⊥ is its orthogonal complement with respect
to the (L2(Ω))n inner product. Then div is a one-to-one mapping from O⊥ onto Vh,
and AVh

is its inverse. In the case of one dimension with m = 0, the operator A can
be explicitly described: Aϕ is the piecewise linear interpolant of a constant plus the
integral of ϕ. The following result shows that in more general situations A behaves
as a smoothing operator.

Theorem 4. If Conditions 1 and 3 hold, then there is a C = C(C1, C3) such
that for any ξ ∈ L2(Ω)

||Aξ|| ≤ C{h||ξ||+ ||ξ||−1},
||Aξ|| ≤ C{h||Phξ||+ ||Phξ||−1}.

Proof. Let g be the solution of (2.4) and set W = ∇g. Take ρ ∈ Hh and ν ∈ Vh
to be the mixed method approximation of W and g:

{
(ρ,X ) + (ν, divX ) = 0 ∀X ∈ Hh,
(div ρ, r) = (ξ, r) ∀r ∈ Vh.(3.1)

We want to show that ρ = Aξ. In fact, the second equation of (3.1) implies div ρ =
Phξ, and the first one implies (ρ,X ) = 0 ∀X ∈ O, which in turn implies that ||ρ|| is
minimal among all elements in Hh whose divergence is Phξ.
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Next we need an approximation result for mixed methods (see, e.g., [7]) to see
that

||Aξ||2 = (ρ, ρ)

= (ρ, ρ−W ) + (ρ,W )

≤ ||ρ||{Ch||g||2 + ||W ||}
≤ ||Aξ||{Ch||ξ||+ ||W ||}.

(3.2)

It follows from (2.4) that

||W || = ||∇g|| ≤ C||ξ||−1.

From this and (3.2) the first result of this theorem follows. The second follows since
Aξ = APhξ.

Note that even if Ω fails to have the assumed H2 regularity, the result may still be
proved in some cases. Suppose that Ω can be expanded to Ω̃, which has H2 regularity,
and the function spaces can be extended to Ω̃ with the approximation properties still
holding. Then extending ξ to be zero on Ω̃−Ω and a slight modification of the above
proof gives the conclusions of the theorem. For example, if Ω were an L-shaped region
in two space dimensions, H2 regularity would fail, but the extension to a square might
be possible.

On Hh, the operator A div does not increase the L2 norm. Suppose that ρ ∈ Hh

and let ψ = A div ρ. Then div ρ − div ψ ⊥ Vh. Hence ψ = ρ + z, where z ∈ O.
Because ||ψ|| is taken to be minimal and z ≡ 0 is possible, we see that

||A div ρ|| = ||ψ|| ≤ ||ρ||.(3.3)

In one dimension the choice of discontinuous piecewise polynomial spaces allows a
more local version of Theorem 4. In fact, let Ω = (x0, xN ) and Ωi = (xi−1, xi); then
Aξ =

∫ x
x0
Phξ(s)ds+ C.

Theorem 5. If Condition 2 holds, then there is a C such that for any ξ ∈ L2(Ω)

||Aξ|| ≤ C||ξ||.
Proof. Take ρ ∈ Hh and ν ∈ Vh to be defined by (3.1); thus we know that Aξ = ρ.

From (3.1) with χ = Aξ and r = ν we see that

||Aξ||2 = −(ξ, ν) ≤ ||ξ|| ||ν||.
Let B be a cube that contains Ω, and take ϕ be the extension of ν to B by

zero outside Ω. Take g ∈ H1
0 (B) such that, on B, ∆g = ϕ. Then, because the

cube has H2 regularity for the Laplacian, we see that ∇g is bounded in (H1(B))2 by
C||ϕ||L2(B) = C||ν||. Note that

||ν||2 = (ν, div∇g) = (ν, divΠn∇g) = (−Aξ,Πh∇g).

The operator Πh is bounded as a map of H1 into L2 by Condition 2. Thus it follows
that

||ν||2 ≤ ||Aξ|| ||Πh∇g|| ≤ C||Aξ|| ||g||2 ≤ C||Aξ|| ||ν||.
The two displayed inequalities then give the desired result.
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4. Properties of D/Dt. From the definition of directional derivative we have
the following basic relations, which we use later in energy-type arguments.

Lemma 6.

∇x · ẋ =
∂|det(∇sG(s, t))|/∂t

|det(∇sG)| .

Proof. Take D0 ⊂ D to be an arbitrary small ball and let Ω0(t) = G(D0, t). Then,
with n as the outward normal to Ω0,

∂

∂t

∫
Ω0(t)

dx =

∫
∂Ω0(t)

ẋ · ndσ =

∫
Ω0(t)

∇x · ẋdx.

On the other hand,

∂

∂t

∫
Ω0(t)

dx =
∂

∂t

∫
D0

|det(∇sG(s, t))|ds =

∫
D0

∂

∂t
|det(∇sG(s, t))|ds

=

∫
Ω0(t)

∂|det(∇sG(s, t))|/∂t
|det(∇sG)| dx.

The result follows from the arbitrary choice of D0.
We will say that a function ξ on Q is piecewise C1 if, when it is pulled back by G

to Do
i × (0, T ), it can be extended to be C1 on Di× [0, T ]. A function that is the limit

in H1(Di× [0, T ]) of piecewise C1 functions will be called piecewise smooth on Q. We
will usually operate formally on piecewise smooth functions without going through
the step of approximating them by smooth functions and taking limits, since this is
routine.

Lemma 7. Suppose that ξ is piecewise smooth on Q; then, with R = Ω or Ωi,

d

dt

∫
R
ξdx =

∫
R

Dξ

Dt
dx+

∫
R
ξ(∇x · ẋ)dx.

Proof. It suffices to show the result for Ωi. Note that

d

dt

∫
Ωi

ξdx =
d

dt

∫
Di

ξ|det(∇G)|ds

=

∫
Di

∂ξ

∂t
|det(∇G)|ds+

∫
Di

ξ
∂

∂t
|det(∇G)|ds

=

∫
Ωi

Dξ

Dt
dx+

∫
Ωi

ξ

(
∂|det(∇sG(s, t))|/∂t

|det(∇sG)|
)
dx.

Using Lemma 6, the proof is complete.
D/Dt also has the following properties for any piecewise smooth functions ξ, η:

D

Dt
(ξη) = η

Dξ

Dt
+ ξ

Dη

Dt
,

D

Dt
∇xξ = ∇xDξ

Dt
− (∇xẋ)T∇xξ,

where ∇xξ is a column vector and ∇xẋ is the Jacobian of ẋ with respect to x.
It easily follows from this and Lemma 7 that(

Dξ

Dt
, ξ

)
=

1

2

d

dt
||ξ||2 − 1

2
(ξ, ξ(∇x · ẋ)).(4.1)
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We denote the pseudoderivative of ξ by

Dtξ =
Dξ

Dt
+ (∇ · ẋ)ξ,

and now show that Dt commutes with Ph.
Lemma 8. For function ξ that is piecewise smooth on Q, PhDtξ = DtPhξ.
Proof. Let ψ = Phξ; then (ξ−ψ, r) = 0 for any r ∈ Vh. Given t0 ∈ [0, T ], let φ(x)

be any function in Vh(t0). Let r(x, t) = φ(G(G−1(x, t), t0)). Then r(x, t0) = φ(x),
r(·, t) ∈ Vh(t), and Dr/Dt = 0 for any t ∈ [0, T ]. Thus at t0,

0 =
d

dt
(ξ − ψ, r)

=

(
D

Dt
(ξ − ψ), φ

)
+

(
ξ − ψ, Dr

Dt

)
+ (ξ − ψ, (∇x · ẋ)φ).

That is,

0 = (Dt(ξ − ψ), φ) = (PhDtξ −DtPhξ, φ).

The proof is completed by observing DtPhξ ∈ Vh.

5. Symmetric error estimates. In this section, we prove four symmetric error
estimates.

Let Fh be a linear operator Vh(t)→ Hh(t) such that for any vh ∈ Vh(t)

(αFh(vh) + (β + αẋ)vh,X )− (vh, divX ) = 0 ∀X ∈ Hh.

Thus Fh is the flux operator associated with the space Vh. Using Fh and the norms
|||(·, ·)||| and |||(·, ·)|||∗ defined by

|||(η, ψ)|||2 = ||η||2L∞(0,T :L2(Ω)) +

∥∥∥∥ADηDt
∥∥∥∥

2

L2(0,T :L2(Ω))

+ ||A(div ψ)||2L2(0,T :L2(Ω)),

|||(η, ψ)|||2∗ = ||Phη||2L∞(0,T :L2(Ω)) +

∥∥∥∥ADηDt
∥∥∥∥

2

L2(0,T :L2(Ω))

+ ||A(div ψ)||2L2(0,T :L2(Ω)),

we have the following pair of symmetric error estimates.
Theorem 9. Suppose that Condition 2 holds and there exist constants c1, c2 such

that for all (x, t) ∈ Q
|∇x · ẋ| ≤ c1 and |β + αẋ| ≤ c2.

Then there exists a constant C > 0, depending only on C2, c1, c2, T , the bounds of
coefficient a, and Ω, such that for any piecewise smooth function vh with vh(·, t) ∈
Vh(t),

|||(u− uh, σ − σh)||| ≤ C|||(u− vh, σ − Fh(vh))|||,
|||(u− uh, σ − σh)|||∗ ≤ C|||(u− vh, σ − Fh(vh))|||∗.

Proof. Take vh to be a piecewise C1 function such that vh(·, t) ∈ Vh(t). With
Sh = Fh(vh), adopt the notation

ν = uh − vh, ρ = σh − Sh,
η = u− vh, ψ = σ − Sh.
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Subtracting (2.2) from (2.3), we obtain the following orthogonalities:

(αρ+ (β + αẋ)ν,X )− (ν, divX ) = 0 ∀X ∈ Hh,(
Dν

Dt
+ div ρ+ (∇ · ẋ)ν, r

)
=

(
Dη

Dt
+ div ψ + (∇ · ẋ)η, r

)
∀r ∈ Vh.

(5.1)

With X = ρ and r = ν, these and (4.1) give

1

2

d

dt
||ν||2 + (αρ+ (β + αẋ)ν, ρ)

=

(
Dη

Dt
+ div ψ, ν

)
+ ((∇ · ẋ)η, ν)− 1

2

∫
Ω

ν2(∇ · ẋ)dx

=

(
div A

(
Dη

Dt
+ div ψ

)
, ν

)
+ ((∇ · ẋ)η, ν)− 1

2

∫
Ω

ν2(∇ · ẋ)dx(5.2)

=

(
αρ+ (β + αẋ)ν,A

(
Dη

Dt
+ div ψ

))
+ ((∇ · ẋ)η, ν)

− 1

2

∫
Ω

ν2(∇ · ẋ)dx.

Therefore

d

dt
||ν||2 + α1||ρ||2 ≤ C

{
||ν||2 +

∣∣∣∣
∣∣∣∣A
(
Dη

Dt
+ div ψ

) ∣∣∣∣
∣∣∣∣
2

+ ||η||2
}
,(5.3)

where α1 = 1/a1. It follows from Gronwall’s inequality that

||ν||2L∞(0,T :L2(Ω)) + ||ρ||2L2(0,T :L2(Ω)) ≤ C{||ν(0)||2 + |||(η, ψ)|||2}.
The choice of uh(0) = Phu(0) shows ||ν(0)|| ≤ ||η(0)||, and so the ||ν(0)||-term is bounded
by |||(η, ψ)|||. Combining these results with (3.3), we see that

||ν||2L∞(0,T :L2(Ω)) + ||A div ρ||2L2(0,T :L2(Ω)) ≤ C|||(η, ψ)|||2.
Note that ν = Phν and ((∇ · ẋ)η, ν) = ((∇ · ẋ)Phη, ν), since ∇ · ẋ is constant on each
Ωi and Vh has no continuity between subdomains. Therefore we can replace ||ν|| by
||Phν||, ||η|| by ||Phη|| in (5.3) to obtain

||Phν||2L∞(0,T :L2(Ω)) + ||A div ρ||2L2(0,T :L2(Ω)) ≤ C|||(η, ψ)|||2∗.
It remains to estimate ||A(DνDt )||2. Using (5.1) and Theorem 5,(

A
Dν

Dt
,A

Dν

Dt

)
=

(
Dν

Dt
,A∗A

Dν

Dt

)

= −
(
div ρ+ (∇ · ẋ)ν,A∗A

Dν

Dt

)

+

(
Dη

Dt
+ div ψ + (∇ · ẋ)η,A∗A

Dν

Dt

)
(5.4)

= −
(
A div ρ+A(∇ · ẋ)ν,A

Dν

Dt

)

+

(
A
Dη

Dt
+A div ψ +A(∇ · ẋ)η,A

Dν

Dt

)

≤ C
∣∣∣∣∣∣ADν

Dt

∣∣∣∣∣∣ {||A div ρ||+ ||ν||+
∥∥∥∥ADηDt

∥∥∥∥+ ||A div ψ||+ ||η||
}
.
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Therefore we have ∥∥∥∥ADνDt
∥∥∥∥

2

L2(0,T :L2(Ω))

≤ C|||(η, ψ)|||2.

Since (
A(∇ · ẋ)η,A

Dν

Dt

)
=

(
APh(∇ · ẋ)η,A

Dν

Dt

)
=

(
A(∇ · ẋ)Phη,A

Dν

Dt

)
,

we also have ∥∥∥∥ADνDt
∥∥∥∥

2

L2(0,T :L2(Ω))

≤ C|||(η, ψ)|||2∗.

Hence,

|||(ν, ρ)||| ≤ C|||(u− vh, σ − Sh)|||,
|||(ν, ρ)|||∗ ≤ C|||(u− vh, σ − Sh)|||∗.

Applying the triangle inequality completes the proof.
Next we define two additional norms |||(·, ·)|||Dt , |||(·, ·)|||D∗

t
by

|||(η, ψ)|||2Dt
= ||η||2L∞(0,T :L2(Ω)) + ||ADtη||2L2(0,T :L2(Ω)) + ||A(div ψ)||2L2(0,T :L2(Ω)),

|||(η, ψ)|||2D∗
t

= ||Phη||2L∞(0,T :L2(Ω)) + ||ADtη||2L2(0,T :L2(Ω)) + ||A(div ψ)||2L2(0,T :L2(Ω))

and use them to get the following pair of symmetric error estimates.
Theorem 10. Suppose there exist constants c1, c2 > 0 such that

−∇x · ẋ ≤ c1 and |β + αẋ| ≤ c2
∀(x, t) ∈ Q. Then there exists a constant C > 0, depending only on c1, c2, T , the
bounds of coefficient a, and Ω, such that, for any piecewise smooth function vh with
vh(·, t) ∈ Vh(t),

|||(u− uh, σ − σh)|||Dt ≤ C|||(u− vh, σ − Fh(vh))|||Dt
,

|||(u− uh, σ − σh)|||D∗
t
≤ C|||(u− vh, σ − Fh(vh))|||D∗

t
.

Proof. We slightly modify the proof of Theorem 9. The inequality (5.2) becomes

1

2

d

dt
||ν||2 + (αρ+ (β + αẋ)ν, ρ)

= (Dtη + div ψ, ν)− 1

2

∫
Ω

ν2(∇ · ẋ)dx

= (div A(Dtη + div ψ), ν)− 1

2

∫
Ω

ν2(∇ · ẋ)dx(5.5)

= (αρ+ (β + αẋ)ν,A(Dtη + div ψ))− 1

2

∫
Ω

ν2(∇ · ẋ)dx.

Therefore

d

dt
||ν||2 + α1||ρ||2 ≤ C{||ν||2 + ||A(Dtη + div ψ)||2}.(5.6)
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It then follows from Gronwall’s inequality and (3.3) that

||ν||2L∞(0,T :L2(Ω)) + ||A div ρ||2L2(0,T :L2(Ω)) ≤ C|||(η, ψ)|||2Dt
,

and, since Phν = ν,

||Phν||2L∞(0,T :L2(Ω)) + ||A div ρ||2L2(0,T :L2(Ω)) ≤ C|||(η, ψ)|||2D∗
t
.

It remains to estimate ||ADtν||2.

(ADtν,ADtν) = (Dtν,A
∗ADtν)

= −(div ρ,A∗ADtν)− (Dtη + div ψ,A∗ADtν)

= −(A div ρ,ADtν)− (ADtη +A div ψ,ADtν)

≤ C||ADtν||{||A div ρ||+ ||ADtη||+ ||A div ψ||}.
Therefore

||ADtν||2L2(0,T :L2(Ω)) ≤ C(||ν(0)||2 + |||(η, ψ)|||2Dt
)

and

||ADtν||2L2(0,T :L2(Ω)) ≤ C(||Phν(0)||2 + |||(η, ψ)|||2D∗
t
).

As before, the triangle inequality completes the proof.
Note that Theorem 10 uses A but does not rely on Theorem 5; hence it does not

require Condition 2 to hold.

6. Optimal order and superconvergent L2(Ω) bounds in one space
dimension. In one dimension, Ω is an interval. Let c4 be a constant satisfying
c4 ≥ 1

2 (a0 + c̃2
a0

), where c̃2 = ||b + ẋ||L∞([0,T ],L∞(Ω)). Assume that a, b are sufficiently

regular such that for any g ∈ L2(Ω), the elliptic equation{ −∂x(a∂xw) + (b+ ẋ)∂xw + c4w = g in Ω,
w|∂Ω = 0

(6.1)

has a unique solution w satisfying ||w||2 ≤ C||g||.
We have the following optimal order L2(Ω) error estimate.
Theorem 11. Suppose that Condition 1 holds and there exist constants c1, c2, c3

such that, for any t ∈ [0, T ], ||∂xẋ||∞, ||∂xb||∞ ≤ c1; ||β + αẋ||∞, || DDt (β + αẋ)||∞ ≤ c2;

||∂xa||∞, ||DαDt ||∞ ≤ c3. Then there exists a constant C, depending on C1, c1, c2, c3, Ω,
T , and the bounds of coefficient a, such that, for h sufficiently small,

||u− uh|| ≤ C
{
||hmin{m+1,s}u||L∞[0,T,Hs] +

∥∥∥∥hhmin{m+1,s−1}Du
Dt

∥∥∥∥
L2[0,T ;Hs−1]

+ ||hmin{m+2,s}σ||L2[0,T ;Hs] + ||h2hmin{m+1,s−2}σ||L2[0,T ;Hs−1]

+

∥∥∥∥h2hmin{m+1,s−2}Dσ
Dt

∥∥∥∥
L2[0,T ;Hs−1]

}
.(6.2)

Proof. This is an application of Theorem 10 using |||·|||Dt . Since |||(u−uh, σ−σh)|||Dt

dominates the term we want to bound, it suffices to show that |||(u−vh, σ−Fh(vh))|||Dt

can be bounded by terms on the right-hand side of (6.2) for a suitable choice of vh.
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At each time we take the elliptic projection (vh, Sh) of (u, σ) into Vh × Hh to
satisfy {

(α(Sh − σ) + (β + αẋ)(vh − u),X )− (vh − u, ∂xX ) = 0

(∂x(Sh − σ) + c4(vh − u), r) = 0

∀X ∈ Hh,

∀r ∈ Vh.
(6.3)

Notice that Sh = Fh(vh).
Differentiating (6.3) with respect to time, using Lemma 7 and properties of D

Dt ,
we have

(6.4)


(
α
D

Dt
(Sh − σ) + (β + αẋ)

D

Dt
(vh − u),X

)
−
(
D

Dt
(vh − u), ∂xX

)
= (E1(Sh − σ),X ) + (E2(vh − u),X ) ∀X ∈ Hh,(

∂x
D

Dt
(Sh − σ) + c4

D

Dt
(vh − u), r

)
= (E3(vh − u), r) ∀r ∈ Vh,

where

E1 =−
(
D

Dt
α+ α∂xẋ

)
,

E2 =−
(
D

Dt
(β + αẋ) + (β + αẋ)∂xẋ

)
,

E3 =− c4∂xẋ.
Here we are also using the fact that, for any given t0 ∈ [0, T ], X (x) ∈ Hh(t0), and
r(x) ∈ Vh(t0), we can define X̃ (x, t) = X (G(G−1(x, t), t0)) ∈ Hh(t) and r̃(x, t) =
r(G(G−1(x, t), t0)) ∈ Vh(t) for any t ∈ [0, T ], so that X̃ (x, t0) = X (x), r̃(x, t0) = r(x),
and D

Dt X̃ = D
Dt r̃ = 0.

Because of (6.1), using the duality lemma in [3], for any h sufficiently small we
have

||vh − Phu|| ≤ C{h||Sh − σ||+ h||Phu− u||+ h2||∂x(Sh − σ)||}.(6.5)

From the second equation of (6.3) we have

||Ph∂x(Sh − σ)|| ≤ C||vh − Phu||.(6.6)

Therefore, using the triangle inequality,

||∂x(Sh − σ)|| ≤ C||vh − Phu||+ ||Ph∂xσ − ∂xσ||.(6.7)

Also from the first equation of (6.3)

||Sh −Πhσ||2 ≤ C(α(Sh − σ), Sh −Πhσ) + C(α(σ −Πhσ), Sh −Πhσ)

= C(vh − u, ∂x(Sh −Πhσ))− C((β + αẋ)(vh − u), Sh −Πhσ)(6.8)

+ C(α(σ −Πhσ), Sh −Πhσ).

Note that

(vh − u, ∂x(Sh −Πhσ)) = (vh − Phu, Ph∂x(Sh − σ)) ≤ C||vh − Phu||2;
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therefore

||Sh −Πhσ||2 ≤ C{||vh − Phu||2 + ||u− Phu||2 + ||σ −Πhσ||2},
||Sh − σ||2 ≤ C{||vh − Phu||2 + ||u− Phu||2 + ||σ −Πhσ||2}.

(6.9)

Substituting into (6.5), we have

||vh − Phu|| ≤ C{h||u− Phu||+ h||σ −Πhσ||+ h2||Ph∂xσ − ∂xσ||}.(6.10)

Using the triangle inequality,

||vh − u|| ≤ C{||u− Phu||+ h||σ −Πhσ||+ h2||Ph∂xσ − ∂xσ||}.(6.11)

Substituting (6.10) into (6.9),

||Sh − σ|| ≤ C{||u− Phu||+ ||σ −Πhσ||+ h2||Ph∂xσ − ∂xσ||}.(6.12)

Similarly applying the duality lemmas in [3] to (6.4), noting that ||E1||∞, ||E2||∞,
||E3||∞ ≤ C, we have for h sufficiently small,∥∥∥∥ DDtvh − Ph DDtu

∥∥∥∥ ≤ C
{
h

∥∥∥∥ DDtSh − D

Dt
σ

∥∥∥∥+ h

∥∥∥∥Ph DDtu− D

Dt
u

∥∥∥∥
+ h2

∥∥∥∥∂x
(
D

Dt
Sh − D

Dt
σ

)∥∥∥∥+ ||Sh − σ||+ ||vh − u||
}
.(6.13)

From the second equation of (6.4), we have∥∥∥∥Ph∂x
(
D

Dt
Sh − D

Dt
σ

)∥∥∥∥ ≤ C
{∥∥∥∥ DDtvh − Ph DDtu

∥∥∥∥+ ||vh − Phu||
}
.

Therefore a triangle inequality yields∥∥∥∥∂x
(
D

Dt
Sh − D

Dt
σ

)∥∥∥∥
≤ C

{∥∥∥∥ DDtvh − Ph DDtu
∥∥∥∥+ ||vh − Phu||+

∥∥∥∥Ph∂x DDtσ − ∂x DDtσ
∥∥∥∥
}
.

Also, from the first equation of (6.4)

∥∥∥∥ DDtSh −Πh
D

Dt
σ

∥∥∥∥
2

≤ C
{∥∥∥∥ DDtvh − Ph DDtu

∥∥∥∥
2

+ ||vh − Phu||2

+

∥∥∥∥Ph DDtu− D

Dt
u

∥∥∥∥
2

+

∥∥∥∥ DDtσ −Πh
D

Dt
σ

∥∥∥∥
2

+ ||Sh − σ||2 + ||vh − u||2
}
,

and the triangle inequality gives the same bound for || DDtSh − D
Dtσ||2. Substituting

these into (6.13),

∥∥∥∥ DDtvh − Ph DDtu
∥∥∥∥ ≤ C

{
h||vh − Phu||+ h

∥∥∥∥Ph DDtu− D

Dt
u

∥∥∥∥
(6.14)

+ h

∥∥∥∥ DDtσ −Πh
D

Dt
σ

∥∥∥∥+ ||Sh − σ||+ ||vh − u||+ h2

∥∥∥∥Ph∂x DDtσ − ∂x DDtσ
∥∥∥∥
}
.
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Choosing vh in Theorem 10 to be the solution of (6.3) and noticing that Sh of (6.3) is
equal to Fh(vh), ∂xẋ is piecewise constant and therefore commutes with Ph, we have
||Ph(u− vh)|| = ||Phu− vh|| and

||ADt(u− vh)|| = ||APhDt(u− vh)||

=

∥∥∥∥A
(
Ph

D

Dt
u− D

Dt
vh

)
+A(∂xẋ)Ph(u− vh)

∥∥∥∥
≤ C

∥∥∥∥Ph DDtu− D

Dt
vh

∥∥∥∥+ C||Phu− vh||

≤ C
{
h

∥∥∥∥Ph DDtu− D

Dt
u

∥∥∥∥+ h

∥∥∥∥ DDtσ −Πh
D

Dt
σ

∥∥∥∥
+ h2

∥∥∥∥Ph∂x DDtσ − ∂x DDtσ
∥∥∥∥+ ||u− Phu||

+ ||σ −Πhσ||+ h2||Ph∂xσ − ∂xσ||
}

and

||A∂x(σ − Fh(vh))|| ≤ C||Ph∂xσ − ∂xSh)||
≤ C{h||u− Phu||+ h||σ −Πhσ||+ h2||Ph∂xσ − ∂xσ||}.

Using approximation properties of Ph and Πh, the proof of Theorem 11 is then com-
plete.

With more restrictions on the coefficients and the mesh movement, we can obtain
the following superconvergence result.

Theorem 12. Suppose that the conditions of Theorem 11 hold and that there
exist constants c5, c6, c7 > 0 such that ||∂x( DDt (β + αẋ))||∞ ≤ c5, ||∂x DαDt ||∞ ≤ c6,
and |∂xẋ(xi−) − ∂xẋ(xi+)| ≤ c7 min{hi, hi+1} ∀i. Then there exists a constant C,
depending on C1, c1, c2, c3, c5, c6, c7, Ω, T , and the bounds of coefficient a, such that
for any h sufficiently small

||Phu− uh|| ≤ C
{
‖hhmin{m+1,s}u‖L∞[0,T ;Hs] +

∥∥∥∥hhmin{m+1,s−1}Du
Dt

∥∥∥∥
L2[0,T ;Hs−1]

+ ‖hhmin{m+2,s−1}σ L2[0,T ;Hs−1] + ‖h2h
min{m+1,s−2}
i σ‖L2[0,T ;Hs−1]

+

∥∥∥∥h2hmin{m+1,s−2}Dσ
Dt

∥∥∥∥
L2[0,T ;Hs−1]

}
.

Proof. We slightly modify the proof of Theorem 11. First we apply the duality
argument in [3] to (6.3) to get

||Sh − σ||−1 ≤ C{h2||∂x(Sh − σ)||+ ||vh − Phu||+ h||u− Phu||}.(6.15)

Let ω be a piecewise linear continuous function on {Ωi} such that ω(xi) = {∂xẋ(xi−)+
∂xẋ(xi+)}/2 for any i. Then it is easy to see that ||ω − ∂xẋ||∞ ≤ Ch and ||ω||1 ≤ C.
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From the right-hand side of (6.4) we have

(E3(vh − u), r) = (E3(vh − Phu), r),

(E2(vh − u),X ) = −
(
vh − u, D

Dt
(β + αẋ) X

)
− ((∂xẋ)(vh − u), (β + αẋ) · X − Ph((β + αẋ) · X ))

− ((∂xẋ)(vh − Phu), Ph((β + αẋ) · X ))

≤ C{||vh − u||−1 + h||vh − u||+ ||vh − Phu||}||X ||1
≤ C{h||u− Phu||+ ||vh − Phu||}||X ||1,

(E1(Sh − σ),X ) = −
(
Sh − σ, Dα

Dt
X
)
− (α(∂xẋ− ω)(Sh − σ),X )

− (Sh − σ, αωX )

≤ C{||Sh − σ||−1 + h||Sh − σ||}||X ||1.
Following the duality lemmas in [3] again and also using (6.15), we have∥∥∥∥ DDtvh − Ph DDtu

∥∥∥∥ ≤ C
{
||vh − Phu||+ h

∥∥∥∥Ph DDtu− D

Dt
u

∥∥∥∥
+ h

∥∥∥∥ DDtσ −Πh
D

Dt
σ

∥∥∥∥+ h||Sh − σ||

+ h2

∥∥∥∥Ph∂x DDtσ − ∂x DDtσ
∥∥∥∥+ h||u− Phu||+ h2||∂x(Sh − σ)||

}
.(6.16)

Note that ||ADt(u − vh)|| ≤ C||Ph DDtu − D
Dtvh|| + C||Phu − vh||, and ||uh − Phu|| is

dominated by |||(u − uh, σ − σh)|||D∗
t
; the rest of the proof is similar to that of

Theorem 11.
We conduct a convergence test using the equation ut − (ux − b1u)x = 0, for

(x, t) ∈ (0, 10) × (0, 1), u(0, t) = u(10, t) = 0, t ∈ [0, 1], u(x, 0) = u0(x), x ∈ [0, 10].
Here u0(x) is a smooth nonnegative function with support in [3, 5]; see Figure 1. b1(x)
is a C2 nonnegative function such that b1 = 3.5 on [2, 7], b1 = 0 on [0, 1]∪ [8, 10], and
b1 is a 5th order polynomial in (1, 2) and (7, 8). Three cases are examined. The case
referred to as “moving mesh” is based on a specified mesh technique discussed in the
next paragraph. There is a characteristic moving mesh case in which the mesh points
are moved along characteristics, starting from the same mesh as the first case. There
is also a case that uses a fixed uniform mesh. In all cases, we have taken the time
step sufficiently small that the time truncation can be ignored, i.e., we are looking at
the continuous-time case.

We illustrate a simple, but powerful, moving mesh strategy in which the mesh
is specified by giving the mesh at the initial and the final times, and the meshes are
then connected. A specified mesh calculation is very easy to program if one has a
code that allows for variable mesh spacing; all that is required is a change in the
convective term to account for αẋ. The selection of the mesh is easier if one can look
at a coarse grid calculation. (One can specify the mesh at more than two levels, and
various techniques can be used to connect the mesh points.) The initial mesh is taken
so that the density of mesh points in (0, 6) is about one third higher than the average
density across the entire interval. In the specified movement case the mesh at the

final time T = 1 is such that the local mesh density is proportional to ε+ |∂2u
∂x2 |, where

u is approximated by a coarse uniform grid numerical solution, and ε is taken to be
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Fig. 1. Initial value.

0.2. (The value of ε is between the average and the maximum absolute value of the
second derivative.) Figure 2 shows the mesh movement in the space time plane with
mesh cell number n = 40.

In Figure 3, the final solution at T = 1 with n = 20 for the moving mesh mixed
method is compared with the solution from the mixed method with an evenly dis-
tributed fixed mesh. Each of these solutions is used to produce a reconstructed con-
tinuous piecewise linear approximation ũh, through connecting the points (xi, uh(xi)),
where the xi’s are the cell centers. The “exact” solution is the result of a very fine
grid calculation. As expected, higher resolution is achieved for the moving mesh near
(7, 8).

In Table 1 the comparison between the moving and fixed meshes is given in
quantitative terms. The table clearly shows the first order convergence of the error
and the second order convergence of the approximation built on the supercloseness of
the midcell values.

Table 1
Comparative L2 and L∞ errors.

Moving mesh Fixed mesh
n ||u− uh|| ||Phu− uh|| ||u− ũh||∞ ||u− uh|| ||Phu− uh|| ||u− ũh||∞
20 0.052 0.0040 0.013 0.083 0.013 0.075
40 0.026 0.0010 0.0035 0.040 0.0027 0.025
80 0.013 0.00027 0.0011 0.020 0.00070 0.0066
160 0.0066 0.000072 0.00026 0.010 0.00020 0.0018

For this problem, using the same initial mesh as in the specified movement case,
following the characteristics produces an overconcentration of mesh points in (7, 8)
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Fig. 2. Moving mesh in the space time plane.
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Fig. 3. Specified and fixed mesh approximations at T = 1.
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Fig. 4. Characteristic and fixed mesh approximations at T = 1.

Table 2
L2 and L∞ errors with mesh moving along characteristics.

n ||u− uh|| ||Phu− uh|| ||u− ũh||∞
20 0.095 0.019 0.040
40 0.050 0.0063 0.018
80 0.026 0.0014 0.0059
160 0.013 0.00039 0.0016

but too few mesh points in (1, 5.5). In Figure 4 and Table 2 computational results
similar to those in Figure 3 and Table 1 are given. In this case the mesh is moving
along characteristics.

7. Another mixed method. Consider the nonconservative form of (2.1):

∂tu−∇ · (a∇u) + b · ∇u+ cu = f

u = 0

u = u0

on Q,

on ∂Ω× (0, T ),

for t = 0.

(7.1)

Let σ = a∇u and α = 1/a, β = b/a. A natural mixed form is


(ασ,X ) + (u, divX ) = 0 ∀X ∈ H(div,Ω),(
Du

Dt
+ div σ, r

)
+ ((β − ẋα) · σ, r) + (cu, r) = (f, r) ∀r ∈ L2(Ω).

(7.2)

Note that, with a little abuse of the notations, a, b, c, u, α, β, σ have been redefined.
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We will keep on using the relevant notations and results from previous sections unless
otherwise specified.

The mixed method is to find uh : [0, T ]→ Vh and σh : [0, T ]→ Hh such that


(ασh,X ) + (uh, divX ) = 0 ∀X ∈ Hh,(
Duh
Dt

+ div σh, r

)
+ ((β − ẋα) · σh, r) + (cuh, r) = (f, r) ∀r ∈ Vh.

(7.3)

The above formulas are introduced in [1]. But here we deal with general mesh move-
ment, and therefore β − ẋα is not necessarily zero.

We define the norm |||(·, ·)|||c by

|||(η, ψ)|||2c = ||η||2L∞(0,T :L2(Ω)) +

∥∥∥∥ADηDt
∥∥∥∥

2

L2(0,T :L2(Ω))

(7.4)

+ ||A(div ψ)||2L2(0,T :L2(Ω)) + ||ψ||2L2(0,T :L2(Ω)).

Let Lh be a linear operator Vh(t)→ Hh(t) such that for any vh ∈ Vh(t)

(αLh(vh),X ) + (vh, divX ) = 0 ∀X ∈ Hh.

We have the following theorem, whose proof is similar to that of Theorem 9.
Theorem 13. Suppose that Condition 2 holds and there exist constants c1, c2

such that

∇x · ẋ ≤ c1 and |β − αẋ| ≤ c2
∀(x, t) ∈ Q. Then there exists a constant C > 0, depending only on C2, c1, c2, T , the
bounds of coefficients a and c, and Ω, such that, for any piecewise smooth function
vh with vh(·, t) ∈ Vh(t),

|||(u− uh, σ − σh)|||c ≤ C|||(u− vh, σ − Lh(vh))|||c.

Introduce another norm |||(·, ·)|||c∗ by

|||(η, ψ)|||2c∗ = ||Phη||2L∞(0,T :L2(Ω)) +

∥∥∥∥ADηDt
∥∥∥∥

2

L2(0,T :L2(Ω))

+ ||A(div ψ)||2L2(0,T :L2(Ω))

+ ||A((β − αẋ) · ψ)||2L2(0,T :L2(Ω)) + ||A(cη)||2L2(0,T :L2(Ω)).

We have another theorem whose proof is similar to that of Theorem 10, also using
Theorem 5.

Theorem 14. Suppose that Condition 2 holds and there exist constants c1, c2
such that

∇x · ẋ ≤ c1 and |β + αẋ| ≤ c2
∀(x, t) ∈ Q. Then there exists a constant C > 0, depending only on C2, c1, c2, T , the
bounds of coefficients a and c, and Ω, such that, for any piecewise smooth function
vh with vh(·, t) ∈ Vh(t),

|||(u− uh, σ − σh)|||c∗ ≤ C|||(u− vh, σ − Lh(vh))|||c∗ .
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Parallel to what was done in section 6, we derive an optimal convergence result
for one dimension in the next theorem. In particular, the L2 norm of uh − Phu is
superconvergent.

Assume that a is sufficiently regular so that for any ξ ∈ L2(Ω) the equation{
−∂x(a∂xw) = g

w = 0

in Ω,

on ∂Ω
(7.5)

has a unique solution satisfying ||w||2 ≤ C||g||. We have the following theorem.
Theorem 15. Suppose that Condition 1 holds and there exist constants c1, c2, c3

such that |∂xẋ|, |DαDt | ≤ c1; |β + αẋ| ≤ c2; |∂xc| ≤ c3 ∀(x, t) ∈ Q. Then there exists a
constant C > 0, depending only on C1, c1, c2, c3, T , the bounds on coefficients a and
c, and Ω, such that for any h sufficiently small

||uh − Phu|| ≤ C
{
||hmin{m+2,s+1}σ||L∞[0,T ;Hs+1] + ||hhmin{m+1,s}σ||L2[0,T ;Hs+1]

+

∥∥∥∥hhmin{m+2,s}Dσ
Dt

∥∥∥∥
L2[0,T ;Hs]

+

∥∥∥∥h2hmin{m+1,s−1}Dσ
Dt

∥∥∥∥
L2[0,T ;Hs]

+ ||hhmin{m+1,s}u||L2[0,T ;Hs]

}

and

||u− uh|| ≤ C
{
||hmin{m+2,s}σ||L∞[0,T ;Hs] + ||hhmin{m+1,s−1}σ||L2[0,T ;Hs]

+

∥∥∥∥hhmin{m+2,s−1}Dσ
Dt

∥∥∥∥
L2[0,T ;Hs−1]

+

∥∥∥∥h2h
min{m+1,s−2}
i

Dσ

Dt

∥∥∥∥
L2[0,T ;Hs−1]

+ ||hhmin{m+1,s}u||L2[0,T ;Hs]

}
.

Proof. The proof of the first estimate is an application of Theorem 14. Since
|||(u − uh, σ − σh)|||c∗ dominates the term we want to bound, it suffices to show that
|||(u− vh, σ − Lh(vh))|||c∗ can be bounded by terms on the right-hand side of the first
estimate. The second estimate follows from a triangle inequality.

Consider the following elliptic projection:{
(α(Sh − σ),X ) + (vh − u, ∂xX ) = 0

(∂x(Sh − σ), r) = 0

∀X ∈ Hh,

∀r ∈ Vh.
(7.6)

Notice that Sh = Lh(vh).
Differentiating (7.6) with respect to time and using Lemma 7 and properties of

D
Dt , we have 



(
α
D

Dt
(Sh − σ),X

)
+

(
D

Dt
(vh − u), ∂xX

)

= (E4(Sh − σ),X ), ∀X ∈ Hh,(
∂x

D

Dt
(Sh − σ), r

)
= 0 ∀r ∈ Vh,

(7.7)
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where E4 = −( DDtα+ α∂xẋ). Using the duality lemma in [3], we have

||vh − Phu|| ≤ C{h||Sh − σ||+ h2||∂x(Sh − σ)||}.(7.8)

Also from the second equation of (7.6),

||∂x(Sh −Πhσ)|| = 0 and ||Ph∂x(Sh − σ)|| = 0,

so ||∂x(Sh − σ)|| = ||Ph∂xσ − ∂xσ||. From the first equation of (7.6),

||Sh −Πhσ|| ≤ C||σ −Πhσ||, and so ||Sh − σ|| ≤ C||σ −Πhσ||.
Therefore

||vh − Phu|| ≤ C{h||σ −Πhσ||+ h2||Ph∂xσ − ∂xσ||}.
Similarly for equation (7.7),

∥∥∥∥ DDtvh − Ph DDtu
∥∥∥∥ ≤ C

{
h

∥∥∥∥ DDtSh − D

Dt
σ

∥∥∥∥+ h2

∥∥∥∥∂x
(
D

Dt
Sh − D

Dt
σ

)∥∥∥∥+ ||Sh − σ)||
}(7.9)

and ||Ph∂x( DDtSh − D
Dtσ)|| = 0, ||∂x( DDtSh −Πh

D
Dtσ)|| = 0. So∥∥∥∥∂x

(
D

Dt
Sh − D

Dt
σ

)∥∥∥∥ =

∥∥∥∥Ph∂x DDtσ − ∂x DDtσ
∥∥∥∥ .

Also from the first equation of (7.7)∥∥∥∥ DDtSh −Πh
D

Dt
σ

∥∥∥∥ ≤ C
{
||Sh − σ||+

∥∥∥∥ DDtσ −Πh
D

Dt
σ

∥∥∥∥
}
.

Therefore

(7.10)

∥∥∥∥ DDtvh − Ph DDtu
∥∥∥∥ ≤ C

{
||Sh − σ||+ h

∥∥∥∥ DDtσ −Πh
D

Dt
σ

∥∥∥∥
+ h2

∥∥∥∥∂x DDtσ − Ph∂x DDtσ
∥∥∥∥
}
.

In Theorem 15, choose vh to be the solution of (7.6). Note that∥∥∥∥A D

Dt
(u− vh)

∥∥∥∥ ≤ C
∥∥∥∥Ph DDtu− D

Dt
vh

∥∥∥∥ ,
||A((β − αẋ) · (σ − Sh))|| ≤ C||σ − Sh||

≤ C||σ −Πhσ||,
||A(c(u− vh))|| ≤ ||A((c− c̄)(u− vh))||+ ||A(c̄(u− vh))||

≤ C||(c− c̄)(u− vh)||+ ||A(c̄Ph(u− vh))||
≤ Ch(||u− Phu||+ ||Phu− vh||) + C||Phu− vh||,

where c̄|Ωi ≡ (1/|Ωi|)
∫
Ωi
cdx ∀i is a piecewise constant function which commutes with

Ph. The proof is completed using the approximation properties of the projections Ph
and Πh.
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Abstract. This work presents an efficient monotonic algorithm for the numerical solution of the
obstacle problem and the Signorini problems, when they are discretized either by the finite element
method or by the finite volume method. The convergence of this algorithm applied to the discrete
problem is proven in both cases.

Key words. variational inequalities, iterative algorithm, obstacle problem, Signorini problem,
finite element and finite volume methods

AMS subject classifications. 65K10, 49A29
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1. Introduction. We are interested here in the numerical solution of some free
boundary problems which are discretized by the finite element or the finite volume
method. We introduce an efficient monotonic algorithm which applies to both the
obstacle problem and the Signorini problem.

The obstacle problem is one of the simplest unilateral problems; it arises when
modelling a constrained membrane in the classical linear elasticity theory. Signorini
boundary conditions may be encountered in fluid mechanics and heat transfer prob-
lems when modelling, for instance, the flow through semipermeable boundaries. They
are also encountered in contact problems in elasticity. The Signorini boundary con-
ditions which we deal with here arise from modelling the so-called triple point of an
electrochemical reaction (see [23]) and involve a diffusion operator. Both the obstacle
and the Signorini problems may be written as variational inequalities.

The obstacle problem appeared in the mathematical literature in the work of
Stampacchia [28] (see also [29], [30]), and the first rigorous analysis of a class of
Signorini problems was published in 1963 by Fichera [12], [13]. The mathematical
analysis including the study of existence, uniqueness, and regularity of the solution
for the obstacle problem and Signorini problem may be found in [24], [25], and [7].

The obstacle problem and the Signorini problem are classically discretized by
the finite element method formulated in [21], [16]; see also [27], [2], [1], [3] for more
recent work (some of them subsequent to the submission of this paper) on elastic
contact problems. In the case of diffusion problems, with which we are concerned
here, a cell-center finite volume scheme was also recently applied and shown to con-
verge [19].

The approximate problem can be solved by a duality method [16], [15], [22]. In
[16], a point overrelaxation method with projection is also studied and found to be
cheaper in terms of computational cost than the duality method. Another candidate
for the resolution of the approximated Signorini problem is the penalty method (see
[21] and references therein); it has the disadvantage of yielding ill-conditioned systems,
while our algorithm deals only with submatrices of the whole discretization matrix.
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†Université de Provence, CMI, 39 rue Joliot Curie, 13453 Marseille cedex 13, France (herbin@

cmi.univ-mrs.fr).

2292



MONOTONIC METHOD FOR FREE BOUNDARY VALUE PROBLEMS 2293

We present here a particularly simple iterative monotonic algorithm that is in-
spired by a procedure used for multiphase flow modelling [8]. We show that it may
be applied to the finite linear element approximation of the obstacle problem and the
finite volume discretization of both the obstacle problem and the Signorini problem.
In each case, we prove the monotonicity of the algorithm and its convergence in a
finite number of iterations towards the exact solution to the discrete problem.

2. The obstacle problem. We consider here the so-called obstacle problem,
which arises for instance in the modelling of contact problems (see [7]):


u ∈ K = {v ∈ H1

0 (Ω), v ≤ ψ on Ω}, satisfying∫
Ω

∇u(x) · ∇(v − u)(x)dx ≥
∫

Ω

f(x)(v − u)(x)dx ∀v ∈ K,(1)

where the following holds.
Assumption 2.1.
1. Ω is a bounded open polygonal subset of R

d, with d = 2 or 3.
2. f ∈ L2(Ω) and ψ ∈ H1(Ω)∩C(Ω) and ψ ≥ 0 a.e. in the neighborhood of ∂Ω.

Under these assumptions, it is well known that there exists a unique solution to
problem (1), thanks to Stampacchia’s theorem. Indeed, the set K is nonempty since
min(0, ψ) belongs to K. Furthermore, it is now classical that the solution to problem
(1) belongs to H2(Ω) (see [4]). Thanks to this H2 regularity of the solution, it is easily
shown that the variational inequality (1) can be written as a free boundary problem
in the following way.

Theorem 2.1. Under Assumption 2.1, if u is a solution to the free boundary
problem 


u ∈ H2(Ω) ∩H1

0 (Ω), satisfying
u ≤ ψ a.e. on Ω,
∆u + f ≥ 0 a.e. on Ω,
(∆u + f)(ψ − u) = 0 a.e. on Ω,

(2)

then u is a solution to Problem (1).
Conversely, if ψ ≥ 0 a.e. on Ω and u is a solution to Problem (1), then u is a

solution to Problem (2).
We shall study the monotonic algorithm for both the finite element and the finite

volume discretization of the above problem. Let us first start with the finite element
method.

2.1. Approximation by the finite element method. Let T denote a “clas-
sical” triangulation of Ω (see, e.g., [6]).

Definition 2.2 (triangulation T of Ω). Let T be a finite set of triangles if d = 2,
or tetrahedra if d = 3, such that

(i) T ⊂ Ω ∀T ∈ T , and ∪T∈T = Ω;
(ii) for any (T1, T2) ∈ T 2 with T1 �= T2, either the (d − 1)-dimensional Lebesgue

measure of T 1 ∩ T 2 is 0, or T1 and T2 have only a whole common edge (or
face if d = 3).

Let Σ be the set of vertices of triangles (tetrahedra) of T which belong to Ω (i.e., do
not lie on the boundary) and N = card(Σ).

The set H1
0 (Ω) is classically approximated by

Vh = {v ∈ H1
0 (Ω) ∩ C0(Ω), v|∂Ω

= 0, v|T ∈ P1},(3)
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where v|∂Ω
is the trace of v on ∂Ω, v|T denotes the restriction of v to T , and P1 the

space of polynomials in x1 and x2 of degree less than or equal to one. Assuming that
Σ = {si, i ∈ {1, . . . , N}}, let (ϕi)i∈{1,...,N} be the N basis functions of Vh such that
ϕi(si) = 1 and ϕi(sj) = 0 ∀i �= j; notice that the functions ϕi are linear on each
triangle for which si is a vertex.

We then consider the following approximate problem:


ũ ∈ Kh = {v ∈ Vh, v(s) ≤ ψ(s) ∀s ∈ Σ}, satisfying∫
Ω

∇ũ(x) · ∇(v − ũ)(x)dx ≥
∫

Ω

f(x)(v − ũ)(x)dx ∀v ∈ Kh.
(4)

By Stampacchia’s theorem, problem (4) has a unique solution. Indeed, the set Kh

is nonempty since the function min(
∑
i=1,N ψiϕi, 0) belongs to Kh. Error estimates

for the approximate finite element solution of the elliptic variational inequalities can
be found in Falk [10], Mosco and Strang [26], Glowinski, Lions, and Trémolières [16],
Ciarlet [6], Brezzi, Hager, and Raviart [5], and Falk and Mercier [11]. Error estimates
of order 1 in the discretization step are known for the discretization of the obstacle
problem using linear elements [10], [5].

Remark 2.1. In the present paper we shall use linear finite elements, and we shall
avoid higher order finite elements for three reasons. First, it is well known that the
maximum principle does not hold for higher order finite elements. In our underlying
application, where the unknown is a concentration, it is absolutely necessary that it
hold, since the electrical current, which we need to compute, depends on the logarithm
of the concentration. The discrete maximum principle must therefore hold. Second,
the precision obtained with the linear elements is, in general, largely sufficient for
diffusion problems such as the one we consider. Third, our proof of convergence of
the monotonic algorithm makes heavy use of the discrete maximum principle, and it is
therefore not clear how the algorithm would behave in a setting where the maximum
principle does not hold (in the case of higher order finite elements, or for the elasticity
problem, for instance).

The monotonic algorithm is derived on a “strong formulation” of problem (4),
which is easily shown to be equivalent to (4) as follows.

Proposition 2.3. Let ũ be the unique solution to problem (4) and let U =
(u1, . . . , uN ) ∈ R

N be defined by ui = ũ(si) ∀i ∈ {1, . . . , N}; then ũ is a solution to
(4) if and only if U is a solution to the following complementarity problem:


ui ≤ ψi ∀i ∈ {1, . . . , N},
(AU)i ≤ Fi ∀i ∈ {1, . . . , N},
((AU)i − Fi)(ψi − ui) = 0 ∀i ∈ {1, . . . , N},

(5)

with ψi = ψ(si), Fi =
∫
Ω
f(x)ϕi(x)dx, and A being the square matrix of order N

whose coefficients satisfy ai,j =
∫
Ω
∇ϕi(x) · ∇ϕj(x)dx; therefore

(AU)i =

N∑
j=1

uj

∫
Ω

∇ϕj(x) · ∇ϕi(x)dx.

Problem (5) is nonlinear. We shall solve it by an iterative algorithm that is
adapted from a similar one used for multiphase flows in porous media [8]. Let us first
remark that for i ∈ {1, . . . , N} the last equation in (5) is equivalent to (AU)i = Fi or
ui = ψi. Therefore, there exist two disjoint subsets of {1, . . . , N} such that ui = ψi
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and (AU)i ≤ Fi for any i in the first subset, and (AU)i = Fi and ui ≤ ψi for i in the
second subset.

If we knew two disjoint subsets J and I of {1, . . . , N} such that

ui ≤ ψi ∀i ∈ J ,
(AU)i ≤ Fi ∀i ∈ I,

then problem (5) would be solved by the solution of the following linear system:


ui = 0 ∀i ∈ {1, . . . , N} s.t. si ∈ ∂Ω ∩Kh,
(AU)i = Fi ∀i ∈ J ,
ui = ψi ∀i ∈ I.

(6)

The algorithm which we propose here assumes the sets J and I to be known at
each iteration, solves problem (6), and corrects the sets J and I by looking for the
nodes where the corresponding constraints are violated. Let us write this algorithm
as follows.

Monotonic algorithm, obstacle problem, finite element discretiza-
tion.

• Initialization. Let I(0) and J (0) be such that

I(0) ⊂ {1, . . . , N} and J (0) = {1, . . . , N} \ I(0).(7)

• Step (j), j ≥ 0. For given sets I(j) and J (j) = {1, . . . , N} \ I(j), let U (j) =

(u
(j)
1 , . . . , u

(j)
N ) ∈ R

N be the solution to the following set of equations:{
(AU (j))i = Fi ∀i ∈ J (j),

u
(j)
i = ψi ∀i ∈ I(j),

(8)

where (AU (j))i =
∑N
k=1 u

(j)
k

∫
Ω
∇ϕk(x) · ∇ϕi(x)dx and Fi =

∫
Ω
f(x)ϕi(x)dx.

Let I(j+1) and J (j+1) be defined by

I(j,0) = {i ∈ I(j);AU
(j)
i ≤ Fi}, I(j,1) = I(j) \ I(j,0),

J (j,0) = {i ∈ J (j);u
(j)
i ≤ ψi}, J (j,1) = J (j) \ J (0)

j ,

I(j+1) = I(j,0) ∪ J (j,1), J (j+1) = {1, . . . , N} \ I(j+1).

(9)

• The algorithm stops if there exists a step n such that I(n) = I(n+1).
Let us first remark that this algorithm is well defined.
Proposition 2.4. Let Σ = {si, i = 1, N} denote the set of nodes of a given

triangulation of Ω, let I(j) ⊂ {1, . . . , N} and J (j) = {1, . . . , N}\I(j); then problem (8)
has a unique solution.

Proof. The proof of this result follows immediately from the Lax–Milgram lemma
by noting that under Assumptions 2.1 and with the notations of Definition 2.2 and

Proposition 2.4, U (j) = (u
(j)
1 , . . . , u

(j)
N ) ∈ R

N is a solution to problem (8) if and only

if ũ(j)(x) =
∑N
i=1 u

(j)
i ϕi(x) is a solution to the following variational problem:


ũ(j) ∈ Vh s.t. u

(j)
i = ψi ∀i ∈ I(j),∫

Ω

∇ũ(j)(x) · ∇v(x)dx =

∫
Ω

f(x)v(x)dx ∀v ∈ Vh.
(10)

Let us now show that the algorithm defined by (7)–(9) is monotonic.
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Lemma 2.5. Under Assumption 2.1 and those of Definition 2.2, the sequence

(U (j))j∈N constructed by the algorithm (7)–(9), where U (j) = (u
(j)
1 , . . . , u

(j)
N ), satisfies

u
(j+1)
i ≤ u

(j)
i ∀j ∈ N, ∀i ∈ {1, . . . , N}.(11)

Equivalently, the sequence of functions (ũ(j))j∈N defined by ũ(j)(x) =
∑N
i=1 u

(j)
i ϕi(x)

for all x ∈ Ω satisfies

ũ(j+1) ≤ ũ(j) ∀j ∈ N.(12)
Proof. Let j ∈ N and wh = ũ(j) − ũ(j+1). Then∫

Ω

|∇w−
h (x)|2dx = −

N∑
i=1

w−
i

∫
Ω

∇wh(x)∇ϕi(x)dx.(13)

• If i ∈ I(j)∩I(j+1), one has wi = 0, and therefore
∫
Ω
∇wh(x)·∇(w−

i ϕi(x))dx =
0.
• If i ∈ J (j) ∩ J (j+1), one has

∫
Ω
∇ũ(j)(x) · ∇ϕi(x)dx =

∫
Ω
∇ũ(j+1)(x) ·

∇ϕi(x)dx, and therefore∫
Ω

∇wh(x) · ∇(w−
i ϕi(x))dx = 0.

• If i ∈ J (j) ∩I(j+1), one obtains u
(j)
i > ψi and u

(j+1)
i = ψi, hence wi > 0, and

therefore ∫
Ω

∇wh(x) · ∇(w−
i ϕi(x))dx = 0.

• Finally if i ∈ I(j) ∩ J (j+1), then (AU (j))i > Fi and (AU (j+1))i = Fi, so that∫
Ω

∇wh(x) · ∇(w−
i ϕi(x))dx ≥ 0.

These inequalities and (13) yield that
∫
Ω
|∇w−

h (x)|2dx = 0, and since w−
h ∈

H1
0 (Ω), this implies that wh ≥ 0, which concludes the proof of the lemma.

We may now turn to the convergence of the algorithm. We first state that if
the sets I(j) and J (j) are left unchanged from one iteration to the next, then the
algorithm has reached the unique solution to problem (5).

Proposition 2.6. Assume that the sequence of sets (I(j))j∈N constructed by the
algorithm (7)–(9) is such that there exists n ∈ N such that I(n) = I(n+1); then the
solution U (n) to (8) is the unique solution to problem (5).

Proof. Under the assumptions of Proposition 2.6, let I = I(n), J = J (n); let
U (n) = (u1, . . . , un) be the solution to (8) with j = n. Since J (n) = J (n+1), one has
ui ≤ ψi for any i ∈ J (n). Furthermore, ui = ψi for any i ∈ I(n), so that ui ≤ ψi for
any i ∈ {1, . . . , N}. In a similar way, one has that (AU)i ≤ Fi for any i ∈ {1, . . . , N},
and from (8) one has that ((AU)i − Fi)(ui − ψi) = 0 for any i ∈ {1, . . . , N}.

Let us now show that the monotonic algorithm terminates in a finite number of
iterations.

Theorem 2.7. Under Assumption (2.1), there exists n ∈ N such that the sequence
(U (n))n∈N constructed by the algorithm (7)–(9) is such that U (n) is the exact solution
to the discrete problem (4) for all j ≥ n. Furthermore the integer n satisfies

n ≤ N + 1.(14)
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Fig. 1. Admissible meshes.

Proof. Let the sets I(j) and J (j) be defined by the algorithm (7)–(9) for any
step (j); if there exists an integer n such that I(n) = I(n+1), then, by Proposition
2.10, U (n) is the exact solution to the discrete problem (4), and the first part of the
theorem is proven. It remains to prove that such a step exists and that it satisfies
(14).

Let us first remark that for i ∈ {1, . . . , N} if u
(0)
i ≤ ψi, then u

(1)
i ≤ ψi by Lemma

2.5, and if u
(0)
i > ψi, then u

(1)
i = ψi by (9) in the monotonic algorithm. Hence

u
(1)
i ≤ ψi for any i ∈ {1, . . . , N}.(15)

Therefore, by an easy induction, one has that I(j) = I(j)
0 for any j > 1, which yields

that I(j) ⊂ I(j+1) for any j > 1. Since I(n) ⊂ {1, . . . , N} is a finite set, this means
that there exists an index n such that I(n) = I(n+1).

Let us finally show that (14) holds true. Let n be the smallest integer
such that I(n) = I(n+1). Since I(j) is strictly included in I(j+1) for any j > 1,
one has N + 1 ≥ card(I(j+1)) ≥ card(I(j+1)) + 1 for any j < n, which yields that
n ≤ N + 1.

2.2. Approximation by the finite volume scheme. Let us now define a
discretization mesh over Ω, which is assumed (following [9]) to be admissible for finite
volumes in the following sense (see Figure 1).

Definition 2.8 (admissible meshes). Let Ω be an open bounded polygonal domain
of R

d. An admissible finite volume mesh of Ω, denoted by T , is given by a family
of “control volumes,” which are disjoint polygonal convex subsets of Ω, a family of
subsets of Ω contained in hyperplanes of R

d, denoted by E (these are the “sides” of
the control volumes), with strictly positive one-dimensional measure, and a family of
points of Ω, denoted by P, satisfying the following properties (in fact, we shall denote,
somewhat incorrectly, by T the family of control volumes):

(i) The closure of the union of all the control volumes is Ω.
(ii) For any K ∈ T , there exists a subset EK such that ∂K = K \K = ∪σ∈EK

σ.
(iii) For any (K,L) ∈ T 2 with K �= L, either the one-dimensional Lebesgue mea-

sure of K ∩ L is 0 or K ∩ L = σ for some σ ∈ E, which will then be denoted
by K|L.

(iv) The family P = (xK)K∈T is such that xK ∈ K (for all K ∈ T ) and, if
σ = K|L, it is assumed that xK �= xL, and the straight line DK,L going
through xK and xL is assumed to be orthogonal to K|L.
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In what follows, the following notations are used. Let size(T ) = sup{diam(K),
K ∈ T }. For any K ∈ T and σ ∈ E, m(K) is the two-dimensional Lebesgue measure
of K, and m(σ) the one-dimensional measure of σ. The set of interior (resp., bound-
ary) edges is denoted by Eint (resp., Eext), that is, Eint = {σ ∈ E ; σ �⊂ ∂Ω} (resp.,
Eext = {σ ∈ E ; σ ⊂ ∂Ω}). The set of neighbors of K is denoted by N (K), that is,
N (K) = {L ∈ T ; ∃σ ∈ EK σ = K ∩ L}. If σ = K|L, we denote by dσ or dK|L the
Euclidean distance between xK and xL (which is positive). If σ ∈ EK ∩ Eext, let dσ
denote the Euclidean distance between xK and yσ. For any σ ∈ E, the transmissivity

through σ is defined by τσ = m(σ)
dσ

if dσ �= 0.
Remark 2.2. The condition xK �= xL if σ = K|L is in fact quite easy to satisfy:

two neighboring control volumes K,L, which do not satisfy it, just have to be collapsed
into a new control volume M with xM = xK = xL, and the edge K|L removed from
the set of edges. The new mesh thus obtained is admissible.

We refer to, e.g., [9] or [14] for examples of admissible meshes. These include
rectangular meshes, Delaunay triangulations, and Voronoi meshes.

Let us now define a “discrete” functional space and a discrete H1
0 norm.

Definition 2.9. Let Ω be an open bounded polygonal domain of R
d, and T be

an admissible mesh in the sense of Definition 2.8.
Define Y (T ) as the set of the functions defined a.e. from Ω to R which are constant

over each control volume of the mesh. We shall denote by uK the value taken by u on
the control volume K.

For u ∈ Y (T ), define the discrete H1
0 norm by

‖u‖21,T =
∑
σ∈E

τσ(Dσu)2,(16)

with

|Dσu| = |uK − uL| if σ ∈ Eint, σ = K/L,(17)

Dσu = −uK if σ ⊂ ∂Ω.(18)

Let T be an admissible finite volume mesh in the sense of Definition 2.8, let
ψK = ψ(xK) and fK = 1

m(K)

∫
K

f(x)dx for any K ∈ T . A cell-centered finite vol-

ume discretization of problem (1) is written with respect to the discrete unknowns
(uK)K∈T in the following way (see [19] for a description of how this scheme is ob-
tained):

−
∑
σ∈EK

FK,σ + m(K)fK ≥ 0 ∀K ∈ T ,(19)

(
−
∑
σ∈EK

FK,σ + m(K)fK

)
(ψK − uK) = 0 ∀K ∈ T ,(20)

uK ≤ ψK ∀K ∈ T ,(21)

FK,σ = −τσ(uL − uK) ∀σ ∈ Eint if σ = K/L,(22)

FK,σ = τσuK ∀σ ∈ Eext ∩ EK .(23)

The proof of the existence and uniqueness of the solution to this scheme was
given in [19]. It follows for the following remark: let (uK)K∈T ∈ R

card(T ), and let
uT ∈ Y (T ) be defined by uT (x) = uK for x ∈ K ∀K ∈ T . Then one may show
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that (uK)K∈T is a solution to problem (19)–(23) if and only if uT is a solution to the
following problem:{

uT ∈ KT = {v ∈ Y (T ), s.t. vK ≤ ψK ∀K ∈ T },
A(uT , v − uT ) ≥ L(v − uT ) ∀v ∈ KT ,

(24)

where for any u = (uK)K∈T and v = (vK)K∈T ∈ Y (T ),

A(u, v) =
∑

σ=K|L∈Eint

τK|L(uK − uL)(vK − vL) +
∑

σ∈Eext∩EK

τσuKvK ,(25)

and

L(v) =
∑
K∈T

m(K)fKvK .(26)

Our goal here is to construct an algorithm yielding an approximate solution of
problem (19)–(23). The iterative process which we described for the finite element
discretization is easily adapted to the finite volume framework. Let K ∈ T ; then from
(20) one has ∑

σ∈EK

FK,σ = m(K)fK or uK = ψK .

Therefore, from (19) and (21), there exist two disjoint subsets of T such that on one
subset one has∑

σ∈EK

FK,σ = m(K)fK and uK ≤ ψK for K in the first subset,

and

uK = ψK and
∑
σ∈EK

FK,σ ≤ m(K)fK for K in the second subset.

Now assume that we knew two subsets Tf and Tψ of T such that Tf ∪ Tψ = T ,
Tf ∩ Tψ = ∅, and

uK ≤ ψK ∀K ∈ Tf ,(27) ∑
σ∈EK

FK,σ ≤ m(K)fK ∀K ∈ Tψ.(28)

Then, as in the finite element case, the solution of problem (19)–(23) could be obtained
by solving the linear problem∑

σ∈EK

FK,σ = m(K)fK ∀K ∈ Tf ,(29)

uK = ψK ∀K ∈ Tψ,(30)

where the numerical fluxes FK,σ are defined by (22)–(23). As in the finite element
case, we shall solve (29)–(30) at each iteration and iterate on the sets Tf and Tψ by
looking at the constraints which are violated after the solution of (29)–(30).

The algorithm that follows determines Tf and Tψ by an iterative method.
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Monotonic algorithm, obstacle problem, finite volume discretiza-
tion.
• Initialization. Let T (0)

f and T (0)
ψ be such that

T (0)
f ∩ T (0)

ψ = ∅ and T (0)
f ∪ T (0)

ψ = T(31)

(for example, T (0)
f = T and T (0)

ψ = ∅).
• Step (j). Assume the sets T (j)

f and T (j)
ψ to be known such that T (j)

f ∩ T (j)
ψ = ∅

and T (j)
f ∪ T (j)

ψ = T . Let (u
(j)
K )K∈T be the solution to the following set of equations:

∑
σ∈EK

F
(j)
K,σ = m(K)fK ∀K ∈ T (j)

f ,(32)

u
(j)
K = = ψK ∀K ∈ T (j)

ψ ,(33)

F
(j)
K,σ = τσ(u

(j)
K − u

(j)
L ) ∀σ ∈ Eint if σ = K/L,(34)

F
(j)
K,σ = τσu

(j)
K ∀σ ∈ Eext ∩ EK .(35)

Let T (j+1)
f and T (j+1)

ψ be defined in the following way:

T (j,0)
f = {K ∈ T (j)

f , ;u
(j)
K ≤ ψK}, T (j,1)

f = T (j)
f \ T (j,0)

f ,

T (j,0)
ψ =

{
K ∈ T (j)

ψ ;
∑
σ∈EK

F
(j)
K,σ ≤ m(K)fK

}
, T (j,1)

ψ = T (j)
ψ \ T (j,0)

ψ ,

T (j+1)
f = T (j,0)

f ∪ T (j,1)
ψ , T (j+1)

ψ = T \ T (j+1)
f .

(36)

• The algorithm stops if there exists a step (J) such that T (J)
f = T (J+1)

f and

T (J)
ψ = T (J+1)

ψ .
The above algorithm is well defined thanks to the following result.
Proposition 2.10. Let T be an admissible finite volume mesh in the sense of

Definition 2.8, and assume that the sets T (j)
f and T (j)

ψ such that T (j)
f ∩ T (j)

ψ = ∅ and

T (j)
f ∪ T (j)

ψ = T are known; then problem (32)–(35) admits a unique solution.
Proof. Under the assumptions of Proposition 2.10, one may find an equivalent

“variational” formulation to problem (32)–(35). Let u
(j)
T ∈ Y (T ) be defined by

u
(j)
T (x) = u

(j)
K for x ∈ K, ∀K ∈ T ; it is easy to prove that u

(j)
T is a solution to

problem (32)–(35) if and only if u
(j)
T is a solution to the following problem:




u
(j)
K = ψK ∀K ∈ T (j)

ψ ,

A(u
(j)
T , v) = L(v) ∀v = (vK)K∈T ∈ Y (T ),

such that vK = 0 ∀K ∈ T (j)
ψ ,

(37)

with A and L defined by (25) and (26). The existence and uniqueness of the solution
to (32)–(35) (and (37)) follow from the Lax–Milgram lemma.

The algorithm (31)–(36) is therefore well defined; let us now show its monotonic-
ity. This property is much related to the discrete maximum principle, which holds for
finite volume discretizations of the Laplace equation; see, e.g., [18].
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Lemma 2.11 (monotonicity of the scheme). Under Assumption 2.1, let T be an

admissible finite volume mesh in the sense of Definition 2.8; the sequences (u
(j)
K )j∈N,K∈T

which are constructed by the algorithm (31)–(36) satisfy

u
(j+1)
K ≤ u

(j)
K for j ∈ N and K ∈ T .

Proof. Define vT = u
(j)
T − u

(j+1)
T , FK,σ = F

(j)
K,σ − F

(j+1)
K,σ ∀K ∈ T , ∀σ ∈ EK , and

min(vT ) = min{vK = u
(j)
K − u

(j+1)
K , K ∈ T }; let us show that min(vT ) ≥ 0. Let

K0 ∈ T such that min(vT ) = vK0 . Then we have the following:

• If K0 ∈ T (j)
ψ ∩ T (j+1)

ψ , then vK0
= 0 so that min(vT ) = 0.

• Now if K0 ∈ T (j)
f ∩ T (j+1)

ψ , one has u
(j)
K0

> ψK0 and u
(j+1)
K0

> ψK0 so that
min(vT ) > 0.

• Assume next that K0 ∈ T (j)
ψ ∩ T (j+1)

f ; then

∑
σ∈EK0

F
(j)
K0,σ

< m(K0)fK0 < 0 and
∑
σ∈EK0

F
(j+1)
K0,σ

= m(K0)fK0 .

Therefore
∑
σ∈EK0

FK0,σ > 0, and, since vK0
≤ vK ∀K ∈ T , one has∑

σ∈EK0
FK0,σ ≤ 0, which is impossible.

• Let us finally assume that K0 ∈ T (j)
f ∩ T (j+1)

f ; in this case one has

∑
σ∈EK0

FK0,σ = 0.(38)

1. If the control volume K0 lies near the boundary, that is, EK0 ∩ Eext �= ∅,
then (38) becomes

∑
σ∈EK0

∩Eint

σ=K0|K

vK0 − vKσ

dσ
+ vK0

( ∑
σ∈EK0

∩Eext

1

dK0,σ

)
= 0.

Since min(vT ) = vK0 , all the terms in the first sum are nonpositive, and
therefore vK0

must be nonnegative, which proves that min(vT ) ≥ 0.
2. Now if the control volume K0 lies in the interior domain in the sense

that EK0 ⊂ Eint, then one needs to consider one of the two following
subcases:
(a) There exists a “path” of control volumes, which are all in T (j)

f ∩
T (j+1)
f , leading from K0 to the boundary; that is, there exists m ∈ N

and (K�)�=0,...,m such that K� ∈ T (j)
f ∩ T (j+1)

f , EK�
∩ EK�+1

�= ∅
∀' = 0, . . . ,m − 1. In this case, one has vK0 = vK1 = · · · = vKm =
min(vT ), and since Km lies near the boundary, min(vT ) ≥ 0.

(b) If there does not exist such a path, then there exists some

control volume K which does not belong to T (j)
f ∩ T (j+1)

f and such
that min(vT ) = vK ; this case falls into one of the three cases which
were previously analyzed, and for which we proved that min(vT )
≥ 0.

We may now turn to the convergence of the algorithm. As for the finite element

discretization, we first state that if the sets T (j)
f and T (j)

ψ are left unchanged from
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one iteration to the next, then the algorithm has reached the unique solution to
problem (5).

Proposition 2.12. Assume that the sequence of sets (T (j)
f )j∈N and (T (j)

ψ )j∈N,
which are constructed by the algorithm (31)–(36), are such that there exists a step (J)

such that T (J)
f = T (J+1)

f and T (J)
ψ = T (J+1)

ψ ; then the solution (u
(J)
K )K∈T to (32)–(35)

is the unique solution to problem (19)–(23).

Proof. Let Tf = T (J)
f , Tψ = T (J)

ψ , and uT = u
(J)
T ; hence uT satisfies the set of

equations (32)–(35). Since T (J)
ψ = T (J+1)

ψ , one has −∑σ∈EK
FK,σ + m(K)fK ≥ 0

∀K ∈ Tψ, and, thanks to (32), one has −∑σ∈EK
FK,σ +m(K)fK = 0 ∀K ∈ Tf ; since

T = Tψ ∪ Tf , uT satisfies (19). Similarly, since T (J)
f = T (J+1)

f , one has uK ≤ ψK
∀K ∈ Tf , and, thanks to (33), uT satisfies (21), and finally, since Tf ∪ Tψ = T , uT
satisfies (20). Hence uT is the unique solution to problem (19)–(23).

Theorem 2.13. Under Assumption 2.1, there exists an integer J ∈ N such

that the sequence (u
(j)
K )j∈N, which is constructed by the algorithm (31)–(36), is such

that (u
(j)
K ,K ∈ T ) is the exact solution to the discrete problem (24) for all j ≥ J .

Furthermore the integer J satisfies

J ≤ card(T ) + 1,(39)

where card(T ) denotes the number of cells of the mesh.

Proof. Let the sets T (j)
ψ and T (j)

f be defined by the algorithm (31)–(36) for any

step (j); if there exists an integer J such that T (J)
ψ = T (J+1)

ψ , then by Proposition

2.12, (u
(J)
K ,K ∈ T ) is the exact solution to the discrete problem (24), and the first

part of the theorem is proven. There remains to prove that such a step exists and
that it satisfies (39).

As in the case of the finite element discretization, let us first remark that for

K ∈ T , if u
(0)
K ≤ ψK , then u

(1)
K ≤ ψi by Lemma 2.11, and if u

(0)
K > ψK , then

u
(1)
K = ψK by step (9) of the algorithm. Hence

u
(1)
K ≤ ψK for any K ∈ T ;(40)

therefore by an easy induction one has that T (j)
ψ ⊂ T (j+1)

ψ for any j > 1. Since

T (j)
ψ ⊂ T , this means that there exists an index J such that T (J)

ψ = T (J+1)
ψ .

The proof of (39) is identical to the case of the finite element discretization (see
the proof of Theorem 2.7).

3. The Signorini problem. Let us now consider the following diffusion prob-
lem:

−∆u(x) = f, x ∈ Ω,(41)

u(x) = 0, x ∈ Γ1,(42)

∇u(x) · n = 0, x ∈ Γ2,(43)

with a Signorini condition on a part of the boundary,

u(x) ≥ a,
∇u(x) · n ≥ b,

(u(x)− a)(∇u(x).n− b) = 0,


 x ∈ Γ3,(44)
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where the following holds.
Assumption 3.1.
1. Ω is an open bounded polygonal subset of R

d.
2. The boundary ∂Ω of Ω is composed of three nonempty, disjoint connected

sets Γ1, Γ2, and Γ3 such that Γ1 ∪ Γ2 ∪ Γ3 = ∂Ω.
3. f ∈ L2(Ω), a ≤ 0, and b ∈ R.
4. n is the unit normal vector to ∂Ω outward to the domain Ω.

Under some regularity assumptions, problem (41)–(44) is equivalent to the fol-
lowing variational problem (see, e.g., [17]):


u ∈ K = {v ∈ H1(Ω), v|∂Ω

≥ a a.e.}, satisfying∫
Ω

∇u(x) · ∇(v − u)(x)dx ≥
∫
∂Ω

b(γ(v)− γ(u))(s)ds ∀v ∈ K,(45)

with v∂Ω = γ(v)∂Ω, where γ is the trace operator from H1(Ω) to L2(∂Ω). By Stam-
pacchia’s theorem, problem (45) has a unique solution.

The Signorini problem may be viewed as an obstacle problem in which the obsta-
cle is located on the boundary. However, because the complementarity condition is
written on the normal derivative on the boundary, one may not write the monotonic
algorithm with piecewise linear finite elements in a straightforward way as in the case
of the obstacle problem. Indeed, the normal derivative of the piecewise linear finite
element approximate solution is defined on each edge of a triangle neighboring the
boundary of the domain, but it is not defined at the nodes of the triangulation lying
on the boundary. This problem could be solved by using higher order finite elements,
but, as we already mentioned in Remark 2.1, a crucial issue in the underlying elec-
trochemical application is that the maximum principle must hold, and this is not the
case with higher order finite element methods. However, there is no such problem
when using a finite volume discretization of the Signorini problem; the discrete nor-
mal derivative is well defined, and the maximum principle holds (see [19]). Hence the
monotonic algorithm may be written quite easily.

We shall use here the same admissible finite volume meshes as for the discretiza-
tion of the obstacle problem, which were defined in Definition 2.8, with the two fol-
lowing additional assumptions, which are needed because of the Signorini boundary
conditions on the boundary:

(v) For any σ ∈ E such that σ ⊂ ∂Ω, there exists i ∈ {1, 2, 3} such that σ ⊂ Γi.
(vi) For any σ ∈ E such that σ ⊂ ∂Ω, let K be the control volume such that

σ ∈ EK and DK,σ be the straight line going through xK and orthogonal to σ;
then yσ = DK,σ ∩ σ.

Let us then define an appropriate “discrete” functional space.
Definition 3.1 (discrete functional space). Let Ω be an open bounded polygonal

domain of R
d, and T be an admissible mesh in the sense of Definition 2.8. Define

X(T ) as the set of the functions defined a.e. from Ω to R which are constant over
each control volume of the mesh, and which are constant over each edge in E3 = Eext.
We shall denote by uK the value taken by u on the control volume K, and by uσ the
value taken by u on the edge σ ∈ Eext, σ ⊂ Γ3.

As in the case of the obstacle problem, a classical finite volume formulation is
obtained by integrating the diffusion equation (41) over each control volume T , us-
ing Green’s formula and approximating the normal fluxes by a consistent difference
quotient. Let us denote the discrete unknowns by (uK)K∈T for any K ∈ T and by
(uσ)σ⊂Γ3 for any σ ∈ Eext, and the “discrete flux” by FK,σ, which is expected to
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approximate the exact flux − ∫
σ
∇u(s).nds; the finite volume scheme can be written∑

σ∈EK

FK,σ = 0 ∀K ∈ T ,(46)

with

FK,σ = −τσ(uL − uK) ∀σ ∈ Eint if σ = K/L,(47)

FK,σ = τσuK ∀σ ⊂ Γ1, σ ∈ EK ,(48)

FK,σ = 0 ∀σ ⊂ Γ2, σ ∈ EK ,(49)

FK,σ = −τσ(uσ − uK) ∀σ ∈ E3, σ ∈ EK ,(50)

with the Signorini boundary condition

uσ ≥ a ∀σ ∈ E3,(51)

−FK,σ ≥ m(σ) b ∀σ ∈ E3,(52)

(uσ − a)

(
FK,σ
m(σ)

+ b

)
= 0 ∀σ ∈ E3,(53)

where E3 denotes the set of edges of the mesh that are included in Γ3.
In [19], we prove the following existence result.
Proposition 3.2. Let T be an admissible mesh of Ω; problem (46)–(53) admits

a unique solution (uK)K∈T , (uσ)σ∈E3
.

We may therefore define the approximate solution uT from a.e. in Ω∪Γ3 to R by

uT (x) = uK for x ∈ K and K ∈ T , uT (x) = uσ for x ∈ σ and σ ∈ E3.(54)

Remark 3.1. Under regularity assumptions on the exact solution, we give in [19]
an estimate of order 1 with respect to the mesh size for the “discrete” H1 norm and
L2 norm of the error on the solution. If the exact solution is no longer assumed to be
regular, the convergence of the discrete solution towards the exact solution may still
be proven; see [19].

The monotonic algorithm is again based on the obvious remark that, for a given
σ ∈ E3, (53) is equivalent to uσ = a or −FK,σ = m(σ) b. Hence there exist two disjoint
subsets of E3 such that on one subset one has

uσ = a and − FK,σ ≥ m(σ) b,

and on the other one,

−FK,σ = m(σ) b and uσ ≥ a.

Now if the subsets Ea and Eb of E3 such that Ea ∪ Eb = E3, Ea ∩ Eb = ∅ and such
that

−FK,σ ≥ m(σ) b ∀σ ∈ Ea,(55)

uσ ≥ a ∀σ ∈ Eb(56)

were known, then the solution to problem (46)–(53) could be obtained by solving the
linear problem (46)–(50), together with

uσ = a ∀σ ∈ Ea,(57)

−FK,σ = m(σ) b ∀σ ∈ Eb.(58)

The algorithm which follows determines the sets Ea and Eb by an iterative method.
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Monotonic algorithm, Signorini problem, finite volume discretiza-
tion.
• Initialization. Let E(0)

a and E(0)
b ⊂ E3 be such that

E(0)
a ∩ E(0)

b = ∅ and E(0)
a ∪ E(0)

b = E3.(59)

• Step (j). Assume that the sets E(j)
a and E(j)

b are known such that E(j)
a ∩E(j)

b = ∅
and E(j)

a ∪ E(j)
b = E3.

Let u
(j)
T ∈ X(T ) be defined by u

(j)
T (x) = u

(j)
K for x ∈ K, ∀K ∈ T , and by

u
(j)
T (x) = u

(j)
σ for x ∈ σ, ∀σ ∈ E3, and let u

(j)
T be the solution to the set of equations

(46)–(50) and

u(j)
σ = a ∀σ ∈ E(j)

a ,(60)

F
(j)
K,σ = −m(σ) b ∀σ ∈ E(j)

b .(61)

Let E(j+1)
a and E(j+1)

b be defined in the following way:

E(j,0)
a = {σ ∈ E(j)

a ;−F (j)
K,σ ≥ m(σ) b}, E(j,1)

a = E(j)
a \ E(j,0)

a ,

E(j,0)
b = {σ ∈ E(j)

b ;u
(j)
σ ≥ a}, E(j,1)

b = E(j)
b \ E(j,0)

b ,

E(j+1)
a = E(j,0)

a ∪ E(j,1)
b , E(j+1)

b = E3 \ E(j+1)
b .

(62)

• The algorithm stops if there exists a step (J) such that E(J)
a = E(J+1)

a and

E(J)
b = E(J+1)

b .
The above algorithm is well defined, thanks to the following result.
Proposition 3.3. Under Assumption 3.1, let T be an admissible finite volume

mesh in the sense of Definition 2.8; then problem (46)–(50), (60)–(61) has a unique

solution u
(j)
T .

Proof. Under Assumption 3.1, let T be an admissible finite volume mesh in the

sense of Definition 2.8, and u
(j)
T ∈ X(T ) be defined by u

(j)
T (x) = u

(j)
K for x ∈ K,

∀K ∈ T , and by u
(j)
T (x) = u

(j)
σ for x ∈ σ, ∀σ ∈ E3, and let the sets E(j)

a and E(j)
b be

such that E(j)
a ∩ E(j)

b = ∅ and E(j)
a ∪ E(j)

b = E3. It is easily seen that u
(j)
T is solution to

problem (46)–(50), (60)–(61) if and only if u
(j)
T is a solution to the following problem:{

u
(j)
T ∈ K(j)

T = {v ∈ X(T ) s.t. vσ = a ∀σ ⊂ E(j)
a } such that

A(u
(j)
T , v) = L(j)(v) ∀v ∈ X(T ) s.t. vσ = 0 ∀σ ∈ E(j)

a ,
(63)

with

A(u, v) =
∑

σ=K|L∈Eint

τK|L(uK − uL)(vK − vL) +
∑

σ∈EK , σ⊂Γ1

τσuKvK

+
∑

σ∈EK∩E3

τσ(uσ − uK)(vσ − vK) ∀u, v ∈ X(T ),
(64)

L(j)(v) =
∑
σ∈E(j)

b

bvσm(σ) ∀v ∈ X(T ).(65)

Then the existence and uniqueness of the solution to (46)–(50) follows by the Lax–
Milgram lemma.
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Let us now turn to the monotonicity property of the algorithm.
Lemma 3.4 (monotonicity). Under Assumption 3.1, let T be an admissible finite

volume mesh in the sense of Definition 2.8; the sequences (u
(j)
K )j∈N, K ∈ T , and

(u
(j)
σ )j∈N, σ ∈ E3, which are constructed by the algorithm (59)–(62), satisfy

u
(j)
K ≤ u

(j+1)
K ∀j ∈ N and for K ∈ T ,

u
(j)
σ ≤ u

(j+1)
σ ∀j ∈ N and for σ ∈ E3.

(66)

Proof. Let v be defined by v = u
(j+1)
T − u

(j)
T , and let min(vT ) be defined by

min(vT ) = min

{
min
K∈T

vK , min
σ∈E3

vσ

}
.

We note that v satisfies the set of equations (46)–(50).
• Assume first that min(vT ) = vK0

, with K0 ∈ T such that ∂K0 ∩ Γ1 = ∅ or
∂K0 ∩Γ1 is a point. Since vK0 ≤ vK ∀K ∈ T and vK0 ≤ vσ ∀σ ∈ E3, one has
min(vT ) = vK ∀K ∈ T , and min(vT ) = vσ ∀σ ∈ E3. Therefore, the minimum
is reached on a control volume neighboring Γ1, or on an edge included in Γ3.
• Assume next that min(vT ) = vK0 , with K0 ∈ T such that there exists σ ⊂

∂K0 ∩ Γ1; from (46)–(50), we deduce that min(vT ) ≥ 0.

• Now assuming σ ∈ E(j)
b ∩ E(j+1)

b and min(vT ) = vσ, we obtain −τσ(vσ −
vK) = 0 with K such that ∂K ∩ σ = σ; then min(vT ) = vK ∀K ∈ T and
min(vT ) = vσ ∀σ ∈ E3.

• Next if σ ∈ E(j)
b ∩ E(j+1)

a and min(vT ) = vσ, one has u
(j)
σ < a and u

(j+1)
σ = a;

hence min(vT ) > 0.

• Finally if σ ∈ E(j)
a ∩E(j+1)

b and min(vT ) = vσ, one has−τσ(u
(j)
σ −u(j)

K ) < m(σ)b

and −τσ(u
(j+1)
σ − u

(j+1)
K ) = m(σ)b; therefore −τσ(vσ − vK) > 0, which is in

contradiction with min(vT ) = vσ.
We now turn to the convergence of the algorithm.

Proposition 3.5. Assume that there exists a step (J) such that E(J)
a = E(J+1)

a

and E(J)
b = E(J+1)

b and let u
(J)
T be the solution to (46)–(50), (60)–(61); then u

(J)
T is

the unique solution to problem (46)–(53).

Proof. Let Ea = E(J)
a , Eb = E(J)

b , and uT = u
(J)
T ; hence uT satisfies the set of

equations (46)–(50) and

uσ = a ∀σ ∈ Ea,
FK,σ = −m(σ) b ∀σ ∈ Eb.

Since E(J)
a = E(J+1)

a , one has FK,σ ≥ −m(σ) b ∀σ ∈ Ea, and since E(J)
b = E(J+1)

b , one
has uσ ≥ a ∀σ ∈ Eb. Therefore, since Ea ∪ Eb = E3, uT satisfies the set of equations
(46)–(53).

Theorem 3.6. Under Assumption 3.1, there exists an integer J ∈ N such that

the sequences (u
(j)
K )j∈N (u

(j)
σ )j∈N, which are constructed by the algorithm (31)–(36),

are such that (u
(j)
K ,K ∈ T ), (u

(j)
σ ,K ∈ E3) is the exact solution to the discrete problem

(24) for all j ≥ J . Furthermore the integer J satisfies

J ≤ card(E3) + 1,(67)

where card(E3) denotes the number of edges of the mesh which are on the Signorini
boundary Γ3.



MONOTONIC METHOD FOR FREE BOUNDARY VALUE PROBLEMS 2307

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

x

u(
x)

Obstacle, iterates 1, 2, and final for the monotonic algorithm

Obstacle
Iterate 1
Iterate 2
Final iterate

N ITER
20 6
50 7
100 8
500 31
1000 130

Fig. 2. One-dimensional obstacle problem: the obstacle and some iterates (left), the number of
discretization points N and number of iterations to convergence ITER (right).

Proof. Let the sets E(j)
a and E(j)

b be defined by the algorithm (59)–(62) for any

step (j); if there exists an integer J such that E(J)
b = E(J+1)

b , then by Proposition

2.12, (u
(J)
K ,K ∈ T ) is the exact solution to the discrete problem (24), and the first

part of the theorem is proven. There remains to prove that such a step exists and
that it satisfies (67).

Similarly to the remark on the obstacle problem, let us first note that for σ ∈ E3
if u

(0)
σ ≥ a, then u

(1)
σ ≥ a by Lemma 2.11, and if u

(0)
σ < a, then u

(1)
σ = a by step (62)

of the algorithm. Hence

u(1)
σ ≥ a for any σ ∈ E3;(68)

therefore by an easy induction one has that E(j)
a ⊂ E(j+1)

a for any j > 1. Since

E(j)
a ⊂ E3, this implies that there exists an index J such that E(J)

b = E(J+1)
b .

Let us now prove that (67) holds. Let J be the smallest integer such that E(J)
b =

E(J+1)
b . Since E(J)

b ⊂ E3 ∀j ∈ N, one has card(E3) + 1 ≥ card(E(j+1)
b ) ≥ card(E(j)

b ) + 1
for any j > 1, which yields that J ≤ card(E3) + 1.

3.1. Numerical tests. In order to test the efficiency of this new algorithm,
some numerical experiments were performed. We first tested the algorithm on a
one-dimensional obstacle problem, discretized by either the finite volume or the finite
element method (in the one-dimensional case the two schemes differ by only the right-
hand side and the boundary conditions). The results proved excellent. We show in
Figure 2 a few iterations for ψ(x) = 3 + 1

2 sin(12ϕix) + sin(2ϕix) and for a right-hand
side equal to 1. We also give the number of iterations (ITER) required to convergence
versus the number N of discretization points. Recall that we have a theoretical bound
ITER ≤ N: the results show that this bound is far from optimal. Note also that we
have taken the solution of the unconstrained problem (i.e., the solution of −u′′ = f)
as an initial guess; of course, one could decrease the number of iterations by taking a
better-chosen initial guess.

A less academic study was performed by Herbin and Marchand [20] for a finite
volume discretization of an electrochemical problem involving a Signorini boundary
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Fig. 3. z = u(x, 0) ∀x ∈ [0, xm] (on Γ3: Signorini boundary).
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Fig. 4. z = ∇u · n(x, 0) ∀x ∈ [0, xm] (on Γ3: Signorini boundary).

condition, which was introduced in [23], and which involved a two-dimensional prob-
lem. These results illustrate the performance of the monotonic algorithm quite well.

The domain Ω is taken to be the rectangle (Ω = ]0, xm[ × ]0, ym[ ). We set the
data such that the exact solution u ∈ C2(Ω) is known. We show in Figures 3 and 4
the plots of the traces of u and of ∇u · n on the Signorini boundary Γ3.

A rectangular mesh is used on the domain Ω. We vary the discretization step

and the initial guess E(0)
a and give the number of iterates required to converge to the

(exact) solution of the discrete problem. Table 1 gives some results when taking the
number of cells between 100 and 2500 with a uniform step.
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Table 1
Number of iterations needed for the monotonicity algorithm.

E3 / grid size 10× 10 20× 20 30× 30 40× 40 50× 50
Eext 4 6 7 7 8
∅ 4 6 7 7 7

{σ ⊂ {xm} × [0, xm/2]} 4 7 7 7 8
{σ ⊂ {xm} × [xm/2, xm]} 2 3 2 2 2

These results show that the algorithm is quite efficient. The number of iterations
does not vary much with respect to the grid size, and it is considerably less than the
number of cells on E3, which was the upper bound given by Theorem 3.6. Of course,
if one has a hint of how the Signorini boundary should be, then a good initial guess
lowers the number of iterations, as may be seen from the last line of the table.

Let us also recall that at each iteration there is only one solve of a linear sub-
problem to be performed. Hence there are no ill-conditioned systems involved, such
as those in penalty methods. Finally, let us point out that this algorithm may also
be successfully implemented for other free boundary problems: we also tested it on
the dam problem and it performs well. It is also used in multiphase problems [8], al-
though in this last case no theoretical convergence result is known (in fact, existence
and uniqueness of the solution are an open problem in this last case).

4. Conclusion. The monotonic algorithm which we have introduced for both
the obstacle problem and the Signorini problems has been shown to be convergent for
the linear finite element and finite volume discretizations in the case of the obstacle
problem and the finite volume discretization in the case of the Signorini problem.
Furthermore, a bound of the number of iterations is known. An important advantage
of this algorithm is that, at each iteration, it necessitates only a linear solve involving
a submatrix of the diffusion operator, and therefore no ill-conditioned system must
be solved as would be the case with a penalty method. The actual implementation
of the algorithm is very easy, and the computational cost is low, since the number of
iterations is much lower than the theoretical bound, that is, the number of cells for
which the constraint holds, even when the initial guess is not well chosen.

The limitation of the method is linked to the fact that it is proven to converge
thanks to the discrete maximum principle, which holds for adequate discretizations of
diffusion problems such as the ones we considered here. Note that the discretization is
originally chosen such that the maximum principle holds, not because of the monotonic
algorithm, but because the discrete maximum principle reflects a physical constraint
which the approximate solution needs to satisfy (in the case of a chemical diffusion,
the concentration should stay between 0 and 1). Hence it is natural in this type of
problem to use the monotonic algorithm.

However, the efficiency (and proof of convergence) of the monotonic algorithm
when the maximum principle does not hold (elasticity, higher order finite elements)
is still an open question.
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[1] Z. Belhachmi and F. Ben Belgacem, Eléments finis d’ordre deux pour l’inéquation varia-
tionelle de Signorini, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), pp. 727–732.

[2] F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral
contact problems by the finite element methods, SIAM J. Numer. Anal., 37 (2000), pp. 1198–
1216.
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Abstract. A method is developed for calculating the recurrence coefficients for half-range

generalized Hermite polynomials. These are orthogonal polynomials with measure xγe−x2
on the

interval (0,∞). The recurrence coefficients can then be used to generate the weights and nodes
of the related Gaussian quadratures. These quadratures allow efficient high accuracy evaluation of
many Gaussian integrals encountered in probability functions, statistical mechanics, and quantum
mechanics. The number of steps for an accurate numerical calculation of the recurrence coefficients is
proportional to N , the number of coefficients obtained. Extended precision arithmetic is not needed
in these calculations.
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1. Introduction. Gaussian integrals over the range (0,∞) are encountered quite
often in probability calculations when normal distributions are considered, in statis-
tical mechanics where the kinetic energy of a particle is proportional to the velocity
squared, and in quantum mechanical calculations involving harmonic oscillator wave
functions. The purpose of this paper is to develop a Gaussian-type quadrature for
integrals of the following form: ∫ ∞

0

dxxγe−x
2

f(x)(1.1)

for γ > −1. The special case γ = 0 was treated by several groups in 1969 [1], [2]. In
1981 Shizgal [3] generalized the treatment to nonzero γ, his interest being solutions to
the Boltzmann equation for which the values of γ = 1 and 2 play a special role. His
final methods made use of extended precision arithmetic. Further work by Clarke and
Shizgal [4] investigated the instability of the method for determining the recurrence
coefficients and proposed the use of asymptotic expansions. Most recently Gautschi
[5] used the half-range Hermite weight function in testing his general methods for
obtaining recurrence coefficients for orthogonal polynomials with arbitrary weight
functions.

2. The calculation of the recurrence coefficients for generalized half-
range Hermite polynomials. The orthogonality formula for monic generalized
half-range Hermite polynomials φγn(x) is∫ ∞

0

dxxγe−x
2

φγn(x)φγm(x) = δnmTn.(2.1)

Here the notation follows that of Gautschi [5] and his implementation of the Stieltjes
procedure. The three term recurrence formula satisfied by these polynomials is as
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follows:

φγn+1(x) = (x− αn)φγn(x)− βnφγn−1(x).(2.2)

Defining Sn as

Sn =

∫ ∞

0

dxxγ+1e−x
2

φγn(x)φγn(x)(2.3)

and applying the orthogonality relation to the recurrence formula, one obtains

βn = Tn/Tn−1(2.4)

and

αn = Sn/Tn.(2.5)

Inserting the recurrence formula into the expression for Tn and using the orthogonality,
one obtains

Tn =

∫ ∞

0

dxxγ+1e−x
2

φγn(x)φγn−1(x).(2.6)

Using the recurrence formula to replace φγn(x) results in the following identity:

βn + βn−1 + α2
n−1 =

1

Tn−1

∫ ∞

0

dxxγ+2e−x
2

(φγn−1(x))2.(2.7)

Applying the same operations to Sn, one obtains a second identity:

αn + αn−1 =
1

Tn

∫ ∞

0

dxxγ+2e−x
2

φγn(x)φγn−1(x).(2.8)

Note that these are only algebraic manipulations, and they apply to any orthogonal
polynomials.

The simplification that is possible for generalized half-range Hermite polynomials
is that the integrals in (2.7), (2.8) can be integrated by parts. This fact was used
by Shizgal [3], and although his procedure was somewhat different from the following
discussion, it can be shown that the final results are in agreement. The by-parts
integrals can be expressed in terms of α’s and β’s providing algebraic recurrence
formulas for these quantities. This goes as follows:∫ ∞

0

dxxγ+2e−x
2

(φγn−1(x))2 = −1

2

∫ ∞

0

dxxγ+1(φγn−1(x))2
d

dx
e−x

2

=
1

2

∫ ∞

0

dxe−x
2 d

dx
[xγ+1(φγn−1(x))2] =

2n− 1 + γ

2
Tn−1.(2.9)

This yields the following recurrence formula:

βn + βn−1 + α2
n−1 =

2n− 1 + γ

2
.(2.10)

Integration by parts in (2.8) yields

Tn(αn + αn−1) =
1

2

∫ ∞

0

dxxγ+1e−x
2

φ′γn(x)φγn−1(x).(2.11)
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After substituting the recurrence formulas for φn−1 and φ′n and using the orthogonal-
ity properties, one obtains a second recurrence formula:

βn(αn + αn−1) =
1

2
αn−1 + βn−1(αn−1 + αn−2).(2.12)

Multiplying (2.12) by αn−1 and using (2.10) to replace α2
n−1, we obtain

αnαn−1βn =

[(
n+ γ

2

2
− βn

)
+

(
n− 1 + γ

2

2
− βn−1

)]

·
[(

n+ γ
2

2
− βn

)
−
(
n− 1 + γ

2

2
− βn−1

)]
+ αn−1αn−2βn−1.(2.13)

Multiplying out the factors in square brackets and rearranging the terms, we find

αnαn−1βn −
(
n+ γ

2

2
− βn

)2

= αn−1αn−2βn−1 −
(
n− 1 + γ

2

2
− βn−1

)2

.(2.14)

Evidently the quantities on either side of this equation are constant (i.e., independent
of n). The n = 0 case determines this constant to be −γ2/16. The final expression
for the second recurrence formula is

αnαn−1βn =

(
n+ γ

2

2
− βn

)2

− γ2

16
.(2.15)

Note that this equation involves only quantities at n and n− 1.
The necessary starting values are given below:

T0 = Γ

(
γ + 1

2

)
/2,

S0 = Γ
(γ

2
+ 1
)
/2.(2.16)

3. Evaluation of the recurrence formula. The recurrence procedure now
appears straightforward. Given

α0 =
Γ(γ2 + 1)

Γ(γ+1
2 )

,(3.1)

one calculates β1 from (2.10) by using the fact that β0 = 0, and then one uses (2.15)
to calculate α1. This process is then repeated to obtain the desired values of α and
β.

Unfortunately, as observed in earlier work, while the procedure is simple, the
system is rather poorly conditioned, and in practice the error grows more than one
order of magnitude per step. How this comes about and what methods can be used
to overcome this problem can be seen by writing αn and βn in terms of a single set
of functions gn:

α2
n =

2n+ γ + 1

3
− gn+1 − gn(3.2)

and

βn =
(n+ γ

2 )

6
+ gn.(3.3)
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In terms of these variables, (3.2) is identical to (2.10), and squaring (2.15) produces a
nonlinear three term recurrence formula for the g’s. The fact that n in all equations
appears in the combination n+ γ

2 suggests the following change of variable:

Y = Y (n) = 2n+ γ.(3.4)

The final recurrence formula is

(
Y + 1

3
− gn+1 − gn

)(
Y − 1

3
− gn − gn−1

)(
Y

12
+ gn

)2

−
[(

Y

6
− gn

)2

− γ2

16

]2

= 0.

(3.5)

This equation has the following properties: It is linear in gn+1 and gn−1; the g4
n terms

cancel out of this equation, and as a result of the choice relating β to g, the Y 4 terms
also cancel out. The large n or Y behavior of (3.5) is determined by keeping only the
cubic and quadratic terms in Y :

Y 3(14gn − gn+1 − gn−1) = Y 2

(
1

3
− 3γ2

2

)
.(3.6)

The solution of interest for large n is that obtained by setting gn+1 � gn � gn−1,
yielding

gn � 2− 9γ2

72Y
.(3.7)

On the other hand, it is clear that if one calculates gn+1 or gn−1 from (3.6), the error
in gn increases by a factor of 14. Another way of saying this is in terms of the solution
to the homogeneous version of (3.6) which has the following general solution:

gn = A(7 +
√

48)n +B(7 +
√

48)−n.(3.8)

Thus any error will excite these unwanted solutions, and both forward and backward
recurrence will fail.

In previous work this stability problem was overcome with the brute force method
of using arbitrary precision arithmetic and simply using as many significant figures as
necessary so that the final result has the desired accuracy. For example, 75 significant
figures are needed to calculate the first 50 values of α and β to 16 digits.

What is proposed here is a method that turns the factor 14, the source of the
instability when one solves (3.6) for gn+1 or gn−1, into a virtue. This can be done by
solving (3.6) for gn. What results is a fixed point method in which gn is calculated
in terms of gn+1 and gn−1. The iterative solution will now converge rapidly, with
the error now falling approximately one order of magnitude per iteration. In order to
use this method one must have a set of starting values for gn, n = 0, 1, . . . , N , that
are close enough to the solution to be convergent. Before proposing starting values
and the procedure to follow, a couple of points should be made. The first involves
the error introduced by the starting value of gN . In the course of the fixed point
iteration this value will stay fixed with whatever error it has. As a result, gN−1 will
converge to a value with an error of 1/14, the fixed error in gN . At each step down
the ladder the error will decrease by 1/14. This error remains after the procedure has
converged and is, therefore, a fixed permanent error. Thus one must adjust the value
of N and the accuracy of the trial gN so that accurate values are determined for the
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range of interest. A second point is that if gn+1, gn, and gn−1 are calculated from the
recurrence formula, that value of gn will be unchanged by the iteration procedure and
will appear to have converged. As a result one cannot simply apply this method to
improve the accuracy of values obtained from the recurrence formula. Furthermore,
if the first m trial values are obtained from the recurrence formula, m iterations are
required before all of the first m terms have been modified. Since the first term is
accurate, this doesn’t produce a fixed error but does require a minimum number of
iterations for accurate low n results.

Returning now to the actual recurrence formula, we first solve it for the linear
term in gn which will determine the new values from the iterative process. All other
quantities are calculated from the old or input values of gn−1, gn, and gn+1. This
iterative process is again rapidly convergent, with behavior very similar to that of the
large n case discussed above. This appears to be due to the fact that even the first
few values of g are already quite small, making the quadratic and cubic terms which
are ignored in (3.6) unimportant.

The remaining ingredient for this calculation is the starting values of the gn’s.
Since the values of g0 and g1 are known functions which can be evaluated to near
machine accuracy, the first 7 or 8 terms can be calculated from the recurrence formula
with a loss of about 8 significant figures. For large n or Y , gn can be expressed in
terms of a Taylor series in 1/Y . Although it has not been proven, it seems likely that
this series has a zero radius of convergence and is therefore an asymptotic series. The
first 4 terms of this series are

gn(γ) =
C0

Y
+
C1

Y 3
+
C2

Y 5
+
C3

Y 7
,(3.9)

where

C0 =
1

36
− γ2

8
,(3.10)

C1 =
23

432
− 11

48
γ2 +

3

32
γ4,(3.11)

C2 =
1189

2592
− 409

192
γ2 +

75

64
γ4 +

9

64
γ6,(3.12)

and

C3 =
196057

20736
− 153559

3456
γ2 +

7111

256
γ4 +

639

128
γ6 +

135

512
γ8.(3.13)

Empirically, using these first 4 terms gives approximately 14 figure accuracy for
β50. The accuracy improves for larger n. For n = 9 this formula is good to 8 significant
figures. Thus for a trial set of g’s with minimum error one uses the recurrence formula
for small n and switches to the asymptotic series at the point where the accuracy
of both methods are about equal. For double precision this transition occurs near
n = 8. The exact value is not particularly important because the trial input has
small enough error to guarantee rapid convergence. For that matter, in the double
precision calculation only three terms in the asymptotic expansion need be used if this
is compensated for by increasing the number of g’s involved in the iteration. Typical
results in double precision are as follows: For accurate values of gn up to n = 50, with
g1 and g51 fixed, the calculation required 10 iterations on the 49 intermediate g’s for
convergence, yielding 16 figure accuracy for the β’s and α’s. For quad precision it
was necessary to increase the range to g66 to avoid the error caused by truncation.
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The transition point could be shifted to a higher value of n = 16. The number of
iterations required was 30 to produce 33 significant figures for the β’s and α’s. These
results seem to apply to all values of γ, although only values −1 < γ < 1 were
tested. This was considered the most interesting range because integrals with weight
functions corresponding to γ + 1 and γ + 2 can be evaluated accurately by increasing
the number of nodes in the quadrature for γ by one.

While this method is straightforward and has rapid linear convergence, we can
in fact do much better by employing a method with quadratic convergence. This is
provided by the well-known Newton’s method, rather than by solving (3.5) for gn and
treating the resulting equation as a fixed point problem. We consider the problem
of finding the N roots, gn, of the N equations that (3.5) represents. This procedure
goes as follows: Define

F i =

(
Y (i) + 1

3
− gi+1 − gi

)(
Y (i)− 1

3
− gi − gi−1

)(
Y (i)

12
+ gi

)2

−
[(

Y (i)

6
− gi

)2

− γ2

16

]2

(3.14)

and

Ji,j = ∂gjF
i.(3.15)

Here the g’s are the input values. The new values are then given by

gnewj = goldj −
∑
k

J−1
j,kF

k.(3.16)

Note that J is a tridiagonal matrix because the recurrence formula involves only
three terms. As a result all of the steps in this iteration are of O(N). The results
are rapidly convergent; only one iteration is required in double precision, although in
practice a second is required to verify convergence. For quad precision two iterations
are necessary, with one more to check convergence. It should be noted that this
procedure does not have the problem with the use of the recurrence formula in the
calculation of the starting values for small n that were encountered with the fixed
point method.

Some of results of the actual calculation are as follows: In double precision the
asymptotic expansion introduces no error for values of N greater than 50. For N = 50,
the calculation on a Sun Ultra Sparc 2 with two processors requires approximately
.0005 seconds. The results for larger values of N scale linearly with N . Applying this
method to larger N is of no particular interest because (3.9) can be used directly to
obtain the α and β for N > 50. The quad precision results required N = 66 to produce
full machine accuracy for the first 50 values. The time required was much longer than
that for double precision because quad arithmetic on this machine is implemented in
software. The times were .053 seconds for 50 accurate terms, .088 seconds for 100
accurate terms, and .124 seconds for 150 terms. Note that the time grew less rapidly
than the number of terms. This is because the number of extra terms necessary to
eliminate the truncation error actually decreases with increasing N .

4. Conclusion. The Gaussian quadrature obtained from these coefficients be-
haves as expected. To check noninteger γ the test integrals used γ = − 1

4 . For
f(x) = exp(−10x) the integral can be evaluated to a fractional error of 10−14 with a
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25 node quadrature. The case f(x) = exp(10x) requires more nodes. For 40 nodes
both integrals have a fractional error of approximately 10−14. In the case of quad
precision the case f(x) = exp(−10x) can be evaluated to 32 significant figures with
40 nodes. As in the double precision case more nodes were required for the accurate
evaluation of f(x) = exp(10x). Obtaining 32 significant figures required 60 nodes.

The results obtained here can be compared to the tables published by Steen,
Byrne, and Gelbard [1]. The tables are for the γ = 0 case only and are tables of the
weights and nodes for half-range Hermite quadratures for 2 through 15 nodes. The
results are quite surprising. For 8 or fewer nodes the results obtained here agree to
14 significant figures. For 10 nodes one finds 12 figure agreement. As the number of
nodes increases, one loses 1 significant figure when the number of nodes is increased
by 1. This is exactly the kind of behavior that might be expected from the recurrence
calculation based on approximately 20 digit accuracy. For the largest number of
nodes, 15, the nodes and weights obtained by Steen, Byrne, and Gelbard have an
error in the seventh figure. On the other hand, if one uses these nodes and weights
to perform an integral, the results are surprisingly good. Why this is true is not
clear, but recall that only the large n polynomials have errors. Perhaps the set of
polynomials generated corresponds to a weight in the orthogonality relation that is
very close to exp(−x2), and the fact that both the nodes and the weights are shifted
conspires to produce good results for the integrals. This general kind of behavior was
observed by Gautschi [6] in connection with a different Gaussian quadrature which, in
spite of having series errors in the nodes, still produced good results for test integrals.
See this work for a more detailed discussion of ways to test Gaussian quadratures.

For the special cases γ = 0, 1, 2 the nodes and weights for the Gaussian quadrature
can be compared directly with those published by Shizgal [3]. The results obtained
here agree to 15 figures with his N = 16 results given in Tables IIa, IIb, and IIc, with
one exception, namely the last node in Table IIc, which has 8’s as the ninth and tenth
figures. This appears to be a misprint, and there should only be one 8. The fact that
the location of this node has one more significant figure than the others also points
to a misprint.

Finally, the quad precision results for the recurrence coefficients can be compared
with the selected values for γ = 0 published by Gautschi [5] in his Table VIII. The
results obtained here agree to all 25 figures published in his article.

It seems likely that the methods used here to calculate the recurrence coefficients
can also be applied to other weight functions, such as those considered by Clark and
Shizgal [4]. These possibilities are the subject of future work.
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1. Introduction. We consider restricted Schwarz methods for the solution of
linear systems of the form

Ax = b,(1)

where A is n×n and nonsingular. These methods were introduced by Tai [26] and by
Cai and Sarkis [10] for the parallel solution of (1); see also [8, 9]. In [10], it is shown by
numerical examples that the restricted additive Schwarz (RAS) method is an efficient
alternative to the classical additive Schwarz preconditioner. RAS preconditioners are
widely used and are the default preconditioner in the PETSc software package [1].
In [26] and [10], the multiplicative variant of the RAS method, the restricted multi-
plicative Schwarz (RMS) method, is also mentioned; see also [9]. Although restricted
Schwarz methods work very well in practice, until recently no theoretical results were
available. In [16], convergence and comparison results for the RAS method were es-
tablished when the matrix A in (1) is a (possibly nonsymmetric) M -matrix (or more
generally an H-matrix). Those results use a new algebraic formulation of Schwarz
methods and a connection with the well-known concept of multisplittings [7, 22]; see
[2, 14, 15].

In this paper, we consider the RMS method. Again using the algebraic ap-
proach we are able to establish convergence results for the RMS method applied
to M -matrices. Thus, this paper is the counterpart to [16] for the multiplicative case,
although we prove some new results on RAS iterations as well. Furthermore, we are
able to present a comparison result between the RMS and RAS methods. We show
that, as measured in a certain norm, the convergence of the RMS method is never
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worse than that of the RAS method. More precisely, if M−1
RASA and M−1

RMSA are the
preconditioned matrices using the RAS and RMS methods, respectively, we show that
in some norm

‖I −M−1
RMSA‖ ≤ ‖I −M−1

RASA‖;

see section 3. In some cases, this comparison is valid for the spectral radii ρ1 :=
ρ(I − M−1

RMSA) ≤ ρ2 := ρ(I − M−1
RASA). This implies that the spectrum of the

preconditioned matrix with RAS σ(M−1
RASA) ⊆ B(1, ρ2), the ball centered at 1 with

radius ρ2, while the spectrum of the preconditioned matrix with RMS σ(M−1
RMSA) is

contained in the smaller ball B(1, ρ1). These results remain true if we allow an inexact
(or approximate) solution of the subdomain problems; see section 4. We point out
that such a theoretical comparison has only recently become available between the
classical additive and multiplicative Schwarz methods [20].

In section 3, we prove that the asymptotic rate of convergence of the RMS method
is no faster than that of the classical multiplicative Schwarz method. The reason why
the restricted Schwarz methods are attractive is that the communication time between
processors is reduced, usually converging in less overall computational time [10].

We prove several other comparison theorems. We compare the speed of conver-
gence with respect to the amount of overlap of the domains (section 5), the exactness
of the subdomain solver (section 4), and the number of domains (section 6). Some
variants of the RMS method are analyzed in section 7. We finish the paper with some
comments on coarse grid corrections.

2. The algebraic representation and notations. As in [10, 16] we consider
p nonoverlapping subspaces Wi,0, i = 1, . . . , p, which are spanned by columns of the
identity I over R

n and which are then augmented to produce overlap. For a precise
definition, let S = {1, . . . , n}, and let

S =

p⋃
i=1

Si,0

be a partition of S into p disjoint, nonempty subsets. For each of these sets Si,0 we
consider a nested sequence of larger sets Si,δ with

Si,0 ⊆ Si,1 ⊆ Si,2 ⊆ · · · ⊆ S = {1, . . . , n},(2)

so that we again have S = ∪pi=1Si,δ for all values of δ, but for δ > 0 the sets Si,δ
are not pairwise disjoint; i.e., there is overlap. A common way to obtain the sets Si,δ
is to add those indices to Si,0 which correspond to nodes lying at distance δ or less
from those nodes corresponding to Si,0 in the (undirected) graph of A. This approach
is particularly adequate in discretizations of partial differential equations where the
indices correspond to the nodes of the discretization mesh; see [6, 8, 9, 10, 13, 25].

Let ni,δ = |Si,δ| denote the cardinality of the set Si,δ. For each nested sequence
of the form (2) we can find a permutation πi on {1, . . . , n} with the property that for
all δ ≥ 0 we have πi(Si,δ) = {1, . . . , ni,δ}.

We now build matrices Ri,δ ∈ R
ni,δ×n whose rows are precisely those rows j of

the identity for which j ∈ Si,δ. Formally, such a matrix Ri,δ can be expressed as

Ri,δ = [Ii,δ|O]πi(3)
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with Ii,δ the identity on R
ni,δ . Finally, we define the weighting (or masking) matrices

Ei,δ = RTi,δRi,δ = πTi

[
Ii,δ O
O O

]
πi ∈ R

n×n(4)

and the subspaces

Wi,δ = range(Ei,δ), i = 1, . . . , p.

Note the inclusion Wi,δ ⊇Wi,δ′ for δ ≥ δ′ and, in particular, Wi,δ ⊇Wi,0 for all δ ≥ 0.
We view the matrices Ri,δ as restriction operators and RTi,δ as prolongations. We

can identify the image of RTi,δ with the subspace Wi,δ. For each subspace Wi,δ we
define a restriction of the operator A on Wi,δ as

Ai,δ = Ri,δAR
T
i,δ.

To describe and analyze the classical Schwarz methods, the theory of orthogonal
projections plays an important role; see, e.g., [17, Chap. 11], [25], and especially [5].
Therefore let

Pi,δ = RTi,δA
−1
i,δRi,δA,(5)

provided that Ai,δ is nonsingular. It is not hard to see that this is a projection onto
the subspace Wi,δ. (In the case of symmetric A, this projection is orthogonal.) The
additive Schwarz preconditioner is

M−1
AS,δ =

p∑
i=1

RTi,δA
−1
i,δRi,δ(6)

and the preconditioned matrix is

M−1
AS,δA =

p∑
i=1

Pi,δ.

Similarly, the multiplicative Schwarz preconditioner M−1
MS,δ is such that

TMS,δ = I −M−1
MS,δA = (I − Pp,δ)(I − Pp−1,δ) · · · (I − P1,δ) =

1∏
i=p

(I − Pi,δ).(7)

Next we describe the restricted additive and multiplicative Schwarz precondition-
ers. We introduce “restricted” operators

R̃i,δ = Ri,δEi,0 ∈ R
ni,δ×n.

The image of R̃Ti,δ = Ei,0R
T
i,δ can be identified with Wi,0, so R̃Ti,δ “restricts” RTi,δ

in the sense that the image of the latter, Wi,δ, is restricted to its subspace Wi,0,
the space from the nonoverlapping decomposition. In the restricted (additive and
multiplicative) Schwarz methods from [8, 10] the prolongation operatorRTi,δ is replaced

by R̃Ti,δ and the (oblique) projection

Qi,δ = R̃Ti,δA
−1
i,δRi,δA = Ei,0Pi,δ
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is used; see [16]. Thus, the restricted counterparts to the operators (6) and (7) are

M−1
RAS,δ =

p∑
i=1

R̃Ti,δA
−1
i,δRi,δ

and

TRMS,δ = (I −Qp,δ)(I −Qp−1,δ) · · · (I −Q1,δ) =

1∏
i=p

(I −Qi,δ),(8)

respectively. The iteration matrix of the RAS method is then

TRAS,δ = I −M−1
RAS,δA = I −

p∑
i=1

R̃Ti,δA
−1
i,δRi,δA = I −

p∑
i=1

Qi,δ.(9)

For practical parallel implementations, replacing RTi,δ by R̃Ti,δ means that the
corresponding part of the computation does not require any communication, since
the images of the R̃Ti,δ do not overlap. In addition, the numerical results in [10]
indicate that the RAS method is faster (in terms of number of iterations and/or CPU
time) than the classical one.

For the analysis of preconditioned Krylov subspace methods, the relevant matri-
ces are M−1

AS,δA and M−1
RAS,δA for additive Schwarz and I − TMS,δ and I − TRMS,δ for

multiplicative Schwarz. Alternatively, we can consider and compare the iteration ma-
trices TAS,δ = I−M−1

AS,δA, TRAS,δ and TMS,δ, TRMS,δ. These correspond to stationary
iterative methods, e.g., of the form

xk+1 = TRAS,δx
k +M−1

RAS,δb, k = 0, 1, . . . ,

for the RAS case; see, e.g., [18] for another example of such Schwarz iterations.

As in [2, 15, 16], the key to our analysis is a new (algebraic) representation of the
restricted Schwarz methods. We construct a set of matrices Mi,δ associated with Ri,δ
as follows:

Mi,δ = πTi

[
Ai,δ O
O D¬i,δ

]
πi(10)

and D¬i,δ is the diagonal part of the principal submatrix of A “complementary”
to Ai,δ; i.e.,

D¬i,δ = diag
(
[O|I¬i,δ] · πi ·A · πTi · [O|I¬i,δ]T

)
with I¬i,δ the identity on R

n−ni,δ . Here, we assume that Ai,δ and D¬i,δ are nonsin-
gular. It can be shown (see [16]) that

R̃Ti,δA
−1
i,δRi,δ = Ei,0M

−1
i,δ , i = 1, . . . , p,

and therefore

Qi,δ = R̃Ti,δA
−1
i,δRi,δA = Ei,0M

−1
i,δ A, i = 1, . . . , p.



2322 REINHARD NABBEN AND DANIEL B. SZYLD

With these fundamental identities the RAS and RMS methods can be described
by the iteration matrices

TRAS,δ = I −
p∑
i=1

Ei,0M
−1
i,δ A,

TRMS,δ =

1∏
i=p

(I − Ei,0M−1
i,δ A).(11)

Moreover, we have

M−1
RAS,δ =

p∑
i=1

Ei,0M
−1
i,δ .

In the rest of this section, we list some basic terminology and some well-known
results which we use in the rest of the paper.

The natural partial ordering ≤ between matrices A = (aij), B = (bij) of the
same size is defined componentwise; i.e., A ≤ B iff aij ≤ bij for all i, j. If A ≥ O, we
call A nonnegative. If all entries of A are positive, we say that A is positive and write
A > O. This notation and terminology carries over to vectors as well.

A nonsingular matrix A ∈ R
n×n is called monotone if A−1 ≥ O. A monotone

matrix A ∈ R
n×n is called a (nonsingular) M -matrix if it has nonpositive off-diagonal

elements. The following lemma states some useful properties of M -matrices; see, e.g.,
[4, 28].
Lemma 2.1. Let A,B ∈ R

n×n be two nonsingular M -matrices with A ≤ B. Then
we have the following:

(i) Every principal submatrix of A or B is again an M -matrix.
(ii) Every matrix D such that A ≤ D ≤ B is an M -matrix. In particular, if

A ≤ D ≤ diag(A), then D is an M -matrix.
(iii) B−1 ≤ A−1.
Our convergence results are formulated in terms of nonnegative splittings accord-

ing to the following definition.
Definition 2.2. Consider the splitting A = M−N ∈ R

n×n with M nonsingular.
This splitting is said to be

(i) regular if M−1 ≥ O and N ≥ O,
(ii) weak nonnegative of the first type (also called weak regular) if M−1 ≥ O and

M−1N ≥ O,
(iii) weak nonnegative of the second type if M−1 ≥ O and NM−1 ≥ O, and
(iv) nonnegative if M−1 ≥ O, M−1N ≥ O, and NM−1 ≥ O.
Note that all the above splittings A = M − N are convergent splittings for

M -matrices A; i.e., the spectral radius ρ(M−1N) of the iteration matrix M−1N is
less than one. Given an iteration matrix, there is a unique splitting for it, which is
stated by the following result; see [3].
Lemma 2.3. Let A and T be square matrices such that A and I − T are non-

singular. Then there exists a unique pair of matrices B,C such that B is non-
singular, T = B−1C, and A = B − C. The matrices are B = A(I − T )−1 and
C = B −A = A((I − T )−1 − I).

For a positive vector w, we denote ‖x‖w the weighted max norm in R
n given by

‖x‖w = max
i=1,...,n

|xi|/wi.
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The resulting operator norm in R
n×n is denoted similarly, and for B = (bij) ∈ R

n×n

we have (see, e.g., [24])

‖B‖w = max
i=1,...,n


 n∑
j=1

|bij |wj

 /wi.(12)

The following lemma follows directly from (12).
Lemma 2.4. Let T, T̃ be nonnegative matrices. Assume that Tw ≤ T̃w for some

vector w > 0. Then ‖T‖w ≤ ‖T̃‖w.

3. Convergence and comparisons of RMS. In this section, we show that
for a monotone matrix A the restricted multiplicative Schwarz iteration is convergent.
Moreover, we establish that the spectral radius of the RMS iteration matrix is less
than or equal to the spectral radius of the RAS iteration matrix, and it is no smaller
than the spectral radius of the classical multiplicative Schwarz method (Theorems 3.5
and 3.8).

We begin by stating a lemma proved in [2].
Lemma 3.1. Let A be monotone, and let a collection of p triples (Ei,Mi, Ni)

be given such that O ≤ Ei ≤ I,
∑p
i=1Ei ≥ I, and A = Mi − Ni is a weak regular

splitting for i = 1, . . . , p. Let

T = (I − EpM−1
p A)(I − Ep−1M

−1
p−1A) · · · (I − E1M

−1
1 A).

Then T is nonnegative and, for any vector w = A−1e > 0 with e > 0, ρ(T ) ≤
‖T‖w < 1.

Now we formulate one of the main results of this section. It is the counterpart to
Theorem 4.4 [16], where it was shown that the RAS method is convergent, and the
iteration matrix (9) induces a weak regular splitting.
Theorem 3.2. Let A be a nonsingular M -matrix. Then for each value of δ ≥ 0

and for any w = A−1e > 0 with e > 0, we have ρ(TRMS,δ) ≤ ‖TRMS,δ‖w < 1.
Furthermore, there exists a unique splitting A = MRMS,δ−NRMS,δ such that TRMS,δ =
M−1

RMS,δNRMS,δ, and this splitting is weak regular (i.e., weak nonnegative of the first

type). The matrix MRMS,δ is given by MRMS,δ = A(I − TRMS,δ)
−1.

Proof. The proof we present is almost the same as the proof of the convergence of
the classical multiplicative Schwarz method given in [2]. Let Ei,0 as in (4) and Mi,δ

as in (10). Observe that O ≤ Ei,0 ≤ I, i = 1, . . . , p. We have already seen that

I −Qi,δ = I − Ei,0M−1
i,δ A, i = 1, . . . , p.

Moreover, it is not hard to see that the splittings A = Mi,δ−Ni,δ (with Ni,δ = Mi,δ−
A) are regular. Hence, by Lemma 3.1, TRMS,δ ≥ O and ρ(TRMS,δ) ≤ ‖TRMS,δ‖w < 1
for any w = A−1e > 0 with e > 0. Furthermore, by Lemma 2.3, there exists a unique
splitting A = MRMS,δ − NRMS,δ such that TRMS,δ = M−1

RMS,δNRMS,δ. To prove that
the splitting is weak regular it suffices to show that

M−1
RAS,δ = (I − TRMS,δ)A

−1 ≥ O(13)

or, equivalently, that M−1
RAS,δz ≥ 0 for all z ≥ 0. Letting v = A−1z ≥ 0, all we

need to show is that (I − TRMS,δ)v ≥ 0 or TRMS,δv ≤ v. This is proved in the same
way as Lemma 3.1; see [2]. Hence, the unique splitting A = MRMS,δ − NRMS,δ is
weak regular.
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In Example 3.3, we show that the splittings induced by the RAS method and the
RMS method are, in general, not nonnegative, i.e., are not weak nonnegative of the
second type. This is in contrast with the classical Schwarz methods; see [2].

Example 3.3. For the RAS method, we have to consider

T̄ = I −AM−1
RAS = I −A

p∑
i=1

Ei,0M
−1
i,δ ,

while for the RMS method

T̃ = NRMS,δM
−1
RMS,δ = I −AM−1

RMS,δ = I −A(I − TRMS,δ)A
−1.

It is not hard to see that T̃ =
∏1
i=p(I − Q̃i,δ) with Q̃i,δ = AEi,δM

−1
i,δ . Now let

A =


 6 −1 −2
−2 8 −3
−1 −1 4


 , M1,δ =


 6 0 0

0 8 0
0 0 4


 , E1,0 =


 0 0 0

0 0 0
0 0 1


 ,

M2,δ =


 6 0 0

0 8 0
0 0 4


 , E2,0 =


 0 0 0

0 1 0
0 0 0


 ,

M3,δ =


 6 −1 0
−2 8 0

0 0 4


 , E3,0 =


 1 0 0

0 0 0
0 0 0


 .

We obtain

T̄ = I −A
3∑
i=1

Ei,0M
−1
i,δ =


 0.0435 −0.0054 0.5000

0.3478 0.0435 0.7500
0.1739 0.1467 0


 � 0,

T̃ =

1∏
i=3

(I −AEi,0M−1
i,δ ) =


 −0.0435 −0.0054 −0.0258

0.3478 0.0435 0.2065
0.1739 0.1467 0.1970


 � 0.

In the case of no overlap, the RMS method as well as the classical multiplica-
tive Schwarz method reduce to a block Gauss–Seidel method. Similarly, with no
overlap, the RAS and the classical additive Schwarz methods reduce to the block
Jacobi method. The classical Stein–Rosenberg theorem (see, e.g., [28]) says that for
M -matrices the Gauss–Seidel method converges faster than the Jacobi method. The
next theorem extends this statement to the case of overlap. We are able to compare
the RMS method with the RAS method. We point out that only recently a similar
result was obtained for the classical Schwarz methods [20].

We need the following lemma; see [15, 21].
Lemma 3.4. Let A−1 ≥ O. Let A = M̄ − N̄ = M − N be two weak regular

splittings such that

M̄−1 ≥M−1.

Let w > 0 be such that w = A−1e for some e > 0. Then ‖M̄−1N̄‖w ≤ ‖M−1N‖w.
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Theorem 3.5. Let A be a nonsingular M -matrix, and let w > 0 be any positive
vector such that Aw > 0, e.g., w = A−1v with v > 0. Then

‖TRMS,δ‖w ≤ ‖TRAS,δ‖w.
Moreover, if the Perron vector wδ of TRAS,δ satisfies wδ > 0 and Awδ ≥ 0, then we
also have

ρ(TRMS,δ) ≤ ρ(TRAS,δ).

Proof. We will use Lemma 3.4. The splittings corresponding to the RAS and
RMS methods are weak regular splittings, and, in particular, the matrices M−1

RAS,δ

and M−1
RMS,δ are nonnegative; see (13). Next we show that

M−1
RMS,δ ≥M−1

RAS,δ.

To that end, we write explicitly M−1
RMS,δ using (13) and (11) as follows:

M−1
RMS,δ =


I − 1∏

i=p

(I − Ei,0M−1
i,δ A)


A−1

=
(
I − (I − Ep,0M−1

p,δA)(I − Ep−1,0M
−1
p−1,δA) · · · (I − E1,0M

−1
1,δA)

)
A−1.

Thus, by computing the product M−1
RMS,δ can be written as

M−1
RMS,δ =

p∑
i=1

Ei,0M
−1
i,δ −

∑
i<j

Ej,0M
−1
j,δ AEi,0M

−1
i,δ(14)

+

p∑
m=3

∑
(j1,...,jm)

ji∈{1,...,p},
ji>jk if i<k

(−1)m+1

(
m∏
k=1

Ejk,0M
−1
jk,δ

A

)
A−1.

Note that in each product above all Ejk,0 are different, i.e., Ejk,0 �= Eji,0 for k �= i.
The first sum in (14) is justM−1

RAS,δ. Thus, all that remains to be shown is that the
remaining part of (14) is a nonnegative matrix. To do so, we first consider matrices of
the form

Ej,0M
−1
j,δ AEi,0M

−1
i,δ .

Since Ej,0M
−1
j,δ = Ej,0M

−1
j,δ Ej,δ and Ei,0M

−1
i,δ = Ei,0M

−1
i,δ Ei,δ we have that

Ej,0M
−1
j,δ AEi,0M

−1
i,δ = Ej,0M

−1
j,δ (Ej,δAEi,0)M−1

i,δ Ei,δ.(15)

We consider two cases.
Case (a). Sj,δ ∩ Si,0 = ∅. Since A is an M -matrix,

(Ej,δAEi,0)s,t

{ ≤ 0 if s ∈ Sj,δ, t ∈ Si,0
= 0 otherwise.

Thus, since Ej,0M
−1
j,δ and M−1

i,δ are nonnegative, we obtain

Ej,0M
−1
j,δ AEi,0M

−1
i,δ ≤ O.
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Case (b). Sj,δ ∩ Si,0 �= ∅. With the construction on M−1
j,δ in (10), we obtain here

(
Ej,0M

−1
j,δ A

)
s,t




= 0 if s /∈ Sj,0
= 1 if s ∈ Sj,0, s = t
= 0 if s ∈ Sj,0, t ∈ Sj,δ, s �= t
≤ 0 otherwise.

(16)

Since Sj,0 ∩ Si,0 = ∅ it follows that

Ej,0M
−1
j,δ AEi,0M

−1
i,δ ≤ O.

Therefore in both cases we obtain

−
∑
i<j

Ej,0M
−1
j,δ AEi,0M

−1
i,δ ≥ O.

Moreover, in both cases we have with (15) that

(
Ej,0M

−1
j,δ AEi,0M

−1
i,δ

)
s,t

{ ≤ 0 if s ∈ Sj,0, t ∈ Si,δ
= 0 otherwise.

(17)

Finally, consider the terms of the third sum in (14), i.e., consider

(−1)m+1

(
m∏
k=1

Ejk,0M
−1
jk,δ

A

)
A−1

= (−1)m+1

(
m−2∏
k=1

Ejk,0M
−1
jk,δ

A

)
Ej2,0M

−1
j2,δ
AEj1,0M

−1
j1,δ

with m ≥ 3. Each of these contains one factor of the form (17), while the other m− 2
factors are of the form (16). Since the matrices Ejk,0 are different for different values
of k, the entries with value 1 in (16) get multiplied by zeros when performing the
product. This implies that in this case every entry in (16) is nonpositive.

We proceed now by induction on the number of factors. If we have an even
number of factors, we have (−1)m+1 = −1, but since the factor of the form (17) is
nonpositive and each of the other m − 2 factors of the form (16) is also nonpositive,
the product is a nonnegative matrix. Similarly, if m is odd (−1)m+1 = 1, but we have
an odd number of nonpositive factors of the form (16) and the nonpositive factor of
the form (17). Thus, the product is a nonnegative matrix. Hence in both cases we
have

(−1)m+1

(
m∏
k=1

Ejk,0M
−1
jk,δ

A

)
A−1 ≥ O.

Therefore M−1
RMS,δ ≥M−1

RAS,δ. Hence with Lemma 3.4 we obtain

‖TRMS,δ‖w ≤ ‖TRAS,δ‖w.
Now, if the Perron vector wδ of TRAS,δ satisfies wδ > 0 and Awδ ≥ 0, we also have
‖TRAS,δ‖wδ

= ρ(TRAS,δ). Thus ρ(TRMS,δ) ≤ ρ(TRAS,δ).
To end this section, we compare the RMS method with its classical version. We

need first the following two lemmas. The first one is well known and can be found,
e.g., in [4], while the second is from [2].
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Lemma 3.6. Assume that a square matrix T is nonnegative and that for some
α ≥ 0 and for some nonzero vector x ≥ 0 we have Tx ≥ αx. Then ρ(T ) ≥ α. The
inequality is strict if Tx > αx.

Lemma 3.7. Let A−1 ≥ O. Let A = M − N be a splitting such that M−1 ≥ O
and NM−1 ≥ O. Then ρ(M−1N) < 1 and there exists a nonzero vector x ≥ 0 such
that M−1Nx = ρ(M−1N)x and Ax ≥ 0.

Theorem 3.8. Let A be a nonsingular M -matrix, and let w > 0 be any positive
vector such that Aw > 0. Let TRMS,δ and TMS,δ be as in (8) and (7); then, for any
δ ≥ 0,

‖TMS,δ‖w ≤ ‖TRMS,δ‖w < 1.

Moreover, ρ(TMS,δ) ≤ ρ(TRMS,δ).

Proof. The proof is similar to that of Theorem 4.7 of [2]. We have already seen
that TRMS,δ and TMS,δ are nonnegative matrices. By Theorem 3.5 of [2] the iteration
matrix TMS,δ induces a nonnegative splitting of A. Let x ≥ 0, x �= 0 be an eigenvector
of TMS,δ with eigenvalue ρ(TMS,δ). We will show that

TRMS,δ x ≥ TMS,δ x = ρ(TMS,δ) x,(18)

so that by Lemma 3.6 we get the desired result ρ(TRMS,δ) ≥ ρ(TMS,δ). Let x0 = x̄0 = x
and define xi := (I − Ei,δM−1

i,δ A)xi−1 and x̄i := (I − Ei,0M−1
i,δ A)x̄i−1, i = 1, . . . , p.

Thus, xp = TMS,δx and x̄p = TRMS,δx. To establish (18) we proceed by induction and
show that

Axi ≥ 0, i = 1, . . . , p− 1,(19)

and

0 ≤ xi ≤ x̄i, i = 1, . . . , p.(20)

We then have (18) since xp = TMS,δx and x̄p = TRMS,δx; see (7) and (8).

For i = 0, (20) holds by assumption, while relation (19) is true by Lemma 3.7. As-
sume now that (19) and (20) are both true for some i. To obtain (19) for i+1, observe
that Axi+1 = A(I−Ei,δM−1

i,δ A)xi = (I−AEi,δM−1
i,δ )Axi. We have I−AEi,δM−1

i,δ ≥ O,
since

I −M−T
i,δ E

T
i,δA

T = I − Ei,δM−T
i,δ A

T = I − Ei,δ + Ei,δ(I −M−T
i,δ A

T )

= I − Ei,δ + Ei,δM
−T
i,δ N

T
i,δ ≥ O,

with Ni,δ := Mi,δ − A ≥ 0. Moreover, Axi ≥ 0 by the induction hypothesis, and
thus (19) holds for i + 1. To prove that (20) holds for i + 1, we use (19), the fact
Ei,0 ≤ Ei,δ, and the induction hypothesis to obtain

xi+1 = (I − Ei,δM−1
i,δ A)xi ≤ (I − Ei,0M−1

i,δ A)xi ≤ (I − Ei,0M−1
i,δ A)x̄i = x̄i+1.

To establish the inequalities for the weighted max norms, one proceeds in precisely
the same manner as before (using w instead of x) to show TRMS,δw ≥ TMS,δw. Since
both matrices are nonnegative, by Lemma 2.4 we get ‖TMS,δ‖w ≤ ‖TRMS,δ‖w.
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4. Inexact local solves. In the previous section, the subdomain problems were
assumed to be solved exactly, and this is represented by the inverses of the matri-
ces Ai,δ. In this section, we consider the case were the subdomain problems are solved
approximatively or, in other words, inexactly. We represent this fact by using an ap-
proximation Ãi,δ of the matrix Ai,δ. In practice, one uses, for example, an incomplete
factorization of Ai,δ; see, e.g., [19, 27].

As in [15], suppose that the inexact solves are such that the splittings

Ai,δ = Ãi,δ − (Ãi,δ −Ai,δ) are weak regular splittings(21)

for i = 1, . . . , p or that

Ãi,δ is an M -matrix and Ãi,δ ≥ Ai,δ, i = 1, . . . , p.(22)

Note that (22) implies (21). The incomplete factorizations satisfy (21) [19].
The restricted multiplicative Schwarz iteration with inexact solves on the subdo-

mains is then given by

T̃RMS,δ =

1∏
i=p

(I − R̃i,δÃ−1
i,δRi,δA).

In a way similar to (10), we construct matrices

M̃i,δ = πTi

[
Ãi,δ O
O D¬i,δ

]
πi(23)

such that

R̃i,δÃ
−1
i,δRi,δA = Ei,0M̃

−1
i,δ A, i = 1, . . . , p,

and thus

T̃RMS,δ =

1∏
i=p

(I − Ei,0M̃−1
i,δ A).(24)

We can now establish our convergence result.
Theorem 4.1. Let A be a nonsingular M -matrix. Then the RMS iteration

matrix (24) with inexact solves satisfying (21) satisfies ρ(T̃RMS,δ) ≤ ‖T̃RMS,δ‖w < 1
for any w = A−1e > 0 with e > 0. Furthermore, there exists a unique splitting
A = B̃ − C̃ such that T̃RMS,δ = B̃−1C̃, and this splitting is weak regular.

Proof. The proof proceeds in the same manner as that of Theorem 3.2. All we
need to show is that each splitting A = M̃i,δ − Ñi,δ with M̃i,δ as in (23) is weak

regular. Since Ãi,δ is monotone, it follows from (23) that M̃−1
i,δ ≥ O. With

πiAπ
T
i :=

[
Ai,δ Ki

Li A¬i,δ

]

and Ñi,δ = M̃i,δ −A we have

πiM̃
−1
i,δ Ñi,δπ

T
i =

[
Ã−1
i,δ (Ãi,δ −Ai,δ) −Ã−1

i,δKi,δ

−D−1
¬i Li,δ D−1

¬i (D¬i −A¬i,δ)

]
,
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which, in view of (21) and the fact that A is an M -matrix, is nonnegative.
Note that if (22) holds, then Ñi,δ = M̃i,δ −A ≥ O and A = M̃i,δ − Ñi,δ is in fact

a regular splitting.
It is shown in [16] that if (21) holds, the inexact RAS method given by

T̃RAS,δ = I −
p∑
i=1

R̃Ti,δÃ
−1
i,δRi,δA

is also convergent and that this matrix also induces a weak regular splitting. We use
these properties to compare the inexact RMS method with the inexact RAS method.
Theorem 4.2. Let A be an M -matrix and consider the inexact RAS method and

the inexact RMS method where the matrices Ãi,δ corresponding to the inexact solves
satisfy (21). Then, for any positive vector w such that Aw > 0 and any δ ≥ 0, we
have

‖T̃RMS,δ‖w ≤ ‖T̃RAS,δ‖w < 1.(25)

Moreover, if the Perron vector wδ of TRAS,δ satisfies wδ > 0 and Awδ ≥ 0, then we
also have

ρ(T̃RMS,δ) ≤ ρ(T̃RAS,δ).(26)

Proof. The proof is similar to the proof of Theorem 3.5. With (21) and (23), all
matrices M̃−1

i,δ are nonnegative. We will show that

M̃−1
RMS,δ ≥ M̃−1

RAS,δ.

Following the proof of Theorem 3.5 we have only to modify Case (b). However,
with (21) we have Ã−1

i,δAi,δ ≤ I, and thus

(
Ej,0M̃

−1
j,δ A

)
s,t




= 0 if s /∈ Sj,0
≤ 1 if s ∈ Sj,0, s = t
≤ 0 otherwise.

We then proceed as in the proof of Theorem 3.5.
If the Perron vector wδ can be chosen as w, we have ‖TRAS,δ‖wδ

= ρ(TRAS,δ), so
that (25) yields ‖TRMS,δ‖wδ

≤ ρ(TRAS,δ), and since the spectral radius is never larger
than any induced operator norm we have (26).

Next we relate the speed of convergence to the exactness of the subdomain solver.
Theorem 4.3. Let A be anM -matrix. Consider two inexact RMS methods where

the matrices Ãi,δ and Âi,δ corresponding to the inexact solves satisfy (22) and

O ≤ Â−1
i,δ ≤ Ã−1

i,δ ≤ A−1
i,δ , i = 1, . . . , p.

Let the corresponding iteration matrices be as in (24). Then, for any positive vector w
such that Aw > 0 and any δ ≥ 0, we have

‖TRMS,δ‖w ≤ ‖T̃RMS,δ‖w ≤ ‖T̂RMS,δ‖w < 1.(27)

Proof. From the hypothesis, (10), and (23) it follows that

M−1
i,δ ≥ M̃−1

i,δ ≥ M̂−1
i,δ .

Following the proof of Theorem 3.5, this establishes (27).
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5. The effect of overlap on RMS. We study in this section the effect of
varying the overlap. More precisely, we prove comparison results on the spectral radii
and/or on weighted max norms for the corresponding iteration matrices

TRMS,δ = I −M−1
RMS,δA

for different values of δ ≥ 0.
We start with a result which compares one RMS iterative process, defined through

the sets Si,δ′ , with another one with more overlap defined through sets Si,δ, where
Si,δ′ ⊆ Si,δ, i = 1, . . . , p. We show that the larger the overlap (δ ≥ δ′) the faster the
RMS method converges as measured in certain weighted max norms.
Theorem 5.1. Let A be a nonsingular M -matrix, and let w > 0 be any positive

vector such that Aw > 0. Then, if δ ≥ δ′,
‖TRMS,δ‖w ≤ ‖TRMS,δ′‖w < 1.(28)

Moreover, if the Perron vector wδ′ of TRMS,δ′ satisfies wδ′ > 0 and Awδ′ ≥ 0, then
we also have

ρ(TRMS,δ) ≤ ρ(TRMS,δ′).(29)

Proof. Since Si,δ′ ⊆ Si,δ, i = 1, . . . , p, we have A ≤Mi,δ ≤Mi,δ′ ≤ diag(A). Since
A is an M -matrix, this yields

M−1
i,δ ≥M−1

i,δ′ for i = 1, . . . , p.

Next we compare the matrices M−1
RMS,δ and M−1

RMS,δ′ . To do so consider (14) in the
proof of Theorem 3.5. Since all the parts in the sum are nonnegative, we get (28).

Now, if the Perron vector wδ′ can be chosen as w, we have ‖TRMS,δ′‖wδ′ =
ρ(TRMS,δ′) so that (28) yields (29).

As a special case of Theorem 5.1 above we choose δ′ = 0, i.e., a block Gauss–
Seidel method. In this case, we do not need any additional assumption for comparing
the spectral radii. To that end, we use the following comparison theorem due to
Woźnicki [29]; see also [12].
Theorem 5.2. Let A−1 ≥ O and two splittings A = M − N = M̃ − M̃ , where

one of them is weak nonnegative of the first type (weak regular) and the other is weak
nonnegative of the second type. If M−1 ≥ M̃−1, then

ρ(M−1N) ≤ ρ(M̃−1Ñ).

Theorem 5.3. Let A be a nonsingular M -matrix. Then, for any value of δ ≥ 0,
ρ(TRMS,δ) ≤ ρ(TRMS,0).

Proof. The proof follows immediately from the above results and the fact that
the block Gauss–Seidel splitting is a regular splitting.

6. Varying the number of domains. In this section, we show how the par-
titioning of a subdomain into smaller subdomains affects the convergence of the re-
stricted Schwarz method. In the M -matrix case, we show that, for both additive
and multiplicative restricted Schwarz methods, the more subdomains the slower the
convergence rate.

Formally, consider each block of variables Si,δ partitioned into ki subblocks; i.e.,
we have

Sij ,δ ⊂ Si,δ, j = 1, . . . , ki,(30)
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⋃ki
j=1 Sij ,δ = Si,δ, and Sij ,δ ∩Sik,δ = ∅ if j �= k. Each set Sij ,δ has associated matrices

Rij ,δ and Eij ,δ = RTij ,δRij ,δ. Since we have a partition,

Eij ,δ ≤ Ei,,δ, j = 1, . . . , ki, and

ki∑
j=1

Eij ,δ = Ei,δ, i = 1, . . . , p.(31)

We define the matrices Aij ,δ = Rij ,δAR
T
ij ,δ

, and Mij ,δ corresponding to the set Sij ,δ
as in (10) so that

Eij ,δM
−1
ij ,δ

= RTij ,δA
−1
ij
Rij ,δ, j = 1, . . . , ki, i = 1, . . . , p.

The iteration matrix of the restricted additive Schwarz method with the refined par-
tition is then

T̄RAS,δ = I −
p∑
i=1

ki∑
j=1

Eij ,0M
−1
ij ,δ
A,(32)

and the unique induced splitting A = M̄RAS,δ − N̄RAS,δ (which is a weak regular
splitting) is given by

M̄−1
RAS,δ =

p∑
i=1

ki∑
j=1

Eij ,0M
−1
ij ,δ
.

Theorem 6.1. Let A be a nonsingular M -matrix. Consider two sets of subblocks
of A defined by (2) and (30), respectively, and the two corresponding RAS iterations
(9) and (32). Then, for every δ ≥ 0 and for any vector w > 0 for which Aw > 0,
‖TRAS,δ‖w ≤ ‖T̄RAS,δ‖w.

Proof. The inclusion (30) implies that

M−1
ij ,δ
≤M−1

i,δ , j = 1, . . . , ki, i = 1, . . . , p.(33)

Thus, with (31) we have

ki∑
j=1

Eij ,0M
−1
ij ,δ
≤

ki∑
j=1

Eij ,0M
−1
i,δ = Ei,0M

−1
i,δ

and therefore M̄−1
RAS,δ ≤M−1

RAS,δ, which implies the result, using Lemma 3.4.
Next we consider the RMS method. The iteration matrix for the RMS method

corresponding to the finer partition (more subdomains) is given by

T̃RMS,δ =

1∏
i=p

1∏
j=ki

(I −Qij ,δ),(34)

where Qij ,δ = Eij ,0M
−1
ij ,δ
A = R̃Tij ,δA

−1
ij ,δ
Rij ,δA.

Theorem 6.2. Let A be a nonsingular M -matrix. Consider two sets of subblocks
of A defined by (2) and (30), respectively, and the two corresponding RMS iterations
(8) and (34). Then, for any δ ≥ 0 and for any vector w > 0 for which Aw > 0,
‖TRMS,δ‖w ≤ ‖T̃RMS,δ‖w.
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Proof. Since each Qi = Ei,0M
−1
i,δ A = RTi,δA

−1
i,δRi,δA is a projection [16], we have

I −Qi = (I −Qi)2 = · · · = (I −Qi)ki .
This allows us to represent TRMS,δ and T̃RMS,δ as a product with the same number

of factors. We pair each factor I −Qij = I − Eij ,0M−1
ij
A of T̃RMS,δ in (34) with the

corresponding factor I −Qi = I −Ei,0M−1
i,δ A of TRMS,δ in (8). The corresponding set

of indices Sij and Si satisfy Sij ⊆ Si. By (31) and (33) we have that Eij ,0M
−1
ij ,δ
≤

Ei,0M
−1
i,δ . Therefore we can proceed in exactly the same manner as in the proof of

Theorem 3.8 to establish the desired result.

7. RMS variants: MSH, RMSH, WRMS, and WMSH. Cai and Sarkis
[10] introduced restricted Schwarz methods with harmonic extension. In these vari-
ants, the projections Pi,δ in (5) of the classical Schwarz method are replaced by

Hi,δ = RTi,δA
−1
i,δ R̃i,δA = RTi,δA

−1
i,δRi,δEi,0A,

in contrast to the restricted methods where

Qi,δ = R̃Ti,δA
−1
i,δRi,δA = Ei,0R

T
i,δA

−1
i,δRi,δA

are used. The additive Schwarz method with harmonic extension (ASH method) can
then be described in our notation by the iteration matrix TASH,δ = I−M−1

ASHA, where
M−1

ASH is given by

M−1
ASH,δ =

p∑
i=1

RTi,δA
−1
i,δ R̃i,δ =

p∑
i=1

M−1
i,δ Ei,0.

Similarly, the multiplicative Schwarz method with harmonic extension (MSH method)
is defined by

TMSH,δ =

1∏
i=p

(I −Hi,δ) =

1∏
i=p

(I −M−1
i,δ Ei,0A).

It was observed in [10, Rem. 2.4] that the ASH method and the RAS method used
as a preconditioner exhibit a similar convergence behavior. In fact, it was shown in [16]
that in the case of a symmetric matrix A the two spectra coincide, i.e., σ(M−1

ASH,δA) =

σ(M−1
RAS,δA).
In the following, we establish similar results for the MSH method. We have, for

a general nonsingular matrix A,

TTMSH,δ =

1∏
i=p

(I −RTi,δA−1
i,δRi,δEi,0A)T =

1∏
i=p

(I −ATEi,0RTi,δA−T
i,δ Ri,δ)(35)

= AT


 1∏
i=p

(I − Ei,0RTi,δA−T
i,δ Ri,δA

T )


A−T .

Hence the spectrum of the MSH method is the same as the spectrum of a RMS method
for AT . So, with the weighted column sum norm ‖ · ‖1,w defined for B = (bij) ∈ R

n×n

as

‖B‖1,w = max
j=1,...,n

(
n∑
i=1

|bij |wi
)
/wj ,
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we immediately obtain the following result.
Theorem 7.1. Let A be a nonsingular M -matrix. Then the following hold.
(i) For any value of δ ≥ 0, the splitting A = MMSH,δ − NMSH,δ, corresponding

to the MSH method, is weak nonnegative of the second type, hence

ρ(TMSH,δ) < 1.

(ii) If A = AT , then for any value of δ ≥ 0

σ(TMSH,δ) = σ(TRMS,δ) and σ(M−1
MSH,δA) = σ(M−1

RMS,δA).

(iii) For any positive vector w such that wTA > 0 and for δ ≥ δ′, we have

‖TMSH,δ‖1,w ≤ ‖TMSH,δ′‖1,w.
Moreover, if the Perron vector wδ′ of TTMSH,δ′ satisfies wδ′ > 0 and ATwδ′ ≥
0, then we also have

ρ(TMSH,δ) ≤ ρ(TMSH,δ′).

(iv) For any value of δ ≥ 0, ρ(TMSH,δ) ≤ ρ(TMSH,0).
In the same way that we showed that the RMS method is faster than the RAS

method (Theorem 3.5), we show that the MSH method is faster than the ASH method.
Theorem 7.2. Let A be a nonsingular M -matrix. Then, for any value δ ≥ 0,

we have

‖TMSH,δ‖1,w ≤ ‖TASH,δ‖1,w.
Proof. By Lemma 2.3, we have that MMSH,δ = A(I − TMSH,δ)

−1. Thus, using
(35), we write

M−T
MSH,δ = A−T (I − TTMSH,δ) =


I − 1∏

i=p

(I − Ei,0M−T
i,δ A

T )


A−T .

Since

(
M−1

ASH,δ

)T
=

p∑
i=1

R̃Ti,δ

(
A−1
i,δ

)T
Ri,δ,

every ASH-splitting of A gives rise to a corresponding RAS-splitting of AT [16]. We
can then follow the proof of Theorem 3.5 verbatim considering theM -matrix AT .

We note that Theorems 7.1 and 7.2 hold if inexact solves on the subdomains are
used; see section 4.

Combining the restricted and the harmonic versions we obtain the RASH and
RMSH methods of [10] with

TRASH,δ = I −M−1
RASH,δA = I −

p∑
i=1

R̃Ti,δA
−1
i,δ R̃i,δA,

TRMSH,δ = I −M−1
RMSH,δA =

1∏
i=p

(I − R̃Ti,δA−1
i,δ R̃i,δA).
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However, the RASH method is, in general, not convergent as observed in [16]. The
same holds for the RMSH method, as the following example illustrates.

Example 7.3. Consider the symmetric M -matrix

A =




4 −1 −1 −1
−1 4 −1 −1
−1 −1 3 −1
−1 −1 −1 3


 .

Let

R1,0 =

[
1 0 0 0
0 1 0 0

]
, R2,0 =

[
0 0 1 0
0 0 0 1

]
,

and let R1,1 = R2,1 = I. We then have

TRMSH,1 = (I − E2,0A
−1E2,0A)(I − E1,0A

−1E1,0A) =



−1 −1 1 1
−1 −1 1 1
−3 −3 2 2
−3 −3 2 2




with ρ(TRMSH,1) = 2.
Other variants of the classical Schwarz methods are the weighted restricted

Schwarz methods introduced by Cai and Sarkis [10]. For these modifications, one
introduces weighted restriction operators Rωi,δ which result from Ri,δ by replacing the
entry 1 in column j by 1/k, where k is the number of sets Si,δ the component j belongs
to, or more generally by some weights adding up to 1. With this notation, we define

Ẽi,δ = RTi,δR
ω
i,δ,

and we have ∑
Ẽi,δ =

∑
RTi,δR

ω
i,δ = I.

Then the weighted restricted additive Schwarz (WRAS) method and the weighted
restricted multiplicative Schwarz (WRMS) method can be described in our notation
by the iteration matrices

TWRAS,δ = I −M−1
WRASA = I −

p∑
i=1

(Rωi,δ)
TA−1

i,δRi,δA = I −
p∑
i=1

Ẽi,δM
−1
i,δ A(36)

and

TWRMS,δ =

1∏
i=p

(I − (Rωi,δ)
TA−1

i,δRi,δA) =

1∏
i=p

(I − Ẽi,δM−1
i,δ A),(37)

respectively. Similarly weighted Schwarz methods with harmonic extensions can be
defined. Observe that (Rωi,δ)

TA−1
i,δRi,δA is not a projection.

If we compare the WRMS method with the classical multiplicative Schwarz
method we obtain the following result.
Theorem 7.4. Let A be nonsingular M -matrix. Then, for any δ ≥ 0, we have

ρ(TMS,δ) ≤ ρ(TWRMS,δ) ≤ 1.(38)

Proof. Following our analysis in the previous sections, we obtain that TWRMS,δ

induces a weak regular splitting of A. Since Ẽi,δ ≤ Ei,δ we get (38) using the same
techniques as in the proof of Theorem 3.8.

A similar result holds for the weighted MSH method.
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8. Coarse grid corrections. It has been shown theoretically, and confirmed
in practice, that a coarse grid correction improves the performance of the classical
Schwarz methods. This coarse grid correction can be applied either additively or
multiplicatively; see, e.g., [2, 11, 15, 23, 25]. This corresponds to a two-level scheme,
the coarse correction being the second level. In [26], a coarse grid correction was used
in connection with RAS iterations.

The analysis done for the RAS case in [16] applies almost without changes to the
RMS methods of this paper, so we omit the details. All we will say is that in all cases
where we have shown convergence the coarse grid correction can never degrade, and
often improves, the convergence rate.

Acknowledgments. We thank Michele Benzi and Andreas Frommer for a care-
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tation.
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Abstract. A convergence theory has been established for a new numerical method for solving
the Chapman–Kolmogorov equation [Y. Cai, A Numerical Forecasting Procedure for Nonlinear Au-
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1. Introduction. The nonlinear autoregressive time series model of order k
(NLAR(k)) is given by

xt = λ(xt−1) + ξt ,(1)

where λ : Rk → R, xs = (xs, xs−1, . . . , xs−k+1)
� and {ξt} is a sequence of indepen-

dently, identically distributed (i.i.d.) random variables with zero mean and constant
variance σ2. Let g(·) be the pdf of ξt and f(xt+m | xt) denote the m-step ahead pre-
dictive pdf. For convenience, we do not use a subscript on f but rely on its argument
subscripts to indicate the random variables involved. Then the Chapman–Kolmogorov
equation can be written in the following form:

f(xt+m | xt) =
∫ ∞

−∞
f(xt+m | xt+1)f(xt+1 | xt)dxt+1 ,(2)

where

f(xt+1 | xt) = g(xt+1 − λ(xt)).

The m-step ahead predictive pdf given the history up to time t can be obtained by
solving (2) recursively. However, in most cases it is impossible to solve (2) directly.
Standard numerical integration methods can be used, but they can be very time
consuming if accuracy checking procedures are involved. Otherwise the accuracy can
not be guaranteed.

Several authors have tried to use (2) to obtain predictive values. For example,
Tong and Moeanaddin [9] studied multistep least squares prediction methods for non-
linear autoregressive models and illustrated these with both real and simulated data.
Moeanaddin and Tong [5] also studied the numerical evaluation of distributions in
nonlinear autoregressions based on (2). In calculating the m-step ahead predictive

∗Received by the editors June 4, 2001; accepted for publication (in revised form) July 10, 2002;
published electronically January 14, 2003.
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pdf from (2) recursively, they used the Gauss–Hermite quadrature with weights and
abscissae supplied by NAG routine D01BCF directly with no accuracy checking at
all. Pemberton [6] presented a numerical integration method for self-exciting threshold
autoregressive (SETAR) models. Davies, Pemberton, and Petruccelli [3] developed a
package for identification, estimation, and forecasting for SETAR models, where the
forecasting method is also based on (2) but the numerical integration is based on Sack
and Donovan [7]. Again the accuracy cannot be guaranteed numerically.

Although it was pointed out by Davies, Pemberton, and Petruccelli [3] that the
Chapman–Kolmogorov equation could be used for general nonlinear models like (1),
they did not carry out any numerical or other investigations. To the author’s knowl-
edge, up to now no further work has appeared on this aspect.

However, recently Cai [1] presented a numerical method for solving the Chapman–
Kolmogorov equation by introducing an unusual accuracy checking procedure into
the algorithm. This numerical method can be used to obtain the predictive pdf,
cumulative density function (cdf), mean, and variance directly for a range of nonlinear
autoregressive time series models, rather than just SETAR models.

The purpose of this paper is to develop a convergence theory for the algorithm
presented in Cai [1] and to apply this theory to a range of nonlinear time series models.

After reviewing the algorithm in section 2, we present the convergence theory in
section 3. The implementation issues are discussed in section 4. In section 5, we apply
the theory to a range of nonlinear time series models. Conclusion and comments are
given in section 6.

2. The algorithm. For simplicity, we assume that ξt is normally distributed
with mean zero and variance σ2, denoted by ξt ∼ N(0, σ2). The algorithm can be
easily modified for other distribution functions. The analysis is given in detail for the
predictive pdf but can be extended to the predictive cdf, mean, and variance. The
numerical algorithm for the predictive pdf can be described as follows.

Initially for m = 1, we have

f(xt+1 | xt) = g(xt+1 − λ(xt)) =
1

σ
√
2π

e−
(xt+1−λ(xt))

2

2σ2 ,

and no numerical integration is required.

For m = 2, we note that f(xt+2 | xt) can be approximated by
∫ b
a
f(xt+2 | xt+1)

f(xt+1 | xt)dxt+1 , where |a| and b are sufficiently large. Let

fI =
∑
i1

f(xt+2 | xt+1 	 yIi1)w
I
i1 ,

where {wIi1} and {yIi1} are the weights and abscissae obtained by applying a numerical

quadrature rule (QR) on 2I equal subintervals of [a, b] with weight function f(xt+1 |
xt), and xt+1 	 yIi1 means the first element of xt+1 is replaced by yIi1 . If

|fI − fI−1| < ε ,(3)

where ε is the required accuracy, then we take fI−1 as the approximate value of
f(xt+2 | xt) and denote the corresponding weights and abscissae as {wi1} and {yi1}.
Otherwise it is necessary to continue doubling the number of subintervals until (3) is
satisfied. Thus an approximate value of f(xt+2 | xt) is given by

f(xt+2 | xt) ≈
∑
i1

f(xt+2 | xt+1 	 yi1)wi1 .
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Repeating the above procedure for a range of values of xt+2, we obtain a discrete
version of f(xt+2 | xt) on [a, b].

Generally, for the case m ≥ 3 we have

f(xt+m | xt) ≈
∫ b
a
f(xt+m | xt+1)f(xt+1 | xt)dxt+1

≈∑i1
f(xt+m | xt+1 	 yi1)wi1

≈ · · ·

≈∑i1

∑
i2
· · ·∑im−1

f(xt+m | xt+m−1 	 yIim−1···i2i1)w
I
im−1···i2i1 · · ·wi1 ,

where {wIim−1···i2i1} and {yIim−1···i2i1} are the weights and abscissae obtained by ap-

plying the numerical QR on 2I subintervals of [a, b] with weight function f(xt+m−1 |
xt+m−2 	 yim−2···i1), and xt+m−1 	 yIim−1···i2i1 means that the first m − 1 elements

of xt+m−1 are replaced by yIim−1···i2i1 , . . . , yi1 .
Let

fI =
∑
im−1

f(xt+m | xt+m−1 	 yIim−1···i2i1)w
I
im−1···i2i1 .

Then if (3) holds, we find a new set of weights {wim−1···i2i1} and abscissae {yim−1···i2i1}.
By using both the old and the new sets of weights and abscissae, we obtain

f(xt+m | xt) ≈
∑
i1

· · ·
∑
im−1

f(xt+m | xt+m−1 	 yim−1···i2i1)wim−1···i2i1 · · ·wi1 .

As in the case m = 2, we can obtain a discrete version of f(xt+m | xt) on [a, b].
The above idea can be summarized as follows. Let γ1 and γ2 be sufficiently

large integers (which could be provided by the user such that the difference between

the integration on (−∞,∞) and (−10γ1 , 10γ2) is negligible), M̃ the largest number
of steps ahead we wish to forecast, and N the total number of points on which we
want to obtain the values of the predictive pdf f(xt+m | xt). Furthermore, let w be
the set of weights and y the set of abscissae. Suppose we use an n-point QR for our
numerical method. Here Sack and Donovan’s [7] numerical integration method is used
to provide weights and abscissae on a finite interval. Then our numerical method can
be described in the algorithm FORECAST (see Table 1) and in the algorithm Weight

(see Table 2), which is used to calculate the weights and abscissae for the numerical
QR.

It is noted that an unusual accuracy checking procedure is involved in the above
algorithm, that is, we check the accuracy only for every two-step ahead predictive pdf.
In the next section, we will show that, as long as |a| and b are sufficiently large and
the number of subintervals of [a, b] is large enough, then the above accuracy checking
procedure is sufficient to guarantee the accuracy of any finite m-step ahead predictive
pdf.

3. Convergence theory. In this section we establish a convergence theory for
the numerical procedure described in section 2.

First we restate a standard result.
Theorem 3.1. Let w(x) ≥ 0 be a weight function defined on [−1, 1] with corre-

sponding orthonormal polynomials p∗n(x), and let k∗n = 0 be the leading coefficient of
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Table 1
FORECAST algorithm. FORECAST is used to obtain the m-step ahead predictive pdf for m = 1, . . . , M̃ .

FORECAST(γ1, γ2, n, M̃ , N)
Set a = −10γ1, b = 10γ2

For i = 0, . . . , N

For m = 1, . . . , M̃

Set xt+m,i = a+ (b−a)i
N

For i = 0, . . . , N

Calculate f̂(xt+1,i | xt) = g(xt+1,i − λ(xt))

For m = 2, . . . , M̃
I = 1
Weight(m,w,y, n, a, b, I, xt+m,i)
Calculate

f̂(xt+m,i | xt) =∑
i1
· · ·∑im−1

f(xt+m,i | xt+m−1 	 yim−1...i1)wim−1...i1 · · ·wi1
For m = 1, . . . , M̃

For i = 0, . . . , N

Return f̂(xt+m,i | xt)

Table 2
Weight algorithm. Weight is used to obtain the weights and the abscissae of the numerical QR.

Weight(m,w,y, n, a, b, I, xt+m,i)
Divide interval (a, b) into 2I equal subintervals

Calculate abscissae yIim−1im−2...i1

and weights wIim−1...i1
on each subinterval

If |fI − fI−1| < ε,
put weights and abscissae corresponding to 2I−1

subintervals into w, y
return w, y

otherwise,

I = I + 1
Weight(m,w,y, n, a, b, I, xt+m,i)

p∗n(x). Suppose that f(x) ∈ C2n
[−1,1]. Then

∫ 1

−1

f(t)w(t)dt−
n∑
k=1

wkf(xk) =
f (2n)(η)

(2n)!k∗n
2 , −1 < η < 1,

where {wk} and {xk} are the weights and abscissae, respectively.
Proof. The proof can be found in most numerical analysis books. For example,

see Hildebrand [4, pp. 319–321].
Theorem 3.2. Assume that the conditions of Theorem 3.1 hold. Let the interval

[a, b] be divided into M equal subintervals by a = u0 < u1 < · · · < uM = b. If the above
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n-point Gauss QR is applied to each subinterval, then there exists η ∈ (a, b) such that

|RM (f)| ≤
(
b− a

2M

)2n
(b− a)

2

1

(2n)!k2
n

∣∣∣f (2n)(η)
∣∣∣ ,

where kn = 0 is the smallest leading coefficient of the orthonormal polynomials in
each interval, and

RM (f) =

∫ b

a

f(x)w(x)dx− b− a

2M

M∑
i=1

n∑
k=1

f

(
ui−1 +

b− a

2M
(1 + yki)

)
wki ,

where yki (wki) is the kth abscissa (weight) in the ith subinterval. Furthermore,
RM (f)→ 0 as M →∞.

Proof. By applying an n-point Gauss QR on each subinterval and by Theorem 3.1,
we have

RM (f) =

M∑
i=1

{
b− a

2M

∫ 1

−1

f

(
ui−1 +

b− a

2M
(1 + y)

)
w

(
ui−1 +

b− a

2M
(1 + y)

)
dy

−
n∑
k=1

b− a

2M
f

(
ui−1 +

b− a

2M
(1 + yki)

)
wki

}

=
M∑
i=1

(
b− a

2M

)2n+1
f (2n)(ηi)

(2n)!k2
ni

, ui−1 < ηi < ui ,

where kni = 0 is the leading coefficient of the nth orthonormal polynomial on the ith
subinterval.

Since f (2n) (x) ∈ C[a,b], we have
∣∣f (2n) (x)

∣∣ ∈ C[a,b] and therefore there exist M1,

M2 such that

M1 ≤ 1

M

M∑
i=1

∣∣∣f (2n)(ηi)
∣∣∣ ≤M2 .

Therefore, from the intermediate value theorem, there exists η ∈ (a, b) such that

1

M

M∑
i=1

∣∣∣f (2n)(ηi)
∣∣∣ = ∣∣∣f (2n)(η)

∣∣∣ .
Let k2

n = mini{k2
ni}. Then we have

|RM (f)| ≤ ( b−a2M

)2n 1
(2n)!k2

n

b−a
2M

∑M
i=1

∣∣f (2n)(ηi)
∣∣ = ( b−a2M

)2n 1
(2n)!k2

n

b−a
2

∣∣f (2n)(η)
∣∣

and

RM (f)→ 0 as M →∞.

Theorem 3.2 tells us that the numerical result of the integration on [a, b] will
converge to the theoretical value as the number of subintervals of [a, b] tends to infinity.
However, Theorem 3.2 is a rather general result on a finite interval. To apply this
general result to our case, we also need to deal with the truncated error.
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Let

εt+j,m−1 =

∫ ∞

−∞
f(xt+m | xt+j)f(xt+j | xt+j−1)dxt+j

−
∫ b

a

f(xt+m | xt+j)f(xt+j | xt+j−1)dxt+j ,

where a, b are the two chosen constants and j = 1, 2, . . . ,m− 1. Then for sufficiently
large values of |a| , b with a < 0, b > 0, the value of εt+j,m−1 can be sufficiently small
and greater than zero for all possible values of j. In the following, we will denote the
truncation error by ε, the error due to numerical calculation by R, and the overall
error ε+R by ε̇, all with appropriate subindices.

Lemma 3.3. ∑
i1

∑
i2

. . .
∑
im−1

wim−1...i1 . . . wi2i1wi1 ≤ 1(4)

and 0 < wim−1...i1 , . . . , wi1 < 1, where wim−1...i1 , . . . , wi1 are obtained from the
Weight algorithm (see Table 2).

Proof. This is easily proved by induction, since any pdf must integrate to
one.

Theorem 3.4. Suppose that for l = 1, 2, . . . , m−1, where m > 1, f(xt+m | xt+l)
has continuous 2nth derivatives about xt+l on (−∞,∞). Let m = mink{mk}, where
mk is the largest number of subintervals among all the numerical integrations for
obtaining the k-step ahead predictive pdf. Then at any point of xt+m, and for any
ε > 0, there exist a < 0, b > 0, M > 0 such that, whenever m ≥M ,∣∣∣Ẽ(f, xt+m)∣∣∣ ≤ ε ,

where

Ẽ(f, xt+m) =
∫∞
−∞ f(xt+m | xt+1)f(xt+1 | xt)dxt+1

−∑i1

∑
i2
. . .
∑
im−1

f(xt+m | xt+m−1 	 yim−1...i1)wim−1...i1 . . . wi1 .

Proof. Since f (2n)(xt+m | xt+l) is continuous about xt+l on (−∞,∞), where

f (2n)(xt+m | xt+l) = ∂2nf(xt+m | xt+l)
∂x2n

t+l

,

we have for any [a1, b1] ⊂ (−∞,∞) that there exists a constant A such that

| f (2n)(xt+m | xt+l) | ≤ A

for xt+l ∈ [a1, b1], l = 1, . . . ,m − 1, m > 1. Now for m = 1, f(xt+1 | xt) =
g(xt+1 − λ(xt)), so there is no need to use the numerical QR.

For m = 2,

∑
i1

f(xt+2 | xt+1 	 yi1)wi1 =

∫ ∞

−∞
f(xt+2 | xt+1)f(xt+1 | xt)dxt+1 − ε̇1t+1 ,
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where

ε̇1t+1 = Rt+1,1 + εt+1,1 ,

Rt+1,1 =

∫ b1

a1

f(xt+2 | xt+1)f(xt+1 | xt)dxt+1 −
∑
i1

f(xt+2 | xt+1 	 yi1)wi1 ,

εt+1,1 =

∫ ∞

−∞
f(xt+2 | xt+1)f(xt+1 | xt)dxt+1 −

∫ b1

a1

f(xt+2 | xt+1)f(xt+1 | xt)dxt+1 .

It follows from Theorem 3.2 that there exist η
(1)
1 ∈ (a1, b1) such that

|Rt+1,1| ≤
(
b1 − a1

2m1

)2n
b1 − a1

2(2n)!k2
n

∣∣∣f (2n)(xt+2 | xt+1 	 η
(1)
1 )
∣∣∣

≤
(
b1 − a1

2m1

)2n
b1 − a1

2(2n)!k2
n

A = Rt+1,1, say,

where

f (2n)(xt+2 | xt+1 	 η
(1)
1 ) =

∂2nf(xt+2 | xt+1)

∂x2n
t+1

|
xt+1=η

(1)
1

and m1 is the number of subintervals used for the integration.
Generally, for m ≥ 3, we have∑

i1

∑
i2
. . .
∑
im−1

f(xt+m | xt+m−1 	 yim−1...i1)wim−1...i1 . . . wi1

=
∫∞
−∞ f(xt+m | xt+1)f(xt+1 | xt)dxt+1 − ε̇m−1

t+1 −
∑
i1
wi1 ε̇

i1
t+2

− · · · −∑i1
. . .
∑
im−2

wim−2
. . . wi1 ε̇

im−2...i1
t+m−1 ,

where

ε̇m−1
t+1 = Rt+1,m−1 + εt+1,m−1

and for k = 2, 3, . . . ,m− 1

ε̇
ik−1...i1
t+k = R

ik−1...i1
t+k + ε

ik−1...i1
t+k

and

Rt+1,m−1 =

∫ b1

a1

f(xt+m | xt+1)f(xt+1 | xt)dxt+1 −
∑
i1

f(xt+m | xt+1 	 yi1)wi1 ,

εt+1,m−1 =

∫ ∞

−∞
f(xt+m | xt+1)f(xt+1 | xt)dxt+1

−
∫ b1

a1

f(xt+m | xt+1)f(xt+1 | xt)dxt+1 ,

R
ik−1···i1
t+k =

∫ b1

a1

f(xt+m | xt+k)f(xt+k | xt+k−1 	 yik−1···i1)dxt+k

−
∑
ik

f(xt+m | xt+k 	 yik···i1)wik···i1 ,

ε
ik−1...i1
t+k =

∫ ∞

−∞
f(xt+m | xt+k)f(xt+k | xt+k−1 	 yik−1...i1)dxt+k

−
∫ b1

a1

f(xt+m | xt+k)f(xt+k | xt+k−1 	 yik−1...i1)dxt+k .
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Then it follows from Theorem 3.2 that, for k = 2, 3, . . . ,m − 1, there exist ηik−1···i1
and η

(m−1)
1 ∈ (a1, b1) such that

∣∣∣Rik−1,... ,i1
t+k

∣∣∣ ≤ ( b1−a1

2mik−1...i1

)2n
b1−a1

2(2n)!k2
n

∣∣f (2n)(xt+m | xt+k 	 ηik−1...i1)
∣∣

≤
(

b1−a1

2mik−1...i1

)2n
b1−a1

2(2n)!k2
n
A = R

ik−1...i1
t+k , say,

and

|Rt+1,m−1| ≤
(
b1 − a1

2m1

)2n
b1 − a1

2(2n)!k2
n

∣∣∣f (2n)(xt+m | xt+1 	 η
(m−1)
1 )

∣∣∣
≤
(
b1 − a1

2m1

)2n
b1 − a1

2(2n)!k2
n

A = Rt+1,m−1, say.

Therefore ∣∣∣Ẽ(f, xt+m)∣∣∣ ≤ ∣∣ε̇m−1
t+1

∣∣+∑
i1

∣∣ε̇i1t+2

∣∣wi1 + · · ·
+
∑
i1

∑
i2

. . .
∑
im−2

∣∣∣ε̇im−2...i1
t+m−1

∣∣∣wim−2...i1 . . . wi1 .

For k = 2, 3, . . . ,m− 1, set

ε̂t+k = max
ik−1,... ,i1

{∣∣∣εik−1,... ,i1
t+k

∣∣∣} , R̂t+k = max
ik−1,... ,i1

{
R
ik−1,... ,i1
t+k

}
,

ε̂t+1 = |εt+1,m−1| , R̂t+1 = |Rt+1,m−1| .

Then it follows from Lemma 3.3 that∣∣∣Ẽ(f, xt+m)∣∣∣ ≤ |εt+1,m−1|+ |Rt+1,m−1|+
∑
i1

(∣∣εi1t+2

∣∣+ ∣∣Ri1t+2

∣∣)wi1 + · · ·
+
∑
i1
. . .
∑
im−2

(∣∣∣εim−2...i1
t+m−1

∣∣∣+ ∣∣∣Rim−2...i1
t+m−1

∣∣∣)wim−2...i1 . . . wi1

≤∑m−1
k=1 ε̂t+k +

∑m−1
k=1 R̂t+k = ε̃+ R̃, say.

(5)

From the definition of ε̂t+k, we have

ε̂t+k → 0 as a1 → −∞, b1 →∞ .

Therefore, for any ε > 0, there exist a < 0, b > 0 such that ε̃ < ε
2 .

From the definition of R
ik−1,... ,i1
t+k we have

R
ik−1,... ,i1
t+k → 0 as mik−1,... ,i1 →∞ .

If we let

mk = max
ik−1,... ,i1

{mik−1,... ,i1} ,
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then from the definition of R̂t+k we have R̂t+k → 0 as mk → ∞. It follows that if
m = mink{mk}, then

R̃→ 0 as m→∞.

That is, given ε > 0, there exists M > 0 such that, whenever m > M, R̃ < ε
2 .

Therefore, for any ε > 0, there exist a < 0, b > 0, M > 0 such that, whenever
m > M, ∣∣∣Ẽ(f, xt+m)∣∣∣ ≤ ε

2
+

ε

2
= ε .

It follows from (5) that the following corollary holds.
Corollary 3.5. If for k = 1, 2, . . . ,m−1, we have R̂t+k < ε and ε̂t+k < ε, then

|Ẽ(f, xt+m)| ≤ 2(m− 1)ε.
Theorem 3.4 tells us that the numerical value obtained from our algorithm will

converge to ∫ ∞

−∞
f(xt+m | xt+1)f(xt+1 | xt)dxt+1

as a→ −∞, b→∞ and the number of subintervals of [a, b] tends to infinity. Corol-
lary 3.5 shows that when m increases, the upper bound of the error will usually also
increase. However, for any given finite value of m, we can still control the accuracy by
appropriate choice of ε. They also show that as long as |a|, b are sufficiently large and
the number of subintervals of [a, b] is large enough, such that the numerical result of
every two-step ahead predictive pdf converges to the corresponding theoretical result,
then the numerical result of any finite m-step ahead predictive pdf converges to the
corresponding theoretical result. This justifies the accuracy checking procedure in our
numerical method.

Note that the above results hold only at one value of xt+m. The following theorem
indicates that, under certain conditions, the accuracy can also be guaranteed at other
values of xt+m by using the same set of weights and abscissae.

Theorem 3.6. Suppose f(xt+m | xt+m−1) is continuous about xt+m ∈ (−∞,∞),
and we use Theorem 3.4 to calculate the value of f(x∗t+m | xt) such that∣∣∣Ẽ(f, x∗t+m)∣∣∣ < 2(m− 1)ε .(6)

Then there exists a region D̃(x∗t+m) centered at x∗t+m such that∣∣∣Ẽ(f, xt+m)∣∣∣ < 6(m− 1)ε

holds for any xt+m ∈ D̃(x∗t+m).
Proof.∣∣∣Ẽ(f, xt+m)∣∣∣
≤∑i1

. . .
∑
im−1

∣∣f(xt+m | xt+m−1 	 yim−1...i1)

−f(x∗t+m | xt+m−1 	 yim−1...i1)
∣∣wim−1...i1 . . . wi1

+
∣∣∣Ẽ(f, x∗t+m)∣∣∣+ ∫∞

−∞
∣∣f(x∗t+m | xt+1)− f(xt+m | xt+1)

∣∣ f(xt+1 | xt)dxt+1

= I1 + I2 + I3, say.
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Consider first I1. Since f(xt+m | xt+m−1 	 yim−1...i1) is continuous at any xt+m ∈
(−∞,∞), then for any ε > 0 there exists δ> 0 such that, whenever

∣∣xt+m − x∗t+m
∣∣ < δ,∣∣f(xt+m | xt+m−1 	 yim−1...i1)− f(x∗t+m | xt+m−1 	 yim−1...i1)

∣∣ < 2(m− 1)ε .

It therefore follows from Lemma 3.3 that I1 < 2(m− 1)ε.
For I2, it follows from (6) that

I2 =
∣∣∣Ẽ(f, x∗t+m)∣∣∣ < 2(m− 1)ε .

For I3, note that for k = 1, 2, . . . ,m− 2 we have∣∣f(x∗t+m | xt+k)− f(xt+m | xt+k)
∣∣

≤ ∫∞
−∞

∣∣f(x∗t+m | xt+k+1)− f(xt+m | xt+k+1)
∣∣ f(xt+k+1 | xt+k)dxt+k+1,

and whenever
∣∣x∗t+m − xt+m

∣∣ < δ we have∣∣f(x∗t+m | xt+m−1)− f(xt+m | xt+m−1)
∣∣ < 2(m− 1)ε .

Therefore ∣∣f(x∗t+m | xt+m−2)− f(xt+m | xt+m−2)
∣∣

≤ 2(m− 1)ε
∫∞
−∞ f(xt+m−1 | xt+m−2)dxt+m−1 = 2(m− 1)ε .

It is easy to see that for any k = 1, 2, . . . ,m− 1 we have∣∣f(x∗t+m | xt+k)− f(xt+m | xt+k)
∣∣ ≤ 2(m− 1)ε .(7)

Hence, by substituting (7) into I3 we have

I3 =
∫∞
−∞

∣∣f(x∗t+m | xt+1)− f(xt+m | xt+1)
∣∣ f(xt+1 | xt)dxt+1

≤ 2(m− 1)ε
∫∞
−∞ f(xt+1 | xt)dxt+1 = 2(m− 1)ε .

In summary, for any ε > 0 there exists δ > 0 such that whenever |xt+m − x∗t+m| < δ
we have ∣∣∣Ẽ(f, xt+m)∣∣∣ ≤ I1 + I2 + I3 = 6(m− 1)ε .

Therefore we can take

D̃(x∗t+m) = {xt+m : |xt+m − x∗t+m| < δ}
as required.

Theorem 3.6 tells us that, with little loss of accuracy, we can use the same weights
and abscissae to calculate the values of the predictive pdf f(xt+m | xt) at different
points, say, xt+m and x∗t+m, as long as xt+m and x∗t+m are “close” enough. That
means, in order to guarantee the accuracy on the whole interval [a, b], we need to
check the accuracy at a number of points. However, if the number of the points is
infinite, we would not be able to do so. The following theorem solves this problem
theoretically.
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Theorem 3.7. Suppose f(xt+m | xt+m−1) is continuous on (−∞,∞) about

xt+m and that, for any x∗t+m ∈ [a, b], |Ẽ(f, x∗t+m)| < 2(m − 1)ε. Then there exists a

finite number of regions D̃(x
(i)
t+m) centered at x

(i)
t+m ∈ [a, b], i = 1, . . . , l, such that

[a, b] ⊂ ⋃li=1 D̃(x
(i)
t+m) and for any xt+m ∈ [a, b] we have∣∣∣Ẽ(f, xt+m)∣∣∣ ≤ 6(m− 1)ε .

Proof. It follows from Theorem 3.6 that for any x∗t+m ∈ [a, b] there exists a region

D̃(x∗t+m) centered at x∗t+m such that for any xt+m ∈ D̃(x∗t+m)∣∣∣Ẽ(f, xt+m)∣∣∣ < 6(m− 1)ε .(8)

Therefore [a, b] ⊂ ⋃
D̃(x∗t+m). Then it follows from the Heine–Borel theorem

that there exist a finite number of regions D̃(x
(i)
t+m), say, i = 1, . . . , l, such that

[a, b] ⊂ ⋃li=1 D̃(x
(i)
t+m) and (8) holds for any xt+m ∈ [a, b].

Theorem 3.7 tells us that we can find a finite number of nonoverlapping sets of
weights and abscissae such that the numerical value of f(xt+m | xt) can be calculated
at any xt+m ∈ [a, b]. As we have seen from the above results, the error bound grows
linearly with the lead time m. Therefore, in order to achieve the same accuracy we
should decrease ε as m increases. However, given ε all the errors are upper bounded
by 6(M̃ − 1)ε, where M̃ is the max-value of m. Further discussion about applications
of the results will be given in the next section.

We have established a convergence theory for the numerical method for solving the
Chapman–Kolmogorov equation in the case of the predictive pdf. It is not difficult to
develop the corresponding theory for the predictive cdf, mean, and variance, because
we can derive the required formulae as follows.

For the predictive cdf, we have

F (xt+m | xt) =
∫ ∞

−∞
F (xt+m | xt+1)f(xt+1 | xt)dxt+1, m = 2, 3, . . . ,

F (xt+1 | xt) =
∫ xt+1

−∞
f(xt+1 | xt)dxt+1 =

∫ xt+1

−∞
g(xt+1 − λ(xt))dxt+1.

For the predictive mean, we have

E(xt+m | xt) =
∫ ∞

−∞
E(xt+m | xt+1)f(xt+1 | xt)dxt+1, m = 2, 3, . . . ,

E(xt+1 | xt) = λ(xt).

For the predictive variance, we have

var(xt+m | xt) = E(x2
t+m | xt)− E2(xt+m | xt),

E(x2
t+m | xt) =

∫ ∞

−∞
E(x2

t+m | xt+1)f(xt+1 | xt)dxt+1, m = 2, 3, . . . ,

var(xt+1 | xt) = σ2(xt),

E(xt+1 | xt) = λ(xt), E(x2
t+1 | xt) = σ2(xt) + λ2(xt).
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It is seen that the predictive cdf, mean, and variance can also be obtained by solving
similar equations recursively. We do not give any details here for reasons of space.
However, it is worth pointing out that the predictive pdf obtained from the numerical
method is only a discrete version of the theoretical predictive pdf. We could use this
discrete pdf to estimate the predictive cdf, mean, and variance. Alternatively, we
could also use the numerical method to obtain a discrete version of the predictive cdf
or find the predictive mean and variance. As long as the functions F (xt+m | xt+l),
E(xt+m | xt+l), and E(x2

t+m | xt+l) satisfy similar conditions to those satisfied by
f(xt+m | xt+l), for l = 1, 2, . . . ,m− 1 and m > 1, then the accuracy check procedure
guarantees their accuracy too.

4. Implementation issues. In the previous section we have presented the
convergence theory of our numerical integration method for solving the Chapman–
Kolmogorov equation. Theoretically, under certain conditions, the numerical results
will converge to the true values. However, several practical issues in applying the
theory will be discussed in this section.

The first question is how to choose a and b. Generally, |a| and b should be chosen
as large as possible such that the difference between the integrations on (−∞,∞) and
[a, b] is negligible. In our examples Cai [1] we take γ1 = γ2 = 7, which gives a = −107

and b = 107. Our experience indicates that, for the models we studied, the truncated
errors are negligible for such large values of |a| and b.

Since the metric space (−∞,∞) is complete, it follows from Theorem 3.4 and
its corollaries that we can check the accuracy according to (3). This is an unusual
accuracy checking procedure, but it guarantees the accuracy and increases the speed
of the calculations.

We have investigated different ways of obtaining the sets of weights and abscissae.
Since our main purpose here is to obtain a discrete version of the m-step ahead
predictive pdf, for m = 1, 2, . . . , M̃ , we could divide the interval [a, b] into N equal
subintervals and then calculate f(xt+m | xt) at each end point of the subintervals
with the accuracy checking procedure applied. Hence, as long as N is large enough,
we can obtain a good discrete version of f(xt+m | xt) on [a, b]. In our examples in
Cai [1] we take N = 50, which works very well and the results are very good.

We also carried out the following experiment. Since f(xt+m | xt+m−1) is a normal
density, given ε > 0, we can actually write a program and find the value of ai such
that a = a0 < a1 < · · · < aN = b and |f(ai | xt+m−1) − f(ai−1 | xt+m−1)| < ε for
i = 1, 2, . . . , N . Theorem 3.7 guarantees that N must be finite. Of course, in this
case the lengths of the subintervals are not the same. Then we check the accuracy
at each point ai. Theorem 3.6 guarantees that we can also calculate f(xt+m | xt) for
any xt+m ∈ (ai−1, ai) by using the set of weights and abscissae obtained at ai−1 with
the desired accuracy. The disadvantage of this method is that for a very small value
of ε, N can be very large, so the calculation can be time consuming. It is hoped that,
with the development of modern technology, this will not be a serious problem in the
near future.

In practice, what value of n in the n-point QR should be used? Because the accu-
racy is checked by doubling the number of subintervals, the length of the subintervals
is usually small. Our experience shows that two- or three-point Gauss QR is good
enough for satisfactory results. The accuracy of all the results in Cai [1] is so high
that it is difficult to distinguish the numerical and theoretical values by graphs. All
the results presented in the tables in Cai [1] show that our procedure works very well.
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5. Applications to specific NLAR models. In this section, we will show
that a range of NLAR time series models satisfy the conditions of Theorem 3.4, so
the numerical procedure can be applied to these models. All the models mentioned
below can be found in Tong [8].

Consider the following general nonlinear time series model:

xt =

(
a0 +

k∑
i=1

aixt−i

)
+

(
(b0G(u) + d0H(v)) +

k∑
i=1

(biG(u) + diH(v))xt−i

)
+ ξt ,

(9)

where k ≥ 0 is the order of the model, ξt are i.i.d. N(0, σ2) random variables, and u
and v are functions of xt−d, where d ≥ 1 is the delay of the model. Then different
models can be derived from (9) as follows.

1. Let di = 0 for i = 0, 1, . . . , k, u = (xt−d−r)/c, G(u) = Φ(u), where Φ(u) is the
standard normal distribution function. Then we obtain a smooth threshold
autoregressive model (STAR).

2. Let di = 0 for i = 0, 1, . . . , k, u = r1(xt−d − c1), r1 > 0, G(u) = (1 + e−u)−1
.

Then we obtain a logistic STAR (LSTAR) model.
3. Let bi = 0 for i = 0, 1, . . . , k, v = r2(xt−d − c2)

2, r2 > 0, H(v) = 1 − e−v.
Then we obtain an exponential STAR (ESTAR) model.

4. Let u,G(u) and v,H(v) be given by 2 and 3 above. Then we obtain a hybrid
STAR (HYSTAR) model.

5. Let b0 = 0 and di = 0 for i = 0, 1, . . . , k, u = cx2
t−d, G(u) = e−u. Then we

obtain an exponential autoregressive (EXPAR) model.
For the above models, g(·) is a normal density function, g, G, H, u, v ∈ C∞

[a,b].
Furthermore, it follows from the Chapman–Kolmogorov equation that, for any 1 ≤
l ≤ m− 2,

f(xt+m | xt+l)
=
∫∞
−∞ . . .

∫∞
−∞ f(xt+m | xt+m−1) . . . f(xt+l+1 | xt+l)dxt+m−1 . . . dxt+l+1 .

Therefore, the integrand f(xt+m | xt+m−1) . . . f(xt+l+1 | xt+l) ∈ C∞
[a,b]. It can be

shown that∫ ∞

−∞
. . .

∫ ∞

−∞

∂2n+1f(xt+m | xt+m−1) . . . f(xt+l+1 | xt+l)
∂x2n+1

t+l

dxt+m−1 . . . dxt+l+1 <∞.

Therefore f(xt+m | xt+l) ∈ C2n
[a, b] (for 1 ≤ l ≤ m − 2) about xt+l. On the other

hand, since f(xt+m | xt+m−1), F (xt+m | xt+m−1), E(xt+m | xt+m−1), and E(x2
t+m |

xt+m−1) are all continuous about xt+m ∈ (−∞,∞), we can use the methods men-
tioned in the previous sections to obtain forecast distributions for the above models.

Note that in the STAR model there is a parameter d. The predictive pdfs for up
to d steps are easily shown to be

f(xt+m | xt) = 1

σm
√
2π

e
− (xt+m−µm)2

2σ2
m , m ≤ d ,

where µm = E(xt+m | xt), σ2
m = var(xt+m | xt). Therefore, as long as we can obtain

µm, σm, we can obtain the whole predictive pdf and cdf for m ≤ d.
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The following theorem provides the formulae for calculating the predictive means
and variances when m ≤ d . The detailed proof can be found in Cai [2].

Theorem 5.1. For the STAR model let m ≤ d and

x̂t(l) =

{
E (xt+l | xt) , l > 0,
xt+l, l ≤ 0.

Then the following hold:

x̂t(m) =

(
a0 +

k∑
i=1

aix̂t(m− i)

)
+

(
b0 +

k∑
i=1

bix̂t(m− i)

)
Φ

(
xt+m−d − r

c

)

and

var(xt+m | xt) = σ2
m∑
i=1

(
α

(m)
i

)2

,

where

α
(m)
m = 1 ,

α
(m)
m−1 = a1α

(m−1)
m−1 + b1α

(m−1)
m−1 Φ

(
xt+m−d−r

c

)
,

...

α
(m)
m−l =

∑l
i=1 aiα

(m−i)
m−l +

(∑l
i=1 biα

(m−i)
m−l

)
Φ
(
xt+m−d−r

c

)
,

...

α
(m)
1 =

∑m−1
i=1 aiα

(m−i)
1 +

(∑m−1
i=1 biα

(m−i)
1

)
Φ
(
xt+m−d−r

c

)
.

Therefore, when we apply our numerical procedure to the STAR model, we need
to use Theorem 5.1 to obtain the m-step ahead predictive pdf for m ≤ d, while for
m > d, we apply our numerical procedure.

Similarly, we can prove that our numerical method can be applied to the other
models and that a similar result to Theorem 5.1 holds for each of these models.

Finally, a SETAR model is given by

xt = a
(j)
0 +

k∑
i=1

a
(j)
i xt−i + ξ

(j)
t if xt−d ∈ (rj−1, rj ],

where −∞ ≤ r0 < r1 < · · · < rl ≤ ∞ are the threshold values. The order of the model
is k ≥ 0, the delay of the model is d ≥ 1, and ξ

(j)
t are i.i.d. N(0, σ2

j ), j = 1, . . . , l.
Using the expression

f(xt+m | xt) =
∫ ∞

−∞
f(xt+m | xt+1)f(xt+1 | xt)dxt+1

=

l∑
i=1

∫ ri

ri−1

f(xt+m | xt+1)f(xt+1 | xt)dxt+1,

it is not difficult to modify the above theory in order to deal with SETAR model.
Again we omit the details here. A similar result to Theorem 5.1 for the SETAR model
was quoted by Tong [8, p. 356]. The examples in Cai [1] show that our forecasting
procedure works very well for SETAR models.
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6. Comments and conclusion. We have presented a convergence theory for
our numerical method for solving the Chapman–Kolmogorov equation. We have
shown that the method can be applied to a range of nonlinear autoregressive time
series models, not only for obtaining the predictive pdf, but also for obtaining the pre-
dictive cdf, mean, and variance. The examples in Cai [1] indicate that our numerical
method works very well for these models.

From our experience we see that the actual storage required by the numerical
method depends on the models. Thus different forecasting horizons can be achieved
with different models. The relationship between the storage requirement and the
model needs to be investigated in the future.

We considered the case when the ξt are i.i.d. normal. Theoretically, for other
continuous distributions we can also obtain the desired results. The performance of
the algorithm for different distributional assumptions on ξt also needs to be compared
and investigated in the future.

It may be possible to calculate predictive cdf, mean, and variance by using the
weights and abscissae obtained for pdf. However, whether the accuracy can be guar-
anteed by the accuracy check on the pdf needs to be investigated in the future.

Finally, it is possible to extend the theory to autoregressive conditional het-
eroskedastic (ARCH) models in certain circumstances. The details will be presented
elsewhere.

Acknowledgment. I would like to express my sincere thanks to the referees and
to Professor Trevor Sweeting for their thoughtful comments which greatly enhanced
the presentation of this paper.
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Abstract. It is well known that the eigenvalues of a real symmetric matrix are not everywhere
differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is
the difference of two convex functions, which implies that the eigenvalues are semismooth functions.
Based on a recent result of the authors, it is further proved in this paper that the eigenvalues of a
symmetric matrix are strongly semismooth everywhere. As an application, it is demonstrated how
this result can be used to analyze the quadratic convergence of Newton’s method for solving inverse
eigenvalue problems (IEPs) and generalized IEPs with multiple eigenvalues.

Key words. symmetric matrices, eigenvalues, strong semismoothness, Newton’s method, inverse
eigenvalue problems, quadratic convergence
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1. Introduction. The theory of semismooth functions developed in the last
decade has been successful in analyzing the quadratic convergence of Newton’s method
for nondifferentiable (nonsmooth) equations; it is well received by the optimization
community, but is perhaps not well known by researchers in numerical analysis. In
this paper we take the inverse eigenvalue problem (IEP) as an example to show how
this theory can be used in analyzing matrix-related equations. For applications of the
IEP the interested reader is referred to the paper of Friedland, Nocedal, and Overton
[10], the book of Xu [27], and the references therein. For general nonsmooth analysis
involving eigenvalues of symmetric matrices and a survey on eigenvalue optimization,
see Lewis [12] and Lewis and Overton [13], respectively.

Let S be the linear space of symmetric matrices of size n. Let A : �n → S be
continuously differentiable. Given n real numbers {λ∗i }ni=1, which are arranged in
the decreasing order λ∗1 ≥ · · · ≥ λ∗n, the IEP is to find a vector c∗ ∈ �n such that
λi(A(c

∗)) = λ∗i for i = 1, . . . , n. A typical choice for A(c) is

A(c) = A0 +

n∑
j=1

cjAj ,(1)

where A0, A1, . . . , An ∈ S. In this case, A(c) is an affine function of c.
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Define F : �n → �n by

F (c) =



λ1(A(c))− λ∗1

...
λn(A(c))− λ∗n


 .(2)

Then the IEP is equivalent to finding c∗ ∈ �n to be a solution of the following
equation:

F (c) = 0.(3)

Of course, there are other ways to formulate the IEP as a system of equations. For
instance, we may solve F (c) = 0, where

F (c) =



det(A(c)− λ∗1I)

...
det(A(c)− λ∗nI)


 .(4)

A Newton method was proposed by Biegler-König [2] for model (4), which gener-
alizes an algorithm of Lancaster [11]. However, as analyzed by Friedland, Nocedal,
and Overton [10], model (2) seems to be always preferred over model (4) both from
theoretical and computational points of view. Thus, we concentrate on model (2) in
this paper. The convergence theory we are going to present is based on a property of
F called strong semismoothness (defined later). It is well known that for X ∈ S the
eigenvalues of X, as functions of X, are not everywhere differentiable. However, we
shall show that they are strongly semismooth and therefore quadratic convergence of
Newton’s method is a natural result when applied to equations involving eigenvalues.
In doing so, we also give a constructive proof for a difficult result of Chen and Tseng
[4] on upper semicontinuity of a set-valued mapping of orthogonal matrices.

The concept of semismoothness of functionals was originally studied by Mifflin [14]
while strong semismoothness was introduced by Qi and Sun in [18] for vector valued
functions. Recently, both concepts are further extended to matrix valued functions
[24]. Generally speaking, strong semismoothness of an equation is tied with quadratic
convergence of the Newton method applied to the equation and semismoothness cor-
responds to superlinear convergence. It was shown that smooth functions, piecewise
smooth functions, and convex and concave functions are semismooth functions. They
are not, however, necessarily strongly semismooth functions.

To see the motivation of this paper more clearly, let us consider the following
example:

X =

[
x1 x2

x2 x3

]
,

where x1, x2, and x3 are parameters. In this case, we have

λ1(X) =
x1 + x3 +

√
(x1 − x3)2 + 4x2

2

2
and λ2(X) =

x1 + x3 −
√
(x1 − x3)2 + 4x2

2

2
.

(5)

Since λ1(·) and λ2(·) are not differentiable at X with x1 = x3 and x2 = 0, a gradient-
dependent numerical method (e.g., Newton’s method) may get into trouble when
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hitting those points. In addition, theoretical analysis gets tricky without differentia-
bility. Further inspection reveals that λ1(·) is a convex function and λ2(·) is a concave
function. Hence, both of them are semismooth functions and a nonsmooth version of
Newton’s method [18] might be applied to equations containing λ1(·) and λ2(·). This
should be not a coincidence. Let fm(X) be the sum of m largest eigenvalues of X.
Then, Ky Fan’s maximum principle [8, 1] says that for each i = 1, . . . , n, fi(·) is a
convex function. This result implies that

• λ1(·) is a convex function and λn(·) is a concave function; and,
• for i = 2, . . . , n− 1, λi(·) is the difference of two convex functions.

Since convex and concave functions are semismooth and the difference of two semis-
mooth functions is still a semismooth function [14], Ky Fan’s result shows that
λ1(·), . . . , λn(·) are all semismooth functions. It is therefore expected, when applying
the nonsmooth Newton method to IEPs, the convergence rate is at least superlinear.
A more interesting question is, Are all λ1(·), . . . , λn(·) strongly semismooth functions
(therefore implying quadratic convergence)? In this paper, based on a recent result
of the authors [24], we will give an affirmative answer to the above question.

The organization of this paper is as follows. Some basic facts on semismoothness
are presented in section 2. Some nonsmooth versions of the Newton method, which
we call relative generalized Newton methods, are introduced in section 3. Section 4
concentrates on showing the strong semismoothness of eigenvalues of a symmetric
matrix. The quadratic convergence of the relative generalized Newton methods for
IEPs and generalized IEPs is proved in section 5. Section 6 gives a summary and a
few possible future research topics.

Some notations to be used are as follows.
• S is the set of real symmetric matrices; O is the set of all n × n orthogonal
matrices.
• A superscript “T” represents the transpose of matrices and vectors. For
a matrix M , Mi·, and M·j represent the ith row and jth column of M ,
respectively.
• Unless otherwise specified, all vector norms are 2-norms and matrix norms
are Frobenius norms: ‖M‖ := trace (MTM)1/2.

• A diagonal matrix is written as diag (β1, . . . , βn) and a block-diagonal matrix
is denoted by diag (B1, . . . , Bs), where B1, . . . , Bs are matrices.

• The eigenvalues of X ∈ S is designated by λi(X), i = 1, . . . , n, and Λ(X) :=
diag (λ1(X), . . . , λn(X)) .

• We write X = O(α) (respectively, o(α)) if ‖X‖/|α| is uniformly bounded
(respectively, tends to zero) as α→ 0.

2. Some basic facts on semismoothness.

2.1. Semismooth functions. Let G : �n → �m be a locally Lipschitz contin-
uous function. We regard the r × r symmetric matrix space as a special case of �s
with s = r(r+1)/2. Hence the discussions of this subsection apply to matrix variable
and/or matrix valued functions as well.

According to Rademacher’s theorem, G is differentiable almost everywhere. Let
DG be the set of differentiable points of G and let G′ be the Jacobian of G whenever
it exists. Denote

∂BG(x) := {V ∈ �m×n| V = lim
xk→x

G′(xk), xk ∈ DG}.
Then Clarke’s generalized Jacobian [5] is

∂G(x) = conv{∂BG(x)},(6)
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where “conv” stands for the convex hull in the usual sense of convex analysis [20].
Definition 2.1. Suppose that G : �n → �m is a locally Lipschitz continuous

function. G is said to be semismooth at x ∈ �n if G is directionally differentiable at
x and for any V ∈ ∂G(x+∆x)

G(x+∆x)−G(x)− V (∆x) = o(‖∆x‖).

G is said to be p-order (0 < p <∞) semismooth at x if G is semismooth at x and

G(x+∆x)−G(x)− V (∆x) = O(‖∆x‖1+p).(7)

In particular, G is called strongly semismooth at x if G is 1-order semismooth at x.
A function G is said to be a (strongly) semismooth function if it is (strongly)

semismooth everywhere on �n. It is shown that the composition of (strongly) semis-
mooth functions is still a (strongly) semismooth function (see [14, 9]).

The next result [24, Theorem 3.7] provides a convenient tool for proving strong
semismoothness.

Theorem 2.2. Suppose that G : �n → �m is locally Lipschitzian and direction-
ally differentiable in a neighborhood of x. Then for any p ∈ (0,∞) the following two
statements are equivalent:
(a) for any V ∈ ∂G(x+∆x),

G(x+∆x)−G(x)− V (∆x) = O(‖∆x‖1+p);

(b) for any x+∆x ∈ DG,

G(x+∆x)−G(x)−G′(x+∆x)(∆x) = O(‖∆x‖1+p).(8)

2.2. Generalized Newton methods. Suppose that G : �n → �n is locally
Lipschitz continuous. Based on ∂G(x), Qi and Sun [18] proposed the following Newton
method for solving G(x) = 0.

Generalized Newton method I. Given x0 ∈ �n, for k = 0, 1, . . . ,

xk+1 = xk − V −1
k G(xk),(9)

where Vk ∈ ∂G(xk).
The following convergence theorem for the generalized Newton method I is estab-

lished in [18].
Theorem 2.3. Suppose that G(x∗) = 0. If all V ∈ ∂G(x∗) are nonsingu-

lar and G is semismooth at x∗, then there exists a neighborhood N(x∗) of x∗ such
that for any x0 ∈ N(x∗) the generalized Newton method I is well defined and is
Q-superlinearly convergent. Moreover, if G is strongly semismooth at x∗, then (9)
converges Q-quadratically.

To relax the nonsingularity assumption on ∂G(x∗), Qi [17] introduced the follow-
ing method based on the concept of ∂BG(x).

Generalized Newton method II. Given x0 ∈ �n, for k = 0, 1, . . . ,

xk+1 = xk − V −1
k G(xk),(10)

where Vk ∈ ∂BG(xk).
The convergence theorem for the generalized Newton method II is the same as

Theorem 2.3 except that ∂G is replaced by ∂BG.
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Now, let us consider the following composite nonsmooth equation:

G(x) := Φ(Ψ(x)) = 0,(11)

where Φ : �n → �m is nonsmooth but of special structure and Ψ : �m → �n is
continuously differentiable. It is noted that neither ∂G(x) nor ∂BG(x) is easy to
compute even if ∂Φ(y), ∂BΦ(y), and Ψ′(x) are available. To circumvent the difficulty
in computing ∂G(x) and ∂GB(x), Potra, Qi, and Sun [16] introduced the following
concept of generalized Jacobian:

∂QG(x) = ∂BΦ(Ψ(x))Ψ
′(x),

where “Q” stands for “quasi.” We shall see in the later discussion that ∂QG(x) is
more convenient to compute than ∂G(x) and ∂BG(x) for IEPs.

Generalized Newton method III. Given x0 ∈ �n, for k = 0, 1, . . . ,

xk+1 = xk − V −1
k G(xk),(12)

where Vk ∈ ∂QG(xk).
The following convergence theorem for the generalized Newton method III for

solving (11) is proved in [16, Theorem 5.3].
Theorem 2.4. Suppose that G is defined by (11) and G(x∗) = 0. If all V ∈

∂QG(x
∗) are nonsingular and Φ is semismooth at Ψ(x∗), then there exists a neigh-

borhood N(x∗) of x∗ such that for any x0 ∈ N(x∗) the generalized Newton method III
is well defined and is Q-superlinearly convergent. Moreover, if Φ is strongly semis-
mooth at Ψ(x∗) and Ψ′ is Lipschitz continuous around x∗, then (12) converges Q-
quadratically.

3. Relative generalized Newton methods. It should be noted that, apart
from the semismoothness, another key assumption for the superlinear convergence
of the generalized Newton methods I–III is the nonsingularity of ∂G(x∗), ∂BG(x∗),
or ∂QG(x

∗). However, this may not be satisfied in general for IEPs with multiple
eigenvalues. In order to weaken the nonsingularity assumption on the generalized
Jacobians, we shall introduce the concept of relative generalized Jacobians and the
corresponding generalized Newton methods based on the concept of relative general-
ized gradient introduced by Clarke [5, p. 231].

Let S be a subset of �n. For instance, in the context of matrix functions, S could
represent the set of all nonsingular matrices. The S-relative generalized Jacobian
∂|SG(x) of G at x is defined by

∂|SG(x) := {V | V is a limit of Vi ∈ ∂G(yi), yi ∈ S, yi → x}.
The following result can be proved in an analogous way to [5, Proposition 6.2.1].

We omit the details.
Lemma 3.1. Let G be Lipschitz continuous near x. Then we have the following:
(a) ∂|SG(x) is a compact subset of ∂G(x).
(b) ∂|SG(x) = ∂G(x) if x lies in the interior part of S; ∂|SG(x) = ∅ if (x+εB)∩

S = ∅ for some ε > 0; and ∂|SG(x) is nonempty if x ∈ cl(S), the closure of
S.

(c) ∂|SG(·) is upper semicontinuous at x.
Now, we can introduce our first relative generalized Newton method for solving

G(x) = 0.
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Relative generalized Newton method I. Given x0 ∈ �n, for k = 0, 1, . . . , and
xk ∈ S,

xk+1 = xk − V −1
k G(xk),(13)

where Vk ∈ ∂|SG(xk).
In the following analysis, we assume that the relative generalized Newton method

I does not find a solution of G(x) = 0 in a finite number of steps.
Theorem 3.2. Suppose that G(x∗) = 0 and x∗ ∈ cl(S). If all V ∈ ∂|SG(x∗) are

nonsingular and G is semismooth at x∗, then there exists a neighborhood N(x∗) of
x∗ such that for any x0 ∈ N(x∗) ∩ S the relative generalized Newton method I either
stops in a finite number of steps with some xk /∈ S or generates an infinite sequence
{xk} ∈ N(x∗)∩S and the whole sequence converges Q-superlinearly to x∗. Moreover,
if G is strongly semismooth at x∗, then the rate of convergence is Q-quadratic.

Proof. By using Lemma 3.1, there exist a neighborhoodN(x∗) of x∗ and a positive
number κ such that for any x ∈ N(x∗) ∩ S, all V ∈ ∂|SG(x) are nonsingular and

‖V −1‖ ≤ κ.(14)

Since G is semismooth at x∗, by shrinking N(x∗) if necessary, we have for all x ∈
N(x∗) ∩ S and V ∈ ∂|SG(x),

‖G(x)−G(x∗)− V (x− x∗)‖ ≤ 1

2κ
‖x− x∗‖.(15)

By using (14) and (15), we have for k = 0, 1, . . . that

‖xk+1 − x∗‖ = ‖xk − V −1
k G(xk)− x∗‖

= ‖V −1
k [G(xk)−G(x∗)− Vk(x− x∗)]‖

≤ ‖V −1
k ‖‖G(xk)−G(x∗)− Vk(x− x∗)‖

≤ 1
2‖xk − x∗‖,

which implies that if (13) does not stop at some step with xk /∈ S, then {xk} ∈
N(x∗) ∩ S and the whole sequence converges to x∗ linearly.

Next, suppose that (13) does not stop at some step with xk /∈ S. Since G is
semismooth at x∗ and xk → x∗, we have

G(xk)−G(x∗)− Vk(xk − x∗) = o(‖xk − x∗‖),

which, together with (13), implies that

‖xk+1 − x∗‖ = ‖xk − V −1
k G(xk)− x∗‖

= ‖V −1
k [G(xk)−G(x∗)− Vk(x− x∗)]‖

= O(‖G(xk)−G(x∗)− Vk(x− x∗)‖)
= o(‖xk − x∗‖).

This proves the superlinear convergence of {xk}.
By the above argument, we can see that if G is strongly semismooth at x∗, then

(13) either stops in finitely many steps with some xk /∈ S or generates an infinite
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sequence {xk} ∈ N(x∗) ∩ S and the whole sequence converges Q-quadratically to x∗.
This completes the proof.

The proof of Theorem 3.2 might serve as an example to show the simplicity of
the analysis of Newton’s method by using the concept of (strong) semismoothness.
Parallel to the definition of ∂BG(x) and ∂QG(x), we define

∂B |SG(x) := {V | V is a limit of Vi ∈ ∂BG(yi), yi ∈ S, yi → x}
and

∂Q|SG(x) := {V | V is a limit of Vi ∈ ∂QG(yi), yi ∈ S, yi → x}.
Similar to Lemma 3.1, we have the following lemma.
Lemma 3.3. Let G be Lipschitz continuous near x. Then we have the following:
(a) ∂B |SG(x) and ∂Q|SG(x) are compact subsets of ∂BG(x) and ∂QG(x), respec-

tively.
(b) ∂B |SG(x) = ∂BG(x) and ∂Q|SG(x) = ∂QG(x), if x lies in the interior part

of S; ∂B |SG(x) = ∂Q|SG(x) = ∅ if (x + εB) ∩ S = ∅ for some ε > 0; both
∂B |SG(x) and ∂Q|SG(x) are nonempty if x ∈ cl(S), the closure of S.

(c) ∂B |SG(·) and ∂Q|SG(·) are upper semicontinuous at x.
Analogously, we define the second and third relative generalized Newton methods.

Relative generalized Newton method II (III). Given x0 ∈ �n, for k = 0, 1, . . . , and
xk ∈ S,

xk+1 = xk − V −1
k G(xk),(16)

where Vk ∈ ∂B |SG(xk) (Vk ∈ ∂Q|SG(xk) in method III).
The following theorem can be similarly proved by using Lemma 3.3 and the

approach of proving Theorems 3.2. We omit the details.
Theorem 3.4. Suppose that G(x∗) = 0 and x∗ ∈ cl(S). If all V ∈ ∂B |SG(x∗)

(V ∈ ∂Q|SG(x∗) in method III) are nonsingular and G is semismooth at x∗ (Φ is
semismooth at Ψ(x∗) in method III), then there exists a neighborhood N(x∗) of x∗

such that for any x0 ∈ N(x∗) ∩ S the relative generalized Newton methods II and
III either stop in a finite number of steps with some xk /∈ S or generate an infinite
sequence {xk} ∈ N(x∗) ∩ S and the whole sequence converges Q-superlinearly to x∗.
Moreover, if G (Φ in method III) is strongly semismooth at x∗ (at Ψ(x∗) and Ψ′

is Lipschitz continuous around x∗ in method III), then the rate of convergence is
Q-quadratic.

4. Strong semismoothness of eigenvalues. As a building block for applying
relative generalized Newton methods, we shall prove the strong semismoothness of
eigenvalues of symmetric matrices in this section. Suppose X ∈ S. Then, there exists
an orthogonal matrix Q ∈ O such that X satisfies

QTXQ = Λ(X) := diag (λ1(X), . . . , λn(X)),(17)

where λ1(X) ≥ · · · ≥ λn(X).
We define a “configuration vector” K to distinguish different eigenvalues. Let

K := {k0, k1, . . . , kl}(18)

with 1 = k0 < k1 < · · · < kl = n+ 1 such that there is a change of eigenvalues at ki.
Namely for t = 1, . . . , l,

λs(X) = λkt−1(X), s ∈ [kt−1, kt − 1],(19)
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where we use the simple notation [kt−1, kt−1] to represent the index set {kt−1, kt−1+
1, . . . , kt − 1}.

Let H ∈ S and let P (depending on H) be an orthogonal matrix such that

PT (Λ(X) +H)P = Λ(Y ) := diag (λ1(Y ), . . . , λn(Y )),(20)

where λ1(Y ) ≥ · · · ≥ λn(Y ) and Y := Λ(X) +H.
After the above preparation, we can state the following result, which was essen-

tially proved in the derivation of Lemma 4.2 of [24].
Lemma 4.1. For any H ∈ S and H → 0, we have

Pij = O(‖H‖), i, j = 1, . . . , n, (i, j) /∈
l⋃
t=1

{[kt−1, kt − 1]× [kt−1, kt − 1]} .(21)

Proof. It has been proved in the proof of Lemma 4.2 of [24] that (21) is true for
any H ∈ S such that Λ(X) +H is nonsingular and H → 0.

Next, we prove that (21) is also true for the case that Λ(X) +H is singular and
H → 0. It is easy to check that the conclusion of this lemma holds if H = 0. Hence,
we can assume H �= 0. Define

λmin(|Y |) = min
λi(Y ) �=0

|λi(Y )| and Λ̃ = diag (λ̃1, . . . , λ̃n),

where |Y | := (Y 2)
1
2 and for i = 1, . . . , n

λ̃i =

{
λi(Y ) if λi(Y ) �= 0,
λmin(|Y |)min{ 1

2 , ||H||2} otherwise.

Denote

H̃ = P Λ̃PT − Λ(X).

Hence, PT [Λ(X)+ H̃]P = Λ̃ is nonsingular. By noting the fact H̃ = H+O(‖H‖2), it
follows that (21) also holds for the case that Λ(X) +H is singular and H → 0. This
completes the proof.

Define a “truncated” matrix W ∈ �n×n as follows:

Wij =



Pij if (i, j) ∈

l⋃
t=1

{[kt−1, kt − 1]× [kt−1, kt − 1]} ,
0 otherwise,

i, j = 1, . . . , n.(22)

Hence, from Lemma 4.1, we know that for any H → 0,

W = P +O(‖H‖).(23)

It is noted, however, that W may not be an orthogonal matrix but has a block-
diagonal structure with each block corresponding to a set of identical eigenvalues of
X. That is,

W = diag (W1, . . . ,Wl),

where

Wt =
(
Pij
)kt−1

i,j=kt−1
, for t = 1, . . . , l.
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Since P ∈ O, by using Lemma 4.1 and (22), for t = 1, . . . , l and i, j = 1, . . . , kt−kt−1,
we have for any H → 0,

‖(Wt)·j‖2 = 1 +O(‖H‖2) and 〈(Wt)·j , (Wt)·i〉 = O(‖H‖2), i �= j.(24)

It is obvious from (24) that for any H ∈ S sufficiently close to 0 the columns of Wt

are independent because∑
j

βj(Wt)·j = 0 ⇒ βj [1 +O(‖H‖2)] = O(‖H‖2) ⇒ βj = 0 ∀ j.

For each t = 1, . . . , l, let P̃t be a matrix of the same order of Wt and be obtained
by applying the Gram–Schmidt orthogonalization algorithm to each Wt; i.e., for j =
1, . . . , kt − kt−1, let

(W̃t)·j = (Wt)·j −
j−1∑
i=1

〈(P̃t)·i, (Wt)·j〉(P̃t)·i and (P̃t)·j = (W̃t)·j/‖(W̃t)·j‖.(25)

By (24) and (25), for i, j = 1, . . . , kt − kt−1, t = 1, . . . , l, we have for any H → 0 that

‖(P̃t)·j‖2 = 1, (P̃t)·j = (Wt)·j +O(‖H‖2) and 〈(P̃t)·j , (P̃t)·i〉 = 0, i �= j.(26)

Denote

P̃ = diag (P̃1, . . . , P̃l).(27)

Then, we have the following lemma.
Lemma 4.2. For any H ∈ S sufficiently small, the matrix P̃ defined by (27) and

(25) is an orthogonal matrix and satisfies

P̃TΛ(X)P̃ = Λ(X).(28)

Furthermore, for any H → 0,

P = P̃ +O(‖H‖).(29)

Proof. By (26), we know that each P̃t, t = 1, . . . , l, is an orthogonal matrix. Since
λkt−1(X) = · · · = λkt−1(X), t = 1, . . . , l, we have

P̃t
T
diag (λkt−1

(X), . . . , λkt−1(X))P̃t = diag (λkt−1
(X), . . . , λkt−1(X)).

Hence, P̃ is an orthogonal matrix and satisfies (28). By using (23) and (26), we
directly obtain (29). This completes the proof.

For any ∆X ∈ S, let U ∈ O (depending on X and ∆X) be any orthogonal matrix
such that

UT (X +∆X)U = Λ(X +∆X) := diag (λ1(X +∆X), . . . , λn(X +∆X)),(30)

where λ1(X +∆X) ≥ · · · ≥ λn(X +∆X).
By using the above lemma, we have the following result.
Lemma 4.3. For any ∆X ∈ S sufficiently small and U satisfying (30), there

exists a V ∈ O such that

V TXV = Λ(X) and U = V +O(‖∆X‖).(31)
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Proof. Let P = QTU and H = QT∆XQ, where Q is defined in (17). Then, by
Lemma 4.2, for any such defined P , there exists P̃ ∈ O such that

P̃TΛ(X)P̃ = Λ(X)

and

P = P̃ +O(‖H‖) = P̃ +O(‖∆X‖).
Let V = QP̃ . Then V ∈ O,

V TXV = P̃TQTXQP̃ = P̃TΛ(X)P̃ = Λ(X),

and for any ∆X → 0

U = V +O(‖∆X‖).
This completes the proof.

A similar result to Lemma 4.3 has also been proved in [4] based on a so-called
sin(Θ) theorem in [21, Theorem 3.4]. The proof provided here is due to a direct
comparison between entries of P and P̃ and it indeed furnishes an algorithm for
computing V .

One direct result of Lemma 4.3 is that the (normalized) eigenvectors of symmetric
matrices, though not continuous, are upper Lipschitz continuous. To see this, for any
Z ∈ S, let

U(Z) := {U ∈ O| UTZU is diagonal},
and let

E := {M ∈ S | |Mi,j | ≤ 1, i, j = 1, . . . , n}.
Proposition 4.4. For any X ∈ S, there exists a constant µ > 0 such that

U(X +∆X) ⊆ U(X) + µ||∆X||E(32)

for all ∆X sufficiently small.
Proof. For any U ∈ U(X+∆X), there exists a diagonal matrix D(X+∆X) such

that

UT (X +∆X)U = D(X +∆X).

Let R ∈ �n×n be a permutation matrix such that

RD(X +∆X)RT = Λ(X +∆X)

with λ1(X + ∆X) ≥ · · · ≥ λn(X + ∆X). Let Ũ = URT . Then we obtain ŨT (X +
∆X)Ũ = Λ(X+∆X). Hence, by Lemma 4.3, there exists a Ṽ ∈ O such that Ṽ TXṼ =
Λ(X) and

Ũ = Ṽ +O(‖∆X‖),
i.e.,

U = Ṽ R+O(‖∆X‖)
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because RT = R−1 and ‖RT ‖ = √n. Let V = Ṽ R. Then

V TV = RT Ṽ T Ṽ R = RTR = I, and V TXV = (Ṽ R)TXṼ R = RTΛ(X)R

is a diagonal matrix. Hence, we have proved V ∈ U(X) and for ∆X → 0

U = V +O(‖∆X‖).

This implies that there exists a µ > 0 such that (32) holds.
In section 1 we have seen from an example of a two by two matrix that the eigen-

values are not differentiable if X has multiple eigenvalues. This can be easily extended
to the general case: Λ(·) is not differentiable at X if X has multiple eigenvalues. On
the other hand, by [26, pp. 66–68] and [25, Theorem 2.3] we know that if X has
distinct eigenvalues, then Λ(·) is analytic in a neighborhood of X. Hence, we have
the following lemma.

Lemma 4.5. Λ(·) is analytic in a neighborhood of X if and only if X ∈ S has
distinct eigenvalues.

Next, we cite a useful formula for the derivative of Λ(X) when X ∈ S has distinct
eigenvalues.

Lemma 4.6 (see [21, p. 185, Corollary 2.4]). For any X ∈ S, if X has distinct
eigenvalues, then Λ(·) is continuously differentiable at X and for any ∆X ∈ S

λ′i(X)(∆X) = qi(X)T∆Xqi(X), i = 1, . . . , n.(33)

For any X ∈ S, let Q(X) ∈ O be such that Q(X)TXQ(X) = Λ(X) with λ1(X) ≥
· · · ≥ λn(X). Define

qi(X) = (Q(X))·i, i = 1, . . . , n.

The following result is our main theorem of this section.
Theorem 4.7. Λ(·) is a strongly semismooth function.
Proof. By Ky Fan [8] and Mifflin [14], Λ(·) is a semismooth function. Thus, we

only have to prove (8) with p = 1. Let DΛ = {Y ∈ S| Y has distinct eigenvalues}. By
Lemma 4.5, DΛ is the subset of S on which Λ is continuously differentiable. Clearly,
DΛ is dense in S.

Suppose that X0 ∈ S is a given matrix. For any X ∈ DΛ, denote ∆X = X −X0.
For i = 1, . . . , n from Xqi(X) = λi(X)qi(X), we have

qi(X)TX0qi(X) + qi(X)T∆Xqi(X) = λi(X).(34)

By Lemma 4.3, there exists a µ > 0 such that for any X sufficiently close to X0 there
exists a matrix Q(X0) ∈ O (depending on the choice ofX) such that Q(X0)

TX0Q(X0)
= Λ(X0) and

‖qi(X)− qi(X0)‖ ≤ µ||X −X0||,(35)

where qi(X0) := (Q(X0))·i, i = 1, . . . , n. Hence, from (34), (35), and the local
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Lipschitz continuity of Λ(·), for i = 1, . . . , n, X ∈ DΛ, and ∆X → 0, we have

λi(X) = qi(X)T [X0qi(X0) +X0(qi(X)− qi(X0))] + qi(X)T∆Xqi(X)

= λi(X0)qi(X)T qi(X0) + qi(X)TX [qi(X)− qi(X0)] +O(‖∆X‖2)

+ qi(X)T∆Xqi(X)

= λi(X0)qi(X)T qi(X0) + λi(X)qi(X)T [qi(X)− qi(X0)]

+ qi(X)T∆Xqi(X) +O(‖∆X‖2)

= λi(X0)qi(X)T qi(X0) + [λi(X0) +O(‖∆X‖)] qi(X)T [qi(X)− qi(X0)]

+ qi(X)T∆Xqi(X) +O(‖∆X‖2)

= λi(X0)qi(X)T qi(X) + qi(X)T∆Xqi(X) +O(‖∆X‖2)

= λi(X0) + qi(X)T∆Xqi(X) +O(‖∆X‖2),(36)

which, according to Lemma 4.6, implies

λi(X)− λi(X0)− λ′i(X)(∆X) = O(‖∆X‖)2, i = 1, . . . , n.

This, together with Theorem 2.2, implies that for X → X0 and V ∈ ∂Λ(X),

Λ(X)− Λ(X0)− V (X −X0) = O(‖X −X0‖2).
Hence, (8), and therefore the strong semismoothness of Λ(·), is proved.
5. Newton’s method for inverse eigenvalue problems. In this section, we

shall show how the strong semismoothness of eigenvalues of symmetric matrices can
be used to analyze the quadratic convergence of Newton’s method for solving IEPs.
Unless stated otherwise, A : �n → S is assumed to be continuously differentiable
everywhere and F : �n → �n is defined by (2), i.e.,

F (c) =



λ1(A(c))− λ∗1

...
λn(A(c))− λ∗n


 ,

where {λ∗}ni=1 are given n numbers and arranged in the decreasing order. Then the
IEP is equivalent to finding c∗ ∈ �n such that F (c∗) = 0.

For any c ∈ �n, let Q(c) ⊆ O be a subset of �n×n such that for any Q(c) ∈ Q(c)
we have

Q(c)TA(c)Q(c) = Λ(A(c))

with λ1(A(c)) ≥ · · · ≥ λn(A(c)). For any Q(c) ∈ Q(c), define
qi(c) = (Q(c))·i, i = 1, . . . , n.

Let ∂A(c)/∂cj be the partial derivative of A(c) with respect to cj , j = 1, . . . , n. Then
for any c ∈ �n

∂QF (c) = ∂BΛ(A(c))(A
′(c))
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is well defined. By using Lemmas 4.5 and 4.6 and [24, Theorem 2.5], we have the
following result.

Proposition 5.1.
(a) For any c ∈ �n, V ∈ ∂QF (c) if and only if there exists a Q(c) ∈ Q(c) such

that

Vi· =
[
qi(c)

T (∂A(c)/∂c1)qi(c), . . . , qi(c)
T (∂A(c)/∂cn)qi(c)

]
.(37)

(b) If c ∈ �n is such that A(c) has distinct eigenvalues, then F is continuously
differentiable at c and for any Q(c) ∈ Q(c)

F ′
i (c) =

[
qi(c)

T (∂A(c)/∂c1)qi(c), . . . , qi(c)
T (∂A(c)/∂cn)qi(c)

]
.(38)

Hence, according to Proposition 5.1, a generalized Newton method for solving the
IEP can be described as follows.

Algorithm 5.1 (a generalized Newton method).
Step 0. Choose a starting point value c0. k := 0.
Step 1. Compute a Q(ck) ∈ Q(ck) and form Vk ∈ ∂QF (ck) according to Proposi-

tion 5.1.
Step 2. Set ck+1 := ck +∆ck, where ∆ck is computed by F (ck) + Vk∆c

k = 0.
Step 3. Replace k by k + 1 and go to Step 1.

In the above generalized Newton method, at the kth step one needs to compute
eigenvectors Q(ck) and eigenvalues Λ(A(ck)). Once they are computed, F (ck) and
V k ∈ ∂QF (ck) can be formulated easily. If A(c) takes form (1) and at each step A(ck)
has distinct eigenvalues, Algorithm 5.1 reduces to the Newton method considered by
many authors, e.g., see [15, 10] and references therein.

Theorem 5.2. Suppose that F is defined by (2) and F (c∗) = 0. If all V ∈
∂QF (c

∗) are nonsingular and A′ is Lipschitz continuous around c∗, then there exists
a neighborhood N(c∗) of c∗ such that for any c0 ∈ N(c∗) Algorithm 5.1 is well defined
and the iterates {ck} converge to c∗ Q-quadratically.

Proof. From Theorem 4.7, we know that Λ(·) is strongly semismooth everywhere.
Hence, by Theorem 2.4 we obtain the conclusion of this theorem.

Theorem 5.2 contains a very general convergence result for the quadratic conver-
gence of Newton’s method for solving IEPs. However, the nonsingularity assumption
on ∂QF (c

∗) is too strong for IEPs when A(c∗) has multiple eigenvalues. To relax this
condition, let S ⊆ �n be defined by

S = {c ∈ �n| A(c) has distinct eigenvalues}.(39)

Then, by Lemma 4.5 and Proposition 5.1 for any c ∈ S, F (·) is continuously differen-
tiable at c and

∂BF (c) = ∂QF (c) = ∂F (c) = {F ′(c)}.
Theorem 5.3. Suppose that F is defined by (2), F (c∗) = 0, and S is defined by

(39). If (i) for each k, ck ∈ S and c∗ ∈ clS; (ii) all V ∈ ∂B |SF (c∗) are nonsingular;
and (iii) A′ is Lipschitz continuous around c∗, then there exists a neighborhood N(c∗)
of c∗ such that, for any c0 ∈ N(c∗), Algorithm 5.1 is well defined and the iterates {ck}
converge to c∗ Q-quadratically.

Proof. By using Theorems 3.4 and 4.7, we obtain this theorem.
In Theorem 5.3, we need only the nonsingularity of ∂B |SF (c∗) rather than ∂QF (c∗).

The price to pay is that all the iterates must stay in S, where S is defined by (39).
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Since �n\S is usually a null set, this condition is reasonable for IEPs [10, pp. 647–648].
For illustration, let us consider the following IEP with

F (c) =

[
λ1(A(c))− λ∗1
λ2(A(c))− λ∗2

]
,

A(c) = c1

[
1 0
0 1

]
+ c2

[
0 1
1 0

]
,

and λ∗1 = λ∗2 = 1. Then, λ1(A(c)) = c1 + |c2|, λ2(A(c)) = c1 − |c2|, and S = {c ∈
�2| c2 �= 0}. The function F has a unique solution at c∗ = (1, 0). Note that A(c∗)
has a multiple eigenvalues at c∗ and

∂B |SF (c∗) =
{[

1 −1
1 1

]
,

[
1 1
1 −1

]}
.

Therefore, all V ∈ ∂B |SF (c∗) are nonsingular.
It was probably Nocedal and Overton [15] who first discussed the quadratic con-

vergence of Newton’s method for solving IEPs with multiple eigenvalues. In their
proof, a theorem of Rellich [19] on analytic matrix functions was invoked. In [10],
by using the eigenprojector, Friedland, Nocedal, and Overton presented a different
elegant proof on the quadratic convergence of Newton’s method for solving IEPs with
multiple eigenvalues. The latter did not use Rellich’s theorem. Our results in this
paper could be thought of as a generalization of their method I by explicitly exploring
the strong semismoothness of the eigenvalue functions.

Before we finish this section, let us consider the generalized inverse eigenvalue
problem (GIEP). Let C : �n → S and D : �n → S be continuously differentiable
and D(c) be positive definite whenever c ∈ Ω, an open subset of �n. Given n real
numbers {λ∗i }ni=1, which are arranged in the decreasing order λ∗1 ≥ · · · ≥ λ∗n, the
GIEP is to find a vector c∗ ∈ Ω such that the symmetric generalized eigenvalue
problem C(c∗)x = λD(c∗)x has the prescribed eigenvalues λ∗1, . . . , λ

∗
n. If D(c) ≡ I,

then the GIEP is the IEP considered above. It is readily seen that the GIEP can be
converted into the form of solving F (c) = 0 with

F (c) =



λ1(A(c))− λ∗1

...
λn(A(c))− λ∗n


 , c ∈ Ω,(40)

where A(c) = D(c)−
1
2C(c)D(c)−

1
2 .

Dai and Lancaster [7] and Dai [6] considered a special case of the GIEP, i.e., C(c)
and D(c) are defined by

C(c) = C0 +

n∑
i=1

ciCi, D(c) = D0 +

n∑
i=1

ciDi,(41)

where C0, C1, . . . , Cn, D0, D1, . . . Dn ∈ S and D(c) is positive definite whenever c ∈ Ω.
When C(c) and D(c) take the form (41), Dai and Lancaster [7] proposed the

following Newton method for solving the GIEP.
Algorithm 5.2 (a Newton method of Dai and Lancaster [7]).

Step 0. Choose a starting point value c0. k := 0.
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Step 1. Compute C(ck) = C0 +
∑n
j=1 c

k
jCj , D(c

k) = D0 +
∑n
j=1 c

k
jDj.

Step 2. Set ck+1 := ck +∆ck, where ∆ck is computed by F (ck) + F ′(ck)∆ck = 0.
Step 3. Replace k by k + 1 and go to Step 1.

The following theorem gives an affirmative answer to a conjecture made in [7,
p. 11] on the quadratic convergence of Algorithm 5.2, which was supported by numer-
ical experiments.

Theorem 5.4. Suppose that c∗ ∈ Ω such that F (c∗) = 0. If (i) for each k, A(ck)
has distinct eigenvalues and F ′(ck) is invertible; and (ii) lim supk→∞ ‖F ′(ck)−1‖
< ∞, then there exists a neighborhood N(c∗) of c∗ such that for any c0 ∈ N(c∗)
the iterates {ck} generated by Algorithm 5.2 converge to c∗ Q-quadratically.

Proof. Since A(ck) has distinct eigenvalues, F is continuously differentiable at ck.
Note that Algorithm 5.2 is a special case of Algorithm 5.1. By using Theorems 4.7
and 3.4 with S = {c0, c1, . . .}, we get the conclusion of the theorem.

6. Summary and possible future research topics. In this paper we review
basic concepts of semismoothness and Newton’s method for semismooth equations.
We show the strong semismoothness of eigenvalues of symmetric matrices and demon-
strate how this result can be used to provide a unified analysis for the quadratic
convergence of the Newton-type methods for IEPs and GIEPs.

We feel that several topics could be further investigated. First, it would be
interesting to look at the strong semismoothness of the functions arising from other
IEPs, e.g., the least square IEPs [10]. Second, we could develop nonsmooth quasi-
Newton [22] methods, rather than Newton’s method, for IEPs and GIEPs. Chan and
Tseng [3] provided such an approach for IEPs with distinct eigenvalues. The problem
is still unsolved in the case of multiple eigenvalues. Third, it is desirable to have a
“smoothing” version of the Newton method discussed in this paper; namely, we find
a parameterized function H(ε, x) for a strongly semismooth function F (x) such that
H(ε, y) → F (x) as (ε, y) → (0+, x) and that H(ε, x) is differentiable for ε �= 0. It
is proved in [23] that any nonsmooth function has approximate smoothing functions,
but the proof does not give any concrete smoothing functions for IEPs. It is then
interesting to ask what smoothing function could be used for IEPs.

Acknowledgment. The authors are grateful to the referees for their very con-
structive comments.
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Abstract. We consider a system of equations that models the stationary flow of two immiscible
turbulent fluids on adjacent subdomains. The equations are coupled by nonlinear boundary condi-
tions on the interface which is here a fixed given surface. We propose a spectral discretization of
this problem and perform its numerical analysis. The convergence of the method is proven in the
two-dimensional case, together with optimal error estimates.
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AMS subject classifications. 65N35, 76D99

PII. S0036142901385829

1. Introduction. In this paper, we are interested in the numerical analysis of
the spectral discretization of a model for two stationary turbulent fluids coupled by
boundary conditions on the interface:




−div (αi(ki)∇ui)+ grad pi = f i in Ωi, 1 ≤ i ≤ 2,

divui = 0 in Ωi, 1 ≤ i ≤ 2,

−div (γi(ki)∇ki
)
= αi(ki) |∇ui|2 in Ωi, 1 ≤ i ≤ 2,

ui = 0 on Γi, 1 ≤ i ≤ 2,

ki = 0 on Γi, 1 ≤ i ≤ 2,

αi(ki) ∂ni
ui − pi ni + (ui − uj) |ui − uj | = 0 on Γ, 1 ≤ i �= j ≤ 2,

ki = |u1 − u2|2 on Γ, 1 ≤ i ≤ 2,

(1.1)

where each triple (ui, ki, pi) is defined in the domain Ωi, 1 ≤ i ≤ 2. The vector field ui
represents the velocity of a turbulent fluid in Ωi, pi represents its pressure, and ki
represents its turbulent kinetic energy (TKE in what follows). The domains Ωi are
two- or three-dimensional bounded open sets with common interface Γ, while each Γi
stands for ∂Ωi \ Γ.
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System (1.1) is motivated by the coupling of two turbulent fluids Fi, i = 1 and 2,
which appears in the framework ocean/atmosphere or in the case of two layers of a
stratified fluid (see, e.g., [16, Chaps. 1 and 3] or [18]). Note that, in these situations,
the operator −div (αi(ki)∇·) in (1.1) should be replaced by a different one, derived
from the deformation rate tensor [11, sect. 2]. However, this change leads to more
technical proofs, involving additional Korn-type inequalities, and we prefer to avoid
it for simplicity of the presentation. These fluids Fi are coupled through the interface
condition on their common boundary Γ, which is supposed to be fixed. Indeed, we
assume that the so-called “rigid lid hypothesis” holds, which is standard in geophysics
and oceanography. According to this assumption, Γ is a fixed mean interface and in
fact the values of ui, pi, and ki on Γ are mean values of the velocity, pressure, and
TKE. This law characterizes mean momentum exchanges between the fluids (see
[16, Chap. 1] and [1]), and it is derived in a rather different way from standard wall
laws [21] (but the mathematical formulation is rather similar): the turbulent mixed
layer of the two turbulent fluids is modelled by the sixth and seventh lines in (1.1)
which summarize the information related to a realistic interface ocean/atmosphere
(see, e.g., [16, sect. 1.4] for more details about this model). Slightly more realistic
models, obtained, for instance, by adding the convection term ui · ∇ui in the first line

of problem (1.1) and/or the dissipative term − 1
L k

3
2
i (where L represents the mixing

length) in the right-hand side of the third line of this problem, can also be considered.
Since their analysis relies on exactly the same arguments as for problem (1.1), we skip
these further terms for brevity.

The analysis of problem (1.1) is performed in [3] for two- or three-dimensional
domains Ωi which are either convex or of class C 1,1. In that paper, an equivalent vari-
ational formulation of problem (1.1) is written, where the equations for the TKE are
taken in the transposition sense (see [23] and [17, Chap. 2, sect. 6] for the definition
of a solution by tranposition). Indeed, due to the lack of regularity of the right-hand
side in the third line of (1.1) which belongs only to L1(Ωi), a standard formulation
cannot be used here. However, the present formulation by transposition allows one to
derive a priori estimates. Next the existence of a solution is proved. The uniqueness
of smooth solutions is also established under some rather restrictive assumptions on
the parameters and the data, and some regularity properties of the solutions are de-
rived when the domains Ωi are two-dimensional rectangles. Note, moreover, that the
transposition formulation of the equations on the TKE is equivalent to the standard
variational one when the solution is sufficiently smooth. We also refer to [2] for a
slightly different proof of the existence result.

In the present paper, we are interested in the spectral discretization of prob-
lem (1.1), which relies on the approximation by high-degree polynomials. For sim-
plicity, we consider only the key geometry where the domains are rectangles or rectan-
gular parallelepipeds. However, in order to take into account the possible anisotropy
of the flows which can be induced by the large aspect ratios of the domains, we use
different degrees of polynomials with respect to the horizontal and vertical variables.
We propose a discrete problem which, as usual for spectral methods [7, Chap. III],
relies on the variational formulation of the equations for the velocity, the pressure, and
also the TKE: it combines a conforming approximation in these spaces of polynomials
with the use of numerical integration relying on tensorized Gauss–Lobatto formulas.

As standard for nonlinear systems, the numerical analysis of the discrete prob-
lem is performed via the discrete implicit function theorem of Brezzi, Rappaz, and
Raviart [10]. As for the continuous problem, the main difficulty is due to the lack of
regularity of the right-hand sides in the discrete TKE equations, and, as far as we
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know, the numerical analysis of problems with data in L1 has been performed only in
a few works (see [14], [13], and [12]). Thanks to the Brezzi–Rappaz–Raviart theory, in
the two-dimensional case, we derive the existence of a solution of the discrete problem
in a neighborhood of a nonsingular exact solution under some reasonable assumptions
on its regularity. We also prove the convergence of the method, together with optimal
error estimates. The same properties hold in the three-dimensional case; however, we
think that the assumptions that are needed to prove them are no longer reasonable.
A different analysis, leading to weaker convergence results, is under consideration.

To conclude, we propose an algorithm for solving the discrete problem. Its con-
vergence is currently checked via numerical experiments and is likely at least for small
variations of the functions αi and γi.

The numerical analysis of the finite element discretization of system (1.1) is under
consideration, and its convergence seems to be likely in the two- and three-dimensional
cases under realistic assumptions.

An outline of the paper is as follows.
• In section 2, we recall from [3] the variational formulation and the main prop-

erties of problem (1.1). We also write a different formulation in view of the discretiza-
tion.
• In section 3, we describe the choice of the approximation spaces and the discrete

problem. We also write a different and equivalent formulation of this problem, which
is needed for its analysis.
• Section 4 is devoted to the numerical analysis of the discrete linear Laplace

and Stokes problems with variable coefficients that are involved in the discretization.
• In section 5, we perform the numerical analysis of the coupled system. We

prove the existence of a solution and derive error estimates.
• In section 6, we propose some conclusions and present a numerical algorithm

for solving the discrete problem in the two-dimensional case.

2. Main properties of the continuous problem. In what follows, Ω1 and Ω2

stand for disjoint bounded domains in R
d, d = 2 or 3, which are either convex or of

class C 1,1. The generic point in R
2 (resp., in R

3) is denoted by x = (x, z) (resp.,
x = (x, y, z)). We assume for simplicity that the interface Γ = ∂Ω1 ∩ ∂Ω2 coincides
with the intersection of both Ω1 and Ω2 with the hyperplane z = 0, while Ω1 and Ω2

are contained in the half-spaces z > 0 and z < 0, respectively. We denote by Γi the
part of the boundary ∂Ωi\Γ. It must be noted that, in a number of practical situations,
the vertical heights of the Ωi are much smaller than their horizontal diameters.

Throughout the paper, we assume that the functions αi and γi, 1 ≤ i ≤ 2,
are continuous and bounded on R, and are continuously differentiable with bounded
derivatives. Moreover, we assume that there exists a positive constant ν such that,
for 1 ≤ i ≤ 2,

∀k ∈ R, αi(k) ≥ ν and γi(k) ≥ ν.(2.1)

We now write a variational formulation of problem (1.1). Next we recall its
properties. Finally, we write another formulation of it that relies on the introduction
of the Stokes and Laplace operators.

The variational formulation. Throughout the paper, we use the spaces Lp(Ωi),
1 ≤ p ≤ ∞, and the Sobolev spaces Hs(Ωi) and Hs

0(Ωi) for any real number s, pro-
vided with the standard norm ‖ · ‖Hs(Ωi) and seminorm | · |Hs(Ωi), together with

their analogues on Γ. We also need the special space H
1
2
00(Γ), defined, e.g., in

[17, Chap. 1, Thm. 11.7].
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For 1 ≤ i ≤ 2, we introduce the spaces

Xi =
{
vi ∈ H1(Ωi)

d; vi = 0 on Γi
}
.(2.2)

For reasons explained in [3, sect. 2], we also define the functions Gi, 1 ≤ i ≤ 2, by

Gi(k) =

∫ k

0

γi(κ) dκ.(2.3)

Problem (1.1) can be written (see [2] and [3]) as the following variational system
of two coupled problems:

Find (ui, pi) in Xi×L2(Ωi), 1 ≤ i ≤ 2, such that, for 1 ≤ i �= j ≤ 2,

∀vi ∈ Xi,

∫
Ωi

αi(ki)∇ui : ∇vi dx−
∫

Ωi

pi(div vi) dx

+

∫
Γ

|ui − uj | (ui − uj) · vi dτ =

∫
Ωi

f i · vi dx,

∀qi ∈ L2(Ωi), −
∫

Ωi

qi(divui) dx = 0;

(2.4)

Find ki in L2(Ωi), 1 ≤ i ≤ 2, such that, for 1 ≤ i ≤ 2,

∀ϕi ∈ H2(Ωi) ∩H1
0 (Ωi),

−
∫

Ωi

Gi(ki)∆ϕi dx = −
∫

Γ

Gi(|u1 − u2|2) ∂niϕi dτ

+

∫
Ωi

αi(ki) |∇ui|2 ϕi dx.

(2.5)

Note that the equations for the velocities and the pressure are of standard varia-
tional type and involve the bilinear forms, for 1 ≤ i ≤ 2,

ai(ti;ui,vi) =

∫
Ωi

αi(ti)∇ui : ∇vi dx, bi(vi, qi) = −
∫

Ωi

qi(div vi) dx.(2.6)

However, the equation on the TKE is formulated in the transposition sense of Stam-
pacchia [23] and of Lions and Magenes [17, Chap. 2, sect. 6].

As standard for the Stokes problem, we consider the kernel

Vi =
{
vi ∈ Xi; div vi = 0 in Ωi

}
,

and we observe that, for each solution (ui, pi) of problem (2.4), the velocity ui is a
solution of the following problem:

Find ui in Vi, 1 ≤ i ≤ 2, such that, for 1 ≤ i �= j ≤ 2,

∀vi ∈ Vi,

∫
Ωi

αi(ki)∇ui : ∇vi dx

+

∫
Γ

|ui − uj | (ui − uj) · vi dτ =

∫
Ωi

f i · vi dx.
(2.7)

Conversely, we recall from [3, Lem. 3.1] that, for 1 ≤ i ≤ 2, there exists a positive
constant βi such that the following inf-sup condition holds:

∀qi ∈ L2(Ωi), sup
vi∈Xi

bi(vi, qi)

‖vi‖H1(Ωi)d
≥ βi ‖qi‖L2(Ωi).(2.8)



2372 BERNARDI, CHACÓN REBOLLO, LEWANDOWSKI, MURAT

This yields, for any solution ui of problem (2.7), the existence of a unique function pi
in L2(Ωi) such that the pair (ui, pi) is a solution of problem (2.4). So, for the next
results, we work with the simpler system (2.5)–(2.7).

Main properties. We first recall from [3, Lems. 3.3 and 4.2] the following a priori
estimates: for any f i in L2(Ωi)

d, 1 ≤ i ≤ 2, every solution (u1,u2) of problem (2.7)
satisfies

‖u1‖H1(Ω1)d + ‖u2‖H1(Ω2)d ≤
c

ν

(‖f1‖L2(Ω1)d + ‖f2‖L2(Ω2)d
)
,(2.9)

and, for any real number s, 0 ≤ s < 1
2 , and for 1 ≤ i ≤ 2, every solution !i of

problem (2.5) satisfies

‖!i‖Hs(Ωi) ≤ cs
(‖u1‖2H1(Ω1)d

+ ‖u2‖2H1(Ω2)d

)
.(2.10)

The constants c and cs depend on the geometry of Ω, on ν, and on the maximal value
of the αi and γi; moreover, the constant cs depends on s.

Using these estimates, an existence result is proved in [3, Cor. 5.3]. We only state
it.

Theorem 2.1. For any f i in L2(Ωi)
d, 1 ≤ i ≤ 2, system (2.4)–(2.5) has a

solution (Ũ1, Ũ2) with each Ũi = (ui, pi, ki) in Xi ×L2(Ωi)×L2(Ωi). Moreover, each
function ki, i = 1 and 2, is nonnegative and belongs to Hs(Ωi) for all s < 1

2 .
In contrast, the uniqueness result in [3] (see also [11] for a similar result) is rather

disappointing. It states that, if system (2.4)–(2.5) admits a solution (ui, pi, ki)1≤i≤2

such that each ui belongs to W 1,p(Ωi)
d for some p > 2d, and if its norm in this space

is small enough with respect to the relative variation of the αi, then this solution
(ui, pi, ki)1≤i≤2 is unique. So our idea is to give up making any uniqueness assumption
for the analysis of the discretization.

Finally, let us recall the regularity property of the solution which is proved in
[3, Thm. 7.5] when the domains Ω1 and Ω2 are two-dimensional rectangles: let (Ũ1, Ũ2)
be any solution of system (2.4)–(2.5), with Ũi = (ui, pi, ki), such that ui, i = 1 and 2,
belong to Hs−(Ωi)

2 for some s− > 1; then, this solution satisfies

Ũi ∈ Hs(Ωi)
d ×Hs−1(Ωi)×Hs(Ωi), i = 1 and 2,

for all s ≤ s0 � 1.5946, where the value of s0 is derived from [20, Cor. 4.2]. So the
following assumption seems reasonable, especially in dimension d = 2.

Hypothesis 2.2. System (2.4) and (2.5) admits a solution (Ũ∗
1 , Ũ

∗
2 ) such that each

Ũ∗
i , 1 ≤ i ≤ 2, belongs to Hs∗(Ωi)

d ×Hs∗−1(Ωi)×Hs∗(Ωi) for some s∗ > d
2 .

Remark 2.3. Assume that the functions ui, i = 1 and 2, belong to Hs(Ωi)
d, for

some s > d
2 . If a solution ki of problem (2.5) belongs to H1(Ωi), then it satisfies the

more standard formulation of this problem:
Find ki in H1(Ωi), 1 ≤ i ≤ 2, with

ki = 0 on Γi and ki = |u1 − u2|2 on Γ,

such that, for 1 ≤ i ≤ 2,

∀ϕi ∈ H1
0 (Ωi), ci(ki; ki, ϕi) =

∫
Ωi

αi(ki) |∇ui|2 ϕi dx,(2.11)

where the bilinear form ci(ti; ·, ·) is defined by

ci(ti; !i, ϕi) =

∫
Ωi

γi(ti)∇!i · ∇ϕi dx.(2.12)
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The discretization below relies on this last formulation. However, for technical reasons,
we consider in what follows its extension to the case where ki is sought for in H1−ε(Ωi)
and ϕi runs through H1+ε(Ωi) for a small positive ε.

Another presentation. For 1 ≤ i ≤ 2, we first introduce a generalized Laplace
operator, which we still denote by Li for simplicity: for a fixed ti in L1(Ωi), the
operator Li(ti) associates with any gi in L1(Ωi) and λi in L2(Γ) the solution ki =
Li(ti)(gi, λi) in Hs(Ωi), s < 1

2 , defined by transposition, of the problem




−div (γi(ti)∇ki
)
= gi in Ωi,

ki = 0 on Γi,

ki = λi on Γ, 1 ≤ i ≤ 2.

(2.13)

The existence and uniqueness of this solution are checked for instance in [3, sect. 4].
Similarly, we introduce the Stokes operator Si: for a fixed ti in L1(Ωi), the operator
Si(ti) associates with any gi in the dual space of Xi and λi in the dual space of

H
1
2
00(Γ) the solution ui = Si(ti)(gi,λi) in Vi of the Stokes problem




−div (αi(ti)∇ui)+ grad pi = gi in Ωi,

divui = 0 in Ωi,

ui = 0 on Γi,

αi(ti) ∂niui − pi ni = λi on Γ.

(2.14)

Next it is readily checked that problem (1.1) can be written as



u1

k1

u2

k2


+



S1(k1) 0 0 0

0 L1(k1) 0 0
0 0 S2(k2) 0
0 0 0 L2(k2)






(−f1,λ1(u1,u2))
(−g1(k1,u1), λ(u1,u2))

(−f2,λ2(u1,u2))
(−g2(k2,u2), λ(u1,u2))


 = 0,

(2.15)

with

λi(u1,u2) = (ui − uj) |ui − uj |, gi(ki,ui) = αi(ki) |∇ui|2,
λ(u1,u2) = −|u1 − u2|2.

(2.16)

Let T (k1, k2) denote the diagonal matrix made of the operators Si(ki) and Li(ki)
that appears in (2.15), and let G(U1, U2) stand for the last vector in this formula. For
technical reasons, we introduce a small parameter ε, 0 < ε < 1

2 , and we consider the
spaces

Xi = Xi ×H1−ε(Ωi), X = X1 ×X2.(2.17)

Then problem (1.1) is equivalent to finding a solution (U1, U2) in X of the equation(
U1

U2

)
+ T (k1, k2)G(U1, U2) = 0.(2.18)
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In view of [10], we work with a solution (U∗
1 , U

∗
2 ) of (2.18) which satisfies the following

hypothesis, as usual for the discretization of nonlinear problems.
Hypothesis 2.4. The solution (U∗

1 , U
∗
2 ), of system (2.5)–(2.7), with each U∗

i =
(u∗

i , k
∗
i ), is such that the operator

Id +DT (k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + T (k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 )(2.19)

(where D stands for the differential operator) is an isomorphism of X .
The idea is that the conditions for the global uniqueness of the solution (U∗

1 , U
∗
2 ),

if they exist, are most often too restrictive (see [3, Thm. 6.3]). Hypothesis 2.4 ensures
only the local uniqueness of the solution, which is much weaker. Indeed the analogous
assumption for the standard Navier–Stokes equations is often used for the numerical
analysis of the discretization and is not at all restrictive. Note that Hypothesis 2.4 is
equivalent to the well-posedness of the linearized system for any data (gi,λi) in the

dual space of Xi ×H
1
2
00(Γ) and (gi, λi) in H−1−ε(Ωi)×H

1
2−ε(Γ):

Find (wi, ri) in Xi×L2(Ωi), 1 ≤ i ≤ 2, such that, for 1 ≤ i �= j ≤ 2,

∀vi ∈ Xi,∫
Ωi

αi(k
∗
i )∇wi : ∇vi dx+

∫
Ωi

α′
i(k

∗
i )!i∇u∗

i : ∇vi dx−
∫

Ωi

ri(div vi) dx

+

∫
Γ

(u∗
i − u∗

j ) · (wi −wj)

|u∗
i − u∗

j |
(u∗

i − u∗
j ) · vi dτ +

∫
Γ

|u∗
i − u∗

j | (wi −wj) · vi dτ

=

∫
Ωi

gi · vi dx+

∫
Γ

λi · vi dτ,

∀qi ∈ L2(Ωi), −
∫

Ωi

qi(divwi) dx = 0;

(2.20)

Find !i in H1−ε(Ωi), 1 ≤ i ≤ 2, with

!i = 0 on Γi and !i = λi + 2 (u∗
1 − u∗

2) · (w1 −w2) on Γ,

such that, for 1 ≤ i ≤ 2,

∀ϕi ∈ H1+ε
0 (Ωi),∫

Ωi

γi(k
∗
i )∇!i · ∇ϕi dx+

∫
Ωi

γ′
i(k

∗
i )!i∇k∗

i · ∇ϕi dx =

∫
Ωi

gi ϕi dx

+ 2

∫
Ωi

αi(k
∗
i )∇u∗

i : ∇wi ϕi dx+

∫
Ωi

α′
i(k

∗
i )!i |∇u∗

i |2 ϕi dx.

(2.21)

Even if this is nothing but a linear problem, writing it is rather technical.
In what follows, we always assume that Hypotheses 2.2 and 2.4 hold. These

assumptions are nearly realistic and seem necessary for proving the convergence of
any type of discretization.

3. Description of the discrete problem. From now on, we assume that the
Ωi are rectangles in the case d = 2, and rectangular parallelepipeds in the case d = 3.
More precisely, as illustrated in Figure 1, by an appropriate scaling, we take Ω1 (resp.,
Ω2) equal to ]−1, 1[d−1× ]0, h1[ (resp., ]−1, 1[d−1× ]−h2, 0[ ), where the hi are positive
real numbers. As already said, the hi are often small in practical situations.
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Ω

ΩΓ

Γ

Γ 11

2 2

Fig. 1.

We first describe the discrete problem. Second, as for the continuous problem,
we write it in a different form, in order to apply the theory of Brezzi, Rappaz, and
Raviart [10] for its numerical analysis.

The discrete problem. For each pair of nonnegative integers (k, n), we intro-
duce the space Pk,n(Ωi) of restrictions to Ωi of polynomials with degree ≤ k with
respect to x (and also to y in the case d = 3) and with degree ≤ n with respect to z.
We denote by Pk(Γ) the space of restrictions to Γ of polynomials with degree ≤ k with
respect to each tangential variable. We fix a 4-tuple δ = (K1, N1,K2, N2) of positive
integers, in order to define the discrete spaces of velocities and turbulent energies,

Xiδ = PKi,Ni(Ωi)
d ∩Xi, Yiδ = PKi,Ni(Ωi) ∩H1

0 (Ωi).(3.1)

As for the standard Stokes problem, two different choices exist for the discrete spaces
of pressures Miδ, namely

M1
iδ = PKi−2,Ni−2(Ωi) and M2

iδ = PKi−2,Ni−2(Ωi) ∩ P[λKi],[λNi](Ωi),(3.2)

for a parameter λ, 0 < λ < 1, where the brackets [·] denote the integral part.
We denote by (Ln)n≥0 the orthogonal basis of L2(−1, 1) made by the Legendre

polynomials. Each Ln has degree n and satisfies Ln(1) = 1. For any positive integer n,
let ξnj and ρnj , 0 ≤ j ≤ n, be the nodes (in increasing order) and weights of the Gauss–
Lobatto formula on ]−1, 1[, which is exact on all polynomials with degree ≤ 2n − 1.
We recall that ξn0 (resp., ξnn) is equal to −1 (resp., 1), that the ξnj , 1 ≤ j ≤ n− 1, are
the zeros of L′

n, and that the ρnj are given by

ρnj =
2

n(n+ 1)L2
n(ξ

n
j )

, 0 ≤ j ≤ n.(3.3)

For simplicity, we denote by xik and ρik, 0 ≤ k ≤ Ki, the nodes ξKi

k and

weights ρKi

k . In the z-direction, we set, for 0 ≤ j ≤ Ni,

zij =
hi
2
((−1)i+1 + ξNi

j ) and ωij =
hi
2

ρNi
j .

We introduce the grids

Ξiδ =

{{
(xik, zij); 0 ≤ k ≤ Ki, 0 ≤ j ≤ Ni

}
in the case d = 2,{

(xik, xi�, zij); 0 ≤ k, ! ≤ Ki, 0 ≤ j ≤ Ni

}
in the case d = 3,
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and we denote by Iiδ the Lagrange interpolation operator on the grid Ξiδ with values
in PKi,Ni

(Ωi). Two different grids are then defined on the interface Γ: we denote
by IΓ

iδ the Lagrange interpolation operator on the grid Ξiδ ∩Γ with values in PKi(Γ).
Finally, we introduce the discrete product, for all functions u and v continuous

on Ωi,

(
u, v
)
iδ
=

{∑Ki

k=0

∑Ni

j=0 u(xik, zij)v(xik, zij) ρikωij in the case d = 2,∑Ki

k=0

∑Ki

�=0

∑Ni

j=0 u(xik, xi�, zij)v(xik, xi�, zij) ρikρi�ωij in the case d = 3,

and its analogue on Γ

(
u, v
)Γ
iδ
=

{∑Ki

k=0 u(xik)v(xik) ρik in the case d = 2,∑Ki

k=0

∑Ki

�=0 u(xik, xi�)v(xik, xi�) ρikρi� in the case d = 3.

We fix an operator ΠΓ
iδ from H

1
2
00(Γ) into PKi

(Γ) ∩ H
1
2
00(Γ) which will be made

precise later on. We are now in a position to state the discrete problem associated
with problem (1.1). It reads as follows:

Find (Ũ1δ, Ũ2δ), with each Ũiδ = (uiδ, piδ, kiδ) in Xiδ×Miδ×PKi,Ni
(Ωi),

such that, for 1 ≤ i �= j ≤ 2,

kiδ = 0 on Γi and kiδ = ΠΓ
iδ(|u1δ − u2δ|2) on Γ,(3.4)

and

∀viδ ∈ Xiδ,

aiδ(kiδ;uiδ,viδ) + biδ(viδ, piδ) +
( |uiδ − ujδ| (uiδ − ujδ),viδ)Γiδ = (

f i,viδ
)
iδ
,

∀qiδ ∈Miδ, biδ(uiδ, qiδ) = 0,

∀ϕiδ ∈ Yiδ, ciδ(kiδ; kiδ, ϕiδ) =
(
αi(kiδ) |∇uiδ|2, ϕiδ

)
iδ
,

(3.5)

where, for any continuous function ti, the bilinear forms aiδ(ti; ·, ·), biδ(·, ·), and
ciδ(ti; ·, ·) are now defined by

aiδ(ti;uiδ,viδ) =
(
αi(ti)∇uiδ,∇viδ

)
iδ
, biδ(viδ, qiδ) = −

(
qiδ,div viδ

)
iδ
,

ciδ(ti; kiδ, ϕiδ) =
(
γi(ti)∇kiδ,∇ϕiδ

)
iδ
.

(3.6)

Remark 3.1. A natural choice of operator ΠΓ
iδ would be the Lagrange interpo-

lation operator IΓ
iδ. However, for K1 �= K2, since two different discrete products are

defined on the interface Γ, the trace of u1δ on Γ must be re-interpolated on the nodes
of Ξ2δ∩Γ and conversely. Moreover, the convergence of the interpolate of a function ϕ

toward this function in H
1
2
00(Γ) or even in H

1
2−ε(Γ) would require too much regularity

of the function ϕ; see [7, sect. 14]. Other choices of operator ΠΓ
iδ, such as orthogonal

projection operators, are possible but seem more expensive to implement.
Remark 3.2. For the choices M1

iδ and M2
iδ of discrete pressure spaces introduced

in (3.2), and thanks to the exactness property of the quadrature formula, each biδ(·, ·)
can be replaced by bi(·, ·) in formulation (3.5).

The numerical analysis of system (3.4)–(3.5) is rather technical. However, we
begin with the same simplication as for the continuous problem. For i = 1 and 2, we
introduce the discrete kernel

Viδ =
{
viδ ∈ Xiδ; ∀qiδ ∈Miδ, biδ(viδ, qiδ) = 0

}
.
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Note that, for the two choices Miδ = M1
iδ and Miδ = M2

iδ proposed in (3.2), Viδ is
not contained in Vi, i.e., is not made of exactly divergence-free polynomials. It is
readily checked with this definition that, for each pair (Ũ1δ, Ũ2δ) solution of system
(3.4)–(3.5), the reduced pair (U1δ, U2δ) of discrete velocities and discrete turbulent
energies is a solution of the following system:

Find (U1δ, U2δ), with each Uiδ = (uiδ, kiδ) in Viδ × PKi,Ni
(Ωi),

satisfying (3.4) and such that, for 1 ≤ i �= j ≤ 2,

∀viδ ∈ Viδ, aiδ(kiδ;uiδ,viδ) +
( |uiδ − ujδ| (uiδ − ujδ),viδ)Γiδ = (

f i,viδ
)
iδ
,

∀ϕiδ ∈ Yiδ, ciδ(kiδ; kiδ, ϕiδ) =
(
αi(kiδ) |∇uiδ|2, ϕiδ

)
iδ
.

(3.7)

The converse property relies on a discrete inf-sup condition, which is derived in
two steps, relying on the arguments in [8] and [9], respectively. For a while, let M̃m

iδ

stand for the subspace of Mm
iδ made of polynomials with a null integral on Ωi.

Lemma 3.3. For i = 1 and 2, and for the discrete spaces M̃m
iδ , m = 1 and 2,

there exists a constant β̃miδ > 0 such that

∀qiδ ∈ M̃m
iδ , sup

viδ∈Xiδ∩H1
0 (Ωi)d

biδ(viδ, qiδ)

‖viδ‖H1(Ωi)d
≥ β̃miδ ‖qiδ‖L2(Ωi).(3.8)

Moreover, these constants β̃mi satisfy, for i = 1 and 2,

β̃1
i ≥ cK

2−d
2

i inf{K− 1
2

i , N
− 1

2
i } and β̃2

i ≥ c.(3.9)

Proof. Since any qiδ in M̃iδ has a null integral on Ωi, there exists [15, Chap. I,
Cor. 2.4] a function vi in H1

0 (Ωi)
d such that

div vi = qiδ in Ωi and ‖vi‖H1(Ωi)d ≤ c ‖qiδ‖L2(Ωi).

Next, we recall from [8, Lems. 3.2 and 3.3] that, for any µ, 0 < µ < 1, there exists
an operator πµn from H1

0 (−1, 1) onto P[(1+µ)n](−1, 1) ∩H1
0 (−1, 1) which preserves all

polynomials in Pn−1(−1, 1) and satisfies, for all ϕ in H1
0 (−1, 1),

‖(πµnϕ)′‖L2(−1,1) ≤ ‖ϕ′‖L2(−1,1) and ‖πµnϕ‖L2(−1,1) ≤ c µ− 1
2 ‖ϕ‖L2(−1,1).

The idea consists of choosing the operator πmKi
in the x- or y-direction equal to π

µ(Ki)
M ,

with

(1 + µ(Ki))M = Ki and M =

{
Ki − 1 if m = 1,
[ 1+λ2 Ki] if m = 2

(recall that λ is introduced in (3.2)), and denoting them by π
m(x)
Ki

and π
m(y)
Ki

, respec-

tively. Similarly, the operator πmNi
in the z-direction is equal to π

µ(Ni)
M , with

(1 + µ(Ni))M = Ni and M =

{
Ni − 1 if m = 1,
[ 1+λ2 Ni] if m = 2,

and denoted by π
m(z)
Ni

. Next we set

vsiδ =

{
π
m(x)
Ki

◦ πm(z)
Ni

vi in the case d = 2,

π
m(x)
Ki

◦ πm(y)
Ki

◦ πm(z)
Ni

vi in the case d = 3.
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From the properties of these operators, it is readily checked that

biδ(viδ, qiδ) = −
∫

Ωi

qiδ (div vi) dx =

∫
Ωiδ

(qiδ)
2 dx,

while the norm of viδ in H1
0 (Ω)

d is bounded by

‖viδ‖H1(Ωi)d ≤ c sup {µ(Ki)
2−d
2 µ(Ni)

− 1
2 , µ(Ki)

1−d
2 } ‖vi‖H1(Ωi)d .

Evaluating the quantities µ(Ki) and µ(Ni) as a function of Ni or Ki for m = 1 or 2
leads to the desired result.

Lemma 3.4. For i = 1 and 2, and for the discrete spaces Mm
iδ , m = 1 and 2,

defined in (3.2), there exists a constant βmiδ > 0 such that

∀qiδ ∈Mm
iδ , sup

viδ∈Xiδ

biδ(viδ, qiδ)

‖viδ‖H1(Ωi)d
≥ βmiδ ‖qiδ‖L2(Ωi).(3.10)

Moreover, these constants βmiδ , i = 1 and 2, satisfy (3.9).
Proof. Any function qiδ in Mm

iδ admits the expansion

qiδ = q̃iδ + qiδ, with qiδ =
1

2d−1 hi

∫
Ωi

qiδ(x) dx.

Since the function q̃iδ belongs to M̃m
iδ , it follows from Lemma 3.3 that there exists a

ṽiδ in Xiδ ∩H1
0 (Ωi)

d such that

biδ(ṽiδ, q̃iδ) = ‖q̃iδ‖2L2(Ωi)
and ‖ṽiδ‖H1(Ωi)d ≤

1

β̃miδ
‖q̃iδ‖L2(Ωi).

On the other hand, the function viδ equal to (0, viδ) in dimension d = 2, and to
(0, 0, viδ) in dimension d = 3, with

viδ =

{(
L0(x)− L2(x)

) (
(−1)i+1hi − z

)
qiδ in dimension d = 2,(

L0(x)− L2(x)
) (

L0(y)− L2(y)
) (

(−1)i+1hi − z
)
qiδ in dimension d = 3,

belongs to Xiδ and satisfies, for a fixed constant c0,

biδ(viδ, qiδ) = ‖qiδ‖2L2(Ωi)
and ‖viδ‖H1(Ωi)d ≤ c0 ‖qiδ‖L2(Ωi).

Next we take viδ equal to ṽiδ + λviδ for a fixed constant λ. Indeed, it follows by
integration by parts that biδ(ṽiδ, qiδ) vanishes so that

biδ(viδ, qiδ) = biδ(ṽiδ, q̃iδ) + λ biδ(viδ, qiδ) + λ biδ(viδ, q̃iδ).

The previous properties, together with the continuity of biδ(·, ·) (which coincides
with bi(·, ·) everywhere in the previous equation), yield

biδ(viδ, qiδ) ≥ ‖q̃iδ‖2L2(Ωi)
+ λ ‖qiδ‖2L2(Ωi)

− cλ ‖viδ‖H1(Ωi)d ‖q̃iδ‖L2(Ωi)

≥ ‖q̃iδ‖2L2(Ωi)
+ λ ‖qiδ‖2L2(Ωi)

− cc0λ ‖q̃iδ‖L2(Ωi) ‖qiδ‖L2(Ωi),

whence

biδ(viδ, qiδ) ≥ 1

2
‖q̃iδ‖2L2(Ωi)

+ λ
(
1− c2c20λ

2

)
‖qiδ‖2L2(Ωi)

.



NUMERICAL ANALYSIS OF COUPLED TURBULENT FLUIDS 2379

We now choose λ equal to 1
c2c20

, which gives (note that q̃iδ and qiδ are orthogonal

in L2(Ωi))

biδ(viδ, qiδ) ≥ inf
{1
2
,
λ

2

}
‖qiδ‖2L2(Ωi)

.

We also have

‖viδ‖H1(Ωi)d ≤ ‖ṽiδ‖H1(Ωi)d + λ ‖viδ‖H1(Ωi)d ≤
(( 1

β̃miδ

)2

+ c20λ
2

) 1
2

‖qiδ‖L2(Ωi),

which concludes the proof.
Remark 3.5. From the previous proofs, the constants βmiδ given in (3.9) a priori

depend on hi. However, by using the vertical homothety that maps Ωi onto the
reference square or cube, it is readily checked that these constants satisfy

β1
i ≥ cK

2−d
2

i inf{hiK− 1
2

i , N
− 1

2
i } and β2

i ≥ c hi,(3.11)

where c is now independent of hi.
So we now work with system (3.4)–(3.7). The first idea consists of writing it in a

more appropriate form which is the discrete analogue of (2.18).
Another presentation. For i = 1 and 2, we introduce the discrete Laplace

operator Liδ. For a fixed continuous function ti, the operator Liδ(ti) associates with
any gi in H−1(Ωi) and any function λi in H

1
2
00(Γ), the solution kiδ = Liδ(ti)(gi, λi) of

the following problem:
Find kiδ in PKi,Ni(Ωi) such that

kiδ = 0 on Γi and kiδ = ΠΓ
iδλi on Γ,(3.12)

and

∀ϕiδ ∈ Yiδ, ciδ(ti; kiδ, ϕiδ) =

∫
Ωi

gi ϕiδ dx.(3.13)

It follows from (3.3) that the weights ρik and ωij are positive. When combined
with (2.1), this yields that the only solution of (3.12)–(3.13) for gi = 0 and λi = 0
is zero. Hence, since problem (3.12)–(3.13) results into a square linear system, the
operator Liδ(ti) is well-defined.

Similarly, we introduce the discrete Stokes operator Siδ. For a fixed continuous
function ti, the operator Siδ(ti) associates with any gi in the dual space of Xi and

λi in the dual space of H
1
2
00(Γ)

d the solution uiδ = Siδ(ti)(gi,λi) in Viδ of the following
Stokes problem:

Find uiδ in Viδ such that

∀viδ ∈ Viδ, aiδ(ti;uiδ,viδ) =

∫
Ωi

gi · viδ dx+

∫
Γ

λi · viδ dτ.(3.14)

There also it follows from (3.3) and (2.1) that the operator Siδ(ti) is well-defined.
Finally, the matrix Tδ(t1, t2) is defined by

Tδ(t1, t2) =



S1δ(t1) 0 0 0

0 L1δ(t1) 0 0
0 0 S2δ(t2) 0
0 0 0 L2δ(t2)


 .(3.15)
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We introduce the vector Gδ(U1δ, U2δ),

Gδ(U1δ, U2δ) =




(−f1δ,λ1δ(u1δ,u2δ))
(−g1δ(k1δ,u1δ), λ(u1δ,u2δ))

(−f2δ,λ2δ(u1δ,u2δ))
(−g2δ(k2δ,u2δ), λ(u1δ,u2δ))


 ,(3.16)

where the functions f iδ, giδ, and λiδ are defined by duality, for smooth enough func-
tions vi and ϕi (we do not make precise the spaces),

〈
f iδ,vi

〉
=
(
f i,vi

)
iδ
,

〈
λiδ(u1δ,u2δ),vi

〉
=
( |uiδ − ujδ| (uiδ − ujδ),vi)Γiδ,〈

giδ(kiδ,uiδ), ϕi
〉
=
(
αi(kiδ) |∇uiδ|2, ϕi

)
iδ
.

(3.17)

The quantity λ(u1,u2) is defined in (2.16).
Thus, it is readily checked that problem (3.4)–(3.7) can be equivalently written

Uδ + Tδ(k1δ, k2δ)Gδ(U1δ, U2δ) = 0, with Uδ =



u1δ

k1δ

u2δ

k2δ


 .(3.18)

This formulation is fully appropriate for performing its numerical analysis thanks to
the theory of Brezzi, Rappaz, and Raviart [10].

4. The discrete Laplace and Stokes operators. As a first step for the nu-
merical analysis of the discrete problem (3.4)–(3.5), we investigate the properties of
the discrete quasi-linear operators Liδ and Siδ; more precisely, we prove stability and
error estimates. In all that follows, c, c′, and c′′ stand for generic constants that may
vary from one line to the other but are always independent of δ.

The discrete Laplace operator. For i = 1 and 2, and for a fixed continuous
function ti, let us first consider the operator Liδ(ti) defined from problem (3.12)–
(3.13). In order to prove its stability, we first recall [7, Form. (13.10)] that, for any
polynomial ϕn of degree ≤ n on ]−1, 1[,

‖ϕn‖2L2(−1,1) ≤
n∑
j=0

ϕ2
n(ξ

n
j ) ρ

n
j ≤ 3 ‖ϕn‖2L2(−1,1).(4.1)

Combined with the boundedness and positivity of γi (see (2.1)), this obviously yields
some basic properties of the form ciδ(·, ·) that we now state.

Lemma 4.1. For any continuous function ti, the form ciδ(ti; ·, ·) satisfies the
following properties of continuity:

∀ψiδ ∈ PKi,Ni
(Ωi), ∀ϕiδ ∈ PKi,Ni

(Ωi),

ciδ(ti;ψiδ, ϕiδ) ≤ c ‖ψiδ‖H1(Ωi)‖ϕiδ‖H1(Ωi),
(4.2)

and of ellipticity

∀ψiδ ∈ Yiδ, ciδ(ti;ψiδ, ψiδ) ≥ c ‖ψiδ‖2H1(Ωi)
.(4.3)

Let Ri be a continuous lifting operator form H
1
2
00(Γ) into H1(Ωi), defined as

follows. For any λ in H
1
2
00(Γ), Riλ belongs to H1(Ωi), is equal to λ on Γ, vanishes
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on Γi, and satisfies (this is proven by using the analogous lifting operator on the unit
square or cube), for all s ≥ 1,

∀λ ∈ H
s− 1

2	 (Γ), ‖Riλ‖Hs(Ωi) ≤ c h
1
2−s
i ‖λ‖

H
s− 1

2� (Γ)
,(4.4)

where H
s− 1

2	 (Γ) stands for the intersection Hs− 1
2 (Γ)∩H 1

2
00(Γ), provided with the norm

of H
1
2
00(Γ) if s is equal to 1, of Hs− 1

2 (Γ) if s > 1. A similar operator Riδ, satisfying
the same properties, is constructed in [19] and [4], which maps polynomials in PKi(Γ)
vanishing on ∂Γ into PKi,Ki

(Ωi). Moreover, this operator satisfies, for all s ≥ 1,

∀λδ ∈ PKi(Γ) ∩H
1
2
00(Γ), ‖Riδλδ‖Hs(Ωi) ≤ c h

1
2−s
i ‖λδ‖

H
s− 1

2� (Γ)
.(4.5)

However, in order to obtain a lifting operator of the same space of polynomials into
PKi,Ni(Γ), we apply the interpolation operator Iiδ to Riδλδ and derive from the sta-
bility properties of this operator on polynomials (see [7, Forms. (13.27) and (13.28)])
that

∀λδ ∈ PKi(Γ) ∩H
1
2
00(Γ), ‖IiδRiδλδ‖H1(Ωi) ≤ c sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖λδ‖

H
1
2
00(Γ)

.(4.6)

Lemma 4.2. For any continuous function ti, the following stability property holds
for any gi in H−1(Ωi) and any continuous function λi on Γ:

‖Liδ(ti)(gi, λi)‖H1(Ωi) ≤ c

(
‖gi‖H−1(Ωi) + sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖ΠΓ

iδλi‖
H

1
2
00(Γ)

)
.(4.7)

Proof. The function k0
iδ = Liδ(ti)(gi, λi) − IiδRiδΠ

Γ
iδλi belongs to Yiδ so that

applying the ellipticity property (4.3) leads to

c ‖k0
iδ‖2H1(Ωi)

≤ ciδ(ti; k
0
iδ, k

0
iδ) =

∫
Ωi

gi k
0
iδ dx− ciδ(ti; IiδRiδΠ

Γ
iδλi, k

0
iδ).

The continuity property (4.2) gives

‖k0
iδ‖H1(Ωi) ≤ c

(‖gi‖H−1(Ωi) + ‖IiδRiδΠ
Γ
iδλi‖H1(Ωi)

)
,

whence, by a triangle inequality,

‖Liδ(ti)(gi, λi)‖H1(Ωi) ≤ c
(‖gi‖H−1(Ωi) + ‖IiδRiδΠ

Γ
iδλi‖H1(Ωi)

)
.

The desired estimate then follows from (4.6).
Remark 4.3. Note from the previous proof that estimate (4.7) can be replaced

by

‖Liδ(ti)(gi, λi)‖H1(Ωi) ≤ c

(
‖gi‖Y ′

iδ
+ sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖ΠΓ

iδλi‖
H

1
2
00(Γ)

)
,(4.8)

where the dual norm ‖ · ‖Y ′
iδ

is defined in a trivial way by

‖gi‖Y ′
iδ
= sup

ϕiδ∈Yiδ

∫
Ωi

giϕiδ dx

‖ϕiδ‖H1(Ωi)
.
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This modified estimate is needed later on.
Next we define the integers K ′

i and N ′
i as the integral parts of Ki−1

2 and Ni−1
2 ,

respectively. For technical reasons, we introduce the modified parameter δ′ =
(K ′

1, N
′
1,K

′
2, N

′
2).

Lemma 4.4. For any continuous function ti, the following error estimate holds for

any gi in H−1(Ωi) and any continuous function λi in H
1
2
00(Γ) such that Li(ti)(gi, λi)

belongs to Hs(Ωi), s > 1,

‖(Li − Liδ)(ti)(gi, λi)‖H1(Ωi)

≤ c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}(
(K1−s

i + hs−1
i N1−s

i )h
1
2−s
i ‖Li(ti)(gi, λi)‖Hs(Ωi)

+ ‖λi −ΠΓ
iδλi‖

H
1
2
00(Γ)

+ inf
γiδ′∈PK′

i
,N′

i
(Ωi)
‖γi(ti)− γiδ′ ‖L∞(Ωi)‖Li(ti)(gi, λi)‖H1(Ωi)

)
.

(4.9)

Proof. We set ki = Li(ti)(gi, λi), kiδ = Liδ(ti)(gi, λi). The proof is performed in
several steps.

(1) We introduce an approximation λiδ′ of λi in PK′
i
(Γ) which vanishes on ∂Γ and

we take k′
i = ki −Ri(λi − λiδ′). It follows from (4.4) that

‖ki − k′
i‖H1(Ωi) ≤ c h

− 1
2

i ‖λi − λiδ′‖
H

1
2
00(Γ)

and also that

‖k′
i‖Hs(Ωi) ≤ ‖ki‖Hs(Ωi) + c h

1
2−s
i

(‖λi‖
Hs− 1

2 (Γ)
+ ‖λiδ′‖

Hs− 1
2 (Γ)

)
.

Next we set k′
iδ = Liδ(ti)(gi, λiδ′) and we deduce from Lemma 4.2 that

‖kiδ − k′
iδ‖H1(Ωi) ≤ c sup

{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}(
‖λi − λiδ′‖

H
1
2
00(Γ)

+ ‖λi −ΠΓ
iδλi‖

H
1
2
00(Γ)

)
.

Thanks to the triangle inequality

‖ki − kiδ‖H1(Ωi) ≤ ‖ki − k′
i‖H1(Ωi) + ‖k′

i − k′
iδ‖H1(Ωi) + ‖kiδ − k′

iδ‖H1(Ωi),

it remains to estimate ‖k′
i − k′

iδ‖H1(Ωi).
(2) The functions k0

i = k′
i − Riδ′λiδ′ and k0

iδ = k′
iδ − Iiδ′Riδ′λiδ′ belong to

H1
0 (Ωi) and Yiδ, respectively, and satisfy

∀ϕi ∈ H1
0 (Ωi),

ci(ti; k
0
i , ϕi) =

∫
Ωi

giϕi dx− ci(ti;Riδ′λiδ′ , ϕi)− ci(ti;Ri(λi − λiδ′), ϕi),

∀ϕiδ ∈ Yiδ, ciδ(ti; k
0
iδ, ϕiδ) =

∫
Ωi

giϕiδ dx− ciδ(ti; Iiδ′Riδ′λiδ′ , ϕiδ).

(4.10)

So, denoting by ϕ0
iδ′ the orthogonal projection of k0

i onto Yiδ′ for the norm of H1
0 (Ωi)

and adding the difference of these equations, we deduce from the ellipticity prop-
erty (4.3) that

‖k0
iδ − ϕ0

iδ′‖2H1(Ωi)
≤ c ciδ(ti; k

0
iδ − ϕ0

iδ′ , k
0
iδ − ϕ0

iδ′)
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≤ c
(
ci(ti; k

0
i − ϕ0

iδ′ , k
0
iδ − ϕ0

iδ′) + ci(ti;Ri(λi − λiδ′), k
0
iδ − ϕ0

iδ′)

+ ci(ti; (Id− Iiδ′)Riδ′λiδ′ , k
0
iδ − ϕ0

iδ′)

+ (ci − ciδ)(ti;ϕ
0
iδ′ , k

0
iδ − ϕ0

iδ′) + (ci − ciδ)(ti; Iiδ′Riδ′λiδ′ , k
0
iδ − ϕ0

iδ′)
)

Thanks to a triangle inequality, this yields

‖k′
i − k′

iδ‖H1(Ωi)

≤ c

(
‖k0

i − ϕ0
iδ′‖H1(Ωi) + c h

− 1
2

i ‖λi − λiδ′‖
H

1
2
00(Γ)

+ ‖(Id− Iiδ′)Riδ′λiδ′‖H1(Ωi)

+ sup
χiδ∈Yiδ

∫
Ωi

γi(ti)∇(ϕ0
iδ′ + Iiδ′Riδ′λiδ′) · ∇χiδ dx− ciδ(ti;ϕ

0
iδ′ + Iiδ′Riδ′λiδ′ , χiδ)

‖χiδ‖H1(Ωi)

)
.

(3) In order to evaluate the last term, we observe that, for any χiδ in Yδ, any ψiδ′

in PK′
i
,N ′

i
(Ωi), and any γiδ′ in PK′

i
,N ′

i
(Ωi),∫

Ωi

γiδ′ ∇ψiδ′ · ∇χiδ dx = (γiδ′ ∇ψiδ′ ,∇χiδ)iδ.

Adding and subtracting this quantity and using the continuity property (4.2) leads
to, for any χiδ in Yiδ,∫

Ωi

γi(ti)∇(ϕ0
iδ′ + Iiδ′Riδ′λiδ′) · ∇χiδ dx− ciδ(ti;ϕ

0
iδ′ + Iiδ′Riδ′λiδ′ , χiδ)

≤ c ‖γi(ti)− γiδ′ ‖L∞(Ωi)‖ϕ0
iδ′ + Iiδ′Riδ′λiδ′‖H1(Ωi)‖χiδ‖H1(Ωi).

Moreover, it follows from the definition of ϕ0
iδ′ that

‖ϕ0
iδ′ + Iiδ′Riδ′λiδ′‖H1(Ωi) ≤ ‖k0

i ‖H1(Ωi) + ‖Iiδ′Riδ′λiδ′‖H1(Ωi)

≤ ‖k′
i‖H1(Ωi) + ‖Riδ′λiδ′‖H1(Ωi) + ‖Iiδ′Riδ′λiδ′‖H1(Ωi).

Thanks to (4.5) and (4.6), we obtain

‖ϕ0
iδ′ + Iiδ′Riδ′λiδ′‖H1(Ωi) ≤ ‖k′

i‖H1(Ωi) + c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
‖λiδ′‖

H
1
2
00(Γ)

.

(4) To conclude, we note that the trace λi of ki belongs to Hs− 1
2 (Γ) and choose

the polynomial λiδ′ such that (see [7, Thm. 7.4])

‖λi − λiδ′‖
H

1
2
00(Γ)

≤ cK1−s
i ‖λi‖

Hs− 1
2 (Γ)

, ‖λiδ′‖
Hs− 1

2 (Γ)
≤ c ‖λi‖

Hs− 1
2 (Γ)

.

Next it can be observed that, for any polynomial riδ′ in PK′
i
,N ′

i
(Ωi),

‖(Id− Iiδ′)Riδ′λiδ′‖H1(Ωi) = ‖(Id− Iiδ′)(Riδ′λiδ′ − riδ′)‖H1(Ωi).

Using the stability properties of the operator Iiδ′ on polynomials (see [7, Forms. (13.27)
and (13.28)]) and taking riδ′ equal to the orthogonal projection of Riδ′λiδ′ in H1(Ωi)
yields

‖(Id−Iiδ′)Riδ′λiδ′‖H1(Ωi) ≤ c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
(K1−s

i +hs−1
i N1−s

i ) ‖Riδ′λiδ′‖Hs(Ωi),
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whence, from (4.5),

‖(Id−Iiδ′)Riδ′λiδ′‖H1(Ωi) ≤ c sup
{
h
− 1

2
i ,

Ki

Ni
h

1
2
i

}
(K1−s

i +hs−1
i N1−s

i )h
1
2−s ‖λiδ′‖

Hs− 1
2 (Γ)

.

Finally, using the previous estimates also yields

‖k0
i − ϕ0

iδ′‖H1(Ωi) ≤ c (K1−s
i + hs−1

i N1−s
i )

(
‖k′

i‖Hs(Ωi) + h
1
2−s
i ‖λiδ′‖

Hs− 1
2 (Γ)

)
.

To conclude, we observe that ‖λi‖
Hs− 1

2 (Γ)
is bounded by a constant ‖ki‖Hs(Ωi). This

ends the proof.
Remark 4.5. The following estimate can be derived by combining [7, Thm. 7.4]

with a Gagliardo–Nirenberg inequality: if the function γi is of class C
m with bounded

derivatives of order ≤ m and if the function ti belongs to Hs(Ωi),
d
2 < s ≤ m,

inf
γiδ′∈PKi,Ni

(Ωi)
‖γi(ti)− γiδ′ ‖L∞(Ωi) ≤ c (K

d
2−s
i + h

s− d
2

i N
d
2−s
i ) ‖ti‖Hs(Ωi).(4.11)

Moreover, a more sophisticated argument, using the full regularity of Li(ti)(gi, λi)
allows us to replace when s is > d

2 the last term in (4.9) by the better estimate

c (K1−s
i + hs−1

i N1−s
i ) ‖ti‖Hs(Ωi)‖Li(ti)(gi, λi)‖Hs(Ωi).(4.12)

Remark 4.6. If the function γi is differentiable with bounded derivative and if
the function ti belongs to Hr(Ωi) for r > 1, the Aubin–Nitsche duality argument
[7, Thm. 15.4] leads to the improved estimate

‖(Li − Liδ)(ti)(gi, λi)‖H1−ε(Ωi)

≤ c
(
(K−ε

i + hεi N
−ε
i )‖(Li − Liδ)(ti)(gi, λi)‖H1(Ωi)

+ inf
γiδ′∈PK′

i
,N′

i
(Ωi)
‖γi(ti)− γiδ′ ‖L∞(Ωi)‖Li(ti)(gi, λi)‖H1(Ωi)

)
.

(4.13)

Finally, we investigate the dependency of Liδ(ti)(gi, λi) with respect to ti.
Lemma 4.7. For any continuous functions ti and t′i, the following stability prop-

erty holds for any gi in H−1(Ωi) and any continuous function λi on Γ:

‖Liδ(ti)(gi, λi)− Liδ(t′i)(gi, λi)‖H1(Ωi)

≤ c ‖γi(ti)− γi(t
′
i)‖L∞(Ωi)‖Liδ(ti)(gi, λi)‖H1(Ωi).

(4.14)

Proof. Setting kiδ = Liδ(ti)(gi, λi) and k′
iδ = Liδ(t′i)(gi, λi), we observe that the

function kiδ − k′
iδ belongs to Yiδ and satisfies

∀ϕiδ ∈ Yiδ,
(
γi(ti)∇kiδ,∇ϕiδ

)
iδ
=
(
γi(t

′
i)∇k′

iδ,∇ϕiδ
)
iδ
,

whence

ciδ(t
′
i; kiδ − k′

iδ, kiδ − k′
iδ) =

(
γi(t

′
i) (∇kiδ −∇k′

iδ), (∇kiδ −∇k′
iδ)
)
iδ

= −((γi(ti)− γi(t
′
i)
)∇kiδ, (∇kiδ −∇k′

iδ)
)
iδ
.

So the desired estimated follows from the properties of ciδ(·; ·, ·); see Lemma 4.1.
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The discrete Stokes operator. We now present similar properties for the
Stokes operator Siδ defined by (3.14); however, we skip the proofs except for the error
estimates.

Lemma 4.8. For any continuous function ti, the form aiδ(ti; ·, ·) satisfies the
following properties of continuity:

∀uiδ ∈ Xiδ, ∀viδ ∈ Xiδ, aiδ(ti;uiδ,viδ) ≤ c ‖uiδ‖H1(Ωi)d‖viδ‖H1(Ωi)d ,(4.15)

and of ellipticity:

∀viδ ∈ Xiδ, aiδ(ti;viδ,viδ) ≥ c ‖viδ‖2H1(Ωi)d
.(4.16)

Lemma 4.9. For any continuous function ti, the following stability property holds

for any gi in L2(Ωi)
d and any λi in the dual space of H

1
2
00(Γ)

d:

‖Siδ(ti)(gi,λi)‖H1(Ωi)d ≤ c
(‖gi‖L2(Ωi)d + ‖λi‖

H
1
2
00(Γ)′ d

)
.(4.17)

Remark 4.10. As for the Laplace operator, the norms of gi and λi in the right-
hand side can be replaced, respectively, by the dual norms of Xiδ (when provided with

the norm ‖ · ‖H1(Ωi)d) and of PKi(Γ)
d∩H

1
2
00(Γ)

d (provided with the norm ‖ · ‖
H

1
2
00(Γ)d

).

However, the proof of the convergence estimate is slightly different (but simpler).
Lemma 4.11. For any continuous function ti, the following error estimate holds

for any gi in L2(Ωi)
d and any λi in the dual space of H

1
2
00(Γ)

d:

‖(Si − Siδ)(ti)(gi,λi)‖H1(Ωi)d

≤ c inf
wiδ∈Xiδ′∩Vi

(
‖Si(ti)(gi,λi)−wiδ‖H1(Ωi)d

+ inf
αiδ′∈PK′

i
,N′

i
(Ωi)
‖αi(ti)− αiδ′ ‖L∞(Ωi)‖wiδ‖H1(Ωi)d

)
.

(4.18)

Proof. Setting ui = Si(ti)(gi,λi) and uiδ = Siδ(ti)(gi,λi), we derive from (4.16)
that, for any wiδ′ in Xiδ′ ∩ Vi,

‖uiδ −wiδ′‖2H1(Ωi)d
≤ c aiδ(ti;uiδ −wiδ′ ,uiδ −wiδ′).

Using (2.14) (in variational form) and (3.14), we derive

‖uiδ −wiδ′‖2H1(Ωi)d
≤ c

(
ai(ti;ui,uiδ −wiδ′)− aiδ(ti;wiδ′ ,uiδ −wiδ′)

)
.

Next we deduce from the exactness of the quadrature formula that, for any αiδ′ in
PK′

i
,N ′

i
(Ωi),∫

Ωi

αiδ′ ∇wiδ′ · ∇(uiδ −wiδ′) dx = (αiδ′ ∇wiδ′ ,∇(uiδ −wiδ′))iδ.

Adding and subtracting this quantity yield

‖uiδ −wiδ′‖2H1(Ωi)d
≤ c

(
ai(ti;ui −wiδ′ ,uiδ −wiδ′)

+

∫
Ωi

(αi(ti)− αiδ′)∇wiδ′ · ∇(uiδ −wiδ′) dx

− ((αi(ti)− αiδ′)∇wiδ′ ,∇(uiδ −wiδ′))iδ

)
.
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So the desired estimate follows from the continuity property (4.15), together with a
triangle inequality.

Remark 4.12. In dimension d = 2, it is easy to evaluate the distance of a func-
tion ui in Vi to Xiδ∩Vi by introducing the stream function ψi such that ui = curl ψi.
Indeed, the functions curl ψiδ, where ψiδ belongs to PKi,Ni(Ωi), satisfies the desired
boundary conditions and approximates ψi in H2(Ωi), belongs to Xiδ∩Vi, and provides
a good approximation of ui. The case of dimension d = 3 is more complex; however,
the right approximation properties have been proved in [22] for smooth functions and
extended in [5] to arbitrary functions. So the general result reads as follows: for any
function ui in Hs(Ωi)

d ∩ Vi, s ≥ 1,

inf
wiδ∈Xiδ∩Vi

‖Si(ti)(gi,λi)−wiδ‖H1(Ωi)d ≤ c (K1−s
i + hs−1

i N1−s
i ) ‖ui‖Hs(Ωi)d .(4.19)

Note also that the last term in (4.18) can be bounded analogously to (4.11) or (4.12).
Lemma 4.13. For any continuous functions ti and t′i, the following stability

property holds for any gi in L2(Ωi)
d and any λi in the dual space of H

1
2
00(Γ)

d:

‖Siδ(ti)(gi,λi)− Siδ(t′i)(gi,λi)‖H1(Ωi)d

≤ c ‖αi(ti)− αi(t
′
i)‖L∞(Ωi)‖Siδ(ti)(gi,λi)‖H1(Ωi)d .

(4.20)

5. Numerical analysis of the discrete problem. The aim of this section is to
prove that, if Hypotheses 2.2 and 2.4 hold, problem (3.4)–(3.5) has a unique solution
in a neighborhood of (U∗

1 , U
∗
2 ) and that this solution converges to (U∗

1 , U
∗
2 ). We also

derive optimal error estimates. To this aim, we check the assumptions of the theorem
of Brezzi, Rappaz, and Raviart [10] in Propositions 5.5 to 5.7.

From now on, we denote by Xiδ, i = 1 and 2, the space Xiδ×PKi,Ni
(Ωi), provided

with the norm of Xi, and by Xδ the product X1δ ×X2δ.
In view of (4.6), (4.9), and (4.19), for instance, we decide to take the Ni, i =

1 and 2, such that, for a fixed constant κ,

κhiKi ≤ Ni < κhiKi + 1,(5.1)

and we do not any longer take into account the dependency of the constants with re-
spect to the hi. We also choose an approximation (U∗

1δ′ , U
∗
2δ′), with U∗

iδ′ = (u∗
iδ′ , k

∗
iδ′),

of the solution (U∗
1 , U

∗
2 ) in

∏2
i=1(Xiδ′ × PK′

i
,N ′

i
(Ωi)) which satisfies the following

approximation properties for 0 ≤ r ≤ s∗, where s∗ is introduced in Hypothesis 2.2:

‖u∗
i − u∗

iδ′‖Hr(Ωi)d ≤ cKr−s∗
i ‖u∗

i ‖Hs∗ (Ωi)d ,

‖k∗
i − k∗

iδ′‖Hr(Ωi) ≤ cKr−s∗
i ‖k∗

i ‖Hs∗ (Ωi).
(5.2)

The existence of such an approximation is stated in [7, Thm. 7.4]. Finally, we assume
that the functions αi and γi are of class C

2, with bounded derivatives up to order 2 and

also that the operators ΠΓ
iδ satisfy, for all s ≥ 1

2 (the notation H
s− 1

2	 (Γ) is introduced
in (4.4)),

∀λ ∈ H
s− 1

2	 (Γ), ‖λ−ΠΓ
iδλ‖

H
1
2
00(Ωi)

≤ cK1−s
i ‖λ‖

H
s− 1

2� (Γ)
.(5.3)

In a first step, we must prove the analogue of Hypothesis 2.4 for the discrete
operator. The proof relies on the expansion

Id +DTδ(k∗
1δ′ , k

∗
2δ′)Gδ(U∗

1δ′ , U
∗
2δ′) + Tδ(k∗

1δ′ , k
∗
2δ′)DGδ(U∗

1δ′ , U
∗
2δ′)

= Id +DT (k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + T (k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 ) +

4∑
j=1

Oj ,
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with

O1 = −(DT (k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 )−DTδ(k∗

1 , k
∗
2)G(U∗

1δ′ , U
∗
2δ′)
)

− (T − Tδ)(k∗
1 , k

∗
2)DG(U∗

1 , U
∗
2 ),

O2 = −(DTδ(k∗
1 , k

∗
2)−DTδ(k∗

1δ′ , k
∗
2δ′)
)G(U∗

1δ′ , U
∗
2δ′)

− (Tδ(k∗
1 , k

∗
2)− Tδ(k∗

1δ′ , k
∗
2δ′)
)
DG(U∗

1 , U
∗
2 ),

O3 = −Tδ(k∗
1δ′ , k

∗
2δ′)
(
DG(U∗

1 , U
∗
2 )−DG(U∗

1δ′ , U
∗
2δ′)
)
,

O4 = −DTδ(k∗
1δ′ , k

∗
2δ′)
(G(U∗

1δ′ , U
∗
2δ′)− Gδ(U∗

1δ′ , U
∗
2δ′)
)

− Tδ(k∗
1δ′ , k

∗
2δ′)
(
DG(U∗

1δ′ , U
∗
2δ′)−DGδ(U∗

1δ′ , U
∗
2δ′)
)
.

So we now prove that each Oj tends to zero when K1 and K2 go to +∞, in the norm
of the space L (Xδ,Xδ) of linear mappings from Xδ into itself. These properties are
stated in the following lemmas.

Let us first observe that, for any W = (W1,W2) in X , with Wi = (wi,mi),

DG(U∗
1 , U

∗
2 ) ·W =




(0, Dλ1(u
∗
1,u

∗
2).(w1,w2))

(−Dg1(k
∗
1 ,u

∗
1).(m1,w1), Dλ(u∗

1,u
∗
2).(w1,w2))

(0, Dλ2(u
∗
1,u

∗
2).(w1,w2))

(−Dg2(k
∗
2 ,u

∗
2).(m2,w2), Dλ(u∗

1,u
∗
2).(w1,w2))


 ,(5.4)

with

Dλi(u
∗
1,u

∗
2).(w1,w2) = |u∗

i − u∗
j | (wi −wj) +

(u∗
i − u∗

j ) · (wi −wj)

|u∗
i − u∗

j |
(u∗

i − u∗
j ),

Dgi(k
∗
i ,u

∗
i ).(mi,wi) = 2αi(k

∗
i )∇u∗

i · ∇wi + α′
i(k

∗
i )mi |∇u∗

i |2,
Dλ(u∗

1,u
∗
2).(w1,w2) = −2 (u∗

1 − u∗
2) · (w1 −w2).

(5.5)

Moreover, we have the following formula (which can be derived from the explicit form
(2.20)–(2.21) of the linearized problem):

DT (k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + T (k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 )

= T (k∗
1 , k

∗
2)(DG(U∗

1 , U
∗
2 ) +DH(U∗

1 , U
∗
2 )),

(5.6)

with

DH(U∗
1 , U

∗
2 ).(m1,m2) =




(−div (α′
1(k

∗
1)m1∇u∗

1),0)
(−div (γ′

1(k
∗
1)m1∇k∗

1), 0)
(−div (α′

2(k
∗
2)m2∇u∗

2),0)
(−div (γ′

1(k
∗
2)m2∇k∗

2), 0)


 .

A similar formula would hold for the discrete problem

DTδ(k∗
1 , k

∗
2)G(U∗

1 , U
∗
2 ) + Tδ(k∗

1 , k
∗
2)DG(U∗

1 , U
∗
2 )

= Tδ(k∗
1 , k

∗
2)(DG(U∗

1 , U
∗
2 ) +DHδ(U

∗
1 , U

∗
2 )),

(5.7)

where the duality product of the first part of the first and third components with a viδ
in Viδ, respectively, of the second and fourth components with a !iδ in Yδ, are given
by the formulas

(α′
i(k

∗
i )miδ∇u∗

i ,∇viδ)iδ, (γ′
i(k

∗
i )miδ∇k∗

i ,∇!iδ)iδ.
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(Here, the differential operator is applied to a Wδ = (W1δ,W2δ) in Xδ, with each Wiδ

equal to (wiδ,miδ).)
From now on, we fix ε such that 2ε < s∗ − d

2 .
Lemma 5.1. If Hypothesis 2.2 is satisfied, the following property holds:

lim
K1→+∞,K2→+∞

‖O1‖L (Xδ,Xδ) = 0.(5.8)

Proof. Due to formulas (5.6) and (5.7), we observe that

‖O1‖L (Xδ,Xδ) ≤ ‖(T − Tδ)(k∗
1 , k

∗
2)
(
DG(U∗

1 , U
∗
2 ) +DH(U∗

1 , U
∗
2 )
)‖L (Xδ,Xδ)

+ ‖Tδ(k∗
1 , k

∗
2)
(
DH(U∗

1 , U
∗
2 )−DHδ(U

∗
1δ′ , U

∗
2δ′)
)‖L (Xδ,Xδ).

(1) To bound the first term, we note that, when (W1δ,W2δ) runs through the unit
sphere of Xδ, the quantities

Dλi(u
∗
1,u

∗
2).(w1δ,w2δ), Dgi(k

∗
i ,u

∗
i ).(miδ,wiδ), and Dλ(u∗

1,u
∗
2).(w1δ,w2δ)

belong to a bounded set in L2(Ωi)
d, H−1(Ωi), and H

1
2
00(Γ), respectively. Then it

can be checked that Si(k∗
i )(0, Dλi(u

∗
1,u

∗
2).(w1δ,w2δ)) remains inside a bounded set

of Hs(Ωi)
d for some s > 1. Thanks to (4.18), (4.19), and the analogue of (4.11),

this yields the uniform convergence of (Si−Siδ)(k∗
i )(0, Dλi(u

∗
1,u

∗
2).(w1δ,w2δ

)). The
convergence of the other terms, say

(Li − Liδ)(k∗
i )(Dgi(k

∗
i ,u

∗
i ).(miδ,wiδ), Dλ(u∗

1,u
∗
2).(w1δ,w2δ)),

follows from (4.13) together with the fact that both

Li(Dgi(k
∗
i ,u

∗
i ).(mi,wi), Dλ(u∗

1,u
∗
2).(w1,w2))

and its discrete analogue

Liδ(k∗
i )(Dgi(k

∗
i ,u

∗
i ).(mi,wi), Dλ(u∗

1,u
∗
2).(w1,w2))

are bounded in H1(Ωi); see (4.7). So combining these facts yields

lim
K1→+∞,K2→+∞

‖(T − Tδ)(k∗
1 , k

∗
2)DG(U∗

1 , U
∗
2 )‖L (X ,X ) = 0.

(2) Similarly, we observe that, when (W1δ,W2δ) runs through the unit sphere
of Xδ, the quantities α′

i(k
∗
i )miδ∇u∗

i and γ′
i(k

∗
i )miδ∇k∗

i belong to a bounded set

of Hs(Ωi)
d2

and Hs(Ωi)
d, for some s > 0, so that their divergence belongs to

Hs−1(Ωi)
d and Hs−1(Ωi), respectively. This implies

lim
K1→+∞,K2→+∞

‖(T − Tδ)(k∗
1 , k

∗
2)DH(U∗

1 , U
∗
2 )‖L (X ,X ) = 0.

(3) To prove the convergence of the last term, we observe from (4.8) that it
suffices to prove, for any miδ in the intersection of PKi,Ni(Ωi) with the unit sphere
of H1−ε(Ωi), the convergence of

sup
�iδ∈Yiδ

∫
Ωi

γ′
i(k

∗
i )miδ∇k∗

i · ∇!iδ dx− (γ′
i(k

∗
i )miδ∇k∗

iδ′ ,∇!iδ)iδ

‖!iδ‖H1(Ωi)
.
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Handling the other terms is similar. Denoting by δ′′ the 4-tuple (K ′′
1 , N

′′
1 ,K ′′

2 , N
′′
2 )

with each K ′′
i equal to the integral part of Ki−1

4 and each N ′′
i equal to the integral part

of Ni−1
4 , we derive from the exactness of the quadrature formula for any γ̃iδ′′ and miδ′′

in PK′′
i
,N ′′

i
(Ωi),∫

Ωi

γiδ′′miδ′′ ∇k∗
iδ′ · ∇!iδ dx = (γiδ′′miδ′′ ∇k∗

iδ′ ,∇!iδ)iδ.

By adding and subtracting this line, we prove that the previous quantity is bounded
by the sum of the terms

‖γ′
i(k

∗
i )‖L∞(Ωi)‖miδ∇(k∗

i − k∗
iδ′)‖L2(Ωi)d ,

‖γ′
i(k

∗
i )‖L∞(Ωi)‖(miδ −miδ′′)∇k∗

iδ′‖L2(Ωi)d ,

‖γ′
i(k

∗
i )− γ̃iδ′′‖L∞(Ωi)‖miδ′′ ∇k∗

iδ′‖L2(Ωi)d ,

‖γ′
i(k

∗
i )‖L∞(Ωi)‖Iiδ

(
(miδ −miδ′′)∇k∗

iδ′
)‖L2(Ωi)d ,

‖γ′
i(k

∗
iδ)− γ̃iδ′′‖L∞(Ωi)‖Iiδ

(
miδ′′ ∇k∗

iδ′)‖L2(Ωi)d .

Thanks to the choice of ε, the product of two functions is continuous from
H1−ε(Ωi) × Hs∗−1−ε(Ωi) into L2(Ωi) so that the uniform convergence of the first
term follows from (5.2). Again, thanks to the choice of ε, the product of two functions
is continuous from H1−2ε(Ωi) × Hs∗−1(Ωi) into L2(Ωi) so that the uniform conver-
gence of the second term is obtained by taking miδ′′ equal to the projection of miδ

onto PK′′
i
,N ′′

i
(Ωi) for the scalar product of H1−ε(Ωi) and using the approximation

properties of this projection operator; see [7, Thm. 7.4]. Similarly, the convergence of
the third term follows from (4.11). The convergence of the last two terms is derived by
similar arguments combined with the stability on the operator Iiδ on polynomials; see
[7, Form. (13.28)].

So the proof is complete.
Lemma 5.2. If Hypothesis 2.2 is satisfied, the following property holds:

lim
K1→+∞,K2→+∞

‖O2‖L (Xδ,Xδ) = 0.(5.9)

Proof. From (5.7), we have

‖O2‖L (Xδ,Xδ) = ‖
(Tδ(k∗

1 , k
∗
2)−Tδ(k∗

1δ′ , k
∗
2δ′)
)(

DG(U∗
1 , U

∗
2 )+DHδ(U

∗
1δ′ , U

∗
2δ′)
)‖L (Xδ,Xδ).

When (W1δ,W2δ) runs through the unit sphere of Xδ, the quantity

Tδ(k∗
1 , k

∗
2)
(
DG(U∗

1 , U
∗
2 ) +DHδ(U

∗
1 , U

∗
2δ′)
)

remains bounded in X so that the desired convergence result follows from (4.14) and
(4.20), combined with (5.2) and the embedding of Hs(Ωi) into L∞(Ωi) for all s > d

2 .
Lemma 5.3. If Hypothesis 2.2 is satisfied, the following property holds:

lim
K1→+∞,K2→+∞

‖O3‖L (Xδ,Xδ) = 0.(5.10)

Proof. Here, the convergence of each term is a straightforward consequence
of (5.2).

Lemma 5.4. If Hypothesis 2.2 is satisfied and if the data f i, 1 ≤ i ≤ 2, belong
to Hσ(Ωi)

d for some σ > d
2 , the following property holds:

lim
K1→+∞,K2→+∞

‖O4‖L (Xδ,Xδ) = 0.(5.11)
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Proof. Thanks to (4.8) and its analogue for the Stokes problem, the convergence
of the term

‖Tδ(k∗
1δ, k

∗
2δ)
(
DG(U∗

1δ′ , U
∗
2δ′)−DGδ(U∗

1δ′ , U
∗
2δ′)
)‖L (Xδ,Xδ)

is a consequence of the convergence of the terms

sup
wiδ∈Xiδ

∫
Ωi

αi(k
∗
iδ)∇u∗

iδ · ∇wiδ dx− (αi(k
∗
iδ)∇u∗

iδ,∇wiδ)iδ

‖wiδ‖H1(Ωi)d
,

sup
miδ∈Yiδ

∫
Ωi

α′
i(k

∗
iδ)miδ∇u∗

iδ · ∇u∗
iδ dx− (α′

i(k
∗
iδ)miδ∇u∗

iδ,∇u∗
iδ)iδ

‖miδ‖H1−ε(Ωi)

and of their analogues for the Stokes problem. As in the end of the proof of Lemma 4.1,
this is obtained by adding and subtracting appropriate terms of lower degree.

Similar arguments yield the convergence of Gδ(U∗
1δ′ , U

∗
2δ′) toward G(U∗

1δ′ , U
∗
2δ′),

whence the convergence of the second term in O4.
Combining the results of Lemmas 5.1 to 5.4 leads to the following result.
Proposition 5.5. If Hypotheses 2.2 and 2.4 are satisfied and if the data f i,

1 ≤ i ≤ 2, belong to Hσ(Ωi)
d for some σ > d

2 , there exists a constant K such that,
for K1 ≥ K and K2 ≥ K, the operator

Id +DTδ(k∗
1δ′ , k

∗
2δ′)Gδ(U∗

1δ′ , U
∗
2δ′) + Tδ(k∗

1δ′ , k
∗
2δ′)DGδ(U∗

1δ′ , U
∗
2δ′)(5.12)

is an isomorphism of Xδ. Moreover, the norm of its inverse is bounded by a constant γ
independent of K1 and K2.

The following proposition states a Lipschitz property for the discrete operator.
Since its proof is simpler than for the previous result, we only sketch it.

Proposition 5.6. The following property holds for all nonnegative real numbers
α and for any (Z1δ, Z2δ) in Xδ which satisfies ‖(Z1δ, Z2δ)− (U∗

1δ′ , U
∗
2δ′)‖X ≤ α, with

Ziδ = (ziδ, riδ):

‖DTδ(k∗
1δ′ , k

∗
2δ′)Gδ(U∗

1δ′ , U
∗
2δ′) + Tδ(k∗

1δ′ , k
∗
2δ′)DGδ(U∗

1δ′ , U
∗
2δ′)

−DTδ(r1δ, r2δ)Gδ(Z1δ, Z2δ)− Tδ(r1δ, r2δ)DGδ(Z1δ, Z2δ)‖L (Xδ,Xδ) ≤ c κδ α,
(5.13)

where according to the dimension d the constant κδ is given by

κδ = K
2(d−2)+2ε
i (logKi)

3−d
2 .(5.14)

Proof. We must bound the four terms

‖Tδ(r1δ, r2δ)
(
DGδ(U∗

1δ′ , U
∗
2δ′)−DGδ(Z1δ, Z2δ)

)‖L (Xδ,Xδ),

‖(Tδ(k∗
1δ′ , r

∗
2δ′)− Tδ(r1δ, r2δ)

)
DGδ(U∗

1δ′ , U
∗
2δ′)‖L (Xδ,Xδ),

‖Tδ(r1δ, r2δ)
(
DHδ(U

∗
1δ′ , U

∗
2δ′)−DHδ(Z1δ′ , Z2δ′)

)‖L (Xδ,Xδ),

‖(Tδ(k∗
1δ′ , r

∗
2δ′)− Tδ(r1δ, r2δ)

)
DHδ(U

∗
1δ′ , U

∗
2δ′)‖L (Xδ,Xδ).

For instance, in the first term, we must bound the quantity, for miδ running through
the unit ball of Yiδ,

∑
�iδ∈Yiδ

(
α′
i(k

∗
iδ′)miδ |∇(uiδ′ − ziδ)|2, !iδ

)
iδ

‖!iδ‖H1(Ωi)
.
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Applying the inverse inequalities

∀ϕiδ ∈ PKi,Ni(Ωi), ‖ϕiδ‖L∞(Ωi) ≤
{

cKd−2+2ε
i ‖ϕiδ‖H1−ε(Ωi),

cKd−2
i (logKi)

3−d
2 ‖ϕiδ‖H1(Ωi),

we have to bound the term, for all miδ in PKi,Ni(Ωi),

K
2(d−2)+2ε
i (logKi)

3−d
2 ‖∇(u∗

iδ′ − ziδ)‖L2(Ωi) ‖∇(u∗
iδ′ + ziδ)‖L2(Ωi).

This yields the value of κδ. The other terms are simpler; they can be evaluated by
similar arguments.

Finally, we must evaluate the quantity

εδ =

∥∥∥∥
(

U∗
1δ′

U∗
2δ′

)
+ Tδ(k∗

1δ′ , k
∗
2δ′)Gδ(U∗

1δ′ , U∗
2δ′)

∥∥∥∥
X
.(5.15)

Proposition 5.7. If Hypothesis 2.2 is satisfied and if the data f i, 1 ≤ i ≤ 2,
belong to Hσ(Ωi)

d for some σ > d
2 , the following estimate holds for a constant C only

depending on the norm of (U∗
1 , U

∗
2 ) in

∏2
i=1

(
Hs∗(Ωi)

d ×Hs∗(Ωi)
)
:

εδ ≤ C (inf{K1,K2})1−s∗ .(5.16)

Proof. By using formulation (2.18), we observe that

εδ ≤ ‖U∗
1 − U∗

1δ‖X1
+ ‖U∗

2 − U∗
2δ‖X2

+ ‖(T − Tδ)(k∗
1 , k

∗
2)G(U∗

1 , U∗
2 )‖X + ‖(Tδ(k∗

1 , k
∗
2)− Tδ(k∗

1δ′ , k
∗
2δ′)
)G(U∗

1 , U∗
2 )‖X

+ ‖Tδ(k∗
1δ′ , k

∗
2δ′)

(G(U∗
1 , U∗

2 )− G(U∗
1δ′ , U∗

2δ′)
)‖X

+ ‖Tδ(k∗
1δ′ , k

∗
2δ′)

(G(U∗
1δ′ , U∗

2δ′)− Gδ(U∗
1δ′ , U∗

2δ′)
)‖X .

The bound for the first two terms in the right-hand side comes from (5.2), and the
bound for the third term is derived from (4.9) and its analogue for the Stokes problem
together with the regularity Hypothesis 2.2. The fourth term is easily bounded from
(4.14) and (4.20), while estimating the fifth one relies on (4.7) and (4.17), combined
with (5.2). Finally, estimating the last term also relies on (4.7) and (4.17) together
with the introduction of approximations of αi(k

∗
i ) and γi(k

∗
i ) in PK′

i
,N ′

i
(Ωi); see (4.12).

We are now in a position to apply the Brezzi–Rappaz–Raviart theorem [10] (see
also [15, Chap. IV, Thm. 3.1]).

Theorem 5.8. If Hypotheses 2.2 and 2.4 are satisfied with s∗ > 2(d − 2) + 1
and if the data f i, i = 1, 2, belong to Hσ(Ωi)

d for some σ > sup{d2 , s∗ − 1}, there
exist an integer K0 and a constant λ such that, for K1 ≥ K0 and K2 ≥ K0, problem
(3.4)–(3.7) has a unique solution (U1δ, U2δ), with each Uiδ equal to (uiδ, kiδ), in the
neighborhood U of U = (U∗

1 , U
∗
2 ) defined as follows:

U =
{
Zδ = (Z1δ, Z2δ) ∈ Xδ; ‖U − Zδ‖X ≤ λκ−1

δ

}
.(5.17)

Moreover, the following error estimates hold for i = 1 and 2:

‖u∗
i − uiδ‖H1(Ωi)d + ‖k∗

i − kiδ‖L2(Ωi) ≤ C0 (inf{K1,K2})1−s∗(5.18)

for a constant C0 depending only on the norms of (U∗
1 , U

∗
2 ) in

∏2
i=1(H

s∗(Ωi)
d ×

Hs∗(Ωi)) and of (f1,f2) in
∏2

i=1 Hσ(Ωi)
d.
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We conclude with an estimate on the pressure, which is easily derived from the
inf-sup condition established in Lemma 3.4.

Corollary 5.9. If the assumptions of Theorem 5.8 are satisfied, for the solution
(U1δ, U2δ) exhibited in Theorem 5.8, there exists a unique pair (p1δ, p2δ) in Mm

1δ×Mm
2δ

such that (Ũ1δ, Ũ2δ), with each Ũiδ equal to (uiδ, piδ, kiδ), is a solution of problem
(3.4)–(3.5). Moreover, the following error estimates hold for i = 1 and 2:

‖p∗i − piδ‖L2(Ωi) ≤ C ′
0 (β

m
iδ )

−1 (inf{K1,K2})1−s∗(5.19)

for the constants βmiδ evaluated in (3.9) and a constant C ′
0 depending only on the norms

of (Ũ∗
1 , Ũ

∗
2 ) in

∏2
i=1(H

s(Ωi)
d×Hs−1(Ωi)×Hs(Ωi)) and of (f1,f2) in

∏2
i=1 Hσ(Ωi)

d.

6. Conclusions and numerical algorithms. The regularity assumptions in
Theorem 5.8 in the three-dimensional case are very unlikely; however, they seem
unavoidable. This comes from the fact that the linearized problem (2.20) and (2.21)
makes sense only for a smooth solution U∗. Nevertheless, this does not prevent the
convergence of numerical experiments.

In contrast, the assumptions of Theorem 5.8 are fully reasonable in the two-
dimensional case and, if these assumptions hold, optimal error estimates are derived
for the velocity, the kinetic energy, and the pressure for appropriate choices of the
spaces Miδ. In this case, the maximal regularity s∗ would very likely coincide with
the s0 � 1.5946 introduced in section 2 so that the error would be smaller than
C0 (inf{K1,K2})−0.5946. Moreover, in the case of the rectangle, the explicit form of
the singular functions associated with the Stokes operator with Dirichlet–Neumann
boundary conditions is known [20]. As usual [6], this would lead to double the con-
vergence order: for smooth enough data f i, i = 1 and 2, the error would be smaller
than C0 (inf{K1,K2})−1.1892.

The most standard choice of an operator ΠΓ
iδ satisfying (5.3) would be the orthog-

onal projection operator Π
1
2

Ki
from H

1
2
00(Γ) onto PKi(Γ)∩H

1
2
00(Γ); however, computing

this operator is not easy. So we take ΠΓ
iδ equal to IΓ

iδ Π
1
2

Ki
. Indeed, estimate (5.3)

is still satisfied by this operator and, in this case, the boundary conditions at the
interface can be written in a very simple way:

kiδ = IΓ
iδ(|u1δ − u2δ|2) on Γ.

Note, moreover, that in the present situation there is no theoretical reason to choose
K1 �= K2 and that, when K1 and K2 coincide, these conditions are still less expensive
to enforce. However, for more complex geometries (for instance, if the Ωi are convex
quadrilaterals), different values of K1 and K2 can be needed since the regularity
properties of the velocities in Ω1 and Ω2 are different.

Exactly the same arguments as for Theorem 5.8 prove [10] the convergence of New-
ton’s algorithm for solving the nonlinear problem (3.4)–(3.5), when the initial guess
(U0

1δ, U
0
2δ) belongs to the domain U introduced in (5.17); however, this method seems

too expensive for the present problem. Instead of this, for an initial guess (U0
1δ, U

0
2δ),

we propose to solve iteratively the following problem: if the pair (Ũn
1δ, Ũ

n
2δ), with

Ũn
iδ = (uniδ, p

n
iδ, k

n
iδ), is supposed to be known, then we solve the following problem:
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Find (un+1
iδ , pn+1

iδ ) in Xiδ ×Miδ such that

∀viδ ∈ Xiδ,

aiδ(k
n
iδ;u

n+1
iδ ,viδ) + biδ(viδ, p

n+1
iδ )

+
( |uniδ − unjδ| (un+1

iδ − un+1
jδ ),viδ

)Γ
iδ
=
(
f i,viδ

)
iδ
,

∀qiδ ∈Miδ, biδ(u
n+1
iδ , qiδ) = 0;

(6.1)

Find kiδ in PKi,Ni(Ωi), such that

kn+1
iδ = 0 on Γi and kn+1

iδ = IΓ
iδ(|un+1

1δ − un+1
2δ |2) on Γ,(6.2)

and

∀ϕiδ ∈ Yiδ, ciδ(k
n
iδ; k

n+1
iδ , ϕiδ) =

(
αi(k

n
iδ) |∇un+1

iδ |2, ϕiδ
)
iδ
.(6.3)

Clearly, these two linear problems are well-posed and the sequence (Ũn
1δ, Ũ

n
2δ)n con-

verges. Numerical experiments to check the efficiency of the algorithm are under
consideration.
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